1
|
Ageta-Ishihara N, Fukazawa Y, Arima-Yoshida F, Okuno H, Ishii Y, Takao K, Konno K, Fujishima K, Ageta H, Hioki H, Tsuchida K, Sato Y, Kengaku M, Watanabe M, Watabe AM, Manabe T, Miyakawa T, Inokuchi K, Bito H, Kinoshita M. Septin 3 regulates memory and L-LTP-dependent extension of endoplasmic reticulum into spines. Cell Rep 2025; 44:115352. [PMID: 40023151 DOI: 10.1016/j.celrep.2025.115352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/11/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025] Open
Abstract
Transient memories are converted to persistent memories at the synapse and circuit/systems levels. The synapse-level consolidation parallels electrophysiological transition from early- to late-phase long-term potentiation of synaptic transmission (E-/L-LTP). While glutamate signaling upregulations coupled with dendritic spine enlargement are common underpinnings of E-LTP and L-LTP, synaptic mechanisms conferring persistence on L-LTP remain unclear. Here, we show that L-LTP induced at the perforant path-hippocampal dentate gyrus (DG) synapses accompanies cytoskeletal remodeling that involves actin and the septin subunit SEPT3. L-LTP in DG neurons causes fast spine enlargement, followed by SEPT3-dependent smooth endoplasmic reticulum (sER) extension into enlarged spines. Spines containing sER show greater Ca2+ responses upon synaptic input and local synaptic activity. Consistently, Sept3 knockout in mice (Sept3-/-) impairs memory consolidation and causes a scarcity of sER-containing spines. These findings indicate a concept that sER extension into active spines serves as a synaptic basis of memory consolidation.
Collapse
Affiliation(s)
- Natsumi Ageta-Ishihara
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan; Department of Molecular Biology, Division of Biological Sciences, Nagoya University Graduate School of Science, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Fumiko Arima-Yoshida
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Kashiwa, Chiba 277-8567, Japan
| | - Hiroyuki Okuno
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yuichiro Ishii
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Kazuto Fujishima
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study (KUIAS-iCeMS), Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Hiroshi Ageta
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hiroyuki Hioki
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kunihiro Tsuchida
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mineko Kengaku
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study (KUIAS-iCeMS), Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Ayako M Watabe
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Kashiwa, Chiba 277-8567, Japan
| | - Toshiya Manabe
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Kaoru Inokuchi
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Makoto Kinoshita
- Department of Molecular Biology, Division of Biological Sciences, Nagoya University Graduate School of Science, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
2
|
Chaar DL, Li Z, Shang L, Ratliff SM, Mosley TH, Kardia SLR, Zhao W, Zhou X, Smith JA. Multi-Ancestry Transcriptome-Wide Association Studies of Cognitive Function, White Matter Hyperintensity, and Alzheimer's Disease. Int J Mol Sci 2025; 26:2443. [PMID: 40141087 PMCID: PMC11942532 DOI: 10.3390/ijms26062443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Genetic variants increase the risk of neurocognitive disorders in later life, including vascular dementia (VaD) and Alzheimer's disease (AD), but the precise relationships between genetic risk factors and underlying disease etiologies are not well understood. Transcriptome-wide association studies (TWASs) can be leveraged to better characterize the genes and biological pathways underlying genetic influences on disease. To date, almost all existing TWASs on VaD and AD have been conducted using expression studies from individuals of a single genetic ancestry, primarily European. Using the joint likelihood-based inference framework in Multi-ancEstry TRanscriptOme-wide analysis (METRO), we leveraged gene expression data from European ancestry (EA) and African ancestry (AA) samples to identify genes associated with general cognitive function, white matter hyperintensity (WMH), and AD. Regions were fine-mapped using Fine-mapping Of CaUsal gene Sets (FOCUS). We identified 266, 23, 69, and 2 genes associated with general cognitive function, WMH, AD (using EA GWAS summary statistics), and AD (using AA GWAS), respectively (Bonferroni-corrected alpha = p < 2.9 × 10-6), some of which had been previously identified. Enrichment analysis showed that many of the identified genes were in pathways related to innate immunity, vascular dysfunction, and neuroinflammation. Further, the downregulation of ICA1L was associated with a higher WMH and with AD, indicating its potential contribution to overlapping AD and VaD neuropathology. To our knowledge, our study is the first TWAS on cognitive function and neurocognitive disorders that used expression mapping studies for multiple ancestries. This work may expand the benefits of TWASs beyond a single ancestry group and help to identify gene targets for pharmaceuticals or preventative treatments for dementia.
Collapse
Affiliation(s)
- Dima L. Chaar
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (D.L.C.); (S.M.R.); (S.L.R.K.); (W.Z.)
| | - Zheng Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (Z.L.); (X.Z.)
| | - Lulu Shang
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (D.L.C.); (S.M.R.); (S.L.R.K.); (W.Z.)
| | - Thomas H. Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (D.L.C.); (S.M.R.); (S.L.R.K.); (W.Z.)
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (D.L.C.); (S.M.R.); (S.L.R.K.); (W.Z.)
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (Z.L.); (X.Z.)
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (D.L.C.); (S.M.R.); (S.L.R.K.); (W.Z.)
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| |
Collapse
|
3
|
Hamlin V, Ansaf H, Heffern R, Williams-Simon PA, King EG. Multiple methods for assessing learning and memory in Drosophila melanogaster demonstrates the highly complex, context-dependent genetic underpinnings of cognitive traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640179. [PMID: 40060392 PMCID: PMC11888412 DOI: 10.1101/2025.02.26.640179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Learning and memory are fundamental for an individual to be able to respond to changing stimuli in their environment. Between individuals we see variation in their ability to perform learning and memory tasks, however, it is still largely unknown what genetic factors may impact this variability. To gain better insight to the genetic components impacting variation in learning and memory, we use recombinant inbred lines (RILs) from the Drosophila synthetic population resource (DSPR), a multiparent mapping population exhibiting natural variation in many traits. Using a reward based associative learning and memory assay, we trained flies to associate an odor with a sucrose reward under starvation condition and measured olfactory learning and memory ability in y-mazes for 50 DSPR RILs. While we do not find significant QTLs for olfactory learning or memory, we found suggestive regions that may be contributing to variability in performance when trained to different odors. We provide evidence that performance with specific odors should be considered different phenotypes and introduce new methods for analysis for olfactory y-maze assays with multiple decision points. Additionally, we compare our data to previously collected place learning and memory data to show there is limited correlation in performance outcomes.
Collapse
Affiliation(s)
- Victoria Hamlin
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Huda Ansaf
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Reiley Heffern
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | | | - Elizabeth G King
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
4
|
Wang B, Chibnik LB, Choi SH, Blacker D, DeStefano AL, Lin H. Association of genetic risk of Alzheimer's disease and cognitive function in two European populations. Sci Rep 2025; 15:6410. [PMID: 39984543 PMCID: PMC11845681 DOI: 10.1038/s41598-025-90277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
Although there is some evidence of an association between Alzheimer's disease polygenic risk score (AD PRS) and cognitive function, limited validations have been performed in large populations. We investigated the relationship between AD PRS and cognitive function in the UK Biobank in over 276,000 participants and further validated the association in the Alzheimer's Disease Neuroimaging Initiative (ADNI) sample. We developed the AD PRS (excluded the APOE variants) in the middle age UK Biobank participants (age ranged 39-72, mean age 57 years) of European ancestries by LDpred2. To validate the association of AD PRS and cognitive function internally in the UK Biobank, we linearly regressed standardized cognitive function on continuous standardized AD PRS with age at cognitive test, sex, genotyping array, first 10 principal components of genotyping, smoking, education in years, body mass index, and apolipoprotein E gene ε4 (APOE4) risk allele dosages. To validate the associations externally, we ran the linear mixed effects model in the ADNI sample free of dementia (age ranged 55-91, mean age 73), including similar covariates as fixed effects and participants' IDs as the random effect. Stratification by age, APOE4 carrier status, and cognitive status (cognitively normal or mild cognitive impairment) was also investigated. Our study validated the associations of AD PRS and cognitive function in both midlife and late-life observational cohorts. Although not all of the cognitive measures were significantly associated with AD PRS, non-verbal fluid reasoning (matrix pattern completion, β = - 0.022, P = 0.003), processing speed (such as symbol digit substitution, β = - 0.017, P = 1.08E-05), short-term memory and attention (such as pairs matching, β = - 0.014, P = 1.66E-10), and reaction time (β = - 0.010, P = 1.19E-06) were inversely associated with increasing AD PRS in the UK Biobank. Higher likelihood of cognitive impairment was also associated with higher AD PRS in the ADNI cognitive normal individuals (AD assessment scale β = 0.079, P = 0.02). In summary, we confirmed that poorer cognitive function was associated with a higher polygenic AD risk, and suggested the potential utility of the AD PRS in identifying those who may be at risk for further cognitive decline.
Collapse
Affiliation(s)
- Biqi Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Lori B Chibnik
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Seung Hoan Choi
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Deborah Blacker
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anita L DeStefano
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
5
|
Chen C, Khanthiyong B, Thaweetee-Sukjai B, Charoenlappanit S, Roytrakul S, Surit P, Phoungpetchara I, Thanoi S, Reynolds GP, Nudmamud-Thanoi S. Proteomic associations with cognitive variability as measured by the Wisconsin Card Sorting Test in a healthy Thai population: A machine learning approach. PLoS One 2025; 20:e0313365. [PMID: 39977438 PMCID: PMC11841870 DOI: 10.1371/journal.pone.0313365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Inter-individual cognitive variability, influenced by genetic and environmental factors, is crucial for understanding typical cognition and identifying early cognitive disorders. This study investigated the association between serum protein expression profiles and cognitive variability in a healthy Thai population using machine learning algorithms. We included 199 subjects, aged 20 to 70, and measured cognitive performance with the Wisconsin Card Sorting Test. Differentially expressed proteins (DEPs) were identified using label-free proteomics and analyzed with the Linear Model for Microarray Data. We discovered 213 DEPs between lower and higher cognition groups, with 155 upregulated in the lower cognition group and enriched in the IL-17 signaling pathway. Subsequent bioinformatic analysis linked these DEPs to neuroinflammation-related cognitive impairment. A random forest model classified cognitive ability groups with an accuracy of 81.5%, sensitivity of 65%, specificity of 85.9%, and an AUC of 0.79. By targeting a specific Thai cohort, this research provides novel insights into the link between neuroinflammation and cognitive performance, advancing our understanding of cognitive variability, highlighting the role of biological markers in cognitive function, and contributing to developing more accurate machine learning models for diverse populations.
Collapse
Affiliation(s)
- Chen Chen
- Faculty of Medical Science, Medical Science graduate program, Naresuan University, Phitsanulok, Thailand
| | | | | | - Sawanya Charoenlappanit
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Phrutthinun Surit
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Ittipon Phoungpetchara
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Samur Thanoi
- School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Gavin P. Reynolds
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
6
|
Thakran S, Guin D, Singh P, Uppili B, Ramachandran S, Kushwaha SS, Kukreti R. Genome-Wide Association Study Reveals Genetic Architecture of Common Epilepsies. Clin Genet 2025. [PMID: 39904507 DOI: 10.1111/cge.14710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/26/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Epilepsy, affecting approximately 50 million individuals worldwide, exhibits a genetic heritability of 32%. While several genes/loci associated with epilepsy have been identified through candidate and genome-wide association studies (GWAS), exploration of population-specific markers remains underexplored. We conducted the first GWAS in north Indian population (~1500 samples) to identify genetic variants/loci associated with epilepsy risk, validated using targeted next-generation sequencing (NGS). Our GWAS revealed 30 variants across seven loci associated with epilepsy risk, including six novel loci. Subtype analysis based on etiology and seizure types, identified 57 variants across 11 loci, 10 of which are novel. Gene-set analysis unveiled enrichment in genes associated with glutathione synthesis and recycling and regulation of dopaminergic neuron differentiation pivotal in epilepsy pathophysiology. Furthermore, PRS analysis revealed a significant genetic contribution to the epilepsy with an R2 of 0.00573. Additionally, targeted NGS showed ~95% concordance with GSA genotypes. Our study highlights six novel loci rs17031055/4q31.3(DCHS2), rs73182224/3q27.2(DGKG), rs9322462/6q25.2(CNKSR3), rs75328617/8q24.23(RNU1-35P), rs2938010/10q26.13(CTBP2) and rs11652575/17p11.2(SLC5A10) associated with epilepsy risk. These findings offer valuable insights into the genetic landscape of epilepsy in the north Indian population, providing foundation for future exploratory studies.
Collapse
Affiliation(s)
- Sarita Thakran
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Priyanka Singh
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bharathram Uppili
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Srinivasan Ramachandran
- Department of Biotechnology and Allied Life Science, Manav Rachna International Institute of Research and Studies, Faridabad, India
| | - Suman S Kushwaha
- Institute of Human Behavior & Allied Sciences (IHBAS), Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Ma H, Cong Z, Liang L, Su Z, Zhang J, Yang H, Wang M. Association of Stmn1 Polymorphism and Cognitive Function: An Observational Study in the Chinese Adults. ALPHA PSYCHIATRY 2025; 26:38719. [PMID: 40110371 PMCID: PMC11915711 DOI: 10.31083/ap38719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 03/22/2025]
Abstract
Background Stathmin1 (Stmn1) is a protein highly expressed during the development of the central nervous system. The phosphorylation of Stmn1 involves microtubule dynamics, so Stmn1 plays a vital part in neurite outgrowth and synaptic plasticity. Previous studies reported that Stmn1 genetic variants influence fear and anxiety as well as cognitive-affective processing. However, no study reported on the relationship between Stmn1 gene polymorphism and cognition in Chinese. Thus, this association was investigated in the present study. Methods A total of 129 healthy Han Chinese were genotyped for Stmn1 rs182455 polymorphism by polymerase chain reaction and restriction fragment length polymorphism analyses. Cognitive function was assessed using the Stroop Color-Word Test (SCWT) and Hopkins Verbal Learning Test-Revised (HVLT-R). Results In the present sample, rs182455 CC, CT, and TT genotypes were found in 56 (43.41%), 65 (50.39%) and 8 (6.20%) cases, respectively. The genotype distribution did not deviate from Hardy-Weinberg equilibrium (χ2 = 3.715, p = 0.054). Significant differences were found between the three rs182455 genotypes and between the CC and (CT+TT) genotype groups in the Stroop Color (SC) scores of the SCWT (F = 3.322, 2.377; p = 0.039, 0.019, respectively) and the total recall (TR) scores on the HVLT-R (F = 3.118, 2.225; p = 0.048, 0.028, respectively). There was a female-specific difference in SC scores between the three rs182455 genotypes (F = 2.318, p = 0.023). The rs182455 genotype distribution showed no significant difference between two sexes (χ2 = 1.313, p = 0.519), whereas significant differences were seen in SC and TR scores between two sexes (t = -2.294, -2.490; p = 0.023, 0.014, respectively). Conclusions The findings suggest that rs182455 Stmn1 polymorphism might affect cognitive flexibility and immediate free recall in healthy Chinese individuals, especially females.
