1
|
Gasalla P, Thomas KL, Wilkinson L, Hall J, Dwyer DM. Reduced Cacna1c Expression Produces Anhedonic Reactions to Palatable Sucrose in Rats: No Interactions With Juvenile or Adult Stress. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70021. [PMID: 40263772 PMCID: PMC12014513 DOI: 10.1111/gbb.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/10/2025] [Accepted: 03/23/2025] [Indexed: 04/24/2025]
Abstract
Genetic variation in CACNA1C, which encodes the alpha-1 subunit of Cav1.2 L-type voltage-gated calcium channels, is strongly linked to risk for psychiatric disorders including schizophrenia, bipolar disorder, and major depression. Here we investigated the impact of mutations of one copy of Cacna1c (leading to low gene dosage of Cacna1c) on rats' hedonic responses to palatable sucrose (assessed using the analysis of consumption microstructure). In addition, we also investigated the effects of combining either juvenile or adult stress with the manipulation of Cacna1c. Across three experiments, Cacna1c+/- rats displayed attenuated hedonic reactions to sucrose compared to wild-type littermate controls, despite the Cacna1c+/- rats retaining sensitivity to sucrose concentration in terms of the amount of consumption. Unexpectedly, juvenile stress enhanced rather than reduced hedonic reactions to sucrose, while adult stress did not have clear hedonic effects. The effects of Cacna1c manipulation did not interact with either juvenile or adult stress. The fact that Cacna1c+/- rats display a clear analogue of anhedonia-a reduction in the positive hedonic reactions normally elicited by highly palatable sucrose-a symptom observed trans-diagnostically across psychiatric disorders linked to CACNA1C, suggests this model may play a valuable role in the translational investigation of anhedonia.
Collapse
Affiliation(s)
- Patricia Gasalla
- Neuroscience & Mental Health Innovation Institute, School of MedicineCardiff UniversityCardiffUK
| | - Kerrie L. Thomas
- Neuroscience & Mental Health Innovation Institute, School of MedicineCardiff UniversityCardiffUK
| | - Lawrence Wilkinson
- Neuroscience & Mental Health Innovation Institute, School of MedicineCardiff UniversityCardiffUK
| | - Jeremy Hall
- Neuroscience & Mental Health Innovation Institute, School of MedicineCardiff UniversityCardiffUK
| | | |
Collapse
|
2
|
Wang Z, Liang Q, Lin Z, Li H, Chen X, Zou Z, Mo J. Potential role of formononetin as a novel natural agent in Alzheimer's disease and osteoporosis comorbidity. J Alzheimers Dis 2025; 103:361-371. [PMID: 39828895 DOI: 10.1177/13872877241299104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
BACKGROUND The growing aging population has led to an increase in the prevalence of Alzheimer's disease (AD) and osteoporosis (OP), both of which significantly impair quality of life. The comorbid nature of these conditions suggests a shared genetic etiology, the understanding of which is crucial for developing targeted therapies. OBJECTIVE This study aims to explore the shared genetic etiology underlying AD and OP, using a system biology approach to identify potential therapeutic targets and natural compounds for treatment. METHODS We employed Weighted Gene Co-Expression Network Analysis (WGCNA) with molecular docking strategies to uncover the genetic links between AD and OP. MT2A and CACNA1C were identified as key pleiotropic hub genes potentially linking AD and OP. Molecular docking was utilized to screen for compounds with therapeutic potential, leading to the identification of formononetin as a compound with significant binding affinity to these hub genes. Quantitative real-time PCR (qRT-PCR) validation was conducted to confirm the gene expression changes in disease models. RESULTS Our study indicate that formononetin exhibits strong binding affinity to the identified hub genes, MT2A and CACNA1C. qRT-PCR validation confirmed the upregulation of these genes in disease models, which was mitigated upon treatment with formononetin, suggesting a reversal of disease markers. CONCLUSIONS This study advances our understanding of the genetic intersections between AD and OP and positions formononetin as a promising natural agent for further translational research. Formononetin's multi-target potential makes it a valuable candidate for managing these comorbid conditions, meriting further investigation and development as a therapeutic strategy.
Collapse
Affiliation(s)
- Zhigang Wang
- Clinical Research Center for Neurological Diseases of Guangxi Province, Guilin Medical University, Guilin, China
- Key Laboratory of Brain and Cognition of Guangxi Province, Guilin Medical University, Guilin, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Environmental Exposomics and Entire Lifecycle Health of Guangxi Province, Guilin Medical University, Guilin, China
| | - Qiaoyi Liang
- Clinical Research Center for Neurological Diseases of Guangxi Province, Guilin Medical University, Guilin, China
- Key Laboratory of Brain and Cognition of Guangxi Province, Guilin Medical University, Guilin, China
- Key Laboratory of Environmental Exposomics and Entire Lifecycle Health of Guangxi Province, Guilin Medical University, Guilin, China
| | - Zhaoqiu Lin
- Key Laboratory of Environmental Exposomics and Entire Lifecycle Health of Guangxi Province, Guilin Medical University, Guilin, China
| | - Hongyang Li
- Key Laboratory of Environmental Exposomics and Entire Lifecycle Health of Guangxi Province, Guilin Medical University, Guilin, China
| | - Xin Chen
- Key Laboratory of Environmental Exposomics and Entire Lifecycle Health of Guangxi Province, Guilin Medical University, Guilin, China
| | - Zhenyou Zou
- Biochemistry Department of Purdue University, West Lafayette, IN, USA
| | - Jingxin Mo
- Clinical Research Center for Neurological Diseases of Guangxi Province, Guilin Medical University, Guilin, China
- Key Laboratory of Brain and Cognition of Guangxi Province, Guilin Medical University, Guilin, China
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Allen O, Coombes BJ, Pazdernik V, Gisabella B, Hartley J, Biernacka JM, Frye MA, Markota M, Pantazopoulos H. Differential serum levels of CACNA1C, circadian rhythm and stress response molecules in subjects with bipolar disorder: Associations with genetic and clinical factors. J Affect Disord 2024; 367:148-156. [PMID: 39233237 PMCID: PMC11496001 DOI: 10.1016/j.jad.2024.08.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/23/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Many patients with bipolar disorder (BD) do not respond to or have difficulties tolerating lithium and/or other mood stabilizing agents. There is a need for personalized treatments based on biomarkers in guiding treatment options. The calcium voltage-gated channel CACNA1C is a promising candidate for developing personalized treatments. CACNA1C is implicated in BD by genome-wide association studies and several lines of evidence suggest that targeting L-type calcium channels could be an effective treatment strategy. However, before such individualized treatments can be pursued, biomarkers predicting treatment response need to be developed. METHODS As a first step in testing the hypothesis that CACNA1C genotype is associated with serum levels of CACNA1C, we conducted ELISA measures on serum samples from 100 subjects with BD and 100 control subjects. RESULTS We observed significantly higher CACNA1C (p < 0.01) protein levels in subjects with BD. The risk single nucleotide polymorpshism (SNP) (rs11062170) showed functional significance as subjects homozygous for the risk allele (CC) had significantly greater CACNA1C protein levels compared to subjects with one (p = 0.013) or no copies (p = 0.009). We observed higher somatostatin (SST) (p < 0.003) protein levels and lower levels of the clock protein aryl hydrocarbon receptor nuclear translocator-like (ARTNL) (p < 0.03) and stress signaling factor corticotrophin releasing hormone (CRH) (p < 0.001) in BD. SST and period 2 (PER2) protein levels were associated with both alcohol dependence and lithium response. CONCLUSIONS Our findings represent the first evidence for increased serum levels of CACNA1C in BD. Along with altered levels of SST, ARNTL, and CRH our findings suggest CACNA1C is associated with circadian rhythm and stress response disturbances in BD.
Collapse
Affiliation(s)
- Obie Allen
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Brandon J Coombes
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Vanessa Pazdernik
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA; Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Joshua Hartley
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Joanna M Biernacka
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Matej Markota
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA; Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
4
|
Lauerer RJ, Lerche H. Voltage-gated calcium channels in genetic epilepsies. J Neurochem 2024; 168:3853-3871. [PMID: 37822150 PMCID: PMC11591408 DOI: 10.1111/jnc.15983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Voltage-gated calcium channels (VGCC) are abundant in the central nervous system and serve a broad spectrum of functions, either directly in cellular excitability or indirectly to regulate Ca2+ homeostasis. Ca2+ ions act as one of the main connections in excitation-transcription coupling, muscle contraction and excitation-exocytosis coupling, including synaptic transmission. In recent years, many genes encoding VGCCs main α or additional auxiliary subunits have been associated with epilepsy. This review sums up the current state of knowledge on disease mechanisms and provides guidance on disease-specific therapies where applicable.
Collapse
Affiliation(s)
- Robert J. Lauerer
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain ResearchUniversity and University Hospital TuebingenTuebingenGermany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain ResearchUniversity and University Hospital TuebingenTuebingenGermany
| |
Collapse
|
5
|
Zhang X, Valeri J, Eladawi MA, Gisabella B, Garrett MR, Vallender EJ, McCullumsmith R, Pantazopoulos H, O'Donovan SM. Transcriptomic Analysis of the Amygdala in Subjects with Schizophrenia, Bipolar Disorder and Major Depressive Disorder Reveals Differentially Altered Metabolic Pathways. Schizophr Bull 2024:sbae193. [PMID: 39526318 DOI: 10.1093/schbul/sbae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND HYPOTHESIS The amygdala, crucial for mood, anxiety, fear, and reward regulation, shows neuroanatomical and molecular divergence in psychiatric disorders like schizophrenia, bipolar disorder and major depression. This region is also emerging as an important regulator of metabolic and immune pathways. The goal of this study is to address the paucity of molecular studies in the human amygdala. We hypothesize that diagnosis-specific gene expression alterations contribute to the unique pathophysiological profiles of these disorders. STUDY DESIGN We used a cohort of subjects diagnosed with SCZ, BPD or MDD, and nonpsychiatrically ill control subjects (n = 15/group), together with our bioinformatic 3-pod analysis consisting of full transcriptome pathway analysis, targeted pathway analysis, leading-edge gene analysis and iLINCS perturbagen analysis. STUDY RESULTS We identified altered expression of metabolic pathways in each disorder. Subjects with SCZ displayed downregulation of mitochondrial respiration and nucleotide metabolism pathways. In comparison, we observed upregulation of mitochondrial respiration pathways in subjects with MDD, while subjects with BPD displayed enrichment of pathways involved in carbohydrate metabolism. Several pathways associated with brain metabolism including immune system processes and calcium ion transport were also differentially altered between diagnosis groups. CONCLUSION Our findings suggest metabolic pathways, including downregulation of energy metabolism pathways in SCZ and upregulation of energy metabolism pathways in MDD, are uniquely altered in the amygdala in these disorders, which may impact approaches for therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 70112, United States
| | - Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Mahmoud A Eladawi
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, United States
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Michael R Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Eric J Vallender
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Robert McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, United States
- Promedica Neuroscience Institute, Toledo, OH 43606, United States
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Sinead M O'Donovan
- Department of Biological Sciences, University of Limerick, Limerick V94T9PX, Ireland
| |
Collapse
|
6
|
Nasir Hashmi A, Sabina Raja M, Taj R, Ahmed Dharejo R, Agha Z, Qamar R, Azam M. Association of 11 variants of the dopaminergic and cognitive pathways genes with major depression, schizophrenia and bipolar disorder in the Pakistani population. Int J Neurosci 2024; 134:1172-1184. [PMID: 37642370 DOI: 10.1080/00207454.2023.2251661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/20/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
Background: The dopaminergic pathways control neural signals that modulate mood and behaviour along and have a vital role in the aetiology of major depression (MDD), schizophrenia (SHZ) and bipolar disorder (BD). Genome-wide association studies (GWAS) have reported several dopaminergic and cognitive pathway genes association with these disorders however, no such comprehensive data was available regarding the Pakistani population.Objective: The present study was conducted to analyse the 11 genetic variants of dopaminergic and cognitive system genes in MDD, SHZ, and BD in the Pakistani population.Methods: A total of 1237 subjects [MDD n = 479; BD n = 222; SHZ n = 146; and controls n = 390], were screened for 11 genetic variants through polymerase chain reaction (PCR) techniques. Univariant followed by multivariant logistic regression analysis was applied to determine the genetic association.Results: Significant risk associations were observed for rs4532 and rs1799732 with MDD; and rs1006737 and rs2238056 with BD. However, after applying multiple test corrections rs4532 and rs1799732 association did not remain significant for MDD. Moreover, a protective association was found for three variants; DRD4-120bp, rs10033951 and rs2388334 in the current cohort.Conclusions: The present study revealed the risk association of single nucleotide polymorphisms (SNPs) rs1006737 and rs2238056 with BD and the protective effect of the DRD4-120bp variant in MDD and BD, of rs2388334 in BD and of rs10033951 in MDD, BD, and SHZ in the current Pakistani cohort. Thus, the study is valuable in understanding the genetic basis of MDD, BD and SHZ in the Pakistani population, which may pave the way for future functional studies.
