1
|
Dean B. IUPHAR Review on muscarinic M1 and M4 receptors as drug treatment targets relevant to the molecular pathology of schizophrenia. Pharmacol Res 2024; 210:107510. [PMID: 39566671 DOI: 10.1016/j.phrs.2024.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Cobenfy, a co-formulation of xanomeline and trospium, is the first drug not acting on the dopaminergic system of the CNS approved for the treatment of schizophrenia by the FDA. Xanomeline is a muscarinic M1 and M4 receptor (CHRM1 and CHRM4) agonist whilst trospium is a peripherally active CHRM antagonist that reduces the unwanted peripheral side-effects of xanomeline. Relevant to this exciting development, this review details the human CNS cholinergic systems and how those systems are affected by the molecular pathology of schizophrenia in a way suggesting activating the CHRM1 and 4 would be beneficial in treating the disorder. The CNS distribution of CHRMs is presented along with findings using CHRM knockout mice and mice treated with drugs that activate the CHRM1 and / or M4, these data explain why these CHRMs could be involved in the genesis of the symptoms of schizophrenia. Next, the process leading to the formulation of Cobenfy and the preclinical data on xanomeline are reviewed showing why Cobenfy was expected to be useful in treating schizophrenia. The pipeline of drugs targeting CHRM1 and /or M4 receptors to treat schizophrenia are discussed. Finally, the molecular pathology of two sub-groups within schizophrenia, separated based on the presence or absence of a deficit of cortical CHRM1, are reviewed to show how such approaches could identify new drug targets. In conclusion, the history of the development of Cobenfy highlights how a growing understanding the pathophysiology of schizophrenia will suggest new treatment targets for the disorder and that pharmacologists can synthesise drugs to target these sites.
Collapse
Affiliation(s)
- Brian Dean
- The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Jameei H, Rakesh D, Zalesky A, Cairns MJ, Reay WR, Wray NR, Di Biase MA. Linking Polygenic Risk of Schizophrenia to Variation in Magnetic Resonance Imaging Brain Measures: A Comprehensive Systematic Review. Schizophr Bull 2024; 50:32-46. [PMID: 37354489 PMCID: PMC10754175 DOI: 10.1093/schbul/sbad087] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is highly heritable, with a polygenic effect of many genes conferring risk. Evidence on whether cumulative risk also predicts alterations in brain morphology and function is inconsistent. This systematic review examined evidence for schizophrenia polygenic risk score (sczPRS) associations with commonly used magnetic resonance imaging (MRI) measures. We expected consistent evidence to emerge for significant sczPRS associations with variation in structure and function, specifically in frontal, temporal, and insula cortices that are commonly implicated in schizophrenia pathophysiology. STUDY DESIGN In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched MEDLINE, Embase, and PsycINFO for peer-reviewed studies published between January 2013 and March 2022. Studies were screened against predetermined criteria and National Institutes of Health (NIH) quality assessment tools. STUDY RESULTS In total, 57 studies of T1-weighted structural, diffusion, and functional MRI were included (age range = 9-80 years, Nrange = 64-76 644). We observed moderate, albeit preliminary, evidence for higher sczPRS predicting global reductions in cortical thickness and widespread variation in functional connectivity, and to a lesser extent, region-specific reductions in frontal and temporal volume and thickness. Conversely, sczPRS does not predict whole-brain surface area or gray/white matter volume. Limited evidence emerged for sczPRS associations with diffusion tensor measures of white matter microstructure in a large community sample and smaller cohorts of children and young adults. These findings were broadly consistent across community and clinical populations. CONCLUSIONS Our review supports the hypothesis that schizophrenia is a disorder of disrupted within and between-region brain connectivity, and points to specific whole-brain and regional MRI metrics that may provide useful intermediate phenotypes.
Collapse
Affiliation(s)
- Hadis Jameei
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Maria A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, VIC, Australia
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Xu J, Wu S, Huo L, Zhang Q, Liu L, Ye Z, Cao J, Ma H, Shang C, Ma C. Trigeminal nerve stimulation restores hippocampal dopamine deficiency to promote cognitive recovery in traumatic brain injury. Prog Neurobiol 2023:102477. [PMID: 37270025 DOI: 10.1016/j.pneurobio.2023.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
Cognitive impairment (CI) is a common neurological disease resulting from traumatic brain injury (TBI). Trigeminal nerve stimulation (TNS) is an emerging, non-invasive, and effective neuromodulation therapy especially for patients suffering from brain function disorders. However, the treatment and recovery mechanisms of TNS remain poorly understood. By using combined advanced technologies, we revealed here that the neuroprotective potential of TNS to improve CI caused by TBI. The study results found that 40Hz TNS treatment has the ability to improve CI in TBI mice and communicates with central nervous system via the trigeminal ganglion (TG). Transsynaptic virus experiments revealed that TG is connected to the hippocampus (HPC) through the corticotropin-releasing hormone (CRH) neurons of paraventricular hypothalamic nucleus (PVN) and the dopamine transporter (DAT) neurons of substantia nigra pars compacta/ventral tegmental area (SNc/VTA). Mechanistically, the data showed that TNS can increase the release of dopamine in the HPC by activating the following neural circuit: TG→CRH+ PVN→DAT+ SNc/VTA → HPC. Bulk RNA sequencing confirmed changes in the expression of dopamine-related genes in the HPC. This work preliminarily explains the efficacy and mechanism of TNS and adds to the increasing evidence demonstrating that nerve stimulation is an effective method to treat neurological diseases. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Jing Xu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Shaoling Wu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Lifang Huo
- Guangzhou Laboratory, Guangzhou, 510005, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Qian Zhang
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Lijiaqi Liu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Zhimin Ye
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Jie Cao
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Haiyun Ma
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Congping Shang
- Guangzhou Laboratory, Guangzhou, 510005, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China; School of Basic Medical Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China.
| | - Chao Ma
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China.
| |
Collapse
|
4
|
Kogler L, Regenbogen C, Müller VI, Kohn N, Schneider F, Gur RC, Derntl B. Cognitive Stress Regulation in Schizophrenia Patients and Healthy Individuals: Brain and Behavior. J Clin Med 2023; 12:jcm12072749. [PMID: 37048832 PMCID: PMC10095473 DOI: 10.3390/jcm12072749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Stress is an important factor in the development, triggering, and maintenance of psychotic symptoms. Still, little is known about the neural correlates of cognitively regulating stressful events in schizophrenia. The current study aimed at investigating the cognitive down-regulation of negative, stressful reactions during a neuroimaging psychosocial stress paradigm (non-regulated stress versus cognitively regulated stress). In a randomized, repeated-measures within-subject design, we assessed subjective reactions and neural activation in schizophrenia patients (SZP) and matched healthy controls in a neuroimaging psychosocial stress paradigm. In general, SZP exhibited an increased anticipation of stress compared to controls (p = 0.020). During non-regulated stress, SZP showed increased negative affect (p = 0.033) and stronger activation of the left parietal operculum/posterior insula (p < 0.001) and right inferior frontal gyrus/anterior insula (p = 0.005) than controls. Contrarily, stress regulation compared to non-regulated stress led to increased subjective reactions in controls (p = 0.003) but less deactivation in SZP in the ventral anterior cingulate cortex (p = 0.027). Our data demonstrate stronger reactions to and anticipation of stress in patients and difficulties with cognitive stress regulation in both groups. Considering the strong association between mental health and stress, the investigation of cognitive regulation in individuals vulnerable to stress, including SZP, has crucial implications for improving stress intervention trainings.
Collapse
Affiliation(s)
- Lydia Kogler
- Department of Psychiatry and Psychotherapy, Tübingen Centre for Mental Health (TüCMH), Medical Faculty, University of Tübingen, Calwerstrasse 14, 72076 Tübingen, Germany
| | - Christina Regenbogen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Veronika I Müller
- Institute of Neuroscience und Medicine, INM-7, Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Nils Kohn
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Postbus 9101, 6500 HB Nijmegen, The Netherlands
| | - Frank Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Ruben C Gur
- Neuropsychiatry Division, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Tübingen Centre for Mental Health (TüCMH), Medical Faculty, University of Tübingen, Calwerstrasse 14, 72076 Tübingen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction (IMPRS-MMFD), Otfried-Müller-Str. 27, 72076 Tübingen, Germany
- LEAD Graduate School and Network, University of Tübingen, Walter-Simon-Straße 12, 72074 Tübingen, Germany
| |
Collapse
|
5
|
Hegarty CE, Ianni AM, Kohn PD, Kolachana B, Gregory M, Masdeu JC, Eisenberg DP, Berman KF. Polymorphism in the ZNF804A Gene and Variation in D 1 and D 2/D 3 Dopamine Receptor Availability in the Healthy Human Brain: A Dual Positron Emission Tomography Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:121-128. [PMID: 33712377 PMCID: PMC10501410 DOI: 10.1016/j.bpsc.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND The rs1344706 single nucleotide polymorphism in the ZNF804A gene has been associated with risk for psychosis in multiple genome-wide association studies, yet mechanisms underlying this association are not known. Given preclinical work suggesting an impact of ZNF804A on dopamine receptor gene transcription and clinical studies establishing dopaminergic dysfunction in patients with schizophrenia, we hypothesized that the ZNF804A risk single nucleotide polymorphism would be associated with variation in dopamine receptor availability in the human brain. METHODS In this study, 72 healthy individuals genotyped for rs1344706 completed both [18F]fallypride and [11C]NNC-112 positron emission tomography scans to measure D2/D3 and D1 receptor availability, respectively. Genetic effects on estimates of binding potential for each ligand were tested first with canonical subject-specific striatal regions of interest analyses, followed by exploratory whole-brain voxelwise analyses to test for more localized striatal signals and for extrastriatal effects. RESULTS Region of interest analyses revealed significantly less D2/D3 receptor availability in risk-allele homozygotes (TT) compared with non-risk allele carriers (G-allele carrier group: TG and GG) in the associative striatum and sensorimotor striatum, but no significant differences in striatal D1 receptor availability. CONCLUSIONS These data suggest that ZNF804A genotype may be meaningfully linked to dopaminergic function in the human brain. The results also may provide information to guide future studies of ZNF804A-related mechanisms of schizophrenia risk.
Collapse
Affiliation(s)
- Catherine E Hegarty
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland; Neuroscience Graduate Program, Brown University, Providence, Rhode Island
| | - Angela M Ianni
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Philip D Kohn
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Bhaskar Kolachana
- Human Brain Collection Core, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Michael Gregory
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Joseph C Masdeu
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Daniel P Eisenberg
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Karen F Berman
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland.
| |
Collapse
|
6
|
Duński E, Pękowska A. Keeping the balance: Trade-offs between human brain evolution, autism, and schizophrenia. Front Genet 2022; 13:1009390. [DOI: 10.3389/fgene.2022.1009390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
The unique qualities of the human brain are a product of a complex evolutionary process. Evolution, famously described by François Jacob as a “tinkerer,” builds upon existing genetic elements by modifying and repurposing them for new functions. Genetic changes in DNA may lead to the emergence of new genes or cause altered gene expression patterns. Both gene and regulatory element mutations may lead to new functions. Yet, this process may lead to side-effects. An evolutionary trade-off occurs when an otherwise beneficial change, which is important for evolutionary success and is under strong positive selection, concurrently results in a detrimental change in another trait. Pleiotropy occurs when a gene affects multiple traits. Antagonistic pleiotropy is a phenomenon whereby a genetic variant leads to an increase in fitness at one life-stage or in a specific environment, but simultaneously decreases fitness in another respect. Therefore, it is conceivable that the molecular underpinnings of evolution of highly complex traits, including brain size or cognitive ability, under certain conditions could result in deleterious effects, which would increase the susceptibility to psychiatric or neurodevelopmental diseases. Here, we discuss possible trade-offs and antagonistic pleiotropies between evolutionary change in a gene sequence, dosage or activity and the susceptibility of individuals to autism spectrum disorders and schizophrenia. We present current knowledge about genes and alterations in gene regulatory landscapes, which have likely played a role in establishing human-specific traits and have been implicated in those diseases.