Collapse
Affiliation(s)
- Hui Ma
- Psychological Counseling and Treatment Center, Hainan Provincial Anning Hospital, 570207 Haikou, Hainan, China
| | - Zhengtu Cong
- Psychological Counseling and Treatment Center, Hainan Provincial Anning Hospital, 570207 Haikou, Hainan, China
| | - Lijuan Liang
- Department of Clinical Psychology, The First Affiliated Hospital of Hainan Medical University, 570102 Haikou, Hainan, China
| | - Zhaoxia Su
- Department of Clinical Psychology, Hainan Pingshan Hospital, 572299 Wuzhishan, Hainan, China
| | - Jing Zhang
- Psychological Counseling and Treatment Center, Hainan Provincial Anning Hospital, 570207 Haikou, Hainan, China
| | - Hua Yang
- The Seventh Department of Psychiatry, Hainan Provincial Anning Hospital, 570207 Haikou, Hainan, China
| | - Man Wang
- Department of Clinical Psychology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, 518020 Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Bjornson KJ, Kermath BA, Cahill ME. Identification of ARHGEF11 (PDZ-RhoGEF) as an in vivo regulator of synapses and cognition. Proc Natl Acad Sci U S A 2025; 122:e2415316122. [PMID: 39835891 PMCID: PMC11789018 DOI: 10.1073/pnas.2415316122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Given the influence of cognitive abilities on life outcomes, there is inherent value in identifying genes involved in controlling learning and memory. Further, cognitive dysfunction is a core feature of many neuropsychiatric disorders. Here, we use a combinatory in silico approach to identify human gene targets that will have an especially high likelihood of individually and directly impacting cognition. This broad and unbiased screen led to the specific identification of ARHGEF11, which encodes PDZ-RhoGEF. PDZ-RhoGEF is a largely RhoA-specific activator that is highly enriched in dendritic spines, and recent work identified hyperexpression of PDZ-RhoGEF in the prefrontal cortex of bipolar disorder subjects, a disease characterized by an early emergence and persistence of broad scope cognitive dysfunction. Here, we characterize the effects of PDZ-RhoGEF on synaptic and behavioral phenotypes, and we identify molecular and biochemical mechanisms that control PDZ-RhoGEF's expression, synaptic spatial localization, and enzymatic activity. Importantly, our identified direct regulators of PDZ-RhoGEF (miR-132 and DISC1) have themselves been repeatedly implicated in controlling cognitive phenotypes in humans, including those caused by several neuropsychiatric disorders. Taken together, our findings indicate that PDZ-RhoGEF is a key convergence point among multiple synaptic and cognition-relevant signaling cascades with potential translational significance.
Collapse
Affiliation(s)
- Kathryn J. Bjornson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI53706
| | - Bailey A. Kermath
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI53706
| | - Michael E. Cahill
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
9
|
Reis A, Spinath FM. The Genetics of Intelligence. DEUTSCHES ARZTEBLATT INTERNATIONAL 2025; 122:38-42. [PMID: 39635948 DOI: 10.3238/arztebl.m2024.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Intelligence is defined as general mental capacity, which includes the abilities to reason, solve new problems, think abstractly, and learn quickly. Genetic factors explain a considerable fraction of inter-individual differences in intelligence. For many years, research on intelligence was limited to estimating the relative importance of genetic and environmental factors, without identifying any individual causal factors. METHODS This review of the literature is based on pertinent original publications and reviews. RESULTS Genome-wide association studies (GWAS) have shown that certain gene loci are associated with intelligence, as well as with educational attainment, which is known to be correlated with intelligence. As each individual gene locus accounts for only a very small part of the variance in intelligence ( < 0.02%), so-called "polygenic scores" (PGS) have been calculated in which thousands of genetic variants are summarized together. On the basis of the largest GWAS performed to date, it is estimated that 7-15% of inter-individual differences in educational attainment and 7-10% in intelligence among persons of European descent can be explained by genetic factors. These genetic effects are partly indirect. At the same time, the relative importance of genetic factors in determining complex features such as intelligence and educational attainment must always be seen against the background of individual environmental conditions. In the presence of difficult social conditions, for example, the influence of genetic factors is typically lower. CONCLUSION At present, the polygenic scores generated from genome-wide association studies are primarily of scientific interest, yet they are becoming increasingly informative and valid for individual prediction. There is, therefore, a need for broad social discussion about their future use.
Collapse
Affiliation(s)
- André Reis
- Institute of Human Genetics, Universitäts klinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen; Individual Differences & Psychodiagnostic Lab, Department of Psychology, Saarland University, Saarbrücken
| | | |
Collapse
|
10
|
Chaar DL, Tu L, Moore K, Du J, Opsasnick LA, Ratliff SM, Mosley TH, Kardia SLR, Zhao W, Zhou X, Diez Roux AV, Faruque FS, Butler KR, Smith JA. Neighborhood environment associations with cognitive function and structural brain measures in older African Americans. BMC Med 2025; 23:15. [PMID: 39800688 PMCID: PMC11727707 DOI: 10.1186/s12916-024-03845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Since older adults spend significant time in their neighborhood environment, environmental factors such as neighborhood socioeconomic disadvantage, high racial segregation, low healthy food availability, low access to recreation, and minimal social engagement may have adverse effects on cognitive function and increase susceptibility to dementia. DNA methylation, which is associated with neighborhood characteristics as well as cognitive function and white matter hyperintensity (WMH), may act as a mediator between neighborhood characteristics and neurocognitive outcomes. METHODS In this study, we examined whether DNA methylation in peripheral blood leukocytes mediates the relationship between neighborhood characteristics and cognitive function (N = 542) or WMH (N = 466) in older African American (AA) participants without preliminary evidence of dementia from the Genetic Epidemiology Network of Arteriopathy (GENOA). RESULTS For a 1-mile buffer around a participant's residence, each additional fast food destination or unfavorable food store with alcohol per square mile was nominally associated with a 0.05 (95%CI: 0.01, 0.09) and a 0.04 (0.00, 0.08) second improvement in visual conceptual tracking score, respectively. Also, each additional alcohol drinking place per square mile was nominally associated with a 0.62 (0.05, 1.19) word increase in delayed recall score, indicating better memory function (all p < 0.05). Neighborhood characteristics were not associated with WMH. We did not find evidence that DNA methylation mediates the observed associations between neighborhood characteristics and cognitive function. CONCLUSIONS The presence of fast food destinations and unfavorable food stores with alcohol was associated cognitive measures, possibly due to greater social interaction provided in these venues. However, replication of these findings is necessary. Further examination of the potential pathways between the neighborhood environment and cognitive function/WMH may allow the development of potential behavioral, infrastructural, and pharmaceutical interventions to facilitate aging in place and healthy brain aging in older adults, especially in marginal populations that are most at risk.
Collapse
Affiliation(s)
- Dima L Chaar
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Le Tu
- Department of Preventive Medicine, John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, USA
| | - Kari Moore
- Urban Health Collaborative, Drexel Dornsife School of Public Health, Philadelphia, PA, USA
| | - Jiacong Du
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lauren A Opsasnick
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ana V Diez Roux
- Urban Health Collaborative, Drexel Dornsife School of Public Health, Philadelphia, PA, USA
| | - Fazlay S Faruque
- Department of Preventive Medicine, John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, USA
| | - Kenneth R Butler
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Ciulkinyte A, Mountford HS, Fontanillas P, Bates TC, Martin NG, Fisher SE, Luciano M. Genetic neurodevelopmental clustering and dyslexia. Mol Psychiatry 2025; 30:140-150. [PMID: 39009701 PMCID: PMC11649571 DOI: 10.1038/s41380-024-02649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024]
Abstract
Dyslexia is a learning difficulty with neurodevelopmental origins, manifesting as reduced accuracy and speed in reading and spelling. It is substantially heritable and frequently co-occurs with other neurodevelopmental conditions, particularly attention deficit-hyperactivity disorder (ADHD). Here, we investigate the genetic structure underlying dyslexia and a range of psychiatric traits using results from genome-wide association studies of dyslexia, ADHD, autism, anorexia nervosa, anxiety, bipolar disorder, major depressive disorder, obsessive compulsive disorder, schizophrenia, and Tourette syndrome. Genomic Structural Equation Modelling (GenomicSEM) showed heightened support for a model consisting of five correlated latent genomic factors described as: F1) compulsive disorders (including obsessive-compulsive disorder, anorexia nervosa, Tourette syndrome), F2) psychotic disorders (including bipolar disorder, schizophrenia), F3) internalising disorders (including anxiety disorder, major depressive disorder), F4) neurodevelopmental traits (including autism, ADHD), and F5) attention and learning difficulties (including ADHD, dyslexia). ADHD loaded more strongly on the attention and learning difficulties latent factor (F5) than on the neurodevelopmental traits latent factor (F4). The attention and learning difficulties latent factor (F5) was positively correlated with internalising disorders (.40), neurodevelopmental traits (.25) and psychotic disorders (.17) latent factors, and negatively correlated with the compulsive disorders (-.16) latent factor. These factor correlations are mirrored in genetic correlations observed between the attention and learning difficulties latent factor and other cognitive, psychological and wellbeing traits. We further investigated genetic variants underlying both dyslexia and ADHD, which implicated 49 loci (40 not previously found in GWAS of the individual traits) mapping to 174 genes (121 not found in GWAS of individual traits) as potential pleiotropic variants. Our study confirms the increased genetic relation between dyslexia and ADHD versus other psychiatric traits and uncovers novel pleiotropic variants affecting both traits. In future, analyses including additional co-occurring traits such as dyscalculia and dyspraxia will allow a clearer definition of the attention and learning difficulties latent factor, yielding further insights into factor structure and pleiotropic effects.
Collapse
Affiliation(s)
- Austeja Ciulkinyte
- Translational Neuroscience PhD Programme, University of Edinburgh, Edinburgh, UK
| | - Hayley S Mountford
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Timothy C Bates
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Michelle Luciano
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
12
|
Matthews LJ. The Geneticization of Education and Its Bioethical Implications. Camb Q Healthc Ethics 2024:1-17. [PMID: 39506329 DOI: 10.1017/s096318012400046x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The day has arrived that genetic tests for educational outcomes are available to the public. Today parents and students alike can send off a sample of blood or saliva and receive a 'genetic report' for a range of characteristics relevant to education, including intelligence, math ability, reading ability, and educational attainment. DTC availability is compounded by a growing "precision education" initiative, which proposes the application of DNA tests in schools to tailor educational curricula to children's genomic profiles. Here I argue that these happenings are a strong signal of the geneticization of education; the process by which educational abilities and outcomes come to be examined, understood, explained, and treated as primarily genetic characteristics. I clarify what it means to geneticize education, highlight the nature and limitations of the underlying science, explore both real and potential downstream bioethical implications, and make proposals for mitigating negative impacts.
Collapse
Affiliation(s)
- Lucas J Matthews
- Department of Medical Humanities and Ethics, Columbia University, New York, NY, USA
- The Hastings Center, Garrison, NY, USA
| |
Collapse
|
13
|
Jia Z, Zhang H, Lv Y, Yu L, Cui Y, Zhang L, Yang C, Liu H, Zheng T, Xia W, Xu S, Li Y. Intrauterine chromium exposure and cognitive developmental delay: The modifying effect of genetic predisposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174350. [PMID: 38960203 DOI: 10.1016/j.scitotenv.2024.174350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
There is limited evidence on the effects of intrauterine chromium (Cr) exposure on children's cognitive developmental delay (CDD). Further, little is known about the genetic factors in modifying the association between intrauterine Cr exposure and CDD. The present study involved 2361 mother-child pairs, in which maternal plasma Cr concentrations were assessed, a polygenic risk score for the child was constructed, and the child's cognitive development was evaluated using the Bayley Scales of Infant Development. The risks of CDD conferred by intrauterine Cr exposure in children with different genetic backgrounds were evaluated by logistic regression. The additive interaction between intrauterine Cr exposure and genetic factors was evaluated by calculating the relative excess risk due to interaction (RERI), attributable proportion due to interaction (AP), and synergy index (SI). According to present study, higher intrauterine Cr exposure was significantly associated with increased CDD risk [each unit increase in ln-transformed maternal plasma Cr concentration (ln-Cr): adjusted OR (95 % CI), 1.18 (1.04-1.35); highest vs lowest quartile: adjusted OR (95 % CI), 1.57 (1.10-2.23)]. The dose-response relationship of intrauterine Cr exposure and CDD for children with high genetic risk was more prominent [each unit increased ln-Cr: adjusted OR (95 % CI), 1.36 (1.09-1.70)]. Joint effects between intrauterine Cr exposure and genetic factors were found. Specifically, for high genetic risk carriers, the association between intrauterine Cr exposure and CDD was more evident [highest vs lowest quartile: adjusted OR (95 % CI), 2.33 (1.43-3.80)]. For those children with high intrauterine Cr exposure and high genetic risk, the adjusted AP was 0.39 (95 % CI, 0.07-0.72). Conclusively, intrauterine Cr exposure was a high-risk factor for CDD in children, particularly for those with high genetic risk. Intrauterine Cr exposure and one's adverse genetic background jointly contribute to an increased risk of CDD in children.
Collapse
Affiliation(s)
- Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, Hubei, People's Republic of China
| | - Yiqing Lv
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ling Yu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yuan Cui
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Liping Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chenhui Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shunqing Xu
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, People's Republic of China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
14
|
Frank G, Gualtieri P, Cianci R, Caldarelli M, Palma R, De Santis GL, Porfilio C, Nicoletti F, Bigioni G, Di Renzo L. Body Composition and Alzheimer's Disease: A Holistic Review. Int J Mol Sci 2024; 25:9573. [PMID: 39273520 PMCID: PMC11395597 DOI: 10.3390/ijms25179573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Alzheimer's disease (AD) represents a significant global health challenge and affects approximately 50 million people worldwide. This overview of published reviews provides a comprehensive understanding of the intricate correlations between AD and body composition, focusing particularly on obesity. We used a systematic approach to collect and analyze relevant reviews on the topic of obesity and Alzheimer's disease. A comprehensive search of electronic databases, including PubMed, MEDLINE, and Google Scholar, was conducted. We searched keywords such as "Alzheimer's disease", "body composition", "lean mass", "bone mass", and "fat mass". We considered only reviews written within the past 5 years and in English. Fifty-six relevant reviews were identified that shed light on the multiple connections between AD and body composition. The review involves several aspects, including the impact of lean mass, bone mass, and endocrinological factors related to obesity, as well as inflammation, neuroinflammation, and molecular/genetic factors. The findings highlight the complex interplay of these elements in the development of AD, underscoring the need for holistic approaches to reduce the risk of AD and to explore innovative strategies for diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Giulia Frank
- PhD School of Applied Medical-Surgical Sciences, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Roselisa Palma
- PhD School of Applied Medical-Surgical Sciences, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Gemma Lou De Santis
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Chiara Porfilio
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Francesco Nicoletti
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Giulia Bigioni
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
15
|
Cañadas-Garre M, Maqueda JJ, Baños-Jaime B, Hill C, Skelly R, Cappa R, Brennan E, Doyle R, Godson C, Maxwell AP, McKnight AJ. Mitochondrial related variants associated with cardiovascular traits. Front Physiol 2024; 15:1395371. [PMID: 39258111 PMCID: PMC11385366 DOI: 10.3389/fphys.2024.1395371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction Cardiovascular disease (CVD) is responsible for over 30% of mortality worldwide. CVD arises from the complex influence of molecular, clinical, social, and environmental factors. Despite the growing number of autosomal genetic variants contributing to CVD, the cause of most CVDs is still unclear. Mitochondria are crucial in the pathophysiology, development and progression of CVDs; the impact of mitochondrial DNA (mtDNA) variants and mitochondrial haplogroups in the context of CVD has recently been highlighted. Aims We investigated the role of genetic variants in both mtDNA and nuclear-encoded mitochondrial genes (NEMG) in CVD, including coronary artery disease (CAD), hypertension, and serum lipids in the UK Biobank, with sub-group analysis for diabetes. Methods We investigated 371,542 variants in 2,527 NEMG, along with 192 variants in 32 mitochondrial genes in 381,994 participants of the UK Biobank, stratifying by presence of diabetes. Results Mitochondrial variants showed associations with CVD, hypertension, and serum lipids. Mitochondrial haplogroup J was associated with CAD and serum lipids, whereas mitochondrial haplogroups T and U were associated with CVD. Among NEMG, variants within Nitric Oxide Synthase 3 (NOS3) showed associations with CVD, CAD, hypertension, as well as diastolic and systolic blood pressure. We also identified Translocase Of Outer Mitochondrial Membrane 40 (TOMM40) variants associated with CAD; Solute carrier family 22 member 2 (SLC22A2) variants associated with CAD and CVD; and HLA-DQA1 variants associated with hypertension. Variants within these three genes were also associated with serum lipids. Conclusion Our study demonstrates the relevance of mitochondrial related variants in the context of CVD. We have linked mitochondrial haplogroup U to CVD, confirmed association of mitochondrial haplogroups J and T with CVD and proposed new markers of hypertension and serum lipids in the context of diabetes. We have also evidenced connections between the etiological pathways underlying CVDs, blood pressure and serum lipids, placing NOS3, SLC22A2, TOMM40 and HLA-DQA1 genes as common nexuses.