Collapse
Affiliation(s)
- Aisha Nasir Hashmi
- Translational Genomics Laboratory, COMSATS University Islamabad, Islamabad, Pakistan
| | - Merlyn Sabina Raja
- Translational Genomics Laboratory, COMSATS University Islamabad, Islamabad, Pakistan
| | - Rizwan Taj
- Department of Psychiatry, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Raees Ahmed Dharejo
- Department of Psychiatry, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Zehra Agha
- Translational Genomics Laboratory, COMSATS University Islamabad, Islamabad, Pakistan
| | - Raheel Qamar
- Science and Technology Sector, ICESCO, Rabat, Morocco
- Pakistan Academy of Science, Islamabad, Pakistan
| | - Maleeha Azam
- Translational Genomics Laboratory, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
7
|
Loganathan S, Menegaz D, Delling JP, Eder M, Deussing JM. Cacna1c deficiency in forebrain glutamatergic neurons alters behavior and hippocampal plasticity in female mice. Transl Psychiatry 2024; 14:421. [PMID: 39370418 PMCID: PMC11456591 DOI: 10.1038/s41398-024-03140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024] Open
Abstract
CACNA1C, coding for the α1 subunit of L-type voltage-gated calcium channel (LTCC) Cav1.2, has been associated with multiple psychiatric disorders. Clinical studies have revealed alterations in behavior as well as in brain structure and function in CACNA1C risk allele carriers. These findings are supported by rodent models of Cav1.2 deficiency, which showed increased anxiety, cognitive and social impairments as well as a shift towards active stress-coping strategies. These behavioral alterations were accompanied by functional deficits, such as reduced long-term potentiation (LTP) and an excitation/inhibition (E/I) imbalance. However, these preclinical studies are largely limited to male rodents, with few studies exploring sex-specific effects. Here, we investigated the effects of Cav1.2 deficiency in forebrain glutamatergic neurons in female conditional knockout (CKO) mice. CKO mice exhibited hyperlocomotion in a novel environment, increased anxiety-related behavior, cognitive deficits, and increased active stress-coping behavior. These behavioral alterations were neither influenced by the stage of the estrous cycle nor by the Nex/Neurod6 haploinsufficiency or Cre expression, which are intrinsically tied to the utilization of the Nex-Cre driver line for conditional inactivation of Cacna1c. In the hippocampus, Cav1.2 inactivation enhanced presynaptic paired-pulse facilitation without altering postsynaptic LTP at CA3-CA1 synapses. In addition, CA1 pyramidal neurons of female CKO mice displayed a reduction in dendritic complexity and spine density. Taken together, our findings extend the existing knowledge suggesting Cav1.2-dependent structural and functional alterations as possible mechanisms for the behavioral alterations observed in female Cav1.2-Nex mice.
Collapse
Affiliation(s)
- Srivaishnavi Loganathan
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Danusa Menegaz
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan Philipp Delling
- Research Group Neural Dynamics and Behavior, Max Planck Institute of Psychiatry, Munich, Germany
| | - Matthias Eder
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
8
|
Kong L, Chen Y, Shen Y, Zhang D, Wei C, Lai J, Hu S. Progress and Implications from Genetic Studies of Bipolar Disorder. Neurosci Bull 2024; 40:1160-1172. [PMID: 38206551 PMCID: PMC11306703 DOI: 10.1007/s12264-023-01169-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 01/12/2024] Open
Abstract
With the advancements in gene sequencing technologies, including genome-wide association studies, polygenetic risk scores, and high-throughput sequencing, there has been a tremendous advantage in mapping a detailed blueprint for the genetic model of bipolar disorder (BD). To date, intriguing genetic clues have been identified to explain the development of BD, as well as the genetic association that might be applied for the development of susceptibility prediction and pharmacogenetic intervention. Risk genes of BD, such as CACNA1C, ANK3, TRANK1, and CLOCK, have been found to be involved in various pathophysiological processes correlated with BD. Although the specific roles of these genes have yet to be determined, genetic research on BD will help improve the prevention, therapeutics, and prognosis in clinical practice. The latest preclinical and clinical studies, and reviews of the genetics of BD, are analyzed in this review, aiming to summarize the progress in this intriguing field and to provide perspectives for individualized, precise, and effective clinical practice.
Collapse
Affiliation(s)
- Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yiqing Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuting Shen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Wei
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jianbo Lai
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
9
|
Bastos CR, Bevilacqua LM, Mendes LFB, Xavier J, Gruhn K, Kaster MP, Ghisleni G. Amygdala-specific changes in Cacna1c, Nfat5, and Bdnf expression are associated with stress responsivity in mice: A possible mechanism for psychiatric disorders. J Psychiatr Res 2024; 175:259-270. [PMID: 38754148 DOI: 10.1016/j.jpsychires.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/11/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
The CACNA1C gene encodes the alpha-1c subunit of the Cav1.2 calcium channel, a regulator of neuronal calcium influx involved in neurotransmitter release and synaptic plasticity. Genetic data show a role for CACNA1C in depressive symptoms underlying different psychiatric diagnoses. However, the mechanisms involved still require further exploration. This study aimed to investigate sex and region-specific changes in the Cacna1c gene and behavioral outcomes in mice exposed to chronic stress. Moreover, we evaluated the Nuclear factor of activated T-cells 5 (Nfat5) and the Brain-derived neurotrophic factor (Bdnf) as potential upstream and downstream Cacna1c targets and their correlation in stressed mice and humans with depression. Male and female Swiss mice were exposed to chronic unpredictable stress (CUS) for 21 days. Animal-integrated emotionality was assessed using the sucrose splash test, the tail suspension, the open-field test, and the elevated-plus-maze. Gene expression analysis was performed in the amygdala, prefrontal cortex, and hippocampus. Human data for in silico analysis was obtained from the Gene Expression Omnibus. CUS-induced impairment in integrated emotional regulation was observed in males. Gene expression analysis showed decreased levels of Cacna1c and Nfat5 and increased levels of Bdnf transcripts in the amygdala of stressed male mice. In contrast, there were no major changes in behavioral responses or gene expression in female mice after stress. The expression of the three genes was significantly correlated in the amygdala of mice and humans. The strong and positive correlation between Canac1c and Nfat5 suggests a potential role for this transcription factor in Canac1c expression. These changes could impact amygdala reactivity and emotional responses, making them a potential target for psychiatric intervention.
Collapse
Affiliation(s)
- Clarissa Ribeiro Bastos
- Laboratory of Translational Neuroscience, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil; Department of Life and Health Sciences, Catholic University of Pelotas (UCPel), Pelotas, Rio Grande do Sul, Brazil
| | - Laura Menegatti Bevilacqua
- Laboratory of Translational Neuroscience, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil
| | - Luiz Filipe Bastos Mendes
- Center of Oxidative Stress Research, Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Janaina Xavier
- Department of Life and Health Sciences, Catholic University of Pelotas (UCPel), Pelotas, Rio Grande do Sul, Brazil
| | - Karen Gruhn
- Department of Life and Health Sciences, Catholic University of Pelotas (UCPel), Pelotas, Rio Grande do Sul, Brazil
| | - Manuella Pinto Kaster
- Laboratory of Translational Neuroscience, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.
| | - Gabriele Ghisleni
- Department of Life and Health Sciences, Catholic University of Pelotas (UCPel), Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
10
|
Moya R, Wang X, Tsien RW, Maurano MT. Structural characterization of a polymorphic repeat at the CACNA1C schizophrenia locus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.05.24303780. [PMID: 38798557 PMCID: PMC11118589 DOI: 10.1101/2024.03.05.24303780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Genetic variation within intron 3 of the CACNA1C calcium channel gene is associated with schizophrenia and bipolar disorder, but analysis of the causal variants and their effect is complicated by a nearby variable-number tandem repeat (VNTR). Here, we used 155 long-read genome assemblies from 78 diverse individuals to delineate the structure and population variability of the CACNA1C intron 3 VNTR. We categorized VNTR sequences into 7 Types of structural alleles using sequence differences among repeat units. Only 12 repeat units at the 5' end of the VNTR were shared across most Types, but several Types were related through a series of large and small duplications. The most diverged Types were rare and present only in individuals with African ancestry, but the multiallelic structural polymorphism Variable Region 2 was present across populations at different frequencies, consistent with expansion of the VNTR preceding the emergence of early hominins. VR2 was in complete linkage disequilibrium with fine-mapped schizophrenia variants (SNPs) from genome-wide association studies (GWAS). This risk haplotype was associated with decreased CACNA1C gene expression in brain tissues profiled by the GTEx project. Our work suggests that sequence variation within a human-specific VNTR affects gene expression, and provides a detailed characterization of new alleles at a flagship neuropsychiatric locus.
Collapse
Affiliation(s)
- Raquel Moya
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Xiaohan Wang
- Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University, New York, NY 10016
| | - Richard W. Tsien
- Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University, New York, NY 10016
| | - Matthew T. Maurano
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
11
|
Dow R, DeLong C, Jiang G, Attili D, Creech J, Kraan R, Campbell K, Saraithong P, O’Shea S, Monteiro da Rocha A, McInnis MG, Herron TJ. Bipolar Patient-Specific In Vitro Diagnostic Test Reveals Underlying Cardiac Arrhythmia Phenotype Caused by Calcium Channel Genetic Risk Factor. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100296. [PMID: 38560725 PMCID: PMC10978474 DOI: 10.1016/j.bpsgos.2024.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 02/02/2024] [Indexed: 04/04/2024] Open
Abstract
A common genetic risk factor for bipolar disorder is CACNA1C, a gene that is also critical for cardiac rhythm. The impact of CACNA1C mutations on bipolar patient cardiac rhythm is unknown. Here, we report the cardiac electrophysiological implications of a bipolar disorder-associated genetic risk factor in CACNA1C using patient induced pluripotent stem cell-derived cardiomyocytes. Results indicate that the CACNA1C bipolar disorder-related mutation causes cardiac electrical impulse conduction slowing mediated by impaired intercellular coupling via connexin 43 gap junctions. In vitro gene therapy to restore connexin 43 expression increased cardiac electrical impulse conduction velocity and protected against thioridazine-induced QT prolongation. Patients positive for bipolar disorder CACNA1C genetic risk factors may have elevated proarrhythmic risk for adverse events in response to psychiatric medications that slow conduction or prolong the QT interval. This in vitro diagnostic tool enables cardiac testing specific to patients with psychiatric disorders to determine their sensitivity to off-target effects of psychiatric medications.
Collapse
Affiliation(s)
- Rachel Dow
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Cindy DeLong
- Michigan Medicine, Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Guihua Jiang
- Michigan Medicine, Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Durga Attili
- Michigan Medicine, Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Jeffery Creech
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Rachel Kraan
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Katherine Campbell
- Michigan Medicine, Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Prakaimuk Saraithong
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, Michigan
- Michigan Medicine, Internal Medicine-Cardiology, University of Michigan, Ann Arbor, Michigan
| | - Sue O’Shea
- Michigan Medicine, Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
- Michigan Medicine, Psychiatry Department, University of Michigan, Ann Arbor, Michigan
| | - Andre Monteiro da Rocha
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, Michigan
- Michigan Medicine, Internal Medicine-Cardiology, University of Michigan, Ann Arbor, Michigan
| | - Melvin G. McInnis
- Michigan Medicine, Psychiatry Department, University of Michigan, Ann Arbor, Michigan
| | - Todd J. Herron
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, Michigan
- Michigan Medicine, Internal Medicine-Cardiology, University of Michigan, Ann Arbor, Michigan
- Michigan Medicine, Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
12
|
Zhang X, Valeri J, Eladawi MA, Gisabella B, Garrett MR, Vallender EJ, McCullumsmith R, Pantazopoulos H, O’Donovan SM. Differentially Altered Metabolic Pathways in the Amygdala of Subjects with Schizophrenia, Bipolar Disorder and Major Depressive Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.17.24305854. [PMID: 38699334 PMCID: PMC11065019 DOI: 10.1101/2024.04.17.24305854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background and hypothesis A growing number of studies implicate a key role for metabolic processes in psychiatric disorders. Recent studies suggest that ketogenic diet may be therapeutically effective for subgroups of people with schizophrenia (SCZ), bipolar disorder (BPD) and possibly major depressive disorder (MDD). Despite this promise, there is currently limited information regarding brain energy metabolism pathways across these disorders, limiting our understanding of how brain metabolic pathways are altered and who may benefit from ketogenic diets. We conducted gene expression profiling on the amygdala, a key region involved in in the regulation of mood and appetitive behaviors, to test the hypothesis that amygdala metabolic pathways are differentially altered between these disorders. Study Design We used a cohort of subjects diagnosed with SCZ, BPD or MDD, and non-psychiatrically ill control subjects (n=15/group), together with our bioinformatic 3-pod analysis consisting of full transcriptome pathway analysis, targeted pathway analysis, leading-edge gene analysis and iLINCS perturbagen analysis. Study Results We identified differential expression of metabolic pathways in each disorder. Subjects with SCZ displayed downregulation of mitochondrial respiration and nucleotide metabolism pathways. In comparison, we observed upregulation of mitochondrial respiration pathways in subjects with MDD, while subjects with BPD displayed enrichment of pathways involved in carbohydrate metabolism. Several pathways associated with brain metabolism including immune system processes and calcium ion transport were also differentially altered between diagnosis groups. Conclusion Our findings suggest metabolic pathways are differentially altered in the amygdala in these disorders, which may impact approaches for therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | | | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Michael R. Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
| | - Eric J Vallender
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Robert McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH
- Promedica Neuroscience Institute, Toledo, OH
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | | |
Collapse
|
13
|
Allen O, Coombes BJ, Pazdernik V, Gisabella B, Hartley J, Biernacka JM, Frye MA, Markota M, Pantazopoulos H. Differential Serum Levels of CACNA1C, Circadian Rhythm and Stress Response Molecules in Subjects with Bipolar Disorder: Associations with Genetic and Clinical Factors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.11.24305678. [PMID: 38645236 PMCID: PMC11030295 DOI: 10.1101/2024.04.11.24305678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Many patients with bipolar disorder (BD) do not respond to or have difficulties tolerating lithium and/or other mood stabilizing agents. There is a need for personalized treatments based on biomarkers in guiding treatment options. The calcium voltage-gated channel CACNA1C is a promising candidate for developing personalized treatments. CACNA1C is implicated in BD by genome-wide association studies and several lines of evidence suggest that targeting L-type calcium channels could be an effective treatment strategy. However, before such individualized treatments can be pursued, biomarkers predicting treatment response need to be developed. Methods As a first step in testing the hypothesis that CACNA1C genotype is associated with serum levels of CACNA1C, we conducted ELISA measures on serum samples from 100 subjects with BD and 100 control subjects. Results We observed significantly higher CACNA1C (p<0.01) protein levels in subjects with BD. The risk SNP (rs11062170) showed functional significance as subjects homozygous for the risk allele (CC) had significantly greater CACNA1C protein levels compared to subjects with one (p=0.013) or no copies (p=0.009). We observed higher somatostatin (SST) (p<0.003) protein levels and lower levels of the clock protein ARTNL (p<0.03) and stress signaling factor corticotrophin releasing hormone (CRH) (p<0.001) in BD. SST and PER2 protein levels were associated with both alcohol dependence and lithium response. Conclusions Our findings represent the first evidence for increased serum levels of CACNA1C in BD. Along with altered levels of SST, ARNTL, and CRH our findings suggest CACNA1C is associated with circadian rhythm and stress response disturbances in BD.
