1
|
Janardhanan M, Sen S, Shankarappa B, Purushottam M. Molecular genetics of neuropsychiatric illness: some musings. Front Genet 2023; 14:1203017. [PMID: 38028602 PMCID: PMC10646253 DOI: 10.3389/fgene.2023.1203017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Research into the genetic underpinnings of neuropsychiatric illness has occurred at many levels. As more information accumulates, it appears that many approaches may each offer their unique perspective. The search for low penetrance and common variants, that may mediate risk, has necessitated the formation of many international consortia, to pool resources, and achieve the large sample sizes needed to discover these variants. There has been the parallel development of statistical methods to analyse large datasets and present summary statistics which allows data comparison across studies. Even so, the results of studies on well-characterised clinical datasets of modest sizes can be enlightening and provide important clues to understanding these complex disorders. We describe the use of common variants, at multiallelic loci like TOMM40 and APOE to study dementia, weighted genetic risk scores for alcohol-induced liver cirrhosis and whole exome sequencing to identify rare variants in genes like PLA2G6 in familial psychoses and schizophrenia in our Indian population.
Collapse
Affiliation(s)
| | | | | | - Meera Purushottam
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
2
|
Vouga Ribeiro N, Tavares V, Bramon E, Toulopoulou T, Valli I, Shergill S, Murray R, Prata D. Effects of psychosis-associated genetic markers on brain volumetry: a systematic review of replicated findings and an independent validation. Psychol Med 2022; 52:1-16. [PMID: 36168994 PMCID: PMC9811278 DOI: 10.1017/s0033291722002896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Given psychotic illnesses' high heritability and associations with brain structure, numerous neuroimaging-genetics findings have been reported in the last two decades. However, few findings have been replicated. In the present independent sample we aimed to replicate any psychosis-implicated SNPs (single nucleotide polymorphisms), which had previously shown at least two main effects on brain volume. METHODS A systematic review for SNPs showing a replicated effect on brain volume yielded 25 studies implicating seven SNPs in five genes. Their effect was then tested in 113 subjects with either schizophrenia, bipolar disorder, 'at risk mental state' or healthy state, for whole-brain and region-of-interest (ROI) associations with grey and white matter volume changes, using voxel-based morphometry. RESULTS We found FWER-corrected (Family-wise error rate) (i.e. statistically significant) associations of: (1) CACNA1C-rs769087-A with larger bilateral hippocampus and thalamus white matter, across the whole brain; and (2) CACNA1C-rs769087-A with larger superior frontal gyrus, as ROI. Higher replication concordance with existing literature was found, in decreasing order, for: (1) CACNA1C-rs769087-A, with larger dorsolateral-prefrontal/superior frontal gyrus and hippocampi (both with anatomical and directional concordance); (2) ZNF804A-rs11681373-A, with smaller angular gyrus grey matter and rectus gyri white matter (both with anatomical and directional concordance); and (3) BDNF-rs6265-T with superior frontal and middle cingulate gyri volume change (with anatomical and allelic concordance). CONCLUSIONS Most literature findings were not herein replicated. Nevertheless, high degree/likelihood of replication was found for two genome-wide association studies- and one candidate-implicated SNPs, supporting their involvement in psychosis and brain structure.
Collapse
Affiliation(s)
- Nuno Vouga Ribeiro
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Vânia Tavares
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Timothea Toulopoulou
- Department of Psychology & National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Centre (ASBAM), Bilkent University, Ankara, Turkey
| | - Isabel Valli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Sukhi Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
| | - Robin Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
3
|
Social anhedonia as a Disrupted-in-Schizophrenia 1-dependent phenotype. Sci Rep 2022; 12:10182. [PMID: 35715502 PMCID: PMC9205858 DOI: 10.1038/s41598-022-14102-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Deficits in social interaction or social cognition are key phenotypes in a variety of chronic mental diseases, yet, their modeling and molecular dissection are only in their infancy. The Disrupted-in-Schizophrenia 1 (DISC1) signaling pathway is considered to play a role in different psychiatric disorders such as schizophrenia, depression, and biopolar disorders. DISC1 is involved in regulating the dopaminergic neurotransmission in, among others, the mesolimbic reward system. A transgenic rat line tgDISC1 has been introduced as a model system to study behavioral phenotypes associated with abnormal DISC1 signaling pathways. Here, we evaluated the impact of impaired DISC1 signaling on social (social interaction) and non-social (sucrose) reward preferences in the tgDISC1 animal model. In a plus-maze setting, rats chose between the opportunity for social interaction with an unfamiliar juvenile conspecific (social reward) or drinking sweet solutions with variable sucrose concentrations (non-social reward). tgDISC1 rats differed from wild-type rats in their social, but not in their non-social reward preferences. Specifically, DISC1 rats showed a lower interest in interaction with the juvenile conspecific, but did not differ from wild-type rats in their preference for higher sucrose concentrations. These results suggest that disruptions of the DISC1 signaling pathway that is associated with altered dopamine transmission in the brain result in selective deficits in social motivation reminiscent of phenotypes seen in neuropsychiatric illness.
Collapse
|
4
|
Wang AL, Chao OY, Nikolaus S, Lamounier-Zepter V, Hollenberg CP, Lubec G, Trossbach SV, Korth C, Huston JP. Disrupted-in-schizophrenia 1 Protein Misassembly Impairs Cognitive Flexibility and Social Behaviors in a Transgenic Rat Model. Neuroscience 2022; 493:41-51. [PMID: 35461978 DOI: 10.1016/j.neuroscience.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022]
Abstract
Alterations in cognitive functions, social behaviors and stress reactions are commonly diagnosed in chronic mental illnesses (CMI). Animal models expressing mutant genes associated to CMI represent either rare mutations or those contributing only minimally to genetic risk. Non-genetic causes of CMI can be modeled by disturbing downstream signaling pathways, for example through inducing protein misassembly or aggregation. The Disrupted-in-Schizophrenia 1 (DISC1) gene was identified to be disrupted and thereby haploinsufficient in a large pedigree where it associated to CMI. The DISC1 protein misassembles to an insoluble protein in a subset of CMI patients and this has been modeled in a rat (tgDISC1 rat) where the full-length, non mutant human transgene was overexpressed and cognitive impairments were observed. Here, we investigated the scope of effects of DISC1 protein misassembly by investigating spatial memory, social behavior and stress resilience. In water maze tasks, the tgDISC1 rats showed intact spatial learning and memory, but were deficient in flexible adaptation to spatial reversal learning compared to littermate controls. They also displayed less social interaction. Additionally, there was a trend towards increased corticosterone levels after restraint stress in the tgDISC1 rats. Our findings suggest that DISC1 protein misassembly leads to disturbances of cognitive flexibility and social behaviors, and might also be involved in stress sensitization. Since the observed behavioral features resemble symptoms of CMI, the tgDISC1 rat may be a valuable model for the investigation of cognitive, social and - possibly - also stress-related symptoms of major mental illnesses.
Collapse
Affiliation(s)
- An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA.
| | - Susanne Nikolaus
- Department of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany.
| | | | - Cornelis P Hollenberg
- Institute of Microbiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria.
| | - Svenja V Trossbach
- Department of Neuropathology, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Carsten Korth
- Department of Neuropathology, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
5
|
Tsao CY, Tuan LH, Lee LJH, Liu CM, Hwu HG, Lee LJ. Impaired response to sleep deprivation in heterozygous Disc1 mutant mice. World J Biol Psychiatry 2022; 23:55-66. [PMID: 33783301 DOI: 10.1080/15622975.2021.1907724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Sleep/circadian rhythm disturbances are environmental stress factors that might interact with genetic risk factors and contribute to the pathogenesis of psychiatric disorders. METHODS In this study, the multiple-platform method was used to induce sleep deprivation (SD). We evaluated the impact of 72-hour SD in behavioural, anatomical, and biochemical aspects in heterozygous Disc1 mutant (Disc1 Het) mice, an animal model of schizophrenia. RESULTS The sleep pattern and circadian activity were not altered in Disc1 Het mice. Yet, we observed differential responses to SD stress between genotypes. Increased microglial density and reduced neuronal proliferative activity were found in the dentate gyrus, a neurogenic niche, in Het-SD mice. Notably, SD-induced Bdnf mRNA elevations were evident in both WT and Het mice, while only in WT-SD mice did we observe increased BDNF protein expression. Our results suggested an SD-induced physical response featured by the elevation of BDNF protein expression to counteract the harmful influences of SD and sufficient DISC1 is required in this process. CONCLUSIONS The present study proposes that sleep disturbance could be pathogenic especially in genetically predisposed subjects who fail to cope with the stress. Potential therapeutic strategies for psychiatric disorders targeting the mRNA translation machinery could be considered.
Collapse
Affiliation(s)
- Chih-Yu Tsao
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Heng Tuan
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lukas Jyuhn-Hsiarn Lee
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan.,Departments of Environmental and Occupational Medicine, Neurology and Stroke Center, National Taiwan University Hospital, Taipei, Taiwan.,Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan.,Research Center for Environmental Medicine, Ph.D. Program of Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Mutations in DISC1 alter IP 3R and voltage-gated Ca 2+ channel functioning, implications for major mental illness. Neuronal Signal 2021; 5:NS20180122. [PMID: 34956649 PMCID: PMC8663806 DOI: 10.1042/ns20180122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Disrupted in Schizophrenia 1 (DISC1) participates in a wide variety of
developmental processes of central neurons. It also serves critical roles that
underlie cognitive functioning in adult central neurons. Here we summarize
DISC1’s general properties and discuss its use as a model system for
understanding major mental illnesses (MMIs). We then discuss the cellular
actions of DISC1 that involve or regulate Ca2+ signaling in adult
central neurons. In particular, we focus on the tethering role DISC1 plays in
transporting RNA particles containing Ca2+ channel subunit RNAs,
including IP3R1, CACNA1C and CACNA2D1, and in transporting mitochondria into
dendritic and axonal processes. We also review DISC1’s role in modulating
IP3R1 activity within mitochondria-associated ER membrane (MAM).
Finally, we discuss DISC1-glycogen synthase kinase 3β (GSK3β)
signaling that regulates functional expression of voltage-gated Ca2+
channels (VGCCs) at central synapses. In each case, DISC1 regulates the movement
of molecules that impact Ca2+ signaling in neurons.
Collapse
|
7
|
Abstract
Schizophrenia is a severe and clinically heterogenous mental disorder
affecting approximately 1% of the population worldwide. Despite
tremendous achievements in the field of schizophrenia research, its
precise aetiology remains elusive. Besides dysfunctional neuronal
signalling, the pathophysiology of schizophrenia appears to involve
molecular and functional abnormalities in glial cells, including
astrocytes. This article provides a concise overview of the current
evidence supporting altered astrocyte activity in schizophrenia, which
ranges from findings obtained from post-mortem immunohistochemical
analyses, genetic association studies and transcriptomic
investigations, as well as from experimental investigations of
astrocyte functions in animal models. Integrating the existing data
from these research areas strongly suggests that astrocytes have the
capacity to critically affect key neurodevelopmental and homeostatic
processes pertaining to schizophrenia pathogenesis, including
glutamatergic signalling, synaptogenesis, synaptic pruning and
myelination. The further elucidation of astrocytes functions in health
and disease may, therefore, offer new insights into how these glial
cells contribute to abnormal brain development and functioning
underlying this debilitating mental disorder.