Collapse
|
7
|
Grosjean I, Roméo B, Domdom MA, Belaid A, D’Andréa G, Guillot N, Gherardi RK, Gal J, Milano G, Marquette CH, Hung RJ, Landi MT, Han Y, Brest P, Von Bergen M, Klionsky DJ, Amos CI, Hofman P, Mograbi B. Autophagopathies: from autophagy gene polymorphisms to precision medicine for human diseases. Autophagy 2022; 18:2519-2536. [PMID: 35383530 PMCID: PMC9629091 DOI: 10.1080/15548627.2022.2039994] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/20/2022] [Accepted: 02/06/2022] [Indexed: 12/15/2022] Open
Abstract
At a time when complex diseases affect globally 280 million people and claim 14 million lives every year, there is an urgent need to rapidly increase our knowledge into their underlying etiologies. Though critical in identifying the people at risk, the causal environmental factors (microbiome and/or pollutants) and the affected pathophysiological mechanisms are not well understood. Herein, we consider the variations of autophagy-related (ATG) genes at the heart of mechanisms of increased susceptibility to environmental stress. A comprehensive autophagy genomic resource is presented with 263 single nucleotide polymorphisms (SNPs) for 69 autophagy-related genes associated with 117 autoimmune, inflammatory, infectious, cardiovascular, neurological, respiratory, and endocrine diseases. We thus propose the term 'autophagopathies' to group together a class of complex human diseases the etiology of which lies in a genetic defect of the autophagy machinery, whether directly related or not to an abnormal flux in autophagy, LC3-associated phagocytosis, or any associated trafficking. The future of precision medicine for common diseases will lie in our ability to exploit these ATG SNP x environment relationships to develop new polygenetic risk scores, new management guidelines, and optimal therapies for afflicted patients.Abbreviations: ATG, autophagy-related; ALS-FTD, amyotrophic lateral sclerosis-frontotemporal dementia; ccRCC, clear cell renal cell carcinoma; CD, Crohn disease; COPD, chronic obstructive pulmonary disease; eQTL, expression quantitative trait loci; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; GTEx, genotype-tissue expression; GWAS, genome-wide association studies; LAP, LC3-associated phagocytosis; LC3-II, phosphatidylethanolamine conjugated form of LC3; LD, linkage disequilibrium; LUAD, lung adenocarcinoma; MAF, minor allele frequency; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NSCLC, non-small cell lung cancer; OS, overall survival; PtdIns3K CIII, class III phosphatidylinositol 3 kinase; PtdIns3P, phosphatidylinositol-3-phosphate; SLE, systemic lupus erythematosus; SNPs, single-nucleotide polymorphisms; mQTL, methylation quantitative trait loci; ULK, unc-51 like autophagy activating kinase; UTRs, untranslated regions; WHO, World Health Organization.
Collapse
Affiliation(s)
- Iris Grosjean
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Barnabé Roméo
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Marie-Angela Domdom
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Amine Belaid
- Université Côte d’Azur (UCA), INSERM U1065, C3M, Team 5, F-06204, France
| | - Grégoire D’Andréa
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
- ENT and Head and Neck surgery department, Institut Universitaire de la Face et du Cou, CHU de Nice, University Hospital, Côte d’Azur University, Nice, France
| | - Nicolas Guillot
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Romain K Gherardi
- INSERM U955 Team Relais, Faculty of Health, Paris Est University, France
| | - Jocelyn Gal
- University Côte d’Azur, Centre Antoine Lacassagne, Epidemiology and Biostatistics Department, Nice, France
| | - Gérard Milano
- Université Côte d’Azur, Centre Antoine Lacassagne, UPR7497, Nice, France
| | - Charles Hugo Marquette
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
- University Côte d’Azur, FHU-OncoAge, Department of Pulmonary Medicine and Oncology, CHU de Nice, Nice, France
| | - Rayjean J. Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada; Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Patrick Brest
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Martin Von Bergen
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dep. of Molecular Systems Biology; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany
| | - Daniel J. Klionsky
- University of Michigan, Life Sciences Institute, Ann Arbor, MI, 48109, USA
| | - Christopher I. Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Paul Hofman
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
- University Côte d’Azur, FHU-OncoAge, CHU de Nice, Laboratory of Clinical and Experimental Pathology (LPCE) Biobank(BB-0033-00025), Nice, France
| | - Baharia Mograbi
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| |
Collapse
|
8
|
Paul SM, Yohn SE, Popiolek M, Miller AC, Felder CC. Muscarinic Acetylcholine Receptor Agonists as Novel Treatments for Schizophrenia. Am J Psychiatry 2022; 179:611-627. [PMID: 35758639 DOI: 10.1176/appi.ajp.21101083] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Schizophrenia remains a challenging disease to treat effectively with current antipsychotic medications due to their limited efficacy across the entire spectrum of core symptoms as well as their often burdensome side-effect profiles and poor tolerability. An unmet need remains for novel, mechanistically unique, and better tolerated therapeutic agents for treating schizophrenia, especially those that treat not only positive symptoms but also the negative and cognitive symptoms of the disease. Almost 25 years ago, the muscarinic acetylcholine receptor (mAChR) agonist xanomeline was reported to reduce psychotic symptoms and improve cognition in patients with Alzheimer's disease. The antipsychotic and procognitive properties of xanomeline were subsequently confirmed in a small study of acutely psychotic patients with chronic schizophrenia. These unexpected clinical findings have prompted considerable efforts across academia and industry to target mAChRs as a new approach to potentially treat schizophrenia and other psychotic disorders. The authors discuss recent advances in mAChR biology and pharmacology and the current understanding of the relative roles of the various mAChR subtypes, their downstream cellular effectors, and key neural circuits mediating the reduction in the core symptoms of schizophrenia in patients treated with xanomeline. They also provide an update on the status of novel mAChR agonists currently in development for potential treatment of schizophrenia and other neuropsychiatric disorders.
Collapse
|
9
|
Liu J, Xu Y, Liao G, Tu H, Huang Y, Peng T, Chen X, Huang Z, Zhang Y, Meng X, Zou F. The role of ambra1 in Pb-induced developmental neurotoxicity in zebrafish. Biochem Biophys Res Commun 2022; 594:139-145. [PMID: 35085890 DOI: 10.1016/j.bbrc.2021.12.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
Abstract
Lead is a highly toxic metal that displays developmental neurotoxicity. Ambra1 plays a crucial role in embryonic neural development. At present, the role of Ambra1 in lead-induced developmental neurotoxicity remains unknown. In this study, we investigated the mechanism of Ambra1 concerning its role in lead-induced neurotoxicity. Zebrafish (Danio rerio) embryos were exposed to 0.1, 1, or 10 μM Pb until 5 days post-fertilization, and their locomotor activity was significantly impaired by the 10 μM treatment. Meanwhile, Pb reduced the expression of ambra1a and ambra1b in the brain at 48 and 72 h post-fertilization. Overexpression of ambra1a or ambra1b reversed Pb-induced alterations in locomotor activity, and decreased the apoptotic cell numbers in the brains of Pb-treated zebrafish. Our data reveal a novel protective role of Ambra1 against Pb-induced neural damage in the developing zebrafish.
Collapse
Affiliation(s)
- Jiaxian Liu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongjie Xu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Gengze Liao
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Tu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Huang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Peng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Chen
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhibin Huang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yiyue Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Lin P, Sun J, Lou X, Li D, Shi Y, Li Z, Ma P, Li P, Chen S, Jin W, Liu S, Chen Q, Gao Q, Zhu L, Xu J, Zhu M, Wang M, Liang K, Zhao L, Xu H, Dong K, Li Q, Cheng X, Chen J, Guo X. Consensus on potential biomarkers developed for use in clinical tests for schizophrenia. Gen Psychiatr 2022; 35:e100685. [PMID: 35309241 PMCID: PMC8867318 DOI: 10.1136/gpsych-2021-100685] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundSchizophrenia is a serious mental illness affecting approximately 20 million individuals globally. Both genetic and environmental factors contribute to the illness. If left undiagnosed and untreated, schizophrenia results in impaired social function, repeated hospital admissions, reduced quality of life and decreased life expectancy. Clinical diagnosis largely relies on subjective evidence, including self-reported experiences, and reported behavioural abnormalities followed by psychiatric evaluation. In addition, psychoses may occur along with other conditions, and the symptoms are often episodic and transient, posing a significant challenge to the precision of diagnosis. Therefore, objective, specific tests using biomarkers are urgently needed for differential diagnosis of schizophrenia in clinical practice.AimsWe aimed to provide evidence-based and consensus-based recommendations, with a summary of laboratory measurements that could potentially be used as biomarkers for schizophrenia, and to discuss directions for future research.MethodsWe searched publications within the last 10 years with the following keywords: ‘schizophrenia’, ‘gene’, ‘inflammation’, ‘neurotransmitter’, ‘protein marker’, ‘gut microbiota’, ‘pharmacogenomics’ and ‘biomarker’. A draft of the consensus was discussed and agreed on by all authors at a round table session.ResultsWe summarised the characteristics of candidate diagnostic markers for schizophrenia, including genetic, inflammatory, neurotransmitter, peripheral protein, pharmacogenomic and gut microbiota markers. We also proposed a novel laboratory process for diagnosing schizophrenia in clinical practice based on the evidence summarised in this paper.ConclusionsFurther efforts are needed to identify schizophrenia-specific genetic and epigenetic markers for precise diagnosis, differential diagnosis and ethnicity-specific markers for the Chinese population. The development of novel laboratory techniques is making it possible to use these biomarkers clinically to diagnose disease.
Collapse
Affiliation(s)
- Ping Lin
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Medical Microbiology and Parasitology, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Junyu Sun
- Department of Psychosis, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Xiaoyan Lou
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Shi
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenhua Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peijun Ma
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuzi Chen
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Jin
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Liu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Chen
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Gao
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Zhu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyuan Zhu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxia Wang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kangyi Liang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhao
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huabin Xu
- Clinical Laboratory, Affiliated Hospital of West Anhui Health Vocational College, Lu’an, Anhui, China
| | - Ke Dong
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingtian Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Jinghong Chen
- Editorial Office of General Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaokui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Guo S, Liu J, Li W, Yang Y, Lv L, Xiao X, Li M, Guan F, Luo XJ. Genome wide association study identifies four loci for early onset schizophrenia. Transl Psychiatry 2021; 11:248. [PMID: 33907183 PMCID: PMC8079394 DOI: 10.1038/s41398-021-01360-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Early onset schizophrenia (EOS, defined as first onset of schizophrenia before age 18) is a rare form of schizophrenia (SCZ). Though genome-wide association studies (GWASs) have identified multiple risk variants for SCZ, most of the cases included in these GWASs were not stratified according to their first age at onset. To date, the genetic architecture of EOS remains largely unknown. To identify the risk variants and to uncover the genetic basis of EOS, we conducted a two-stage GWAS of EOS in populations of Han Chinese ancestry in this study. We first performed a GWAS using 1,256 EOS cases and 2,661 healthy controls (referred as discovery stage). The genetic variants with a P < 1.0 × 10-04 in discovery stage were replicated in an independent sample (903 EOS cases and 3,900 controls). We identified four genome-wide significant risk loci for EOS in the combined samples (2,159 EOS cases and 6,561 controls), including 1p36.22 (rs1801133, Pmeta = 4.03 × 10-15), 1p31.1 (rs1281571, Pmeta = 4.14 × 10-08), 3p21.31 (rs7626288, Pmeta = 1.57 × 10-09), and 9q33.3 (rs592927, Pmeta = 4.01 × 10-11). Polygenic risk scoring (PRS) analysis revealed substantial genetic overlap between EOS and SCZ. These discoveries shed light on the genetic basis of EOS. Further functional characterization of the identified risk variants and genes will help provide potential targets for therapeutics and diagnostics.
Collapse
Affiliation(s)
- Suqin Guo
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002 China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002 China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Wenqiang Li
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002 China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002 China
| | - Yongfeng Yang
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002 China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002 China
| | - Luxian Lv
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002 China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002 China
| | - Xiao Xiao
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 China
| | - Ming Li
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 China
| | - Fanglin Guan
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
12
|
Abstract
Besides the ubiquitin-proteasome system, autophagy is a major degradation pathway within cells. It delivers invading pathogens, damaged organelles, aggregated proteins, and other macromolecules from the cytosol to the lysosome for bulk degradation. This so-called canonical autophagy activity contributes to the maintenance of organelle, protein, and metabolite homeostasis as well as innate immunity. Over the past years, numerous studies rapidly deepened our knowledge on the autophagy machinery and its regulation, driven by the fact that impairment of autophagy is associated with several human pathologies, including cancer, immune diseases, and neurodegenerative disorders. Unexpectedly, components of the autophagic machinery were also found to participate in various processes that do not involve lysosomal delivery of cytosolic constituents. These functions are defined as noncanonical autophagy. Regarding neurodegenerative diseases, most research was performed in neurons, while for a long time, microglia received considerably less attention. Concomitant with the notion that microglia greatly contribute to brain health, the understanding of the role of autophagy in microglia expanded. To facilitate an overview of the current knowledge, here we present the fundamentals as well as the recent advances of canonical and noncanonical autophagy functions in microglia.
