1
|
Bermudez DH, Lilieholm T, Block WF. MR-Guidance of Gene Therapy for Brain Diseases: Moving From Palliative Treatment to Cures. J Magn Reson Imaging 2025. [PMID: 40256948 DOI: 10.1002/jmri.29804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/22/2025] Open
Abstract
Regulatory bodies in the U.S. and Europe recently approved a gene therapy for aromatic L-amino acid decarboxylase (AADC) deficiency, a rare neurologic disorder where a genetic mutation prevents dopamine production in the brain. Affected children fail to develop normal motor and cognitive functions. MRI-guided intraparenchymal delivery of AADC gene therapy to localized gray matter regions-specifically the substantia nigra and ventral tegmental area-has enabled the brain to produce dopamine, resulting in dramatic improvements in physical and cognitive outcomes. The need to target only a small brain region simplifies the surgical approach. However, gene therapy for broader neurodegenerative conditions has progressed more slowly than expected, despite significant global investment. Clinical efficacy depends heavily on the accurate delivery of gene therapeutics via direct brain infusion, cerebrospinal fluid (CSF) administration, or both. Inadequate image guidance during clinical trials makes it difficult to distinguish between true drug inefficacy and delivery failure. We highlight how increasing use of MRI for pre-surgical simulation and real-time therapy monitoring is accelerating gene therapy development for neurological diseases. This manuscript explores MRI's role in guiding intraparenchymal gene delivery, particularly using Convection Enhanced Delivery (CED). MRI contributes across the treatment timeline-from pre-surgical planning and infusion guidance to validating therapeutic coverage. We describe how MRI supports controlled therapeutic distribution for localized treatments and its potential to enable broader distributions needed for correcting widespread genetic anomalies. We also detail how structural and anatomical MRI sequences (T1, T2, Time of Flight, and Diffusion Tensor Imaging (DTI)) can help model likely infusion distributions. Finally, we provide an outlook on how advanced DTI-based algorithms and poroelastic theory could further improve modeling of infusion dynamics. Current MRI-based technologies can be integrated and enhanced to improve CED effectiveness, especially in very young pediatric patients. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
| | - Thomas Lilieholm
- Department of Medical Physics, UW Madison, Madison, Wisconsin, USA
| | - Walter F Block
- Department of Medical Physics, UW Madison, Madison, Wisconsin, USA
- Department of Biomedical Engineering, UW Madison, Madison, Wisconsin, USA
- Department of Radiology, UW Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Kumagai S, Nakajima T, Muramatsu SI. Intraparenchymal delivery of adeno-associated virus vectors for the gene therapy of neurological diseases. Expert Opin Biol Ther 2024; 24:773-785. [PMID: 39066718 DOI: 10.1080/14712598.2024.2386339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION In gene therapy with adeno-associated virus (AAV) vectors for diseases of the central nervous system, the vectors can be administered into blood vessels, cerebrospinal fluid space, or the brain parenchyma. When gene transfer to a large area of the brain is required, the first two methods are used, but for diseases in which local gene transfer is expected to be effective, vectors are administered directly into the brain parenchyma. AREAS COVERED Strategies for intraparenchymal vector delivery in gene therapy for Parkinson's disease, aromatic l-amino acid decarboxylase (AADC) deficiency, and epilepsy are reviewed. EXPERT OPINION Stereotactic intraparenchymal injection of AAV vectors allows precise gene delivery to the target site. Although more surgically invasive than intravascular or intrathecal administration, intraparenchymal vector delivery has the advantage of a lower vector dose, and preexisting neutralizing antibodies have little effect on the transduction efficacy. This approach improves motor function in AADC deficiency and led to regulatory approval of an AAV vector for the disease in the EU. Although further validation through clinical studies is needed, direct infusion of viral vectors into the brain parenchyma is expected to be a novel treatment for Parkinson's disease and drug-resistant epilepsy.
Collapse
Affiliation(s)
- Shinichi Kumagai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Takeshi Nakajima
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
3
|
Amirrashedi M, Jensen AI, Tang Q, Straathof NJW, Ravn K, Pedersen CG, Langhorn L, Poulsen FR, Woolley M, Johnson D, Williams J, Kidd C, Thisgaard H, Halle B. The Influence of Size on the Intracranial Distribution of Biomedical Nanoparticles Administered by Convection-enhanced Delivery in Minipigs. ACS NANO 2024; 18:17869-17881. [PMID: 38925630 PMCID: PMC11238734 DOI: 10.1021/acsnano.4c04159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Because of the blood-brain barrier (BBB), successful drug delivery to the brain has long been a key objective for the medical community, calling for pioneering technologies to overcome this challenge. Convection-enhanced delivery (CED), a form of direct intraparenchymal microinfusion, shows promise but requires optimal infusate design and real-time distribution monitoring. The size of the infused substances appears to be especially critical, with current knowledge being limited. Herein, we examined the intracranial administration of polyethylene glycol (PEG)-coated nanoparticles (NPs) of various sizes using CED in groups of healthy minipigs (n = 3). We employed stealth liposomes (LIPs, 130 nm) and two gold nanoparticle designs (AuNPs) of different diameters (8 and 40 nm). All were labeled with copper-64 for quantitative and real-time monitoring of the infusion via positron emission tomography (PET). NPs were infused via two catheters inserted bilaterally in the putaminal regions of the animals. Our results suggest CED with NPs holds promise for precise brain drug delivery, with larger LIPs exhibiting superior distribution volumes and intracranial retention over smaller AuNPs. PET imaging alongside CED enabled dynamic visualization of the process, target coverage, timely detection of suboptimal infusion, and quantification of distribution volumes and concentration gradients. These findings may augment the therapeutic efficacy of the delivery procedure while mitigating unwarranted side effects associated with nonvisually monitored delivery approaches. This is of vital importance, especially for chronic intermittent infusions through implanted catheters, as this information enables informed decisions for modulating targeted infusion volumes on a catheter-by-catheter, patient-by-patient basis.
Collapse
Affiliation(s)
- Mahsa Amirrashedi
- Department
of Nuclear Medicine, Odense University Hospital, Odense 5000, Denmark
- Department
of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby 2800, Denmark
- Danish
Research Centre for Magnetic Resonance, Centre for Functional and
Diagnostic Imaging and Research, Copenhagen
University Hospital Amager and Hvidovre, Copenhagen 2650, Denmark
| | - Andreas Ingemann Jensen
- The
Hevesy Laboratory, Department of Health Technology, Technical University of Denmark, Roskilde 4000, Denmark
| | - Qing Tang
- The
Hevesy Laboratory, Department of Health Technology, Technical University of Denmark, Roskilde 4000, Denmark
| | | | - Katharina Ravn
- The
Hevesy Laboratory, Department of Health Technology, Technical University of Denmark, Roskilde 4000, Denmark
| | | | - Louise Langhorn
- Biomedical
Laboratory, University of Southern Denmark, Odense 5000, Denmark
| | - Frantz Rom Poulsen
- Department
of Clinical Research and BRIDGE (Brain Research - Interdisciplinary
Guided Excellence), University of Southern
Denmark, Odense 5230, Denmark
- Department
of Neurosurgery, Odense University Hospital, Odense 5000, Denmark
| | - Max Woolley
- Renishaw
Neuro Solutions Ltd (RNS), Gloucestershire GL12 8SP, United Kingdom
| | - David Johnson
- Renishaw
Neuro Solutions Ltd (RNS), Gloucestershire GL12 8SP, United Kingdom
| | - Julia Williams
- Renishaw
Neuro Solutions Ltd (RNS), Gloucestershire GL12 8SP, United Kingdom
| | - Charlotte Kidd
- Renishaw
Neuro Solutions Ltd (RNS), Gloucestershire GL12 8SP, United Kingdom
| | - Helge Thisgaard
- Department
of Nuclear Medicine, Odense University Hospital, Odense 5000, Denmark
- Department
of Clinical Research and BRIDGE (Brain Research - Interdisciplinary
Guided Excellence), University of Southern
Denmark, Odense 5230, Denmark
| | - Bo Halle
- Department
of Clinical Research and BRIDGE (Brain Research - Interdisciplinary
Guided Excellence), University of Southern
Denmark, Odense 5230, Denmark
- Department
of Neurosurgery, Odense University Hospital, Odense 5000, Denmark
| |
Collapse
|
4
|
Patel RV, Nanda P, Richardson RM. Neurosurgical gene therapy for central nervous system diseases. Neurotherapeutics 2024; 21:e00434. [PMID: 39191071 PMCID: PMC11445594 DOI: 10.1016/j.neurot.2024.e00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Viral vector mediated gene therapies for neurodegenerative and neurodevelopmental conditions that require neurosurgical administration continue to expand. We systematically reviewed the National Institutes of Health (NIH) ClinicalTrials.gov database to identify all clinical trials studying in-vivo viral vector mediated gene therapies targeted to the CNS for neurodegenerative and neurodevelopmental diseases. We isolated studies which delivered therapies using neurosurgical approaches: intracisternal, intraventricular, and/or intraparenchymal. Clinical trials primarily registered in international countries were included if they were referenced by an NIH registered clinical trial. We performed a scoping review to identify the preclinical studies that supported each human clinical trial. Key preclinical and clinical data were aggregated to characterize vector capsid design, delivery methods, gene expression profile, and clinical benefit. A total of 64 clinical trials were identified in active, completed, terminated, and long-term follow-up stages. A range of CNS conditions across pediatric and adult populations are being studied with CNS targeted viral vector gene therapy, including Alzheimer's disease, Parkinson's disease, AADC deficiency, sphingolipidoses, mucopolysaccharidoses, neuronal ceroid lipofuscinoses, spinal muscular atrophy, adrenoleukodystrophy, Canavan disease, frontotemporal dementia, Huntington's disease, Rett syndrome, Dravet syndrome, mesial temporal lobe epilepsy, and glutaric acidemia. Adeno-associated viral vectors (AAVs) were utilized by the majority of tested therapies, with vector serotypes, regulatory elements, delivery methods, and vector monitoring varying based on the disease being studied. Intraparenchymal delivery has evolved significantly, with MRI-guided convection-enhanced delivery established as a gold standard method for pioneering novel gene targets.