Collapse
Affiliation(s)
- Tina Notter
- Tina Notter, Institute of
Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich,
Switzerland. Emails: ;
| |
Collapse
|
8
|
Gevorgyan MM, Zhanaeva SY, Alperina EL, Lipina TV, Idova GV. The composition of peripheral immunocompetent cell subpopulations and cytokine content in the brain structures of mutant Disc1-Q31L mice. Vavilovskii Zhurnal Genet Selektsii 2020; 24:770-776. [PMID: 33959693 PMCID: PMC8093651 DOI: 10.18699/vj20.672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The DISC1 (disrupted in sсhizophrenia 1) gene is associated with brain dysfunctions, which are involved
in a variety of mental disorders, such as schizophrenia, depression and bipolar disorder. This is the first study to
examine the immune parameters in Disc1-Q31L mice with a point mutation in the second exon of the DISC1 gene
compared to mice of the C57BL/6NCrl strain (WT, wild type). A flow cytometry assay has shown that intact Disc1-
Q31L mice differ from the WT strain by an increase in the percentage of CD3+ T cells, CD3+CD4+ Т helper cells
and CD3+CD4+CD25+ T regulatory cells and a decrease in CD3+CD8+ T cytotoxic/suppressor cells in the peripheral
blood. A multiplex analysis revealed differences in the content of cytokines in the brain structures of Disc1-Q31L
mice compared to WT mice. The content of pro-inflammatory cytokines was increased in the frontal cortex (IL-6,
IL- 17 and IFNγ) and striatum (IFNγ), and decreased in the hippocampus and hypothalamus. At the same time, the
levels of IL-1β were decreased in all structures being examined. In addition, the content of anti-inflammatory cytokines
IL-4 was increased in the frontal cortex, while IL-10 amount was decreased in the hippocampus. Immune
response to sheep red blood cells analyzed by the number of antibody-forming cells in the spleen was higher in
Disc1-Q31L mice at the peak of the reaction than in WT mice. Thus, Disc1-Q31L mice are characterized by changes in
the pattern of cytokines in the brain structures, an amplification of the peripheral T-cell link with an increase in the
content of the subpopulations of CD3+CD4+ T helpers and CD3+CD4+CD25+ T regulatory cells, as well as elevated
immune reactivity to antigen in the spleen.
Collapse
Affiliation(s)
- M M Gevorgyan
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - S Ya Zhanaeva
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - E L Alperina
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - T V Lipina
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - G V Idova
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| |
Collapse
|
9
|
Runge K, Cardoso C, de Chevigny A. Dendritic Spine Plasticity: Function and Mechanisms. Front Synaptic Neurosci 2020. [DOI: 10.3389/fnsyn.2020.00036
expr 823669561 + 872784217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
10
|
Runge K, Cardoso C, de Chevigny A. Dendritic Spine Plasticity: Function and Mechanisms. Front Synaptic Neurosci 2020; 12:36. [PMID: 32982715 PMCID: PMC7484486 DOI: 10.3389/fnsyn.2020.00036] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic spines are small protrusions studding neuronal dendrites, first described in 1888 by Ramón y Cajal using his famous Golgi stainings. Around 50 years later the advance of electron microscopy (EM) confirmed Cajal's intuition that spines constitute the postsynaptic site of most excitatory synapses in the mammalian brain. The finding that spine density decreases between young and adult ages in fixed tissues suggested that spines are dynamic. It is only a decade ago that two-photon microscopy (TPM) has unambiguously proven the dynamic nature of spines, through the repeated imaging of single spines in live animals. Spine dynamics comprise formation, disappearance, and stabilization of spines and are modulated by neuronal activity and developmental age. Here, we review several emerging concepts in the field that start to answer the following key questions: What are the external signals triggering spine dynamics and the molecular mechanisms involved? What is, in return, the role of spine dynamics in circuit-rewiring, learning, and neuropsychiatric disorders?
Collapse
Affiliation(s)
- Karen Runge
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| | - Carlos Cardoso
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| | - Antoine de Chevigny
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| |
Collapse
|
11
|
Powell SK, O'Shea CP, Shannon SR, Akbarian S, Brennand KJ. Investigation of Schizophrenia with Human Induced Pluripotent Stem Cells. ADVANCES IN NEUROBIOLOGY 2020; 25:155-206. [PMID: 32578147 DOI: 10.1007/978-3-030-45493-7_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a chronic and severe neuropsychiatric condition manifested by cognitive, emotional, affective, perceptual, and behavioral abnormalities. Despite decades of research, the biological substrates driving the signs and symptoms of the disorder remain elusive, thus hampering progress in the development of treatments aimed at disease etiologies. The recent emergence of human induced pluripotent stem cell (hiPSC)-based models has provided the field with a highly innovative approach to generate, study, and manipulate living neural tissue derived from patients, making possible the exploration of fundamental roles of genes and early-life stressors in disease-relevant cell types. Here, we begin with a brief overview of the clinical, epidemiological, and genetic aspects of the condition, with a focus on schizophrenia as a neurodevelopmental disorder. We then highlight relevant technical advancements in hiPSC models and assess novel findings attained using hiPSC-based approaches and their implications for disease biology and treatment innovation. We close with a critical appraisal of the developments necessary for both further expanding knowledge of schizophrenia and the translation of new insights into therapeutic innovations.
Collapse
Affiliation(s)
- Samuel K Powell
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Callan P O'Shea
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Rose Shannon
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen J Brennand
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
12
|
Gouvêa-Junqueira D, Falvella ACB, Antunes ASLM, Seabra G, Brandão-Teles C, Martins-de-Souza D, Crunfli F. Novel Treatment Strategies Targeting Myelin and Oligodendrocyte Dysfunction in Schizophrenia. Front Psychiatry 2020; 11:379. [PMID: 32425837 PMCID: PMC7203658 DOI: 10.3389/fpsyt.2020.00379] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Oligodendrocytes are the glial cells responsible for the formation of the myelin sheath around axons. During neurodevelopment, oligodendrocytes undergo maturation and differentiation, and later remyelination in adulthood. Abnormalities in these processes have been associated with behavioral and cognitive dysfunctions and the development of various mental illnesses like schizophrenia. Several studies have implicated oligodendrocyte dysfunction and myelin abnormalities in the disorder, together with altered expression of myelin-related genes such as Olig2, CNP, and NRG1. However, the molecular mechanisms subjacent of these alterations remain elusive. Schizophrenia is a severe, chronic psychiatric disorder affecting more than 23 million individuals worldwide and its symptoms usually appear at the beginning of adulthood. Currently, the major therapeutic strategy for schizophrenia relies on the use of antipsychotics. Despite their widespread use, the effects of antipsychotics on glial cells, especially oligodendrocytes, remain unclear. Thus, in this review we highlight the current knowledge regarding oligodendrocyte dysfunction in schizophrenia, compiling data from (epi)genetic studies and up-to-date models to investigate the role of oligodendrocytes in the disorder. In addition, we examined potential targets currently investigated for the improvement of schizophrenia symptoms. Research in this area has been investigating potential beneficial compounds, including the D-amino acids D-aspartate and D-serine, that act as NMDA receptor agonists, modulating the glutamatergic signaling; the antioxidant N-acetylcysteine, a precursor in the synthesis of glutathione, protecting against the redox imbalance; as well as lithium, an inhibitor of glycogen synthase kinase 3β (GSK3β) signaling, contributing to oligodendrocyte survival and functioning. In conclusion, there is strong evidence linking oligodendrocyte dysfunction to the development of schizophrenia. Hence, a better understanding of oligodendrocyte differentiation, as well as the effects of antipsychotic medication in these cells, could have potential implications for understanding the development of schizophrenia and finding new targets for drug development.
Collapse
Affiliation(s)
- Danielle Gouvêa-Junqueira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Ana Caroline Brambilla Falvella
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - André Saraiva Leão Marcelo Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Gabriela Seabra
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- D′Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
13
|
Nani JV, Fonseca MC, Engi SA, Perillo MG, Dias CS, Gazarini ML, Korth C, Cruz FC, Hayashi MA. Decreased nuclear distribution nudE-like 1 enzyme activity in an animal model with dysfunctional disrupted-in-schizophrenia 1 signaling featuring aberrant neurodevelopment and amphetamine-supersensitivity. J Psychopharmacol 2020; 34:467-477. [PMID: 31916893 DOI: 10.1177/0269881119897562] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Interaction of nuclear-distribution element-like 1 with disrupted-in-schizophrenia 1 protein is crucial for neurite outgrowth/neuronal migration, and this interaction competitively inhibits nuclear-distribution element-like 1 peptidase activity. Nuclear-distribution element-like 1 activity is reduced in antipsychotic-naïve first-episode psychosis and in medicated chronic schizophrenia, with even lower activity in treatment-resistant schizophrenia. AIMS The purpose of this study was to investigate in a rat model overexpressing human non-mutant disrupted-in-schizophrenia 1, with consequent dysfunctional disrupted-in-schizophrenia 1 signaling, the relation of nuclear-distribution element-like 1 activity with neurodevelopment and dopamine-related phenotypes. METHODS We measured cell distribution in striatum and cortex by histology and microtomography, and quantified the basal and amphetamine-stimulated locomotion and nuclear-distribution element-like 1 activity (in blood and brain) of transgenic disrupted-in-schizophrenia 1 rat vs wild-type littermate controls. RESULTS 3D assessment of neuronal cell body number and spatial organization of mercury-impregnated neurons showed defective neuronal positioning, characteristic of impaired cell migration, in striatum/nucleus accumbens, and prefrontal cortex of transgenic disrupted-in-schizophrenia 1 compared to wild-type brains. Basal nuclear-distribution element-like 1 activity was lower in the blood and also in several brain regions of transgenic disrupted-in-schizophrenia 1 compared to wild-type. Locomotion and nuclear-distribution element-like 1 activity were both significantly increased by amphetamine in transgenic disrupted-in-schizophrenia 1, but not in wild-type. CONCLUSIONS Our findings in the transgenic disrupted-in-schizophrenia 1 rat allow us to state that decreased nuclear-distribution element-like 1 activity reflects both a trait (neurodevelopmental phenotype) and a state (amphetamine-induced dopamine release). We thus define here a role for decreased nuclear-distribution element-like 1 peptidase activity both for the developing brain (the neurodevelopmental phenotype) and for the adult (interaction with dopaminergic responses), and present nuclear-distribution element-like 1 activity in a novel way, as unifying neurodevelopmental with dysfunctional dopamine response phenotypes.
Collapse
Affiliation(s)
- João V Nani
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Matheus C Fonseca
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil
| | - Sheila A Engi
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Mayara G Perillo
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Carlos Sb Dias
- Laboratório Nacional de Luz Síncrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil
| | - Marcos L Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fábio C Cruz
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Mirian Af Hayashi
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
14
|
Dennison CA, Legge SE, Pardiñas AF, Walters JTR. Genome-wide association studies in schizophrenia: Recent advances, challenges and future perspective. Schizophr Res 2020; 217:4-12. [PMID: 31780348 DOI: 10.1016/j.schres.2019.10.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/24/2019] [Indexed: 01/07/2023]
Abstract
Genome-wide association studies (GWAS) have proved to be a powerful approach for gene discovery in schizophrenia; their findings have important implications not just for our understanding of the genetic architecture of the disorder, but for the potential applications of personalised medicine through improved classification and targeted interventions. In this article we review the current status of the GWAS literature in schizophrenia including functional annotation methods and polygenic risk scoring, as well as the directions and challenges of future research. We consider recent findings in East Asian populations and the advancements from trans-ancestry analysis, as well as the insights gained from research looking across psychiatric disorders.