Collapse
|
13
|
Hwang H, Szucs MJ, Ding LJ, Allen A, Ren X, Haensgen H, Gao F, Rhim H, Andrade A, Pan JQ, Carr SA, Ahmad R, Xu W. Neurogranin, Encoded by the Schizophrenia Risk Gene NRGN, Bidirectionally Modulates Synaptic Plasticity via Calmodulin-Dependent Regulation of the Neuronal Phosphoproteome. Biol Psychiatry 2021; 89:256-269. [PMID: 33032807 PMCID: PMC9258036 DOI: 10.1016/j.biopsych.2020.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neurogranin (Ng), encoded by the schizophrenia risk gene NRGN, is a calmodulin-binding protein enriched in the postsynaptic compartments, and its expression is reduced in the postmortem brains of patients with schizophrenia. Experience-dependent translation of Ng is critical for encoding contextual memory, and Ng regulates developmental plasticity in the primary visual cortex during the critical period. However, the overall impact of Ng on the neuronal signaling that regulates synaptic plasticity is unknown. METHODS Altered Ng expression was achieved via virus-mediated gene manipulation in mice. The effect on long-term potentiation (LTP) was accessed using spike timing-dependent plasticity protocols. Quantitative phosphoproteomics analyses led to discoveries in significant phosphorylated targets. An identified candidate was examined with high-throughput planar patch clamp and was validated with pharmacological manipulation. RESULTS Ng bidirectionally modulated LTP in the hippocampus. Decreasing Ng levels significantly affected the phosphorylation pattern of postsynaptic density proteins, including glutamate receptors, GTPases, kinases, RNA binding proteins, selective ion channels, and ionic transporters, some of which highlighted clusters of schizophrenia- and autism-related genes. Hypophosphorylation of NMDA receptor subunit Grin2A, one significant phosphorylated target, resulted in accelerated decay of NMDA receptor currents. Blocking protein phosphatase PP2B activity rescued the accelerated NMDA receptor current decay and the impairment of LTP mediated by Ng knockdown, implicating the requirement of synaptic PP2B activity for the deficits. CONCLUSIONS Altered Ng levels affect the phosphorylation landscape of neuronal proteins. PP2B activity is required for mediating the deficit in synaptic plasticity caused by decreasing Ng levels, revealing a novel mechanistic link of a schizophrenia risk gene to cognitive deficits.
Collapse
Affiliation(s)
- Hongik Hwang
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts; Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.
| | | | - Lei J. Ding
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrew Allen
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Xiaobai Ren
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Henny Haensgen
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fan Gao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Jen Q. Pan
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Steven A. Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Rushdy Ahmad
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Weifeng Xu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
14
|
Tamargo-Gómez I, Fernández ÁF, Mariño G. Pathogenic Single Nucleotide Polymorphisms on Autophagy-Related Genes. Int J Mol Sci 2020; 21:ijms21218196. [PMID: 33147747 PMCID: PMC7672651 DOI: 10.3390/ijms21218196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, the study of single nucleotide polymorphisms (SNPs) has gained increasing importance in biomedical research, as they can either be at the molecular origin of a determined disorder or directly affect the efficiency of a given treatment. In this regard, sequence variations in genes involved in pro-survival cellular pathways are commonly associated with pathologies, as the alteration of these routes compromises cellular homeostasis. This is the case of autophagy, an evolutionarily conserved pathway that counteracts extracellular and intracellular stressors by mediating the turnover of cytosolic components through lysosomal degradation. Accordingly, autophagy dysregulation has been extensively described in a wide range of human pathologies, including cancer, neurodegeneration, or inflammatory alterations. Thus, it is not surprising that pathogenic gene variants in genes encoding crucial effectors of the autophagosome/lysosome axis are increasingly being identified. In this review, we present a comprehensive list of clinically relevant SNPs in autophagy-related genes, highlighting the scope and relevance of autophagy alterations in human disease.
Collapse
Affiliation(s)
- Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Álvaro F. Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
- Correspondence: (Á.F.F.); (G.M.); Tel.: +34-985652416 (G.M.)
| | - Guillermo Mariño
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
- Correspondence: (Á.F.F.); (G.M.); Tel.: +34-985652416 (G.M.)
| |
Collapse
|
15
|
Pozhidaev IV, Boiko AS, Loonen AJM, Paderina DZ, Fedorenko OY, Tenin G, Kornetova EG, Semke AV, Bokhan NA, Wilffert B, Ivanova SA. Association of Cholinergic Muscarinic M4 Receptor Gene Polymorphism with Schizophrenia. APPLICATION OF CLINICAL GENETICS 2020; 13:97-105. [PMID: 32368127 PMCID: PMC7183770 DOI: 10.2147/tacg.s247174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Background Previous studies have linked muscarinic M4 receptors (CHRM4) to schizophrenia. Specifically, the rs2067482 polymorphism was found to be highly associated with this disease. Purpose To test whether rs2067482 and rs72910092 are potential risk factors for schizophrenia and/or pharmacogenetic markers for antipsychotic-induced tardive dyskinesia. Patients and Methods We genotyped DNA of 449 patients with schizophrenia and 134 healthy controls for rs2067482 and rs72910092 polymorphisms of the CHRM4 gene with the use of the MassARRAY® System by Agena Bioscience. Mann–Whitney test was used to compare qualitative traits and χ2 test was used for categorical traits. Results The frequency of genotypes and alleles of rs72910092 did not differ between patients with schizophrenia and control subjects. We did not reveal any statistical differences for both rs2067482 and rs72910092 between schizophrenia patients with and without tardive dyskinesia. The frequency of the C allele of the polymorphic variant rs2067482 was significantly higher in healthy persons compared to patients with schizophrenia (OR=0.51, 95% CI [0.33–0.80]; p=0.003). Accordingly, the CC genotype was found significantly more often in healthy persons compared to patients with schizophrenia (OR=0.49, 95% CI [0.31–0.80]; p=0.010). Conclusion Our study found the presence of the minor allele (T) of rs2067482 variant being associated with schizophrenia. We argue that the association of rs2067482 with schizophrenia may be via its regulatory effect on some other gene with protein kinase C and casein Kknase substrate in neurons 3 (PACSIN3) as a possible candidate. Neither rs2067482 nor rs72910092 is associated with tardive dyskinesia.
Collapse
Affiliation(s)
- Ivan V Pozhidaev
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk State University, Tomsk, Russian Federation
| | - Anastasiia S Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Anton J M Loonen
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Diana Z Paderina
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk State University, Tomsk, Russian Federation
| | - Olga Yu Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Gennadiy Tenin
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Elena G Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,Siberian State Medical University, Tomsk, Russian Federation
| | - Arkadiy V Semke
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk State University, Tomsk, Russian Federation.,Siberian State Medical University, Tomsk, Russian Federation
| | - Bob Wilffert
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk Polytechnic University, Tomsk, Russian Federation.,Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
16
|
Turkheimer FE, Selvaggi P, Mehta MA, Veronese M, Zelaya F, Dazzan P, Vernon AC. Normalizing the Abnormal: Do Antipsychotic Drugs Push the Cortex Into an Unsustainable Metabolic Envelope? Schizophr Bull 2020; 46:484-495. [PMID: 31755955 PMCID: PMC7147598 DOI: 10.1093/schbul/sbz119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of antipsychotic medication to manage psychosis, principally in those with a diagnosis of schizophrenia or bipolar disorder, is well established. Antipsychotics are effective in normalizing positive symptoms of psychosis in the short term (delusions, hallucinations and disordered thought). Their long-term use is, however, associated with side effects, including several types of movement (extrapyramidal syndrome, dyskinesia, akathisia), metabolic and cardiac disorders. Furthermore, higher lifetime antipsychotic dose-years may be associated with poorer cognitive performance and blunted affect, although the mechanisms driving the latter associations are not well understood. In this article, we propose a novel model of the long-term effects of antipsychotic administration focusing on the changes in brain metabolic homeostasis induced by the medication. We propose here that the brain metabolic normalization, that occurs in parallel to the normalization of psychotic symptoms following antipsychotic treatment, may not ultimately be sustainable by the cerebral tissue of some patients; these patients may be characterized by already reduced oxidative metabolic capacity and this may push the brain into an unsustainable metabolic envelope resulting in tissue remodeling. To support this perspective, we will review the existing data on the brain metabolic trajectories of patients with a diagnosis of schizophrenia as indexed using available neuroimaging tools before and after use of medication. We will also consider data from pre-clinical studies to provide mechanistic support for our model.
Collapse
Affiliation(s)
- Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
17
|
Prata DP, Costa-Neves B, Cosme G, Vassos E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J Psychiatr Res 2019; 114:178-207. [PMID: 31096178 DOI: 10.1016/j.jpsychires.2019.04.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To systematically review findings of GWAS in schizophrenia (SZ) and in bipolar disorder (BD); and to interpret findings, with a focus on identifying independent replications. METHOD PubMed search, selection and review of all independent GWAS in SZ or BD, published since March 2011, i.e. studies using non-overlapping samples within each article, between articles, and with those of the previous review (Li et al., 2012). RESULTS From the 22 GWAS included in this review, the genetic associations surviving standard GWAS-significance were for genetic markers in the regions of ACSL3/KCNE4, ADCY2, AMBRA1, ANK3, BRP44, DTL, FBLN1, HHAT, INTS7, LOC392301, LOC645434/NMBR, LOC729457, LRRFIP1, LSM1, MDM1, MHC, MIR2113/POU3F2, NDST3, NKAPL, ODZ4, PGBD1, RENBP, TRANK1, TSPAN18, TWIST2, UGT1A1/HJURP, WHSC1L1/FGFR1 and ZKSCAN4. All genes implicated across both reviews are discussed in terms of their function and implication in neuropsychiatry. CONCLUSION Taking all GWAS to date into account, AMBRA1, ANK3, ARNTL, CDH13, EFHD1 (albeit with different alleles), MHC, PLXNA2 and UGT1A1 have been implicated in either disorder in at least two reportedly non-overlapping samples. Additionally, evidence for a SZ/BD common genetic basis is most strongly supported by the implication of ANK3, NDST3, and PLXNA2.
Collapse
Affiliation(s)
- Diana P Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, UK; Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação e Intervenção Social, Lisboa, Portugal.
| | - Bernardo Costa-Neves
- Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal; Centro Hospitalar Psiquiátrico de Lisboa, Av. do Brasil, 53 1749-002, Lisbon, Portugal
| | - Gonçalo Cosme
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, 16 De Crespigny Park, SE5 8AF, UK
| |
Collapse
|
18
|
Integrating genome-wide association study with regulatory SNP annotation information identified candidate genes and pathways for schizophrenia. Aging (Albany NY) 2019; 11:3704-3715. [PMID: 31175266 PMCID: PMC6594824 DOI: 10.18632/aging.102008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Schizophrenia is a complex mental disorder. The genetic mechanism of schizophrenia remains elusive now. METHODS We conducted a large-scale integrative analysis of two genome-wide association studies of schizophrenia with functional annotation datasets of regulatory single-nucleotide polymorphism (rSNP). The significant SNPs identified by the two genome-wide association studies were first annotated to obtain schizophrenia associated rSNPs and their target genes and proteins, respectively. We then compared the integrative analysis results to identify the common rSNPs and their target regulatory genes and proteins, shared by the two genome-wide association studies of schizophrenia. Finally, DAVID tool was used to conduct gene ontology and pathway enrichment analysis of the identified targets genes and proteins. RESULTS We detected 53 schizophrenia-associated target genes for rSNP, such as FOS (P value = 2.18×10-20), ATXN1 (P value = 5.22×10-21) and HLA-DQA1 (P value = 1.98×10-10). Pathway enrichment analysis identified 24 pathways for transcription factors binding regions, chromatin interacting regions, long non-coding RNAs, topologically associated domains, circular RNAs and post-translational modifications, such as hsa05034:Alcoholism (P value = 2.57×10-7) and hsa04612:Antigen processing and presentation (P value = 6.82×10-8). CONCLUSION We detected multiple candidate genes, gene ontology terms and pathways for schizophrenia, supporting the functional importance of rSNPs, and providing novel clues for understanding the genetic architecture of schizophrenia.