Collapse
Affiliation(s)
- Obie Allen
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | - Brandon J. Coombes
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Vanessa Pazdernik
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joshua Hartley
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joanna M. Biernacka
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Matej Markota
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
14
|
Punchaichira TJ, Kukshal P, Bhatia T, Deshpande SN, Thelma BK. Effect of rs1108580 of DBH and rs1006737 of CACNA1C on Cognition and Tardive Dyskinesia in a North Indian Schizophrenia Cohort. Mol Neurobiol 2023; 60:6826-6839. [PMID: 37493923 DOI: 10.1007/s12035-023-03496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
Genetic perturbations in dopamine neurotransmission and calcium signaling pathways are implicated in the etiology of schizophrenia. We aimed to test the association of a functional splice variant each in Dopamine β-Hydroxylase (DBH; rs1108580) and Calcium voltage-gated channel subunit alpha1 C (CACNA1C; rs1006737) genes in these pathways with schizophrenia (506 cases, 443 controls); Abnormal Involuntary Movement Scale (AIMS) scores in subjects assessed for tardive dyskinesia (76 TD-positive, 95 TD-negative) and Penn Computerized Neurocognitive Battery (PennCNB) scores (334 cases, 234 controls). The effect of smoking status and SNP genotypes on AIMS scores were assessed using ANOVA; health status and SNP genotypes on three performance functions of PennCNB cognitive domains were assessed by ANCOVA with age and sex as covariates. Association with Positive and Negative Syndrome Scale (PANSS) scores in the TD cohort and cognitive scores in healthy controls of the cognition cohort were tested by linear regression. None of the markers were associated with schizophrenia. Smoking status [F(2, 139) = 10.6; p = 5 × 10-5], rs1006737 [F(2, 139) = 7.1; p = 0.001], TD status*smoking [F(2, 139) = 8.0; p = 5.0 × 10-4] and smoking status*rs1006737 [F(4, 139) = 2.7; p = 0.03] had an effect on AIMS score. Furthermore, rs1006737 was associated with orofacial [F(2, 139) = 4.6; p = 0.01] and limb-truncal TD [(F(2, 139) = 3.8; p = 0.02]. Main effect of rs1108580 on working memoryprocessing speed [F(2, 544) = 3.8; p = 0.03] and rs1006737 on spatial abilityefficiency [F(1, 550) = 9.4; p = 0.02] was identified. Health status*rs1006737 interaction had an effect on spatial memoryprocessing speed [F(1, 550) = 6.9; p = 0.01]. Allelic/genotypic association (p = 0.01/0.03) of rs1006737 with disorganized/concrete factor and allelic association of rs1108580 (p = 0.04) with a depressive factor of PANSS was observed in the TD-negative subcohort. Allelic association of rs1006737 with sensorimotor dexterityaccuracy (p = 0.03), attentionefficiency (p = 0.05), and spatial abilityefficiency (p = 0.02); allelic association of rs1108580 with face memoryaccuracy (p = 0.05) and emotionefficiency (p = 0.05); and allelic/genotypic association with emotionaccuracy (p = 0.003/0.009) were observed in healthy controls of the cognition cohort. These association findings may have direct implications for personalized medicine and cognitive remediation.
Collapse
Affiliation(s)
| | - Prachi Kukshal
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
- Sri Sathya Sai Sanjeevani International Centre for Child Heart Care & Research, Palwal, Haryana, 121102, India
| | - Triptish Bhatia
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research-Dr. Ram Manohar Lohia Hospital, Baba Kharak Singh Marg, Connaught Place, New Delhi, 110001, India
| | - Smita Neelkanth Deshpande
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research-Dr. Ram Manohar Lohia Hospital, Baba Kharak Singh Marg, Connaught Place, New Delhi, 110001, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
15
|
Li M, Yuan N, Nurnberger JI, Alliey-Rodriguez N, Zhou J, Duan F, Dai J, Chen Y, Lu J, Xie L, Liu F, Yang X, Tapon P, Gorrepati V, Liu X, Chen C, Liu C, Gershon ES. A pilot pharmacogenetic study of calcium channel blocker treatment of bipolar mania. Psychiatry Res 2023; 326:115281. [PMID: 37270865 DOI: 10.1016/j.psychres.2023.115281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Common genetic variants located in calcium channel genes are important markers of genetic susceptibility for bipolar disorder (BD). Previous clinical trials with Calcium Channel Blocker (CCB) medication improved mood stability for some BD patients. We hypothesize that manic patients who carried calcium channel risk variants would differentially benefit from treatment with CCBs. In this pilot study, 50 BD patients (Chinese: 39; US: 11) who were hospitalized for manic episodes were given add-on CCB treatment. We determined genotypes for each patient. There was a significant decrease in the Young Mania Rating Scale (YMRS) after add-on medication treatment. Of note, two intronic variants of the Calcium Voltage-Gated Channel Subunit Alpha1 B (CACNA1B) were associated with treatment outcomes for manic patients: rs2739258 and rs2739260. BD rs2739258/rs2739260 AG-allele carriers had a better treatment response with add-on CCB than those carrying the AA or GG genotypes by survival analysis. Although these findings did not pass multiple testing correction, this study suggests that single-nucleotide polymorphisms (SNPs) residing in calcium channel genes could be predictors for response to add-on CCB treatment of bipolar mania patients, and that calcium channel genes may be involved in treatment responses for BD.
Collapse
Affiliation(s)
- Miao Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ning Yuan
- Department of Psychiatry, Hunan Provincial Brain Hospital (The Second People's Hospital of Hunan Province), Changsha, Hunan, China.
| | - John I Nurnberger
- Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA; Department of Neuroscience, University of Texas Rio Grande Valley, Harlingen, TX, USA
| | - Jiaqi Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Fangyuan Duan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiacheng Dai
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Jiaqi Lu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Xie
- Department of Psychiatry, Hunan Provincial Brain Hospital (The Second People's Hospital of Hunan Province), Changsha, Hunan, China
| | - Fang Liu
- Department of Psychiatry, Hunan Provincial Brain Hospital (The Second People's Hospital of Hunan Province), Changsha, Hunan, China
| | - Xuli Yang
- Department of Psychiatry, Hunan Provincial Brain Hospital (The Second People's Hospital of Hunan Province), Changsha, Hunan, China
| | - Philippe Tapon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Vijay Gorrepati
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Xuejun Liu
- Department of Psychiatry, Hunan Provincial Brain Hospital (The Second People's Hospital of Hunan Province), Changsha, Hunan, China.
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
16
|
Nunes EJ, Addy NA. L-type calcium channel regulation of dopamine activity in the ventral tegmental area to nucleus accumbens pathway: Implications for substance use, mood disorders and co-morbidities. Neuropharmacology 2023; 224:109336. [PMID: 36414149 PMCID: PMC11215796 DOI: 10.1016/j.neuropharm.2022.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022]
Abstract
L-type calcium channels (LTCCs), including the Cav1.2 and Cav1.3 LTCC subtypes, are important regulators of calcium entry into neurons, which mediates neurotransmitter release and synaptic plasticity. Cav1.2 and Cav1.3 are encoded by the CACNA1C and CACNA1D genes, respectively. These genes are implicated in substance use disorders and depression in humans, as demonstrated by genetic-wide association studies (GWAS). Pre-clinical models have also revealed a critical role of LTCCs on drug and mood related behavior, including the co-morbidity of substance use and mood disorders. Moreover, LTCCs have been shown to regulate the neuronal firing of dopamine (DA) neurons as well as drug and stress-induced plasticity within the ventral tegmental area (VTA) to nucleus accumbens (NAc) pathway. Thus, LTCCs are interesting targets for the treatment of neuropsychiatric diseases. In this review, we provide a brief introduction to voltage-gated calcium channels, specifically focusing on the LTCCs. We place particular emphasis on the ability of LTCCs to regulate DA neuronal activity and downstream signaling in the VTA to NAc pathway, and how such processes mediate substance use and mood disorder-related behavioral responses. We also discuss the bi-directional control of VTA LTCCs on drug and mood-related behaviors in pre-clinical models, with implications for co-morbid psychiatric diagnosis. We conclude with a section on the clinical implications of LTCC blockers, many which are already FDA approved as cardiac medications. Thus, pre-clinical and clinical work should examine the potential of LTCC blockers to be repurposed for neuropsychiatric illness. This article is part of the Special Issue on 'L-type calcium channel mechanisms in neuropsychiatric disorders'.
Collapse
Affiliation(s)
- Eric J. Nunes
- Department of Psychiatry, Yale School of Medicine
- Yale Tobacco Center of Regulatory Science, Yale School of Medicine
| | - Nii A. Addy
- Department of Psychiatry, Yale School of Medicine
- Yale Tobacco Center of Regulatory Science, Yale School of Medicine
- Department of Cellular and Molecular Physiology, Yale School of Medicine
- Interdepartmental Neuroscience Program, Yale University
- Wu Tsai Institute, Yale University
| |
Collapse
|
17
|
Shang MY, Zhang CY, Wu Y, Wang L, Wang C, Li M. Genetic associations between bipolar disorder and brain structural phenotypes. Cereb Cortex 2023:7024717. [PMID: 36734292 DOI: 10.1093/cercor/bhad014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Patients with bipolar disorder (BD) and their first-degree relatives exhibit alterations in brain volume and cortical structure, whereas the underlying genetic mechanisms remain unclear. In this study, based on the published genome-wide association studies (GWAS), the extent of polygenic overlap between BD and 15 brain structural phenotypes was investigated using linkage disequilibrium score regression and MiXeR tool, and the shared genomic loci were discovered by conjunctional false discovery rate (conjFDR) and expression quantitative trait loci (eQTL) analyses. MiXeR estimated the overall measure of polygenic overlap between BD and brain structural phenotypes as 4-53% on a 0-100% scale (as quantified by the Dice coefficient). Subsequent conjFDR analyses identified 54 independent loci (71 risk single-nucleotide polymorphisms) jointly associated with BD and brain structural phenotypes with a conjFDR < 0.05, among which 33 were novel that had not been reported in the previous BD GWAS. Follow-up eQTL analyses in respective brain regions both confirmed well-known risk genes (e.g. CACNA1C, NEK4, GNL3, MAPK3) and discovered novel risk genes (e.g. LIMK2 and CAMK2N2). This study indicates a substantial shared genetic basis between BD and brain structural phenotypes, and provides novel insights into the developmental origin of BD and related biological mechanisms.
Collapse
Affiliation(s)
- Meng-Yuan Shang
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China.,School of Basic Medical Science, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 17 Long-Xin Lu, Kunming, 650201, Yunnan, China
| | - Yong Wu
- Research Center for Mental Health and Neuroscience, Wuhan Mental Health Center, No. 920 Jianshe Road, Wuhan, 430012, Hubei, China
| | - Lu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 17 Long-Xin Lu, Kunming, 650201, Yunnan, China
| | - Chuang Wang
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China.,School of Basic Medical Science, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 17 Long-Xin Lu, Kunming, 650201, Yunnan, China
| |
Collapse
|
18
|
Jiang X, Sultan AA, Dimick MK, Zai CC, Kennedy JL, MacIntosh BJ, Goldstein BI. The association of genetic variation in CACNA1C with resting-state functional connectivity in youth bipolar disorder. Int J Bipolar Disord 2023; 11:3. [PMID: 36637564 PMCID: PMC9839925 DOI: 10.1186/s40345-022-00281-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/13/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND CACNA1C rs1006737 A allele, identified as a genetic risk variant for bipolar disorder (BD), is associated with anomalous functional connectivity in adults with and without BD. Studies have yet to investigate the association of CACNA1C rs1006737 with resting-state functional connectivity (rsFC) in youth BD. METHODS Participants included 139 youth with BD-I, -II, or -not otherwise specified, ages 13-20 years, including 27 BD A-carriers, 41 BD non-carriers, 32 healthy controls (HC) A-carriers, and 39 HC non-carriers. Anterior cingulate cortex (ACC), amygdala, and orbitofrontal cortex (OFC) were examined as regions-of-interest in seed-to-voxel analyses. General linear models included main effects of diagnosis and rs1006737, and an interaction term, controlling for age, sex, and race. RESULTS We observed a main effect of BD diagnosis on rsFC between the right amygdala and the right occipital pole (p = 0.02), and a main effect of rs1006737 genotypes on rsFC between the right OFC and bilateral occipital cortex (p < 0.001). Two significant BD diagnosis-by-CACNA1C rs1006737 interactions were also identified. The A allele was associated with positive rsFC between the right ACC and right amygdala in BD but negative rsFC in HC (p = 0.01), and negative rsFC between the left OFC and left putamen in BD but positive rsFC in HC (p = 0.01). CONCLUSION This study found that the rs1006737 A allele, identified as a genetic risk variant for BD in adults, was differentially associated with rsFC in youth with BD in regions relevant to emotion, executive function, and reward. Future task-based approaches are warranted to better understand brain connectivity in relation to CACNA1C in BD.