Collapse
Affiliation(s)
- Marisa Cañadas-Garre
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- MRC Integrative Epidemiology Unit, Bristol Medical School (Population Health Sciences), University of Bristol Oakfield House, Belfast, United Kingdom
| | - Joaquín J Maqueda
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Blanca Baños-Jaime
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Claire Hill
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Ryan Skelly
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Ruaidhri Cappa
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Eoin Brennan
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Ross Doyle
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexander P Maxwell
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Regional Nephrology Unit, Belfast City Hospital Belfast, Belfast, United Kingdom
| | - Amy Jayne McKnight
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| |
Collapse
|
16
|
Wang YZ, Zhao W, Moorjani P, Gross AL, Zhou X, Dey AB, Lee J, Smith JA, Kardia SLR. Effect of apolipoprotein E ε4 and its modification by sociodemographic characteristics on cognitive measures in South Asians from LASI-DAD. Alzheimers Dement 2024; 20:4854-4867. [PMID: 38889280 PMCID: PMC11247697 DOI: 10.1002/alz.14052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND We investigated the effects of apolipoprotein E (APOE) ε4 and its interactions with sociodemographic characteristics on cognitive measures in South Asians from the Diagnostic Assessment of Dementia for the Longitudinal Aging Study of India (LASI-DAD). METHODS Linear regression was used to assess the association between APOE ε4 and global- and domain-specific cognitive function in 2563 participants (mean age 69.6 ± 7.3 years; 53% female). Effect modification by age, sex, and education were explored using interaction terms and subgroup analyses. RESULTS APOE ε4 was inversely associated with most cognitive measures (p < 0.05). This association was stronger with advancing age for the Hindi Mental State Examination (HMSE) score (βε4×age = -0.44, p = 0.03), orientation (βε4×age = -0.07, p = 0.01), and language/fluency (βε4×age = -0.07, p = 0.01), as well as in females for memory (βε4×male = 0.17, p = 0.02) and language/fluency (βε4×male = 0.12, p = 0.03). DISCUSSION APOE ε4 is associated with lower cognitive function in South Asians from India, with a more pronounced impact observed in females and older individuals. HIGHLIGHTS APOE ε4 carriers had lower global and domain-specific cognitive performance. Females and older individuals may be more susceptible to ε4 effects. For most cognitive measures, there was no interaction between ε4 and education.
Collapse
Affiliation(s)
- Yi Zhe Wang
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Wei Zhao
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
- Survey Research CenterInstitute for Social ResearchUniversity of MichiganAnn ArborMichiganUSA
| | - Priya Moorjani
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Center for Computational BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Alden L. Gross
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Xiang Zhou
- Department of BiostatisticsSchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Aparajit B. Dey
- Department of Geriatric MedicineAll India Institute of Medical Sciences, Ansari NagarNew DelhiIndia
| | - Jinkook Lee
- Department of Economics and Center for Social ResearchUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jennifer A. Smith
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
- Survey Research CenterInstitute for Social ResearchUniversity of MichiganAnn ArborMichiganUSA
| | - Sharon L. R. Kardia
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
17
|
Sasner M, Preuss C, Pandey RS, Uyar A, Garceau D, Kotredes KP, Williams H, Oblak AL, Lin PB, Perkins B, Soni D, Ingraham C, Lee‐Gosselin A, Lamb BT, Howell GR, Carter GW. In vivo validation of late-onset Alzheimer's disease genetic risk factors. Alzheimers Dement 2024; 20:4970-4984. [PMID: 38687251 PMCID: PMC11247676 DOI: 10.1002/alz.13840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Genome-wide association studies have identified over 70 genetic loci associated with late-onset Alzheimer's disease (LOAD), but few candidate polymorphisms have been functionally assessed for disease relevance and mechanism of action. METHODS Candidate genetic risk variants were informatically prioritized and individually engineered into a LOAD-sensitized mouse model that carries the AD risk variants APOE ε4/ε4 and Trem2*R47H. The potential disease relevance of each model was assessed by comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4 and 12 months of age with human study cohorts. RESULTS We created new models for 11 coding and loss-of-function risk variants. Transcriptomic effects from multiple genetic variants recapitulated a variety of human gene expression patterns observed in LOAD study cohorts. Specific models matched to emerging molecular LOAD subtypes. DISCUSSION These results provide an initial functionalization of 11 candidate risk variants and identify potential preclinical models for testing targeted therapeutics. HIGHLIGHTS A novel approach to validate genetic risk factors for late-onset AD (LOAD) is presented. LOAD risk variants were knocked in to conserved mouse loci. Variant effects were assayed by transcriptional analysis. Risk variants in Abca7, Mthfr, Plcg2, and Sorl1 loci modeled molecular signatures of clinical disease. This approach should generate more translationally relevant animal models.
Collapse
Affiliation(s)
| | | | - Ravi S. Pandey
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
| | - Asli Uyar
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
| | | | | | | | - Adrian L. Oblak
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Peter Bor‐Chian Lin
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Bridget Perkins
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Disha Soni
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Cindy Ingraham
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Audrey Lee‐Gosselin
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Bruce T. Lamb
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | | | - Gregory W. Carter
- The Jackson LaboratoryBar HarborMaineUSA
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
| |
Collapse
|
18
|
Annevelink CE, Westra J, Sala-Vila A, Harris WS, Tintle NL, Shearer GC. A Genome-Wide Interaction Study of Erythrocyte ω-3 Polyunsaturated Fatty Acid Species and Memory in the Framingham Heart Study Offspring Cohort. J Nutr 2024; 154:1640-1651. [PMID: 38141771 PMCID: PMC11347816 DOI: 10.1016/j.tjnut.2023.12.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Cognitive decline, and more specifically Alzheimer's disease, continues to increase in prevalence globally, with few, if any, adequate preventative approaches. Several tests of cognition are utilized in the diagnosis of cognitive decline that assess executive function, short- and long-term memory, cognitive flexibility, and speech and motor control. Recent studies have separately investigated the genetic component of both cognitive health, using these measures, and circulating fatty acids. OBJECTIVES We aimed to examine the potential moderating effect of main species of ω-3 polyunsaturated fatty acids (PUFAs) on an individual's genetically conferred risk of cognitive decline. METHODS The Offspring cohort from the Framingham Heart Study was cross-sectionally analyzed in this genome-wide interaction study (GWIS). Our sample included all individuals with red blood cell ω-3 PUFA, genetic, cognitive testing (via Trail Making Tests [TMTs]), and covariate data (N = 1620). We used linear mixed effects models to predict each of the 3 cognitive measures (TMT A, TMT B, and TMT D) by each ω-3 PUFA, single nucleotide polymorphism (SNP) (0, 1, or 2 minor alleles), ω-3 PUFA by SNP interaction term, and adjusting for sex, age, education, APOE ε4 genotype status, and kinship (relatedness). RESULTS Our analysis identified 31 unique SNPs from 24 genes reaching an exploratory significance threshold of 1×10-5. Fourteen of the 24 genes have been previously associated with the brain/cognition, and 5 genes have been previously associated with circulating lipids. Importantly, 8 of the genes we identified, DAB1, SORCS2, SERINC5, OSBPL3, CPA6, DLG2, MUC19, and RGMA, have been associated with both cognition and circulating lipids. We identified 22 unique SNPs for which individuals with the minor alleles benefit substantially from increased ω-3 fatty acid concentrations and 9 unique SNPs for which the common homozygote benefits. CONCLUSIONS In this GWIS of ω-3 PUFA species on cognitive outcomes, we identified 8 unique genes with plausible biology suggesting individuals with specific polymorphisms may have greater potential to benefit from increased ω-3 PUFA intake. Additional replication in prospective settings with more diverse samples is needed.
Collapse
Affiliation(s)
- Carmen E Annevelink
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Jason Westra
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, United States
| | - Aleix Sala-Vila
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, United States; Cardiovascular Risk and Nutrition, Hospital del Mar Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - William S Harris
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, United States; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, United States
| | - Nathan L Tintle
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, United States; Department of Population Health Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, IL, United States
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
19
|
Yazdi MK, Alavi MS, Roohbakhsh A. The role of ATP-binding cassette transporter G1 (ABCG1) in Alzheimer's disease: A review of the mechanisms. Basic Clin Pharmacol Toxicol 2024; 134:423-438. [PMID: 38275217 DOI: 10.1111/bcpt.13981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
The maintenance of cholesterol homeostasis is essential for central nervous system function. Consequently, factors that affect cholesterol homeostasis are linked to neurological disorders and pathologies. Among them, ATP-binding cassette transporter G1 (ABCG1) plays a significant role in atherosclerosis. However, its role in Alzheimer's disease (AD) is unclear. There is inconsistent information regarding ABCG1's role in AD. It can increase or decrease amyloid β (Aβ) levels in animals' brains. Clinical studies show that ABCG1 is involved in AD patients' impairment of cholesterol efflux capacity (CEC) in the cerebrospinal fluid (CSF). Lower Aβ levels in the CSF are correlated with ABCG1-mediated CEC dysfunction. ABCG1 modulates α-, β-, and γ-secretase activities in the plasma membrane and may affect Aβ production in the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) cell compartment. Despite contradictory findings regarding ABCG1's role in AD, this review shows that ABCG1 has a role in Aβ generation via modulation of membrane secretases. It is, however, necessary to investigate the underlying mechanism(s). ABCG1 may also contribute to AD pathology through its role in apoptosis and oxidative stress. As a result, ABCG1 plays a role in AD and is a candidate for drug development.
Collapse
Affiliation(s)
- Mohsen Karbasi Yazdi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Holen B, Kutrolli G, Shadrin AA, Icick R, Hindley G, Rødevand L, O'Connell KS, Frei O, Parker N, Tesfaye M, Deak JD, Jahołkowski P, Dale AM, Djurovic S, Andreassen OA, Smeland OB. Genome-wide analyses reveal shared genetic architecture and novel risk loci between opioid use disorder and general cognitive ability. Drug Alcohol Depend 2024; 256:111058. [PMID: 38244365 PMCID: PMC11831617 DOI: 10.1016/j.drugalcdep.2023.111058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/09/2023] [Accepted: 12/03/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Opioid use disorder (OUD), a serious health burden worldwide, is associated with lower cognitive function. Recent studies have demonstrated a negative genetic correlation between OUD and general cognitive ability (COG), indicating a shared genetic basis. However, the specific genetic variants involved, and the underlying molecular mechanisms remain poorly understood. Here, we aimed to quantify and identify the genetic basis underlying OUD and COG. METHODS We quantified the extent of genetic overlap between OUD and COG using a bivariate causal mixture model (MiXeR) and identified specific genetic loci applying conditional/conjunctional FDR. Finally, we investigated biological function and expression of implicated genes using available resources. RESULTS We estimated that ~94% of OUD variants (4.8k out of 5.1k variants) also influence COG. We identified three novel OUD risk loci and one locus shared between OUD and COG. Loci identified implicated biological substrates in the basal ganglia. CONCLUSION We provide new insights into the complex genetic risk architecture of OUD and its genetic relationship with COG.
Collapse
Affiliation(s)
- Børge Holen
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway.
| | - Gleda Kutrolli
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway
| | - Alexey A Shadrin
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway
| | - Romain Icick
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway; INSERM UMR-S1144, Université Paris Cité, F-75006, France
| | - Guy Hindley
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway
| | - Linn Rødevand
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway
| | - Kevin S O'Connell
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway
| | - Oleksandr Frei
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway
| | - Nadine Parker
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway
| | - Markos Tesfaye
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway; NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Joseph D Deak
- Yale School of Medicine, New Haven, CT, USA; VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Piotr Jahołkowski
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA; Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA 92093, USA; Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway
| | - Olav B Smeland
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway.
| |
Collapse
|
21
|
Satizabal CL, Beiser AS, Fletcher E, Seshadri S, DeCarli C. A novel neuroimaging signature for ADRD risk stratification in the community. Alzheimers Dement 2024; 20:1881-1893. [PMID: 38147416 PMCID: PMC10984488 DOI: 10.1002/alz.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023]
Abstract
INTRODUCTION Early risk stratification for clinical dementia could lead to preventive therapies. We identified and validated a magnetic resonance imaging (MRI) signature for Alzheimer's disease (AD) and related dementias (ARDR). METHODS An MRI ADRD signature was derived from cortical thickness maps in Framingham Heart Study (FHS) participants with AD dementia and matched controls. The signature was related to the risk of ADRD and cognitive function in FHS. Results were replicated in the University of California Davis Alzheimer's Disease Research Center (UCD-ADRC) cohort. RESULTS Participants in the bottom quartile of the signature had more than three times increased risk for ADRD compared to those in the upper three quartiles (P < 0.001). Greater thickness in the signature was related to better general cognition (P < 0.01) and episodic memory (P = 0.01). Results replicated in UCD-ADRC. DISCUSSION We identified a robust neuroimaging biomarker for persons at increased risk of ADRD. Other cohorts will further test the validity of this biomarker.
Collapse
Affiliation(s)
- Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexasUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| | - Alexa S. Beiser
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Evan Fletcher
- IDeA LaboratoryDepartment of NeurologyUniversity of California DavisDavisCaliforniaUSA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexasUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| | - Charles DeCarli
- IDeA LaboratoryDepartment of NeurologyUniversity of California DavisDavisCaliforniaUSA
| |
Collapse
|
22
|
Pase MP, Himali JJ, Puerta R, Beiser AS, Gonzales MM, Satizabal CL, Yang Q, Aparicio HJ, Kojis DJ, Decarli CS, Lopez OL, Longstreth W, Gudnason V, Mosley TH, Bis JC, Fohner A, Psaty BM, Boada M, García-González P, Valero S, Marquié M, Tracy R, Launer LJ, Ruiz A, Fornage M, Seshadri S. Association of Plasma YKL-40 With MRI, CSF, and Cognitive Markers of Brain Health and Dementia. Neurology 2024; 102:e208075. [PMID: 38290090 PMCID: PMC11383876 DOI: 10.1212/wnl.0000000000208075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/07/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Higher YKL-40 levels in the CSF are a known biomarker of brain inflammation. We explored the utility of plasma YKL-40 as a biomarker for accelerated brain aging and dementia risk. METHODS We performed cross-sectional and prospective analyses of 4 community-based cohorts in the United States or Europe: the Age, Gene/Environment Susceptibility-Reykjavik Study, Atherosclerosis Risk in the Communities study, Coronary Artery Risk Development in Young Adults study, and Framingham Heart Study (FHS). YKL-40 was measured from stored plasma by a single laboratory using Mesoscale Discovery with levels log transformed and standardized within each cohort. Outcomes included MRI total brain volume, hippocampal volume, and white matter hyperintensity volume (WMHV) as a percentage of intracranial volume, a general cognitive composite derived from neuropsychological testing (SD units [SDU]), and the risk of incident dementia. We sought to replicate associations with dementia in the clinic-based ACE csf cohort, which also had YKL-40 measured from the CSF. RESULTS Meta-analyses of MRI outcomes included 6,558 dementia-free participants, and for analysis of cognition, 6,670. The blood draw preceded MRI/cognitive assessment by up to 10.6 years across cohorts. The mean ages ranged from 50 to 76 years, with 39%-48% male individuals. In random-effects meta-analysis of study estimates, each SDU increase in log-transformed YKL-40 levels was associated with smaller total brain volume (β = -0.33; 95% CI -0.45 to -0.22; p < 0.0001) and poorer cognition (β = -0.04; 95% CI -0.07 to -0.02; p < 0.01), following adjustments for demographic variables. YKL-40 levels did not associate with hippocampal volume or WMHV. In the FHS, each SDU increase in log YKL-40 levels was associated with a 64% increase in incident dementia risk over a median of 5.8 years of follow-up, following adjustments for demographic variables (hazard ratio 1.64; 95% CI 1.25-2.16; p < 0.001). In the ACE csf cohort, plasma and CSF YKL-40 were correlated (r = 0.31), and both were associated with conversion from mild cognitive impairment to dementia, independent of amyloid, tau, and neurodegeneration status. DISCUSSION Higher plasma YKL-40 levels were associated with lower brain volume, poorer cognition, and incident dementia. Plasma YKL-40 may be useful for studying the association of inflammation and its treatment on dementia risk.