Collapse
|
19
|
Alinaghi S, Alehabib E, Johari AH, Vafaei F, Salehi S, Darvish H, Ghaedi H. Expression analysis and genotyping of DGKZ: a GWAS-derived risk gene for schizophrenia. Mol Biol Rep 2019; 46:4105-4111. [PMID: 31087244 DOI: 10.1007/s11033-019-04860-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/06/2019] [Indexed: 11/30/2022]
Abstract
Schizophrenia (SCZ) is a disabling and severe mental illness characterized by abnormal social behavior and disrupted emotions. Similar to other neuropsychological disorders, both genetics and environmental factors interplay so as to develop SCZ. It is acknowledged that genes such as DGKZ are involved in lipid signaling pathways that are the basis of neural activities, memory, and learning and are considered as candidate loci for SCZ. The aim of the present study was to evaluate the expression level and genotypes of DGKZ in patients with SCZ and controls. We used q-PCR to measure the relative expression of DGKZ in blood. To determine DGKZ-rs7951870 genotypes, tetra-ARMS PCR was used. Our results showed a significant difference in DGKZ mRNA ratio between SCZ patients and healthy controls (P = 2 × 10-4). Also, we showed that rs7951870-TT genotype was strongly associated with increased DGKZ expression level (P = 0.038). In conclusion, our findings revealed dysregulation of DGKZ in SCZ patients and a significant correction between the gene expression and DGKZ variant rs7951870.
Collapse
Affiliation(s)
- Somayeh Alinaghi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Alehabib
- Student Research Committee, Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Johari
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Vafaei
- The Cohort Lab for the Iran University of Medical Sciences Staffs, University of Medical Sciences, Tehran, Iran
| | - Shima Salehi
- The Cohort Lab for the Iran University of Medical Sciences Staffs, University of Medical Sciences, Tehran, Iran
| | - Hossein Darvish
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran. .,Department of Medical Genetics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Hamid Ghaedi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Challenges in the clinical interpretation of small de novo copy number variants in neurodevelopmental disorders. Gene 2019; 706:162-171. [PMID: 31085274 DOI: 10.1016/j.gene.2019.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/27/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
In clinical genetics, the need to discriminate between benign and pathogenic variants identified in patients with neurodevelopmental disorders is an absolute necessity. Copy number variants (CNVs) of small size can enable the identification of genes that are critical for neurologic development. However, assigning a definite association with a specific disorder is a difficult task. Among 328 trios analyzed over seven years of activity in a single laboratory, we identified 19 unrelated patients (5.8%) who carried a small (<500 kb) de novo CNV. Four patients had an additional independent de novo CNV. Nine had a variant that could be assigned as definitely pathogenic, whereas the remaining CNVs were considered as variants of unknown significance (VUS). We report clinical and molecular findings of patients harboring VUS. We reviewed the medical literature available for genes impacted by CNVs, obtained the probability of truncating loss-of-function intolerance, and compared overlapping CNVs reported in databases. The classification of small non-recurrent CNVs remains difficult but, among our findings, we provide support for a role of SND1 in the susceptibility of autism, describe a new case of the rare 17p13.1 microduplication syndrome, and report an X-linked duplication involving KIF4A and DLG3 as a likely cause of epilepsy.
Collapse
|
21
|
La Barbera L, Vedele F, Nobili A, D'Amelio M, Krashia P. Neurodevelopmental Disorders: Functional Role of Ambra1 in Autism and Schizophrenia. Mol Neurobiol 2019; 56:6716-6724. [PMID: 30915711 DOI: 10.1007/s12035-019-1557-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/13/2019] [Indexed: 12/19/2022]
Abstract
The activating molecule in Beclin-1-regulated autophagy (Ambra1) is a highly intrinsically disordered protein best known for its role as a mediator in autophagy, by favoring the formation of autophagosomes. Additional studies have revealed that Ambra1 is able to coordinate cell responses to stress conditions such as starvation, and it actively participates in cell proliferation, cytoskeletal modification, apoptosis, mitochondria removal, and cell cycle downregulation. All these functions highlight the importance of Ambra1 in crucial physiological events, including metabolism, cell death, and cell division. Importantly, Ambra1 is also crucial for proper embryonic development, and its complete absence in knock-out animal models leads to severe brain morphology defects. In line with this, it has recently been implicated in neurodevelopmental disorders affecting humans, particularly autism spectrum disorders and schizophrenia. Here, we discuss the recent links between Ambra1 and neurodevelopment, particularly focusing on its role during the maturation of hippocampal parvalbumin interneurons and its importance for maintaining a proper excitation/inhibition balance in the brain.
Collapse
Affiliation(s)
- Livia La Barbera
- Laboratory of Molecular Neurosciences, Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Francescangelo Vedele
- Laboratory of Molecular Neurosciences, Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Annalisa Nobili
- Laboratory of Molecular Neurosciences, Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome, Italy.,Unit of Molecular Neurosciences, Department of Medicine, University Campus-Biomedico, Rome, Italy
| | - Marcello D'Amelio
- Laboratory of Molecular Neurosciences, Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome, Italy. .,Unit of Molecular Neurosciences, Department of Medicine, University Campus-Biomedico, Rome, Italy.
| | - Paraskevi Krashia
- Laboratory of Molecular Neurosciences, Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome, Italy. .,Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy.
| |
Collapse
|
22
|
Huo Y, Li S, Liu J, Li X, Luo XJ. Functional genomics reveal gene regulatory mechanisms underlying schizophrenia risk. Nat Commun 2019; 10:670. [PMID: 30737407 PMCID: PMC6368563 DOI: 10.1038/s41467-019-08666-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWASs) have identified over 180 independent schizophrenia risk loci. Nevertheless, how the risk variants in the reported loci confer schizophrenia susceptibility remains largely unknown. Here we systematically investigate the gene regulatory mechanisms underpinning schizophrenia risk through integrating data from functional genomics (including 30 ChIP-Seq experiments) and position weight matrix (PWM). We identify 132 risk single nucleotide polymorphisms (SNPs) that disrupt transcription factor binding and we find that 97 of the 132 TF binding-disrupting SNPs are associated with gene expression in human brain tissues. We validate the regulatory effect of some TF binding-disrupting SNPs with reporter gene assays (9 SNPs) and allele-specific expression analysis (10 SNPs). Our study reveals gene regulatory mechanisms affected by schizophrenia risk SNPs (including widespread disruption of POLR2A and CTCF binding) and identifies target genes for mechanistic studies and drug development. Our results can be accessed and visualized at SZDB database ( http://www.szdb.org/ ).
Collapse
Affiliation(s)
- Yongxia Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
23
|
Mohamed ZI, Tee SF, Chow TJ, Loh SY, Yong HS, Bakar AKA, Tang PY. Functional characterization of two variants in the 3'-untranslated region (UTR) of transcription factor 4 gene and their association with schizophrenia in sib-pairs from multiplex families. Asian J Psychiatr 2019; 40:76-81. [PMID: 30771755 DOI: 10.1016/j.ajp.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022]
Abstract
Transcription factor 4 (TCF4) gene plays an important role in nervous system development and it always associated with the risk of schizophrenia. Since miRNAs regulate targetgenes by binding to 3'UTRs of target mRNAs, the functional variants located in 3'UTR of TCF4 are highly suggested to affect the gene expressions in schizophrenia. To test the hypothesis regarding the effects of the variants located in 3'UTR of TCF4, we conducted an in silico analysis to identify the functional variants and their predicted functions. In this study, we sequenced the 3'UTR of TCF4 in 13 multiplex schizophrenia families and 14 control families. We found two functional variants carried by three unrelated patients. We determined that the C allele of rs1272363 and the TC insert of rs373174214 might suppress post- transcriptional expression. Secondly, we cloned the region that flanked these two variants into a dual luciferase reporter system and compared the luciferase activities between the pmirGLO-TCF4 (control), pmirGLO-TCF4-rs373174214 and pmirGLO-TCF4-rs1273263. Both pmirGLO-TCF4-rs373174214 and pmirGLO-TCF4-rs1273263 caused lower reporter gene activities, as compared to the control. However, only the C allele of rs1272363 reduced the luciferase activity significantly (p = 0.0231). Our results suggested that rs1273263 is a potential regulator of TCF4 expression, and might be associated with schizophrenia.
Collapse
Affiliation(s)
- Zahra Isnaini Mohamed
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras 43000 Kajang, Malaysia
| | - Shiau Foon Tee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras 43000 Kajang, Malaysia
| | - Tze Jen Chow
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras 43000 Kajang, Malaysia
| | - Siew Yim Loh
- Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hoi Sen Yong
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Pek Yee Tang
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras 43000 Kajang, Malaysia.
| |
Collapse
|
24
|
Liu J, Li M, Luo XJ, Su B. Systems-level analysis of risk genes reveals the modular nature of schizophrenia. Schizophr Res 2018; 201:261-269. [PMID: 29789256 DOI: 10.1016/j.schres.2018.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 12/31/2022]
Abstract
Schizophrenia (SCZ) is a complex mental disorder with high heritability. Genetic studies (especially recent genome-wide association studies) have identified many risk genes for schizophrenia. However, the physical interactions among the proteins encoded by schizophrenia risk genes remain elusive and it is not known whether the identified risk genes converge on common molecular networks or pathways. Here we systematically investigated the network characteristics of schizophrenia risk genes using the high-confidence protein-protein interactions (PPI) from the human interactome. We found that schizophrenia risk genes encode a densely interconnected PPI network (P = 4.15 × 10-31). Compared with the background genes, the schizophrenia risk genes in the interactome have significantly higher degree (P = 5.39 × 10-11), closeness centrality (P = 7.56 × 10-11), betweeness centrality (P = 1.29 × 10-11), clustering coefficient (P = 2.22 × 10-2), and shorter average shortest path length (P = 7.56 × 10-11). Based on the densely interconnected PPI network, we identified 48 hub genes and 4 modules formed by highly interconnected schizophrenia genes. We showed that the proteins encoded by schizophrenia hub genes have significantly more direct physical interactions. Gene ontology (GO) analysis revealed that cell adhesion, cell cycle, immune system response, and GABR-receptor complex categories were enriched in the modules formed by highly interconnected schizophrenia risk genes. Our study reveals that schizophrenia risk genes encode a densely interconnected molecular network and demonstrates the modular nature of schizophrenia.
Collapse
Affiliation(s)
- Jiewei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
25
|
Zhao Y, Liang X, Zhu F, Wen Y, Xu J, Yang J, Ding M, Cheng B, Ma M, Zhang L, Cheng S, Wu C, Wang S, Wang X, Ning Y, Guo X, Zhang F. A large-scale integrative analysis of GWAS and common meQTLs across whole life course identifies genes, pathways and tissue/cell types for three major psychiatric disorders. Neurosci Biobehav Rev 2018; 95:347-352. [PMID: 30339835 DOI: 10.1016/j.neubiorev.2018.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/25/2018] [Accepted: 10/14/2018] [Indexed: 12/22/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD), bipolar disorder (BP) and schizophrenia (SCZ) are complex psychiatric disorders. We conducted a large-scale integrative analysis of genome-wide association studies (GWAS) and life course consistent methylation quantitative trait loci (meQTLs) datasets. The GWAS data of ADHD (including 20,183 cases and 35,191 controls), BP (including 7481 cases and 9250 controls) and SCZ (including 36,989 cases and 113,075 controls) were derived from published GWAS. Life course consistent meQTLs dataset was obtained from a longitudinal meQTLs analysis of 1018 mother-child pairs. Gene prioritization, pathway and tissue/cell type enrichment analysis were conducted by DEPICT. We identified multiple genes and pathways with common or disease specific effects, such as NISCH (P = 9.87 × 10-3 for BP and 2.49 × 10-6 for SCZ), ST3GAL3 (P = 1.19 × 10-2 for ADHD), and KEGG_MAPK_SIGNALING_PATHWAY (P = 1.56 × 10-3 for ADHD, P = 4.71 × 10-2 for BP, P = 4.60 × 10-4 for SCZ). Our study provides novel clues for understanding the genetic mechanism of ADHD, BP and SCZ.
Collapse
Affiliation(s)
- Yan Zhao
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Xiao Liang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Feng Zhu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Yan Wen
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Jiawen Xu
- Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Jian Yang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Miao Ding
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Bolun Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Mei Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Lu Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Shiqiang Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Cuiyan Wu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Sen Wang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Xi Wang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Yujie Ning
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Xiong Guo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Feng Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
26
|
Liu J, Su B. Integrated analysis supports ATXN1 as a schizophrenia risk gene. Schizophr Res 2018; 195:298-305. [PMID: 29055568 DOI: 10.1016/j.schres.2017.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/27/2017] [Accepted: 10/08/2017] [Indexed: 12/13/2022]
Abstract
Protein-protein interaction (PPI) is informative in identifying hidden disease risk genes that tend to interact with known risk genes usually working together in the same disease module. With the use of an integrated approach combining PPI information with pathway and expression analysis as well as genome-wide association study (GWAS), we intended to find new risk genes for schizophrenia (SCZ). We showed that ATXN1 was the only direct PPI partner of the know SCZ risk gene ZNF804A, and it also had direct PPIs with other 18 known SCZ risk genes. ATXN1 serves as one of the hub genes in the PPI network containing many known SCZ risk genes, and this network is significantly enriched for the MAPK signaling pathway. Further gene expression analysis indicated that ATXN1 is highly expressed in prefrontal cortex, and SCZ patients had significantly decreased expression compared with healthy controls. Finally, the published GWAS data supports an association of ATXN1 with SCZ as well as other psychiatric disorders though not reaching genome-wide significance. These convergent evidences support ATXN1 as a promising risk gene for SCZ, and the integrated approach serves as a useful tool for dissecting the genetic basis of psychiatric disorders.