Collapse
Affiliation(s)
- Xinyue Jiang
- grid.155956.b0000 0000 8793 5925Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON Canada
| | - Alysha A. Sultan
- grid.155956.b0000 0000 8793 5925Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON Canada
| | - Mikaela K. Dimick
- grid.155956.b0000 0000 8793 5925Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON Canada
| | - Clement C. Zai
- grid.155956.b0000 0000 8793 5925Tanenbaum Centre for Pharmacogenetics, Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, Canada
| | - James L. Kennedy
- grid.155956.b0000 0000 8793 5925Tanenbaum Centre for Pharmacogenetics, Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Bradley J. MacIntosh
- grid.17063.330000 0001 2157 2938Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON Canada
| | - Benjamin I. Goldstein
- grid.155956.b0000 0000 8793 5925Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
Levy RJ, Timothy KW, Underwood JFG, Hall J, Bernstein JA, Pașca SP. A Cross-Sectional Study of the Neuropsychiatric Phenotype of CACNA1C-Related Disorder. Pediatr Neurol 2023; 138:101-106. [PMID: 36436328 DOI: 10.1016/j.pediatrneurol.2022.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/26/2022] [Accepted: 10/29/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND CACNA1C encodes the voltage-gated L-type calcium channel CaV1.2. A specific gain-of-function pathogenic variant in CACNA1C causes Timothy syndrome type 1 (TS1) with cardiac long QT syndrome, syndactyly, and neuropsychiatric symptoms. Our previous work found that the TS1 mutation alters neuronal activity-dependent signaling and interneuron migration. Recent case series highlighted a broader spectrum of CACNA1C-related disorder (CRD) that includes isolated cardiac disease, isolated neurologic deficits, and TS, but it is unknown how the clinical presentation of other CRD variants relates to neural defects. We surveyed individuals with CRD to define the neuropsychiatric and developmental phenotype in an effort to guide future research into the role of calcium channels in neural development. METHODS Caregivers of and individuals with CRD completed an online survey of pre- and perinatal events, cardiac events, developmental milestones, neuropsychiatric symptoms, and neuropsychiatric diagnoses. Multiple Mann-Whitney tests were used for comparison of categorical values and Fisher exact test for comparison of categorical variables between participants with and without cardiac arrhythmia. RESULTS Twenty-four participants with germline CACNA1C variants including TS1 completed the survey. The most common neuropsychiatric symptoms and/or diagnoses were developmental delay in 92%, incoordination in 71%, hypotonia in 67%, autism spectrum disorder in 50% (autistic features in 92%), seizures in 37.5%, and attention-deficit/hyperactivity disorder in 21% of participants. There were no significant differences in symptoms between participants with and without arrhythmia. CONCLUSIONS In our CRD cohort, there was an increased prevalence of multiple neuropsychiatric symptoms compared with the general population. These findings indicate the key role of CaV1.2 in brain development and the clinical importance of screening and therapeutically addressing neuropsychiatric symptoms in all individuals with CRD. Future directions include deep phenotyping of neuropsychiatric symptoms and efforts to relate these symptoms to cellular defects.
Collapse
Affiliation(s)
- Rebecca J Levy
- Division of Medical Genetics in the Department of Pediatrics, Stanford University, Stanford, California; Division of Child Neurology in the Department of Neurology, Stanford University, Stanford, California
| | | | - Jack F G Underwood
- Neuroscience & Mental Health Innovation Institute, Cardiff University, Cardiff, Wales, UK
| | - Jeremy Hall
- Neuroscience & Mental Health Innovation Institute, Cardiff University, Cardiff, Wales, UK
| | - Jonathan A Bernstein
- Division of Medical Genetics in the Department of Pediatrics, Stanford University, Stanford, California.
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, California.
| |
Collapse
|
20
|
Abstract
The CACNA1C gene encodes the pore-forming subunit of the CaV1.2 L-type Ca2+ channel, a critical component of membrane physiology in multiple tissues, including the heart, brain, and immune system. As such, mutations altering the function of these channels have the potential to impact a wide array of cellular functions. The first mutations identified within CACNA1C were shown to cause a severe, multisystem disorder known as Timothy syndrome (TS), which is characterized by neurodevelopmental deficits, long-QT syndrome, life-threatening cardiac arrhythmias, craniofacial abnormalities, and immune deficits. Since this initial description, the number and variety of disease-associated mutations identified in CACNA1C have grown tremendously, expanding the range of phenotypes observed in affected patients. CACNA1C channelopathies are now known to encompass multisystem phenotypes as described in TS, as well as more selective phenotypes where patients may exhibit predominantly cardiac or neurological symptoms. Here, we review the impact of genetic mutations on CaV1.2 function and the resultant physiological consequences.
Collapse
Affiliation(s)
- Kevin G Herold
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John W Hussey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ivy E Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Bastos CR, Xavier J, Camerini L, Dewes SS, Moreira FP, Wiener CD, Jansen K, Kaster MP, de Mattos Souza LD, da Silva RA, Oses JP, Portela LV, Lara DR, Tovo-Rodrigues L, Ghisleni G. BDNF Levels According to Variations in the CACNA1C Gene: Sex-Based Disparity. Cell Mol Neurobiol 2023; 43:357-366. [PMID: 35128618 PMCID: PMC11415201 DOI: 10.1007/s10571-022-01189-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/03/2022] [Indexed: 01/07/2023]
Abstract
The CACNA1C gene encodes the pore-forming alpha-1c subunit of L-type voltage-gated calcium channels. The calcium influx through these channels regulates the transcription of the brain-derived neurotrophic factor (BDNF). Polymorphisms in this gene have been consistently associated with psychiatric disorders, and alterations in BDNF levels are a possible biological mechanism to explain such associations. Here, we sought to investigate the effect of the CACNA1C rs1006737 and rs4765913 polymorphisms and their haplotypes on serum BDNF concentration. We further aim to investigate the regulatory function of these SNPs and the ones linked to them. The study enrolled 641 young adults (362 women and 279 men) in a cross-sectional population-based survey. Linear regression was used to test the effects of polymorphisms and haplotypes on BDNF levels adjusted for potential confounders. Moreover, regulatory putative functional roles were assessed using in silico approach. BDNF levels were not associated with CACNA1C polymorphisms/haplotype in the total sample. When the sample was stratified by sex, checking the effect of polymorphisms on men and women separately, the A-allele of rs4765913 was associated with lower BDNF levels in women compared with the TT genotype (p = 0.010). The AA (rs1006737-rs4765913) haplotype was associated with BDNF levels in opposite directions regarding sex, with lower levels of BDNF in women (p = 0.040) compared to those without this haplotype, while with higher levels in men (p = 0.027). These findings were supported by the presence of regulatory marks only on the male fetal brain. Our results suggest that the BDNF levels regulation may be a potential mechanism underpinning the association between CACNA1C and psychiatric disorders, with a differential role in women and men.
Collapse
Affiliation(s)
- Clarissa Ribeiro Bastos
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Janaina Xavier
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Laísa Camerini
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Samantha Seibt Dewes
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fernanda Pedrotti Moreira
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Carolina David Wiener
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Karen Jansen
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Manuella Pinto Kaster
- Department of Biochemistry at the Federal University of Santa Catarina, Florianópolis, Brazil
| | - Luciano Dias de Mattos Souza
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ricardo Azevedo da Silva
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Jean Pierre Oses
- Post Graduation Program of Physiological Science, Federal University of Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Luis Valmor Portela
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo Rizzato Lara
- Department of Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luciana Tovo-Rodrigues
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gabriele Ghisleni
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
- Laboratory of Clinical Neuroscience, Post-Graduation Program of Health and Behavior, Center of Health Science, Catholic University of Pelotas, 373, 324C Gonçalves Chaves Street, Pelotas, Rio Grande do Sul, CEP 96015-560, Brazil.
| |
Collapse
|
22
|
Bamgboye MA, Traficante MK, Owoyemi J, DiSilvestre D, Vieira DCO, Dick IE. Impaired Ca V1.2 inactivation reduces the efficacy of calcium channel blockers in the treatment of LQT8. J Mol Cell Cardiol 2022; 173:92-100. [PMID: 36272554 PMCID: PMC10583761 DOI: 10.1016/j.yjmcc.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022]
Abstract
Mutations in the CaV1.2 L-type calcium channel can cause a profound form of long-QT syndrome known as long-QT type 8 (LQT8), which results in cardiac arrhythmias that are often fatal in early childhood. A growing number of such pathogenic mutations in CaV1.2 have been identified, increasing the need for targeted therapies. As many of these mutations reduce channel inactivation; resulting in excess Ca2+ entry during the action potential, calcium channel blockers (CCBs) would seem to represent a promising treatment option. Yet CCBs have been unsuccessful in the treatment of LQT8. Here, we demonstrate that this lack of efficacy likely stems from the impact of the mutations on CaV1.2 channel inactivation. As CCBs are known to preferentially bind to the inactivated state of the channel, mutation-dependent deficits in inactivation result in a decrease in use-dependent block of the mutant channel. Further, application of the CCB verapamil to induced pluripotent stem cell (iPSC) derived cardiomyocytes from an LQT8 patient demonstrates that this loss of use-dependent block translates to a lack of efficacy in correcting the LQT phenotype. As a growing number of channelopathic mutations demonstrate effects on channel inactivation, reliance on state-dependent blockers may leave a growing population of patients without a viable treatment option. This biophysical understanding of the interplay between inactivation deficits and state-dependent block may provide a new avenue to guide the development of improved therapies.
Collapse
Affiliation(s)
- Moradeke A Bamgboye
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Maria K Traficante
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Josiah Owoyemi
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Deborah DiSilvestre
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Daiana C O Vieira
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Ivy E Dick
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America.
| |
Collapse
|
23
|
Harrison PJ, Husain SM, Lee H, Los Angeles AD, Colbourne L, Mould A, Hall NAL, Haerty W, Tunbridge EM. CACNA1C (Ca V1.2) and other L-type calcium channels in the pathophysiology and treatment of psychiatric disorders: Advances from functional genomics and pharmacoepidemiology. Neuropharmacology 2022; 220:109262. [PMID: 36154842 DOI: 10.1016/j.neuropharm.2022.109262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022]
Abstract
A role for voltage-gated calcium channels (VGCCs) in psychiatric disorders has long been postulated as part of a broader involvement of intracellular calcium signalling. However, the data were inconclusive and hard to interpret. We review three areas of research that have markedly advanced the field. First, there is now robust genomic evidence that common variants in VGCC subunit genes, notably CACNA1C which encodes the L-type calcium channel (LTCC) CaV1.2 subunit, are trans-diagnostically associated with psychiatric disorders including schizophrenia and bipolar disorder. Rare variants in these genes also contribute to the risk. Second, pharmacoepidemiological evidence supports the possibility that calcium channel blockers, which target LTCCs, might have beneficial effects on the onset or course of these disorders. This is especially true for calcium channel blockers that are brain penetrant. Third, long-range sequencing is revealing the repertoire of full-length LTCC transcript isoforms. Many novel and abundant CACNA1C isoforms have been identified in human and mouse brain, including some which are enriched compared to heart or aorta, and predicted to encode channels with differing functional and pharmacological properties. These isoforms may contribute to the molecular mechanisms of genetic association to psychiatric disorders. They may also enable development of therapeutic agents that can preferentially target brain LTCC isoforms and be of potential value for psychiatric indications.
Collapse
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, OX3 7JX, UK.
| | - Syed M Husain
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Hami Lee
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | | | - Lucy Colbourne
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Arne Mould
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Nicola A L Hall
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK; School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Elizabeth M Tunbridge
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, OX3 7JX, UK
| |
Collapse
|
24
|
Martins HC, Gilardi C, Sungur AÖ, Winterer J, Pelzl MA, Bicker S, Gross F, Kisko TM, Malikowska‐Racia N, Braun MD, Brosch K, Nenadic I, Stein F, Meinert S, Schwarting RKW, Dannlowski U, Kircher T, Wöhr M, Schratt G. Bipolar‐associated
miR
‐499‐5p controls neuroplasticity by downregulating the Cav1.2 subunit
CACNB2. EMBO Rep 2022; 23:e54420. [PMID: 35969184 PMCID: PMC9535808 DOI: 10.15252/embr.202154420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Bipolar disorder (BD) is a chronic mood disorder characterized by manic and depressive episodes. Dysregulation of neuroplasticity and calcium homeostasis are frequently observed in BD patients, but the underlying molecular mechanisms are largely unknown. Here, we show that miR‐499‐5p regulates dendritogenesis and cognitive function by downregulating the BD risk gene CACNB2. miR‐499‐5p expression is increased in peripheral blood of BD patients, as well as in the hippocampus of rats which underwent juvenile social isolation. In rat hippocampal neurons, miR‐499‐5p impairs dendritogenesis and reduces surface expression and activity of the L‐type calcium channel Cav1.2. We further identified CACNB2, which encodes a regulatory β‐subunit of Cav1.2, as a direct functional target of miR‐499‐5p in neurons. miR‐499‐5p overexpression in the hippocampus in vivo induces short‐term memory impairments selectively in rats haploinsufficient for the Cav1.2 pore forming subunit Cacna1c. In humans, miR‐499‐5p expression is negatively associated with gray matter volumes of the left superior temporal gyrus, a region implicated in auditory and emotional processing. We propose that stress‐induced miR‐499‐5p overexpression contributes to dendritic impairments, deregulated calcium homeostasis, and neurocognitive dysfunction in BD.