Collapse
Affiliation(s)
- Matthew P Pase
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Jayandra J Himali
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Raquel Puerta
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Alexa S Beiser
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Mitzi M Gonzales
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Claudia L Satizabal
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Qiong Yang
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Hugo J Aparicio
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Daniel J Kojis
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Charles S Decarli
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Oscar L Lopez
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Will Longstreth
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Vilmundur Gudnason
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Thomas H Mosley
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Joshua C Bis
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Alison Fohner
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Bruce M Psaty
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Mercè Boada
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Pablo García-González
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Sergi Valero
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Marta Marquié
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Russell Tracy
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Lenore J Launer
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Agustín Ruiz
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Myriam Fornage
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Sudha Seshadri
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| |
Collapse
|
23
|
Archer DB, Eissman JM, Mukherjee S, Lee ML, Choi S, Scollard P, Trittschuh EH, Mez JB, Bush WS, Kunkle BW, Naj AC, Gifford KA, Cuccaro ML, Pericak‐Vance MA, Farrer LA, Wang L, Schellenberg GD, Mayeux RP, Haines JL, Jefferson AL, Kukull WA, Keene CD, Saykin AJ, Thompson PM, Martin ER, Bennett DA, Barnes LL, Schneider JA, Crane PK, Dumitrescu L, Hohman TJ. Longitudinal change in memory performance as a strong endophenotype for Alzheimer's disease. Alzheimers Dement 2024; 20:1268-1283. [PMID: 37985223 PMCID: PMC10896586 DOI: 10.1002/alz.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION Although large-scale genome-wide association studies (GWAS) have been conducted on AD, few have been conducted on continuous measures of memory performance and memory decline. METHODS We conducted a cross-ancestry GWAS on memory performance (in 27,633 participants) and memory decline (in 22,365 participants; 129,201 observations) by leveraging harmonized cognitive data from four aging cohorts. RESULTS We found high heritability for two ancestry backgrounds. Further, we found a novel ancestry locus for memory decline on chromosome 4 (rs6848524) and three loci in the non-Hispanic Black ancestry group for memory performance on chromosomes 2 (rs111471504), 7 (rs4142249), and 15 (rs74381744). In our gene-level analysis, we found novel genes for memory decline on chromosomes 1 (SLC25A44), 11 (BSX), and 15 (DPP8). Memory performance and memory decline shared genetic architecture with AD-related traits, neuropsychiatric traits, and autoimmune traits. DISCUSSION We discovered several novel loci, genes, and genetic correlations associated with late-life memory performance and decline. HIGHLIGHTS Late-life memory has high heritability that is similar across ancestries. We discovered four novel variants associated with late-life memory. We identified four novel genes associated with late-life memory. Late-life memory shares genetic architecture with psychiatric/autoimmune traits.
Collapse
|
24
|
Yao ZF, Yang MH, Yang CT, Chang YH, Hsieh S. The role of attitudes towards contradiction in psychological resilience: the cortical mechanism of conflicting resolution networks. Sci Rep 2024; 14:1669. [PMID: 38238421 PMCID: PMC10796669 DOI: 10.1038/s41598-024-51722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
Managing contradictions and building resilience help us overcome life's challenges. Here, we explored the link between attitudes towards contradictions and psychological resilience, examining the role of cortical conflict resolution networks. We enlisted 173 healthy young adults and used questionnaires to evaluate their cognitive thinking styles and resilience. They underwent structural and functional magnetic resonance imaging scans. Our results revealed that contrasting attitudes toward contradictions, formal logic, and naïve dialecticism thinking styles corresponded with varying degrees of resilience. We noted structural and functional differences in brain networks related to conflict resolution, including the inferior frontal and parietal cortices. The volumetric variations within cortical networks indicated right-hemispheric lateralization in different thinking styles. These findings highlight the potential links between conflict resolution and resilience in the frontoparietal network. We underscore the importance of frontoparietal brain networks for executive control in resolving conflicting information and regulating the impact of contradictions on psychological resilience.
Collapse
Affiliation(s)
- Zai-Fu Yao
- College of Education, National Tsing Hua University, Hsinchu City, 30013, Taiwan
- Research Center for Education and Mind Sciences, National Tsing Hua University, Hsinchu City, 30013, Taiwan
- Basic Psychology Group, Department of Educational Psychology and Counseling, National Tsing Hua University, Hsinchu City, 30013, Taiwan
- Department of Kinesiology, National Tsing Hua University, Hsinchu City, 30013, Taiwan
| | - Meng-Heng Yang
- Cognitive Electrophysiology Laboratory: Control, Aging, Sleep, and Emotion (CASE), Department of Psychology, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Cheng-Ta Yang
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei, Taiwan
- Department of Psychology, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Yun-Hsuan Chang
- Department of Psychology, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
- Institute of Gerontology, National Cheng Kung University, Tainan City, 70101, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402, Taiwan
| | - Shulan Hsieh
- Cognitive Electrophysiology Laboratory: Control, Aging, Sleep, and Emotion (CASE), Department of Psychology, National Cheng Kung University, Tainan City, 70101, Taiwan.
- Department of Psychology, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
- Institute of Allied Health Sciences, National Cheng Kung University, Tainan City, 70101, Taiwan.
- Department of Public Health, National Cheng Kung University, Tainan City, 70101, Taiwan.
| |
Collapse
|
25
|
Chen D, Zhou Y, Zhang Y, Zeng H, Wu L, Liu Y. Unraveling shared susceptibility loci and Mendelian genetic associations linking educational attainment with multiple neuropsychiatric disorders. Front Psychiatry 2024; 14:1303430. [PMID: 38250258 PMCID: PMC10797721 DOI: 10.3389/fpsyt.2023.1303430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Background Empirical studies have demonstrated that educational attainment (EA) is associated with neuropsychiatric disorders (NPDs), suggesting a shared etiological basis between them. However, little is known about the shared genetic mechanisms and causality behind such associations. Methods This study explored the shared genetic basis and causal relationships between EA and NPDs using the high-definition likelihood (HDL) method, cross phenotype association study (CPASSOC), transcriptome-wide association study (TWAS), and bidirectional Mendelian randomization (MR) with summary-level data for EA (N = 293,723) and NPDs (N range = 9,725 to 455,258). Results Significant genetic correlations between EA and 12 NPDs (rg range - 0.49 to 0.35; all p < 3.85 × 10-3) were observed. CPASSOC identified 37 independent loci shared between EA and NPDs, one of which was novel (rs71351952, mapped gene: ARFGEF2). Functional analyses and TWAS found shared genes were enriched in brain tissue, especially in the cerebellum and highlighted the regulatory role of neuronal signaling, purine nucleotide metabolic process, and cAMP-mediated signaling pathways. CPASSOC and TWAS supported the role of three regions of 6q16.1, 3p21.31, and 17q21.31 might account for the shared causes between EA and NPDs. MR confirmed higher genetically predicted EA lower the risk of ADHD (ORIVW: 0.50; 95% CI: 0.39 to 0.63) and genetically predicted ADHD decreased the risk of EA (Causal effect: -2.8 months; 95% CI: -3.9 to -1.8). Conclusion These findings provided evidence of shared genetics and causation between EA and NPDs, advanced our understanding of EA, and implicated potential biological pathways that might underlie both EA and NPDs.
Collapse
Affiliation(s)
- Dongze Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yi Zhou
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Huatang Zeng
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Liqun Wu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Yuyang Liu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| |
Collapse
|
26
|
Paus T. Population Neuroscience: Principles and Advances. Curr Top Behav Neurosci 2024; 68:3-34. [PMID: 38589637 DOI: 10.1007/7854_2024_474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
In population neuroscience, three disciplines come together to advance our knowledge of factors that shape the human brain: neuroscience, genetics, and epidemiology (Paus, Human Brain Mapping 31:891-903, 2010). Here, I will come back to some of the background material reviewed in more detail in our previous book (Paus, Population Neuroscience, 2013), followed by a brief overview of current advances and challenges faced by this integrative approach.
Collapse
Affiliation(s)
- Tomáš Paus
- Department of Psychiatry and Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
27
|
Sasner M, Preuss C, Pandey RS, Uyar A, Garceau D, Kotredes KP, Williams H, Oblak AL, Lin PBC, Perkins B, Soni D, Ingraham C, Lee-Gosselin A, Lamb BT, Howell GR, Carter GW. In vivo validation of late-onset Alzheimer's disease genetic risk factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572849. [PMID: 38187758 PMCID: PMC10769393 DOI: 10.1101/2023.12.21.572849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Introduction Genome-wide association studies have identified over 70 genetic loci associated with late-onset Alzheimer's disease (LOAD), but few candidate polymorphisms have been functionally assessed for disease relevance and mechanism of action. Methods Candidate genetic risk variants were informatically prioritized and individually engineered into a LOAD-sensitized mouse model that carries the AD risk variants APOE4 and Trem2*R47H. Potential disease relevance of each model was assessed by comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4 and 12 months of age with human study cohorts. Results We created new models for 11 coding and loss-of-function risk variants. Transcriptomic effects from multiple genetic variants recapitulated a variety of human gene expression patterns observed in LOAD study cohorts. Specific models matched to emerging molecular LOAD subtypes. Discussion These results provide an initial functionalization of 11 candidate risk variants and identify potential preclinical models for testing targeted therapeutics.
Collapse
Affiliation(s)
- Michael Sasner
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME, 04609 USA
| | | | - Ravi S Pandey
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032 USA
| | - Asli Uyar
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032 USA
| | - Dylan Garceau
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME, 04609 USA
| | | | | | - Adrian L Oblak
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, NB Building, 320 W 15th St #414, Indianapolis, IN 46202
| | - Peter Bor-Chian Lin
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, NB Building, 320 W 15th St #414, Indianapolis, IN 46202
| | - Bridget Perkins
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, NB Building, 320 W 15th St #414, Indianapolis, IN 46202
| | - Disha Soni
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, NB Building, 320 W 15th St #414, Indianapolis, IN 46202
| | - Cindy Ingraham
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, NB Building, 320 W 15th St #414, Indianapolis, IN 46202
| | - Audrey Lee-Gosselin
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, NB Building, 320 W 15th St #414, Indianapolis, IN 46202
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, NB Building, 320 W 15th St #414, Indianapolis, IN 46202
| | - Gareth R Howell
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME, 04609 USA
| | - Gregory W Carter
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME, 04609 USA
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032 USA
| |
Collapse
|
28
|
Zang JCS, Hohoff C, Van Assche E, Lange P, Kraft M, Sandmann S, Varghese J, Jörgens S, Knight MJ, Baune BT. Immune gene co-expression signatures implicated in occurence and persistence of cognitive dysfunction in depression. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110826. [PMID: 37451594 DOI: 10.1016/j.pnpbp.2023.110826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Cognitive dysfunction contributes significantly to the burden caused by Major Depressive Disorder (MDD). Yet, while compelling evidence suggests that different biological processes play a part in both MDD aetiology and the development of cognitive decline more generally, we only begin to understand the molecular underpinnings of depression-related cognitive impairment. Developments in psychometric assessments, molecular high-throughput methods and systems biology derived analysis strategies advance this endeavour. Here, we aim to identify gene expression signatures associated with cognitive dysfunction and cognitive improvement following therapy using RNA sequencing to analyze the whole blood-derived transcriptome of altogether 101 MDD patients who enrolled in the CERT-D study. The mRNA(Nova)Seq based transcriptome was analyzed from whole blood taken at baseline assessment, and patients' cognitive performance was measured twice at baseline and following eight weeks of therapy by means of the THINC integrated tool. Thirty-six patients showed comparatively low cognitive performance at baseline assessment, and 32 patients showed comparatively strong cognitive improvement following therapy. Differential gene expression analysis was performed using limma to a significance threshold of 0.05 and a logFC cutoff of |1.2|. Although we observed some indications for expression differences related to low cognitive performance and cognitive therapy response, signals did not withstand adjustment for multiple testing. Applying WGCNA, we retrieved altogether 25 modules of co-expressed genes and we used a combination of correlational and linear analyses to identify modules related to baseline cognitive performance and cognitive improvement following therapy. Three immune modules reflected distinct but interrelated immune processes (the yellow module: neutrophil-mediated immunity, the darkorange module: interferon signaling, the tan module: platelet activation), and higher expression of the yellow (r = -0.21, p < .05), the dark orange (r = 0.2, p < .05), and the tan (r = -0.23, p < .05) module correlated significantly negatively with patients' cognitive baseline performance. Patients' cognitive baseline performance was a significant predictor of the darkorange module (b = -0.039, p < .05) and the tan module's expression (b = 0.02, p < .05) and was close to becoming a significant predictor of the yellow module's expression (b = -0.02, p = .05). Furthermore, patients characterized by comparatively low cognitive performance at baseline showed significantly higher expression of the tan module when compared to all other patients F(1,97) = 4.32, p < .05, η= 0.04. Following eight weeks of treatment, we observed altogether significant improvement in patients' cognitive performance (b = 0.30, p < .001), and patients with comparatively high cognitive gain showed noticeably lower, but not significantly lower F(1,98) = 3.76, p = .058, expression of a dark turquoise module, which reflects complement and B-cell-associated immune processes. Noteworthy, the relation between cognitive performance and module expression remained observable after controlling for symptom severity and BMI, which partly accounted for variance in module expression. As such, our findings provide further evidence for the involvement of immune processes in MDD related cognitive dysfunction and they suggest that different immune processes contribute to the development and long-term persistence of cognitive dysfunction in the context of depression.
Collapse
Affiliation(s)
- Johannes C S Zang
- Department of Psychiatry, University of Münster, 48149 Münster, Germany.
| | - Christa Hohoff
- Department of Psychiatry, University of Münster, 48149 Münster, Germany.
| | - Evelien Van Assche
- Department of Psychiatry, University of Münster, 48149 Münster, Germany.
| | - Pia Lange
- Institute of Medical Informatics, University of Münster, Münster, Germany.
| | - Manuel Kraft
- Department of Psychiatry, University of Münster, 48149 Münster, Germany.
| | - Sarah Sandmann
- Institute of Medical Informatics, University of Münster, Münster, Germany.
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany.
| | - Silke Jörgens
- Department of Psychiatry, University of Münster, 48149 Münster, Germany.
| | - Matthew J Knight
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, 48149 Münster, Germany; Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Parkville, VIC 3010, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
29
|
Liu Y, Tian J. Neuroprotective factors affect the progression of Alzheimer's disease. Biochem Biophys Res Commun 2023; 681:276-282. [PMID: 37797415 DOI: 10.1016/j.bbrc.2023.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
Alzheimer's disease(AD) is a neurodegenerative disease that occurs mostly in the elderly and is characterized by chronic progressive cognitive dysfunction, which seriously threatens the health and life-quality of patients. Alterations at the molecular level, which causes pathological changes of AD brain, have impacted the progression of AD. In this review, we illustrate the recent evidence of the alteration of neuroprotective proteins in AD, such as changes in their contents and variants. Furthermore, we elucidate the single nucleotide polymorphism (SNP) and gene changes. Finally, we highlight the epigenetic changes in AD, which helps to display the characteristics of the disease and provides guidance regarding research hot spots in the field against AD.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, China
| | - Jinzhou Tian
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, China.
| |
Collapse
|
30
|
Tin A, Fohner AE, Yang Q, Brody JA, Davies G, Yao J, Liu D, Caro I, Lindbohm JV, Duggan MR, Meirelles O, Harris SE, Gudmundsdottir V, Taylor AM, Henry A, Beiser AS, Shojaie A, Coors A, Fitzpatrick AL, Langenberg C, Satizabal CL, Sitlani CM, Wheeler E, Tucker-Drob EM, Bressler J, Coresh J, Bis JC, Candia J, Jennings LL, Pietzner M, Lathrop M, Lopez OL, Redmond P, Gerszten RE, Rich SS, Heckbert SR, Austin TR, Hughes TM, Tanaka T, Emilsson V, Vasan RS, Guo X, Zhu Y, Tzourio C, Rotter JI, Walker KA, Ferrucci L, Kivimäki M, Breteler MMB, Cox SR, Debette S, Mosley TH, Gudnason VG, Launer LJ, Psaty BM, Seshadri S, Fornage M. Identification of circulating proteins associated with general cognitive function among middle-aged and older adults. Commun Biol 2023; 6:1117. [PMID: 37923804 PMCID: PMC10624811 DOI: 10.1038/s42003-023-05454-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023] Open
Abstract
Identifying circulating proteins associated with cognitive function may point to biomarkers and molecular process of cognitive impairment. Few studies have investigated the association between circulating proteins and cognitive function. We identify 246 protein measures quantified by the SomaScan assay as associated with cognitive function (p < 4.9E-5, n up to 7289). Of these, 45 were replicated using SomaScan data, and three were replicated using Olink data at Bonferroni-corrected significance. Enrichment analysis linked the proteins associated with general cognitive function to cell signaling pathways and synapse architecture. Mendelian randomization analysis implicated higher levels of NECTIN2, a protein mediating viral entry into neuronal cells, with higher Alzheimer's disease (AD) risk (p = 2.5E-26). Levels of 14 other protein measures were implicated as consequences of AD susceptibility (p < 2.0E-4). Proteins implicated as causes or consequences of AD susceptibility may provide new insight into the potential relationship between immunity and AD susceptibility as well as potential therapeutic targets.