Collapse
Affiliation(s)
- Jiewei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
| |
Collapse
|
27
|
Nobili A, Krashia P, Cordella A, La Barbera L, Dell'Acqua MC, Caruso A, Pignataro A, Marino R, Sciarra F, Biamonte F, Scattoni ML, Ammassari-Teule M, Cecconi F, Berretta N, Keller F, Mercuri NB, D'Amelio M. Ambra1 Shapes Hippocampal Inhibition/Excitation Balance: Role in Neurodevelopmental Disorders. Mol Neurobiol 2018; 55:7921-7940. [PMID: 29488136 PMCID: PMC6132777 DOI: 10.1007/s12035-018-0911-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/15/2018] [Indexed: 01/04/2023]
Abstract
Imbalances between excitatory and inhibitory synaptic transmission cause brain network dysfunction and are central to the pathogenesis of neurodevelopmental disorders. Parvalbumin interneurons are highly implicated in this imbalance. Here, we probed the social behavior and hippocampal function of mice carrying a haploinsufficiency for Ambra1, a pro-autophagic gene crucial for brain development. We show that heterozygous Ambra1 mice (Ambra+/−) are characterized by loss of hippocampal parvalbumin interneurons, decreases in the inhibition/excitation ratio, and altered social behaviors that are solely restricted to the female gender. Loss of parvalbumin interneurons in Ambra1+/− females is further linked to reductions of the inhibitory drive onto principal neurons and alterations in network oscillatory activity, CA1 synaptic plasticity, and pyramidal neuron spine density. Parvalbumin interneuron loss is underlined by increased apoptosis during the embryonic development of progenitor neurons in the medial ganglionic eminence. Together, these findings identify an Ambra1-dependent mechanism that drives inhibition/excitation imbalance in the hippocampus, contributing to abnormal brain activity reminiscent of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Annalisa Nobili
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.,Department of Medicine, University Campus-Biomedico, 00128, Rome, Italy
| | - Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy. .,Department of Systems Medicine, University of Rome 'Tor Vergata', 00133, Rome, Italy.
| | - Alberto Cordella
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.,Department of Systems Medicine, University of Rome 'Tor Vergata', 00133, Rome, Italy
| | - Livia La Barbera
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.,Department of Systems Medicine, University of Rome 'Tor Vergata', 00133, Rome, Italy
| | - Maria Concetta Dell'Acqua
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.,Department of Medicine, University Campus-Biomedico, 00128, Rome, Italy
| | - Angela Caruso
- Research Coordination and Support Service, Istituto Superiore di Sanità (ISS), 00161, Rome, Italy
| | - Annabella Pignataro
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.,Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), 00143, Rome, Italy
| | - Ramona Marino
- Department of Medicine, University Campus-Biomedico, 00128, Rome, Italy
| | - Francesca Sciarra
- Department of Medicine, University Campus-Biomedico, 00128, Rome, Italy
| | - Filippo Biamonte
- Institute of Histology and Embryology, "A. Gemelli" Faculty of Medicine, Catholic University of the Sacred Heart, 00168, Rome, Italy
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità (ISS), 00161, Rome, Italy
| | - Martine Ammassari-Teule
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.,Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), 00143, Rome, Italy
| | - Francesco Cecconi
- Department of Biology, University of Rome 'Tor Vergata', 00133, Rome, Italy.,Cell Stress and Survival Group, Danish Cancer Society Research Center, DK-2100, Copenhagen, Denmark.,Department of Pediatric Hematology and Oncology, IRCSS Bambino Gesu Children's Hospital, 00165, Rome, Italy
| | - Nicola Berretta
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Flavio Keller
- Department of Medicine, University Campus-Biomedico, 00128, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.,Department of Systems Medicine, University of Rome 'Tor Vergata', 00133, Rome, Italy
| | - Marcello D'Amelio
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy. .,Department of Medicine, University Campus-Biomedico, 00128, Rome, Italy.
| |
Collapse
|
28
|
Arslan A. Mapping the Schizophrenia Genes by Neuroimaging: The Opportunities and the Challenges. Int J Mol Sci 2018; 19:ijms19010219. [PMID: 29324666 PMCID: PMC5796168 DOI: 10.3390/ijms19010219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia (SZ) is a heritable brain disease originating from a complex interaction of genetic and environmental factors. The genes underpinning the neurobiology of SZ are largely unknown but recent data suggest strong evidence for genetic variations, such as single nucleotide polymorphisms, making the brain vulnerable to the risk of SZ. Structural and functional brain mapping of these genetic variations are essential for the development of agents and tools for better diagnosis, treatment and prevention of SZ. Addressing this, neuroimaging methods in combination with genetic analysis have been increasingly used for almost 20 years. So-called imaging genetics, the opportunities of this approach along with its limitations for SZ research will be outlined in this invited paper. While the problems such as reproducibility, genetic effect size, specificity and sensitivity exist, opportunities such as multivariate analysis, development of multisite consortia for large-scale data collection, emergence of non-candidate gene (hypothesis-free) approach of neuroimaging genetics are likely to contribute to a rapid progress for gene discovery besides to gene validation studies that are related to SZ.
Collapse
Affiliation(s)
- Ayla Arslan
- Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnica cesta, 15 Ilidza, Sarajevo 71210, Bosnia and Herzegovina.
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul 34662, Turkey.
| |
Collapse
|
29
|
Abstract
Imaging genetics is a research methodology studying the effect of genetic variation on brain structure, function, behavior, and risk for psychopathology. Since the early 2000s, imaging genetics has been increasingly used in the research of schizophrenia (SZ). SZ is a severe mental disorder with no precise knowledge of its underlying neurobiology, however, new genetic and neurobiological data generate a climate for new avenues. The accumulating data of genome wide association studies (GWAS) continuously decode SZ risk genes. Global neuroimaging consortia produce collections of brain phenotypes from tens of thousands of people. In this context, imaging genetics will be strategically important both for the validation and discovery of SZ related findings. Thus, the study of GWAS supported risk variants as candidate genes to validate by neuroimaging is one trend. The study of epigenetic differences in relation to variations of brain phenotypes and the study of large scale multivariate analysis of genome wide and brain wide associations are other trends. While these studies hold a big potential for understanding the neurobiology of SZ, the problem of reproducibility appears as a major challenge, which requires standardizations in study designs and compensations of methodological limitations such as sensitivity and specificity. On the other hand, advancements of neuroimaging, optical and electron microscopy along with the use of genetically encoded fluorescent probes and robust statistical approaches will not only catalyze integrative methodologies but also will help better design the imaging genetics studies. In this invited paper, I will discuss the current perspective of imaging genetics and emerging opportunities of SZ research.
Collapse
Affiliation(s)
- Ayla Arslan
- Faculty of Engineering and Natural Sciences, Department of Genetics and Bioengineering, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina; Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Uskudar University, Istanbul, Turkey.
| |
Collapse
|
30
|
Mitjans M, Begemann M, Ju A, Dere E, Wüstefeld L, Hofer S, Hassouna I, Balkenhol J, Oliveira B, van der Auwera S, Tammer R, Hammerschmidt K, Völzke H, Homuth G, Cecconi F, Chowdhury K, Grabe H, Frahm J, Boretius S, Dandekar T, Ehrenreich H. Sexual dimorphism of AMBRA1-related autistic features in human and mouse. Transl Psychiatry 2017; 7:e1247. [PMID: 28994820 PMCID: PMC5682605 DOI: 10.1038/tp.2017.213] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/01/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
Ambra1 is linked to autophagy and neurodevelopment. Heterozygous Ambra1 deficiency induces autism-like behavior in a sexually dimorphic manner. Extraordinarily, autistic features are seen in female mice only, combined with stronger Ambra1 protein reduction in brain compared to males. However, significance of AMBRA1 for autistic phenotypes in humans and, apart from behavior, for other autism-typical features, namely early brain enlargement or increased seizure propensity, has remained unexplored. Here we show in two independent human samples that a single normal AMBRA1 genotype, the intronic SNP rs3802890-AA, is associated with autistic features in women, who also display lower AMBRA1 mRNA expression in peripheral blood mononuclear cells relative to female GG carriers. Located within a non-coding RNA, likely relevant for mRNA and protein interaction, rs3802890 (A versus G allele) may affect its stability through modification of folding, as predicted by in silico analysis. Searching for further autism-relevant characteristics in Ambra1+/- mice, we observe reduced interest of female but not male mutants regarding pheromone signals of the respective other gender in the social intellicage set-up. Moreover, altered pentylentetrazol-induced seizure propensity, an in vivo readout of neuronal excitation-inhibition dysbalance, becomes obvious exclusively in female mutants. Magnetic resonance imaging reveals mild prepubertal brain enlargement in both genders, uncoupling enhanced brain dimensions from the primarily female expression of all other autistic phenotypes investigated here. These data support a role of AMBRA1/Ambra1 partial loss-of-function genotypes for female autistic traits. Moreover, they suggest Ambra1 heterozygous mice as a novel multifaceted and construct-valid genetic mouse model for female autism.
Collapse
Affiliation(s)
- M Mitjans
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - M Begemann
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany,Department of Psychiatry and Psychotherapy, UMG, Georg-August-University, Göttingen, Germany
| | - A Ju
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - E Dere
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - L Wüstefeld
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - S Hofer
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - I Hassouna
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - J Balkenhol
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - B Oliveira
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - S van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine, and German Center for Neurodegenerative Diseases (DZNE) Greifswald, Greifswald, Germany
| | - R Tammer
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - K Hammerschmidt
- Cognitive Ethology Laboratory, German Primate Center, Göttingen, Germany
| | - H Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - G Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - F Cecconi
- IRCCS Fondazione Santa Lucia and Department of Biology, University of Rome Tor Vergata, Rome, Italy,Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - K Chowdhury
- Department of Molecular Cell Biology, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | - H Grabe
- Department of Psychiatry and Psychotherapy, University Medicine, and German Center for Neurodegenerative Diseases (DZNE) Greifswald, Greifswald, Germany
| | - J Frahm
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - S Boretius
- Department of Functional Imaging, German Primate Center, Leibniz Institute of Primate Research, Göttingen, Germany
| | - T Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - H Ehrenreich
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany,Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, Göttingen 37075, Germany. E-mail:
| |
Collapse
|
31
|
GLRB allelic variation associated with agoraphobic cognitions, increased startle response and fear network activation: a potential neurogenetic pathway to panic disorder. Mol Psychiatry 2017; 22:1431-1439. [PMID: 28167838 DOI: 10.1038/mp.2017.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 01/13/2023]
Abstract
The molecular genetics of panic disorder (PD) with and without agoraphobia (AG) are still largely unknown and progress is hampered by small sample sizes. We therefore performed a genome-wide association study with a dimensional, PD/AG-related anxiety phenotype based on the Agoraphobia Cognition Questionnaire (ACQ) in a sample of 1370 healthy German volunteers of the CRC TRR58 MEGA study wave 1. A genome-wide significant association was found between ACQ and single non-coding nucleotide variants of the GLRB gene (rs78726293, P=3.3 × 10-8; rs191260602, P=3.9 × 10-8). We followed up on this finding in a larger dimensional ACQ sample (N=2547) and in independent samples with a dichotomous AG phenotype based on the Symptoms Checklist (SCL-90; N=3845) and a case-control sample with the categorical phenotype PD/AG (Ncombined =1012) obtaining highly significant P-values also for GLRB single-nucleotide variants rs17035816 (P=3.8 × 10-4) and rs7688285 (P=7.6 × 10-5). GLRB gene expression was found to be modulated by rs7688285 in brain tissue, as well as cell culture. Analyses of intermediate PD/AG phenotypes demonstrated increased startle reflex and increased fear network, as well as general sensory activation by GLRB risk gene variants rs78726293, rs191260602, rs17035816 and rs7688285. Partial Glrb knockout mice demonstrated an agoraphobic phenotype. In conjunction with the clinical observation that rare coding GLRB gene mutations are associated with the neurological disorder hyperekplexia characterized by a generalized startle reaction and agoraphobic behavior, our data provide evidence that non-coding, although functional GLRB gene polymorphisms may predispose to PD by increasing startle response and agoraphobic cognitions.