Collapse
Affiliation(s)
- Helena C Martins
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - Carlotta Gilardi
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - A Özge Sungur
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
- Center for Mind, Brain, and Behavior Philipps‐University of Marburg Marburg Germany
| | - Jochen Winterer
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - Michael A Pelzl
- Institute for Physiological Chemistry, Biochemical‐Pharmacological Center Marburg Philipps‐University of Marburg Marburg Germany
- Psychiatry and Psychotherapy University of Tübingen Tübingen Germany
| | - Silvia Bicker
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - Fridolin Gross
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - Theresa M Kisko
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
| | - Natalia Malikowska‐Racia
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences Krakow Poland
| | - Moria D Braun
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry University of Münster Münster Germany
| | - Rainer K W Schwarting
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
- Center for Mind, Brain, and Behavior Philipps‐University of Marburg Marburg Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry University of Münster Münster Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany
| | - Markus Wöhr
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
- Center for Mind, Brain, and Behavior Philipps‐University of Marburg Marburg Germany
- Social and Affective Neuroscience Research Group, Laboratory of Biological Psychology, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences KU Leuven Leuven Belgium
- Leuven Brain Institute KU Leuven Leuven Belgium
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| |
Collapse
|
25
|
de Marco A, Scozia G, Manfredi L, Conversi D. A Systematic Review of Genetic Polymorphisms Associated with Bipolar Disorder Comorbid to Substance Abuse. Genes (Basel) 2022; 13:genes13081303. [PMID: 35893041 PMCID: PMC9330731 DOI: 10.3390/genes13081303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 01/09/2023] Open
Abstract
It is currently unknown which genetic polymorphisms are involved in substance use disorder (SUD) comorbid with bipolar disorder (BD). The research on polymorphisms in BD comorbid with SUD (BD + SUD) is summarized in this systematic review. We looked for case-control studies that genetically compared adults and adolescents with BD and SUD, healthy controls, and BD without SUD. PRISMA was used to create our protocol, which is PROSPERO-registered (identification: CRD4221270818). The following bibliographic databases were searched indefinitely until December 2021 to identify potentially relevant articles: PubMed, PsycINFO, Scopus, and Web of Science. This systematic review, after the qualitative analysis of the study selection, included 17 eligible articles. In the selected studies, 66 polymorphisms in 29 genes were investigated. The present work delivers a group of potentially valuable genetic polymorphisms associated with BD + SUD: rs11600996 (ARNTL), rs228642/rs228682/rs2640909 (PER3), PONQ192R (PON1), rs945032 (BDKRB2), rs1131339 (NR4A3), and rs6971 (TSPO). It is important to note that none of those findings have been confirmed by two or more studies; thus, we believe that all the polymorphisms identified in this review require additional evidence to be confirmed.
Collapse
Affiliation(s)
- Adriano de Marco
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
| | - Gabriele Scozia
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
- PhD Program in Behavioral Neuroscience, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy
| | - Lucia Manfredi
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
| | - David Conversi
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
- Correspondence:
| |
Collapse
|
26
|
Legault EM, Bouquety J, Drouin-Ouellet J. Disease Modeling of Neurodegenerative Disorders Using Direct Neural Reprogramming. Cell Reprogram 2022; 24:228-251. [PMID: 35749150 DOI: 10.1089/cell.2021.0172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding the pathophysiology of CNS-associated neurological diseases has been hampered by the inaccessibility of patient brain tissue to perform live analyses at the molecular level. To this end, neural cells obtained by differentiation of patient-derived induced pluripotent stem cells (iPSCs) are considerably helpful, especially in the context of monogenic-based disorders. More recently, the use of direct reprogramming to convert somatic cells to neural cells has emerged as an alternative to iPSCs to generate neurons, astrocytes, and oligodendrocytes. This review focuses on the different studies that used direct neural reprogramming to study disease-associated phenotypes in the context of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
| | - Julie Bouquety
- Faculty of Pharmacy, Université de Montréal, Montreal, Canada
| | | |
Collapse
|
27
|
Kakehi R, Hori H, Yoshida F, Itoh M, Lin M, Niwa M, Narita M, Ino K, Imai R, Sasayama D, Kamo T, Kunugi H, Kim Y. Hypothalamic-pituitary-adrenal axis and renin-angiotensin-aldosterone system in adulthood PTSD and childhood maltreatment history. Front Psychiatry 2022; 13:967779. [PMID: 36699501 PMCID: PMC9869036 DOI: 10.3389/fpsyt.2022.967779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Accumulated evidence shows that psychological trauma and posttraumatic stress disorder (PTSD) are associated with dysfunction in the hypothalamic-pituitary-adrenal (HPA) axis. Besides the HPA axis hormones, recent evidence suggests that the renin-angiotensin-aldosterone (RAA) system and genetic factors may be involved in trauma/PTSD as well as in HPA axis regulation. This study attempted to better understand the HPA axis function in relation to PTSD and childhood maltreatment by simultaneously examining RAA system and genetic polymorphisms of candidate genes. Here we studied 69 civilian women with PTSD and 107 healthy control women without DSM-IV-based traumatic experience. Childhood maltreatment history was assessed with the Childhood Trauma Questionnaire. PTSD severity was assessed with the Posttraumatic Diagnostic Scale. Functional disability was assessed with the Sheehan Disability Scale. HPA axis was examined by measuring blood levels of cortisol, adrenocorticotropic hormone, and dehydroepiandrosterone-sulphate (DHEA-S). RAA system was examined by measuring blood renin and aldosterone levels. The FKBP5 rs1360780 and CACNA1C rs1006737 polymorphisms were genotyped. No significant differences were seen between patients and controls in any of the five hormone levels. DHEA-S levels were significantly negatively correlated with overall PTSD severity (p = 0.003) and functional disability (p = 0.008). A two-way analysis of variance with diagnostic groups and genotypes as fixed factors revealed that patients with the rs1006737 A-allele had significantly lower DHEA-S levels than patients with the GG genotype (p = 0.002) and controls with the A-allele (p = 0.006). Childhood maltreatment history was not significantly correlated with any of the five hormone levels. These results were generally unchanged after controlling for the potentially confounding effect of age, depression, and anxiety. Our findings suggest that lower DHEA-S levels could indicate more severe subtype of PTSD, the association of which might be partly modified by the CACNA1C polymorphism.
Collapse
Affiliation(s)
- Ryoko Kakehi
- Department of Behavioral Medicine, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan.,Department of Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Nursing, Wayō Women's University, Chiba, Japan
| | - Hiroaki Hori
- Department of Behavioral Medicine, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan
| | - Fuyuko Yoshida
- Department of Behavioral Medicine, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan.,Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Tokyo, Japan
| | - Mariko Itoh
- Department of Behavioral Medicine, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan.,Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Mingming Lin
- Department of Behavioral Medicine, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan
| | - Madoka Niwa
- Department of Behavioral Medicine, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan
| | - Megumi Narita
- Department of Behavioral Medicine, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan
| | - Keiko Ino
- Department of Behavioral Medicine, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan.,Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Risa Imai
- Risa Irinaka Mental Clinic, Nagoya, Japan
| | - Daimei Sasayama
- Department of Psychiatry, Shinshu University School of Medicine, Nagano, Japan
| | - Toshiko Kamo
- Wakamatsu-cho Mental and Skin Clinic, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Tokyo, Japan.,Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshiharu Kim
- Department of Behavioral Medicine, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan
| |
Collapse
|
28
|
|
29
|
The role of microRNAs in diseases and related signaling pathways. Mol Biol Rep 2021; 49:6789-6801. [PMID: 34718938 DOI: 10.1007/s11033-021-06725-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/27/2021] [Indexed: 10/19/2022]
Abstract
MicroRNAs (miRNAs) are epigenetic regulators of the gene expression and act through posttranslational modification. They bind to 3'-UTR of target mRNAs to inhibit translation or increase the degradation mRNA in many tissues. Any alteration in the level of miRNA expression in many human diseases indicates their involvement in the pathogenesis of many diseases. On the other hand, the regulation of the signaling pathways is necessary for the maintenance of natural and physiological characteristics of any cell. It is worth mentioning that dysfunction of the signaling pathways manifests itself as a disorder or disease. The significant evidence report that miRNAs regulate the several signaling pathways in many diseases. Base on previous studies, miRNAs can be used for therapeutic or diagnostic purposes. According to the important role of miRNAs on the cell signaling pathways, this article reviews miRNAs involvement in incidence of diseases by changing signaling pathways.
Collapse
|
30
|
Neef J, Palacios DS. Progress in mechanistically novel treatments for schizophrenia. RSC Med Chem 2021; 12:1459-1475. [PMID: 34671731 PMCID: PMC8459322 DOI: 10.1039/d1md00096a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Currently available pharmacological treatments for schizophrenia derive their activity mainly by directly modulating the D2 receptor. This mode of action can alleviate the positive symptoms of schizophrenia but do not address the negative or cognitive symptoms of the disease and carry a heavy side effect burden that leads to high levels of patient non-compliance. Novel mechanisms to treat the positive symptoms of schizophrenia with improved tolerability, as well as medicines to treat negative and cognitive symptoms are urgently required. Recent efforts to identify small molecules for schizophrenia with non-D2 mechanisms will be highlighted, with a focus on those that have reached clinical development. Finally, the potential for disease modifying treatments for schizophrenia will also be discussed.
Collapse
Affiliation(s)
- James Neef
- Novartis Institutes for BioMedical Research Inc 22 Windsor St Cambridge MA 02139 USA
| | - Daniel S Palacios
- Novartis Institutes for BioMedical Research Inc 22 Windsor St Cambridge MA 02139 USA
| |
Collapse
|
31
|
Wöhr M, Kisko TM, Schwarting RK. Social Behavior and Ultrasonic Vocalizations in a Genetic Rat Model Haploinsufficient for the Cross-Disorder Risk Gene Cacna1c. Brain Sci 2021; 11:brainsci11060724. [PMID: 34072335 PMCID: PMC8229447 DOI: 10.3390/brainsci11060724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/27/2023] Open
Abstract
The top-ranked cross-disorder risk gene CACNA1C is strongly associated with multiple neuropsychiatric dysfunctions. In a recent series of studies, we applied a genomically informed approach and contributed extensively to the behavioral characterization of a genetic rat model haploinsufficient for the cross-disorder risk gene Cacna1c. Because deficits in processing social signals are associated with reduced social functioning as commonly seen in neuropsychiatric disorders, we focused on socio-affective communication through 22-kHz and 50-kHz ultrasonic vocalizations (USV). Specifically, we applied a reciprocal approach for studying socio-affective communication in sender and receiver by including rough-and-tumble play and playback of 22-kHz and 50-kHz USV. Here, we review the findings obtained in this recent series of studies and link them to the key features of 50-kHz USV emission during rough-and-tumble play and social approach behavior evoked by playback of 22-kHz and 50-kHz USV. We conclude that Cacna1c haploinsufficiency in rats leads to robust deficits in socio-affective communication through 22-kHz and 50-kHz USV and associated alterations in social behavior, such as rough-and-tumble play behavior.
Collapse
Affiliation(s)
- Markus Wöhr
- Social and Affective Neuroscience Research Group, Laboratory of Biological Psychology, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, B-3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, B-3000 Leuven, Belgium
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, D-35032 Marburg, Germany; (T.M.K.); (R.K.W.S.)
- Center for Mind, Brain, and Behavior, Philipps-University of Marburg, D-35032 Marburg, Germany
- Correspondence: ; Tel.: +32-16-19-45-57
| | - Theresa M. Kisko
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, D-35032 Marburg, Germany; (T.M.K.); (R.K.W.S.)
- Center for Mind, Brain, and Behavior, Philipps-University of Marburg, D-35032 Marburg, Germany
| | - Rainer K.W. Schwarting
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, D-35032 Marburg, Germany; (T.M.K.); (R.K.W.S.)
- Center for Mind, Brain, and Behavior, Philipps-University of Marburg, D-35032 Marburg, Germany
| |
Collapse
|
32
|
Cavieres-Lepe J, Ewer J. Reciprocal Relationship Between Calcium Signaling and Circadian Clocks: Implications for Calcium Homeostasis, Clock Function, and Therapeutics. Front Mol Neurosci 2021; 14:666673. [PMID: 34045944 PMCID: PMC8144308 DOI: 10.3389/fnmol.2021.666673] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/09/2021] [Indexed: 12/03/2022] Open
Abstract
In animals, circadian clocks impose a daily rhythmicity to many behaviors and physiological processes. At the molecular level, circadian rhythms are driven by intracellular transcriptional/translational feedback loops (TTFL). Interestingly, emerging evidence indicates that they can also be modulated by multiple signaling pathways. Among these, Ca2+ signaling plays a key role in regulating the molecular rhythms of clock genes and of the resulting circadian behavior. In addition, the application of in vivo imaging approaches has revealed that Ca2+ is fundamental to the synchronization of the neuronal networks that make up circadian pacemakers. Conversely, the activity of circadian clocks may influence Ca2+ signaling. For instance, several genes that encode Ca2+ channels and Ca2+-binding proteins display a rhythmic expression, and a disruption of this cycling affects circadian function, underscoring their reciprocal relationship. Here, we review recent advances in our understanding of how Ca2+ signaling both modulates and is modulated by circadian clocks, focusing on the regulatory mechanisms described in Drosophila and mice. In particular, we examine findings related to the oscillations in intracellular Ca2+ levels in circadian pacemakers and how they are regulated by canonical clock genes, neuropeptides, and light stimuli. In addition, we discuss how Ca2+ rhythms and their associated signaling pathways modulate clock gene expression at the transcriptional and post-translational levels. We also review evidence based on transcriptomic analyzes that suggests that mammalian Ca2+ channels and transporters (e.g., ryanodine receptor, ip3r, serca, L- and T-type Ca2+ channels) as well as Ca2+-binding proteins (e.g., camk, cask, and calcineurin) show rhythmic expression in the central brain clock and in peripheral tissues such as the heart and skeletal muscles. Finally, we discuss how the discovery that Ca2+ signaling is regulated by the circadian clock could influence the efficacy of pharmacotherapy and the outcomes of clinical interventions.