Collapse
Grants
- N01 HC095163 NHLBI NIH HHS
- RC2 HL102419 NHLBI NIH HHS
- HHSN268201500003C NHLBI NIH HHS
- UH3 NS100605 NINDS NIH HHS
- R01 HL103612 NHLBI NIH HHS
- 75N92020D00002 NHLBI NIH HHS
- U01 HL096812 NHLBI NIH HHS
- MC_UU_00006/1 Medical Research Council
- UF1 NS125513 NINDS NIH HHS
- 75N92020D00005 NHLBI NIH HHS
- N01AG12100 NIA NIH HHS
- N01HC95160 NHLBI NIH HHS
- R01 AG054076 NIA NIH HHS
- R01 HL120393 NHLBI NIH HHS
- BB/F019394/1 Biotechnology and Biological Sciences Research Council
- RF1 AG059421 NIA NIH HHS
- R01 HL131136 NHLBI NIH HHS
- N01 HC095168 NHLBI NIH HHS
- UL1 RR025005 NCRR NIH HHS
- R01 AG015928 NIA NIH HHS
- HHSN268201800004I NHLBI NIH HHS
- U01 HL080295 NHLBI NIH HHS
- N01HC95163 NHLBI NIH HHS
- N01 AG012100 NIA NIH HHS
- HHSN268201500001C NHLBI NIH HHS
- UL1 TR001079 NCATS NIH HHS
- N01 HC085082 NHLBI NIH HHS
- U01 HL096917 NHLBI NIH HHS
- R01 HL059367 NHLBI NIH HHS
- U01 HL130114 NHLBI NIH HHS
- HHSN268200800007C NHLBI NIH HHS
- R01 HL085251 NHLBI NIH HHS
- N01HC95169 NHLBI NIH HHS
- R01 NS087541 NINDS NIH HHS
- 75N92020D00001 NHLBI NIH HHS
- R01 HL086694 NHLBI NIH HHS
- R01 AG054628 NIA NIH HHS
- U01 HL096902 NHLBI NIH HHS
- R01 HL087652 NHLBI NIH HHS
- N01 HC095162 NHLBI NIH HHS
- U01 HG004402 NHGRI NIH HHS
- N01HC95164 NHLBI NIH HHS
- N01 HC085086 NHLBI NIH HHS
- N01HC55222 NHLBI NIH HHS
- R01 AG049607 NIA NIH HHS
- R01 AG065596 NIA NIH HHS
- N01 HC095165 NHLBI NIH HHS
- N01HC95162 NHLBI NIH HHS
- MR/R024227/1 Medical Research Council
- N01HC85086 NHLBI NIH HHS
- 75N92020D00003 NHLBI NIH HHS
- R01 HL105756 NHLBI NIH HHS
- N01HC95168 NHLBI NIH HHS
- N01 HC095169 NHLBI NIH HHS
- HHSN268201800003I NHLBI NIH HHS
- P30 DK063491 NIDDK NIH HHS
- HHSN268201800007I NHLBI NIH HHS
- HHSN268201700002C NHLBI NIH HHS
- R01 AG066524 NIA NIH HHS
- RF1 AG063507 NIA NIH HHS
- HHSN268201200036C NHLBI NIH HHS
- R01 HL144483 NHLBI NIH HHS
- HHSN268201800001C NHLBI NIH HHS
- HHSN268201700001I NHLBI NIH HHS
- R01 AG056477 NIA NIH HHS
- HHSN268201700004I NHLBI NIH HHS
- N01HC95165 NHLBI NIH HHS
- N01 HC095159 NHLBI NIH HHS
- U01 AG058589 NIA NIH HHS
- N01HC95159 NHLBI NIH HHS
- N01 HC095161 NHLBI NIH HHS
- HHSN268201500001I NHLBI NIH HHS
- R01 AG058969 NIA NIH HHS
- HHSN271201200022C NIDA NIH HHS
- N01 HC025195 NHLBI NIH HHS
- N01HC95161 NHLBI NIH HHS
- UL1 TR001420 NCATS NIH HHS
- 75N92020D00004 NHLBI NIH HHS
- U01 HL096814 NHLBI NIH HHS
- P30 AG066509 NIA NIH HHS
- R01 HL132320 NHLBI NIH HHS
- 75N92020D00007 NHLBI NIH HHS
- P30 AG066546 NIA NIH HHS
- R01 AG033040 NIA NIH HHS
- MR/S011676/1 Medical Research Council
- U01 AG052409 NIA NIH HHS
- HHSN268201500003I NHLBI NIH HHS
- K01 AG071689 NIA NIH HHS
- 75N92021D00006 NHLBI NIH HHS
- R01 AG026307 NIA NIH HHS
- R01 AG020098 NIA NIH HHS
- HHSN268201700005C NHLBI NIH HHS
- HHSN268201700001C NHLBI NIH HHS
- N01HC85082 NHLBI NIH HHS
- HHSN268201700003C NHLBI NIH HHS
- N01 HC095166 NHLBI NIH HHS
- N01HC95167 NHLBI NIH HHS
- N01HC85083 NHLBI NIH HHS
- UH2 NS100605 NINDS NIH HHS
- N01HC25195 NHLBI NIH HHS
- 75N92019D00031 NHLBI NIH HHS
- U01 HL096899 NHLBI NIH HHS
- HHSN268201700004C NHLBI NIH HHS
- UL1 TR000040 NCATS NIH HHS
- HHSN268201700002I NHLBI NIH HHS
- HHSN268201700005I NHLBI NIH HHS
- P30 AG072947 NIA NIH HHS
- R01 AG025941 NIA NIH HHS
- Chief Scientist Office
- 75N92020D00006 NHLBI NIH HHS
- N01HC95166 NHLBI NIH HHS
- R01 AG023629 NIA NIH HHS
- R01 HL087641 NHLBI NIH HHS
- N01HC85079 NHLBI NIH HHS
- N01 HC085080 NHLBI NIH HHS
- UL1 TR001881 NCATS NIH HHS
- N01 HC095167 NHLBI NIH HHS
- HHSN268201800005I NHLBI NIH HHS
- N01HC85080 NHLBI NIH HHS
- HHSN268201700003I NHLBI NIH HHS
- HHSN268201800006I NHLBI NIH HHS
- N01 HC095164 NHLBI NIH HHS
- N01HC85081 NHLBI NIH HHS
- N01 HC095160 NHLBI NIH HHS
- The ARIC study has been funded in whole or in part with Federal funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services (contract numbers HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, HHSN268201700004I and HHSN268201700005I), R01HL087641, R01HL059367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. Funding was also supported by 5RC2HL102419, R01NS087541 and R01HL131136. Neurocognitive data were collected by U01 2U01HL096812, 2U01HL096814, 2U01HL096899, 2U01HL096902, 2U01HL096917 from the NIH (NHLBI, NINDS, NIA and NIDCD). Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research. This Cardiovascular Heath Study (CHS) research was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, HHSN268201800001C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, 75N92021D00006; and NHLBI grants U01HL080295, R01HL087652, R01HL105756, R01HL103612, R01HL120393, R01HL085251, R01HL144483, and U01HL130114 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through R01AG023629, R01AG15928, and R01AG20098 from the National Institute on Aging (NIA). AEF is supported by K01AG071689. The Framingham Heart Study is conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with Boston University (Contract No. N01-HC-25195, HHSN268201500001I and 75N92019D00031). This work was also supported by grant R01AG063507, R01AG054076, R01AG049607, R01AG059421, R01AG033040, R01AG066524, P30AG066546, U01 AG052409, U01 AG058589 from from the National Institute on Aging and R01 AG017950, UH2/3 NS100605, UF1 NS125513 from National Institute of Neurological Disorders and Stroke and R01HL132320. AGES has been funded by NIA contracts N01-AG012100 and HSSN271201200022C, NIH Grant No. 1R01AG065596-01A1, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). M. R. Duggan, T. Tanaka, J. Candia, K. A. Walker, L. Ferrucci, L.J. Launer, O. Meirelles are funded by the National Institute on Aging Intramural Research Program. This study was funded, in part, by the National Institute on Aging Intramural Research Program. The Coronary Artery Risk Development in Young Adults Study (CARDIA) is supported by contracts HHSN268201800003I, HHSN268201800004I, HHSN268201800005I, HHSN268201800006I, and HHSN268201800007I from the National Heart, Lung, and Blood Institute (NHLBI). The LBC1921 was supported by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC), The Royal Society, and The Chief Scientist Office of the Scottish Government. Genotyping was funded by the BBSRC (BB/F019394/1). LBC1936 is supported by the Biotechnology and Biological Sciences Research Council, and the Economic and Social Research Council [BB/W008793/1], Age UK (Disconnected Mind project), and the University of Edinburgh. Genotyping was funded by the BBSRC (BB/F019394/1). The Olink® Neurology Proteomics assay was supported by a National Institutes of Health (NIH) research grant R01AG054628. Phenotype harmonization, data management, sample-identity QC, and general study coordination, were provided by the TOPMed Data Coordinating Center (3R01HL-120393-02S1), and TOPMed MESA Multi-Omics (HHSN2682015000031/HSN26800004). The MESA projects are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for the Multi-Ethnic Study of Atherosclerosis (MESA) projects are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, UL1TR001881, DK063491, and R01HL105756. The Three City (3C) Study is conducted under a partnership agreement among the Institut National de la Santé et de la Recherche Médicale (INSERM), the University of Bordeaux, and Sanofi-Aventis. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C Study is also supported by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, Mutuelle Générale de l’Education Nationale (MGEN), Institut de la Longévité, Conseils Régionaux of Aquitaine and Bourgogne, Fondation de France, and Ministry of Research–INSERM Programme “Cohortes et collections de données biologiques.” Ilana Caro received a grant from the EUR digital public health. This PhD program is supported within the framework of the PIA3 (Investment for the future). Project reference 17-EURE-0019.
Collapse
Affiliation(s)
- Adrienne Tin
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Alison E Fohner
- Department of Epidemiology, University of Washington, Seattle, WA, USA.
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA.
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Qiong Yang
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Dan Liu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ilana Caro
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, UMR 1219, CHU Bordeaux, Bordeaux, France
| | - Joni V Lindbohm
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, The Klarman Cell Observatory, Cambridge, MA, USA
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Osorio Meirelles
- National Institute on Aging, National Institutes of Health, Laboratory of Epidemiology and Population Science, Bethesda, MD, USA
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Valborg Gudmundsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Adele M Taylor
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Albert Henry
- Institute of Cardiovascular Science, University of London, London, UK
| | - Alexa S Beiser
- Department of Biostatistics, Boston University, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Annabell Coors
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Annette L Fitzpatrick
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Departments of Family Medicine, University of Washington, Seattle, WA, USA
| | - Claudia Langenberg
- Precision Healthcare Institute, Queen Mary University of London, London, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia L Satizabal
- Framingham Heart Study, Framingham, MA, USA
- Department of Population Health Sciences and Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Julián Candia
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Lori L Jennings
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, USA
| | - Maik Pietzner
- Precision Healthcare Institute, Queen Mary University of London, London, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Oscar L Lopez
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paul Redmond
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Robert E Gerszten
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Thomas R Austin
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Timothy M Hughes
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Valur Emilsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Ramachandran S Vasan
- Framingham Heart Study, Framingham, MA, USA
- University of Texas School of Public Health in San Antonio, San Antonio, TX, USA
- University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yineng Zhu
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Christophe Tzourio
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, UMR 1219, CHU Bordeaux, Bordeaux, France
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Mika Kivimäki
- UCL Brain Sciences, University College London, London, UK
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Stephanie Debette
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, UMR 1219, CHU Bordeaux, Bordeaux, France
- Department of Neurology, Institute for Neurodegenerative Diseases, CHU de Bordeaux, Bordeaux, France
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Bruce M Psaty
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Sudha Seshadri
- Framingham Heart Study, Framingham, MA, USA
- Department of Population Health Sciences and Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Myriam Fornage
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
31
|
Hu H. Lasting Adverse Effects of Low-Level Lead Exposure on Cognition and Heritable Susceptibilities. JAMA Netw Open 2023; 6:e2339446. [PMID: 37870837 PMCID: PMC11795763 DOI: 10.1001/jamanetworkopen.2023.39446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Affiliation(s)
- Howard Hu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
32
|
Jia Z, Zhang H, Yu L, Qiu F, Lv Y, Guan J, Gang H, Zuo J, Zheng T, Liu H, Xia W, Xu S, Li Y. Prenatal Lead Exposure, Genetic Factors, and Cognitive Developmental Delay. JAMA Netw Open 2023; 6:e2339108. [PMID: 37870833 PMCID: PMC10594149 DOI: 10.1001/jamanetworkopen.2023.39108] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023] Open
Abstract
Importance Although the effects of lead (Pb) exposure on neurocognition in children have been confirmed, the individual associations of prenatal Pb exposure and its interaction with genetic factors on cognitive developmental delay (CDD) in children remain unclear. Objective To investigate the association of prenatal Pb exposure and its interaction with genetic factors with CDD risk. Design, Setting, and Participants Women in Wuhan, China, who had an expected delivery date between March 2014 and December 2017, were recruited for this prospective cohort study. Children were assessed for cognitive development at approximately 2 years of age (March 2016 to December 2019). Maternal venous blood, cord blood, and venous blood from children were collected in a longitudinal follow-up. Data analysis was performed from March 2022 to February 2023. Exposure Prenatal Pb exposure, and genetic risk for cognitive ability evaluated by polygenic risk score constructed with 58 genetic variations. Main Outcomes and Measures Cognitive developmental delay of children aged approximately 2 years was assessed using the Chinese revision of the Bayley Scale of Infant Development. A series of multivariable logistic regressions was estimated to determine associations between prenatal Pb exposure and CDD among children with various genetic backgrounds, adjusting for confounding variables. Results This analysis included 2361 eligible mother-child pairs (1240 boys [52.5%] and 1121 girls [47.5%]; mean [SD] ages of mothers and children, 28.9 [3.6] years and 24.8 [1.0] months, respectively), with 292 children (12.4%) having CDD. Higher maternal Pb levels were significantly associated with increased risk of CDD (highest vs lowest tertile: odds ratio, 1.55; 95% CI, 1.13-2.13), adjusting for demographic confounders. The association of CDD with maternal Pb levels was more evident among children with higher genetic risk (highest vs lowest tertile: odds ratio, 2.59; 95% CI, 1.48-4.55), adjusting for demographic confounders. Conclusions and Relevance In this cohort study, prenatal Pb exposure was associated with an increased risk of CDD in children, especially in those with a high genetic risk. These findings suggest that prenatal Pb exposure and genetic background may jointly contribute to an increased risk of CDD for children and indicate the possibility for an integrated strategy to assess CDD risk and improve children's cognitive ability.
