1
|
Lawrence AB, Brown SM, Bradford BM, Mabbott NA, Bombail V, Rutherford KMD. Non-neuronal brain biology and its relevance to animal welfare. Neurosci Biobehav Rev 2025; 173:106136. [PMID: 40185375 DOI: 10.1016/j.neubiorev.2025.106136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Non-neuronal cells constitute a significant portion of brain tissue and are seen as having key roles in brain homeostasis and responses to challenges. This review illustrates how non-neuronal biology can bring new perspectives to animal welfare through understanding mechanisms that determine welfare outcomes and highlighting interventions to improve welfare. Most obvious in this respect is the largely unrecognised relevance of neuroinflammation to animal welfare which is increasingly found to have roles in determining how animals respond to challenges. We start by introducing non-neuronal cells and review their involvement in affective states and cognition often seen as core psychological elements of animal welfare. We find that the evidence for a causal involvement of glia in cognition is currently more advanced than the corresponding evidence for affective states. We propose that translational research on affective disorders could usefully apply welfare science derived approaches for assessing affective states. Using evidence from translational research, we illustrate the involvement of non-neuronal cells and neuroinflammatory processes as mechanisms modulating resilience to welfare challenges including disease, pain, and social stress. We review research on impoverished environments and environmental enrichment which suggests that environmental conditions which improve animal welfare also improve resilience to challenges through balancing pro- and anti-inflammatory non-neuronal processes. We speculate that non-neuronal biology has relevance to animal welfare beyond neuro-inflammation including facilitating positive affective states. We acknowledge the relevance of neuronal biology to animal welfare whilst proposing that non-neuronal biology provides additional and relevant insights to improve animals' lives.
Collapse
Affiliation(s)
- Alistair B Lawrence
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; Scotland's Rural College (SRUC), Edinburgh EH9 3JG, UK.
| | - Sarah M Brown
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Barry M Bradford
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Neil A Mabbott
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | | | | |
Collapse
|
2
|
Bernstein HG, Nussbaumer M, Vasilevska V, Dobrowolny H, Nickl-Jockschat T, Guest PC, Steiner J. Glial cell deficits are a key feature of schizophrenia: implications for neuronal circuit maintenance and histological differentiation from classical neurodegeneration. Mol Psychiatry 2025; 30:1102-1116. [PMID: 39639174 PMCID: PMC11835740 DOI: 10.1038/s41380-024-02861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Dysfunctional glial cells play a pre-eminent role in schizophrenia pathophysiology. Post-mortem studies have provided evidence for significantly decreased glial cell numbers in different brain regions of individuals with schizophrenia. Reduced glial cell numbers are most pronounced in oligodendroglia, but reduced astrocyte cell densities have also been reported. This review highlights that oligo- and astroglial deficits are a key histopathological feature in schizophrenia, distinct from typical changes seen in neurodegenerative disorders. Significant deficits of oligodendrocytes in schizophrenia may arise in two ways: (i) demise of mature functionally compromised oligodendrocytes; and (ii) lack of mature oligodendrocytes due to failed maturation of progenitor cells. We also analyse in detail the controversy regarding deficits of astrocytes. Regardless of their origin, glial cell deficits have several pathophysiological consequences. Among these, myelination deficits due to a reduced number of oligodendrocytes may be the most important factor, resulting in the disconnectivity between neurons and different brain regions observed in schizophrenia. When glial cells die, it appears to be through degeneration, a process which is basically reversible. Thus, therapeutic interventions that (i) help rescue glial cells (ii) or improve their maturation might be a viable option. Since antipsychotic treatment alone does not seem to prevent glial cell loss or maturation deficits, there is intense search for new therapeutic options. Current proposals range from the application of antidepressants and other chemical agents as well as physical exercise to engrafting healthy glial cells into brains of schizophrenia patients.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Madeleine Nussbaumer
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Veronika Vasilevska
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Radiotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany
| | - Paul C Guest
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
- German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany.
| |
Collapse
|
3
|
Jenkins AK, Ketchesin KD, Becker-Krail DD, McClung CA. Molecular Rhythmicity in Glia: Importance for Brain Health and Relevance to Psychiatric Disease. Biol Psychiatry 2024; 96:909-918. [PMID: 38735357 PMCID: PMC11550267 DOI: 10.1016/j.biopsych.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/05/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Circadian rhythms are approximate 24-hour rhythms present in nearly all aspects of human physiology, including proper brain function. These rhythms are produced at the cellular level through a transcriptional-translational feedback loop known as the molecular clock. Diurnal variation in gene expression has been demonstrated in brain tissue from multiple species, including humans, in both cortical and subcortical regions. Interestingly, these rhythms in gene expression have been shown to be disrupted across psychiatric disorders and may be implicated in their underlying pathophysiology. However, little is known regarding molecular rhythms in specific cell types in the brain and how they might be involved in psychiatric disease. Although glial cells (e.g., astrocytes, microglia, and oligodendrocytes) have been historically understudied compared to neurons, evidence of the molecular clock is found within each of these cell subtypes. Here, we review the current literature, which suggests that molecular rhythmicity is essential to functional physiologic outputs from each glial subtype. Furthermore, disrupted molecular rhythms within these cells and the resultant functional deficits may be relevant to specific phenotypes across psychiatric illnesses. Given that circadian rhythm disruptions have been so integrally tied to psychiatric disease, the molecular mechanisms governing these associations could represent exciting new avenues for future research and potential novel pharmacologic targets for treatment.
Collapse
Affiliation(s)
- Aaron K Jenkins
- Translational Neuroscience Program, Department of Psychiatry, and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyle D Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Darius D Becker-Krail
- Translational Neuroscience Program, Department of Psychiatry, and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Colleen A McClung
- Translational Neuroscience Program, Department of Psychiatry, and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
4
|
Ni S, Peng T, Gao S, Ling C, Wu F, Jiang J, Sun J, Xiao C, Xu X. Altered brain regional homogeneity, depressive symptoms, and cognitive impairments in medication-free female patients with current depressive episodes in bipolar disorder and major depressive disorder. BMC Psychiatry 2024; 24:892. [PMID: 39643889 PMCID: PMC11622491 DOI: 10.1186/s12888-024-06352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Although symptoms of depressive episodes in patients with bipolar depressive episodes (BDE) and major depressive disorder (MDD) are similar, the treatment strategies for these disorders are completely different, suggesting that BDE and MDD have different neurobiological backgrounds. In this study, we examined the relationship between brain function and clinical symptoms, particularly cognitive function, in female individuals with bipolar disorder and MDD experiencing depressive episodes. METHODS Regional homogeneity (ReHo) was analyzed in 51 medication-free female patients with BDE, 63 medication-free female patients with MDD, and 45 female healthy controls (HCs). Depressive symptom severity was assessed using the 24-item Hamilton Depression Rating Scale (HAMD-24), and multidimensional cognitive function was evaluated using the MATRICS Consensus Cognition Battery. Partial correlation analysis was used to explore the links between the brain regions and clinical characteristics. A support vector machine (SVM) was used to assess the classification accuracy. RESULTS Compared with HCs, patients with BDE and MDD had decreased ReHo in the left lobule VI of the cerebellum and increased ReHo in the left precuneus. Patients with BDE also had reduced ReHo in the left lobules IV-V of the cerebellum and increased ReHo in the right putamen, unlike patients with MDD who had no significant differences in these regions. Patients with BDE exhibited more severe cognitive deficits in processing speed, attention, word learning, and overall cognitive function than those with MDD. In patients with BDE, a significant negative correlation was found between the right putamen and HAMD-24 scores. However, no significant association was observed between abnormal ReHo levels and cognitive function. The SVM effectively differentiated between patients with BDE, MDD, and HCs. CONCLUSION Cognitive impairment was more severe in female patients with BDE than in those with MDD. Changes in the ReHo values of the right putamen and left lobules IV-V may serve as unique neuroimaging markers for BDE. Alterations in the ReHo values of the left precuneus and left lobule VI could serve as common pathophysiological mechanisms for BDE and MDD in women and indicate depressive states.
Collapse
Affiliation(s)
- Sulin Ni
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
- Department of Psychiatry, Nanjing Brain Hospital, Medical School, Nanjing University, Nanjing, China
| | - Ting Peng
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Shuzhan Gao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
- Department of Psychiatry, Nanjing Brain Hospital, Medical School, Nanjing University, Nanjing, China
| | - Chenxi Ling
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Fan Wu
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Jing Jiang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Jing Sun
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
- Department of Psychiatry, Nanjing Brain Hospital, Medical School, Nanjing University, Nanjing, China
| | - Chaoyong Xiao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Xijia Xu
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China.
- Department of Psychiatry, Nanjing Brain Hospital, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Barbosa-Azevedo M, Dias-Carvalho A, Carvalho F, Costa VM. Chemotherapy-induced cognitive impairment and glia: A new take on chemobrain? Toxicol Appl Pharmacol 2024; 492:117085. [PMID: 39236990 DOI: 10.1016/j.taap.2024.117085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/03/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The significant rise in cancer survivorship stands out as one of the most notable achievements of modern science. However, this comes with a significant burden, as cancer treatment is not without adverse effects. Lately, there has been a growing focus on cognitive dysfunction associated with cancer treatment, often referred to as 'chemobrain'. It significantly impacts the quality of life for cancer survivors. The underlying mechanisms studied so far usually focus on neurons, while other cells of the central nervous system are often overlooked. This review seeks to place the hypothesis that glial cells may play a role in the development of chemotherapy-induced cognitive dysfunction. It summarizes the primary mechanisms proposed to date while underscoring the existing gaps in this research field. Inflammation and release of pro-inflammatory mediators by M1 microglia and A1 astrocytes are the most prevalent findings after chemotherapy. However, activation of A1 astrocytes by some chemotherapeutic agents may contribute to neuronal degeneration, alterations in synaptic branches, as well as glutamate excitotoxicity, which can contribute to cognitive impairment. Furthermore, the reduction in the number of oligodendrocytes after chemotherapy may also impact the myelin sheath, contributing to 'chemobrain'. Furthermore, some chemotherapeutic drugs activate M1 microglia, which is associated with decreased neuroplasticity and, possibly, cognitive impairment. In conclusion, data regarding the effects of chemotherapy on glial cells are scarce, and it is essential to understand how these cells are affected after cancer treatment to enable reliable therapeutic or preventive actions on cancer-treated patients.
Collapse
Affiliation(s)
- Maria Barbosa-Azevedo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Dias-Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Villafranco J, Martínez-Ramírez G, Magaña-Maldonado R, González-Ruvalcaba AP, López-Ornelas A, Velasco I, Becerril-Villanueva E, Pavón L, Estudillo E, Pérez-Sánchez G. The use of induced pluripotent stem cells as a platform for the study of depression. Front Psychiatry 2024; 15:1470642. [PMID: 39444629 PMCID: PMC11496182 DOI: 10.3389/fpsyt.2024.1470642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
The neurobiological mechanisms underlying major depressive disorder (MDD) remain largely unexplored due to the limited availability of study models in humans. Induced pluripotent stem cells (iPSCs) have overcome multiple limitations of retrospective clinical studies, contributing to a more detailed understanding of the molecular pathways that presumably contribute to the manifestation of depression. Despite the significant progress made by these study models, there are still more formidable challenges that will eventually be addressed by these platforms, as further studies may eventually emerge. This review will examine the most recent advances in the comprehension of depression by using human neurons and non-neuronal cells derived from induced pluripotent stem cells of patients with depression. This study highlights the importance of using these platforms to increase our knowledge of depression and address this psychiatric disorder more efficiently.