Collapse
Affiliation(s)
- Charlotte A Dennison
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Sophie E Legge
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
15
|
Kano SI, Hodgkinson CA, Jones-Brando L, Eastwood S, Ishizuka K, Niwa M, Choi EY, Chang DJ, Chen Y, Velivela SD, Leister F, Wood J, Chowdari K, Ducci F, Caycedo DA, Heinz E, Newman ER, Cascella N, Mortensen PB, Zandi PP, Dickerson F, Nimgaonkar V, Goldman D, Harrison PJ, Yolken RH, Sawa A. Host-parasite interaction associated with major mental illness. Mol Psychiatry 2020; 25:194-205. [PMID: 30127472 PMCID: PMC6382596 DOI: 10.1038/s41380-018-0217-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/16/2018] [Accepted: 06/20/2018] [Indexed: 11/23/2022]
Abstract
Clinical studies frequently report that patients with major mental illness such as schizophrenia and bipolar disorder have co-morbid physical conditions, suggesting that systemic alterations affecting both brain and peripheral tissues might underlie the disorders. Numerous studies have reported elevated levels of anti-Toxoplasma gondii (T. gondii) antibodies in patients with major mental illnesses, but the underlying mechanism was unclear. Using multidisciplinary epidemiological, cell biological, and gene expression profiling approaches, we report here multiple lines of evidence suggesting that a major mental illness-related susceptibility factor, Disrupted in schizophrenia (DISC1), is involved in host immune responses against T. gondii infection. Specifically, our cell biology and gene expression studies have revealed that DISC1 Leu607Phe variation, which changes DISC1 interaction with activating transcription factor 4 (ATF4), modifies gene expression patterns upon T. gondii infection. Our epidemiological data have also shown that DISC1 607 Phe/Phe genotype was associated with higher T. gondii antibody levels in sera. Although further studies are required, our study provides mechanistic insight into one of the few well-replicated serological observations in major mental illness.
Collapse
Affiliation(s)
- Shin-Ichi Kano
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Colin A Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Lorraine Jones-Brando
- Stanley Division of Developmental Neurovirology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sharon Eastwood
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
| | - Koko Ishizuka
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Minae Niwa
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Eric Y Choi
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Daniel J Chang
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Yian Chen
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Swetha D Velivela
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Flora Leister
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Joel Wood
- Departments of Psychiatry and Human Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Kodavali Chowdari
- Departments of Psychiatry and Human Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Francesca Ducci
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Daniel A Caycedo
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Elizabeth Heinz
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Emily R Newman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Nicola Cascella
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Preben B Mortensen
- National Centre for Register-Based Research, University of Aarhus, Aarhus, 8000, Denmark
| | - Peter P Zandi
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Faith Dickerson
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD, 21204, USA
| | - Vishwajit Nimgaonkar
- Departments of Psychiatry and Human Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Akira Sawa
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
16
|
Fry BR, Russell N, Gifford R, Robles CF, Manning CE, Sawa A, Niwa M, Johnson AW. Assessing Reality Testing in Mice Through Dopamine-Dependent Associatively Evoked Processing of Absent Gustatory Stimuli. Schizophr Bull 2020; 46:54-67. [PMID: 31150554 PMCID: PMC6942166 DOI: 10.1093/schbul/sbz043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Impairments in reality testing are core features of numerous neuropsychiatric conditions. However, relatively few animal models have been developed to assess this critical facet of neuropsychiatric illness, thus impeding our understanding of the underlying central systems and circuits. Using mice in which dominant-negative Disrupted-in-Schizophrenia-1 is expressed throughout central nervous system circuitry (DN-DISC1-PrP), the capacity for an auditory conditioned stimulus (CS) to evoke perceptual processing of an absent sucrose solution was examined. At test, during CS presentations, DN-DISC1-PrP mice consumed more water and displayed a licking profile that is more typically revealed while ingesting a sweet-tasting solution. DN-DISC1-PrP mice also displayed greater c-fos expression in the insular (gustatory) cortex when consuming water in the presence of the CS. This capacity for the CS to more readily substitute for the taste features of the absent sucrose solution in DN-DISC1-PrP mice was attenuated following systemic treatment with the antipsychotic haloperidol. Conversely, social isolation during adolescence promoted the manifestation of these effects. These results provide strong validation for using associative learning procedures to examine dopamine-mediated reality testing associated with insular cortex activation.
Collapse
Affiliation(s)
- Benjamin R Fry
- Department of Psychology, Michigan State University, East Lansing, MI
| | - Nicollette Russell
- Department of Psychology, Michigan State University, East Lansing, MI,Neuroscience Program, Michigan State University, East Lansing, MI
| | - Ryan Gifford
- Department of Psychology, Michigan State University, East Lansing, MI
| | - Cindee F Robles
- Department of Psychology, Michigan State University, East Lansing, MI
| | - Claire E Manning
- Neuroscience Program, Michigan State University, East Lansing, MI
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Neuroscience, Biomedical Engineering, and Genetic Medicine, Johns Hopkins University School of Medicine. Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Minae Niwa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Present address: Department of Psychiatry and Behavioral Neurobiology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Alexander W Johnson
- Department of Psychology, Michigan State University, East Lansing, MI,Neuroscience Program, Michigan State University, East Lansing, MI,To whom correspondence should be addressed; tel: +1-517-432-8446; fax: +1-517-432-4744, e-mail:
| |
Collapse
|
17
|
Evidence of association of the DISC1 interactome gene set with schizophrenia from GWAS. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109729. [PMID: 31398428 DOI: 10.1016/j.pnpbp.2019.109729] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 12/31/2022]
Abstract
DISC1 was discovered as a gene disrupted by a balanced translocation in a large pedigree that segregated with major mental disorders, including schizophrenia. Further attempts to find genetic association with schizophrenia were inconclusive. Most of the biology of DISC1 was inferred from the functionality of its protein partners. Recently, a gene set constituted by DISC1 and several of its partners has been associated with cognitive performance during development, a well-known schizophrenia endophenotype, by means of burden test of rare disruptive variants. Here, we performed a gene set analysis using common variants from the largest schizophrenia genome-wide association study of the Psychiatric Genomics Consortium to test if this gene set is associated with schizophrenia. The main test was based on the MAGMA software. Several additional tests were performed to analyze the robustness of the main findings. The DISC1 interactome gene set was associated with schizophrenia (P = .0056), confirmed by an additional method (INRICH). This association was robust to removal of the major histocompatibility complex region, different definitions of gene boundaries, or different statistical gene models. Conditional analysis revealed that the association was not solely explained by higher expression in brain. Three genes from the gene set, CLIC1, DST, and PDE4B, were associated with schizophrenia at the gene level. Consideration of other DISC1 interactome gene sets revealed the importance of gene set definition. Therefore, we present the first evidence from genome-wide association studies of the role of DISC1 and interacting partners in schizophrenia susceptibility, reconciling genetic and molecular biology data.
Collapse
|
18
|
Dahoun T, Nour MM, Adams RA, Trossbach S, Lee SH, Patel H, Curtis C, Korth C, Howes OD. Disrupted-in-schizophrenia 1 functional polymorphisms and D 2 /D 3 receptor availability: A [ 11 C]-(+)-PHNO imaging study. GENES BRAIN AND BEHAVIOR 2019; 18:e12596. [PMID: 31264367 DOI: 10.1111/gbb.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 11/28/2022]
Abstract
The disrupted-in-schizophrenia 1 (DISC1) protein has been implicated in a range of biological mechanisms underlying chronic mental disorders such as schizophrenia. Schizophrenia is associated with abnormal striatal dopamine signalling, and all antipsychotic drugs block striatal dopamine 2/3 receptors (D2/3 Rs). Importantly, the DISC1 protein directly interacts and forms a protein complex with the dopamine D2 receptor (D2 R) that inhibits agonist-induced D2 R internalisation. Moreover, animal studies have found large striatal increases in the proportion of D2 R receptors in a high affinity state (D2 high R) in DISC1 rodent models. Here, we investigated the relationship between the three most common polymorphisms altering the amino-acid sequence of the DISC1 protein (Ser704Cys (rs821616), Leu607Phe (rs6675281) and Arg264Gln (rs3738401)) and striatal D2/3 R availability in 41 healthy human volunteers, using [11 C]-(+)-PHNO positron emission tomography. We found no association between DISC1 polymorphisms and D2/3 R availability in the striatum and D2 R availability in the caudate and putamen. Therefore, despite a direct interaction between DISC1 and the D2 R, none of its main functional polymorphisms impact striatal D2/3 R binding potential, suggesting DISC1 variants act through other mechanisms.
Collapse
Affiliation(s)
- Tarik Dahoun
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.,Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Matthew M Nour
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, UK.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, Russell Square House, London, UK.,Wellcome Centre for Human Neuroimaging (WCHN), University College London, London, UK
| | - Rick A Adams
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.,Division of Psychiatry, University College London, London, UK.,Institute of Cognitive Neuroscience, University College London, London, UK
| | - Svenja Trossbach
- Department Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sang H Lee
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK.,Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Hamel Patel
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK.,Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Charles Curtis
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.,Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Carsten Korth
- Department Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver D Howes
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, UK
| |
Collapse
|
19
|
Liu CM, Liu YL, Hwu HG, Fann CSJ, Yang UC, Hsu PC, Chang CC, Chen WJ, Hwang TJ, Hsieh MH, Liu CC, Chien YL, Lin YT, Tsuang MT. Genetic associations and expression of extra-short isoforms of disrupted-in-schizophrenia 1 in a neurocognitive subgroup of schizophrenia. J Hum Genet 2019; 64:653-663. [PMID: 30976040 DOI: 10.1038/s10038-019-0597-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 01/20/2023]
Abstract
Disrupted-in-schizophrenia 1 (DISC1) was reported to be associated with schizophrenia. In a previous study, we found significant association with schizophrenia patients with deficient sustained attention assessed by continuous performance test (CPT). This study aimed to identify risk polymorphisms in this specific neurocognitive subgroup and investigate the expression of different isoforms of DISC1. A total of 83 genetic variants were identified through direct sequencing in 50 controls and 100 schizophrenia patients. Fourteen variants were genotyped in 600 controls and 912 patients. Patients were subgrouped by familial loading (multiplex or simplex) and performance on CPT. The frequency of AA genotype of rs11122324 at the 3'-UTR of Es and Esv1 isoforms and of rs2793091 at intron 4 were significantly higher in multiplex schizophrenia patients than those in controls (corrected p < 0.05). In further subgrouping, the frequency of AA genotype of the two SNPs were significantly higher in multiplex schizophrenia patients with deficient sustained attention than those in controls (corrected p < 0.005). The mRNA expression levels of two extra-short isoforms (Es and Esv1) in the EBV-transformed lymphocytes of schizophrenia were significantly higher than those of controls. Luciferase reporter assays demonstrated that the A-allele of rs11122324 significantly upregulated DISC1 extra-short isoforms transcription compared with the G-allele. We found two SNPs (rs11122324 and rs2793091) of DISC1 may be specifically associated with multiplex schizophrenia patients with deficient sustained attention. The SNP rs11122324 may be a risk polymorphism, which may have functional influence on the transcription of Es and Esv1 through increasing their expression.