Collapse
Affiliation(s)
- Ruchit V Patel
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Widner H. Immunology of cell and gene therapy approaches for neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:135-144. [PMID: 39341650 DOI: 10.1016/b978-0-323-90120-8.00018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Repair and replacement strategies using cell replacement or viral gene transfer for neurologic diseases are becoming increasingly efficacious with clinically meaningful benefits in several conditions. An increased understanding of disease processes opens up opportunities for genetic therapies and precision medicine methods aiming at disease modification or repair of lesioned neurologic structures. However, such therapeutic effects may be limited or rendered ineffective by immune responses against gene products or cells used for the intended treatments. When introducing therapeutic agents into the nervous system, a set of biologic responses are inevitably triggered, which may lead to host responses that limit the intended therapeutic goals. Factors of importance include the type of vector used and origin of cells, the mode of introduction, the degree of host immunization, and any prior exposure to the agents used. It is possible to apply specific treatments that interfere with many of these steps and factors in order to limit host immunization and to reduce or eliminate host effector reactions against the therapeutic agents. This includes immune-evading design measures of the advanced therapeutic medicinal products and various immunosuppressive processes. Limited duration of specific immune modulations may be possible under carefully monitored programs.
Collapse
Affiliation(s)
- Håkan Widner
- Department of Neurology, Skåne University Hospital, Lund, Sweden; Section for Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
6
|
Mueller S, Kline C, Stoller S, Lundy S, Christopher L, Reddy AT, Banerjee A, Cooney TM, Raber S, Hoffman C, Luks T, Wembacher-Schroeder E, Lummel N, Zhang Y, Bonner ER, Nazarian J, Molinaro AM, Prados M, Villanueva-Meyer JE, Gupta N. PNOC015: Repeated convection-enhanced delivery of MTX110 (aqueous panobinostat) in children with newly diagnosed diffuse intrinsic pontine glioma. Neuro Oncol 2023; 25:2074-2086. [PMID: 37318058 PMCID: PMC10628948 DOI: 10.1093/neuonc/noad105] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND The objective of this study was to determine the safety, tolerability, and distribution of MTX110 (aqueous panobinostat) delivered by convection-enhanced delivery (CED) in patients with newly diagnosed diffuse intrinsic pontine glioma (DIPG) who completed focal radiation therapy (RT). METHODS Patients with DIPG (2-21 years) were enrolled after RT. CED of MTX110 combined with gadoteridol was completed across 7 dose levels (DL) (30-90 µM; volumes ranging from 3 mL to 2 consecutive doses of 6 mL). An accelerated dose escalation design was used. Distribution of infusate was monitored with real-time MR imaging. Repeat CED was performed every 4-8 weeks. Quality-of-life (QoL) assessments were obtained at baseline, every 3 months on therapy, and end of therapy. RESULTS Between May 2018 and March 2020, 7 patients who received a total of 48 CED infusions, were enrolled (median age 8 years, range 5-21). Three patients experienced dose-limited toxicities. Four grade 3 treatment-related adverse events were observed. Most toxicities were transient new or worsening neurologic function. Median overall survival (OS) was 26.1 months (95% confidence interval: 14.8-not reached). Progression-free survival was 4-14 months (median, 7). Cumulative percentage of tumor coverage for combined CED infusions per patient ranged from 35.6% to 81.0%. Increased CED infusions were negatively associated with self-reported QoL assessments. CONCLUSION Repeat CED of MTX110 with real-time imaging with gadoteridol is tolerable for patients with DIPG. Median OS of 26.1 months compares favorably with historical data for children with DIPG. The results support further investigation of this strategy in a larger cohort.
Collapse
Affiliation(s)
- Sabine Mueller
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics, University of Zurich, Zurich, Switzerland
| | - Cassie Kline
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Schuyler Stoller
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Shannon Lundy
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Lauren Christopher
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Alyssa T Reddy
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Anu Banerjee
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Tabitha M Cooney
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Boston, Massachusetts, USA
| | - Shannon Raber
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Carly Hoffman
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Tracy Luks
- Department of Radiology, University of California, San Francisco, San Francisco, California, USA
| | | | | | - Yalan Zhang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Erin R Bonner
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, USA
| | - Javad Nazarian
- Department of Pediatrics, University of Zurich, Zurich, Switzerland
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Michael Prados
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Javier E Villanueva-Meyer
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Radiology, University of California, San Francisco, San Francisco, California, USA
| | - Nalin Gupta
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Ford MM, George BE, Van Laar VS, Holleran KM, Naidoo J, Hadaczek P, Vanderhooft LE, Peck EG, Dawes MH, Ohno K, Bringas J, McBride JL, Samaranch L, Forsayeth JR, Jones SR, Grant KA, Bankiewicz KS. GDNF gene therapy for alcohol use disorder in male non-human primates. Nat Med 2023; 29:2030-2040. [PMID: 37580533 PMCID: PMC10602124 DOI: 10.1038/s41591-023-02463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/15/2023] [Indexed: 08/16/2023]
Abstract
Alcohol use disorder (AUD) exacts enormous personal, social and economic costs globally. Return to alcohol use in treatment-seeking patients with AUD is common, engendered by a cycle of repeated abstinence-relapse episodes even with use of currently available pharmacotherapies. Repeated ethanol use induces dopaminergic signaling neuroadaptations in ventral tegmental area (VTA) neurons of the mesolimbic reward pathway, and sustained dysfunction of reward circuitry is associated with return to drinking behavior. We tested this hypothesis by infusing adeno-associated virus serotype 2 vector encoding human glial-derived neurotrophic factor (AAV2-hGDNF), a growth factor that enhances dopaminergic neuron function, into the VTA of four male rhesus monkeys, with another four receiving vehicle, following induction of chronic alcohol drinking. GDNF expression ablated the return to alcohol drinking behavior over a 12-month period of repeated abstinence-alcohol reintroduction challenges. This behavioral change was accompanied by neurophysiological modulations to dopamine signaling in the nucleus accumbens that countered the hypodopaminergic signaling state associated with chronic alcohol use, indicative of a therapeutic modulation of limbic circuits countering the effects of alcohol. These preclinical findings suggest gene therapy targeting relapse prevention may be a potential therapeutic strategy for AUD.
Collapse
Affiliation(s)
- Matthew M Ford
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Psychology, Lewis & Clark College, Portland, OR, USA
| | - Brianna E George
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Victor S Van Laar
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Katherine M Holleran
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Jerusha Naidoo
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Piotr Hadaczek
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Lauren E Vanderhooft
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Emily G Peck
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Monica H Dawes
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Kousaku Ohno
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - John Bringas
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Jodi L McBride
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Lluis Samaranch
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - John R Forsayeth
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA.
| | - Krystof S Bankiewicz
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA.