Collapse
Affiliation(s)
- Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Ling Yu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Qiu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiqing Lv
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Guan
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huiqing Gang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingwen Zuo
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
33
|
Al-Ghamdi BS, Alhadeq F, Alqahtani A, Alruwaili N, Rababh M, Alghamdi S, Almanea W, Alhassnan Z. Clinical and Genetic Characteristics of Arrhythmogenic Right Ventricular Cardiomyopathy Patients: A Single-Center Experience. Cardiol Res 2023; 14:379-386. [PMID: 37936624 PMCID: PMC10627368 DOI: 10.14740/cr1531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/22/2023] [Indexed: 11/09/2023] Open
Abstract
Background Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited progressive cardiomyopathy. We aimed to define the long-term clinical outcome and genetic characteristics of patients and family members with positive genetic tests for ARVC in a single tertiary care cardiac center in Saudi Arabia. Methods We enrolled 46 subjects in the study, including 23 index-patients (probands) with ARVC based on the revised 2010 ARVC Task Force Criteria (TFC) and 23 family members who underwent a genetic test for the ARVC between 2016 and 2020. Results Of the probands, 17 (73.9%) were males with a mean age at presentation of 24.95 ± 13.9 years (7 to 55 years). Predominant symptoms were palpitations in 14 patients (60.9%), and syncope in 10 patients (43.47%). Sustained ventricular tachycardia (VT) was documented in 12 patients (52.2%). The mean left ventricular ejection fraction (LVEF) by echocardiogram was 52.81±6.311% (30-55%), and the mean right ventricular ejection fraction (RVEF) by cardiac MRI was 41.3±11.37% (23-64%). Implantable cardioverter-defibrillator (ICD) implantation was performed in 17 patients (73.9%), and over a mean follow-up of 13.65 ± 6.83 years, appropriate ICD therapy was noted in 12 patients (52.2%). Genetic variants were identified in 33 subjects (71.7%), 16 patients and 17 family members, with the most common variant of plakophilin 2 (PKP2) in 27 subjects (81.8%). Conclusions ARVC occurs during early adulthood in Saudi patients. It is associated with a significant arrhythmia burden in these patients. The PKP2 gene is the most common gene defect in Saudi patients, consistent with what is observed in other nations. We reported in this study two novel variants in PKP2 and desmocollin 2 (DSC2) genes. Genetic counseling is needed to include all first-degree family members for early diagnosis and management of the disease in our country.
Collapse
Affiliation(s)
- Bandar Saeed Al-Ghamdi
- Heart Centre Department, King Faisal Specialist Hospital & Research Center (KFSH&RC), Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Faten Alhadeq
- Cardiovascular Genetics Program, Center for Genomic Medicine, King Faisal Specialist Hospital & Research Centre (KFSH&RC), Riyadh, Saudi Arabia
| | - Aisha Alqahtani
- Cardiovascular Genetics Program, Center for Genomic Medicine, King Faisal Specialist Hospital & Research Centre (KFSH&RC), Riyadh, Saudi Arabia
| | - Nadiah Alruwaili
- Heart Centre Department, King Faisal Specialist Hospital & Research Center (KFSH&RC), Riyadh, Saudi Arabia
| | | | | | - Waleed Almanea
- Heart Centre Department, King Faisal Specialist Hospital & Research Center (KFSH&RC), Riyadh, Saudi Arabia
- Pediatric Cardiology, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Zuhair Alhassnan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Cardiovascular Genetics Program, Center for Genomic Medicine, King Faisal Specialist Hospital & Research Centre (KFSH&RC), Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Hoang CT, Amin V, Behrman JR, Kohler HP, Kohler IV. Heterogenous trajectories in physical, mental and cognitive health among older Americans: Roles of genetics and life course contextual factors. SSM Popul Health 2023; 23:101448. [PMID: 37520306 PMCID: PMC10372459 DOI: 10.1016/j.ssmph.2023.101448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/13/2023] [Accepted: 06/08/2023] [Indexed: 08/01/2023] Open
Abstract
We investigate the roles of genetic predispositions, childhood SES and adult educational attainment in shaping trajectories for three important components of the overall health of older adults -- BMI, depressive symptoms and cognition. We use the Health & Retirement Study (HRS) and group-based trajectory modeling (GBTM) to identify subgroups of people who share the same underlying trajectories ages 51-94 years. After identifying common underlying health trajectories, we use fractional multinomial logit models to estimate associations of (1) polygenic scores for BMI, depression, ever-smoked, education, cognition and subjective wellbeing, (2) childhood SES and (3) educational attainment with the probabilities of trajectory group memberships. While genetic predispositions do play a part in predicting trajectory group memberships, our results highlight the long arm of socioeconomic factors. Educational attainment is the most robust predictor-it predicts increased probabilities of belonging to trajectories with BMI in the normal range, low depressive symptoms and very-high initial cognition. Childhood circumstances are manifested in trajectories to a lesser extent, with childhood SES predicting higher likelihood of being on the low depressive symptoms and very-high initial cognition trajectories. We also find suggestive evidence that associations of educational attainment on the probabilities of being on trajectories with BMI in the normal range, low depressive symptoms and very-high initial cognition vary with genetic predispositions. Our results suggest that policies to increase educational attainment may improve population health by increasing the likelihood of belonging to "good" aging trajectories.
Collapse
Affiliation(s)
| | | | - Jere R. Behrman
- William R. Kenan, Economics and Sociology, University of Pennsylvania, USA
| | - Hans-Peter Kohler
- Fredrick J. Warren Professor of Demography, University of Pennsylvania, USA
| | - Illiana V. Kohler
- Population Studies Center and Department of Sociology, University of Pennsylvania, USA
| |
Collapse
|
35
|
Chakraborty S, Kahali B. Exome-wide analysis reveals role of LRP1 and additional novel loci in cognition. HGG ADVANCES 2023; 4:100208. [PMID: 37305557 PMCID: PMC10248556 DOI: 10.1016/j.xhgg.2023.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Cognitive functioning is heritable, with metabolic risk factors known to accelerate age-associated cognitive decline. Identifying genetic underpinnings of cognition is thus crucial. Here, we undertake single-variant and gene-based association analyses upon 6 neurocognitive phenotypes across 6 cognition domains in whole-exome sequencing data from 157,160 individuals of the UK Biobank cohort to expound the genetic architecture of human cognition. We report 20 independent loci associated with 5 cognitive domains while controlling for APOE isoform-carrier status and metabolic risk factors; 18 of which were not previously reported, and implicated genes relating to oxidative stress, synaptic plasticity and connectivity, and neuroinflammation. A subset of significant hits for cognition indicates mediating effects via metabolic traits. Some of these variants also exhibit pleiotropic effects on metabolic traits. We further identify previously unknown interactions of APOE variants with LRP1 (rs34949484 and others, suggestively significant), AMIGO1 (rs146766120; pAla25Thr, significant), and ITPR3 (rs111522866, significant), controlling for lipid and glycemic risks. Our gene-based analysis also suggests that APOC1 and LRP1 have plausible roles along shared pathways of amyloid beta (Aβ) and lipid and/or glucose metabolism in affecting complex processing speed and visual attention. In addition, we report pairwise suggestive interactions of variants harbored in these genes with APOE affecting visual attention. Our report based on this large-scale exome-wide study highlights the effects of neuronal genes, such as LRP1, AMIGO1, and other genomic loci, thus providing further evidence of the genetic underpinnings for cognition during aging.
Collapse
Affiliation(s)
- Shreya Chakraborty
- Centre for Brain Research, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Interdisciplinary Mathematical Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Bratati Kahali
- Centre for Brain Research, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
36
|
Lee Y, Park JY, Lee JJ, Gim J, Do AR, Jo J, Park J, Kim K, Park K, Jin H, Choi KY, Kang S, Kim H, Kim S, Moon SH, Farrer LA, Lee KH, Won S. Heritability of cognitive abilities and regional brain structures in middle-aged to elderly East Asians. Cereb Cortex 2023; 33:6051-6062. [PMID: 36642501 PMCID: PMC10183741 DOI: 10.1093/cercor/bhac483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 01/17/2023] Open
Abstract
This study examined the single-nucleotide polymorphism heritability and genetic correlations of cognitive abilities and brain structural measures (regional subcortical volume and cortical thickness) in middle-aged and elderly East Asians (Korean) from the Gwangju Alzheimer's and Related Dementias cohort study. Significant heritability was found in memory function, caudate volume, thickness of the entorhinal cortices, pars opercularis, superior frontal gyri, and transverse temporal gyri. There were 3 significant genetic correlations between (i) the caudate volume and the thickness of the entorhinal cortices, (ii) the thickness of the superior frontal gyri and pars opercularis, and (iii) the thickness of the superior frontal and transverse temporal gyri. This is the first study to describe the heritability and genetic correlations of cognitive and neuroanatomical traits in middle-aged to elderly East Asians. Our results support the previous findings showing that genetic factors play a substantial role in the cognitive and neuroanatomical traits in middle to advanced age. Moreover, by demonstrating shared genetic effects on different brain regions, it gives us a genetic insight into understanding cognitive and brain changes with age, such as aging-related cognitive decline, cortical atrophy, and neural compensation.
Collapse
Affiliation(s)
- Younghwa Lee
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Jun Young Park
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Jang Jae Lee
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
| | - Jungsoo Gim
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
- Department of Biomedical Science, Chosun University, Gwangju, Korea
| | - Ah Ra Do
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
| | - Jinyeon Jo
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Juhong Park
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Kangjin Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Kyungtaek Park
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Heejin Jin
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
| | - Sarang Kang
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
| | - Hoowon Kim
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
- Department of Neurology, Chosun University Hospital, Gwangju, Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seung Hwan Moon
- Department of Nuclear Medicine, Samsung Medical Center, Seoul, Korea
| | - Lindsay A Farrer
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Kun Ho Lee
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
- Department of Biomedical Science, Chosun University, Gwangju, Korea
- Dementia Research Group, Korea Brain Research Institute, Daegu, Korea
| | - Sungho Won
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
- RexSoft Inc., Seoul, Korea
| |
Collapse
|
37
|
Song Z, Gurinovich A, Nygaard M, Mengel-From J, Andersen S, Cosentino S, Schupf N, Lee J, Zmuda J, Ukraintseva S, Arbeev K, Christensen K, Perls T, Sebastiani P. Rare genetic variants correlate with better processing speed. Neurobiol Aging 2023; 125:115-122. [PMID: 36813607 PMCID: PMC10038891 DOI: 10.1016/j.neurobiolaging.2022.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/17/2022] [Accepted: 11/23/2022] [Indexed: 01/30/2023]
Abstract
We conducted a genome-wide association study of Digit Symbol Substitution Test scores administered in 4207 family members of the Long Life Family Study (LLFS). Genotype data were imputed to the HRC panel of 64,940 haplotypes resulting in ∼15M genetic variants with a quality score > 0.7. The results were replicated using genetic data imputed to the 1000 Genomes phase 3 reference panel from 2 Danish twin cohorts: the study of Middle Aged Danish Twins and the Longitudinal Study of Aging Danish Twins. The genome-wide association study in LLFS discovered 18 rare genetic variants (minor allele frequency (MAF) < 1.0%) that reached genome-wide significance (p-value < 5 × 10-8). Among these, 17 rare variants in chromosome 3 had large protective effects on the processing speed, including rs7623455, rs9821776, rs9821587, rs78704059, which were replicated in the combined Danish twin cohort. These SNPs are located in/near 2 genes, THRB and RARB, that belonged to the thyroid hormone receptors family that may influence the speed of metabolism and cognitive aging. The gene-level tests in LLFS confirmed that these 2 genes are associated with processing speed.
Collapse
Affiliation(s)
- Zeyuan Song
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
| | - Anastasia Gurinovich
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA
| | - Marianne Nygaard
- Epidemiology, Biostatistics and Biodemography, The Danish Aging Research Center, and The Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Jonas Mengel-From
- Epidemiology, Biostatistics and Biodemography, The Danish Aging Research Center, and The Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Stacy Andersen
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Stephanie Cosentino
- Departments of Epidemiology and Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nicole Schupf
- Departments of Epidemiology and Neurology, Columbia University Medical Center, New York, NY, USA
| | - Joseph Lee
- Departments of Epidemiology and Neurology, Columbia University Medical Center, New York, NY, USA
| | - Joseph Zmuda
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Konstantin Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, The Danish Aging Research Center, and The Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Thomas Perls
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Paola Sebastiani
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
38
|
Zhou LT, Liu D, Kang HC, Lu L, Huang HZ, Ai WQ, Zhou Y, Deng MF, Li H, Liu ZQ, Zhang WF, Hu YZ, Han ZT, Zhang HH, Jia JJ, Sarkar AK, Sharaydeh S, Wang J, Man HY, Schilling M, Bertram L, Lu Y, Guo Z, Zhu LQ. Tau pathology epigenetically remodels the neuron-glial cross-talk in Alzheimer's disease. SCIENCE ADVANCES 2023; 9:eabq7105. [PMID: 37083538 PMCID: PMC10121173 DOI: 10.1126/sciadv.abq7105] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
The neuron-glia cross-talk is critical to brain homeostasis and is particularly affected by neurodegenerative diseases. How neurons manipulate the neuron-astrocyte interaction under pathological conditions, such as hyperphosphorylated tau, a pathological hallmark in Alzheimer's disease (AD), remains elusive. In this study, we identified excessively elevated neuronal expression of adenosine receptor 1 (Adora1 or A1R) in 3×Tg mice, MAPT P301L (rTg4510) mice, patients with AD, and patient-derived neurons. The up-regulation of A1R was found to be tau pathology dependent and posttranscriptionally regulated by Mef2c via miR-133a-3p. Rebuilding the miR-133a-3p/A1R signal effectively rescued synaptic and memory impairments in AD mice. Furthermore, neuronal A1R promoted the release of lipocalin 2 (Lcn2) and resulted in astrocyte activation. Last, silencing neuronal Lcn2 in AD mice ameliorated astrocyte activation and restored synaptic plasticity and learning/memory. Our findings reveal that the tau pathology remodels neuron-glial cross-talk and promotes neurodegenerative progression. Approaches targeting A1R and modulating this signaling pathway might be a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Lan-Ting Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui-Cong Kang
- Department of Neurology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lu Lu
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| | - He-Zhou Huang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wen-Qing Ai
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Man-Fei Deng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhi-Qiang Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei-Feng Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ya-Zhuo Hu
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing, China
| | - Zhi-Tao Han
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing, China
| | - Hong-Hong Zhang
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing, China
| | - Jian-Jun Jia
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing, China
| | - Avijite Kumer Sarkar
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| | - Saldin Sharaydeh
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430030, China
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Marcel Schilling
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck 23562, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck 23562, Germany
| | - Youming Lu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
39
|
Soo CC, Brandenburg JT, Nebel A, Tollman S, Berkman L, Ramsay M, Choudhury A. Genome-wide association study of population-standardised cognitive performance phenotypes in a rural South African community. Commun Biol 2023; 6:328. [PMID: 36973338 PMCID: PMC10043003 DOI: 10.1038/s42003-023-04636-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
Cognitive function is an indicator for global physical and mental health, and cognitive impairment has been associated with poorer life outcomes and earlier mortality. A standard cognition test, adapted to a rural-dwelling African community, and the Oxford Cognition Screen-Plus were used to capture cognitive performance as five continuous traits (total cognition score, verbal episodic memory, executive function, language, and visuospatial ability) for 2,246 adults in this population of South Africans. A novel common variant, rs73485231, reached genome-wide significance for association with episodic memory using data for ~14 million markers imputed from the H3Africa genotyping array data. Window-based replication of previously implicated variants and regions of interest support the discovery of African-specific associated variants despite the small population size and low allele frequency. This African genome-wide association study identifies suggestive associations with general cognition and domain-specific cognitive pathways and lays the groundwork for further genomic studies on cognition in Africa.