Collapse
Affiliation(s)
- Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan. .,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Ueng-Cheng Yang
- Institute of Bioinformatics, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Chun Hsu
- Institute of Bioinformatics, National Yang-Ming University, Taipei, Taiwan
| | | | - Wei J Chen
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tzung-Jeng Hwang
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Ming H Hsieh
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Chung Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Tin Lin
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming T Tsuang
- Center for Behavioral Genomics, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.,Harvard Departments of Epidemiology and Psychiatry, Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
20
|
Wang AL, Chao OY, Yang YM, Trossbach SV, Müller CP, Korth C, Huston JP, de Souza Silva MA. Anxiogenic-like behavior and deficient attention/working memory in rats expressing the human DISC1 gene. Pharmacol Biochem Behav 2019; 179:73-79. [PMID: 30779934 DOI: 10.1016/j.pbb.2019.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 01/27/2023]
Abstract
In humans, mutations in the Disrupted-in-schizophrenia 1 (DISC1) gene have been related to psychiatric disorders, including symptoms of abnormal cognitive and emotional behaviors. In our previous studies, overexpression of the human DISC1 gene in rats resulted in schizophrenia-like phenotypes showing deficits in motor learning, impaired cognitive function and dysfunctions of the dopamine system. Here we asked, whether the DISC1 overexpression affects locomotor activity in the open field (OF), anxiety in the elevated plus-maze (EPM), depression-related behavior in the forced swim test (FST), and attention-like/short-term working-memory in the spontaneous alternation behavior (SAB) in the T-maze in transgenic DISC1 (tgDISC1) rats and littermate controls (WT). TgDISC1 rats showed enhanced anxiety behavior in the EPM and an impairment in attention-like/short-term working-memory in the SAB. However, tgDISC1 animals showed no locomotor impairments or depression-like behavior in the OF and FST. These results suggest that DISC1 overexpression leads to higher anxiety level and an attention-like/working-memory deficit. These findings may expand the causal role of DISC1 in its contribution to multiple symptom dimensions of psychiatric disorders.
Collapse
Affiliation(s)
- An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Owen Y Chao
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Biomedical Sciences, School of Medicine, University of Minnesota, Duluth, MN, USA.
| | - Yi-Mei Yang
- Department of Biomedical Sciences, School of Medicine, University of Minnesota, Duluth, MN, USA.
| | - Svenja V Trossbach
- Department Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - Carsten Korth
- Department Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Maria Angelica de Souza Silva
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
21
|
Ma JH, Sun XY, Guo TJ, Barot E, Wang DF, Yan LL, Ni DW, Huang NH, Xie Q, Zeng J, Ou-Yang L, Liu YQ, Lu QB. Association on DISC1 SNPs with schizophrenia risk: A meta-analysis. Psychiatry Res 2018; 270:306-309. [PMID: 30286368 DOI: 10.1016/j.psychres.2018.09.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/17/2018] [Accepted: 09/22/2018] [Indexed: 01/09/2023]
Abstract
Schizophrenia is a major psychiatric disorder with complex genetic, environmental, and psychological etiologies. Although DISC1 gene has been shown as a risk factor for schizophrenia in some reports, there is a lack of a consensus. We therefore performed separate meta-analyses aiming to assess the associations between DISC1 SNPs and schizophrenia risk. We found that SNP rs821597 is significantly associated with schizophrenia risk in terms of both allelic and genotypic distribution, while SNP rs821616 is associated with schizophrenia in terms of genotypic distribution, especially in cases above 40 years old.
Collapse
Affiliation(s)
- Jia-Hui Ma
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing 100191, PR China.
| | - Xiao-Yu Sun
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing 100191, PR China.
| | - Tong-Jun Guo
- Graduate School of Peking Union Medical College, Beijing 100730, China.
| | - Emily Barot
- Bioinformatics Center, University of Copenhagen, Copenhagen 2200, Denmark.
| | | | - Lai-Lai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing 100191, PR China.
| | - Da-Wei Ni
- Central Hospital of Fengxian, Shanghai 201499, China
| | - Ning-Hua Huang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing 100191, PR China.
| | - Qing Xie
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing 100191, PR China.
| | - Jing Zeng
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing 100191, PR China.
| | - Li Ou-Yang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing 100191, PR China.
| | - Ya-Qiong Liu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing 100191, PR China.
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing 100191, PR China.
| |
Collapse
|
22
|
Dahoun T, Pardiñas AF, Veronese M, Bloomfield MAP, Jauhar S, Bonoldi I, Froudist-Walsh S, Nosarti C, Korth C, Hennah W, Walters J, Prata D, Howes OD. The effect of the DISC1 Ser704Cys polymorphism on striatal dopamine synthesis capacity: an [18F]-DOPA PET study. Hum Mol Genet 2018; 27:3498-3506. [PMID: 29945223 PMCID: PMC6168972 DOI: 10.1093/hmg/ddy242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 11/14/2022] Open
Abstract
Whilst the role of the Disrupted-in-Schizophrenia 1 (DISC1) gene in the aetiology of major mental illnesses is debated, the characterization of its function lends it credibility as a candidate. A key aspect of this functional characterization is the determination of the role of common non-synonymous polymorphisms on normal variation within these functions. The common allele (A) of the DISC1 single-nucleotide polymorphism (SNP) rs821616 encodes a serine (ser) at the Ser704Cys polymorphism, and has been shown to increase the phosphorylation of extracellular signal-regulated protein Kinases 1 and 2 (ERK1/2) that stimulate the phosphorylation of tyrosine hydroxylase, the rate-limiting enzyme for dopamine biosynthesis. We therefore set out to test the hypothesis that human ser (A) homozygotes would show elevated dopamine synthesis capacity compared with cysteine (cys) homozygotes and heterozygotes (TT and AT) for rs821616. [18F]-DOPA positron emission tomography (PET) was used to index striatal dopamine synthesis capacity as the influx rate constant Kicer in healthy volunteers DISC1 rs821616 ser homozygotes (N = 46) and healthy volunteers DISC1 rs821616 cys homozygotes and heterozygotes (N = 56), matched for age, gender, ethnicity and using three scanners. We found DISC1 rs821616 ser homozygotes exhibited a significantly higher striatal Kicer compared with cys homozygotes and heterozygotes (P = 0.012) explaining 6.4% of the variance (partial η2 = 0.064). Our finding is consistent with its previous association with heightened activation of ERK1/2, which stimulates tyrosine hydroxylase activity for dopamine synthesis. This could be a potential mechanism mediating risk for psychosis, lending further credibility to the fact that DISC1 is of functional interest in the aetiology of major mental illness.
Collapse
Affiliation(s)
- Tarik Dahoun
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Hammersmith Hospital, London, UK
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford OX37 JX, UK
| | - Antonio F Pardiñas
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, King’s College London, London, UK
| | - Michael A P Bloomfield
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Hammersmith Hospital, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London, UK
- Division of Psychiatry, University College London, London, UK
- Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Sameer Jauhar
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Hammersmith Hospital, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London, UK
| | - Ilaria Bonoldi
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Hammersmith Hospital, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London, UK
| | | | - Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London, UK
- Division of Imaging Sciences & Biomedical Engineering, Centre for the Developing Brain, King’s College London, London, UK
| | - Carsten Korth
- Department Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - William Hennah
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- Mental Health Unit, Department of Health, National Institute for Health and Welfare, Helsinki, Finland
- Medicum, University of Helsinki, Helsinki, Finland
| | - James Walters
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Instituto Universitário de Lisboa (ISCTE-IUL), Cis-IUL, Lisbon, Portugal
| | - Oliver D Howes
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Hammersmith Hospital, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London, UK
| |
Collapse
|
23
|
Weng YT, Chien T, Kuan II, Chern Y. The TRAX, DISC1, and GSK3 complex in mental disorders and therapeutic interventions. J Biomed Sci 2018; 25:71. [PMID: 30285728 PMCID: PMC6171312 DOI: 10.1186/s12929-018-0473-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
Psychiatric disorders (such as bipolar disorder, depression, and schizophrenia) affect the lives of millions of individuals worldwide. Despite the tremendous efforts devoted to various types of psychiatric studies and rapidly accumulating genetic information, the molecular mechanisms underlying psychiatric disorder development remain elusive. Among the genes that have been implicated in schizophrenia and other mental disorders, disrupted in schizophrenia 1 (DISC1) and glycogen synthase kinase 3 (GSK3) have been intensively investigated. DISC1 binds directly to GSK3 and modulates many cellular functions by negatively inhibiting GSK3 activity. The human DISC1 gene is located on chromosome 1 and is highly associated with schizophrenia and other mental disorders. A recent study demonstrated that a neighboring gene of DISC1, translin-associated factor X (TRAX), binds to the DISC1/GSK3β complex and at least partly mediates the actions of the DISC1/GSK3β complex. Previous studies also demonstrate that TRAX and most of its interacting proteins that have been identified so far are risk genes and/or markers of mental disorders. In the present review, we will focus on the emerging roles of TRAX and its interacting proteins (including DISC1 and GSK3β) in psychiatric disorders and the potential implications for developing therapeutic interventions.
Collapse
Affiliation(s)
- Yu-Ting Weng
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan, Republic of China
| | - Ting Chien
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China
| | - I-I Kuan
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China. .,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan, Republic of China.
| |
Collapse
|
24
|
Janouschek H, Eickhoff CR, Mühleisen TW, Eickhoff SB, Nickl-Jockschat T. Using coordinate-based meta-analyses to explore structural imaging genetics. Brain Struct Funct 2018; 223:3045-3061. [PMID: 29730826 DOI: 10.1007/s00429-018-1670-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/19/2018] [Indexed: 12/29/2022]
Abstract
Imaging genetics has become a highly popular approach in the field of schizophrenia research. A frequently reported finding is that effects from common genetic variation are associated with a schizophrenia-related structural endophenotype. Genetic contributions to a structural endophenotype may be easier to delineate, when referring to biological rather than diagnostic criteria. We used coordinate-based meta-analyses, namely the anatomical likelihood estimation (ALE) algorithm on 30 schizophrenia-related imaging genetics studies, representing 44 single-nucleotide polymorphisms at 26 gene loci investigated in 4682 subjects. To test whether analyses based on biological information would improve the convergence of results, gene ontology (GO) terms were used to group the findings from the published studies. We did not find any significant results for the main contrast. However, our analysis enrolling studies on genotype × diagnosis interaction yielded two clusters in the left temporal lobe and the medial orbitofrontal cortex. All other subanalyses did not yield any significant results. To gain insight into possible biological relationships between the genes implicated by these clusters, we mapped five of them to GO terms of the category "biological process" (AKT1, CNNM2, DISC1, DTNBP1, VAV3), then five to "cellular component" terms (AKT1, CNNM2, DISC1, DTNBP1, VAV3), and three to "molecular function" terms (AKT1, VAV3, ZNF804A). A subsequent cluster analysis identified representative, non-redundant subsets of semantically similar terms that aided a further interpretation. We regard this approach as a new option to systematically explore the richness of the literature in imaging genetics.