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| |
Collapse
|
8
|
Rocco MT, Akhter AS, Ehrlich DJ, Scott GC, Lungu C, Munjal V, Aquino A, Lonser RR, Fiandaca MS, Hallett M, Heiss JD, Bankiewicz KS. Long-term safety of MRI-guided administration of AAV2-GDNF and gadoteridol in the putamen of individuals with Parkinson's disease. Mol Ther 2022; 30:3632-3638. [PMID: 35957524 PMCID: PMC9734022 DOI: 10.1016/j.ymthe.2022.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/21/2022] [Accepted: 08/05/2022] [Indexed: 12/15/2022] Open
Abstract
Direct putaminal infusion of adeno-associated virus vector (serotype 2) (AAV2) containing the human glial cell line-derived neurotrophic factor (GDNF) transgene was studied in a phase I clinical trial of participants with advanced Parkinson's disease (PD). Convection-enhanced delivery of AAV2-GDNF with a surrogate imaging tracer (gadoteridol) was used to track infusate distribution during real-time intraoperative magnetic resonance imaging (iMRI). Pre-, intra-, and serial postoperative (up to 5 years after infusion) MRI were analyzed in 13 participants with PD treated with bilateral putaminal co-infusions (52 infusions in total) of AAV2-GDNF and gadoteridol (infusion volume, 450 mL per putamen). Real-time iMRI confirmed infusion cannula placement, anatomic quantification of volumetric perfusion within the putamen, and direct visualization of off-target leakage or cannula reflux (which permitted corresponding infusion rate/cannula adjustments). Serial post-treatment MRI assessment (n = 13) demonstrated no evidence of cerebral parenchyma toxicity in the corresponding regions of AAV2-GDNF and gadoteridol co-infusion or surrounding regions over long-term follow-up. Direct confirmation of key intraoperative safety and efficacy parameters underscores the safety and tissue targeting value of real-time imaging with co-infused gadoteridol and putative therapeutic agents (i.e., AAV2-GDNF). This delivery-imaging platform enhances safety, permits delivery personalization, improves therapeutic distribution, and facilitates assessment of efficacy and dosing effect.
Collapse
Affiliation(s)
- Matthew T Rocco
- Department of Neurological Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Asad S Akhter
- Department of Neurological Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Debra J Ehrlich
- Parkinson's Disease Clinic, NINDS, National Institutes of Health Division of Clinical Research, Bethesda, MD 20896, USA
| | - Gretchen C Scott
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20896, USA
| | - Codrin Lungu
- Division of Clinical Research, NINDS, National Institutes of Health, Bethesda, MD 20896, USA
| | - Vikas Munjal
- Department of Neurological Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Anthony Aquino
- Department of Radiology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Russell R Lonser
- Department of Neurological Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Massimo S Fiandaca
- Asklepios BioPharmaceutical, Inc., 2447 North Star Road, Upper Arlington, OH 43221, USA
| | - Mark Hallett
- Division of Clinical Research, NINDS, National Institutes of Health, Bethesda, MD 20896, USA; Human Motor Control Section, Medical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20896, USA
| | - John D Heiss
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20896, USA
| | - Krystof S Bankiewicz
- Department of Neurological Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Sadekar SS, Bowen M, Cai H, Jamalian S, Rafidi H, Shatz‐Binder W, Lafrance‐Vanasse J, Chan P, Meilandt WJ, Oldendorp A, Sreedhara A, Daugherty A, Crowell S, Wildsmith KR, Atwal J, Fuji RN, Horvath J. Translational approaches for brain delivery of biologics via cerebrospinal fluid. Clin Pharmacol Ther 2022; 111:826-834. [PMID: 35064573 PMCID: PMC9305158 DOI: 10.1002/cpt.2531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/04/2022] [Indexed: 11/14/2022]
Abstract
Delivery of biologics via cerebrospinal fluid (CSF) has demonstrated potential to access the tissues of the central nervous system (CNS) by circumventing the blood‐brain barrier and blood‐CSF barrier. Developing an effective CSF drug delivery strategy requires optimization of multiple parameters, including choice of CSF access point, delivery device technology, and delivery kinetics to achieve effective therapeutic concentrations in the target brain region, whereas also considering the biologic modality, mechanism of action, disease indication, and patient population. This review discusses key preclinical and clinical examples of CSF delivery for different biologic modalities (antibodies, nucleic acid‐based therapeutics, and gene therapy) to the brain via CSF or CNS access routes (intracerebroventricular, intrathecal‐cisterna magna, intrathecal‐lumbar, intraparenchymal, and intranasal), including the use of novel device technologies. This review also discusses quantitative models of CSF flow that provide insight into the effect of fluid dynamics in CSF on drug delivery and CNS distribution. Such models can facilitate delivery device design and pharmacokinetic/pharmacodynamic translation from preclinical species to humans in order to optimize CSF drug delivery to brain regions of interest.
Collapse
Affiliation(s)
- Shraddha S Sadekar
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Mayumi Bowen
- Pharma Technical Development. Genentech, Inc, a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Hao Cai
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Samira Jamalian
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Hanine Rafidi
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Whitney Shatz‐Binder
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Julien Lafrance‐Vanasse
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Pamela Chan
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - William J. Meilandt
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Amy Oldendorp
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Alavattam Sreedhara
- Pharma Technical Development. Genentech, Inc, a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Ann Daugherty
- Pharma Technical Development. Genentech, Inc, a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Susan Crowell
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Kristin R. Wildsmith
- Clinical pharmacology and translational medicine Neurology business Eisai, Nutley NJ 07110 USA
| | - Jasvinder Atwal
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Reina N. Fuji
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Josh Horvath
- Pharma Technical Development. Genentech, Inc, a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| |
Collapse
|
10
|
Salegio EA, Cukrov M, Lortz R, Green A, Lambert E, Copeland S, Gonzalez M, Stockinger DE, Yeung JM, Hwa GGC. Feasibility of Targeted Delivery of AAV5-GFP into the Cerebellum of Nonhuman Primates Following a Single Convection-Enhanced Delivery Infusion. Hum Gene Ther 2022; 33:86-93. [PMID: 34779239 DOI: 10.1089/hum.2021.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this study, we built upon our previous work to demonstrate the distribution and transport of AAV5-green fluorescent protein (GFP) following a single convection-enhanced delivery infusion into the nonhuman primate cerebellum, with no untoward side effects noted. Dosing under magnetic resonance imaging guidance revealed a sixfold larger volume of distribution compared with the volume of infusion, with no evidence of reflux underscoring the convective properties of the cerebellum and step design of the cannula. Postmortem tissue analysis, 4 weeks post-adeno-associated viral (AAV) delivery, revealed the robust presence of the transgene in situ, with GFP detection in secondary regions not directly targeted by the infusion, denoting distal transport of the vector. Irrespective of tropism, a twofold larger area of transgene expression was found and was corroborated against the presence of contrast on T1-weighted images. Different levels of transduction were detected between animals, which were negatively correlated with the level of antibody titer against the GFP construct, whereby the higher the antibody titer, the lower the level of transgene expression. These findings support the use of the posterior fossa as a potential target site for direct delivery of gene-based therapeutics for cerebellar diseases.
Collapse
Affiliation(s)
| | - Mira Cukrov
- Valley Biosystems, Inc., West Sacramento, California, USA
| | - Rachel Lortz
- Valley Biosystems, Inc., West Sacramento, California, USA
| | - Abigail Green
- Valley Biosystems, Inc., West Sacramento, California, USA
| | - Emily Lambert
- Valley Biosystems, Inc., West Sacramento, California, USA
| | | | - Marc Gonzalez
- Valley Biosystems, Inc., West Sacramento, California, USA
| | | | - Jeremy M Yeung
- Valley Biosystems, Inc., West Sacramento, California, USA
| | | |
Collapse
|
11
|
Parambi DGT, Alharbi KS, Kumar R, Harilal S, Batiha GES, Cruz-Martins N, Magdy O, Musa A, Panda DS, Mathew B. Gene Therapy Approach with an Emphasis on Growth Factors: Theoretical and Clinical Outcomes in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:191-233. [PMID: 34655056 PMCID: PMC8518903 DOI: 10.1007/s12035-021-02555-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
The etiology of many neurological diseases affecting the central nervous system (CNS) is unknown and still needs more effective and specific therapeutic approaches. Gene therapy has a promising future in treating neurodegenerative disorders by correcting the genetic defects or by therapeutic protein delivery and is now an attraction for neurologists to treat brain disorders, like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, spinocerebellar ataxia, epilepsy, Huntington's disease, stroke, and spinal cord injury. Gene therapy allows the transgene induction, with a unique expression in cells' substrate. This article mainly focuses on the delivering modes of genetic materials in the CNS, which includes viral and non-viral vectors and their application in gene therapy. Despite the many clinical trials conducted so far, data have shown disappointing outcomes. The efforts done to improve outcomes, efficacy, and safety in the identification of targets in various neurological disorders are also discussed here. Adapting gene therapy as a new therapeutic approach for treating neurological disorders seems to be promising, with early detection and delivery of therapy before the neuron is lost, helping a lot the development of new therapeutic options to translate to the clinic.