Collapse
Affiliation(s)
- Javier Villafranco
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de México, Mexico
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
| | - Gabriela Martínez-Ramírez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de México, Mexico
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
| | - Roxana Magaña-Maldonado
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Anna Paola González-Ruvalcaba
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Mexico City, Mexico
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Mexico City, Mexico
| | - Iván Velasco
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de México, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de México, Mexico
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de México, Mexico
| |
Collapse
|
7
|
Zhang AY, Elias E, Manners MT. Sex-dependent astrocyte reactivity: Unveiling chronic stress-induced morphological changes across multiple brain regions. Neurobiol Dis 2024; 200:106610. [PMID: 39032799 PMCID: PMC11500746 DOI: 10.1016/j.nbd.2024.106610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024] Open
Abstract
Chronic stress is a major precursor to various neuropsychiatric disorders and is linked with increased inflammation in the brain. However, the bidirectional association between inflammation and chronic stress has yet to be fully understood. Astrocytes are one of the key inflammatory regulators in the brain, and the morphological change in reactive astrocytes serves as an important indicator of inflammation. In this study, we evaluated the sex-specific astrocyte response to chronic stress or systemic inflammation in key brain regions associated with mood disorders. We conducted the unpredictable chronic mild stress (UCMS) paradigm to model chronic stress, or lipopolysaccharide (LPS) injection to model systemic inflammation. To evaluate stress-induced morphological changes in astrocyte complexity, we measured GFAP fluorescent intensity for astrocyte expression, branch bifurcation by quantifying branch points and terminal points, branch arborization by conducting Sholl analysis, and calculated the ramification index. Our analysis indicated that chronic stress-induced morphological changes in astrocytes in all brain regions investigated. The effects of chronic stress were region and sex specific. Notably, females had greater stress or inflammation-induced astrocyte activation in the hypothalamus (HYPO), CA1, CA3, and amygdala (AMY) than males. These findings indicate that chronic stress induces astrocyte activation that may drive sex and region-specific effects in females, potentially contributing to sex-dependent mechanisms of disease.
Collapse
Affiliation(s)
- Ariel Y Zhang
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA.
| | - Elias Elias
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA.
| | - Melissa T Manners
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
8
|
Fu YW, Jin SY, Li JT, Li XW, Gao TM, Yang JM. Mature astrocytes as source for astrocyte repopulation after deletion in the medial prefrontal cortex: Implications for depression. Glia 2024; 72:1646-1662. [PMID: 38801194 DOI: 10.1002/glia.24573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The adult brain retains a high repopulation capacity of astrocytes after deletion, and both mature astrocytes in the neocortex and neural stem cells in neurogenic regions possess the potential to generate astrocytes. However, the origin and the repopulation dynamics of the repopulating astrocytes after deletion remain largely unclear. The number of astrocytes is reduced in the medial prefrontal cortex (mPFC) of patients with depression, and selective elimination of mPFC astrocytes is sufficient to induce depression-like behaviors in rodents. However, whether astrocyte repopulation capacity is impaired in depression is unknown. In this study, we used different transgenic mouse lines to genetically label different cell types and demonstrated that in the mPFC of normal adult mice of both sexes, mature astrocytes were a major source of the repopulating astrocytes after acute deletion induced by an astrocyte-specific toxin, L-alpha-aminoadipic acid (L-AAA), and astrocyte regeneration was accomplished within two weeks accompanied by reversal of depression-like behaviors. Furthermore, re-ablation of mPFC astrocytes post repopulation led to reappearance of depression-like behaviors. In adult male mice subjected to 14-day chronic restraint stress, a well-validated mouse model of depression, the number of mPFC astrocytes was reduced; however, the ability of mPFC astrocytes to repopulate after L-AAA-induced deletion was largely unaltered. Our study highlights a potentially beneficial role for repopulating astrocytes in depression and provides novel therapeutic insights into enhancing local mature astrocyte generation in depression.
Collapse
Affiliation(s)
- Yi-Wen Fu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shi-Yang Jin
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jing-Ting Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Wen Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jian-Ming Yang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Wang JY, Ren P, Cui LY, Duan JY, Chen HL, Zeng ZR, Li YF. Astrocyte-specific activation of sigma-1 receptors in mPFC mediates the faster onset antidepressant effect by inhibiting NF-κB-induced neuroinflammation. Brain Behav Immun 2024; 120:256-274. [PMID: 38852761 DOI: 10.1016/j.bbi.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Major depressive disorder (MDD) is a global health burden characterized by persistent low mood, deprivation of pleasure, recurrent thoughts of death, and physical and cognitive deficits. The current understanding of the pathophysiology of MDD is lacking, resulting in few rapid and effective antidepressant therapies. Recent studies have pointed to the sigma-1 (σ-1) receptor as a potential rapid antidepressant target; σ-1 agonists have shown promise in a variety of preclinical depression models. Hypidone hydrochloride (YL-0919), an independently developed antidepressant by our institute with faster onset of action and low rate of side effects, has recently emerged as a highly selective σ-1 receptor agonist; however, its underlying astrocyte-specific mechanism is unknown. In this study, we investigated the effect of YL-0919 treatment on gene expression in the prefrontal cortex of depressive-like mice by single-cell RNA sequencing. Furthermore, we knocked down σ-1 receptors on astrocytes in the medial prefrontal cortex of mice to explore the effects of YL-0919 on depressive-like behavior and neuroinflammation in mice. Our results demonstrated that astrocyte-specific knockdown of σ-1 receptor resulted in depressive-like behavior in mice, which was reversed by YL-0919 administration. In addition, astrocytic σ-1 receptor deficiency led to activation of the NF-κB inflammatory pathway, and crosstalk between reactive astrocytes and activated microglia amplified neuroinflammation, exacerbating stress-induced neuronal apoptosis. Furthermore, the depressive-like behavior induced by astrocyte-specific knockdown of the σ-1 receptor was improved by a selective NF-κB inhibitor, JSH-23, in mice. Our study not only reaffirms the σ-1 receptor as a key target of the faster antidepressant effect of YL-0919, but also contributes to the development of astrocytic σ-1 receptor-based novel drugs.
Collapse
Affiliation(s)
- Jing-Ya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Lin-Yu Cui
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Jing-Yao Duan
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Hong-Lei Chen
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhi-Rui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| |
Collapse
|
10
|
Barsanti S, Viana JF, Veiga A, Machado JL, Abreu DS, Dias JD, Monteiro S, Silva NA, Pinto L, Oliveira JF. Assessing Different Histological Preparations for Reconstruction of Astrocyte Tridimensional Structure. Cells 2024; 13:969. [PMID: 38891101 PMCID: PMC11171983 DOI: 10.3390/cells13110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Astrocytes are ubiquitous in the brain and spinal cord and display a complex morphology important for the local interactions with neighboring cells, resulting in the modulation of circuit function. Thus, studies focusing on astrocyte physiology in the healthy and diseased brain generally present analyses of astrocytic structure. The labeling method used to visualize the astrocytic structure defines the morphological level to observe and may vary depending on the anatomical sub-regions. The method choice may significantly affect our understanding of their structural diversity. The main goal of this work was to identify a straightforward and efficient protocol for labeling and reconstructing a detailed astrocytic structure to apply and validate in different brain tissue preparations across laboratories. For that, we explored different tissue processing protocols before GFAP labeling to determine the most effective method for reconstructing astrocytic backbones in the mouse hippocampus. Our results show that the reconstruction of astrocytic structure in vibratome sections labeled by free-floating immunofluorescence protocol provides a more practical method to achieve a higher level of detail and arbor complexity in astrocyte backbone reconstruction. Free-floating immunofluorescence labeling is the most reliable method for obtaining better antibody penetration and more detailed astrocyte structure. Finally, we also show that introducing an antigen retrieval step appears useful for visualizing more complete structural details.
Collapse
Affiliation(s)
- Sara Barsanti
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - João Filipe Viana
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Alexandra Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - João Luís Machado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Daniela Sofia Abreu
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - José Duarte Dias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- IPCA-EST-2Ai, Applied Artificial Intelligence Laboratory, Polytechnic Institute of Cávado and Ave, Campus of IPCA, 4750-810 Barcelos, Portugal
| |
Collapse
|
11
|
Gonçalves-Ribeiro J, Savchak OK, Costa-Pinto S, Gomes JI, Rivas-Santisteban R, Lillo A, Sánchez Romero J, Sebastião AM, Navarrete M, Navarro G, Franco R, Vaz SH. Adenosine receptors are the on-and-off switch of astrocytic cannabinoid type 1 (CB1) receptor effect upon synaptic plasticity in the medial prefrontal cortex. Glia 2024; 72:1096-1116. [PMID: 38482984 DOI: 10.1002/glia.24518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 04/12/2024]
Abstract
The medial prefrontal cortex (mPFC) is involved in cognitive functions such as working memory. Astrocytic cannabinoid type 1 receptor (CB1R) induces cytosolic calcium (Ca2+) concentration changes with an impact on neuronal function. mPFC astrocytes also express adenosine A1 and A2A receptors (A1R, A2AR), being unknown the crosstalk between CB1R and adenosine receptors in these cells. We show here that a further level of regulation of astrocyte Ca2+ signaling occurs through CB1R-A2AR or CB1R-A1R heteromers that ultimately impact mPFC synaptic plasticity. CB1R-mediated Ca2+ transients increased and decreased when A1R and A2AR were activated, respectively, unveiling adenosine receptors as modulators of astrocytic CB1R. CB1R activation leads to an enhancement of long-term potentiation (LTP) in the mPFC, under the control of A1R but not of A2AR. Notably, in IP3R2KO mice, that do not show astrocytic Ca2+ level elevations, CB1R activation decreases LTP, which is not modified by A1R or A2AR. The present work suggests that CB1R has a homeostatic role on mPFC LTP, under the control of A1R, probably due to physical crosstalk between these receptors in astrocytes that ultimately alters CB1R Ca2+ signaling.
Collapse
Affiliation(s)
- Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Oksana K Savchak
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Costa-Pinto
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joana I Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rafael Rivas-Santisteban
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Javier Sánchez Romero
- Instituto Cajal, CSIC, Madrid, Spain
- PhD Program in Neuroscience, Universidad Autónoma de Madrid-Instituto Cajal, Madrid, Spain
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Gemma Navarro
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Franco
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
12
|
Wu Y, Lu Y, Kong L, Xie Y, Liu W, Yang A, Xin K, Yan X, Wu L, Liu Y, Zhu Q, Cao Y, Zhou Y, Jiang X, Tang Y, Wu F. Gender differences in plasma S100B levels of patients with major depressive disorder. BMC Psychiatry 2024; 24:387. [PMID: 38783266 PMCID: PMC11112965 DOI: 10.1186/s12888-024-05852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Low concentrations of S100B have neurotrophic effects and can promote nerve growth and repair, which plays an essential role in the pathophysiological and histopathological alterations of major depressive disorder (MDD) during disease development. Studies have shown that plasma S100B levels are altered in patients with MDD. In this study, we investigated whether the plasma S100B levels in MDD differ between genders. METHODS We studied 235 healthy controls (HCs) (90 males and 145 females) and 185 MDD patients (65 males and 120 females). Plasma S100B levels were detected via multifactor assay. The Mahalanobis distance method was used to detect the outliers of plasma S100B levels in the HC and MDD groups. The Kolmogorov-Smirnov test was used to test the normality of six groups of S100B samples. The Mann-Whitney test and Scheirer-Ray-Hare test were used for the comparison of S100B between diagnoses and genders, and the presence of a relationship between plasma S100B levels and demographic details or clinical traits was assessed using Spearman correlation analysis. RESULTS All individuals in the HC group had plasma S100B levels that were significantly greater than those in the MDD group. In the MDD group, males presented significantly higher plasma S100B levels than females. In the male group, the plasma S100B levels in the HC group were significantly higher than those in the MDD group, while in the female group, no significant difference was found between the HC and MDD groups. In the male MDD subgroup, there was a positive correlation between plasma S100B levels and years of education. In the female MDD subgroup, there were negative correlations between plasma S100B levels and age and suicidal ideation. CONCLUSIONS In summary, plasma S100B levels vary with gender and are decreased in MDD patients, which may be related to pathological alterations in glial cells.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Yihui Lu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Lingtao Kong
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Yu Xie
- Faculty of Public Health, China Medical University, 110001, Liaoning, P.R. China
| | - Wen Liu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Anqi Yang
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Kaiqi Xin
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Xintong Yan
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Longhai Wu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Yilin Liu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Qianying Zhu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Yang Cao
- Shenyang Mental Health Center, 110001, Liaoning, P.R. China
| | - Yifang Zhou
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Xiaowei Jiang
- Brain Function Research Section, Department of Radiology, The First Hospital of China Medical University, 110001, Liaoning, P.R. China
| | - Yanqing Tang
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
- Department of Geriatric Medicine, The First Hospital of China Medical University, 110001, Liaoning, P.R. China
| | - Feng Wu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China.