Collapse
Affiliation(s)
- Hildegard Janouschek
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,Department of Psychiatry, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Claudia R Eickhoff
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (Functional Architecture of the Brain; INM-1), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Thomas W Mühleisen
- Institute of Neuroscience und Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany. .,Jülich-Aachen Research Alliance Brain, Jülich/Aachen, Germany. .,Department of Psychiatry, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
25
|
Wulaer B, Nagai T, Sobue A, Itoh N, Kuroda K, Kaibuchi K, Nabeshima T, Yamada K. Repetitive and compulsive-like behaviors lead to cognitive dysfunction in Disc1Δ2-3/Δ2-3mice. GENES BRAIN AND BEHAVIOR 2018; 17:e12478. [DOI: 10.1111/gbb.12478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 01/19/2023]
Affiliation(s)
- B. Wulaer
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - T. Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - A. Sobue
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - N. Itoh
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - K. Kuroda
- Department of Cell Pharmacology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - K. Kaibuchi
- Department of Cell Pharmacology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - T. Nabeshima
- Advanced Diagnostic System Research Laboratory; Fujita Health University, Graduate School of Health Sciences; Toyoake Japan
- Aino University; Ibaragi Japan
| | - K. Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
26
|
Gene polymorphisms of DISC1 is associated with schizophrenia: Evidence from a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:64-73. [PMID: 29031911 DOI: 10.1016/j.pnpbp.2017.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/08/2017] [Accepted: 10/08/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Previous studies suggest an association between Disrupted in schizophrenia 1 (DISC1) polymorphisms and schizophrenia (SCZ). However, the available data are often inconsistent, regarding the difference in sample size, ethnicity, genotyping method, etc. Thus, we carried out a meta-analysis to determine whether DISC1 polymorphisms contributed susceptibility to SCZ. METHODS A methodical literature review was operated using the English and Chinese core electronic databases. Odds ratios (ORs) with 95% confidence intervals (CIs) were applied to determine the correlation between DISC1 gene polymorphisms and SCZ susceptibility. Subgroup analyses were carried out by stratification of ethnicity. P values were Bonferroni adjusted to account for multiple testing. Publication bias was evaluated by funnel plots, Egger's test and the trim and fill method. RESULTS Meta-analyses results suggested that DISC1 polymorphisms (rs821616 and rs821597) increased SCZ risk in overall populations. In subgroups of ethnicity, DISC1 polymorphisms (rs821616 and rs821597) was associated with susceptibility to SCZ among the Chinese population (for rs821616: TT+AT vs. AA: OR=1.338, 95% CI=1.124-1.592, P=0.001; T vs. A: OR=1.300, 95% CI=1.124-1.504, P<0.000; for rs821597: AA+AG vs. GG: OR=1.508, 95% CI=1.268-1.794, P<0.001; A vs. G: OR=1.345, 95% CI=1.184-1.527, P<0.001). A positive correlation was also observed between the single marker rs821616 and SCZ among the Japanese population in the recessive model (TT vs. AT+AA: OR=1.524, 95% CI=1.185-1.959, P=0.001). There was no significant relationship between other DISC1 polymorphisms (rs3738401, rs2273890, rs3738398, rs3738402, rs2492367, rs843979, rs3737597, rs4658971, rs1538979, rs1000731 and rs3738399) and SCZ. CONCLUSIONS DISC1 polymorphisms increased a risk of SCZ, especially in the Chinese population. In order to further corroborate our findings, large well-designed epidemiological studies are needed.
Collapse
|
27
|
Xu Y, Ren J, Ye H. Association between variations in the disrupted in schizophrenia 1 gene and schizophrenia: A meta-analysis. Gene 2018; 651:94-99. [PMID: 29410289 DOI: 10.1016/j.gene.2018.01.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/17/2017] [Accepted: 01/20/2018] [Indexed: 10/18/2022]
Abstract
Schizophrenia is a severe psychiatric disorder. Genetic and functional studies have strongly implicated the disrupted in schizophrenia 1 gene (DISC1) as a candidate susceptibility gene for schizophrenia. Moreover, recent association studies have indicated that several DISC1 single nucleotide polymorphisms (SNPs) are associated with schizophrenia. However, the association is hardly replicate in different ethnic group. Here, we performed a meta-analysis of the association between DISC1 SNPs and schizophrenia in which the samples were divided into subgroups according to ethnicity. Both rs3738401 and rs821616 showed not significantly association with schizophrenia in the Caucasian, Asian, Japanese or Han Chinese populations.
Collapse
Affiliation(s)
- Yiliang Xu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China.
| | - Jun Ren
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China
| | - Haihong Ye
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
28
|
Hu G, Yang C, Zhao L, Fan Y, Lv Q, Zhao J, Zhu M, Guo X, Bao C, Xu A, Jie Y, Jiang Y, Zhang C, Yu S, Wang Z, Li Z, Yi Z. The interaction of NOS1AP, DISC1, DAOA, and GSK3B confers susceptibility of early-onset schizophrenia in Chinese Han population. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:187-193. [PMID: 29100974 DOI: 10.1016/j.pnpbp.2017.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/24/2017] [Indexed: 01/12/2023]
Abstract
Although many major breakthrough had identificated potential susceptibility genes for schizophrenia, the aetiology of schizophrenia is still unknown. In the present study, we focused on the N-methyl-Daspartate receptors related genes nitric oxide synthase 1 adaptor gene (NOS1AP), disrupted in schizophrenia 1 gene (DISC1), d-amino acid oxidase activator gene (DAOA), and glycogen synthase kinase 3-beta gene (GSK3B). A family-based genetic association study (459 Han Chinese subjects in 153 nuclear families) using 3 single nucleotide polymorphisms in NOS1AP, 2 in DISC1, 1 in DAOA and 1 in GSK3B was conducted. We found rs12742393 have just positive trend with schizophrenia (SCZ) (p=0.07) after FDR correction. NOS1AP mRNA and serum levels were significantly elevated in SCZ patients (p<0.001; p<0.001) compared with healthy control. However, expression Quantitative Trait Loci (eQTL) analysis have demonstrated that rs12742393 genotype were not significantly associated with the NOS1AP mRNA expression. GMDR identified a significant seven-locus interaction model involving (NOS1AP-rs348624, rs12742393, rs1415263, DISC1-rs821633, rs1000731, DAOA-rs2391191and GSK3B- rs6438552) with a good testing accuracy (0.72). Our finding suggested statistically significant role of interaction of NOS1AP, DISC1, DAOA, and GSK3B polymorphisms (NOS1AP-rs348624, rs12742393, rs1415263, DISC1-rs821633, rs1000731, DAOA-rs2391191and GSK3B-rs6438552) in EOS susceptibility.
Collapse
Affiliation(s)
- Guoqin Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; HuangpuDistrictMental Health Center, 1162 Qu Xi Road, Shanghai 200023, China
| | - Chengqing Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Lei Zhao
- Department of Psychiatry, Qingdao Mental Health Center, 299 Nanjing Road, Qingdao, Shandong 266034, China
| | - Yong Fan
- Department of Psychiatry, Qingdao Mental Health Center, 299 Nanjing Road, Qingdao, Shandong 266034, China
| | - Qinyu Lv
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Jing Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Minghuan Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Xiangqing Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Chenxi Bao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Ahong Xu
- Department of Psychiatry, Qingdao Mental Health Center, 299 Nanjing Road, Qingdao, Shandong 266034, China
| | - Yong Jie
- Department of Psychiatry, Hongkou District Mental Health Center, 159 Tong Xing Road, Shanghai 200083, China
| | - Yaqing Jiang
- Department of Psychiatry, Hongkou District Mental Health Center, 159 Tong Xing Road, Shanghai 200083, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Shunying Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Zuowei Wang
- Department of Psychiatry, Hongkou District Mental Health Center, 159 Tong Xing Road, Shanghai 200083, China.
| | - Zezhi Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pu Jian Road, Shanghai 200127, China.
| | - Zhenghui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China.
| |
Collapse
|
29
|
Bernstein HG, Dobrowolny H, Keilhoff G, Bogerts B, Steiner J. Reduced Density of DISC1 Expressing Astrocytes in the Dentate Gyrus but not in the Subventricular Zone in Schizophrenia. Neuropsychopharmacology 2018; 43:457-458. [PMID: 29326433 PMCID: PMC5770772 DOI: 10.1038/npp.2017.242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, University of Magdeburg, Leipziger Str. 44, Magdeburg D-39120, Germany,Department of Psychiatry, University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany Tel: +49 391 6714249, E-mail:
| | - Henrik Dobrowolny
- Department of Psychiatry, University of Magdeburg, Leipziger Str. 44, Magdeburg D-39120, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, University of Magdeburg, Leipziger Str. 44, Magdeburg D-39120, Germany
| | - Bernhard Bogerts
- Department of Psychiatry, University of Magdeburg, Leipziger Str. 44, Magdeburg D-39120, Germany
| | - Johann Steiner
- Department of Psychiatry, University of Magdeburg, Leipziger Str. 44, Magdeburg D-39120, Germany
| |
Collapse
|
30
|
Fukuda T, Yanagi S. Psychiatric behaviors associated with cytoskeletal defects in radial neuronal migration. Cell Mol Life Sci 2017; 74:3533-3552. [PMID: 28516224 PMCID: PMC11107632 DOI: 10.1007/s00018-017-2539-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/21/2017] [Accepted: 05/11/2017] [Indexed: 12/17/2022]
Abstract
Normal development of the cerebral cortex is an important process for higher brain functions, such as language, and cognitive and social functions. Psychiatric disorders, such as schizophrenia and autism, are thought to develop owing to various dysfunctions occurring during the development of the cerebral cortex. Radial neuronal migration in the embryonic cerebral cortex is a complex process, which is achieved by strict control of cytoskeletal dynamics, and impairments in this process are suggested to cause various psychiatric disorders. Our recent findings indicate that radial neuronal migration as well as psychiatric behaviors is rescued by controlling microtubule stability during the embryonic stage. In this review, we outline the relationship between psychiatric disorders, such as schizophrenia and autism, and radial neuronal migration in the cerebral cortex by focusing on the cytoskeleton and centrosomes. New treatment strategies for psychiatric disorders will be discussed.
Collapse
Affiliation(s)
- Toshifumi Fukuda
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
31
|
Tomoda T, Hikida T, Sakurai T. Role of DISC1 in Neuronal Trafficking and its Implication in Neuropsychiatric Manifestation and Neurotherapeutics. Neurotherapeutics 2017; 14:623-629. [PMID: 28664299 PMCID: PMC5509643 DOI: 10.1007/s13311-017-0556-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) was initially identified as a gene disrupted by a translocation mutation co-segregating with a variety of psychotic and mood disorders in a Scottish pedigree. In agreement with this original finding, mouse models that perturb Disc1 display deficits of behaviors in specific dimensions, such as cognition and emotion, but not a motor dimension. Although DISC1 is not a risk gene for sporadic cases of specific psychiatric disorders defined by categorical diagnostic criteria (e.g., schizophrenia and major depressive disorder), DISC1 is now regarded as an important molecular lead to decipher molecular pathology for specific dimensions relevant to major mental illnesses. Emerging evidence points to the role of DISC1 in the regulation of intracellular trafficking of a wide range of neuronal cargoes. We will review recent progress in this aspect of DISC1 biology and discuss how we could utilize this body of knowledge to better understand the pathophysiology of mental illnesses.
Collapse
Affiliation(s)
- Toshifumi Tomoda
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada.
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
32
|
Fudalej S, Jakubczyk A, Kopera M, Piwonski J, Bielecki W, Drygas W, Wasilewska K, Ilgen M, Bohnert A, Barry K, Płoski R, Blow FC, Wojnar M. DISC1 as a Possible Genetic Contribution to Opioid Dependence in a Polish Sample. J Stud Alcohol Drugs 2016; 77:220-6. [PMID: 26997180 DOI: 10.15288/jsad.2016.77.220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Disrupted-in-schizophrenia 1 (DISC1) has been linked to vulnerability to a variety of psychiatric disorders and neuropsychiatric phenotypes. However, DISC1 has not been frequently examined as a potential risk factor for substance dependence. An association between opioid dependence and DISC1 rs2738888 polymorphism has been recently reported. In addition, opioid dependence was associated with rs6419156 located close to the protein phosphatase 3 catalytic subunit alpha isoform (PPP3CA) gene. The aim of the present study was to examine the associations between opioid dependence with rs2738888 and rs6419156 in an independent sample. METHOD The selected polymorphisms were genotyped in a sample of 392 individuals (69.9% male) diagnosed as alcohol- and/or opioid-dependent. A control group (n = 257; 67.7% male) was derived from the Polish National Health Survey (N = 14,350). RESULTS The frequency of rs2738888 C allele was higher in controls than in opioid-dependent cases (OR = 0.65, p = .045). Phenotypic-oriented analyses performed within opioid-dependent individuals revealed the association between lifetime suicide attempt and rs2738888. The C allele of rs2738888 had a protective effect on lifetime suicide attempt in opioid-dependent patients (OR = 0.25, p = .003). Rs6419156 was not associated with substance dependence in the examined sample. CONCLUSIONS The DISC1 may play an important role in vulnerability to opioid dependence. In addition, DISC1 may also be a genetic risk factor for suicide attempt in opioid-dependent individuals.