Collapse
Affiliation(s)
- Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Rajesh Kumar
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Seetha Harilal
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Omnia Magdy
- Department of Clinical Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014 Kingdom of Saudi Arabia
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
| | - Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371 Egypt
| | - Dibya Sundar Panda
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al Jouf, Sakaka, 72341 Kingdom of Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
12
|
Roseboom PH, Mueller SAL, Oler JA, Fox AS, Riedel MK, Elam VR, Olsen ME, Gomez JL, Boehm MA, DiFilippo AH, Christian BT, Michaelides M, Kalin NH. Evidence in primates supporting the use of chemogenetics for the treatment of human refractory neuropsychiatric disorders. Mol Ther 2021; 29:3484-3497. [PMID: 33895327 PMCID: PMC8636156 DOI: 10.1016/j.ymthe.2021.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022] Open
Abstract
Non-human primate (NHP) models are essential for developing and translating new treatments that target neural circuit dysfunction underlying human psychopathology. As a proof-of-concept for treating neuropsychiatric disorders, we used a NHP model of pathological anxiety to investigate the feasibility of decreasing anxiety by chemogenetically (DREADDs [designer receptors exclusively activated by designer drugs]) reducing amygdala neuronal activity. Intraoperative MRI surgery was used to infect dorsal amygdala neurons with AAV5-hSyn-HA-hM4Di in young rhesus monkeys. In vivo microPET studies with [11C]-deschloroclozapine and postmortem autoradiography with [3H]-clozapine demonstrated selective hM4Di binding in the amygdala, and neuronal expression of hM4Di was confirmed with immunohistochemistry. Additionally, because of its high affinity for DREADDs, and its approved use in humans, we developed an individualized, low-dose clozapine administration strategy to induce DREADD-mediated amygdala inhibition. Compared to controls, clozapine selectively decreased anxiety-related freezing behavior in the human intruder paradigm in hM4Di-expressing monkeys, while coo vocalizations and locomotion were unaffected. These results are an important step in establishing chemogenetic strategies for patients with refractory neuropsychiatric disorders in which amygdala alterations are central to disease pathophysiology.
Collapse
Affiliation(s)
- Patrick H Roseboom
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA.
| | - Sascha A L Mueller
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Jonathan A Oler
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Andrew S Fox
- Department of Psychology and the California National Primate Research Center, University of California-Davis, Davis, CA 95616, USA
| | - Marissa K Riedel
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Victoria R Elam
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Miles E Olsen
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Juan L Gomez
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Matthew A Boehm
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Alexandra H DiFilippo
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Bradley T Christian
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ned H Kalin
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| |
Collapse
|
13
|
Yue F, Feng S, Lu C, Zhang T, Tao G, Liu J, Yue C, Jing N. Synthetic amyloid-β oligomers drive early pathological progression of Alzheimer's disease in nonhuman primates. iScience 2021; 24:103207. [PMID: 34704001 PMCID: PMC8524197 DOI: 10.1016/j.isci.2021.103207] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
As an insidious and slowly progressive neurodegenerative disorder, Alzheimer’s disease (AD) uniquely develops in humans but fails in other species. Therefore, it has been challenged to rebuild human AD in animals, including in non-human primates. Here, we bilaterally delivered synthetic Aβ oligomers (AβOs) into the cerebral parenchyma of cynomolgus monkeys, which rapidly drove the formation of massive Aβ plaques and concomitant neurofibrillary tangles in the cynomolgus brain. The amyloid and tau pathology as well as their co-occurrence in AβO-monkeys were reminiscent of those in patients with AD. In addition, the activated astrocytes and microglia surrounding Aβ plaques indicated the triggered neuroinflammation. The degenerative neurons and synapses around Aβ plaques also emerged in cynomolgus brain. Together, soluble AβOs caused the cascade of pathologic events associated with AD in monkeys as occurred in patients at the early phase, which could facilitate the development of a promising animal model for human AD in non-human primates. The Aβ oligomers (AβOs) drive to develop massive Aβ plaque in the monkey brain Neurofibrillary tangles form in multiple brain regions of AβO-monkeys The co-occurrence of amyloid and tau pathology in AβO-monkeys as in patients with AD The neuroinflammation and neurodegeneration are triggered in AβO-monkeys
Collapse
Affiliation(s)
- Feng Yue
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China.,Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Su Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Chunling Lu
- Wincon TheraCells Biotechnologies Co, LTD, Nanning, 530000, China
| | - Ting Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai, 200080, China
| | - Guoxian Tao
- Wincon TheraCells Biotechnologies Co, LTD, Nanning, 530000, China
| | - Jing Liu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Chunmei Yue
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China.,Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
14
|
Christine CW, Richardson RM, Van Laar AD, Thompson ME, Fine EM, Khwaja OS, Li C, Liang GS, Meier A, Roberts EW, Pfau ML, Rodman JR, Bankiewicz KS, Larson PS. Safety of AADC Gene Therapy for Moderately Advanced Parkinson Disease: Three-Year Outcomes From the PD-1101 Trial. Neurology 2021; 98:e40-e50. [PMID: 34649873 PMCID: PMC8726573 DOI: 10.1212/wnl.0000000000012952] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives To report final, 36-month safety and clinical outcomes from the PD-1101 trial of NBIb-1817 (VY-AADC01) in participants with moderately advanced Parkinson disease (PD) and motor fluctuations. Methods PD-1101 was a phase 1b, open-label, dose escalation trial of VY-AADC01, an experimental AAV2 gene therapy encoding the human aromatic l-amino acid decarboxylase (AADC) enzyme. VY-AADC01 was delivered via bilateral, intraoperative MRI-guided putaminal infusions to 3 cohorts (n = 5 participants per cohort): cohort 1, ≤7.5 × 1011 vector genomes (vg); cohort 2, ≤1.5 × 1012 vg; cohort 3, ≤4.7 × 1012 vg. Results No serious adverse events (SAEs) attributed to VY-AADC01 were reported. All 4 non-vector–related SAEs (atrial fibrillation and pulmonary embolism in 1 participant and 2 events of small bowel obstruction in another participant) resolved. Requirements for PD medications were reduced by 21%–30% in the 2 highest dose cohorts at 36 months. Standard measures of motor function (PD diary, Unified Parkinson's Disease Rating Scale III “off”-medication and “on”-medication scores), global impressions of improvement (Clinical Global Impression of Improvement, Patient Global Impression of Improvement), and quality of life (39-item Parkinson's Disease Questionnaire) were stable or improved compared with baseline at 12, 24, and 36 months following VY-AADC01 administration across cohorts. Discussions VY-AADC01 and the surgical administration procedure were well-tolerated and resulted in stable or improved motor function and quality of life across cohorts, as well as reduced PD medication requirements in cohorts 2 and 3 over 3 years. Trial Registration Information NCT01973543. Classification of Evidence This study provides Class IV evidence that, in patients with moderately advanced PD and motor fluctuations, putaminal infusion of VY-AADC01 is well tolerated and may improve motor function.