| |
Collapse
|
13
|
Lu T, Huang C, Weng R, Wang Z, Sun H, Ma X. Enteric glial cells contribute to chronic stress-induced alterations in the intestinal microbiota and barrier in rats. Heliyon 2024; 10:e24899. [PMID: 38317901 PMCID: PMC10838753 DOI: 10.1016/j.heliyon.2024.e24899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Background Emerging evidence has demonstrated the impact of psychological stress on intestinal microbiota, however, the precise mechanisms are not fully understood. Enteric glia, a unique type of peripheral glia found within the enteric nervous system (ENS), play an active role in enteric neural circuits and have profound effects on gut functions. In the present study, we tested the hypothesis that enteric glia are involved in the alterations in the intestinal microflora and barrier induced by chronic water-avoidance stress (WAS) in the gut. Methods and results Western blotting and immunohistochemical (IHC) staining were used to examine the expression of glial fibrillary acidic protein (GFAP), nitric oxide synthetase (NOS) and choline acety1transferase (ChAT) in colon tissues. 16S rDNA sequencing was performed to analyse the composition of the intestinal microbiota in rats. Changes in the tight junction proteins Occludin, Claudin1 and proliferating cell nuclear antigen (PCNA) in the colon tissues were detected after WAS. The abundance of Firmicutes, Proteobacteria, Lactobacillus and Lachnospiraceae_NK4A136 decreased significantly, whereas the abundance of Actinobacteria, Ruminococcaceae_UCG-005 and Christensenellaceae-R-7 increased significantly in stressed rats. Meanwhile, the expression of Occludin, Claudin1 and PCNA significantly decreased after WAS. Treatment with L-A-aminohexanedioic acid (L-AA), a gliotoxin that blunts astrocytic function, obviously decreased the abundance of Actinobacteria, Ruminococcaceae_UCG-005 and Christensenel-laceae_R-7 in stressed rats and significantly increased the abundance of Proteobacteria, Lactobacillus and Lachnospiraceae_NK4A136. In addition, the protein expression of colon Occludin, Claudin1, and PCNA increased after intraperitoneal injection of L-AA. Furthermore, the expression level of NOS in colon tissues was significantly decreased, whereas that of ChAT was significantly increased following L-AA treatment. Conclusions Our results showed that enteric glial cells may contribute to WAS-induced changes in the intestinal microbiota and barrier function by modulating the activity of NOS and cholinergic neurones in the ENS.
Collapse
Affiliation(s)
- Tong Lu
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Chenxu Huang
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Rongxin Weng
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Zepeng Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Haiji Sun
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Xiaoli Ma
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| |
Collapse
|
14
|
Wulaer B, Holtz MA, Nagai J. Homeostasis to Allostasis: Prefrontal Astrocyte Roles in Cognitive Flexibility and Stress Biology. ADVANCES IN NEUROBIOLOGY 2024; 39:137-163. [PMID: 39190074 DOI: 10.1007/978-3-031-64839-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
In the intricate landscape of neurophysiology, astrocytes have been traditionally cast as homeostatic cells; however, their mechanistic involvement in allostasis-particularly how they modulate the adaptive response to stress and its accumulative impact that disrupts cognitive functions and precipitates psychiatric disorders-is now starting to be unraveled. Here, we address the gap by positing astrocytes as crucial allostatic players whose molecular adaptations underlie cognitive flexibility in stress-related neuropsychiatric conditions. We review how astrocytes, responding to stress mediators such as glucocorticoid and epinephrine/norepinephrine, undergo morphological and functional transformations that parallel the maladaptive changes. Our synthesis of recent findings reveals that these glial changes, especially in the metabolically demanding prefrontal cortex, may underlie some of the neuropsychiatric mechanisms characterized by the disruption of energy metabolism and astrocytic networks, compromised glutamate clearance, and diminished synaptic support. We argue that astrocytes extend beyond their homeostatic role, actively participating in the brain's allostatic response, especially by modulating energy substrates critical for cognitive functions.
Collapse
Affiliation(s)
- Bolati Wulaer
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Mika A Holtz
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Jun Nagai
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan.
| |
Collapse
|
15
|
Ferrucci L, Cantando I, Cordella F, Di Angelantonio S, Ragozzino D, Bezzi P. Microglia at the Tripartite Synapse during Postnatal Development: Implications for Autism Spectrum Disorders and Schizophrenia. Cells 2023; 12:2827. [PMID: 38132147 PMCID: PMC10742295 DOI: 10.3390/cells12242827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Synapses are the fundamental structures of neural circuits that control brain functions and behavioral and cognitive processes. Synapses undergo formation, maturation, and elimination mainly during postnatal development via a complex interplay with neighboring astrocytes and microglia that, by shaping neural connectivity, may have a crucial role in the strengthening and weakening of synaptic functions, that is, the functional plasticity of synapses. Indeed, an increasing number of studies have unveiled the roles of microglia and astrocytes in synapse formation, maturation, and elimination as well as in regulating synaptic function. Over the past 15 years, the mechanisms underlying the microglia- and astrocytes-dependent regulation of synaptic plasticity have been thoroughly studied, and researchers have reported that the disruption of these glial cells in early postnatal development may underlie the cause of synaptic dysfunction that leads to neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia.
Collapse
Affiliation(s)
- Laura Ferrucci
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
| | - Iva Cantando
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland;
| | - Federica Cordella
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
- Center for Life Nano- & Neuro-Science, IIT, 00161 Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
- Center for Life Nano- & Neuro-Science, IIT, 00161 Rome, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Paola Bezzi
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland;
| |
Collapse
|
16
|
Miguel-Hidalgo JJ. Neuroprotective astroglial response to neural damage and its relevance to affective disorders. EXPLORATION OF NEUROPROTECTIVE THERAPY 2023; 3:328-345. [PMID: 37920189 PMCID: PMC10622120 DOI: 10.37349/ent.2023.00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/03/2023] [Indexed: 11/04/2023]
Abstract
Astrocytes not only support neuronal function with essential roles in synaptic neurotransmission, action potential propagation, metabolic support, or neuroplastic and developmental adaptations. They also respond to damage or dysfunction in surrounding neurons and oligodendrocytes by releasing neurotrophic factors and other molecules that increase the survival of the supported cells or contribute to mechanisms of structural and molecular restoration. The neuroprotective responsiveness of astrocytes is based on their ability to sense signals of degeneration, metabolic jeopardy and structural damage, and on their aptitude to locally deliver specific molecules to remedy threats to the molecular and structural features of their cellular partners. To the extent that neuronal and other glial cell disturbances are known to occur in affective disorders, astrocyte responsiveness to those disturbances may help to better understand the roles astrocytes play in affective disorders. The astrocytic sensing apparatus supporting those responses involves receptors for neurotransmitters, purines, cell adhesion molecules and growth factors. Astrocytes also share with the immune system the capacity of responding to cytokines released upon neuronal damage. In addition, in responses to specific signals astrocytes release unique factors such as clusterin or humanin that have been shown to exert potent neuroprotective effects. Astrocytes integrate the signals above to further deliver structural lipids, removing toxic metabolites, stabilizing the osmotic environment, normalizing neurotransmitters, providing anti-oxidant protection, facilitating synaptogenesis and acting as barriers to contain varied deleterious signals, some of which have been described in brain regions relevant to affective disorders and related animal models. Since various of the injurious signals that activate astrocytes have been implicated in different aspects of the etiopathology of affective disorders, particularly in relation to the diagnosis of depression, potentiating the corresponding astrocyte neuroprotective responses may provide additional opportunities to improve or complement available pharmacological and behavioral therapies for affective disorders.
Collapse
|
17
|
Madeira D, Domingues J, Lopes CR, Canas PM, Cunha RA, Agostinho P. Modification of astrocytic Cx43 hemichannel activity in animal models of AD: modulation by adenosine A 2A receptors. Cell Mol Life Sci 2023; 80:340. [PMID: 37898985 PMCID: PMC10613596 DOI: 10.1007/s00018-023-04983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
Increasing evidence implicates astrocytic dysfunction in Alzheimer's disease (AD), a neurodegenerative disorder characterised by progressive cognitive loss. The accumulation of amyloid-β (Aβ) plaques is a histopathological hallmark of AD and associated with increased astrocyte reactivity. In APP/PS1 mice modelling established AD (9 months), we now show an altered astrocytic morphology and enhanced activity of astrocytic hemichannels, mainly composed by connexin 43 (Cx43). Hemichannel activity in hippocampal astrocytes is also increased in two models of early AD: (1) mice with intracerebroventricular (icv) administration of Aβ1-42, and (2) hippocampal slices superfused with Aβ1-42 peptides. In hippocampal gliosomes of APP/PS1 mice, Cx43 levels were increased, whereas mice administered icv with Aβ1-42 only displayed increased Cx43 phosphorylation levels. This suggests that hemichannel activity might be differentially modulated throughout AD progression. Additionally, we tested if adenosine A2A receptor (A2AR) blockade reversed alterations of astrocytic hemichannel activity and found that the pharmacological blockade or genetic silencing (global and astrocytic) of A2AR prevented Aβ-induced hemichannel dysregulation in hippocampal slices, although A2AR genetic silencing increased the activity of astroglial hemichannels in control conditions. In primary cultures of astrocytes, A2AR-related protective effect was shown to occur through a protein kinase C (PKC) pathway. Our results indicate that the dysfunction of hemichannel activity in hippocampal astrocytes is an early event in AD, which is modulated by A2AR.
Collapse
Affiliation(s)
- Daniela Madeira
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Rua Larga, Polo I FMUC, First Floor, 3004-504, Coimbra, Portugal
| | - Joana Domingues
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Rua Larga, Polo I FMUC, First Floor, 3004-504, Coimbra, Portugal
| | - Cátia R Lopes
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Rua Larga, Polo I FMUC, First Floor, 3004-504, Coimbra, Portugal
| | - Paula M Canas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Rua Larga, Polo I FMUC, First Floor, 3004-504, Coimbra, Portugal
| | - Rodrigo A Cunha
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Rua Larga, Polo I FMUC, First Floor, 3004-504, Coimbra, Portugal
| | - Paula Agostinho
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal.
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Rua Larga, Polo I FMUC, First Floor, 3004-504, Coimbra, Portugal.
| |
Collapse
|
18
|
Ju S, Shin Y, Han S, Kwon J, Choi TG, Kang I, Kim SS. The Gut-Brain Axis in Schizophrenia: The Implications of the Gut Microbiome and SCFA Production. Nutrients 2023; 15:4391. [PMID: 37892465 PMCID: PMC10610543 DOI: 10.3390/nu15204391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Schizophrenia, a severe mental illness affecting about 1% of the population, manifests during young adulthood, leading to abnormal mental function and behavior. Its multifactorial etiology involves genetic factors, experiences of adversity, infection, and gene-environment interactions. Emerging research indicates that maternal infection or stress during pregnancy may also increase schizophrenia risk in offspring. Recent research on the gut-brain axis highlights the gut microbiome's potential influence on central nervous system (CNS) function and mental health, including schizophrenia. The gut microbiota, located in the digestive system, has a significant role to play in human physiology, affecting immune system development, vitamin synthesis, and protection against pathogenic bacteria. Disruptions to the gut microbiota, caused by diet, medication use, environmental pollutants, and stress, may lead to imbalances with far-reaching effects on CNS function and mental health. Of interest are short-chain fatty acids (SCFAs), metabolic byproducts produced by gut microbes during fermentation. SCFAs can cross the blood-brain barrier, influencing CNS activity, including microglia and cytokine modulation. The dysregulation of neurotransmitters produced by gut microbes may contribute to CNS disorders, including schizophrenia. This review explores the potential relationship between SCFAs, the gut microbiome, and schizophrenia. Our aim is to deepen the understanding of the gut-brain axis in schizophrenia and to elucidate its implications for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Songhyun Ju
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Juhui Kwon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
19
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Delcourte S, Bouloufa A, Rovera R, Bétry C, Abrial E, Dkhissi-Benyahya O, Heinrich C, Marcy G, Raineteau O, Haddjeri N, Lucas G, Etiévant A. Chemogenetic activation of prefrontal astroglia enhances recognition memory performance in rat. Biomed Pharmacother 2023; 166:115384. [PMID: 37657260 DOI: 10.1016/j.biopha.2023.115384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Prefrontal cortex (PFC) inputs to the hippocampus are supposed to be critical in memory processes. Astrocytes are involved in several brain functions, such as homeostasis, neurotransmission, synaptogenesis. However, their role in PFC-mediated modulation of memory has yet to be studied. The present study aims at uncovering the role of PFC astroglia in memory performance and synaptic plasticity in the hippocampus. Using chemogenetic and lesions approaches of infralimbic PFC (IL-PFC) astrocytes, we evaluated memory performance in the novel object recognition task (NOR) and dorsal hippocampus synaptic plasticity. We uncovered a surprising role of PFC astroglia in modulating object recognition memory. In opposition to the astroglia PFC lesion, we show that chemogenetic activation of IL-PFC astrocytes increased memory performance in the novel object recognition task and facilitated in vivo dorsal hippocampus synaptic metaplasticity. These results redefine the involvement of PFC in recognition mnemonic processing, uncovering an important role of PFC astroglia.