Collapse
Affiliation(s)
- Javier Cavieres-Lepe
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
33
|
Li HJ, Zhang C, Hui L, Zhou DS, Li Y, Zhang CY, Wang C, Wang L, Li W, Yang Y, Qu N, Tang J, He Y, Zhou J, Yang Z, Li X, Cai J, Yang L, Chen J, Fan W, Tang W, Tang W, Jia QF, Liu W, Zhuo C, Song X, Liu F, Bai Y, Zhong BL, Zhang SF, Chen J, Xia B, Lv L, Liu Z, Hu S, Li XY, Liu JW, Cai X, Yao YG, Zhang Y, Yan H, Chang S, Zhao JP, Yue WH, Luo XJ, Chen X, Xiao X, Fang Y, Li M. Novel Risk Loci Associated With Genetic Risk for Bipolar Disorder Among Han Chinese Individuals: A Genome-Wide Association Study and Meta-analysis. JAMA Psychiatry 2021; 78:320-330. [PMID: 33263727 PMCID: PMC7711567 DOI: 10.1001/jamapsychiatry.2020.3738] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
IMPORTANCE The genetic basis of bipolar disorder (BD) in Han Chinese individuals is not fully understood. OBJECTIVE To explore the genetic basis of BD in the Han Chinese population. DESIGN, SETTING, AND PARTICIPANTS A genome-wide association study (GWAS), followed by independent replication, was conducted to identify BD risk loci in Han Chinese individuals. Individuals with BD were diagnosed based on DSM-IV criteria and had no history of schizophrenia, mental retardation, or substance dependence; individuals without any personal or family history of mental illnesses, including BD, were included as control participants. In total, discovery samples from 1822 patients and 4650 control participants passed quality control for the GWAS analysis. Replication analyses of samples from 958 patients and 2050 control participants were conducted. Summary statistics from the European Psychiatric Genomics Consortium 2 (PGC2) BD GWAS (20 352 cases and 31 358 controls) were used for the trans-ancestry genetic correlation analysis, polygenetic risk score analysis, and meta-analysis to compare BD genetic risk between Han Chinese and European individuals. The study was performed in February 2020. MAIN OUTCOMES AND MEASURES Single-nucleotide variations with P < 5.00 × 10-8 were considered to show genome-wide significance of statistical association. RESULTS The Han Chinese discovery GWAS sample included 1822 cases (mean [SD] age, 35.43 [14.12] years; 838 [46%] male) and 4650 controls (mean [SD] age, 27.48 [5.97] years; 2465 [53%] male), and the replication sample included 958 cases (mean [SD] age, 37.82 [15.54] years; 412 [43%] male) and 2050 controls (mean [SD] age, 27.50 [6.00] years; 1189 [58%] male). A novel BD risk locus in Han Chinese individuals was found near the gene encoding transmembrane protein 108 (TMEM108, rs9863544; P = 2.49 × 10-8; odds ratio [OR], 0.650; 95% CI, 0.559-0.756), which is required for dendritic spine development and glutamatergic transmission in the dentate gyrus. Trans-ancestry genetic correlation estimation (ρge = 0.652, SE = 0.106; P = 7.30 × 10-10) and polygenetic risk score analyses (maximum liability-scaled Nagelkerke pseudo R2 = 1.27%; P = 1.30 × 10-19) showed evidence of shared BD genetic risk between Han Chinese and European populations, and meta-analysis identified 2 new GWAS risk loci near VRK2 (rs41335055; P = 4.98 × 10-9; OR, 0.849; 95% CI, 0.804-0.897) and RHEBL1 (rs7969091; P = 3.12 × 10-8; OR, 0.932; 95% CI, 0.909-0.956). CONCLUSIONS AND RELEVANCE This GWAS study identified several loci and genes involved in the heritable risk of BD, providing insights into its genetic architecture and biological basis.
Collapse
Affiliation(s)
- Hui-Juan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chen Zhang
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Li Hui
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dong-Sheng Zhou
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chuang Wang
- Department of Pharmacology and Provincial Key Laboratory of Pathophysiology in Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Lu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Na Qu
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ying He
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
- National Technology Institute of Mental Disorders, Changsha, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
- Mental Health Institute of Central South University, Changsha, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Jun Zhou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
- National Technology Institute of Mental Disorders, Changsha, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
- Mental Health Institute of Central South University, Changsha, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Zihao Yang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
- National Technology Institute of Mental Disorders, Changsha, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
- Mental Health Institute of Central South University, Changsha, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Xingxing Li
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Jun Cai
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Lu Yang
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Chen
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixing Fan
- Jinhua Second Hospital, Jinhua, Zhejiang, China
| | - Wei Tang
- Department of Psychiatry, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenxin Tang
- Hangzhou Seventh People’s Hospital, Hangzhou, Zhejiang, China
| | - Qiu-Fang Jia
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Weiqing Liu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chuanjun Zhuo
- Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Xueqin Song
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Liu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Bai
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Bao-Liang Zhong
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Shu-Fang Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Jing Chen
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Bin Xia
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Province People’s Hospital, Zhengzhou, Henan, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiao-Yan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jie-Wei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming Institute of Zoology–The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Health Commission (NHC) Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hao Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Health Commission (NHC) Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Suhua Chang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Health Commission (NHC) Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jing-Ping Zhao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
- National Technology Institute of Mental Disorders, Changsha, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
- Mental Health Institute of Central South University, Changsha, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Wei-Hua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Health Commission (NHC) Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking-Tsinghua Joint Center for Life Sciences and Peking University (PKU) International Data Group (IDG)/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming Institute of Zoology–The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaogang Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
- National Technology Institute of Mental Disorders, Changsha, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
- Mental Health Institute of Central South University, Changsha, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yiru Fang
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming Institute of Zoology–The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
34
|
Zhang H, Pushkarev B, Zhou J, Mu Y, Bolshakova O, Shrestha S, Wang N, Jian B, Jin M, Zhang K, Cong M, Liu J, Vitkovsky Y, Qiu C. CACNA1C rs1006737 SNP increases the risk of essential hypertension in both Chinese Han and ethnic Russian people of Northeast Asia. Medicine (Baltimore) 2021; 100:e24825. [PMID: 33663102 PMCID: PMC7909128 DOI: 10.1097/md.0000000000024825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 01/27/2021] [Indexed: 01/05/2023] Open
Abstract
Voltage-gated Ca2+ channels play a key role in the regulation of arterial tone and blood pressure. The aim of this study was to determine whether the association of calcium voltage-gated channel subunit alpha1 C (CACNA1C) rs1006737 with essential hypertension (EH) exists in both Chinese Han and ethnic Russian populations of Northeast Asia. We used a case-control study of 2 ethnic groups in the same latitude geographical area to investigate the association between the susceptibility of EH and rs1006737 polymorphism. A total of 1512 EH patients and 1690 controls in Chinese Han people (Heilongjiang Provence, China), 250 EH patients, and 250 controls in ethnic Russian people (Chita, Russia), participated in this study. All participants were genotyped using the TaqMan SNP genotyping assay (Agena Company). Baseline characteristics and the minor allele frequencies of rs1006737 vary substantially among common Chinese Han and ethnic Russian people. Allele A was found to be a risk factor for EH in Chinese Han [(odds ratio) OR 1.705, (confidence interval) 95% CI: 1.332-2.182, P < .001] and ethnic Russian (OR 1.437; 95% CI: 1.110-1.860, P = .006). The GA genotype was significantly associated with an increased risk of hypertension (OR 1.538, 95% CI: 1.188-1.991, P = .001) for Chinese Han people, and the AA genotype (OR 2.412, 95% CI: 1.348-4.318, P = .003) for ethnic Russian people. The results of this study indicate that the A allele of the variant rs1006737 in the CACNA1C gene may be a useful genetic marker for EH risk prediction in Chinese Han and ethnic Russian populations.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Polygenic Disease, Qiqihar Medical University, No. 333 Bukui Street, Jianhua District, Qiqihar, Heilongjiang Province , PR China
| | - Boris Pushkarev
- Chita State Medical Academy, 39a Gorky Street, Chita, Russian Federation
| | - Jiexin Zhou
- Institute of Polygenic Disease, Qiqihar Medical University, No. 333 Bukui Street, Jianhua District, Qiqihar, Heilongjiang Province , PR China
| | - Yuyuan Mu
- Institute of Polygenic Disease, Qiqihar Medical University, No. 333 Bukui Street, Jianhua District, Qiqihar, Heilongjiang Province , PR China
| | - Olga Bolshakova
- Chita State Medical Academy, 39a Gorky Street, Chita, Russian Federation
| | - Sandeep Shrestha
- Institute of Polygenic Disease, Qiqihar Medical University, No. 333 Bukui Street, Jianhua District, Qiqihar, Heilongjiang Province , PR China
| | - Ningning Wang
- Institute of Polygenic Disease, Qiqihar Medical University, No. 333 Bukui Street, Jianhua District, Qiqihar, Heilongjiang Province , PR China
| | - Baiyu Jian
- Institute of Polygenic Disease, Qiqihar Medical University, No. 333 Bukui Street, Jianhua District, Qiqihar, Heilongjiang Province , PR China
| | - Ming Jin
- Institute of Polygenic Disease, Qiqihar Medical University, No. 333 Bukui Street, Jianhua District, Qiqihar, Heilongjiang Province , PR China
| | - Keyong Zhang
- Institute of Polygenic Disease, Qiqihar Medical University, No. 333 Bukui Street, Jianhua District, Qiqihar, Heilongjiang Province , PR China
| | - Mingyu Cong
- Institute of Polygenic Disease, Qiqihar Medical University, No. 333 Bukui Street, Jianhua District, Qiqihar, Heilongjiang Province , PR China
| | - Jicheng Liu
- Institute of Polygenic Disease, Qiqihar Medical University, No. 333 Bukui Street, Jianhua District, Qiqihar, Heilongjiang Province , PR China
| | - Yuri Vitkovsky
- Chita State Medical Academy, 39a Gorky Street, Chita, Russian Federation
| | - Changchun Qiu
- Institute of Polygenic Disease, Qiqihar Medical University, No. 333 Bukui Street, Jianhua District, Qiqihar, Heilongjiang Province , PR China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences Peking Union Medical College (CAMS/PUMC), Beijing, PR China
| |
Collapse
|
35
|
Banono NS, Gawel K, De Witte L, Esguerra CV. Zebrafish Larvae Carrying a Splice Variant Mutation in cacna1d: A New Model for Schizophrenia-Like Behaviours? Mol Neurobiol 2021; 58:877-894. [PMID: 33057948 PMCID: PMC7843589 DOI: 10.1007/s12035-020-02160-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
Persons with certain single nucleotide polymorphisms (SNPs) in the CACNA1D gene (encoding voltage-gated calcium channel subunit alpha 1-D) have increased risk of developing neuropsychiatric disorders such as bipolar, schizophrenia and autism. The molecular consequences of SNPs on gene expression and protein function are not well understood. Thus, the use of animal models to determine genotype-phenotype correlations is critical to understanding disease pathogenesis. Here, we describe the behavioural changes in larval zebrafish carrying an essential splice site mutation (sa17298) in cacna1da. Heterozygous mutation resulted in 50% reduction of splice variants 201 and 202 (haploinsufficiency), while homozygosity increased transcript levels of variant 201 above wild type (WT; gain-of-function, GOF). Due to low homozygote viability, we focused primarily on performing the phenotypic analysis on heterozygotes. Indeed, cacna1dasa17298/WT larvae displayed hyperlocomotion-a behaviour characterised in zebrafish as a surrogate phenotype for epilepsy, anxiety or psychosis-like behaviour. Follow-up tests ruled out anxiety or seizures, however, as neither thigmotaxis defects nor epileptiform-like discharges in larval brains were observed. We therefore focused on testing for potential "psychosis-like" behaviour by assaying cacna1dasa17298/WT larval locomotor activity under constant light, during light-dark transition and in startle response to dark flashes. Furthermore, exposure of larvae to the antipsychotics, risperidone and haloperidol reversed cacna1da-induced hyperactivity to WT levels while valproate decreased but did not reverse hyperactivity. Together, these findings demonstrate that cacna1da haploinsufficiency induces behaviours in larval zebrafish analogous to those observed in rodent models of psychosis. Future studies on homozygous mutants will determine how cacna1d GOF alters behaviour in this context.
Collapse
Affiliation(s)
- Nancy Saana Banono
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway
| | - Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090, Lublin, Poland
| | - Linus De Witte
- Pharmaceutical and Biological Sciences, AP Hogeschool Antwerpen, Antwerp, Belgium
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway.