Collapse
Affiliation(s)
- Chadwick W Christine
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Amber D Van Laar
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA.,Brain Neurotherapy Bio, Inc., Columbus, OH
| | - Marin E Thompson
- Department of Neurological Surgery, University of California, San Francisco, CA
| | | | | | | | | | | | | | | | | | - Krystof S Bankiewicz
- Department of Neurological Surgery, University of California, San Francisco, CA.,Department of Neurological Surgery, Ohio State University, Columbus, OH
| | - Paul S Larson
- Department of Neurological Surgery, University of California, San Francisco, CA
| |
Collapse
|
15
|
Mhambi S, Fisher D, Tchokonte MBT, Dube A. Permeation Challenges of Drugs for Treatment of Neurological Tuberculosis and HIV and the Application of Magneto-Electric Nanoparticle Drug Delivery Systems. Pharmaceutics 2021; 13:1479. [PMID: 34575555 PMCID: PMC8466684 DOI: 10.3390/pharmaceutics13091479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022] Open
Abstract
The anatomical structure of the brain at the blood-brain barrier (BBB) creates a limitation for the movement of drugs into the central nervous system (CNS). Drug delivery facilitated by magneto-electric nanoparticles (MENs) is a relatively new non-invasive approach for the delivery of drugs into the CNS. These nanoparticles (NPs) can create localized transient changes in the permeability of the cells of the BBB by inducing electroporation. MENs can be applied to deliver antiretrovirals and antibiotics towards the treatment of human immunodeficiency virus (HIV) and tuberculosis (TB) infections in the CNS. This review focuses on the drug permeation challenges and reviews the application of MENs for drug delivery for these diseases. We conclude that MENs are promising systems for effective CNS drug delivery and treatment for these diseases, however, further pre-clinical and clinical studies are required to achieve translation of this approach to the clinic.
Collapse
Affiliation(s)
- Sinaye Mhambi
- Discipline of Pharmaceutics, School of Pharmacy, University of the Western Cape, Cape Town 7535, South Africa;
| | - David Fisher
- Department of Medical Bioscience, University of the Western Cape, Cape Town 7535, South Africa;
| | | | - Admire Dube
- Discipline of Pharmaceutics, School of Pharmacy, University of the Western Cape, Cape Town 7535, South Africa;
| |
Collapse
|
16
|
Larson PS. Improved Delivery Methods for Gene Therapy and Cell Transplantation in Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 11:S199-S206. [PMID: 34366372 PMCID: PMC8543258 DOI: 10.3233/jpd-212710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A number of cell transplantation and gene therapy trials have been performed over the last three decades in an effort to restore function in Parkinson’s disease. Much has been learned about optimizing delivery methods for these therapeutics. This is particularly true in gene therapy, which has predominated the clinical trial landscape in recent years; however, cell transplantation for Parkinson’s disease is currently undergoing a renaissance. Innovations such as cannula design, iMRI-guided surgery and an evolution in delivery strategy has radically changed the way investigators approach clinical trial design. Future therapeutic strategies may employ newer delivery methods such as chronically implanted infusion devices and focal opening of the blood brain barrier with focused ultrasound.
Collapse
Affiliation(s)
- Paul S Larson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
17
|
Van Laar AD, Van Laar VS, San Sebastian W, Merola A, Bradley Elder J, Lonser RR, Bankiewicz KS. An Update on Gene Therapy Approaches for Parkinson's Disease: Restoration of Dopaminergic Function. JOURNAL OF PARKINSONS DISEASE 2021; 11:S173-S182. [PMID: 34366374 PMCID: PMC8543243 DOI: 10.3233/jpd-212724] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
At present there is a significant unmet need for clinically available treatments for Parkinson’s disease (PD) patients to stably restore balance to dopamine network function, leaving patients with inadequate management of symptoms as the disease progresses. Gene therapy is an attractive approach to impart a durable effect on neuronal function through introduction of genetic material to reestablish dopamine levels and/or functionally recover dopaminergic signaling by improving neuronal health. Ongoing clinical gene therapy trials in PD are focused on enzymatic enhancement of dopamine production and/or the restoration of the nigrostriatal pathway to improve dopaminergic network function. In this review, we discuss data from current gene therapy trials for PD and recent advances in study design and surgical approaches.
Collapse
Affiliation(s)
- Amber D Van Laar
- Asklepios BioPharmaceutical, Inc., Columbus, OH, USA.,Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Victor S Van Laar
- Department of Neurological Surgery, Ohio State University College of Medicine, Columbus, OH, USA
| | - Waldy San Sebastian
- Asklepios BioPharmaceutical, Inc., Columbus, OH, USA.,Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Aristide Merola
- Department of Neurology, College of Medicine, the Ohio State University, Columbus, OH, USA
| | - J Bradley Elder
- Department of Neurological Surgery, Ohio State University College of Medicine, Columbus, OH, USA
| | - Russell R Lonser
- Department of Neurological Surgery, Ohio State University College of Medicine, Columbus, OH, USA
| | - Krystof S Bankiewicz
- Department of Neurological Surgery, Ohio State University College of Medicine, Columbus, OH, USA.,Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
18
|
Gene therapy for aromatic L-amino acid decarboxylase deficiency by MR-guided direct delivery of AAV2-AADC to midbrain dopaminergic neurons. Nat Commun 2021; 12:4251. [PMID: 34253733 PMCID: PMC8275582 DOI: 10.1038/s41467-021-24524-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare genetic disorder characterized by deficient synthesis of dopamine and serotonin. It presents in early infancy, and causes severe developmental disability and lifelong motor, behavioral, and autonomic symptoms including oculogyric crises (OGC), sleep disorder, and mood disturbance. We investigated the safety and efficacy of delivery of a viral vector expressing AADC (AAV2-hAADC) to the midbrain in children with AADC deficiency (ClinicalTrials.gov Identifier NCT02852213). Seven (7) children, aged 4–9 years underwent convection-enhanced delivery (CED) of AAV2-hAADC to the bilateral substantia nigra (SN) and ventral tegmental area (VTA) (total infusion volume: 80 µL per hemisphere) in 2 dose cohorts: 1.3 × 1011 vg (n = 3), and 4.2 × 1011 vg (n = 4). Primary aims were to demonstrate the safety of the procedure and document biomarker evidence of restoration of brain AADC activity. Secondary aims were to assess clinical improvement in symptoms and motor function. Direct bilateral infusion of AAV2-hAADC was safe, well-tolerated and achieved target coverage of 98% and 70% of the SN and VTA, respectively. Dopamine metabolism was increased in all subjects and FDOPA uptake was enhanced within the midbrain and the striatum. OGC resolved completely in 6 of 7 subjects by Month 3 post-surgery. Twelve (12) months after surgery, 6/7 subjects gained normal head control and 4/7 could sit independently. At 18 months, 2 subjects could walk with 2-hand support. Both the primary and secondary endpoints of the study were met. Midbrain gene delivery in children with AADC deficiency is feasible and safe, and leads to clinical improvements in symptoms and motor function. Aromatic L-amino acid decarboxylase deficiency (AADC) is a rare neurodevelopmental disorder. Here the authors describe a clinical trial of MR-guided delivery of AAV2-AADC for the treatment of AADC.
Collapse
|
19
|
Lonser RR, Akhter AS, Zabek M, Elder JB, Bankiewicz KS. Direct convective delivery of adeno-associated virus gene therapy for treatment of neurological disorders. J Neurosurg 2021; 134:1751-1763. [PMID: 32915526 DOI: 10.3171/2020.4.jns20701] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/16/2020] [Indexed: 11/06/2022]
Abstract
Molecular biological insights have led to a fundamental understanding of the underlying genomic mechanisms of nervous system disease. These findings have resulted in the identification of therapeutic genes that can be packaged in viral capsids for the treatment of a variety of neurological conditions, including neurodegenerative, metabolic, and enzyme deficiency disorders. Recent data have demonstrated that gene-carrying viral vectors (most often adeno-associated viruses) can be effectively distributed by convection-enhanced delivery (CED) in a safe, reliable, targeted, and homogeneous manner across the blood-brain barrier. Critically, these vectors can be monitored using real-time MRI of a co-infused surrogate tracer to accurately predict vector distribution and transgene expression at the perfused site. The unique properties of CED of adeno-associated virus vectors allow for cell-specific transgene manipulation of the infused anatomical site and/or widespread interconnected sites via antero- and/or retrograde transport. The authors review the convective properties of viral vectors, associated technology, and clinical applications.