Collapse
Affiliation(s)
- Sarah Delcourte
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Amel Bouloufa
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Renaud Rovera
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Cécile Bétry
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Erika Abrial
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Ouria Dkhissi-Benyahya
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Christophe Heinrich
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Guillaume Marcy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Nasser Haddjeri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| | - Guillaume Lucas
- Université de Bordeaux, CNRS UMR 5287, INCIA, P3TN, Bordeaux F-33000, France
| | - Adeline Etiévant
- Integrative and Clinical Neurosciences EA481, University of Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
21
|
Mao H, Huang H, Zhou R, Zhu J, Yan J, Jiang H, Zhang L. High preoperative blood oxaloacetate and 2-aminoadipic acid levels are associated with postoperative delayed neurocognitive recovery. Front Endocrinol (Lausanne) 2023; 14:1212815. [PMID: 37583434 PMCID: PMC10424917 DOI: 10.3389/fendo.2023.1212815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction This study aimed to identify preoperative blood biomarkers related to development of delayed neurocognitive recovery (dNCR) following surgery. Methods A total of 67 patients (≥65 years old) who underwent head and neck tumor resection under general anesthesia were assessed using the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Preoperative serum metabolomics were determined using widely targeted metabolomics technology. Results Of the 67 patients, 25 developed dNCR and were matched to 25 randomly selected patients from the remaining 42 without dNCR. Differential metabolites were selected using the criteria of variable importance in projection > 1.0 in orthogonal partial least squares discrimination analysis, false discovery rate <0.05, and fold-change >1.2 or <0.83 to minimize false positives. Preoperative serum levels of oxaloacetate (OR: 1.054, 95% CI: 1.027-1.095, P = 0.001) and 2-aminoadipic acid (2-AAA) (OR: 1.181, 95% CI: 1.087-1.334, P = 0.001) were associated with postoperative dNCR after adjusting for anesthesia duration, education, and age. Areas under the curve for oxaloacetate and 2-AAA were 0.86 (sensitivity: 0.84, specificity: 0.88) and 0.86 (sensitivity: 0.84, specificity: 0.84), respectively. High levels of preoperative oxaloacetate and 2-AAA also were associated with postoperative decreased MoCA (β: 0.022, 95% CI: 0.005-0.04, P = 0.013 for oxaloacetate; β: 0.077, 95%CI: 0.016-0.137, P = 0.014 for 2-AAA) and MMSE (β: 0.024, 95% CI: 0.009-0.039, P = 0.002 for oxaloacetate; β: 0.083, 95% CI: 0.032-0.135, P = 0.002 for 2-AAA) scores after adjusting for age, education level, and operation time. Conclusion High preoperative blood levels of oxaloacetate and 2-AAA were associated with increased risk of postoperative dNCR. Clinical trial registration https://classic.clinicaltrials.gov/ct2/show/NCT05105451, identifier NCT05105451.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Madeira D, Lopes CR, Simões AP, Canas PM, Cunha RA, Agostinho P. Astrocytic A 2A receptors silencing negatively impacts hippocampal synaptic plasticity and memory of adult mice. Glia 2023. [PMID: 37183905 DOI: 10.1002/glia.24384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
Astrocytes are wired to bidirectionally communicate with neurons namely with synapses, thus shaping synaptic plasticity, which in the hippocampus is considered to underlie learning and memory. Adenosine A2A receptors (A2A R) are a potential candidate to modulate this bidirectional communication, since A2A R regulate synaptic plasticity and memory and also control key astrocytic functions. Nonetheless, little is known about the role of astrocytic A2A R in synaptic plasticity and hippocampal-dependent memory. Here, we investigated the impact of genetic silencing astrocytic A2A R on hippocampal synaptic plasticity and memory of adult mice. The genetic A2A R silencing in astrocytes was accomplished by a bilateral injection into the CA1 hippocampal area of a viral construct (AAV5-GFAP-GFP-Cre) that inactivate A2A R expression in astrocytes of male adult mice carrying "floxed" A2A R gene, as confirmed by A2A R binding assays. Astrocytic A2A R silencing alters astrocytic morphology, typified by an increment of astrocytic arbor complexity, and led to deficits in spatial reference memory and compromised hippocampal synaptic plasticity, typified by a reduction of LTP magnitude and a shift of synaptic long-term depression (LTD) toward LTP. These data indicate that astrocytic A2A R control astrocytic morphology and influence hippocampal synaptic plasticity and memory of adult mice in a manner different from neuronal A2A R.
Collapse
Affiliation(s)
- Daniela Madeira
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology- University of Coimbra (CNC- UC), Coimbra, Portugal
| | - Cátia R Lopes
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology- University of Coimbra (CNC- UC), Coimbra, Portugal
| | - Ana P Simões
- Center for Neuroscience and Cell Biology- University of Coimbra (CNC- UC), Coimbra, Portugal
| | - Paula M Canas
- Center for Neuroscience and Cell Biology- University of Coimbra (CNC- UC), Coimbra, Portugal
| | - Rodrigo A Cunha
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology- University of Coimbra (CNC- UC), Coimbra, Portugal
| | - Paula Agostinho
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology- University of Coimbra (CNC- UC), Coimbra, Portugal
| |
Collapse
|
23
|
Liu M, Zhu L, Guo YJ, Zhang SS, Jiang L, Zhang Y, Chao FL, Tang Y. The effects of voluntary running exercise on the astrocytes of the medial prefrontal cortex in APP/PS1 mice. J Comp Neurol 2023. [PMID: 37146123 DOI: 10.1002/cne.25485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 05/07/2023]
Abstract
Pathological changes in the medial prefrontal cortex (mPFC) and astrocytes are closely associated with Alzheimer's disease (AD). Voluntary running has been found to effectively delay AD. However, the effects of voluntary running on mPFC astrocytes in AD are unclear. A total of 40 10-month-old male amyloid precursor protein/presenilin 1 (APP/PS1) mice and 40 wild-type (WT) mice were randomly divided into control and running groups, and the running groups underwent voluntary running for 3 months. Mouse cognition was assessed by the novel object recognition (NOR), Morris water maze (MWM), and Y maze tests. The effects of voluntary running on mPFC astrocytes were investigated using immunohistochemistry, immunofluorescence, western blotting, and stereology. APP/PS1 mice performed significantly worse than WT mice in the NOR, MWM, and Y maze tests, and voluntary running improved the performance of APP/PS1 mice in these tests. The total number of mPFC astrocytes was increased, cell bodies were enlarged, and protrusion number and length were increased in AD mice compared with WT mice, but there was no difference in component 3 (C3) levels in the mPFC (total mPFC level); however, C3 and S100B levels in astrocytes were increased in AD mice. Voluntary running reduced the total number of astrocytes and S100B levels in astrocytes and increased the density of PSD95+ puncta in direct contact with astrocyte protrusions in the APP/PS1 mouse mPFC. Three months of voluntary running inhibited astrocyte hyperplasia and S100B expression in astrocytes, increased the density of synapses in contact with astrocytes, and improved cognitive function in APP/PS1 mice.
Collapse
Affiliation(s)
- Mei Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P. R. China
| | - Lin Zhu
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P. R. China
| | - Yi-Jing Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P. R. China
| | - Shan-Shan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Army Medical University, Chongqing, P. R. China
| | - Lin Jiang
- Laboratory Teaching & Management Center, Chongqing Medical University, Chongqing, P. R. China
| | - Yi Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Feng-Lei Chao
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P. R. China
| | - Yong Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P. R. China
| |
Collapse
|
24
|
Shigetomi E, Koizumi S. The role of astrocytes in behaviors related to emotion and motivation. Neurosci Res 2023; 187:21-39. [PMID: 36181908 DOI: 10.1016/j.neures.2022.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 10/14/2022]
Abstract
Astrocytes are present throughout the brain and intimately interact with neurons and blood vessels. Three decades of research have shown that astrocytes reciprocally communicate with neurons and other non-neuronal cells in the brain and dynamically regulate cell function. Astrocytes express numerous receptors for neurotransmitters, neuromodulators, and cytokines and receive information from neurons, other astrocytes, and other non-neuronal cells. Among those receptors, the main focus has been G-protein coupled receptors. Activation of G-protein coupled receptors leads to dramatic changes in intracellular signaling (Ca2+ and cAMP), which is considered a form of astrocyte activity. Methodological improvements in measurement and manipulation of astrocytes have advanced our understanding of the role of astrocytes in circuits and have begun to reveal unexpected functions of astrocytes in behavior. Recent studies have suggested that astrocytic activity regulates behavior flexibility, such as coping strategies for stress exposure, and plays an important role in behaviors related to emotion and motivation. Preclinical evidence suggests that impairment of astrocytic function contributes to psychiatric diseases, especially major depression. Here, we review recent progress on the role of astrocytes in behaviors related to emotion and motivation.
Collapse
Affiliation(s)
- Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan; Yamanashi GLIA Center, Graduate School of Medical Science, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan.
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan; Yamanashi GLIA Center, Graduate School of Medical Science, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan.
| |
Collapse
|
25
|
Kruyer A, Kalivas PW, Scofield MD. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology 2023; 48:21-36. [PMID: 35577914 PMCID: PMC9700696 DOI: 10.1038/s41386-022-01338-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
Abstract
Over the last 15 years, the field of neuroscience has evolved toward recognizing the critical role of astroglia in shaping neuronal synaptic activity and along with the pre- and postsynapse is now considered an equal partner in tripartite synaptic transmission and plasticity. The relative youth of this recognition and a corresponding deficit in reagents and technologies for quantifying and manipulating astroglia relative to neurons continues to hamper advances in understanding tripartite synaptic physiology. Nonetheless, substantial advances have been made and are reviewed herein. We review the role of astroglia in synaptic function and regulation of behavior with an eye on how tripartite synapses figure into brain pathologies underlying behavioral impairments in psychiatric disorders, both from the perspective of measures in postmortem human brains and more subtle influences on tripartite synaptic regulation of behavior in animal models of psychiatric symptoms. Our goal is to provide the reader a well-referenced state-of-the-art understanding of current knowledge and predict what we may discover with deeper investigation of tripartite synapses using reagents and technologies not yet available.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
26
|
Lu L, Gao Z, Wei Z, Yi M. Working memory depends on the excitatory-inhibitory balance in neuron-astrocyte network. CHAOS (WOODBURY, N.Y.) 2023; 33:013127. [PMID: 36725632 DOI: 10.1063/5.0126890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Previous studies have shown that astrocytes are involved in information processing and working memory (WM) in the central nervous system. Here, the neuron-astrocyte network model with biological properties is built to study the effects of excitatory-inhibitory balance and neural network structures on WM tasks. It is found that the performance metrics of WM tasks under the scale-free network are higher than other network structures, and the WM task can be successfully completed when the proportion of excitatory neurons in the network exceeds 30%. There exists an optimal region for the proportion of excitatory neurons and synaptic weight that the memory performance metrics of the WM tasks are higher. The multi-item WM task shows that the spatial calcium patterns for different items overlap significantly in the astrocyte network, which is consistent with the formation of cognitive memory in the brain. Moreover, complex image tasks show that cued recall can significantly reduce systematic noise and maintain the stability of the WM tasks. The results may contribute to understand the mechanisms of WM formation and provide some inspirations into the dynamic storage and recall of memory.