Collapse
|
32
|
Sragovich S, Merenlender-Wagner A, Gozes I. ADNP Plays a Key Role in Autophagy: From Autism to Schizophrenia and Alzheimer's Disease. Bioessays 2017; 39. [PMID: 28940660 DOI: 10.1002/bies.201700054] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/13/2017] [Indexed: 12/19/2022]
Abstract
Activity-dependent neuroprotective protein (ADNP), discovered in our laboratory in 1999, has been characterized as a master gene vital for mammalian brain formation. ADNP de novo mutations in humans result in a syndromic form of autism-like spectrum disorder (ASD), including cognitive and motor deficits, the ADNP syndrome (Helsmoortel-Van Der Aa). One of the most important cellular processes associated with ADNP is the autophagy pathway, recently discovered by us as a key player in the pathophysiology of schizophrenia. In this regard, given the link between the microtubule and autophagy systems, the ADNP microtubule end binding protein motif, namely, the neuroprotective NAP (NAPVSIPQ), was found to enhance autophagy while protecting microtubules and augmenting ADNP's association with both systems. Thus, linking autophagy and ADNP is proposed as a major target for intervention in brain diseases from autism to Alzheimer's disease (AD) and our findings introduce autophagy as a possible novel target for treating schizophrenia.
Collapse
Affiliation(s)
- Shlomo Sragovich
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors The Elton Laboratory for Neuroendocrinology Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 69978, Israel
| | - Avia Merenlender-Wagner
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors The Elton Laboratory for Neuroendocrinology Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 69978, Israel
| | - Illana Gozes
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors The Elton Laboratory for Neuroendocrinology Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
33
|
Abstract
Schizophrenia (SZ) is a debilitating brain disorder with a complex genetic architecture. Genetic studies, especially recent genome-wide association studies (GWAS), have identified multiple variants (loci) conferring risk to SZ. However, how to efficiently extract meaningful biological information from bulk genetic findings of SZ remains a major challenge. There is a pressing need to integrate multiple layers of data from various sources, eg, genetic findings from GWAS, copy number variations (CNVs), association and linkage studies, gene expression, protein-protein interaction (PPI), co-expression, expression quantitative trait loci (eQTL), and Encyclopedia of DNA Elements (ENCODE) data, to provide a comprehensive resource to facilitate the translation of genetic findings into SZ molecular diagnosis and mechanism study. Here we developed the SZDB database (http://www.szdb.org/), a comprehensive resource for SZ research. SZ genetic data, gene expression data, network-based data, brain eQTL data, and SNP function annotation information were systematically extracted, curated and deposited in SZDB. In-depth analyses and systematic integration were performed to identify top prioritized SZ genes and enriched pathways. Multiple types of data from various layers of SZ research were systematically integrated and deposited in SZDB. In-depth data analyses and integration identified top prioritized SZ genes and enriched pathways. We further showed that genes implicated in SZ are highly co-expressed in human brain and proteins encoded by the prioritized SZ risk genes are significantly interacted. The user-friendly SZDB provides high-confidence candidate variants and genes for further functional characterization. More important, SZDB provides convenient online tools for data search and browse, data integration, and customized data analyses.
Collapse
Affiliation(s)
- Yong Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China;,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China;,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China;,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China,YGY and XJL are co-corresponding authors who jointly directed this work
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China;,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China;,YGY and XJL are co-corresponding authors who jointly directed this work
| |
Collapse
|
34
|
Liu J, Li M, Su B. GWAS-identified schizophrenia risk SNPs at TSPAN18 are highly diverged between Europeans and East Asians. Am J Med Genet B Neuropsychiatr Genet 2016; 171:1032-1040. [PMID: 27312590 DOI: 10.1002/ajmg.b.32471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022]
Abstract
Genome-wide association studies (GWASs) have identified multiple schizophrenia (SCZ) risk variants for samples of European and East Asian descent, but most of the identified susceptibility variants are population-specific to either Europeans or East Asians. This strong genetic heterogeneity suggests that differential population histories may play a role in SCZ susceptibility. Here, we explored this possibility by examining the allele frequency divergence of 136 previously reported genome-wide SCZ risk SNPs between European and East Asian populations. Our results showed that two SNPs (rs11038167 and rs11038172) at TSPAN18, reported as genome-wide significant SCZ risk variants in Han Chinese, were entirely monomorphic in Europeans, indicating a deep between-population divergence at this gene locus. To explore the evolutionary history of TSPAN18 in East Asians, we conducted population genetic analyses including multiple neutrality tests, the haplotype-based iHS and EHH tests, as well as haplotype bifurcation map and network constructions. We found that the protective allele of rs11038172 (G allele) had a long extended haplotype with much slower decay compared to the A allele. The star-like shape of the G-allele-carrying haplotypes indicates a recent enrichment in East Asians. Together, the evidences suggest that the protective allele of rs11038172 has experienced recent Darwinian positive selection in East Asians. These findings provide new insights that may help explain the strong genetic heterogeneity in SCZ risk and previous inconsistent association results for SCZ among both Europeans and East Asians. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jiewei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
35
|
Di Rita A, Strappazzon F. AMBRA1, a Novel BH3-Like Protein: New Insights Into the AMBRA1-BCL2-Family Proteins Relationship. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 330:85-113. [PMID: 28215535 DOI: 10.1016/bs.ircmb.2016.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cellular homeostasis swings like a pendulum backward and forward between life and death. Two of the main processes, which regulate this equilibrium, are autophagy and apoptosis. While autophagy is a highly conserved self-digestion mechanism that mediates degradation of damaged or surplus components, apoptosis is a programmed cell suicide in which typical death signals induce the elimination of undesired cells. Both these processes are highly regulated by complex molecular machineries, including some common proteins whose "dual role" favors one process or the other. Among these proteins, the well-known antiapoptotic factor BCL2 downregulates autophagy through interactions with the essential autophagic effectors, BECN1/BECLIN 1 and AMBRA1. Recently, we have demonstrated that the proautophagic protein AMBRA1 contains a BH3 domain necessary for AMBRA1 binding with the antiapoptotic factor BCL2. We found that the AMBRA1-BCL2 couple have a "dual role" in autophagy and apoptosis: the mitochondrial pool of BCL2 is able to inhibit AMBRA1-dependent autophagy, whereas in cell death conditions, the cleaved form of AMBRA1 (AMBRA1CT), resulting from CASP/CASPASES-cleavage, abrogates the prosurvival activity of BCL2 and promotes a proapoptotic amplification loop. The CASP-cleaved form of AMBRA1 bound other antiapoptotic members of the BCL2 family proteins such as MCL1 and BCL2L1/BCL-X; by contrast, no binding could be detected with the proapoptotic-BCL2 factors such as BAK1/BAK and BAX. These findings underline an intricate interplay between autophagy and cell death in which the proautophagic protein AMBRA1 and the antiapoptotic BCL2 family members are the major players. Here, we give an overview of the AMBRA1-BCL2 family proteins interactome and its involvement in controlling life and cell death. We discuss a putative therapeutic target which offers the novel BH3 motif identified in the C-terminal part of AMBRA1.
Collapse
Affiliation(s)
- A Di Rita
- IRCCS Santa Lucia Foundation, Rome, Italy; University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
36
|
Dean B, Copolov D, Scarr E. Understanding the pathophysiology of schizophrenia: Contributions from the Melbourne Psychiatric Brain Bank. Schizophr Res 2016; 177:108-114. [PMID: 27184458 DOI: 10.1016/j.schres.2016.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/20/2016] [Accepted: 04/23/2016] [Indexed: 11/24/2022]
Abstract
The Melbourne Psychiatric Brain Bank came into existence 25years ago. This review focusses on lines of research that have used tissue from the Brain Bank over periods of time. Hence there is a discussion on the significance of changes in levels of serotonin 2A receptors in the cortex of patients with schizophrenia and the relevance of such changes with regards to the pathophysiology of the disorder. The extensive contribution made by studies using tissue from the Melbourne Psychiatric Brain Bank to understanding the role of muscarinic receptors in the pathophysiology and treatment of schizophrenia is summarised. Finally, findings using brain bank tissue and "omics" technologies are reviewed. In each case, findings using tissue from the Melbourne Psychiatric Brain Bank is placed in context with research carried out on human postmortem CNS in schizophrenia and with findings in other lines of research that can help explain the causes or consequences of changes in CNS molecular cytoarchitecture. This timely review of data from the Melbourne Psychiatric Brain Bank reinforces the challenges faced in trying to increase our understanding of the molecular pathophysiology of schizophrenia. Continuing to increase our understanding of the disorder is important as a precursor to identifying new drug targets that can be exploited to improve the treatment of a disorder where treatment resistance remains a significant problem (Millan et al., 2016).
Collapse
Affiliation(s)
- Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia.
| | - David Copolov
- Office of the Vice-Chancellor and President, Monash University, Clayton, Victoria, Australia
| | - Elizabeth Scarr
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
37
|
Chang H, Zhang C, Xiao X, Pu X, Liu Z, Wu L, Li M. Further evidence of VRK2 rs2312147 associated with schizophrenia. World J Biol Psychiatry 2016; 17:457-66. [PMID: 27382989 DOI: 10.1080/15622975.2016.1200746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Previous genome-wide association studies (GWAS) have reported that rs2312147 near the VRK2 gene was significantly associated with schizophrenia in populations of European descent, but negative results have also been observed. METHODS To perform a systematic meta-analysis, we collected statistical data of rs2312147 from both GWAS and individual replication samples in European and Asian populations, which finally included up to 30,867 schizophrenia patients and 59,863 healthy controls. RESULTS The VRK2 rs2312147 was genome-wide significantly associated with schizophrenia in combined populations (P = 1.31 × 10(-15), odds ratio, OR = 1.10) as well as in Europeans only (P = 2.35 × 10(-12), OR =1.09). In Asian samples, the SNP did not reach genome-wide level of statistical significance (P = 1.23 × 10 (-) (5), OR =1.19), which is likely due to the limited power of small sample size in this population (2,974 cases and 4,786 controls). However, the effect size of rs2312147 did not alter significantly between populations, and is also in agreement with the observed effect sizes of other genetic risk loci in large scale studies. CONCLUSIONS Our data provides further evidence for the genetic contributions of VRK2 rs2312147 to schizophrenia susceptibility especially in Europeans, while further replication analyses in Asian populations are still needed, and future studies, e.g., the underlying molecular mechanisms of genetic risk, are necessary.
Collapse
Affiliation(s)
- Hong Chang
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province , Kunming Institute of Zoology , Kunming , Yunnan , China
| | - Chen Zhang
- b Division of Mood Disorders , Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xiao Xiao
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province , Kunming Institute of Zoology , Kunming , Yunnan , China
| | - Xingfu Pu
- c The Second People's Hospital of Yuxi City , Yuxi , Yunnan , China
| | - Zichao Liu
- d Key Laboratory of Special Biological Resource Development and Utilization of Universities in Yunnan Province, Department of Biological Science and Technology , Kunming University , Kunming , Yunnan , China
| | - Lichuan Wu
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province , Kunming Institute of Zoology , Kunming , Yunnan , China
| | - Ming Li
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province , Kunming Institute of Zoology , Kunming , Yunnan , China
| |
Collapse
|
38
|
Xiao X, Luo XJ, Chang H, Liu Z, Li M. Evaluation of European Schizophrenia GWAS Loci in Asian Populations via Comprehensive Meta-Analyses. Mol Neurobiol 2016; 54:4071-4080. [DOI: 10.1007/s12035-016-9990-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
|
39
|
Levran O, Randesi M, Peles E, Correa da Rosa J, Ott J, Rotrosen J, Adelson M, Kreek MJ. African-specific variability in the acetylcholine muscarinic receptor M4: association with cocaine and heroin addiction. Pharmacogenomics 2016; 17:995-1003. [PMID: 27269905 DOI: 10.2217/pgs-2016-0028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
AIM This study was designed to determine whether polymorphisms in acetylcholine receptors contribute to opioid dependence and/or cocaine dependence. PATIENTS & METHODS The sample (n = 1860) was divided by drug and ancestry, and 55 polymorphisms (nine genes) were analyzed. RESULTS Of the 20 SNPs that showed nominally significant associations, the association of the African-specific CHRM4 SNP rs2229163 (Asn417=) with cocaine dependence survived correction for multiple testing (Pcorrected = 0.047). CHRM4 is located in a region of strong linkage disequilibrium on chromosome 11 that includes genes associated with schizophrenia. CHRM4 SNP rs2229163 is in strong linkage disequilibrium with several African-specific SNPs in DGKZ and AMBRA1. CONCLUSION Cholinergic receptors' variants may contribute to drug addiction and have a potential role as pharmacogenetic markers.