Collapse
Affiliation(s)
- Cassandra C Soo
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Almut Nebel
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Stephen Tollman
- MRC/Wits Rural Public Health and Health Transitions Research Unit, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lisa Berkman
- MRC/Wits Rural Public Health and Health Transitions Research Unit, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Center for Population and Development Studies, Harvard University, Cambridge, MA, USA
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
40
|
Pishva E, van den Hove DLA, Laroche V, Lvovs A, Roy A, Ortega G, Burrage J, Veidebaum T, Kanarik M, Mill J, Lesch KP, Harro J. Genome-wide DNA methylation analysis of aggressive behaviour: a longitudinal population-based study. J Child Psychol Psychiatry 2023. [PMID: 36929374 DOI: 10.1111/jcpp.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Human aggression is influenced by an interplay between genetic predisposition and experience across the life span. This interaction is thought to occur through epigenetic mechanisms, inducing differential gene expression, thereby moderating neuronal cell and circuit function, and thus shaping aggressive behaviour. METHODS Genome-wide DNA methylation (DNAm) levels were measured in peripheral blood obtained from 95 individuals participating in the Estonian Children Personality Behaviours and Health Study (ECPBHS) at 15 and 25 years of age. We examined the association between aggressive behaviour, as measured by Life History of Aggression (LHA) total score and DNAm levels both assessed at age 25. We further examined the pleiotropic effect of genetic variants regulating LHA-associated differentially methylated positions (DMPs) and multiple traits related to aggressive behaviours. Lastly, we tested whether the DNA methylomic loci identified in association with LHA at age 25 were also present at age 15. RESULTS We found one differentially methylated position (DMP) (cg17815886; p = 1.12 × 10-8 ) and five differentially methylated regions (DMRs) associated with LHA after multiple testing adjustments. The DMP annotated to the PDLIM5 gene, and DMRs resided in the vicinity of four protein-encoding genes (TRIM10, GTF2H4, SLC45A4, B3GALT4) and a long intergenic non-coding RNA (LINC02068). We observed evidence for the colocalization of genetic variants associated with top DMPs and general cognitive function, educational attainment and cholesterol levels. Notably, a subset of the DMPs associated with LHA at age 25 also displayed altered DNAm patterns at age 15 with high accuracy in predicting aggression. CONCLUSIONS Our findings highlight the potential role of DNAm in the development of aggressive behaviours. We observed pleiotropic genetic variants associated with identified DMPs, and various traits previously established to be relevant in shaping aggression in humans. The concordance of DNAm signatures in adolescents and young adults may have predictive value for inappropriate and maladaptive aggression later in life.
Collapse
Affiliation(s)
- Ehsan Pishva
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,College of Medicine and Health, University of Exeter Medical School, Exeter, UK
| | - Daniel L A van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Valentin Laroche
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Aneth Lvovs
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia.,Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Arunima Roy
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Gabriela Ortega
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Joe Burrage
- College of Medicine and Health, University of Exeter Medical School, Exeter, UK
| | | | - Margus Kanarik
- Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Jonathan Mill
- College of Medicine and Health, University of Exeter Medical School, Exeter, UK
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Jaanus Harro
- Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| |
Collapse
|
41
|
Oatman SR, Reddy JS, Quicksall Z, Carrasquillo MM, Wang X, Liu CC, Yamazaki Y, Nguyen TT, Malphrus K, Heckman M, Biswas K, Nho K, Baker M, Martens YA, Zhao N, Kim JP, Risacher SL, Rademakers R, Saykin AJ, DeTure M, Murray ME, Kanekiyo T, Dickson DW, Bu G, Allen M, Ertekin-Taner N. Genome-wide association study of brain biochemical phenotypes reveals distinct genetic architecture of Alzheimer's disease related proteins. Mol Neurodegener 2023; 18:2. [PMID: 36609403 PMCID: PMC9825010 DOI: 10.1186/s13024-022-00592-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is neuropathologically characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. The main protein components of these hallmarks include Aβ40, Aβ42, tau, phosphor-tau, and APOE. We hypothesize that genetic variants influence the levels and solubility of these AD-related proteins in the brain; identifying these may provide key insights into disease pathogenesis. METHODS Genome-wide genotypes were collected from 441 AD cases, imputed to the haplotype reference consortium (HRC) panel, and filtered for quality and frequency. Temporal cortex levels of five AD-related proteins from three fractions, buffer-soluble (TBS), detergent-soluble (Triton-X = TX), and insoluble (Formic acid = FA), were available for these same individuals. Variants were tested for association with each quantitative biochemical measure using linear regression, and GSA-SNP2 was used to identify enriched Gene Ontology (GO) terms. Implicated variants and genes were further assessed for association with other relevant variables. RESULTS We identified genome-wide significant associations at seven novel loci and the APOE locus. Genes and variants at these loci also associate with multiple AD-related measures, regulate gene expression, have cell-type specific enrichment, and roles in brain health and other neuropsychiatric diseases. Pathway analysis identified significant enrichment of shared and distinct biological pathways. CONCLUSIONS Although all biochemical measures tested reflect proteins core to AD pathology, our results strongly suggest that each have unique genetic architecture and biological pathways that influence their specific biochemical states in the brain. Our novel approach of deep brain biochemical endophenotype GWAS has implications for pathophysiology of proteostasis in AD that can guide therapeutic discovery efforts focused on these proteins.
Collapse
Affiliation(s)
- Stephanie R. Oatman
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Joseph S. Reddy
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL USA
| | - Zachary Quicksall
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL USA
| | | | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Thuy T. Nguyen
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Kimberly Malphrus
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Michael Heckman
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL USA
| | - Kristi Biswas
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Kwangsik Nho
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
- School of Informatics and Computing, Indiana University School of Medicine, Indianapolis, IN USA
| | - Matthew Baker
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Yuka A. Martens
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Jun Pyo Kim
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
| | - Shannon L. Risacher
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- VIB-UA Center for Molecular Neurology, VIB, University of Antwerp, Antwerp, Belgium
| | - Andrew J. Saykin
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Melissa E. Murray
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - for the Alzheimer’s Disease Neuroimaging Initiative
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
- School of Informatics and Computing, Indiana University School of Medicine, Indianapolis, IN USA
- VIB-UA Center for Molecular Neurology, VIB, University of Antwerp, Antwerp, Belgium
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Birdsall 3, Jacksonville, FL 32224 USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Birdsall 3, Jacksonville, FL 32224 USA
| |
Collapse
|
42
|
Muacevic A, Adler JR, Verma R, Shah SD, Vattikuti B, Khan AZ, Shahzadi A, Abdi P, Anthony M, Farkouh CS, Farkouh M, Santiago N, Zepeda D, Nunez A. Non-syndromic Intellectual Disability: An Experimental In-Depth Exploration of Inheritance Pattern, Phenotypic Presentation, and Genomic Composition. Cureus 2023; 15:e34085. [PMID: 36843831 PMCID: PMC9946902 DOI: 10.7759/cureus.34085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
Background Intellectual disability (ID), also termed mental retardation (MR), is a neurodevelopmental disorder characterized by an intelligence quotient (IQ) of 70 or below and a deficit in at least two behaviors associated with adaptive functioning. The condition is further classified into syndromic intellectual disability (S-ID) and non-syndromic intellectual disability (NS-ID). This study highlights the genes associated with NS-ID. Objectives A genetic study was performed on two Pakistani families to know the inheritance patterns, clinical phenotypes, and molecular genetics of affected individuals with NS-ID. Methodology Samples were collected from two families: families A and B. All affected individuals in both families were diagnosed by a neurologist. Written informed consent was taken from the affected individuals and guardians before collecting the data and sample. Family A belongs to the Swabi District of Pakistan having four affected individuals, out of whom three were male and one was female. Family B also belongs to the Swabi District of Pakistan having two affected individuals, out of whom one was male and one was female. A total of 10 candidate genes were selected and were further screened by microarray analysis. Results In family A, this analysis identified a region of 9.6 Mb on chromosome 17q11.2-q12 between the single nucleotide polymorphisms (SNPs) rs953527 and rs2680398. The region was genotyped using microsatellite markers to confirm the haplotypes in all family members. Based on the phenotype-genotype relationship, 10 possible candidate genes were selected out of more than 140 genes in this critical region of 9.6 Mb. In family B, homozygosity mapping through microarray identified four homozygous areas of affected individuals: two (27,324,822-59,122,062 and 96,423,252123,656,241) on chromosome 8, one (14,785,224-19,722,760) on chromosome 9, and one (126173647-126215644) on chromosome 11. Conclusion An autosomal recessive pattern was found in the pedigrees of both families A and B. Phenotypically affected individuals showed IQ levels below 70. Three genes, CDK5R1, OMG, and EV12A, were found on chromosome 17q11.2-q12 region of affected individuals in family A with high expression in the frontal cortex of the brain, hippocampus, and spinal cord, respectively. Other regions on chromosomes 8, 9, and 11 as evident from the affected individuals in family B can also contribute to the non-syndromic autosomal recessive intellectual disability (NS-ARID). Further research is needed to find the association of these genes with intelligence and other neuropsychiatric conditions.
Collapse
|
43
|
Farley SJ, Grishok A, Zeldich E. Shaking up the silence: consequences of HMGN1 antagonizing PRC2 in the Down syndrome brain. Epigenetics Chromatin 2022; 15:39. [PMID: 36463299 PMCID: PMC9719135 DOI: 10.1186/s13072-022-00471-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
Intellectual disability is a well-known hallmark of Down Syndrome (DS) that results from the triplication of the critical region of human chromosome 21 (HSA21). Major studies were conducted in recent years to gain an understanding about the contribution of individual triplicated genes to DS-related brain pathology. Global transcriptomic alterations and widespread changes in the establishment of neural lineages, as well as their differentiation and functional maturity, suggest genome-wide chromatin organization alterations in trisomy. High Mobility Group Nucleosome Binding Domain 1 (HMGN1), expressed from HSA21, is a chromatin remodeling protein that facilitates chromatin decompaction and is associated with acetylated lysine 27 on histone H3 (H3K27ac), a mark correlated with active transcription. Recent studies causatively linked overexpression of HMGN1 in trisomy and the development of DS-associated B cell acute lymphoblastic leukemia (B-ALL). HMGN1 has been shown to antagonize the activity of the Polycomb Repressive Complex 2 (PRC2) and prevent the deposition of histone H3 lysine 27 trimethylation mark (H3K27me3), which is associated with transcriptional repression and gene silencing. However, the possible ramifications of the increased levels of HMGN1 through the derepression of PRC2 target genes on brain cell pathology have not gained attention. In this review, we discuss the functional significance of HMGN1 in brain development and summarize accumulating reports about the essential role of PRC2 in the development of the neural system. Mechanistic understanding of how overexpression of HMGN1 may contribute to aberrant brain cell phenotypes in DS, such as altered proliferation of neural progenitors, abnormal cortical architecture, diminished myelination, neurodegeneration, and Alzheimer's disease-related pathology in trisomy 21, will facilitate the development of DS therapeutic approaches targeting chromatin.
Collapse
Affiliation(s)
- Sean J. Farley
- grid.189504.10000 0004 1936 7558Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Alla Grishok
- grid.189504.10000 0004 1936 7558Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA ,grid.189504.10000 0004 1936 7558Boston University Genome Science Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
44
|
Chaar DL, Nguyen K, Wang YZ, Ratliff SM, Mosley TH, Kardia SLR, Smith JA, Zhao W. SNP-by-CpG Site Interactions in ABCA7 Are Associated with Cognition in Older African Americans. Genes (Basel) 2022; 13:2150. [PMID: 36421824 PMCID: PMC9691156 DOI: 10.3390/genes13112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 06/28/2024] Open
Abstract
SNPs in ABCA7 confer the largest genetic risk for Alzheimer's Disease (AD) in African Americans (AA) after APOE ε4. However, the relationship between ABCA7 and cognitive function has not been thoroughly examined. We investigated the effects of five known AD risk SNPs and 72 CpGs in ABCA7, as well as their interactions, on general cognitive function (cognition) in 634 older AA without dementia from Genetic Epidemiology Network of Arteriopathy (GENOA). Using linear mixed models, no SNP or CpG was associated with cognition after multiple testing correction, but five CpGs were nominally associated (p < 0.05). Four SNP-by-CpG interactions were associated with cognition (FDR q < 0.1). Contrast tests show that methylation is associated with cognition in some genotype groups (p < 0.05): a 1% increase at cg00135882 and cg22271697 is associated with a 0.68 SD decrease and 0.14 SD increase in cognition for those with the rs3764647 GG/AG (p = 0.004) and AA (p = 2 × 10-4) genotypes, respectively. In addition, a 1% increase at cg06169110 and cg17316918 is associated with a 0.37 SD decrease (p = 2 × 10-4) and 0.33 SD increase (p = 0.004), respectively, in cognition for those with the rs115550680 GG/AG genotype. While AD risk SNPs in ABCA7 were not associated with cognition in this sample, some have interactions with proximal methylation on cognition.
Collapse
Affiliation(s)
- Dima L. Chaar
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kim Nguyen
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi-Zhe Wang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas H. Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MI 39216, USA
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| |
Collapse
|
45
|
Sommerer Y, Dobricic V, Schilling M, Ohlei O, Bartrés-Faz D, Cattaneo G, Demuth I, Düzel S, Franzenburg S, Fuß J, Lindenberger U, Pascual-Leone Á, Sabet SS, Solé-Padullés C, Tormos JM, Vetter VM, Wesse T, Franke A, Lill CM, Bertram L. Epigenome-Wide Association Study in Peripheral Tissues Highlights DNA Methylation Profiles Associated with Episodic Memory Performance in Humans. Biomedicines 2022; 10:2798. [PMID: 36359320 PMCID: PMC9687249 DOI: 10.3390/biomedicines10112798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The decline in episodic memory (EM) performance is a hallmark of cognitive aging and an early clinical sign in Alzheimer’s disease (AD). In this study, we conducted an epigenome-wide association study (EWAS) using DNA methylation (DNAm) profiles from buccal and blood samples for cross-sectional (n = 1019) and longitudinal changes in EM performance (n = 626; average follow-up time 5.4 years) collected under the auspices of the Lifebrain consortium project. The mean age of participants with cross-sectional data was 69 ± 11 years (30−90 years), with 50% being females. We identified 21 loci showing suggestive evidence of association (p < 1 × 10−5) with either or both EM phenotypes. Among these were SNCA, SEPW1 (both cross-sectional EM), ITPK1 (longitudinal EM), and APBA2 (both EM traits), which have been linked to AD or Parkinson’s disease (PD) in previous work. While the EM phenotypes were nominally significantly (p < 0.05) associated with poly-epigenetic scores (PESs) using EWASs on general cognitive function, none remained significant after correction for multiple testing. Likewise, estimating the degree of “epigenetic age acceleration” did not reveal significant associations with either of the two tested EM phenotypes. In summary, our study highlights several interesting candidate loci in which differential DNAm patterns in peripheral tissue are associated with EM performance in humans.
Collapse
Affiliation(s)
- Yasmine Sommerer
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Marcel Schilling
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Olena Ohlei
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Campus Clínic August Pi i Sunyer, Casanova, 143, 08036 Barcelona, Spain
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Garcilaso, 57, 08027 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Plaça Cívica, Bellaterra, 08193 Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles, Badalona, 08916 Barcelona, Spain
| | - Ilja Demuth
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases, Division of Lipid Metabolism, Charité—Universitätsmedizin Berlin (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin), Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Janina Fuß
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Álvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Garcilaso, 57, 08027 Barcelona, Spain
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, 1200 Centre St., Boston, MA 02131, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Sanaz Sedghpour Sabet
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Cristina Solé-Padullés
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Campus Clínic August Pi i Sunyer, Casanova, 143, 08036 Barcelona, Spain
| | - Josep M. Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Garcilaso, 57, 08027 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Plaça Cívica, Bellaterra, 08193 Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles, Badalona, 08916 Barcelona, Spain
| | - Valentin Max Vetter
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases, Division of Lipid Metabolism, Charité—Universitätsmedizin Berlin (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tanja Wesse
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Christina M. Lill
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Institute of Epidemiology and Social Medicine, University of Münster, Domagkstr. 3, 48149 Münster, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, Charing Cross Hospital, St Dunstan's Road, London W68RP, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway
| |
Collapse
|
46
|
Sommerer Y, Ohlei O, Dobricic V, Oakley DH, Wesse T, Sedghpour Sabet S, Demuth I, Franke A, Hyman BT, Lill CM, Bertram L. A correlation map of genome-wide DNA methylation patterns between paired human brain and buccal samples. Clin Epigenetics 2022; 14:139. [PMID: 36320053 PMCID: PMC9628033 DOI: 10.1186/s13148-022-01357-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Epigenome-wide association studies (EWAS) assessing the link between DNA methylation (DNAm) and phenotypes related to structural brain measures, cognitive function, and neurodegenerative diseases are becoming increasingly more popular. Due to the inaccessibility of brain tissue in humans, several studies use peripheral tissues such as blood, buccal swabs, and saliva as surrogates. To aid the functional interpretation of EWAS findings in such settings, there is a need to assess the correlation of DNAm variability across tissues in the same individuals. In this study, we performed a correlation analysis between DNAm data of a total of n = 120 matched post-mortem buccal and prefrontal cortex samples. We identified nearly 25,000 (3% of approximately 730,000) cytosine-phosphate-guanine (CpG) sites showing significant (false discovery rate q < 0.05) correlations between buccal and PFC samples. Correlated CpG sites showed a preponderance to being located in promoter regions and showed a significant enrichment of being determined by genetic factors, i.e. methylation quantitative trait loci (mQTL), based on buccal and dorsolateral prefrontal cortex mQTL databases. Our novel buccal-brain DNAm correlation map will provide a valuable resource for future EWAS using buccal samples for studying DNAm effects on phenotypes relating to the brain. All correlation results are made freely available to the public online.