Collapse
Affiliation(s)
- Sylwia Fudalej
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Jakubczyk
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Kopera
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Jerzy Piwonski
- Department of Epidemiology, Cardiovascular Disease Prevention, and Health Promotion, National Institute of Cardiology, Warsaw, Poland
| | - Wojciech Bielecki
- Department of Social Pathologies, Medical University of Lodz, Lodz, Poland
| | - Wojciech Drygas
- Department of Epidemiology, Cardiovascular Disease Prevention, and Health Promotion, National Institute of Cardiology, Warsaw, Poland.,Department of Social and Preventive Medicine, Medical University of Lodz, Lodz, Poland
| | - Krystyna Wasilewska
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Mark Ilgen
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan.,Department of Veterans Affairs National Serious Mental Illness Treatment Research and Evaluation Center (SMITREC), Ann Arbor, Michigan
| | - Amy Bohnert
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan.,Department of Veterans Affairs National Serious Mental Illness Treatment Research and Evaluation Center (SMITREC), Ann Arbor, Michigan
| | - Kristen Barry
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan.,Department of Veterans Affairs National Serious Mental Illness Treatment Research and Evaluation Center (SMITREC), Ann Arbor, Michigan
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Frederic C Blow
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan.,Department of Veterans Affairs National Serious Mental Illness Treatment Research and Evaluation Center (SMITREC), Ann Arbor, Michigan
| | - Marcin Wojnar
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland.,Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
33
|
Nagalski A, Kozinski K, Wisniewska MB. Metabolic pathways in the periphery and brain: Contribution to mental disorders? Int J Biochem Cell Biol 2016; 80:19-30. [PMID: 27644152 DOI: 10.1016/j.biocel.2016.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022]
Abstract
The association between mental disorders and diabetes has a long history. Recent large-scale, well-controlled epidemiological studies confirmed a link between diabetes and psychiatric illnesses. The scope of this review is to summarize our current understanding of this relationship from a molecular perspective. We first discuss the potential contribution of diabetes-associated metabolic impairments to the etiology of mental conditions. Then, we focus on possible shared molecular risk factors and mechanisms. Simple comorbidity, shared susceptibility loci, and common pathophysiological processes in diabetes and mental illnesses have changed our traditional way of thinking about mental illness. We conclude that schizophrenia and affective disorders are not limited to an imbalance in dopaminergic and serotoninergic neurotransmission in the brain. They are also systemic disorders that can be considered, to some extent, as metabolic disorders.
Collapse
Affiliation(s)
- Andrzej Nagalski
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Kamil Kozinski
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Marta B Wisniewska
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.
| |
Collapse
|
34
|
He BS, Zhang LY, Pan YQ, Lin K, Zhang LL, Sun HL, Gao TY, Su TQ, Wang SK, Zhu CB. Association of the DISC1 and NRG1 genetic polymorphisms with schizophrenia in a Chinese population. Gene 2016; 590:293-7. [DOI: 10.1016/j.gene.2016.05.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 05/16/2016] [Accepted: 05/24/2016] [Indexed: 02/07/2023]
|
35
|
Mühle C, Kreczi J, Rhein C, Richter-Schmidinger T, Alexopoulos P, Doerfler A, Lenz B, Kornhuber J. Additive sex-specific influence of common non-synonymous DISC1 variants on amygdala, basal ganglia, and white cortical surface area in healthy young adults. Brain Struct Funct 2016; 222:881-894. [PMID: 27369464 DOI: 10.1007/s00429-016-1253-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 06/16/2016] [Indexed: 01/30/2023]
Abstract
The disrupted-in-schizophrenia-1 (DISC1) gene is known for its role in the development of mental disorders. It is also involved in neurodevelopment, cognition, and memory. To investigate the association between DISC1 variants and brain morphology, we analyzed the influence of the three common non-synonymous polymorphisms in DISC1 on specific brain structures in healthy young adults. The volumes of brain regions were determined in 145 subjects by magnetic resonance imaging and automated analysis using FreeSurfer. Genotyping was performed by high resolution melting of amplified products. In an additive genetic model, rs6675281 (Leu607Phe), rs3738401 (Arg264Gln), and rs821616 (Ser704Cys) significantly explained the volume variance of the amygdala (p = 0.007) and the pallidum (p = 0.004). A higher cumulative portion of minor alleles was associated with larger volumes of the amygdala (p = 0.005), the pallidum (p = 0.001), the caudate (p = 0.024), and the putamen (p = 0.007). Sex-stratified analysis revealed a strong genetic effect of rs6675281 on putamen and pallidum in females but not in males and an opposite influence of rs3738401 on the white cortical surface in females compared to males. The strongest single association was found for rs821616 and the amygdala volume in male subjects (p < 0.001). No effect was detected for the nucleus accumbens. We report-to our knowledge-for the first time a significant and sex-specific influence of common DISC1 variants on volumes of the basal ganglia, the amygdala and on the cortical surface area. Our results demonstrate that the additive model of all three polymorphisms outperforms their single analysis.
Collapse
Affiliation(s)
- Christiane Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| | - Jakob Kreczi
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Cosima Rhein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Tanja Richter-Schmidinger
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Panagiotis Alexopoulos
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.,Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar of the Technical University Munich, Munich, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| |
Collapse
|
36
|
Jaaro-Peled H, Altimus C, LeGates T, Cash-Padgett T, Zoubovsky S, Hikida T, Ishizuka K, Hattar S, Mongrain V, Sawa A. Abnormal wake/sleep pattern in a novel gain-of-function model of DISC1. Neurosci Res 2016; 112:63-69. [PMID: 27354230 DOI: 10.1016/j.neures.2016.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 01/15/2023]
Abstract
Sleep disturbances are common in psychiatric disorders, but the causal relationship between the two and the underlying genetic factors is unclear. The DISC1 gene is strongly linked to mood disorders and schizophrenia in a Scottish pedigree. In an earlier study we found a sleep homeostasis disturbance in a Drosophila model overexpressing wild-type human DISC1. Here we aimed to explore the relationship between sleep and the DISC1 gene in a mammalian model, a novel transgenic mouse model expressing full-length human DISC1. We assessed circadian rhythms by monitoring wheel running activity under normal 24-h light:dark conditions and in constant darkness and found the DISC1 mice to have normal circadian photoentrainment and normal intrinsic circadian period. We also assessed sleep duration and quality in the DISC1 mice and found that they were awake longer than wild-type controls at baseline with a tendency for lower rebound of delta activity during recovery from a short sleep deprivation. Thus we suggest that DISC1 may be involved in sleep regulation.
Collapse
Affiliation(s)
- Hanna Jaaro-Peled
- Department of Psychiatry, Johns Hopkins University School of Medicine, United States.
| | - Cara Altimus
- Department of Biology, Johns Hopkins University, United States
| | - Tara LeGates
- Department of Biology, Johns Hopkins University, United States
| | - Tyler Cash-Padgett
- Department of Psychiatry, Johns Hopkins University School of Medicine, United States
| | - Sandra Zoubovsky
- Department of Psychiatry, Johns Hopkins University School of Medicine, United States
| | - Takatoshi Hikida
- Department of Psychiatry, Johns Hopkins University School of Medicine, United States
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, United States
| | - Samer Hattar
- Department of Biology, Johns Hopkins University, United States.
| | | | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, United States.
| |
Collapse
|
37
|
Devine MJ, Norkett R, Kittler JT. DISC1 is a coordinator of intracellular trafficking to shape neuronal development and connectivity. J Physiol 2016; 594:5459-69. [PMID: 27121900 DOI: 10.1113/jp272187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/31/2016] [Indexed: 01/14/2023] Open
Abstract
The long, asymmetric and specialised architecture of neuronal processes necessitates a properly regulated transport network of molecular motors and cytoskeletal tracks. This allows appropriate distribution of cargo for correct formation and activity of the synapse, and thus normal neuronal communication. This communication is impaired in psychiatric disease, and ongoing studies have proposed that Disrupted in schizophrenia 1 (DISC1) is an important genetic risk factor for these disorders. The mechanisms by which DISC1 dysfunction might increase propensity to psychiatric disease are not completely understood; however, an emerging theme is that DISC1 can function as a key regulator of neuronal intracellular trafficking. Transport of a wide range of potential cargoes - including mRNAs, neurotransmitter receptors, vesicles and mitochondria - can be modulated by DISC1, and therefore is susceptible to DISC1 dysfunction. This theme highlights the importance of understanding precisely how DISC1 can regulate intracellular trafficking, and suggests that a novel approach to the treatment of psychiatric disorders could be provided by targeting this protein and the trafficking machinery with which it interacts.
Collapse
Affiliation(s)
- M J Devine
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - R Norkett
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - J T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK.
| |
Collapse
|
38
|
Tomoda T, Sumitomo A, Jaaro-Peled H, Sawa A. Utility and validity of DISC1 mouse models in biological psychiatry. Neuroscience 2016; 321:99-107. [PMID: 26768401 PMCID: PMC4803604 DOI: 10.1016/j.neuroscience.2015.12.061] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/31/2015] [Accepted: 12/31/2015] [Indexed: 11/26/2022]
Abstract
We have seen an era of explosive progress in translating neurobiology into etiological understanding of mental disorders for the past 10-15 years. The discovery of Disrupted-in-schizophrenia 1 (DISC1) gene was one of the major driving forces that have contributed to the progress. The finding that DISC1 plays crucial roles in neurodevelopment and synapse regulation clearly underscored the utility and validity of DISC1-related biology in advancing our understanding of pathophysiological processes underlying psychiatric conditions. Despite recent genetic studies that failed to identify DISC1 as a risk gene for sporadic cases of schizophrenia, DISC1 mutant mice, coupled with various environmental stressors, have proven successful in satisfying face validity as models of a wide range of human psychiatric conditions. Investigating mental disorders using these models is expected to further contribute to the circuit-level understanding of the pathological mechanisms, as well as to the development of novel therapeutic strategies in the future.
Collapse
Affiliation(s)
- T Tomoda
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - A Sumitomo
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - H Jaaro-Peled
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - A Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
39
|
Farrell MS, Werge T, Sklar P, Owen MJ, Ophoff RA, O'Donovan MC, Corvin A, Cichon S, Sullivan PF. Evaluating historical candidate genes for schizophrenia. Mol Psychiatry 2015; 20:555-62. [PMID: 25754081 PMCID: PMC4414705 DOI: 10.1038/mp.2015.16] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/14/2014] [Accepted: 01/05/2015] [Indexed: 12/19/2022]
Abstract
Prior to the genome-wide association era, candidate gene studies were a major approach in schizophrenia genetics. In this invited review, we consider the current status of 25 historical candidate genes for schizophrenia (for example, COMT, DISC1, DTNBP1 and NRG1). The initial study for 24 of these genes explicitly evaluated common variant hypotheses about schizophrenia. Our evaluation included a meta-analysis of the candidate gene literature, incorporation of the results of the largest genomic study yet published for schizophrenia, ratings from informed researchers who have published on these genes, and ratings from 24 schizophrenia geneticists. On the basis of current empirical evidence and mostly consensual assessments of informed opinion, it appears that the historical candidate gene literature did not yield clear insights into the genetic basis of schizophrenia. A likely reason why historical candidate gene studies did not achieve their primary aims is inadequate statistical power. However, the considerable efforts embodied in these early studies unquestionably set the stage for current successes in genomic approaches to schizophrenia.