Collapse
Affiliation(s)
- Russell R Lonser
- 1Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Asad S Akhter
- 1Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Mirosław Zabek
- 2Department of Neurological Surgery, Bródno Hospital, Warsaw, Poland
| | - J Bradley Elder
- 1Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Krystof S Bankiewicz
- 1Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| |
Collapse
|
20
|
Finite Element Model to Reproduce the Effect of Pre-Stress and Needle Insertion Velocity During Infusions into Brain Phantom Gel. Ing Rech Biomed 2021. [DOI: 10.1016/j.irbm.2020.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, Goodspeed K, Gray SJ, Kay CN, Boye SL, Boye SE, George LA, Salabarria S, Corti M, Byrne BJ, Tremblay JP. Current Clinical Applications of In Vivo Gene Therapy with AAVs. Mol Ther 2020; 29:464-488. [PMID: 33309881 PMCID: PMC7854298 DOI: 10.1016/j.ymthe.2020.12.007] [Citation(s) in RCA: 439] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/16/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Hereditary diseases are caused by mutations in genes, and more than 7,000 rare diseases affect over 30 million Americans. For more than 30 years, hundreds of researchers have maintained that genetic modifications would provide effective treatments for many inherited human diseases, offering durable and possibly curative clinical benefit with a single treatment. This review is limited to gene therapy using adeno-associated virus (AAV) because the gene delivered by this vector does not integrate into the patient genome and has a low immunogenicity. There are now five treatments approved for commercialization and currently available, i.e., Luxturna, Zolgensma, the two chimeric antigen receptor T cell (CAR-T) therapies (Yescarta and Kymriah), and Strimvelis (the gammaretrovirus approved for adenosine deaminase-severe combined immunodeficiency [ADA-SCID] in Europe). Dozens of other treatments are under clinical trials. The review article presents a broad overview of the field of therapy by in vivo gene transfer. We review gene therapy for neuromuscular disorders (spinal muscular atrophy [SMA]; Duchenne muscular dystrophy [DMD]; X-linked myotubular myopathy [XLMTM]; and diseases of the central nervous system, including Alzheimer’s disease, Parkinson’s disease, Canavan disease, aromatic l-amino acid decarboxylase [AADC] deficiency, and giant axonal neuropathy), ocular disorders (Leber congenital amaurosis, age-related macular degeneration [AMD], choroideremia, achromatopsia, retinitis pigmentosa, and X-linked retinoschisis), the bleeding disorder hemophilia, and lysosomal storage disorders.
Collapse
Affiliation(s)
- Jerry R Mendell
- Center of Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH, USA
| | | | | | - Kimberly Goodspeed
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Steven J Gray
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Sanford L Boye
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapeutics, University of Florida, Gainesville, FL, USA
| | - Lindsey A George
- Division of Hematology and the Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, PA, USA; Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephanie Salabarria
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Manuela Corti
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
22
|
Richardson RM, Bankiewicz KS, Christine CW, Van Laar AD, Gross RE, Lonser R, Factor SA, Kostyk SK, Kells AP, Ravina B, Larson PS. Data-driven evolution of neurosurgical gene therapy delivery in Parkinson's disease. J Neurol Neurosurg Psychiatry 2020; 91:1210-1218. [PMID: 32732384 PMCID: PMC7569395 DOI: 10.1136/jnnp-2020-322904] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/28/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Loss of nigrostriatal dopaminergic projection neurons is a key pathology in Parkinson's disease, leading to abnormal function of basal ganglia motor circuits and the accompanying characteristic motor features. A number of intraparenchymally delivered gene therapies designed to modify underlying disease and/or improve clinical symptoms have shown promise in preclinical studies and subsequently were evaluated in clinical trials. Here we review the challenges with surgical delivery of gene therapy vectors that limited therapeutic outcomes in these trials, particularly the lack of real-time monitoring of vector administration. These challenges have recently been addressed during the evolution of novel techniques for vector delivery that include the use of intraoperative MRI. The preclinical development of these techniques are described in relation to recent clinical translation in an adeno-associated virus serotype 2-mediated human aromatic L-amino acid decarboxylase gene therapy development programme. This new paradigm allows visualisation of the accuracy and adequacy of viral vector delivery within target structures, enabling intertrial modifications in surgical approaches, cannula design, vector volumes and dosing. The rapid, data-driven evolution of these procedures is unique and has led to improved vector delivery.
Collapse
Affiliation(s)
- R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA .,Harvard Medical School, Boston, Massachusetts, USA
| | - Krystof S Bankiewicz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA.,Department of Neurological Surgery, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Chadwick W Christine
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Amber D Van Laar
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Brain Neurotherapy Bio, Inc, Columbus, Ohio, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA.,Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Russell Lonser
- Department of Neurological Surgery, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Stewart A Factor
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Sandra K Kostyk
- Departments of Neuroscience and Neurology, Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | - Bernard Ravina
- Praxis Precision Medicines, Inc, Cambridge, Massachusetts, USA
| | - Paul S Larson
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
23
|
Buttery PC, Barker RA. Gene and Cell-Based Therapies for Parkinson's Disease: Where Are We? Neurotherapeutics 2020; 17:1539-1562. [PMID: 33128174 PMCID: PMC7598241 DOI: 10.1007/s13311-020-00940-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that carries large health and socioeconomic burdens. Current therapies for PD are ultimately inadequate, both in terms of symptom control and in modification of disease progression. Deep brain stimulation and infusion therapies are the current mainstay for treatment of motor complications of advanced disease, but these have very significant drawbacks and offer no element of disease modification. In fact, there are currently no agents that are established to modify the course of the disease in clinical use for PD. Gene and cell therapies for PD are now being trialled in the clinic. These treatments are diverse and may have a range of niches in the management of PD. They hold great promise for improved treatment of symptoms as well as possibly slowing progression of the disease in the right patient group. Here, we review the current state of the art for these therapies and look to future strategies in this fast-moving field.
Collapse
Affiliation(s)
- Philip C Buttery
- Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, CB2 0XY, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Hills Road, CB2 0QQ, Cambridge, UK.
| | - Roger A Barker
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Hills Road, CB2 0QQ, Cambridge, UK.
- John van Geest Centre for Brain Repair, E.D. Adrian Building, Forvie Site, Robinson Way, CB2 0PY, Cambridge, UK.
| |
Collapse
|
24
|
Sudhakar V, Naidoo J, Samaranch L, Bringas JR, Lonser RR, Fiandaca MS, Bankiewicz KS. Infuse-as-you-go convective delivery to enhance coverage of elongated brain targets: technical note. J Neurosurg 2020; 133:530-537. [PMID: 31299656 DOI: 10.3171/2019.4.jns19826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/29/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To develop and assess a convective delivery technique that enhances the effectiveness of drug delivery to nonspherical brain nuclei, the authors developed an occipital "infuse-as-you-go" approach to the putamen and compared it to the currently used transfrontal approach. METHODS Eleven nonhuman primates received a bilateral putamen injection of adeno-associated virus with 2 mM gadolinium-DTPA by real-time MR-guided convective perfusion via either a transfrontal (n = 5) or occipital infuse-as-you-go (n = 6) approach. RESULTS MRI provided contemporaneous assessment and monitoring of putaminal infusions for transfrontal (2 to 3 infusion deposits) and occipital infuse-as-you-go (stepwise infusions) putaminal approaches. The infuse-as-you-go technique was more efficient than the transfrontal approach (mean 35 ± 1.1 vs 88 ± 8.3 minutes [SEM; p < 0.001]). More effective perfusion of the postcommissural and total putamen was achieved with the infuse-as-you-go versus transfronatal approaches (100-µl infusion volumes; mean posterior commissural coverage 76.2% ± 5.0% vs 32.8% ± 2.9% [p < 0.001]; and mean total coverage 53.5% ± 3.0% vs 38.9% ± 2.3% [p < 0.01]). CONCLUSIONS The infuse-as-you-go approach, paralleling the longitudinal axis of the target structure, provides a more effective and efficient method for convective infusate coverage of elongated, irregularly shaped subcortical brain nuclei.