Collapse
Affiliation(s)
- Yasmine Sommerer
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
| | - Olena Ohlei
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
| | - Derek H Oakley
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Tanja Wesse
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sanaz Sedghpour Sabet
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Division of Lipid Metabolism, Department of Endocrinology and Metabolic Diseases, Berlin Institute of Health, Berlin, Germany
- BCRT - Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christina M Lill
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
- Ageing Epidemiology Unit (AGE), School of Public Health, Imperial College London, London, UK
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany.
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition (LCBC), University of Oslo, Oslo, Norway.
| |
Collapse
|
47
|
Ciobanu LG, Stankov L, Schubert KO, Amare AT, Jawahar MC, Lawrence-Wood E, Mills NT, Knight M, Clark SR, Aidman E. General intelligence and executive functioning are overlapping but separable at genetic and molecular pathway levels: An analytical review of existing GWAS findings. PLoS One 2022; 17:e0272368. [PMID: 36251633 PMCID: PMC9576059 DOI: 10.1371/journal.pone.0272368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022] Open
Abstract
Understanding the genomic architecture and molecular mechanisms of cognitive functioning in healthy individuals is critical for developing tailored interventions to enhance cognitive functioning, as well as for identifying targets for treating impaired cognition. There has been substantial progress in uncovering the genetic composition of the general cognitive ability (g). However, there is an ongoing debate whether executive functioning (EF)–another key predictor of cognitive health and performance, is separable from general g. To provide an analytical review on existing findings on genetic influences on the relationship between g and EF, we re-analysed a subset of genome-wide association studies (GWAS) from the GWAS catalogue that used measures of g and EF as outcomes in non-clinical populations. We identified two sets of single nucleotide polymorphisms (SNPs) associated with g (1,372 SNPs across 12 studies), and EF (300 SNPs across 5 studies) at p<5x10-6. A comparative analysis of GWAS-identified g and EF SNPs in high linkage disequilibrium (LD), followed by pathway enrichment analyses suggest that g and EF are overlapping but separable at genetic variant and molecular pathway levels, however more evidence is required to characterize the genetic overlap/distinction between the two constructs. While not without limitations, these findings may have implications for navigating further research towards translatable genetic findings for cognitive remediation, enhancement, and augmentation.
Collapse
Affiliation(s)
- Liliana G. Ciobanu
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- * E-mail:
| | - Lazar Stankov
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - K. Oliver Schubert
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- Northern Adelaide Mental Health Services, Adelaide, SA, Australia
| | - Azmeraw T. Amare
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence in Frailty and Healthy Ageing, University of Adelaide, Adelaide, Australia
| | | | | | - Natalie T. Mills
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Matthew Knight
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- Weapons and Combat Systems Division, Defence Science & Technology Group, Edinburgh, SA, Australia
| | - Scott R. Clark
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Eugene Aidman
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Land Division, Defence Science & Technology Group, Edinburgh, SA, Australia
| |
Collapse
|
48
|
Gonzales MM, Wiedner C, Wang C, Liu Q, Bis JC, Li Z, Himali JJ, Ghosh S, Thomas EA, Parent DM, Kautz TF, Pase MP, Aparicio HJ, Djoussé L, Mukamal KJ, Psaty BM, Longstreth WT, Mosley TH, Gudnason V, Mbangdadji D, Lopez OL, Yaffe K, Sidney S, Bryan RN, Nasrallah IM, DeCarli CS, Beiser AS, Launer LJ, Fornage M, Tracy RP, Seshadri S, Satizabal CL. A population-based meta-analysis of circulating GFAP for cognition and dementia risk. Ann Clin Transl Neurol 2022; 9:1574-1585. [PMID: 36056631 PMCID: PMC9539381 DOI: 10.1002/acn3.51652] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Expression of glial fibrillary acidic protein (GFAP), a marker of reactive astrocytosis, colocalizes with neuropathology in the brain. Blood levels of GFAP have been associated with cognitive decline and dementia status. However, further examinations at a population-based level are necessary to broaden generalizability to community settings. METHODS Circulating GFAP levels were assayed using a Simoa HD-1 analyzer in 4338 adults without prevalent dementia from four longitudinal community-based cohort studies. The associations between GFAP levels with general cognition, total brain volume, and hippocampal volume were evaluated with separate linear regression models in each cohort with adjustment for age, sex, education, race, diabetes, systolic blood pressure, antihypertensive medication, body mass index, apolipoprotein E ε4 status, site, and time between GFAP blood draw and the outcome. Associations with incident all-cause and Alzheimer's disease dementia were evaluated with adjusted Cox proportional hazard models. Meta-analysis was performed on the estimates derived from each cohort using random-effects models. RESULTS Meta-analyses indicated that higher circulating GFAP associated with lower general cognition (ß = -0.09, [95% confidence interval [CI]: -0.15 to -0.03], p = 0.005), but not with total brain or hippocampal volume (p > 0.05). However, each standard deviation unit increase in log-transformed GFAP levels was significantly associated with a 2.5-fold higher risk of incident all-cause dementia (Hazard Ratio [HR]: 2.47 (95% CI: 1.52-4.01)) and Alzheimer's disease dementia (HR: 2.54 [95% CI: 1.42-4.53]) over up to 15-years of follow-up. INTERPRETATION Results support the potential role of circulating GFAP levels for aiding dementia risk prediction and improving clinical trial stratification in community settings.
Collapse
Affiliation(s)
- Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of NeurologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Crystal Wiedner
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Chen‐Pin Wang
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of Population Health SciencesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- South Texas Veterans Health Care System, Geriatric ResearchEducation & Clinical CenterSan AntonioTexasUSA
| | - Qianqian Liu
- Department of Population Health SciencesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Joshua C. Bis
- Cardiovascular Health Research UnitUniversity of WashingtonSeattleWashingtonUSA
| | - Zhiguang Li
- Laboratory of Epidemiology and Population Sciences, Intramural Research ProgramNational Institute on AgingBethesdaMarylandUSA
| | - Jayandra J. Himali
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of Population Health SciencesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of MedicineBostonMassachusettsUSA
| | - Saptaparni Ghosh
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Emy A. Thomas
- Brown Foundation of Molecular Medicine, McGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Danielle M. Parent
- Department of Pathology and Laboratory Medicine, and Biochemistry, Larner College of MedicineUniversity of VermontBurlingtonVermontUSA
| | - Tiffany F. Kautz
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Matthew P. Pase
- The Framingham Heart StudyFraminghamMassachusettsUSA
- School of Psychological Sciences, Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
- Harvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Hugo J. Aparicio
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Luc Djoussé
- Department of MedicineBrigham and Women's HospitalBostonMassachusettsUSA
- Boston Veterans Affairs Healthcare SystemBostonMassachusettsUSA
| | - Kenneth J. Mukamal
- Department of MedicineBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Bruce M. Psaty
- Cardiovascular Health Research UnitUniversity of WashingtonSeattleWashingtonUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Department of Health Systems and Population HealthUniversity of WashingtonSeattleWashingtonUSA
| | - William T. Longstreth
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
- Department of NeurologyUniversity of WashingtonSeattleWashingtonUSA
| | - Thomas H. Mosley
- The MIND CenterUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Vilmundur Gudnason
- Icelandic Heart Association Research InstituteKópavogurIceland
- Department of CardiologyUniversity of IcelandReykjavikIceland
| | - Djass Mbangdadji
- Laboratory of Epidemiology and Population Sciences, Intramural Research ProgramNational Institute on AgingBethesdaMarylandUSA
| | - Oscar L. Lopez
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kristine Yaffe
- Department of PsychiatryUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
- San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
| | - Stephen Sidney
- Kaiser Permanente Medical Center ProgramOaklandCaliforniaUSA
| | - R. Nick Bryan
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ilya M. Nasrallah
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Alexa S. Beiser
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of MedicineBostonMassachusettsUSA
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research ProgramNational Institute on AgingBethesdaMarylandUSA
| | - Myriam Fornage
- Brown Foundation of Molecular Medicine, McGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, and Biochemistry, Larner College of MedicineUniversity of VermontBurlingtonVermontUSA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of NeurologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of Population Health SciencesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| |
Collapse
|
49
|
Park JY, Lengacher CA, Reich RR, Park HY, Whiting J, Nguyen AT, Rodríguez C, Meng H, Tinsley S, Chauca K, Gordillo-Casero L, Wittenberg T, Joshi A, Lin K, Ismail-Khan R, Kiluk JV, Kip KE. Translational Genomic Research: The Association between Genetic Profiles and Cognitive Functioning or Cardiac Function Among Breast Cancer Survivors Completing Chemotherapy. Biol Res Nurs 2022; 24:433-447. [PMID: 35499926 PMCID: PMC9630728 DOI: 10.1177/10998004221094386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction: Emerging evidence suggests that Chemotherapy (CT) treated breast cancer survivors (BCS) who have "risk variants" in genes may be more susceptible to cognitive impairment (CI) and/or poor cardiac phenotypes. The objective of this preliminary study was to examine whether there is a relationship between genetic variants and objective/subjective cognitive or cardiac phenotypes. Methods and Analysis: BCS were recruited from Moffitt Cancer Center, Morsani College of Medicine, AdventHealth Tampa and Sarasota Memorial Hospital. Genomic DNA were collected at baseline for genotyping analysis. A total of 16 single nucleotide polymorphisms (SNPs) from 14 genes involved in cognitive or cardiac function were evaluated. Three genetic models (additive, dominant, and recessive) were used to test correlation coefficients between genetic variants and objective/subjective measures of cognitive functioning and cardiac outcomes (heart rate, diastolic blood pressure, systolic blood pressure, respiration rate, and oxygen saturation). Results: BCS (207 participants) with a mean age of 56 enrolled in this study. The majority were non-Hispanic white (73.7%), married (63.1%), and received both CT and radiation treatment (77.3%). Three SNPs in genes related to cognitive functioning (rs429358 in APOE, rs1800497 in ANKK1, rs10119 in TOMM40) emerged with the most consistent significant relationship with cognitive outcomes. Among five candidate SNPs related to cardiac functioning, rs8055236 in CDH13 and rs1801133 in MTHER emerged with potential significant relationships with cardiac phenotype. Conclusions: These preliminary results provide initial targets to further examine whether BCS with specific genetic profiles may preferentially benefit from interventions designed to improve cognitive and cardiac functioning following CT.
Collapse
Affiliation(s)
- Jong Y. Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Richard R. Reich
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Hyun Y. Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Junmin Whiting
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Anh Thy Nguyen
- Department of Epidemiology and
Biostatistics, USF College of Public Health, University of South
Florida, Tampa, FL, USA
| | | | - Hongdao Meng
- School of Aging Studies, College of
Behavioral and Community Sciences, University of South
Floridaa, Tampa, FL, USA
| | - Sara Tinsley
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | - Anisha Joshi
- University of South Florida College
of Nursing, Tampa, FL, USA
| | - Katherine Lin
- University of South Florida College
of Nursing, Tampa, FL, USA
| | - Roohi Ismail-Khan
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - John V. Kiluk
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kevin E. Kip
- UPMC Health Services
Division, Pittsburgh, PA, USA
| |
Collapse
|
50
|
Suppli NP, Andersen KK, Agerbo E, Rajagopal VM, Appadurai V, Coleman JR, Breen G, Bybjerg-Grauholm J, Bækvad-Hansen M, Pedersen CB, Pedersen MG, Thompson WK, Munk-Olsen T, Benros ME, Als TD, Grove J, Werge T, Børglum AD, Hougaard DM, Mors O, Nordentoft M, Mortensen PB, Musliner KL. Genome-wide by Environment Interaction Study of Stressful Life Events and Hospital-Treated Depression in the iPSYCH2012 Sample. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:400-410. [PMID: 36324662 PMCID: PMC9616262 DOI: 10.1016/j.bpsgos.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022] Open
Abstract
Background Researchers have long investigated a hypothesized interaction between genetic risk and stressful life events in the etiology of depression, but studies on the topic have yielded inconsistent results. Methods We conducted a genome-wide by environment interaction study (GWEIS) in 18,532 patients with depression from hospital-based settings and 20,184 population controls. All individuals were drawn from the iPSYCH2012 case-cohort study, a nationally representative sample identified from Danish national registers. Information on stressful life events including family disruption, serious medical illness, death of a first-degree relative, parental disability, and child maltreatment was identified from the registers and operationalized as a time-varying count variable. Hazard ratios for main and interaction effects were estimated using Cox regressions weighted to accommodate the case-cohort design. Our replication sample included 22,880 depression cases and 50,378 controls from the UK Biobank. Results The GWEIS in the iPSYCH2012 sample yielded three novel, genome-wide-significant (p < 5 × 10-8) loci located in the ABCC1 gene (rs56076205, p = 3.7 × 10-10), the AKAP6 gene (rs3784187, p = 1.2 × 10-8), and near the MFSD1 gene (rs340315, p = 4.5 × 10-8). No hits replicated in the UK Biobank (rs56076205: p = .87; rs3784187: p = .93; rs340315: p = .71). Conclusions In this large, population-based GWEIS, we did not find any replicable hits for interaction. Future gene-by-stress research in depression should focus on establishing even larger collaborative GWEISs to attain sufficient power.
Collapse
Affiliation(s)
- Nis P. Suppli
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Klaus K. Andersen
- Statistics and Pharmacoepidemiology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Esben Agerbo
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- National Centre for Register-based Research, Department of Economics, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Veera M. Rajagopal
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Vivek Appadurai
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, Copenhagen, Denmark
| | - Jonathan R.I. Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre, South London and Maudsley NHS Trust, London, United Kingdom
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre, South London and Maudsley NHS Trust, London, United Kingdom
| | - Jonas Bybjerg-Grauholm
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
| | - Marie Bækvad-Hansen
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
| | - Carsten B. Pedersen
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- National Centre for Register-based Research, Department of Economics, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Marianne G. Pedersen
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- National Centre for Register-based Research, Department of Economics, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Wesley K. Thompson
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Division of Biostatistics, Herbert Wertheim School of Public Health, University of California San Diego, La Jolla, California
| | - Trine Munk-Olsen
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- National Centre for Register-based Research, Department of Economics, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, University of Southern Denmark, Odense, Denmark
| | - Michael E. Benros
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas D. Als
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Jakob Grove
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Thomas Werge
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, Copenhagen, Denmark
| | - Anders D. Børglum
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - David M. Hougaard
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
| | - Ole Mors
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital–Psychiatry, Aarhus
| | - Merete Nordentoft
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Preben B. Mortensen
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- National Centre for Register-based Research, Department of Economics, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Katherine L. Musliner
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- National Centre for Register-based Research, Department of Economics, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Affective Disorders, Aarhus University Hospital–Psychiatry, Aarhus, Denmark
| |
Collapse
|