- School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Sælandsvei 24, 0371, Oslo, Norway.
| |
Collapse
|
36
|
Zhang C, Xiao X, Li T, Li M. Translational genomics and beyond in bipolar disorder. Mol Psychiatry 2021; 26:186-202. [PMID: 32424235 DOI: 10.1038/s41380-020-0782-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
Genome-wide association studies (GWAS) have revealed multiple genomic loci conferring risk of bipolar disorder (BD), providing hints for its underlying pathobiology. However, there are still remaining questions to answer. For example, discordance exists between BD heritability estimated with earlier epidemiological evidence and that calculated based on common GWAS variations. Where is the "missing heritability"? How can we explain the biology of the disease based on genetic findings? In this review, we summarize the accomplishments and limitations of current BD GWAS, and discuss potential reasons for the "missing heritability." In addition, progresses of research for the biological mechanisms underlying BD genetic risk using brain tissues, reprogrammed cells, and model animals are reviewed. While our knowledge of BD genetic basis is significantly promoted by these efforts, the complexities of gene regulation in the genome, the spatial-temporal heterogeneity during brain development, and the limitations of different experimental models should always be considered. Notably, several genes have been widely studied given their relatively well-characterized involvement in BD (e.g., CACAN1C and ANK3), and findings of these genes are summarized to both outline possible biological mechanisms of BD and describe examples of translating GWAS discoveries into the pathophysiology.
Collapse
Affiliation(s)
- Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Tao Li
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China. .,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
37
|
Pennington K, Klaus K, Fachim HA, Butler K, Trischel K, Dalton CF, Heald A, Reynolds GP. CACNA1C methylation: association with cortisol, perceived stress, rs1006737 and childhood trauma in males. Epigenomics 2020; 12:1739-1749. [PMID: 33169621 DOI: 10.2217/epi-2020-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We investigated morning cortisol, stress, rs1006737 and childhood trauma relationship with CACNA1C methylation. Materials & methods: Morning cortisol release, childhood trauma and perceived stress were collected and genotyping for rs1006737 conducted in 103 adult males. Genomic DNA extracted from saliva was bisulphite converted and using pyrosequencing methylation determined at 11 CpG sites within intron 3 of CACNA1C. Results: A significant negative correlation between waking cortisol and overall mean methylation was found and a positive correlation between CpG5 methylation and perceived stress. Conclusion: CACNA1C methylation levels may be related to cortisol release and stress perception. Future work should evaluate the influence of altered CACNA1C methylation on stress reactivity to investigate this as a potential mechanism for mental health vulnerability.
Collapse
Affiliation(s)
| | - Kristel Klaus
- School of Psychology, University of Lincoln, Lincoln, UK.,Medical Research Council Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Helene A Fachim
- Department of Diabetes & Endocrinology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Kevin Butler
- School of Psychology, University of Lincoln, Lincoln, UK.,Translational Addiction Research Laboratory, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | | | - Caroline F Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Adrian Heald
- Department of Diabetes & Endocrinology, Salford Royal NHS Foundation Trust, Salford, UK.,The School of Medicine & Manchester Health Sciences Centre, University of Manchester, Manchester, UK
| | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
38
|
Moon AL, Brydges NM, Wilkinson LS, Hall J, Thomas KL. Cacna1c Hemizygosity Results in Aberrant Fear Conditioning to Neutral Stimuli. Schizophr Bull 2020; 46:1231-1238. [PMID: 31910256 PMCID: PMC7505182 DOI: 10.1093/schbul/sbz127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CACNA1C, a gene that encodes an alpha-1 subunit of L-type voltage-gated calcium channels, has been strongly associated with psychiatric disorders including schizophrenia and bipolar disorder. An important objective is to understand how variation in this gene can lead to an increased risk of psychopathology. Altered associative learning has also been implicated in the pathology of psychiatric disorders, particularly in the manifestation of psychotic symptoms. In this study, we utilize auditory-cued fear memory paradigms in order to investigate whether associative learning is altered in rats hemizygous for the Cacna1c gene. Cacna1c hemizygous (Cacna1c+/-) rats and their wild-type littermates were exposed to either delay, trace, or unpaired auditory fear conditioning. All rats received a Context Recall (24 h post-conditioning) and a Cue Recall (48 h post-conditioning) to test their fear responses. In the delay condition, which results in strong conditioning to the cue in wild-type animals, Cacna1c+/- rats showed increased fear responses to the context. In the trace condition, which results in strong conditioning to the context in wild-type animals, Cacna1c+/- rats showed increased fear responses to the cue. Finally, in the unpaired condition, Cacna1c+/- rats showed increased fear responses to both context and cue. These results indicate that Cacna1c heterozygous rats show aberrantly enhanced fear responses to inappropriate cues, consistent with key models of psychosis.
Collapse
Affiliation(s)
- Anna L Moon
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Nichola M Brydges
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- School of Psychology, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
39
|
Chen H, Vandorpe DH, Xie X, Alper SL, Zeidel ML, Yu W. Disruption of Cav1.2-mediated signaling is a pathway for ketamine-induced pathology. Nat Commun 2020; 11:4328. [PMID: 32859919 PMCID: PMC7455701 DOI: 10.1038/s41467-020-18167-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/04/2020] [Indexed: 01/03/2023] Open
Abstract
The general anesthetic ketamine has been repurposed by physicians as an anti-depressant and by the public as a recreational drug. However, ketamine use can cause extensive pathological changes, including ketamine cystitis. The mechanisms of ketamine's anti-depressant and adverse effects remain poorly understood. Here we present evidence that ketamine is an effective L-type Ca2+ channel (Cav1.2) antagonist that directly inhibits calcium influx and smooth muscle contractility, leading to voiding dysfunction. Ketamine prevents Cav1.2-mediated induction of immediate early genes and transcription factors, and inactivation of Cav1.2 in smooth muscle mimics the ketamine cystitis phenotype. Our results demonstrate that ketamine inhibition of Cav1.2 signaling is an important pathway mediating ketamine cystitis. In contrast, Cav1.2 agonist Bay k8644 abrogates ketamine-induced smooth muscle dysfunction. Indeed, Cav1.2 activation by Bay k8644 decreases voiding frequency while increasing void volume, indicating Cav1.2 agonists might be effective drugs for treatment of bladder dysfunction.
Collapse
Affiliation(s)
- Huan Chen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David H Vandorpe
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiang Xie
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Seth L Alper
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mark L Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Redecker TM, Kisko TM, Wöhr M, Schwarting RKW. Cacna1c haploinsufficiency lacks effects on adult hippocampal neurogenesis and volumetric properties of prefrontal cortex and hippocampus in female rats. Physiol Behav 2020; 223:112974. [PMID: 32473156 DOI: 10.1016/j.physbeh.2020.112974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
The cross-disorder risk gene CACNA1C is strongly involved in the etiology of all major neuropsychiatric disorders, with women often being more affected by CACNA1C mutations than men. Human neuroimaging studies provided evidence that CACNA1C variants are associated with anatomical and functional brain alterations, such as decreased prefrontal volumes, microstructural changes in the hippocampus, and reduced hippocampal activity during memory tasks. In mouse models, Cacna1c alterations were repeatedly linked to disorder-like behavioral phenotypes and reduced adult hippocampal neurogenesis, which has been implicated in the pathology of neuropsychiatric disorders. Here, we applied a recently developed rat model and conducted two studies to investigate the effects of partial Cacna1c depletion on adult hippocampal neurogenesis and volumetric properties of the hippocampus and the prefrontal cortex in adult female constitutive heterozygous (Cacna1c+/-) rats and wildtype (Cacna1c+/+) littermate controls. In study 1, we analyzed proliferation versus survival of adult-born hippocampal cells based on a 5-bromodeoxyuridine assay ensuring neuronal cell-type specificity through applying an immunofluorescent multiple staining approach. In study 2, we performed a detailed volumetric analysis with high structural resolution of the dorsal hippocampus and the medial prefrontal cortex, including their major substructures. Our results indicate comparable levels of cell proliferation and neuronal survival in Cacna1c+/- rats and Cacna1c+/+ controls. Additionally, we found similar volumes of the dorsal hippocampus and the medial prefrontal cortex across major substructures irrespective of genotype, indicating that Cacna1c haploinsufficiency has no prominent effects on these brain features in female rats.
Collapse
Affiliation(s)
- Tobias M Redecker
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of Psychology, Philipps-Universität Marburg, Gutenbergstr. 18, D-35037 Marburg, Germany
| | - Theresa M Kisko
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of Psychology, Philipps-Universität Marburg, Gutenbergstr. 18, D-35037 Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of Psychology, Philipps-Universität Marburg, Gutenbergstr. 18, D-35037 Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), Hans-Meerwein-Str. 6, D-35032 Marburg, Germany; Laboratory for Behavioral Neuroscience, Department of Biology, Faculty of Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of Psychology, Philipps-Universität Marburg, Gutenbergstr. 18, D-35037 Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), Hans-Meerwein-Str. 6, D-35032 Marburg, Germany.
| |
Collapse
|
41
|
Smedler E, Abé C, Pålsson E, Ingvar M, Landén M. CACNA1C polymorphism and brain cortical structure in bipolar disorder. J Psychiatry Neurosci 2020; 45:182-187. [PMID: 31829002 PMCID: PMC7828982 DOI: 10.1503/jpn.190029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The CACNA1C gene encodes the 1C subunit of L-type voltage-gated calcium channels and has been associated with several psychiatric syndromes — including bipolar disorder — in several genome-wide association studies. Experimental and clinical studies have reported changes with respect to behaviour and biomarkers in risk allele carriers, corroborating the essential role of the CACNA1C gene in neurons, during development and in the mature brain. However, the association of this gene with regional cortical thickness has not been evaluated in patients with bipolar disorder. METHODS Using magnetic resonance imaging, we measured the average cortical thickness of 68 brain regions in 87 patients genotyped for the single-nucleotide polymorphism rs1006737 in CACNA1C. RESULTS We found associations with the mean thickness of several cortical areas: the left lateral orbitofrontal and rostral anterior cingulate cortices, as well as other parts of the frontal and parietal cortices. LIMITATIONS This cross-sectional cohort study could not fully differentiate correlation from causation. CONCLUSION The CACNA1C polymorphism rs1006737 is associated with the mean thickness of cortical brain areas that have been shown to be altered in bipolar disorder.
Collapse
Affiliation(s)
- Erik Smedler
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden (Smedler, Pålsson, Landén); the Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden (Abé, Ingvar); and the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (Landén)
| | - Christoph Abé
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden (Smedler, Pålsson, Landén); the Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden (Abé, Ingvar); and the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (Landén)
| | - Erik Pålsson
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden (Smedler, Pålsson, Landén); the Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden (Abé, Ingvar); and the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (Landén)
| | - Martin Ingvar
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden (Smedler, Pålsson, Landén); the Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden (Abé, Ingvar); and the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (Landén)
| | - Mikael Landén
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden (Smedler, Pålsson, Landén); the Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden (Abé, Ingvar); and the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (Landén)
| |
Collapse
|
42
|
Gordovez FJA, McMahon FJ. The genetics of bipolar disorder. Mol Psychiatry 2020; 25:544-559. [PMID: 31907381 DOI: 10.1038/s41380-019-0634-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
Bipolar disorder (BD) is one of the most heritable mental illnesses, but the elucidation of its genetic basis has proven to be a very challenging endeavor. Genome-Wide Association Studies (GWAS) have transformed our understanding of BD, providing the first reproducible evidence of specific genetic markers and a highly polygenic architecture that overlaps with that of schizophrenia, major depression, and other disorders. Individual GWAS markers appear to confer little risk, but common variants together account for about 25% of the heritability of BD. A few higher-risk associations have also been identified, such as a rare copy number variant on chromosome 16p11.2. Large scale next-generation sequencing studies are actively searching for other alleles that confer substantial risk. As our understanding of the genetics of BD improves, there is growing optimism that some clear biological pathways will emerge, providing a basis for future studies aimed at molecular diagnosis and novel therapeutics.
Collapse
Affiliation(s)
- Francis James A Gordovez
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA.,College of Medicine, University of the Philippines Manila, 1000, Ermita, Manila, Philippines
| | - Francis J McMahon
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
43
|
Harrison PJ, Geddes JR, Tunbridge EM. The Emerging Neurobiology of Bipolar Disorder. FOCUS: JOURNAL OF LIFE LONG LEARNING IN PSYCHIATRY 2020; 17:284-293. [PMID: 32015720 DOI: 10.1176/appi.focus.17309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
(Reprinted with permission from Trends in Neurosciences, January 2018, Vol. 41, No. 1 ).
Collapse
|
44
|
Avazzadeh S, McDonagh K, Reilly J, Wang Y, Boomkamp SD, McInerney V, Krawczyk J, Fitzgerald J, Feerick N, O'Sullivan M, Jalali A, Forman EB, Lynch SA, Ennis S, Cosemans N, Peeters H, Dockery P, O'Brien T, Quinlan LR, Gallagher L, Shen S. Increased Ca 2+ signaling in NRXN1α +/- neurons derived from ASD induced pluripotent stem cells. Mol Autism 2019; 10:52. [PMID: 31893021 PMCID: PMC6937972 DOI: 10.1186/s13229-019-0303-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/05/2019] [Indexed: 12/28/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a high co-morbidity of epilepsy and associated with hundreds of rare risk factors. NRXN1 deletion is among the commonest rare genetic factors shared by ASD, schizophrenia, intellectual disability, epilepsy, and developmental delay. However, how NRXN1 deletions lead to different clinical symptoms is unknown. Patient-derived cells are essential to investigate the functional consequences of NRXN1 lesions to human neurons in different diseases. Methods Skin biopsies were donated by five healthy donors and three ASD patients carrying NRXN1α+/− deletions. Seven control and six NRXN1α+/− iPSC lines were derived and differentiated into day 100 cortical excitatory neurons using dual SMAD inhibition. Calcium (Ca2+) imaging was performed using Fluo4-AM, and the properties of Ca2+ transients were compared between two groups of neurons. Transcriptome analysis was carried out to undercover molecular pathways associated with NRXN1α+/− neurons. Results NRXN1α+/− neurons were found to display altered calcium dynamics, with significantly increased frequency, duration, and amplitude of Ca2+ transients. Whole genome RNA sequencing also revealed altered ion transport and transporter activity, with upregulated voltage-gated calcium channels as one of the most significant pathways in NRXN1α+/− neurons identified by STRING and GSEA analyses. Conclusions This is the first report to show that human NRXN1α+/− neurons derived from ASD patients’ iPSCs present novel phenotypes of upregulated VGCCs and increased Ca2+ transients, which may facilitate the development of drug screening assays for the treatment of ASD.