Collapse
Affiliation(s)
- Lulu Lu
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
| | - Zhuoheng Gao
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
| | - Zhouchao Wei
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
| | - Ming Yi
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
27
|
Šutulović N, Vesković M, Puškaš N, Zubelić A, Jerotić D, Šuvakov S, Despotović S, Grubač Ž, Mladenović D, Macut D, Rašić-Marković A, Simić T, Stanojlović O, Hrnčić D. Chronic Prostatitis/Chronic Pelvic Pain Syndrome Induces Depression-Like Behavior and Learning-Memory Impairment: A Possible Link with Decreased Hippocampal Neurogenesis and Astrocyte Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3199988. [PMID: 37064799 PMCID: PMC10101744 DOI: 10.1155/2023/3199988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 04/18/2023]
Abstract
Pathogenesis of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) remains unclear since it represents an interplay between immunological, endocrine, and neuropsychiatric factors. Patients suffering from CP/CPPS often develop mental health-related disorders such as anxiety, depression, or cognitive impairment. The aim of this study was to investigate depression-like behavior, learning, and memory processes in a rat model of CP/CPPS and to determine the alterations in hippocampal structure and function. Adult male Wistar albino rats (n = 6 in each group) from CP/CPPS (single intraprostatic injection of 3% λ-carrageenan, day 0) and Sham (0.9% NaCl) groups were subjected to pain threshold test (days 2, 3, and 7), depression-like behavior, and learning-memory tests (both on day 7). Decreased pain threshold in the scrotal region and histopathological presence of necrosis and inflammatory infiltrate in prostatic tissue confirmed the development of CP/CPPS. The forced swimming test revealed the depression-like behavior evident through increased floating time, while the modified elevated plus maze test revealed learning and memory impairment through prolonged transfer latency in the CP/CPPS group in comparison with Sham (p < 0.001 and p < 0.001, respectively). Biochemical analysis showed decreased serum levels of testosterone in CP/CPPS group vs. the Sham (p < 0.001). The CP/CPPS induced a significant upregulation of ICAM-1 in rat cortex (p < 0.05) and thalamus (p < 0.01) and increased GFAP expression in the hippocampal astrocytes (p < 0.01) vs. Sham, suggesting subsequent neuroinflammation and astrocytosis. Moreover, a significantly decreased number of DCX+ and Ki67+ neurons in the hippocampus was observed in the CP/CPPS group (p < 0.05) vs. Sham, indicating decreased neurogenesis and neuronal proliferation. Taken together, our data indicates that CP/CPPS induces depression-like behavior and cognitive declines that are at least partly mediated by neuroinflammation and decreased neurogenesis accompanied by astrocyte activation.
Collapse
Affiliation(s)
- Nikola Šutulović
- Institute of Medical Physiology “Richard Burian”, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Milena Vesković
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Nela Puškaš
- Institute of Histology and Embryology “Aleksandar Đ. Kostić”, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Aleksa Zubelić
- Institute of Medical Physiology “Richard Burian”, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Djurdja Jerotić
- Institute of Clinical and Medical Biochemistry, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Sonja Šuvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55902, USA
| | - Sanja Despotović
- Institute of Histology and Embryology “Aleksandar Đ. Kostić”, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Željko Grubač
- Institute of Medical Physiology “Richard Burian”, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Dušan Mladenović
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Disease, University Clinical Centre of Serbia, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Aleksandra Rašić-Marković
- Institute of Medical Physiology “Richard Burian”, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Tatjana Simić
- Institute of Clinical and Medical Biochemistry, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Olivera Stanojlović
- Institute of Medical Physiology “Richard Burian”, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Dragan Hrnčić
- Institute of Medical Physiology “Richard Burian”, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| |
Collapse
|
28
|
Petrelli F, Zehnder T, Laugeray A, Mondoloni S, Calì C, Pucci L, Molinero Perez A, Bondiolotti BM, De Oliveira Figueiredo E, Dallerac G, Déglon N, Giros B, Magrassi L, Mothet JP, Mameli M, Simmler LD, Bezzi P. Disruption of Astrocyte-Dependent Dopamine Control in the Developing Medial Prefrontal Cortex Leads to Excessive Grooming in Mice. Biol Psychiatry 2022; 93:966-975. [PMID: 36958999 DOI: 10.1016/j.biopsych.2022.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
BACKGROUND Astrocytes control synaptic activity by modulating perisynaptic concentrations of ions and neurotransmitters including dopamine (DA) and, as such, could be involved in the modulating aspects of mammalian behavior. METHODS We produced a conditional deletion of the vesicular monoamine transporter 2 (VMAT2) specifically in astrocytes (aVMTA2cKO mice) and studied the effects of the lack of VMAT2 in prefrontal cortex (PFC) astrocytes on the regulation of DA levels, PFC circuit functions, and behavioral processes. RESULTS We found a significant reduction of medial PFC (mPFC) DA levels and excessive grooming and compulsive repetitive behaviors in aVMAT2cKO mice. The mice also developed a synaptic pathology, expressed through increased relative AMPA versus NMDA receptor currents in synapses of the dorsal striatum receiving inputs from the mPFC. Importantly, behavioral and synaptic phenotypes were rescued by re-expression of mPFC VMAT2 and L-DOPA treatment, showing that the deficits were driven by mPFC astrocytes that are critically involved in developmental DA homeostasis. By analyzing human tissue samples, we found that VMAT2 is expressed in human PFC astrocytes, corroborating the potential translational relevance of our observations in mice. CONCLUSIONS Our study shows that impairment of the astrocytic control of DA in the mPFC leads to symptoms resembling obsessive-compulsive spectrum disorders such as trichotillomania and has a profound impact on circuit function and behaviors.
Collapse
Affiliation(s)
- Francesco Petrelli
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Tamara Zehnder
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anthony Laugeray
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Sarah Mondoloni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Corrado Calì
- Department of Neuroscience, University of Torino, Torino, Italy
| | - Luca Pucci
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Alicia Molinero Perez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | | | - Glenn Dallerac
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Aix-Marseille Université UMR7286 CNRS, Marseille, France
| | - Nicole Déglon
- Neurosciences Research Center, Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Bruno Giros
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Montreal, Quebec, Canada
| | - Lorenzo Magrassi
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche e Pediatriche, Università degli Studi di Pavia, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Jean-Pierre Mothet
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Aix-Marseille Université UMR7286 CNRS, Marseille, France; "Biophotonics and Synapse Physiopathology" Team, UMR9188 CNRS - ENS Paris Saclay, Orsay, France
| | - Manuel Mameli
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Linda D Simmler
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
29
|
Pittolo S, Yokoyama S, Willoughby DD, Taylor CR, Reitman ME, Tse V, Wu Z, Etchenique R, Li Y, Poskanzer KE. Dopamine activates astrocytes in prefrontal cortex via α1-adrenergic receptors. Cell Rep 2022; 40:111426. [PMID: 36170823 PMCID: PMC9555850 DOI: 10.1016/j.celrep.2022.111426] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 12/31/2022] Open
Abstract
The prefrontal cortex (PFC) is a hub for cognitive control, and dopamine profoundly influences its functions. In other brain regions, astrocytes sense diverse neurotransmitters and neuromodulators and, in turn, orchestrate regulation of neuroactive substances. However, basic physiology of PFC astrocytes, including which neuromodulatory signals they respond to and how they contribute to PFC function, is unclear. Here, we characterize divergent signaling signatures in mouse astrocytes of the PFC and primary sensory cortex, which show differential responsiveness to locomotion. We find that PFC astrocytes express receptors for dopamine but are unresponsive through the Gs/Gi-cAMP pathway. Instead, fast calcium signals in PFC astrocytes are time locked to dopamine release and are mediated by α1-adrenergic receptors both ex vivo and in vivo. Further, we describe dopamine-triggered regulation of extracellular ATP at PFC astrocyte territories. Thus, we identify astrocytes as active players in dopaminergic signaling in the PFC, contributing to PFC function though neuromodulator receptor crosstalk. Pittolo et al. demonstrate that the neuromodulator dopamine targets astrocytes, a type of brain cell, via receptors specific to another neuromodulator—norepinephrine. This study provides groundwork on how dopamine affects non-neuronal brain cells and suggests that crosstalk between neuromodulatory pathways occurs in vivo, with possible clinical implications.
Collapse
Affiliation(s)
- Silvia Pittolo
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Sae Yokoyama
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Drew D Willoughby
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Charlotte R Taylor
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Michael E Reitman
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Vincent Tse
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Roberto Etchenique
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón 2, C1428EGA, Buenos Aires, Argentina
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA.
| |
Collapse
|
30
|
Hirata RYS, Oliveira RN, Silva MSCF, Armada-Moreira A, Vaz SH, Ribeiro FF, Sebastião AM, Lemes JA, de Andrade JS, Rosário BA, Céspedes IC, Viana MB. Platinum nanoparticle-based microreactors protect against the behavioral and neurobiological consequences of chronic stress exposure. Brain Res Bull 2022; 190:1-11. [PMID: 36089164 DOI: 10.1016/j.brainresbull.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 11/15/2022]
Abstract
Excitotoxicity is described as the exacerbated activation of glutamate AMPA and NMDA receptors that leads to neuronal damage, and ultimately to cell death. Astrocytes are responsible for the clearance of 80-90% of synaptically released glutamate, preventing excitotoxicity. Chronic stress renders neurons vulnerable to excitotoxicity and has been associated to neuropsychiatric disorders, i.e., anxiety. Microreactors containing platinum nanoparticles (Pt-NP) and glutamate dehydrogenase have shown in vitro activity against excitotoxicity. The purpose of the present study was to investigate the in vivo effects of these microreactors on the behavioral and neurobiological effects of chronic stress exposure. Rats were either unstressed or exposed for 2 weeks to an unpredictable chronic mild stress paradigm (UCMS), administered intra-ventral hippocampus with the microreactors (with or without the blockage of astrocyte functioning), and seven days later tested in the elevated T-maze (ETM; Experiment 1). The ETM allows the measurement of two defensive responses, avoidance and escape, in terms of psychopathology respectively related to generalized anxiety and panic disorder. Locomotor activity in an open field was also measured. Since previous evidence shows that stress inhibits adult neurogenesis, we evaluated the effects of the different treatments on the number of cells expressing the marker of migrating neuroblasts doublecortin (DCX) in the dorsal and ventral hippocampus (Experiment 2). Results showed that UCMS induces anxiogenic effects, increases locomotion, and decreases the number of DCX cells in the dorsal and ventral hippocampus, effects that were counteracted by microreactor administration. This is the first study to demonstrate the in vivo efficacy of Pt-NP against the behavioral and neurobiological effects of chronic stress exposure.