Collapse
Affiliation(s)
- Orna Levran
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Matthew Randesi
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Einat Peles
- Dr Miriam & Sheldon G Adelson Clinic for Drug Abuse Treatment & Research, Tel Aviv Elias Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joel Correa da Rosa
- Center for Clinical & Translational Science, The Rockefeller University, New York, NY 10065, USA
| | - Jurg Ott
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,The Laboratory of Statistical Genetics, The Rockefeller University, New York, NY 10065, USA
| | - John Rotrosen
- VA New York Harbor Healthcare System & NYU School of Medicine, New York, NY 10016, USA
| | - Miriam Adelson
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA.,Dr Miriam & Sheldon G Adelson Clinic for Drug Abuse Treatment & Research, Tel Aviv Elias Sourasky Medical Center, Tel Aviv, Israel.,Dr Miriam & Sheldon G Adelson Clinic for Drug Abuse Treatment & Research, Las Vegas, NV 89169, USA
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
40
|
Cariaga-Martinez A, Saiz-Ruiz J, Alelú-Paz R. From Linkage Studies to Epigenetics: What We Know and What We Need to Know in the Neurobiology of Schizophrenia. Front Neurosci 2016; 10:202. [PMID: 27242407 PMCID: PMC4862989 DOI: 10.3389/fnins.2016.00202] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/25/2016] [Indexed: 01/15/2023] Open
Abstract
Schizophrenia is a complex psychiatric disorder characterized by the presence of positive, negative, and cognitive symptoms that lacks a unifying neuropathology. In the present paper, we will review the current understanding of molecular dysregulation in schizophrenia, including genetic and epigenetic studies. In relation to the latter, basic research suggests that normal cognition is regulated by epigenetic mechanisms and its dysfunction occurs upon epigenetic misregulation, providing new insights into missing heritability of complex psychiatric diseases, referring to the discrepancy between epidemiological heritability and the proportion of phenotypic variation explained by DNA sequence difference. In schizophrenia the absence of consistently replicated genetic effects together with evidence for lasting changes in gene expression after environmental exposures suggest a role of epigenetic mechanisms. In this review we will focus on epigenetic modifications as a key mechanism through which environmental factors interact with individual's genetic constitution to affect risk of psychotic conditions throughout life.
Collapse
Affiliation(s)
- Ariel Cariaga-Martinez
- Laboratory for Neuroscience of Mental Disorders Elena Pessino, Department of Medicine and Medical Specialties, School of Medicine, Alcalá University Madrid, Spain
| | - Jerónimo Saiz-Ruiz
- Department of Psychiatry, Ramón y Cajal Hospital, IRYCISMadrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Madrid, Spain
| | - Raúl Alelú-Paz
- Laboratory for Neuroscience of Mental Disorders Elena Pessino, Department of Medicine and Medical Specialties, School of Medicine, Alcalá UniversityMadrid, Spain; Department of Psychiatry, Ramón y Cajal Hospital, IRYCISMadrid, Spain
| |
Collapse
|
41
|
Li M, Jaffe AE, Straub RE, Tao R, Shin JH, Wang Y, Chen Q, Li C, Jia Y, Ohi K, Maher BJ, Brandon NJ, Cross A, Chenoweth JG, Hoeppner DJ, Wei H, Hyde TM, McKay R, Kleinman JE, Weinberger DR. A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus. Nat Med 2016; 22:649-56. [PMID: 27158905 DOI: 10.1038/nm.4096] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 04/05/2016] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies (GWASs) have reported many single nucleotide polymorphisms (SNPs) associated with psychiatric disorders, but knowledge is lacking regarding molecular mechanisms. Here we show that risk alleles spanning multiple genes across the 10q24.32 schizophrenia-related locus are associated in the human brain selectively with an increase in the expression of both BLOC-1 related complex subunit 7 (BORCS7) and a previously uncharacterized, human-specific arsenite methyltransferase (AS3MT) isoform (AS3MT(d2d3)), which lacks arsenite methyltransferase activity and is more abundant in individuals with schizophrenia than in controls. Conditional-expression analysis suggests that BORCS7 and AS3MT(d2d3) signals are largely independent. GWAS risk SNPs across this region are linked with a variable number tandem repeat (VNTR) polymorphism in the first exon of AS3MT that is associated with the expression of AS3MT(d2d3) in samples from both Caucasians and African Americans. The VNTR genotype predicts promoter activity in luciferase assays, as well as DNA methylation within the AS3MT gene. Both AS3MT(d2d3) and BORCS7 are expressed in adult human neurons and astrocytes, and they are upregulated during human stem cell differentiation toward neuronal fates. Our results provide a molecular explanation for the prominent 10q24.32 locus association, including a novel and evolutionarily recent protein that is involved in early brain development and confers risk for psychiatric illness.
Collapse
Affiliation(s)
- Ming Li
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA.,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Richard E Straub
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Ran Tao
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Yanhong Wang
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Chao Li
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Yankai Jia
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Kazutaka Ohi
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Brady J Maher
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nicholas J Brandon
- AstraZeneca Neuroscience, Innovative Medicines and Early Development Biotech Unit, Cambridge, Massachusetts, USA
| | - Alan Cross
- AstraZeneca Neuroscience, Innovative Medicines and Early Development Biotech Unit, Cambridge, Massachusetts, USA
| | - Joshua G Chenoweth
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Daniel J Hoeppner
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Huijun Wei
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ronald McKay
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,McKusick Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
42
|
Rao S, Ye N, Hu H, Shen Y, Xu Q. Variants in TERT influencing telomere length are associated with paranoid schizophrenia risk. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:317-24. [PMID: 26799699 DOI: 10.1002/ajmg.b.32403] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Schizophrenia is one of the most severe psychiatric disorders, with a high heritability of up to 80%. Several studies have reported telomere dysfunction in schizophrenia, and common variants in the telomerase reverse transcriptase (TERT) gene. TERT is a key component of the telomerase complex that maintains telomere length by addition of telomere repeats to telomere ends, and has repeatedly shown association with mean lymphocyte telomere length (LTL). Thus, we hypothesized that TERT may be a novel susceptibility gene for schizophrenia. Using a Taqman protocol, we genotyped eight tag SNPs from the TERT locus in 1,072 patients with paranoid schizophrenia and 1,284 control subjects from a Chinese Han population. We also measured mean LTL in 98 cases and 109 controls using a quantitative PCR-based technique. Chi-square tests showed that two SNPs, rs2075786 (P = 0.0009, OR = 0.76, 95%CI = 0.65-0.90) and rs4975605 (P = 0.0026, OR = 0.73, 95%CI = 0.60-0.90), were associated with a protective effect, while rs10069690 was associated with risk of paranoid schizophrenia (P = 0.0044, OR = 1.23, 95%CI = 1.07-1.42). Additionally, the rs2736118-rs2075786 haplotype showed significant association with paranoid schizophrenia (P = 0.0013). Moreover, mean LTL correlated with rs2075786 genotypes was significantly shorter in the patient group than the control group. The present results suggest that the TERT gene may be a novel candidate involved in the development of paranoid schizophrenia.
Collapse
Affiliation(s)
- Shuquan Rao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Tsinghua University, Beijing, China
| | - Ning Ye
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Tsinghua University, Beijing, China
| | - Huiling Hu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Tsinghua University, Beijing, China
| | - Yan Shen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Tsinghua University, Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Tsinghua University, Beijing, China
| |
Collapse
|
43
|
Moons T, De Hert M, Gellens E, Gielen L, Sweers K, Jacqmaert S, van Winkel R, Vandekerckhove P, Claes S. Genetic Evaluation of Schizophrenia Using the Illumina HumanExome Chip. PLoS One 2016; 11:e0150464. [PMID: 27028512 PMCID: PMC4814136 DOI: 10.1371/journal.pone.0150464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 02/15/2016] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Schizophrenia is a genetically heterogeneous disorder that is associated with several common and rare genetic variants. As technology involved, cost advantages of chip based genotyping was combined with information about rare variants, resulting in the Infinium HumanExome Beadchip. Using this chip, a sample of 493 patients with schizophrenia or schizoaffective disorder and 484 healthy controls was genotyped. RESULTS From the initial 242901 SNVs, 88306 had at least one minor allele and passed quality control. No variant reached genomewide-significant results (p<10(-8)). The SNP with the lowest p-value was rs1230345 in WISP3 (p = 3.05*10(-6)), followed by rs9311525 in CACNA2D3 (p = 1.03*10(-5)) and rs1558557 (p = 3.85*10(-05)) on chromosome 7. At the gene level, 3 genes were of interest: WISP3, on chromosome 6q21, a signally protein from the extracellular matrix. A second candidate gene is CACNA2D3, a regulator of the intracerebral calcium pathway. A third gene is TNFSF10, associated with p53 mediated apoptosis.
Collapse
Affiliation(s)
- Tim Moons
- GRASP research group, UPC KULeuven, Campus Leuven, Leuven, Belgium
| | - Marc De Hert
- UPC KULeuven, campus Kortenberg, Kortenberg, Belgium
| | - Edith Gellens
- GRASP research group, UPC KULeuven, Campus Leuven, Leuven, Belgium
| | - Leen Gielen
- UPC KULeuven, campus Kortenberg, Kortenberg, Belgium
| | - Kim Sweers
- UPC KULeuven, campus Kortenberg, Kortenberg, Belgium
| | | | - Ruud van Winkel
- KU Leuven—University of Leuven, Department of Public Health and Primary Care, Leuven, Belgium
| | - Philippe Vandekerckhove
- Belgian Red Cross-Flanders, Mechelen, Belgium
- KU Leuven—University of Leuven, Department of Public Health and Primary Care, Leuven, Belgium
| | - Stephan Claes
- GRASP research group, UPC KULeuven, Campus Leuven, Leuven, Belgium
| |
Collapse
|
44
|
Cianfanelli V, De Zio D, Di Bartolomeo S, Nazio F, Strappazzon F, Cecconi F. Ambra1 at a glance. J Cell Sci 2016; 128:2003-8. [PMID: 26034061 DOI: 10.1242/jcs.168153] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The activating molecule in Beclin-1-regulated autophagy (Ambra1), also known as autophagy/Beclin-1 regulator 1, is a highly intrinsically disordered and vertebrate-conserved adapter protein that is part of the autophagy signaling network. It acts in an early step of mammalian target of rapamycin complex 1 (mTORC1)-dependent autophagy by favouring formation of the autophagosome core complex. However, recent studies have revealed that Ambra1 can also coordinate a cell response upon starvation or other stresses that involve translocation of the autophagosome core complex to the endoplasmic reticulum (ER), regulative ubiquitylation and stabilization of the kinase ULK1, selective mitochondria removal and cell cycle downregulation. Moreover, Ambra1 itself appears to be targeted by a number of regulatory processes, such as cullin-dependent degradation, caspase cleavage and several modifications, ranging from phosphorylation to ubiquitylation. Altogether, this complex network of regulation highlights the importance of Ambra1 in crucial physiological events, including metabolism, cell death and cell division. In addition, Ambra1 is an important regulator of embryonic development, and its mutation or inactivation has been shown to correlate with several pathologies of the nervous system and to be involved in carcinogenesis. In this Cell Science at a Glance article and the accompanying poster, we discuss recent advances in the Ambra1 field, particularly the role of this pro-autophagic protein in cellular pathophysiology.
Collapse
Affiliation(s)
- Valentina Cianfanelli
- Unit of Cell stress and survival, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark IRCCS Fondazione, Santa Lucia, 00143 Rome, Italy
| | - Daniela De Zio
- Unit of Cell stress and survival, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Sabrina Di Bartolomeo
- IRCCS Fondazione, Santa Lucia, 00143 Rome, Italy Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesca Nazio
- IRCCS Fondazione, Santa Lucia, 00143 Rome, Italy Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Flavie Strappazzon
- IRCCS Fondazione, Santa Lucia, 00143 Rome, Italy Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesco Cecconi
- Unit of Cell stress and survival, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark IRCCS Fondazione, Santa Lucia, 00143 Rome, Italy Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
45
|
Abstract
Endophenotypes are quantitative, heritable traits that may help to elucidate the pathophysiologic mechanisms underlying complex disease syndromes, such as schizophrenia. They can be assessed at numerous levels of analysis; here, we review electrophysiological endophenotypes that have shown promise in helping us understand schizophrenia from a more mechanistic point of view. For each endophenotype, we describe typical experimental procedures, reliability, heritability, and reported gene and neurobiological associations. We discuss recent findings regarding the genetic architecture of specific electrophysiological endophenotypes, as well as converging evidence from EEG studies implicating disrupted balance of glutamatergic signaling and GABAergic inhibition in the pathophysiology of schizophrenia. We conclude that refining the measurement of electrophysiological endophenotypes, expanding genetic association studies, and integrating data sets are important next steps for understanding the mechanisms that connect identified genetic risk loci for schizophrenia to the disease phenotype.