Collapse
Affiliation(s)
- Sahar Avazzadeh
- 1Regenerative Medicine Institute, School of Medicine, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Upper Newcastle, Galway, Ireland
| | - Katya McDonagh
- 1Regenerative Medicine Institute, School of Medicine, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Upper Newcastle, Galway, Ireland
| | - Jamie Reilly
- 1Regenerative Medicine Institute, School of Medicine, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Upper Newcastle, Galway, Ireland
| | - Yanqin Wang
- 1Regenerative Medicine Institute, School of Medicine, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Upper Newcastle, Galway, Ireland.,2Department of Physiology, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Stephanie D Boomkamp
- 1Regenerative Medicine Institute, School of Medicine, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Upper Newcastle, Galway, Ireland
| | - Veronica McInerney
- 3HRB Clinical Research Facility, National University of Ireland (NUI), Galway, Ireland
| | - Janusz Krawczyk
- 4Department of Haematology, Galway University Hospital, Galway, Ireland
| | | | - Niamh Feerick
- 5School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Amirhossein Jalali
- 6School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eva B Forman
- 7Children's University Hospital, Temple Street, Dublin, Ireland
| | - Sally A Lynch
- Department of Clinical Genetics, OLCHC, Dublin 12, Ireland.,9Children's University Hospital, Temple St, Dublin, Ireland.,10Academic Center on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Sean Ennis
- 11UCD Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Nele Cosemans
- 12Centre for Human Genetics, University Hospital Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Hilde Peeters
- 10Academic Center on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Peter Dockery
- 13Centre for Microscopy and Imaging, Anatomy, School of Medicine, National University of Ireland (NUI), Galway, Ireland
| | - Timothy O'Brien
- 1Regenerative Medicine Institute, School of Medicine, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Upper Newcastle, Galway, Ireland
| | - Leo R Quinlan
- 14Physiology and Human Movement Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, National University of Ireland (NUI), Galway, Ireland
| | | | - Sanbing Shen
- 1Regenerative Medicine Institute, School of Medicine, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Upper Newcastle, Galway, Ireland
| |
Collapse
|
45
|
Wang S, Shi X, Wu M, Ma S. Horizontal and vertical integrative analysis methods for mental disorders omics data. Sci Rep 2019; 9:13430. [PMID: 31530853 PMCID: PMC6748966 DOI: 10.1038/s41598-019-49718-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
In recent biomedical studies, omics profiling has been extensively conducted on various types of mental disorders. In most of the existing analyses, a single type of mental disorder and a single type of omics measurement are analyzed. In the study of other complex diseases, integrative analysis, both vertical and horizontal integration, has been conducted and shown to bring significantly new insights into disease etiology, progression, biomarkers, and treatment. In this article, we showcase the applicability of integrative analysis to mental disorders. In particular, the horizontal integration of bipolar disorder and schizophrenia and the vertical integration of gene expression and copy number variation data are conducted. The analysis is based on the sparse principal component analysis, penalization, and other advanced statistical techniques. In data analysis, integration leads to biologically sensible findings, including the disease-related gene expressions, copy number variations, and their associations, which differ from the "benchmark" analysis. Overall, this study suggests the potential of integrative analysis in mental disorder research.
Collapse
Affiliation(s)
- Shuaichao Wang
- SJTU-Yale Joint Center for Biostatistics, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xingjie Shi
- School of Economics, Nanjing University of Finance and Economics, Nanjing, 210046, China
| | - Mengyun Wu
- School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, 200433, China.
| | - Shuangge Ma
- Department of Biostatistics, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
46
|
Sykes L, Haddon J, Lancaster TM, Sykes A, Azzouni K, Ihssen N, Moon AL, Lin TCE, Linden DE, Owen MJ, O’Donovan MC, Humby T, Wilkinson LS, Thomas KL, Hall J. Genetic Variation in the Psychiatric Risk Gene CACNA1C Modulates Reversal Learning Across Species. Schizophr Bull 2019; 45:1024-1032. [PMID: 30304534 PMCID: PMC6737471 DOI: 10.1093/schbul/sby146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic variation in CACNA1C, which encodes the alpha-1 subunit of Cav1.2 L-type voltage-gated calcium channels (VGCCs), has been strongly linked to risk for psychiatric disorders including schizophrenia and bipolar disorder. How genetic variation in CACNA1C contributes to risk for these disorders is however not fully known. Both schizophrenia and bipolar disorder are associated with impairments in reversal learning (RL), which may contribute to symptoms seen in these conditions. We used a translational RL paradigm to investigate whether genetic variation in CACNA1C affects RL in both humans and transgenic rats. Associated changes in gene expression were explored using in situ hybridization and quantitative PCR in rats and the BRAINEAC online human database. Risk-associated genetic variation in CACNA1C in healthy human participants was associated with impairments in RL. Consistent with this finding, rats bearing a heterozygous deletion of Cacna1c were impaired in an analogous touchscreen RL task. We investigated the possible molecular mechanism underlying this impairment and found that Cacna1c +/- rats show decreased expression of Bdnf in prefrontal cortex. Examination of BRAINEAC data showed that human risk-associated genetic variation in CACNA1C is also associated with altered expression of brain-derived neurotrophic factor (BDNF) in the prefrontal cortex in humans. These results indicate that genetic variation in CACNA1C may contribute to risk for schizophrenia and bipolar disorder by impacting behavioral flexibility, potentially through altered regulation of BDNF expression in the prefrontal cortex. Tests of RL may be useful for translational studies and in the development of therapies targeting VGCCs.
Collapse
Affiliation(s)
- Lucy Sykes
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | | | - Thomas M Lancaster
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK,School of Psychology, Cardiff University, Cardiff, UK
| | - Arabella Sykes
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Karima Azzouni
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Niklas Ihssen
- Department of Psychology, Durham University, Durham, UK
| | - Anna L Moon
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK,School of Medicine, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Tzu-Ching E Lin
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - David E Linden
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK,School of Psychology, Cardiff University, Cardiff, UK,School of Medicine, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK,School of Medicine, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael C O’Donovan
- School of Medicine, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Trevor Humby
- School of Psychology, Cardiff University, Cardiff, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK,School of Psychology, Cardiff University, Cardiff, UK,School of Medicine, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK,School of Biosciences, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK,School of Medicine, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK,To whom correspondence should be addressed; Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK; tel: 02920-688-342, fax: +44 2920 687 068, e-mail:
| |
Collapse
|
47
|
Han D, Xue X, Yan Y, Li G. Dysfunctional Cav1.2 channel in Timothy syndrome, from cell to bedside. Exp Biol Med (Maywood) 2019; 244:960-971. [PMID: 31324123 DOI: 10.1177/1535370219863149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Timothy syndrome is a rare disorder caused by CACNA1C gene mutations and characterized by multi-organ system dysfunctions, including ventricular arrhythmias, syndactyly, dysmorphic facial features, intermittent hypoglycemia, immunodeficiency, developmental delay, and autism. Because of the low morbidity and high mortality at a young age, it remains a huge challenge to establish a diagnosis and treatment system to manage Timothy syndrome patients. Here, we aim to provide a detailed review of Timothy syndrome, discuss the mechanisms underlying dysfunctional Cav1.2 due to CACNA1C mutations, and provide some new emerging evidences in treating Timothy syndrome from cell to bedside, promoting the management of this rare disease. Impact statement The knowledge of Timothy syndrome (TS) caused by dysfunctional Cav1.2 channel due to CACNA1C mutations is rapidly evolving as novel technologies of electrophysiology are introduced and our understanding of the mechanisms of TS develops. In this review, we focus on the TS-related dysfunctional Cav1.2 and the underlying mechanisms. We update TS-related CACNA1C mutations in a precise way over the past 20 years and summarize all reported TS patients based on their clinical presentations and molecular mechanisms, respectively. We hope this review will provide a new comprehensive way to better understand the electrophysiological mechanisms underlying TS from cell to bedside, promoting the management of TS in practice.
Collapse
Affiliation(s)
- Dan Han
- 1 Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P. R. China.,2 Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P.R. China*These authors contributed equally to this work and should be considered to share first authorship
| | - Xiaolin Xue
- 1 Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| | - Yang Yan
- 2 Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P.R. China*These authors contributed equally to this work and should be considered to share first authorship
| | - Guoliang Li
- 1 Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| |
Collapse
|
48
|
Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N, Londrigan L. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci 2019; 20:E3537. [PMID: 31331039 PMCID: PMC6679227 DOI: 10.3390/ijms20143537] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/23/2022] Open
Abstract
Psychiatric disorders are mental, behavioral or emotional disorders. These conditions are prevalent, one in four adults suffer from any type of psychiatric disorders world-wide. It has always been observed that psychiatric disorders have a genetic component, however, new methods to sequence full genomes of large cohorts have identified with high precision genetic risk loci for these conditions. Psychiatric disorders include, but are not limited to, bipolar disorder, schizophrenia, autism spectrum disorder, anxiety disorders, major depressive disorder, and attention-deficit and hyperactivity disorder. Several risk loci for psychiatric disorders fall within genes that encode for voltage-gated calcium channels (CaVs). Calcium entering through CaVs is crucial for multiple neuronal processes. In this review, we will summarize recent findings that link CaVs and their auxiliary subunits to psychiatric disorders. First, we will provide a general overview of CaVs structure, classification, function, expression and pharmacology. Next, we will summarize tools to study risk loci associated with psychiatric disorders. We will examine functional studies of risk variations in CaV genes when available. Finally, we will review pharmacological evidence of the use of CaV modulators to treat psychiatric disorders. Our review will be of interest for those studying pathophysiological aspects of CaVs.
Collapse
Affiliation(s)
- Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Ashton Brennecke
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Shayna Mallat
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Julian Brown
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | - Natalie Czepiel
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Laura Londrigan
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
49
|
Zhang Z, Wang Y, Zhang Q, Zhao W, Chen X, Zhai J, Chen M, Du B, Deng X, Ji F, Wang C, Xiang Y, Li D, Wu H, Dong Q, Chen C, Li J. The effects of CACNA1C gene polymorphism on prefrontal cortex in both schizophrenia patients and healthy controls. Schizophr Res 2019; 204:193-200. [PMID: 30268820 DOI: 10.1016/j.schres.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/28/2017] [Accepted: 09/09/2018] [Indexed: 11/28/2022]
Abstract
CACNA1C gene polymorphism rs2007044 has been reported to be associated with schizophrenia, but its underlying brain mechanism is not clear. First, we conducted an exploratory functional magnetic resonance imaging (fMRI) study using an N-BACK task and a Stroop task in 194 subjects (55 schizophrenia patients and 139 healthy controls). Our whole brain analysis found that the risk allele was associated with reduced activation of the left inferior frontal gyrus (IFG) during the Stroop task (cluster size = 390 voxels, P < 0.05 TFCE-FWE corrected; peak MNI coordinates: x = -57, y = -6, z = 30). We also conducted a functional near-infrared spectroscopy (fNIRS) study using the same Stroop task in an independent sample of 126 healthy controls to validate the fMRI finding. Our repeated-measures ANCOVA on the six channels (20, 27, 33, 34, 40 and 46) within the left IFG also found significant result. The polymorphism rs2007044 showed significant effect on the oxy-Hb data (F = 5.072, P = 0.026) and showed significant interaction effect with channels on the deoxy-Hb data (F = 2.841, P = 0.015). Taken together, results of this study suggested that rs2007044 could affect the activation of the left IFG, which was a possible brain mechanism underlying the association between CACNA1C gene polymorphism and schizophrenia.
Collapse
Affiliation(s)
- Zhifang Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Yanyan Wang
- Department of Psychiatry, HePing Hospital of Chang Zhou, Jiangsu 213003, China
| | - Qiumei Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China; School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining 272013, Shandong Province, PR China
| | - Wan Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Xiongying Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Jinguo Zhai
- School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining 272013, Shandong Province, PR China
| | - Min Chen
- School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining 272013, Shandong Province, PR China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Xiaoxiang Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Feng Ji
- School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining 272013, Shandong Province, PR China
| | | | - Yutao Xiang
- Beijing Anding Hospital, Beijing 100088, PR China; Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Dawei Li
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| | - Hongjie Wu
- Shengli Hospital of Shengli Petroleum Administration Bureau, Dongying 257022, Shandong Province, PR China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, CA 92697, United States
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China.
| |
Collapse
|
50
|
Kisko TM, Braun MD, Michels S, Witt SH, Rietschel M, Culmsee C, Schwarting RKW, Wöhr M. Sex‐dependent effects of
Cacna1c
haploinsufficiency on juvenile social play behavior and pro‐social 50‐kHz ultrasonic communication in rats. GENES BRAIN AND BEHAVIOR 2019; 19:e12552. [DOI: 10.1111/gbb.12552] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Theresa M. Kisko
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
| | - Moria D. Braun
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
| | - Susanne Michels
- Institute of Pharmacology and Clinical PharmacyPhilipps‐Universität Marburg Marburg Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine MannheimRuprecht‐Karls‐Universität Heidelberg Mannheim Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine MannheimRuprecht‐Karls‐Universität Heidelberg Mannheim Germany
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical PharmacyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| | - Rainer K. W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| |
Collapse
|