Collapse
Affiliation(s)
- M S Farrell
- Center for Psychiatric Genomics, Department of Genetics, Genomic Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - T Werge
- 1] Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services Copenhagen, Denmark [2] Department of Clinical Medicine, University of Copenhagen, Copenhagen, Aarhus, Denmark [3] The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - P Sklar
- 1] Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA [2] Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA [3] Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M J Owen
- 1] MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK [2] National Centre for Mental Health, Cardiff University, Cardiff, UK
| | - R A Ophoff
- 1] Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA [2] Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA [3] Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - M C O'Donovan
- 1] MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK [2] National Centre for Mental Health, Cardiff University, Cardiff, UK
| | - A Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Ireland
| | - S Cichon
- 1] Division of Medical Genetics, Department of Biomedicine, University Basel, Basel, Switzerland [2] Institute of Human Genetics, University of Bonn, Bonn, Germany [3] Department of Genomics, Life and Brain Center, Bonn, Germany
| | - P F Sullivan
- 1] Center for Psychiatric Genomics, Department of Genetics, Genomic Medicine, University of North Carolina, Chapel Hill, NC, USA [2] Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden [3] Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
40
|
Norlelawati AT, Kartini A, Norsidah K, Ramli M, Tariq AR, Wan Rohani WT. Disrupted-in-Schizophrenia-1 SNPs and Susceptibility to Schizophrenia: Evidence from Malaysia. Psychiatry Investig 2015; 12:103-11. [PMID: 25670952 PMCID: PMC4310907 DOI: 10.4306/pi.2015.12.1.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/28/2014] [Accepted: 02/20/2014] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Even though the role of the DICS1 gene as a risk factor for schizophrenia is still unclear, there is substantial evidence from functional and cell biology studies that supports the connection of the gene with schizophrenia. The studies associating the DISC1 gene with schizophrenia in Asian populations are limited to East-Asian populations. Our study examined several DISC1 markers of schizophrenia that were identified in the Caucasian and East-Asian populations in Malaysia and assessed the role of rs2509382, which is located at 11q14.3, the mutual translocation region of the famous DISC1 translocation [t (1; 11) (p42.1; q14.3)]. METHODS We genotyped eleven single-neucleotide polymorphism (SNPs) within or related to DISC1 (rs821597, rs821616, rs4658971, rs1538979, rs843979, rs2812385, rs1407599, rs4658890, and rs2509382) using the PCR-RFLP methods. RESULTS In all, there were 575 participants (225 schizophrenic patients and 350 healthy controls) of either Malay or Chinese ethnicity. The case-control analyses found two SNPs that were associated with schizophrenia [rs4658971 (p=0.030; OR=1.43 (1.35-1.99) and rs1538979-(p=0.036; OR=1.35 (1.02-1.80)] and rs2509382-susceptibility among the males schizophrenics [p=0.0082; OR=2.16 (1.22-3.81)]. This is similar to the meta-analysis findings for the Caucasian populations. CONCLUSION The study supports the notion that the DISC1 gene is a marker of schizophrenia susceptibility and that rs2509382 in the mutual DISC1 translocation region is a susceptibility marker for schizophrenia among males in Malaysia. However, the finding of the study is limited due to possible genetic stratification and the small sample size.
Collapse
Affiliation(s)
- A. Talib Norlelawati
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Abdullah Kartini
- Department of Psychiatry, Kulliyyah of Medicine, International Islamic University Malaysia, Pahang, Malaysia
| | - Kuzaifah Norsidah
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Musa Ramli
- Department of Psychiatry, Kulliyyah of Medicine, International Islamic University Malaysia, Pahang, Malaysia
| | - Abdul Razak Tariq
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Wan Taib Wan Rohani
- Faculty of Medicine, University of Sultan Zainal Abidin, Terengganu, Malaysia
| |
Collapse
|
41
|
Liu B, Fan L, Cui Y, Zhang X, Hou B, Li Y, Qin W, Wang D, Yu C, Jiang T. DISC1 Ser704Cys impacts thalamic-prefrontal connectivity. Brain Struct Funct 2015; 220:91-100. [PMID: 24146131 PMCID: PMC4286634 DOI: 10.1007/s00429-013-0640-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/12/2013] [Indexed: 11/25/2022]
Abstract
The Disrupted-in-Schizophrenia 1 (DISC1) gene has been thought as a putative susceptibility gene for various psychiatric disorders, and DISC1 Ser704Cys is associated with variations of brain morphology and function. Moreover, our recent diffusion magnetic resonance imaging (dMRI) study reported that DISC1 Ser704Cys was associated with information transfer efficiency in the brain anatomical network. However, the effects of the DISC1 gene on functional brain connectivity and networks, especially for thalamic-prefrontal circuit, which are disrupted in various psychiatric disorders, are largely unknown. Using a functional connectivity density (FCD) mapping method based on functional magnetic resonance imaging data in a large sample of healthy Han Chinese subjects, we first investigated the association between DISC1 Ser704Cys and short- and long-range FCD hubs. Compared with Ser homozygotes, Cys-allele individuals had increased long-range FCD hubs in the bilateral thalami. The functional and anatomical connectivity of the thalamus to the prefrontal cortex was further analyzed. Significantly increased thalamic-prefrontal functional connectivity and decreased thalamic-prefrontal anatomical connectivity were found in DISC1 Cys-allele carriers. Our findings provide consistent evidence that the DISC1 Ser704Cys polymorphism influences the thalamic-prefrontal circuits in humans and may provide new insights into the neural mechanisms that link DISC1 and the risk for psychiatric disorders.
Collapse
Affiliation(s)
- Bing Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
| | - Yue Cui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
| | - Xiaolong Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
| | - Bing Hou
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
| | - Yonghui Li
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Wen Qin
- Department of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052 China
| | - Dawei Wang
- Department of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052 China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052 China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| |
Collapse
|
42
|
Booth CA, Brown JT, Randall AD. Neurophysiological modification of CA1 pyramidal neurons in a transgenic mouse expressing a truncated form of disrupted-in-schizophrenia 1. Eur J Neurosci 2014; 39:1074-90. [PMID: 24712988 PMCID: PMC4232873 DOI: 10.1111/ejn.12549] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 01/22/2023]
Abstract
A t(1;11) balanced chromosomal translocation transects the Disc1 gene in a large Scottish family and produces genome-wide linkage to schizophrenia and recurrent major depressive disorder. This study describes our in vitro investigations into neurophysiological function in hippocampal area CA1 of a transgenic mouse (DISC1tr) that expresses a truncated version of DISC1 designed to reproduce aspects of the genetic situation in the Scottish t(1;11) pedigree. We employed both patch-clamp and extracellular recording methods in vitro to compare intrinsic properties and synaptic function and plasticity between DISC1tr animals and wild-type littermates. Patch-clamp analysis of CA1 pyramidal neurons (CA1-PNs) revealed no genotype dependence in multiple subthreshold parameters, including resting potential, input resistance, hyperpolarization-activated ‘sag’ and resonance properties. Suprathreshold stimuli revealed no alteration to action potential (AP) waveform, although the initial rate of AP production was higher in DISC1tr mice. No difference was observed in afterhyperpolarizing potentials following trains of 5–25 APs at 50 Hz. Patch-clamp analysis of synaptic responses in the Schaffer collateral commissural (SC) pathway indicated no genotype-dependence of paired pulse facilitation, excitatory postsynaptic potential summation or AMPA/NMDA ratio. Extracellular recordings also revealed an absence of changes to SC synaptic responses and indicated input–output and short-term plasticity were also unaltered in the temporoammonic (TA) input. However, in DISC1tr mice theta burst-induced long-term potentiation was enhanced in the SC pathway but completely lost in the TA pathway. These data demonstrate that expressing a truncated form of DISC1 affects intrinsic properties of CA1-PNs and produces pathway-specific effects on long-term synaptic plasticity.
Collapse
Affiliation(s)
- Clair A Booth
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
43
|
Gong X, Lu W, Kendrick KM, Pu W, Wang C, Jin L, Lu G, Liu Z, Liu H, Feng J. A brain-wide association study of DISC1 genetic variants reveals a relationship with the structure and functional connectivity of the precuneus in schizophrenia. Hum Brain Mapp 2014; 35:5414-5430. [PMID: 24909300 PMCID: PMC6869119 DOI: 10.1002/hbm.22560] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 04/07/2014] [Accepted: 05/13/2014] [Indexed: 01/05/2023] Open
Abstract
The Disrupted in Schizophrenia Gene 1 (DISC1) plays a role in both neural signaling and development and is associated with schizophrenia, although its links to altered brain structure and function in this disorder are not fully established. Here we have used structural and functional MRI to investigate links with six DISC1 single nucleotide polymorphisms (SNPs). We employed a brain-wide association analysis (BWAS) together with a Jacknife internal validation approach in 46 schizophrenia patients and 24 matched healthy control subjects. Results from structural MRI showed significant associations between all six DISC1 variants and gray matter volume in the precuneus, post-central gyrus and middle cingulate gyrus. Associations with specific SNPs were found for rs2738880 in the left precuneus and right post-central gyrus, and rs1535530 in the right precuneus and middle cingulate gyrus. Using regions showing structural associations as seeds a resting-state functional connectivity analysis revealed significant associations between all 6 SNPS and connectivity between the right precuneus and inferior frontal gyrus. The connection between the right precuneus and inferior frontal gyrus was also specifically associated with rs821617. Importantly schizophrenia patients showed positive correlations between the six DISC-1 SNPs associated gray matter volume in the left precuneus and right post-central gyrus and negative symptom severity. No correlations with illness duration were found. Our results provide the first evidence suggesting a key role for structural and functional connectivity associations between DISC1 polymorphisms and the precuneus in schizophrenia.