Collapse
Affiliation(s)
- Vivek Sudhakar
- 1Department of Neurological Surgery, University of California, San Francisco, California; and
| | - Jerusha Naidoo
- 1Department of Neurological Surgery, University of California, San Francisco, California; and
| | - Lluis Samaranch
- 1Department of Neurological Surgery, University of California, San Francisco, California; and
| | - John R Bringas
- 1Department of Neurological Surgery, University of California, San Francisco, California; and
| | - Russell R Lonser
- 2Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Massimo S Fiandaca
- 1Department of Neurological Surgery, University of California, San Francisco, California; and
| | - Krystof S Bankiewicz
- 1Department of Neurological Surgery, University of California, San Francisco, California; and
- 2Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
25
|
Castle MJ, Baltanás FC, Kovacs I, Nagahara AH, Barba D, Tuszynski MH. Postmortem Analysis in a Clinical Trial of AAV2-NGF Gene Therapy for Alzheimer's Disease Identifies a Need for Improved Vector Delivery. Hum Gene Ther 2020; 31:415-422. [PMID: 32126838 DOI: 10.1089/hum.2019.367] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nerve growth factor (NGF) gene therapy rescues and stimulates cholinergic neurons, which degenerate in Alzheimer's disease (AD). In a recent clinical trial for AD, intraparenchymal adeno-associated virus serotype 2 (AAV2)-NGF delivery was safe but did not improve cognition. Before concluding that NGF gene therapy is ineffective, it must be shown that AAV2-NGF successfully engaged the target cholinergic neurons of the basal forebrain. In this study, patients with clinically diagnosed early- to middle-stage AD received a total dose of 2 × 1011 vector genomes of AAV2-NGF by stereotactic injection of the nucleus basalis of Meynert. After a mean survival of 4.0 years, AAV2-NGF targeting, spread, and expression were assessed by immunolabeling of NGF and the low-affinity NGF receptor p75 at 15 delivery sites in 3 autopsied patients. NGF gene expression persisted for at least 7 years at sites of AAV2-NGF injection. However, the mean distance of AAV2-NGF spread was only 0.96 ± 0.34 mm. NGF did not directly reach cholinergic neurons at any of the 15 injection sites due to limited spread and inaccurate stereotactic targeting. Because AAV2-NGF did not directly engage the target cholinergic neurons, we cannot conclude that growth factor gene therapy is ineffective for AD. Upcoming clinical trials for AD will utilize real-time magnetic resonance imaging guidance and convection-enhanced delivery to improve the targeting and spread of growth factor gene delivery.
Collapse
Affiliation(s)
- Michael J Castle
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Fernando C Baltanás
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Imre Kovacs
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Alan H Nagahara
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - David Barba
- Department of Neurosurgery, University of California, San Diego, La Jolla, California
| | - Mark H Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, California.,Veterans Administration Medical Center, San Diego, California
| |
Collapse
|
26
|
Abstract
Monkeys are a premier model organism for neuroscience research. Activity in the central nervous systems of monkeys can be recorded and manipulated while they perform complex perceptual, motor, or cognitive tasks. Conventional techniques for manipulating neural activity in monkeys are too coarse to address many of the outstanding questions in primate neuroscience, but optogenetics holds the promise to overcome this hurdle. In this article, we review the progress that has been made in primate optogenetics over the past 5 years. We emphasize the use of gene regulatory sequences in viral vectors to target specific neuronal types, and we present data on vectors that we engineered to target parvalbumin-expressing neurons. We conclude with a discussion of the utility of optogenetics for treating sensorimotor hearing loss and Parkinson's disease, areas of translational neuroscience in which monkeys provide unique leverage for basic science and medicine.
Collapse
|
27
|
Christine CW, Bankiewicz KS, Van Laar AD, Richardson RM, Ravina B, Kells AP, Boot B, Martin AJ, Nutt J, Thompson ME, Larson PS. Magnetic resonance imaging-guided phase 1 trial of putaminal AADC gene therapy for Parkinson's disease. Ann Neurol 2019; 85:704-714. [PMID: 30802998 PMCID: PMC6593762 DOI: 10.1002/ana.25450] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To understand the safety, putaminal coverage, and enzyme expression of adeno-associated viral vector serotype-2 encoding the complementary DNA for the enzyme, aromatic L-amino acid decarboxylase (VY-AADC01), delivered using novel intraoperative monitoring to optimize delivery. METHODS Fifteen subjects (three cohorts of 5) with moderately advanced Parkinson's disease and medically refractory motor fluctuations received VY-AADC01 bilaterally coadministered with gadoteridol to the putamen using intraoperative magnetic resonance imaging (MRI) guidance to visualize the anatomic spread of the infusate and calculate coverage. Cohort 1 received 8.3 × 1011 vg/ml and ≤450 μl per putamen (total dose, ≤7.5 × 1011 vg); cohort 2 received the same concentration (8.3 × 1011 vg/ml) and ≤900 μl per putamen (total dose, ≤1.5 × 1012 vg); and cohort 3 received 2.6 × 1012 vg/ml and ≤900 μl per putamen (total dose, ≤4.7 × 1012 vg). (18)F-fluoro-L-dihydroxyphenylalanine positron emission tomography (PET) at baseline and 6 months postprocedure assessed enzyme activity; standard assessments measured clinical outcomes. RESULTS MRI-guided administration of ascending VY-AADC01 doses resulted in putaminal coverage of 21% (cohort 1), 34% (cohort 2), and 42% (cohort 3). Cohorts 1, 2, and 3 showed corresponding increases in enzyme activity assessed by PET of 13%, 56%, and 79%, and reductions in antiparkinsonian medication of -15%, -33%, and -42%, respectively, at 6 months. At 12 months, there were dose-related improvements in clinical outcomes, including increases in patient-reported ON-time without troublesome dyskinesia (1.6, 3.3, and 1.5 hours, respectively) and quality of life. INTERPRETATION Novel intraoperative monitoring of administration facilitated targeted delivery of VY-AADC01 in this phase 1 study, which was well tolerated. Increases in enzyme expression and clinical improvements were dose dependent. ClinicalTrials.gov Identifier: NCT01973543 Ann Neurol 2019;85:704-714.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alastair J Martin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - John Nutt
- Department of Neurology, Oregon Health Sciences University
| | - Marin E Thompson
- Department of Neurological Surgery, University of California, San Francisco
| | - Paul S Larson
- Department of Neurological Surgery, University of California, San Francisco
| |
Collapse
|
28
|
Paul G, Sullivan AM. Trophic factors for Parkinson's disease: Where are we and where do we go from here? Eur J Neurosci 2019; 49:440-452. [DOI: 10.1111/ejn.14102] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/25/2018] [Accepted: 07/22/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Gesine Paul
- Translational Neurology GroupDepartment of Clinical ScienceLund University Lund Sweden
- Wallenberg Center for Molecular MedicineLund University Lund Sweden
- Department of NeurologyScania University Hospital Lund Sweden
| | - Aideen M. Sullivan
- Department of Anatomy and NeuroscienceUniversity College Cork Cork Ireland
| |
Collapse
|
29
|
Abstract
Gene therapy has the potential to provide therapeutic benefit to millions of people with neurodegenerative diseases through several means, including direct correction of pathogenic mechanisms, neuroprotection, neurorestoration, and symptom control. Therapeutic efficacy is therefore dependent on knowledge of the disease pathogenesis and the required temporal and spatial specificity of gene expression. An additional critical challenge is achieving the most complete transduction of the target structure while avoiding leakage into neighboring regions or perivascular spaces. The gene therapy field has recently entered a new technological era, in which interventional MRI-guided convection-enhanced delivery (iMRI-CED) is the gold standard for verifying accurate vector delivery in real time. The availability of this advanced neurosurgical technique may accelerate the translation of the promising preclinical therapeutics under development for neurodegenerative disorders, including Parkinson's, Huntington's, and Alzheimer's diseases.
Collapse
Affiliation(s)
- Vivek Sudhakar
- Brain Modulation Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15213, USA
| | - R Mark Richardson
- Brain Modulation Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15213, USA.
| |
Collapse
|
30
|
Ohno K, Samaranch L, Hadaczek P, Bringas JR, Allen PC, Sudhakar V, Stockinger DE, Snieckus C, Campagna MV, San Sebastian W, Naidoo J, Chen H, Forsayeth J, Salegio EA, Hwa GGC, Bankiewicz KS. Kinetics and MR-Based Monitoring of AAV9 Vector Delivery into Cerebrospinal Fluid of Nonhuman Primates. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 13:47-54. [PMID: 30666308 PMCID: PMC6330508 DOI: 10.1016/j.omtm.2018.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022]
Abstract
Here we evaluated the utility of MRI to monitor intrathecal infusions in nonhuman primates. Adeno-associated virus (AAV) spiked with gadoteridol, a gadolinium-based MRI contrast agent, enabled real-time visualization of infusions delivered either via cerebromedullary cistern, lumbar, cerebromedullary and lumbar, or intracerebroventricular infusion. The kinetics of vector clearance from the cerebrospinal fluid (CSF) were analyzed. Our results highlight the value of MRI in optimizing the delivery of infusate into CSF. In particular, MRI revealed differential patterns of infusate distribution depending on the route of delivery. Gadoteridol coverage analysis showed that cerebellomedullary cistern delivery was a reliable and effective route of injection, achieving broad infusate distribution in the brain and spinal cord, and was even greater when combined with lumbar injection. In contrast, intracerebroventricular injection resulted in strong cortical coverage but little spinal distribution. Lumbar injection alone led to the distribution of MRI contrast agent mainly in the spinal cord with little cortical coverage, but this delivery route was unreliable. Similarly, vector clearance analysis showed differences between different routes of delivery. Overall, our data support the value of monitoring CSF injections to dissect different patterns of gadoteridol distribution based on the route of intrathecal administration.