Collapse
Affiliation(s)
- Rafael Y S Hirata
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - Roberto N Oliveira
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - Mariana S C F Silva
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - Adam Armada-Moreira
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Bredgatan 33, 602 21 Norrköping, Sweden
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz MB, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz MB, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz MB, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Jéssica A Lemes
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - José S de Andrade
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - Bárbara A Rosário
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - Isabel C Céspedes
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, 04023-900 São Paulo, SP, Brazil
| | - Milena B Viana
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil.
| |
Collapse
|
31
|
Zhang Y, Yin HY, Rubini P, Illes P, Tang Y. ATP indirectly stimulates hippocampal CA1 and CA3 pyramidal neurons via the activation of neighboring P2X7 receptor-bearing astrocytes and NG2 glial cells, respectively. Front Pharmacol 2022; 13:944541. [PMID: 35935830 PMCID: PMC9355480 DOI: 10.3389/fphar.2022.944541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
There is ongoing dispute on the question whether CNS neurons possess ATP-sensitive P2X7 receptors (Rs) or whether only non-neuronal cells bear this receptor-type and indirectly signal to the neighboring neurons. We genetically deleted P2X7Rs specifically in astrocytes, oligodendrocytes and microglia, and then recorded current responses in neurons to the prototypic agonist of this receptor, dibenzoyl-ATP (Bz-ATP). These experiments were made in brain slice preparations taken from the indicated variants of the P2X7R KO animals. In hippocampal CA3, but not CA1 pyramidal neurons, the deletion of oligodendrocytic (NG2 glial) P2X7Rs abolished the Bz-ATP-induced current responses. In contrast to the Bz-ATP-induced currents in CA3 pyramidal neurons, current amplitudes evoked by the ionotropic glutamate/GABAAR agonists AMPA/muscimol were not inhibited at all. Whereas in the CA3 area NG2 glia appeared to mediate the P2X7R-mediated stimulation of pyramidal neurons, in the CA1 area, astrocytic P2X7Rs had a somewhat similar effect. This was shown by recording the frequencies and amplitudes of spontaneous excitatory currents (sPSCs) in brain slice preparations. Bz-ATP increased the sPSC frequency in CA1, but not CA3 pyramidal neurons without altering the amplitude, indicating a P2X7R-mediated increase of the neuronal input. Micro-injection of the selective astrocytic toxin L-α-aminoadipate into both hippocampi, or the in vitro application of the GABAAR antagonistic gabazine, completely blocked the frequency increases of sPSCs. Hence, CA1 and CA3 pyramidal neurons of the mouse did not possess P2X7Rs, but were indirectly modulated by astrocytic and oligodendrocytic P2X7Rs, respectively.
Collapse
Affiliation(s)
- Ying Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Yan Yin
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Patrizia Rubini
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
- *Correspondence: Peter Illes, ; Yong Tang,
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Peter Illes, ; Yong Tang,
| |
Collapse
|
32
|
Zhao F, Li B, Yang W, Ge T, Cui R. Brain-immune interaction mechanisms: Implications for cognitive dysfunction in psychiatric disorders. Cell Prolif 2022; 55:e13295. [PMID: 35860850 PMCID: PMC9528770 DOI: 10.1111/cpr.13295] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Objectives Cognitive dysfunction has been identified as a major symptom of a series of psychiatric disorders. Multidisciplinary studies have shown that cognitive dysfunction is monitored by a two‐way interaction between the neural and immune systems. However, the specific mechanisms of cognitive dysfunction in immune response and brain immune remain unclear. Materials and methods In this review, we summarized the relevant research to uncover our comprehension of the brain–immune interaction mechanisms underlying cognitive decline. Results The pathophysiological mechanisms of brain‐immune interactions in psychiatric‐based cognitive dysfunction involve several specific immune molecules and their associated signaling pathways, impairments in neural and synaptic plasticity, and the potential neuro‐immunological mechanism of stress. Conclusions Therefore, this review may provide a better theoretical basis for integrative therapeutic considerations for psychiatric disorders associated with cognitive dysfunction.
Collapse
Affiliation(s)
- Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Ortinski PI, Reissner KJ, Turner J, Anderson TA, Scimemi A. Control of complex behavior by astrocytes and microglia. Neurosci Biobehav Rev 2022; 137:104651. [PMID: 35367512 PMCID: PMC9119927 DOI: 10.1016/j.neubiorev.2022.104651] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Evidence that glial cells influence behavior has been gaining a steady foothold in scientific literature. Out of the five main subtypes of glial cells in the brain, astrocytes and microglia have received an outsized share of attention with regard to shaping a wide spectrum of behavioral phenomena and there is growing appreciation that the signals intrinsic to these cells as well as their interactions with surrounding neurons reflect behavioral history in a brain region-specific manner. Considerable regional diversity of glial cell phenotypes is beginning to be recognized and may contribute to behavioral outcomes arising from circuit-specific computations within and across discrete brain nuclei. Here, we summarize current knowledge on the impact of astrocyte and microglia activity on behavioral outcomes, with a specific focus on brain areas relevant to higher cognitive control, reward-seeking, and circadian regulation.
Collapse
Affiliation(s)
- P I Ortinski
- Department of Neuroscience, University of Kentucky, USA
| | - K J Reissner
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, USA
| | - J Turner
- Department of Pharmaceutical Sciences, University of Kentucky, USA
| | - T A Anderson
- Department of Neuroscience, University of Kentucky, USA
| | - A Scimemi
- Department of Biology, State University of New York at Albany, USA
| |
Collapse
|
34
|
de Oliveira Figueiredo EC, Calì C, Petrelli F, Bezzi P. Emerging evidence for astrocyte dysfunction in schizophrenia. Glia 2022; 70:1585-1604. [PMID: 35634946 PMCID: PMC9544982 DOI: 10.1002/glia.24221] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a complex, chronic mental health disorder whose heterogeneous genetic and neurobiological background influences early brain development, and whose precise etiology is still poorly understood. Schizophrenia is not characterized by gross brain pathology, but involves subtle pathological changes in neuronal populations and glial cells. Among the latter, astrocytes critically contribute to the regulation of early neurodevelopmental processes, and any dysfunctions in their morphological and functional maturation may lead to aberrant neurodevelopmental processes involved in the pathogenesis of schizophrenia, such as mitochondrial biogenesis, synaptogenesis, and glutamatergic and dopaminergic transmission. Studies of the mechanisms regulating astrocyte maturation may therefore improve our understanding of the cellular and molecular mechanisms underlying the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
| | - Corrado Calì
- Department of Neuroscience, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Francesco Petrelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Pharmacology and Physiology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
35
|
High, in Contrast to Low Levels of Acute Stress Induce Depressive-like Behavior by Involving Astrocytic, in Addition to Microglial P2X7 Receptors in the Rodent Hippocampus. Int J Mol Sci 2022; 23:ijms23031904. [PMID: 35163829 PMCID: PMC8836505 DOI: 10.3390/ijms23031904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/30/2022] Open
Abstract
Extracellular adenosine 5'-triphosphate (ATP) in the brain is suggested to be an etiological factor of major depressive disorder (MDD). It has been assumed that stress-released ATP stimulates P2X7 receptors (Rs) at the microglia, thereby causing neuroinflammation; however, other central nervous system (CNS) cell types such as astrocytes also possess P2X7Rs. In order to elucidate the possible involvement of the MDD-relevant hippocampal astrocytes in the development of a depressive-like state, we used various behavioral tests (tail suspension test [TST], forced swim test [FST], restraint stress, inescapable foot shock, unpredictable chronic mild stress [UCMS]), as well as fluorescence immunohistochemistry, and patch-clamp electrophysiology in wild-type (WT) and genetically manipulated rodents. The TST and FST resulted in learned helplessness manifested as a prolongation of the immobility time, while inescapable foot shock caused lower sucrose consumption as a sign of anhedonia. We confirmed the participation of P2X7Rs in the development of the depressive-like behaviors in all forms of acute (TST, FST, foot shock) and chronic stress (UCMS) in the rodent models used. Further, pharmacological agonists and antagonists acted in a different manner in rats and mice due to their diverse potencies at the respective receptor orthologs. In hippocampal slices of mice and rats, only foot shock increased the current responses to locally applied dibenzoyl-ATP (Bz-ATP) in CA1 astrocytes; in contrast, TST and restraint depressed these responses. Following stressful stimuli, immunohistochemistry demonstrated an increased co-localization of P2X7Rs with a microglial marker, but no change in co-localization with an astroglial marker. Pharmacological damage to the microglia and astroglia has proven the significance of the microglia for mediating all types of depression-like behavioral reactions, while the astroglia participated only in reactions induced by strong stressors, such as foot shock. Because, in addition to acute stressors, their chronic counterparts induce a depressive-like state in rodents via P2X7R activation, we suggest that our data may have relevance for the etiology of MDD in humans.
Collapse
|
36
|
Lopes CR, Amaral IM, Pereira MF, Lopes JP, Madeira D, Canas PM, Cunha RA, Agostinho P. Impact of blunting astrocyte activity on hippocampal synaptic plasticity in a mouse model of early Alzheimer's disease based on amyloid-β peptide exposure. J Neurochem 2022; 160:556-567. [PMID: 35043392 DOI: 10.1111/jnc.15575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 11/27/2022]
Abstract
Amyloid-β peptides (Aβ) accumulate in the brain since early Alzheimer's disease (AD) and dysregulate hippocampal synaptic plasticity, the neurophysiological basis of memory. Although the relationship between long-term potentiation (LTP) and memory processes is well established, there is also evidence that long-term depression (LTD) may be crucial for learning and memory. Alterations in synaptic plasticity, namely in LTP, can be due to communication failures between astrocytes and neurons; however, little is known about astrocytes´ ability to control hippocampal LTD, particularly in AD-like conditions. We now aimed to test the involvement of astrocytes in changes of hippocampal LTP and LTD triggered by Aβ1-42 , taking advantage of L-α-aminoadipate (L-AA), a gliotoxin that blunts astrocytic function. The effects of Aβ1-42 exposure was tested in two different experimental paradigms: ex vivo (hippocampal slices superfusion) and in vivo (intracerebroventricular injection), which were previously validated to impair memory and hippocampal synaptic plasticity, two features of early AD. Blunting astrocytic function with L-AA reduced LTP and LTD amplitude in hippocampal slices from control mice but the effect on LTD was less evident, suggesting that astrocytes have a greater influence on LTP than on LTD under non-pathological conditions. However, under AD conditions, blunting astrocytes did not consistently alter the reduction of LTP magnitude and reverted the LTD-to-LTP shift caused by both ex vivo and in vivo Aβ1-42 exposure. This shows that astrocytes were responsible for the hippocampal LTD-to-LTP shift observed in early AD conditions, reinforcing the interest of strategies targeting astrocytes to restore memory and synaptic plasticity deficits present in early AD.
Collapse
Affiliation(s)
- Cátia R Lopes
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Portugal
| | - Inês M Amaral
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | | | - João P Lopes
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Daniela Madeira
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Portugal
| | - Paula M Canas
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Rodrigo A Cunha
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Portugal
| | - Paula Agostinho
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Portugal
| |
Collapse
|
37
|
Hastings N, Kuan WL, Osborne A, Kotter MRN. Therapeutic Potential of Astrocyte Transplantation. Cell Transplant 2022; 31:9636897221105499. [PMID: 35770772 PMCID: PMC9251977 DOI: 10.1177/09636897221105499] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell transplantation is an attractive treatment strategy for a variety of brain disorders, as it promises to replenish lost functions and rejuvenate the brain. In particular, transplantation of astrocytes has come into light recently as a therapy for amyotrophic lateral sclerosis (ALS); moreover, grafting of astrocytes also showed positive results in models of other conditions ranging from neurodegenerative diseases of older age to traumatic injury and stroke. Despite clear differences in etiology, disorders such as ALS, Parkinson's, Alzheimer's, and Huntington's diseases, as well as traumatic injury and stroke, converge on a number of underlying astrocytic abnormalities, which include inflammatory changes, mitochondrial damage, calcium signaling disturbance, hemichannel opening, and loss of glutamate transporters. In this review, we examine these convergent pathways leading to astrocyte dysfunction, and explore the existing evidence for a therapeutic potential of transplantation of healthy astrocytes in various models. Existing literature presents a wide variety of methods to generate astrocytes, or relevant precursor cells, for subsequent transplantation, while described outcomes of this type of treatment also differ between studies. We take technical differences between methodologies into account to understand the variability of therapeutic benefits, or lack thereof, at a deeper level. We conclude by discussing some key requirements of an astrocyte graft that would be most suitable for clinical applications.