Collapse
Affiliation(s)
- Emily Owens
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA
| | - Peter Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - David C Glahn
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford, CT,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
46
|
Wang P, Cai J, Ni J, Zhang J, Tang W, Zhang C. The NCAN gene: schizophrenia susceptibility and cognitive dysfunction. Neuropsychiatr Dis Treat 2016; 12:2875-2883. [PMID: 27853371 PMCID: PMC5104293 DOI: 10.2147/ndt.s118160] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cognitive dysfunction has been recognized as a cardinal feature of schizophrenia. Elucidating the neurobiological substrates of cognitive dysfunction in schizophrenia would help identify the underlying mechanism of this disorder. The rs1064395 single nucleotide polymorphism, within the gene encoding neurocan (NCAN), is reported to be associated with schizophrenia in European populations and may influence brain structure in patients with schizophrenia. METHODS In this study, we aimed to explore whether NCAN rs1064395 confers some risk for schizophrenia and cognitive dysfunction in Han Chinese. We recruited 681 patients with schizophrenia and 699 healthy subjects. Two hundred and fifty-four patients were evaluated according to Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). RESULTS There were no significant differences in genotype or allele distributions of the rs1064395 polymorphism between the schizophrenia and control groups. Patients showed significantly poorer performance than controls on immediate memory, visuospatial skill, language, attention, delayed memory, and total RBANS score. Patients with the A/A or A/G genotype of rs1064395 had lower scores of immediate memory, visuospatial skill, attention, and total RBANS score than those with the G/G genotype. We performed an expression quantitative trait loci analysis and observed a significant association between rs1064395 and NCAN expression in the frontal (P=0.0022, P=0.022 after Bonferroni correction) and cerebellar cortex (P=0.0032, P=0.032 after Bonferroni correction). CONCLUSION Our findings indicate that this single nucleotide polymorphism may be a risk factor for cognitive dysfunction in patients with schizophrenia. Further investigations are warranted for validation purposes and to identify the precise mechanism by which rs1064395 influences cognitive performance in patients with schizophrenia.
Collapse
Affiliation(s)
- Peirong Wang
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang
| | - Jun Cai
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Jianliang Ni
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang
| | - Jiangtao Zhang
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang
| | - Wei Tang
- Wenzhou Kangning Hospital, Wenzhou, Zhejiang, People's Republic of China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| |
Collapse
|
47
|
Heilbronner U, Malzahn D, Strohmaier J, Maier S, Frank J, Treutlein J, Mühleisen TW, Forstner AJ, Witt SH, Cichon S, Falkai P, Nöthen MM, Rietschel M, Schulze TG. A common risk variant in CACNA1C supports a sex-dependent effect on longitudinal functioning and functional recovery from episodes of schizophrenia-spectrum but not bipolar disorder. Eur Neuropsychopharmacol 2015; 25:2262-70. [PMID: 26475575 DOI: 10.1016/j.euroneuro.2015.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/26/2015] [Accepted: 09/24/2015] [Indexed: 12/13/2022]
Abstract
Sex is a powerful modulator of disease susceptibility, course and outcome. The gene CACNA1C is among the best replicated vulnerability genes of bipolar disorder and schizophrenia. The aim of the present study was to investigate whether sex and a variant in CACNA1C (rs10774035 as a proxy for the well-acknowledged risk variant rs1006737) influence psychosocial adaptation in a large German patient sample with schizophrenia-spectrum (n=297) and bipolar (n=516) disorders. We analyzed Global Assessment of Functioning (GAF) scores, retrospectively collected for different time points during disease course. We investigated whether CACNA1C sex-dependently modulates longitudinal GAF scores and recovery from episodes of psychiatric disturbance in the above mentioned disorders. Psychosocial recovery was measured as difference score between the current GAF score (assessing the last remission) and the worst GAF score ever during an illness episode. Covariate- adjusted association analyses revealed a sex × rs10774035 genotype interaction on longitudinal GAF and recovery from illness episodes only in schizophrenia-spectrum but not in bipolar disorders. In schizophrenia-spectrum affected males, rs10774035 minor allele (T) carriers had higher GAF scores at three time points (premorbid, worst ever, current). In contrast, females carrying rs10774035 minor alleles had impaired recovery from schizophrenia-spectrum episodes. These results encourage further investigations of gene × sex interactions and longitudinal quantitative phenotypes to unravel the rich variety of behavioral consequences of genetic individuality.
Collapse
Affiliation(s)
- Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics, Ludwig-Maximilians-University Munich, Germany.
| | - Dörthe Malzahn
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Jana Strohmaier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Sandra Maier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich (FZJ), Jülich, Germany; Institute of Human Genetics, University of Bonn, Germany; Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, Germany; Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, Germany; Division of Medical Genetics, University Hospital Basel, University of Basel, Switzerland; Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Germany; Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics, Ludwig-Maximilians-University Munich, Germany; Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany; Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Göttingen, Germany
| |
Collapse
|
48
|
Meta-analysis of data from the Psychiatric Genomics Consortium and additional samples supports association of CACNA1C with risk for schizophrenia. Schizophr Res 2015; 168:429-33. [PMID: 26276307 DOI: 10.1016/j.schres.2015.07.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/10/2015] [Accepted: 07/18/2015] [Indexed: 12/18/2022]
Abstract
Recently, numerous genome-wide association studies (GWASs) have identified numerous risk loci for schizophrenia, but follow-up studies are still essential to confirm those results. Therefore, we followed up on top GWAS hits by genotyping implicated loci in additional schizophrenia family samples from our own collection. Five-hundred thirty-six Asian families (comprising 1633 members including 698 schizophrenics) were genotyped in this study. We analyzed 12 single nucleotide polymorphisms (SNPs) in strongly implicated candidate genes revealed by GWASs and their follow-up studies. We then used meta-analysis to combine our results with those of the Schizophrenia Working Group of the Psychiatric Genomics Consortium (PGC). In our newly genotyped samples, there were no significant associations of any of the 12 candidate SNPs with schizophrenia; however, all genome-wide significant results from the schizophrenia PGC analysis were maintained after combination with our new data by meta-analysis. One SNP (rs4765905 in CACNA1C) showed a stronger effect and decreased p-value (5.14e-17) after meta-analysis relative to the original PGC results, with no significant between-study heterogeneity. The findings of this study support the significant results in the PGC, especially for CACNA1C. The sample size in our study was considerably smaller than that in the PGC-SCZ study; thus, the weights carried by our samples in the meta-analysis were small. Therefore, our data could not vastly reduce PGC association signals. However, we considered that the well replicated results from the PGC hold up in our new samples, and may suggest that the top hits from the PGC are generalizable, even to other ancestral groups.
Collapse
|
49
|
Jiang H, Qiao F, Li Z, Zhang Y, Cheng Y, Xu X, Yu L. Evaluating the association between CACNA1C rs1006737 and schizophrenia risk: A meta-analysis. Asia Pac Psychiatry 2015; 7:260-7. [PMID: 25588813 DOI: 10.1111/appy.12173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/25/2014] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Genetic analyses including genome-wide association studies have reported an intronic single nucleotide polymorphism (SNP) rs1006737 in CACNA1C gene (encoded calcium channel, voltage-dependent, L type, alpha 1C subunit) as a risk factor for schizophrenia in European populations. The replications in other ethnic populations such as East Asians have also been conducted, but the results were inconsistent, either likely due to the limited sample size of single study or genetic heterogeneity between continental populations on this locus. METHODS We performed a comprehensive meta-analysis of all available samples from existing studies of East Asian populations, including a total of 9,432 cases and 10,661 controls, to further confirm whether CACNA1C rs1006737 is an authentic risk SNP for schizophrenia in East Asian populations. RESULTS Our results revealed a significant association between rs1006737 and schizophrenia (allelic model, P = 4.39 × 10(-6) , pooled odds ratio [OR] = 1.20), and the results were much strengthened when the European and East Asian samples were combined together (P = 2.40 × 10(-17) , pooled OR = 1.12). There is no significant heterogeneity or publication bias between individual studies, and removal of any single study still remained significant associations between rs1006737 and schizophrenia. DISCUSSION Our results further confirmed that rs1006737 should be categorized as an authentic risk SNP for schizophrenia in the general populations.
Collapse
Affiliation(s)
- Hongyan Jiang
- Laboratory for Conservation and Utilization of Bio-resource, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China.,Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fei Qiao
- Department of Anesthesiology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zongfang Li
- Department of Radiology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yaping Zhang
- Laboratory for Conservation and Utilization of Bio-resource, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yuqi Cheng
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiufeng Xu
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Li Yu
- Laboratory for Conservation and Utilization of Bio-resource, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
50
|
Hommers L, Raab A, Bohl A, Weber H, Scholz CJ, Erhardt A, Binder E, Arolt V, Gerlach A, Gloster A, Kalisch R, Kircher T, Lonsdorf T, Ströhle A, Zwanzger P, Mattheisen M, Cichon S, Lesch KP, Domschke K, Reif A, Lohse MJ, Deckert J. MicroRNA hsa-miR-4717-5p regulates RGS2 and may be a risk factor for anxiety-related traits. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:296-306. [PMID: 25847876 DOI: 10.1002/ajmg.b.32312] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/17/2015] [Indexed: 12/30/2022]
Abstract
Regulator of G-protein Signaling 2 (RGS2) is a key regulator of G-protein-coupled signaling pathways involved in fear and anxiety. Data from rodent models and genetic analysis of anxiety-related traits and disorders in humans suggest down-regulation of RGS2 expression to be a risk factor for anxiety. Here we investigated, whether genetic variation in microRNAs mediating posttranscriptional down-regulation of RGS2 may be a risk factor for anxiety as well. 75 microRNAs predicted to regulate RGS2 were identified by four bioinformatic algorithms and validated experimentally by luciferase reporter gene assays. Specificity was confirmed for six microRNAs (hsa-miR-1271-5p, hsa-miR-22-3p, hsa-miR-3591-3p, hsa-miR-377-3p, hsa-miR-4717-5p, hsa-miR-96-5p) by disrupting their seed sequence at the 3' untranslated region of RGS2. Hsa-miR-4717-5p showed the most robust effect on RGS2 and regulated two other candidate genes of anxiety disorders (CNR1 and IKBKE) as well. Two SNPs (rs150925, rs161427) within and 1,000 bp upstream of the hostgene of hsa-miR-4717-5p (MIR4717) show a minor allele frequency greater than 0.05. Both were in high linkage disequilibrium (r(2) = 1, D' = 1) and both major (G) alleles showed a trend for association with panic disorder with comorbid agoraphobia in one of two patient/control samples (combined n(patients) = 497). Dimensional anxiety traits, as described by Anxiety Sensitivity Index (ASI) and Agoraphobic Cognitions Questionnaire (ACQ) were significantly higher among carriers of both major (G) alleles in a combined patient/control sample (n(combined) = 831). Taken together, data indicate that MIR4717 regulates human RGS2 and contributes to the genetic risk towards anxiety-related traits.
Collapse
Affiliation(s)
- Leif Hommers
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center (CHFC), University Hospital of Würzburg, Würzburg, Germany
| | - Annette Raab
- Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Würzburg, Germany
| | - Alexandra Bohl
- Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Würzburg, Germany
| | - Heike Weber
- Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Würzburg, Germany
| | - Claus-Jürgen Scholz
- Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Würzburg, Germany
| | | | | | - Volker Arolt
- Department of Psychiatry, University of Muenster, Muenster, Germany
| | - Alexander Gerlach
- Department of Clinical Psychology and Psychotherapy, University of Cologne, Cologne, Germany
| | - Andrew Gloster
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Raffael Kalisch
- Neuroimaging Center Mainz, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
| | - Tina Lonsdorf
- Institute for Systems Neuroscience, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Zwanzger
- Department of Psychiatry, University of Muenster, Muenster, Germany
| | - Manuel Mattheisen
- Department of Biomedicine and Centre for integrative Sequencing (iSEQ), Aarhus University, Aarhus C, Denmark
| | - Sven Cichon
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Switzerland.,Institute of Human Genetics, Department of Genomics, Life & Brain Center, University of Bonn, Germany.,Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Germany
| | - Klaus-Peter Lesch
- Center of Mental Health, Division of Molecular Psychiatry, University Hospital of Würzburg, Würzburg, Germany
| | - Katharina Domschke
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Andreas Reif
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Martin J Lohse
- Department of Pharmacology, University of Würzburg, Würzburg, Germany
| | - Jürgen Deckert
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|