Collapse
Affiliation(s)
- Xiaohong Gong
- Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan UniversityShanghai200433China
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary AnthropologySchool of Life Sciences, Fudan UniversityShanghai200433China
| | - Wenlian Lu
- Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan UniversityShanghai200433China
- Centre for Scientific Computing, University of WarwickCoventryCV4 7ALUnited Kingdom
- Fudan University‐JinLing Hospital Computational Translational Medicine Centre, Fudan UniversityShanghai200433China
| | - Keith M. Kendrick
- Key Laboratory for NeuroinformationSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengdu610054China
| | - Weidan Pu
- Medical Psychological Institute Second Xiangya HospitalCentral South UniversityChangsha410011China
- Institute of Mental Health, Second Xiangya Hospital, Central South UniversityChangsha410011China
| | - Chu Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary AnthropologySchool of Life Sciences, Fudan UniversityShanghai200433China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary AnthropologySchool of Life Sciences, Fudan UniversityShanghai200433China
| | - Guangmin Lu
- Department of Medical ImagingNanjing University School of MedicineNanjing210002PR China
- Jinling Hospital‐Fudan University Computational Translational Medicine Center, Jinling Hospital, Nanjing University School of MedicineNanjing210002PR China
| | - Zhening Liu
- Medical Psychological Institute Second Xiangya HospitalCentral South UniversityChangsha410011China
| | - Haihong Liu
- Mental Health Center, Xiangya Hospital, Central South UniversityChangsha410008China
| | - Jianfeng Feng
- Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan UniversityShanghai200433China
- Centre for Scientific Computing, University of WarwickCoventryCV4 7ALUnited Kingdom
- Fudan University‐JinLing Hospital Computational Translational Medicine Centre, Fudan UniversityShanghai200433China
| |
Collapse
|
44
|
Lipina TV, Roder JC. Disrupted-In-Schizophrenia-1 (DISC1) interactome and mental disorders: impact of mouse models. Neurosci Biobehav Rev 2014; 45:271-94. [PMID: 25016072 DOI: 10.1016/j.neubiorev.2014.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 06/09/2014] [Accepted: 07/01/2014] [Indexed: 02/06/2023]
Abstract
Disrupted-In-Schizophrenia-1 (DISC1) has captured much attention because it predisposes individuals to a wide range of mental illnesses. Notably, a number of genes encoding proteins interacting with DISC1 are also considered to be relevant risk factors of mental disorders. We reasoned that the understanding of DISC1-associated mental disorders in the context of network principles will help to address fundamental properties of DISC1 as a disease gene. Systematic integration of behavioural phenotypes of genetic mouse lines carrying perturbation in DISC1 interacting proteins would contribute to a better resolution of neurobiological mechanisms of mental disorders associated with the impaired DISC1 interactome and lead to a development of network medicine. This review also makes specific recommendations of how to assess DISC1 associated mental disorders in mouse models and discuss future directions.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| | - John C Roder
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Departments of Medical Biophysics and Molecular & Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Thomson PA, Parla JS, McRae AF, Kramer M, Ramakrishnan K, Yao J, Soares DC, McCarthy S, Morris SW, Cardone L, Cass S, Ghiban E, Hennah W, Evans KL, Rebolini D, Millar JK, Harris SE, Starr JM, MacIntyre DJ, Generation Scotland 7, McIntosh AM, Watson JD, Deary IJ, Visscher PM, Blackwood DH, McCombie WR, Porteous DJ. 708 Common and 2010 rare DISC1 locus variants identified in 1542 subjects: analysis for association with psychiatric disorder and cognitive traits. Mol Psychiatry 2014; 19:668-75. [PMID: 23732877 PMCID: PMC4031635 DOI: 10.1038/mp.2013.68] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 12/16/2022]
Abstract
A balanced t(1;11) translocation that transects the Disrupted in schizophrenia 1 (DISC1) gene shows genome-wide significant linkage for schizophrenia and recurrent major depressive disorder (rMDD) in a single large Scottish family, but genome-wide and exome sequencing-based association studies have not supported a role for DISC1 in psychiatric illness. To explore DISC1 in more detail, we sequenced 528 kb of the DISC1 locus in 653 cases and 889 controls. We report 2718 validated single-nucleotide polymorphisms (SNPs) of which 2010 have a minor allele frequency of <1%. Only 38% of these variants are reported in the 1000 Genomes Project European subset. This suggests that many DISC1 SNPs remain undiscovered and are essentially private. Rare coding variants identified exclusively in patients were found in likely functional protein domains. Significant region-wide association was observed between rs16856199 and rMDD (P=0.026, unadjusted P=6.3 × 10(-5), OR=3.48). This was not replicated in additional recurrent major depression samples (replication P=0.11). Combined analysis of both the original and replication set supported the original association (P=0.0058, OR=1.46). Evidence for segregation of this variant with disease in families was limited to those of rMDD individuals referred from primary care. Burden analysis for coding and non-coding variants gave nominal associations with diagnosis and measures of mood and cognition. Together, these observations are likely to generalise to other candidate genes for major mental illness and may thus provide guidelines for the design of future studies.
Collapse
Affiliation(s)
- P A Thomson
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - J S Parla
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - A F McRae
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - M Kramer
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - K Ramakrishnan
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - J Yao
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - D C Soares
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - S McCarthy
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S W Morris
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - L Cardone
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S Cass
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - E Ghiban
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - W Hennah
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Institute for Molecular Medicine, Finland FIMM, University of Helsinki, Helsinki, Finland
| | - K L Evans
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - D Rebolini
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - J K Millar
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - S E Harris
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - J M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - D J MacIntyre
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Generation Scotland7
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Institute for Molecular Medicine, Finland FIMM, University of Helsinki, Helsinki, Finland
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
- Generation Scotland, A Collaboration between the University Medical Schools and NHS, Aberdeen, Dundee, Edinburgh and Glasgow, UK
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - J D Watson
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - I J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - P M Visscher
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - D H Blackwood
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - W R McCombie
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - D J Porteous
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| |
Collapse
|
46
|
Jung JY, DeLuca TF, Nelson TH, Wall DP. A literature search tool for intelligent extraction of disease-associated genes. J Am Med Inform Assoc 2014; 21:399-405. [PMID: 23999671 PMCID: PMC3994846 DOI: 10.1136/amiajnl-2012-001563] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 07/15/2013] [Accepted: 08/08/2013] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To extract disorder-associated genes from the scientific literature in PubMed with greater sensitivity for literature-based support than existing methods. METHODS We developed a PubMed query to retrieve disorder-related, original research articles. Then we applied a rule-based text-mining algorithm with keyword matching to extract target disorders, genes with significant results, and the type of study described by the article. RESULTS We compared our resulting candidate disorder genes and supporting references with existing databases. We demonstrated that our candidate gene set covers nearly all genes in manually curated databases, and that the references supporting the disorder-gene link are more extensive and accurate than other general purpose gene-to-disorder association databases. CONCLUSIONS We implemented a novel publication search tool to find target articles, specifically focused on links between disorders and genotypes. Through comparison against gold-standard manually updated gene-disorder databases and comparison with automated databases of similar functionality we show that our tool can search through the entirety of PubMed to extract the main gene findings for human diseases rapidly and accurately.
Collapse
Affiliation(s)
- Jae-Yoon Jung
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Todd F DeLuca
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Tristan H Nelson
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Dennis P Wall
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
47
|
MESH Headings
- Causality
- Chromosome Breakpoints
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 1/ultrastructure
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 11/ultrastructure
- Conduct Disorder/genetics
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Humans
- Lod Score
- Mental Disorders/genetics
- Mood Disorders/genetics
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Pedigree
- Phenotype
- RNA, Long Noncoding/genetics
- Risk Factors
- Schizophrenia/genetics
- Terminology as Topic
- Translocation, Genetic
Collapse
Affiliation(s)
- P F Sullivan
- Departments of Genetics and Psychiatry, Center for Psychiatric Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
48
|
Ratta-Apha W, Hishimoto A, Mouri K, Shiroiwa K, Sasada T, Yoshida M, Supriyanto I, Ueno Y, Asano M, Shirakawa O, Togashi H, Takai Y, Sora I. Association analysis of the DISC1 gene with schizophrenia in the Japanese population and DISC1 immunoreactivity in the postmortem brain. Neurosci Res 2013; 77:222-7. [PMID: 24013095 DOI: 10.1016/j.neures.2013.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/24/2013] [Accepted: 08/26/2013] [Indexed: 12/11/2022]
Abstract
The Disrupted-in-Schizophrenia 1 (DISC1) gene plays a role in the regulation of neural development. Previous evidence from genetic association and biological studies implicates the DISC1 gene as having a role in the pathophysiology of schizophrenia. In the present study, we explored the association between DISC1 missense mutation rs821616 (Ser704Cys) single nucleotide polymorphism (SNP) and four other SNPs (rs1772702, rs1754603, rs821621, rs821624) in the related haplotype block and schizophrenia in the Japanese population. We could not find a significant association of selected SNPs with schizophrenia after correction for multiple testing. We performed a meta-analysis of the Ser704Cys variant in schizophrenia using data from the present study and five previous Japanese population studies, and found no association with schizophrenia. We also examined DISC1 immunoreactivity in postmortem prefrontal cortex specimens of schizophrenia patients compared to control samples. The immunoreactivity revealed a significant decrease of DISC1 protein expression in the schizophrenia samples after ruling out potential confounding factors. However, the Ser704Cys variant did not show effects on DISC1 immunoreactivity. These results provide evidence that this functional genetic variation of DISC1 do not underlie the pathophysiology of schizophrenia in the Japanese population.
Collapse
Affiliation(s)
- Woraphat Ratta-Apha
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Duff BJ, Macritchie KAN, Moorhead TWJ, Lawrie SM, Blackwood DHR. Human brain imaging studies of DISC1 in schizophrenia, bipolar disorder and depression: a systematic review. Schizophr Res 2013; 147:1-13. [PMID: 23602339 DOI: 10.1016/j.schres.2013.03.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 03/08/2013] [Accepted: 03/15/2013] [Indexed: 02/06/2023]
Abstract
Disrupted-in-Schizophrenia 1 (DISC1) is a well researched candidate gene for schizophrenia and affective disorders with a range of functions relating to neurodevelopment. Several human brain imaging studies investigating correlations between common and rare variants in DISC1 and brain structure and function have shown conflicting results. A meta-analysis of case/control data showed no association between schizophrenia and any common SNP in DISC1. Therefore it is timely to review the literature to plan the direction of future studies. Twenty-two human brain imaging studies have examined the influence of DISC1 variants in health, schizophrenia, bipolar disorder or depression. The most studied common SNPs are Ser704Cys (rs821616) and Leu607Phe (rs6675281). Some imaging-genomic studies report effects on frontal, temporal and hippocampal structural indices in health and illness and a volumetric longitudinal study supports a putative role for these common SNPs in neurodevelopment. Callosal agenesis is described in association with rare deletions at 1q42 which include DISC1 and rare sequence variants at DISC1 itself. DISC1 interactions with translin-associated factor X (TRAX) and neuregulin have been shown to influence several regional volumes. In the first study involving neonates, a role for Ser704Cys (rs821616) has been highlighted in prenatal brain development with large clusters of reduced grey matter reported in the frontal lobes. Functional MRI studies examining associations between Ser704Cys (rs821616) and Leu607Phe (rs6675281) with prefrontal and hippocampal activation have also given inconsistent results. Prefrontal function was reported to be associated with interaction between DISC1 and CITRON (CIT) in health. Preliminary magnetic resonance spectroscopy and diffusion tensor data support the influence of Ser704Cys (rs821616) status on grey and white matter integrity. The glutamate system remains uninvestigated. Associations between rare sequence variants and structural changes in brain regions including the corpus callosum and effects of gene-gene interactions on brain structure and function are promising areas for future study.
Collapse
Affiliation(s)
- Barbara J Duff
- University of Edinburgh, Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom.
| | - Karine A N Macritchie
- University of Edinburgh, Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom
| | - Thomas W J Moorhead
- University of Edinburgh, Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom
| | - Stephen M Lawrie
- University of Edinburgh, Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom
| | - Douglas H R Blackwood
- University of Edinburgh, Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom
| |
Collapse
|
50
|
Hart AB, de Wit H, Palmer AA. Candidate gene studies of a promising intermediate phenotype: failure to replicate. Neuropsychopharmacology 2013; 38:802-16. [PMID: 23303064 PMCID: PMC3671998 DOI: 10.1038/npp.2012.245] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/07/2012] [Accepted: 11/26/2012] [Indexed: 11/08/2022]
Abstract
Many candidate gene studies use 'intermediate phenotypes' instead of disease diagnoses. It has been proposed that intermediate phenotypes have simpler genetic architectures such that individual alleles account for a larger percentage of trait variance. This implies that smaller samples can be used to identify genetic associations. Pharmacogenomic drug challenge studies may be an especially promising class of intermediate phenotype. We previously conducted a series of 12 candidate gene analyses of acute subjective and physiological responses to amphetamine in 99-162 healthy human volunteers (ADORA2A, SLC6A3, BDNF, SLC6A4, CSNK1E, SLC6A2, DRD2, FAAH, COMT, OPRM1). Here, we report our attempt to replicate these findings in over 200 additional participants ascertained using identical methodology. We were unable to replicate any of our previous findings. These results raise critical issues related to non-replication of candidate gene studies, such as power, sample size, multiple testing within and between studies, publication bias and the expectation that true allelic effect sizes are similar to those reported in genome-wide association studies. Many of these factors may have contributed to our failure to replicate our previous findings. Our results should instill caution in those considering similarly designed studies.
Collapse
Affiliation(s)
- Amy B Hart
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Abraham A Palmer
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| |
Collapse
|