Collapse
Affiliation(s)
- Nataly Hastings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Wei-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andrew Osborne
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mark R N Kotter
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
38
|
Singer T, Ding S, Ding S. Astroglia Abnormalities in Post-stroke Mood Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:115-138. [PMID: 34888833 DOI: 10.1007/978-3-030-77375-5_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Stroke is the leading cause of human death and disability. After a stroke, many patients may have some physical disability, including difficulties in moving, speaking, and seeing, but patients may also exhibit changes in mood manifested by depression, anxiety, and cognitive changes which we call post-stroke mood disorders (PSMDs). Astrocytes are the most diverse and numerous glial cell type in the central nervous system (CNS). They provide structural, nutritional, and metabolic support to neurons and regulate synaptic activity under normal conditions. Astrocytes are also critically involved in focal ischemic stroke (FIS). They undergo many changes after FIS. These changes may affect acute neuronal death and brain damage as well as brain recovery and PSMD in the chronic phase after FIS. Studies using postmortem brain specimens and animal models of FIS suggest that astrocytes/reactive astrocytes are involved in PSMD. This chapter provides an overview of recent advances in the molecular base of astrocyte in PSMD. As astrocytes exhibit high plasticity after FIS, we suggest that targeting local astrocytes may be a promising strategy for PSMD therapy.
Collapse
Affiliation(s)
- Tracey Singer
- Dalton Cardiovascular Research Center, Columbia, MO, USA
| | - Sarah Ding
- Dalton Cardiovascular Research Center, Columbia, MO, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, Columbia, MO, USA.
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
39
|
A human iPSC-astroglia neurodevelopmental model reveals divergent transcriptomic patterns in schizophrenia. Transl Psychiatry 2021; 11:554. [PMID: 34716291 PMCID: PMC8556332 DOI: 10.1038/s41398-021-01681-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
While neurodevelopmental abnormalities have been associated with schizophrenia (SCZ), the role of astroglia in disease pathophysiology remains poorly understood. In the present study, we used a human induced pluripotent stem cell (iPSC)-derived astrocyte model to investigate the temporal patterns of astroglia differentiation during developmental stages critical for SCZ using RNA sequencing. The model generated astrocyte-specific gene expression patterns during differentiation that corresponded well to astroglia-specific expression signatures of in vivo cortical fetal development. Using this model we identified SCZ-specific expression dynamics, and found that SCZ-associated differentially expressed genes were significantly enriched in the medial prefrontal cortex, striatum, and temporal lobe, targeting VWA5A and ADAMTS19. In addition, SCZ astrocytes displayed alterations in calcium signaling, and significantly decreased glutamate uptake and metalloproteinase activity relative to controls. These results implicate novel transcriptional dynamics in astrocyte differentiation in SCZ together with functional changes that are potentially important biological components of SCZ pathology.
Collapse
|
40
|
Long-term variable photoperiod exposure impairs the mPFC and induces anxiety and depression-like behavior in male wistar rats. Exp Neurol 2021; 347:113908. [PMID: 34710402 DOI: 10.1016/j.expneurol.2021.113908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/07/2021] [Accepted: 10/23/2021] [Indexed: 01/15/2023]
Abstract
Long-term shift work can cause circadian misalignment, which has been linked to anxiety and depression. However, the associated pathophysiologic changes have not been described in detail, and the mechanism underlying this association is not fully understood. To address these points, we used a rat model of CM induced by long-term variable photoperiod exposure [L-VP] (ie, for 90 days). We compared the numbers of neurons, astrocytes, and dendritic spines; dendrite morphology; long-term potentiation (LTP), long-term depression (LTD) and paired-pulse ratio (PPR); expression of glutamate receptor [N-methyl-d-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)] subunits and brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex (mPFC); and the anxiety and depression behaviors between rats in the circadian misalignment (CM) and circadian alignment (CA, with normal circadian rhythm) groups. The results showed that L-VP reduced the number of neurons and astrocytes in the mPFC and decreased the number of dendritic spines, dendrite complexity, LTP, LTD, PPR, and expression of glutamate receptors (GluR1, GluR2, GluR3, NMDAR2A, and NMDAR2B) and BDNF in the mPFC. L-VP also induced anxiety and depression-like behaviors, as measured by the open field test, elevated plus-maze, sucrose preference test, and forced swim test. These results suggest that CM induces a loss of neurons and astrocytes and synaptic damage in surviving pyramidal cells in the mPFC might be involved in the pathophysiology of anxiety and depression.
Collapse
|
41
|
Fernández-Teruel A, Oliveras I, Cañete T, Rio-Álamos C, Tapias-Espinosa C, Sampedro-Viana D, Sánchez-González A, Sanna F, Torrubia R, González-Maeso J, Driscoll P, Morón I, Torres C, Aznar S, Tobeña A, Corda MG, Giorgi O. Neurobehavioral and neurodevelopmental profiles of a heuristic genetic model of differential schizophrenia- and addiction-relevant features: The RHA vs. RLA rats. Neurosci Biobehav Rev 2021; 131:597-617. [PMID: 34571119 DOI: 10.1016/j.neubiorev.2021.09.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022]
Abstract
The Roman High- (RHA) and Low-(RLA) avoidance rat lines/strains were generated through bidirectional selective breeding for rapid (RHA) vs. extremely poor (RLA) two-way active avoidance acquisition. Compared with RLAs and other rat strains/stocks, RHAs are characterized by increased impulsivity, deficits in social behavior, novelty-induced hyper-locomotion, impaired attentional/cognitive abilities, vulnerability to psychostimulant sensitization and drug addiction. RHA rats also exhibit decreased function of the prefrontal cortex (PFC) and hippocampus, increased functional activity of the mesolimbic dopamine system and a dramatic deficit of central metabotropic glutamate-2 (mGlu2) receptors (due to a stop codon mutation at cysteine 407 in Grm2 -cys407*-), along with increased density of 5-HT2A receptors in the PFC, alterations of several synaptic markers and increased density of pyramidal "thin" (immature) dendrític spines in the PFC. These characteristics suggest an immature brain of RHA rats, and are reminiscent of schizophrenia features like hypofrontality and disruption of the excitation/inhibition cortical balance. RHA rats represent a promising heuristic model of neurodevelopmental schizophrenia-relevant features and comorbidity with drug addiction vulnerability.
Collapse
Affiliation(s)
- Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | | | - Carles Tapias-Espinosa
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Daniel Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Ana Sánchez-González
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Francesco Sanna
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy
| | - Rafael Torrubia
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | - Ignacio Morón
- Department of Psychobiology and Centre of Investigation of Mind, Brain, and Behaviour (CIMCYC), University of Granada, Spain
| | - Carmen Torres
- Department of Psychology, University of Jaén, 23071, Jaén, Spain.
| | - Susana Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Copenhagen University Hospital, 2400, Copenhagen, Denmark.
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Maria G Corda
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy.
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy.
| |
Collapse
|
42
|
Akther S, Hirase H. Assessment of astrocytes as a mediator of memory and learning in rodents. Glia 2021; 70:1484-1505. [PMID: 34582594 DOI: 10.1002/glia.24099] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022]
Abstract
The classical view of astrocytes is that they provide supportive functions for neurons, transporting metabolites and maintaining the homeostasis of the extracellular milieu. This view is gradually changing with the advent of molecular genetics and optical methods allowing interrogation of selected cell types in live experimental animals. An emerging view that astrocytes additionally act as a mediator of synaptic plasticity and contribute to learning processes has gained in vitro and in vivo experimental support. Here we focus on the literature published in the past two decades to review the roles of astrocytes in brain plasticity in rodents, whereby the roles of neurotransmitters and neuromodulators are considered to be comparable to those in humans. We outline established inputs and outputs of astrocytes and discuss how manipulations of astrocytes have impacted the behavior in various learning paradigms. Multiple studies suggest that the contribution of astrocytes has a considerably longer time course than neuronal activation, indicating metabolic roles of astrocytes. We advocate that exploring upstream and downstream mechanisms of astrocytic activation will further provide insight into brain plasticity and memory/learning impairment.
Collapse
Affiliation(s)
- Sonam Akther
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hajime Hirase
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Martins-Macedo J, Salgado AJ, Gomes ED, Pinto L. Adult brain cytogenesis in the context of mood disorders: From neurogenesis to the emergent role of gliogenesis. Neurosci Biobehav Rev 2021; 131:411-428. [PMID: 34555383 DOI: 10.1016/j.neubiorev.2021.09.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022]
Abstract
Psychiatric disorders severely impact patients' lives. Motivational, cognitive and emotional deficits are the most common symptoms observed in these patients and no effective treatment is still available, either due to the adverse side effects or the low rate of efficacy of currently available drugs. Neurogenesis recovery has been one important focus in the treatment of psychiatric disorders, which undeniably contributes to the therapeutic action of antidepressants. However, glial plasticity is emerging as a new strategy to explore the deficits observed in mood disorders and the efficacy of therapeutic interventions. Thus, it is crucial to understand the mechanisms behind glio- and neurogenesis to better define treatments and preventive therapies, once adult cytogenesis is of pivotal importance to cognitive and emotional components of behavior, both in healthy and pathological contexts, including in psychiatric disorders. Here, we review the concepts and history of neuro- and gliogenesis, providing as well a reflection on the functional importance of cytogenesis in the context of disease.
Collapse
Affiliation(s)
- Joana Martins-Macedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
44
|
Zhao J, Blaeser AS, Levy D. Astrocytes mediate migraine-related intracranial meningeal mechanical hypersensitivity. Pain 2021; 162:2386-2396. [PMID: 34448752 PMCID: PMC8406410 DOI: 10.1097/j.pain.0000000000002229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/26/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT The genesis of the headache phase in migraine with aura is thought to be mediated by cortical spreading depression (CSD) and the subsequent activation and sensitization of primary afferent neurons that innervate the intracranial meninges and their related large vessels. Yet, the exact mechanisms underlying this peripheral meningeal nociceptive response remain poorly understood. We investigated the relative contribution of cortical astrocytes to CSD-evoked meningeal nociception using extracellular single-unit recording of meningeal afferent activity and 2-photon imaging of cortical astrocyte calcium activity, in combination with 2 pharmacological approaches to inhibit astrocytic function. We found that fluoroacetate and l-α-aminoadipate, which inhibit astrocytes through distinct mechanisms, suppressed CSD-evoked afferent mechanical sensitization, but did not affect afferent activation. Pharmacological inhibition of astrocytic function, which ameliorated meningeal afferents' sensitization, reduced basal astrocyte calcium activity but had a minimal effect on the astrocytic calcium wave during CSD. We propose that calcium-independent signaling in cortical astrocytes plays an important role in driving the sensitization of meningeal afferents and the ensuing intracranial mechanical hypersensitivity in migraine with aura.
Collapse
Affiliation(s)
- Jun Zhao
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Andrew S. Blaeser
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Dan Levy
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
45
|
Pereira MF, Amaral IM, Lopes C, Leitão C, Madeira D, Lopes JP, Gonçalves FQ, Canas PM, Cunha RA, Agostinho P. l-α-aminoadipate causes astrocyte pathology with negative impact on mouse hippocampal synaptic plasticity and memory. FASEB J 2021; 35:e21726. [PMID: 34196433 DOI: 10.1096/fj.202100336r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/26/2022]
Abstract
Increasing evidence shows that astrocytes, by releasing and uptaking neuroactive molecules, regulate synaptic plasticity, considered the neurophysiological basis of memory. This study investigated the impact of l-α-aminoadipate (l-AA) on astrocytes which sense and respond to stimuli at the synaptic level and modulate hippocampal long-term potentiation (LTP) and memory. l-AA selectivity toward astrocytes was proposed in the early 70's and further tested in different systems. Although it has been used for impairing the astrocytic function, its effects appear to be variable in different brain regions. To test the effects of l-AA in the hippocampus of male C57Bl/6 mice we performed two different treatments (ex vivo and in vivo) and took advantage of other compounds that were reported to affect astrocytes. l-AA superfusion did not affect the basal synaptic transmission but decreased LTP magnitude. Likewise, trifluoroacetate and dihydrokainate decreased LTP magnitude and occluded the effect of l-AA on synaptic plasticity, confirming l-AA selectivity. l-AA superfusion altered astrocyte morphology, increasing the length and complexity of their processes. In vivo, l-AA intracerebroventricular injection not only reduced the astrocytic markers but also LTP magnitude and impaired hippocampal-dependent memory in mice. Interestingly, d-serine administration recovered hippocampal LTP reduction triggered by l-AA (2 h exposure in hippocampal slices), whereas in mice injected with l-AA, the superfusion of d-serine did not fully rescue LTP magnitude. Overall, these data show that both l-AA treatments affect astrocytes differently, astrocytic activation or loss, with similar negative outcomes on hippocampal LTP, implying that opposite astrocytic adaptive alterations are equally detrimental for synaptic plasticity.
Collapse
Affiliation(s)
| | - Inês M Amaral
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Cátia Lopes
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Catarina Leitão
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Daniela Madeira
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Coimbra, Portugal
| | - João P Lopes
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | | | - Paula M Canas
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Rodrigo A Cunha
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Coimbra, Portugal
| | - Paula Agostinho
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Coimbra, Portugal
| |
Collapse
|
46
|
Maugeri G, D’Agata V, Magrì B, Roggio F, Castorina A, Ravalli S, Di Rosa M, Musumeci G. Neuroprotective Effects of Physical Activity via the Adaptation of Astrocytes. Cells 2021; 10:cells10061542. [PMID: 34207393 PMCID: PMC8234474 DOI: 10.3390/cells10061542] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
The multifold benefits of regular physical exercise have been largely demonstrated in human and animal models. Several studies have reported the beneficial effects of physical activity, both in peripheral tissues and in the central nervous system (CNS). Regular exercise improves cognition, brain plasticity, neurogenesis and reduces the symptoms of neurodegenerative diseases, making timeless the principle of “mens sana in corpore sano” (i.e., a healthy mind in a healthy body). Physical exercise promotes morphological and functional changes in the brain, acting not only in neurons but also in astrocytes, which represent the most numerous glial cells in the brain. The multiple effects of exercise on astrocytes comprise the increased number of new astrocytes, the maintenance of basal levels of catecholamine, the increase in glutamate uptake, the major release of trophic factors and better astrocytic coverage of cerebral blood vessels. The purpose of this review is to highlight the effects of exercise on brain function, emphasize the role of astrocytes in the healthy CNS, and provide an update for a better understanding of the effects of physical exercise in the modulation of astrocyte function.
Collapse
Affiliation(s)
- Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Benedetta Magrì
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Federico Roggio
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Broadway, NSW 2007, Australia;
- Laboratory of Neural Structure and Function (LNSF), School of Medical Sciences, (Anatomy and Histology), Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Silvia Ravalli
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
- Research Center on Motor Activities (CRAM), University of Catania, Via S. Sofia n°97, 95100 Catania, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: ; Tel.: +39-095-378-2043
| |
Collapse
|
47
|
Gordleeva SY, Tsybina YA, Krivonosov MI, Ivanchenko MV, Zaikin AA, Kazantsev VB, Gorban AN. Modeling Working Memory in a Spiking Neuron Network Accompanied by Astrocytes. Front Cell Neurosci 2021; 15:631485. [PMID: 33867939 PMCID: PMC8044545 DOI: 10.3389/fncel.2021.631485] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/04/2021] [Indexed: 01/07/2023] Open
Abstract
We propose a novel biologically plausible computational model of working memory (WM) implemented by a spiking neuron network (SNN) interacting with a network of astrocytes. The SNN is modeled by synaptically coupled Izhikevich neurons with a non-specific architecture connection topology. Astrocytes generating calcium signals are connected by local gap junction diffusive couplings and interact with neurons via chemicals diffused in the extracellular space. Calcium elevations occur in response to the increased concentration of the neurotransmitter released by spiking neurons when a group of them fire coherently. In turn, gliotransmitters are released by activated astrocytes modulating the strength of the synaptic connections in the corresponding neuronal group. Input information is encoded as two-dimensional patterns of short applied current pulses stimulating neurons. The output is taken from frequencies of transient discharges of corresponding neurons. We show how a set of information patterns with quite significant overlapping areas can be uploaded into the neuron-astrocyte network and stored for several seconds. Information retrieval is organized by the application of a cue pattern representing one from the memory set distorted by noise. We found that successful retrieval with the level of the correlation between the recalled pattern and ideal pattern exceeding 90% is possible for the multi-item WM task. Having analyzed the dynamical mechanism of WM formation, we discovered that astrocytes operating at a time scale of a dozen of seconds can successfully store traces of neuronal activations corresponding to information patterns. In the retrieval stage, the astrocytic network selectively modulates synaptic connections in the SNN leading to successful recall. Information and dynamical characteristics of the proposed WM model agrees with classical concepts and other WM models.
Collapse
Affiliation(s)
- Susanna Yu Gordleeva
- Scientific and Educational Mathematical Center "Mathematics of Future Technology," Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Yuliya A Tsybina
- Scientific and Educational Mathematical Center "Mathematics of Future Technology," Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Mikhail I Krivonosov
- Scientific and Educational Mathematical Center "Mathematics of Future Technology," Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Mikhail V Ivanchenko
- Scientific and Educational Mathematical Center "Mathematics of Future Technology," Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey A Zaikin
- Scientific and Educational Mathematical Center "Mathematics of Future Technology," Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Center for Analysis of Complex Systems, Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia.,Institute for Women's Health and Department of Mathematics, University College London, London, United Kingdom
| | - Victor B Kazantsev
- Scientific and Educational Mathematical Center "Mathematics of Future Technology," Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia.,Neuroscience Research Institute, Samara State Medical University, Samara, Russia
| | - Alexander N Gorban
- Scientific and Educational Mathematical Center "Mathematics of Future Technology," Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Department of Mathematics, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
48
|
Sánchez-González A, Thougaard E, Tapias-Espinosa C, Cañete T, Sampedro-Viana D, Saunders JM, Toneatti R, Tobeña A, Gónzalez-Maeso J, Aznar S, Fernández-Teruel A. Increased thin-spine density in frontal cortex pyramidal neurons in a genetic rat model of schizophrenia-relevant features. Eur Neuropsychopharmacol 2021; 44:79-91. [PMID: 33485732 PMCID: PMC7902438 DOI: 10.1016/j.euroneuro.2021.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/09/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022]
Abstract
The cellular mechanisms altered during brain wiring leading to cognitive disturbances in neurodevelopmental disorders remain unknown. We have previously reported altered cortical expression of neurodevelopmentally regulated synaptic markers in a genetic animal model of schizophrenia-relevant behavioral features, the Roman-High Avoidance rat strain (RHA-I). To further explore this phenotype, we looked at dendritic spines in cortical pyramidal neurons, as changes in spine density and morphology are one of the main processes taking place during adolescence. An HSV-viral vector carrying green fluorescent protein (GFP) was injected into the frontal cortex (FC) of a group of 11 RHA-I and 12 Roman-Low Avoidance (RLA-I) male rats. GFP labeled dendrites from pyramidal cells were 3D reconstructed and number and types of spines quantified. We observed an increased spine density in the RHA-I, corresponding to a larger fraction of immature thin spines, with no differences in stubby and mushroom spines. Glia cells, parvalbumin (PV) and somatostatin (SST) interneurons and surrounding perineuronal net (PNN) density are known to participate in FC and pyramidal neuron dendritic spine maturation. We determined by stereological-based quantification a significantly higher number of GFAP-positive astrocytes in the FC of the RHA-I strain, with no difference in microglia (Iba1-positive cells). The number of inhibitory PV, SST interneurons or PNN density, on the contrary, was unchanged. Results support our belief that the RHA-I strain presents a more immature FC, with some structural features like those observed during adolescence, adding construct validity to this strain as a genetic behavioral model of neurodevelopmental disorders.
Collapse
Affiliation(s)
- A Sánchez-González
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - E Thougaard
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Copenhagen University Hospital, 2400 Copenhagen, Denmark
| | - C Tapias-Espinosa
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - T Cañete
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - D Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - J M Saunders
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - R Toneatti
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - A Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - J Gónzalez-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - S Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Copenhagen University Hospital, 2400 Copenhagen, Denmark; Copenhagen Center for Translational Research, Bispebjerg Copenhagen University Hospital, Copenhagen, Denmark.
| | - A Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
49
|
Hwang SN, Lee JS, Seo K, Lee H. Astrocytic Regulation of Neural Circuits Underlying Behaviors. Cells 2021; 10:cells10020296. [PMID: 33535587 PMCID: PMC7912785 DOI: 10.3390/cells10020296] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Astrocytes, characterized by a satellite-like morphology, are the most abundant type of glia in the central nervous system. Their main functions have been thought to be limited to providing homeostatic support for neurons, but recent studies have revealed that astrocytes actually actively interact with local neural circuits and play a crucial role in information processing and generating physiological and behavioral responses. Here, we review the emerging roles of astrocytes in many brain regions, particularly by focusing on intracellular changes in astrocytes and their interactions with neurons at the molecular and neural circuit levels.
Collapse
Affiliation(s)
- Sun-Nyoung Hwang
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| | - Jae Seung Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea; (J.S.L.); (K.S.)
| | - Kain Seo
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea; (J.S.L.); (K.S.)
| | - Hyosang Lee
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea; (J.S.L.); (K.S.)
- Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Correspondence: ; Tel.: +82-53-785-6147
| |
Collapse
|
50
|
Nold V, Richter N, Hengerer B, Kolassa IT, Allers KA. FKBP5 polymorphisms induce differential glucocorticoid responsiveness in primary CNS cells - First insights from novel humanized mice. Eur J Neurosci 2020; 53:402-415. [PMID: 33030232 PMCID: PMC7894319 DOI: 10.1111/ejn.14999] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022]
Abstract
The brain is a central hub for integration of internal and external conditions and, thus, a regulator of the stress response. Glucocorticoids are the essential communicators of this response. Aberrations in glucocorticoid signaling are a common symptom in patients with psychiatric disorders. The gene FKBP5 encodes a chaperone protein that functionally inhibits glucocorticoid signaling and, thus, contributes to the regulation of stress. In the context of childhood trauma, differential expression of FKBP5 has been found in psychiatric patients compared to controls. These variations in expression levels of FKBP5 were reported to be associated with differences in stress responsiveness in human carriers of the single nucleotide polymorphism (SNP) rs1360780. Understanding the mechanisms underlying FKBP5 polymorphism‐associated glucocorticoid responsiveness in the CNS will lead to a better understanding of stress regulation or associated pathology. To study these mechanisms, two novel humanized mouse lines were generated. The lines carried either the risk (A/T) allele or the resilient (C/G) allele of rs1360780. Primary cells from CNS (astrocytes, microglia, and neurons) were analyzed for their basal expression levels of FKBP5 and their responsiveness to glucocorticoids. Differential expression of FKBP5 was found for these cell types and negatively correlated with the cellular glucocorticoid responsiveness. Astrocytes revealed the strongest transcriptional response, followed by microglia and neurons. Furthermore, the risk allele (A/T) was associated with greater induction of FKBP5 than the resilience allele. Novel FKBP5‐humanized mice display differential glucocorticoid responsiveness due to a single intronic SNP. The vulnerability to stress signaling in the shape of glucocorticoids in the brain correlated with FKBP5 expression levels. The strong responsiveness of astrocytes to glucocorticoids implies astrocytes play a prominent role in the stress response, and in FKBP5‐related differences in glucocorticoid signaling. The novel humanized mouse lines will allow for further study of the role that FKBP5 SNPs have in risk and resilience to stress pathology.
Collapse
Affiliation(s)
- Verena Nold
- Boehringer Ingelheim Pharma GmbH & Co KG, CNSDR, Ingelheim, Germany.,Institute of Psychology & Education, Clinical & Biological Psychology, Ulm University, Ulm, Germany
| | - Nadine Richter
- Boehringer Ingelheim Pharma GmbH & Co KG, CNSDR, Ingelheim, Germany
| | - Bastian Hengerer
- Boehringer Ingelheim Pharma GmbH & Co KG, CNSDR, Ingelheim, Germany
| | - Iris-Tatjana Kolassa
- Institute of Psychology & Education, Clinical & Biological Psychology, Ulm University, Ulm, Germany
| | - Kelly Ann Allers
- Boehringer Ingelheim Pharma GmbH & Co KG, CNSDR, Ingelheim, Germany
| |
Collapse
|