Collapse
Affiliation(s)
- Kousaku Ohno
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| | - Lluis Samaranch
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| | - Piotr Hadaczek
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| | - John R Bringas
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| | | | - Vivek Sudhakar
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| | | | - Christopher Snieckus
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| | | | - Waldy San Sebastian
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| | - Jerusha Naidoo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| | | | - John Forsayeth
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| | | | | | - Krystof S Bankiewicz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| |
Collapse
|
31
|
Salegio EA, Campagna MV, Allen PC, Stockinger DE, Song Y, Hwa GGC. Targeted Delivery and Tolerability of MRI-Guided CED Infusion into the Cerebellum of Nonhuman Primates. Hum Gene Ther Methods 2018; 29:169-176. [PMID: 29953257 DOI: 10.1089/hgtb.2018.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study explored the feasibility of intraparenchymal delivery (gadoteridol and/or Serotype 5 Adeno-Associated Viral Vector-enhanced Green Fluorescent Protein [AAV5-eGFP]) into the cerebellum of nonhuman primates using real-time magnetic resonance imaging-guided convection enhanced delivery (MRI-CED) technology. All animals tolerated the neurosurgical procedure without any clinical sequela. Gene expression was detected within the cerebellar parenchyma at the site of infusion and resulted in transduction of neuronal cell bodies and fibers. Histopathology indicated localized damage along the stem of the cannula tract. These findings demonstrate the potential of real-time MRI-CED to deliver therapeutics into the cerebellum, which has extensive reciprocal connections and may be used as a target for the treatment of neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | - Yuanquan Song
- 2 Raymond G. Perelman Center for Cellular and Molecular Therapeutics , The Children's Hospital of Philadelphia, Philadelphia, PA.,3 Department of Pathology and Laboratory Medicine, University of Pennsylvania , Philadelphia, PA
| | | |
Collapse
|
32
|
Naidoo J, Stanek LM, Ohno K, Trewman S, Samaranch L, Hadaczek P, O'Riordan C, Sullivan J, San Sebastian W, Bringas JR, Snieckus C, Mahmoodi A, Mahmoodi A, Forsayeth J, Bankiewicz KS, Shihabuddin LS. Extensive Transduction and Enhanced Spread of a Modified AAV2 Capsid in the Non-human Primate CNS. Mol Ther 2018; 26:2418-2430. [PMID: 30057240 DOI: 10.1016/j.ymthe.2018.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 11/17/2022] Open
Abstract
The present study was designed to characterize transduction of non-human primate brain and spinal cord with a modified adeno-associated virus serotype 2, incapable of binding to the heparan sulfate proteoglycan receptor, referred to as AAV2-HBKO. AAV2-HBKO was infused into the thalamus, intracerebroventricularly or via a combination of both intracerebroventricular and thalamic delivery. Thalamic injection of this modified vector encoding GFP resulted in widespread CNS transduction that included neurons in deep cortical layers, deep cerebellar nuclei, several subcortical regions, and motor neuron transduction in the spinal cord indicative of robust bidirectional axonal transport. Intracerebroventricular delivery similarly resulted in widespread cortical transduction, with one striking distinction that oligodendrocytes within superficial layers of the cortex were the primary cell type transduced. Robust motor neuron transduction was also observed in all levels of the spinal cord. The combination of thalamic and intracerebroventricular delivery resulted in transduction of oligodendrocytes in superficial cortical layers and neurons in deeper cortical layers. Several subcortical regions were also transduced. Our data demonstrate that AAV2-HBKO is a powerful vector for the potential treatment of a wide number of neurological disorders, and highlight that delivery route can significantly impact cellular tropism and pattern of CNS transduction.
Collapse
Affiliation(s)
- Jerusha Naidoo
- Interventional Neuro Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lisa M Stanek
- CNS Genetic Diseases, Neuroscience Research TA, Sanofi, Framingham, MA, USA
| | - Kousaku Ohno
- Interventional Neuro Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Savanah Trewman
- Interventional Neuro Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lluis Samaranch
- Interventional Neuro Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Piotr Hadaczek
- Interventional Neuro Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Jennifer Sullivan
- CNS Genetic Diseases, Neuroscience Research TA, Sanofi, Framingham, MA, USA
| | - Waldy San Sebastian
- Interventional Neuro Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - John R Bringas
- Interventional Neuro Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher Snieckus
- Interventional Neuro Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Amin Mahmoodi
- Interventional Neuro Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Amir Mahmoodi
- Interventional Neuro Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - John Forsayeth
- Interventional Neuro Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Krystof S Bankiewicz
- Interventional Neuro Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
| | | |
Collapse
|
33
|
Kordower JH, Burke RE. Disease Modification for Parkinson's Disease: Axonal Regeneration and Trophic Factors. Mov Disord 2018; 33:678-683. [PMID: 29603370 DOI: 10.1002/mds.27383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/12/2018] [Indexed: 01/05/2023] Open
Abstract
Disease modification and structural neuroprotection have been the holy grail for Parkinson's disease (PD) experimental therapeutics. Theoretically, there are a number of ways to implement such therapeutics, but to date all have failed. This review examines the potential of axonal regeneration and trophic factor delivery for the nigrostriatal system as 2 such approaches that historically have initiated much excitement. However, we conclude this discussion with the following question: has science passed these approaches by? © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA.,Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Robert E Burke
- Department of Neurology, Columbia University, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
34
|
Abstract
Brain-derived neurotrophic factor (BDNF) gene delivery to the entorhinal cortex is a candidate for treatment of Alzheimer’s disease (AD) to reduce neurodegeneration that is associated with memory loss. Accurate targeting of the entorhinal cortex in AD is complex due to the deep and atrophic state of this brain region. Using MRI-guided methods with convection-enhanced delivery, we were able to accurately and consistently target AAV2-BDNF delivery to the entorhinal cortex of non-human primates. 86 ± 3% of transduced cells in the targeted regions co-localized with the neuronal marker NeuN. The volume of AAV2-BDNF (3×108 vg/μl) infusion linearly correlated with the number of BDNF labeled cells and the volume (mm3) of BDNF immunoreactivity in the entorhinal cortex. BDNF is normally trafficked to the hippocampus from the entorhinal cortex; in these experiments, we also found that BDNF immunoreactivity was elevated in the hippocampus following therapeutic BDNF vector delivery to the entorhinal cortex, achieving growth factor distribution through key memory circuits. These findings indicate that MRI-guided infusion of AAV2-BDNF to the entorhinal cortex of the non-human primate results in safe and accurate targeting and distribution of BDNF to both the entorhinal cortex and the hippocampus. These methods are adaptable to human clinical trials.
Collapse
|
35
|
Abstract
Convection-enhanced delivery permits the direct homogeneous delivery of small- and large-molecular-weight putative therapeutics to the nervous system in a manner that bypasses the blood-nervous system barrier. The development of co-infused surrogate imaging tracers (for computed tomography and MRI) allows for the real-time, noninvasive monitoring of infusate distribution during convective delivery. Real-time image monitoring of convective distribution of therapeutic agents insures that targeted structures/nervous system regions are adequately perfused, enhances safety, informs efficacy (or lack thereof) of putative agents, and provides critical information regarding the properties of convection-enhanced delivery in normal and various pathologic tissue states.
Collapse
Affiliation(s)
- Russell R Lonser
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, 410 West 10th Avenue, Doan 1047, Columbus, OH 43210, USA.
| |
Collapse
|
36
|
Gaining Mechanistic Insights into Cell Therapy Using Magnetic Resonance Imaging. CURRENT STEM CELL REPORTS 2016. [DOI: 10.1007/s40778-016-0059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Richardson RM. Increasing the Relevance of Optogenetics to the Human Brain. Neurosurgery 2016; 78:N14-5. [DOI: 10.1227/01.neu.0000484055.27923.d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Bankiewicz KS, Sudhakar V, Samaranch L, San Sebastian W, Bringas J, Forsayeth J. AAV viral vector delivery to the brain by shape-conforming MR-guided infusions. J Control Release 2016; 240:434-442. [PMID: 26924352 DOI: 10.1016/j.jconrel.2016.02.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 11/18/2022]
Abstract
Gene transfer technology offers great promise as a potential therapeutic approach to the brain but has to be viewed as a very complex technology. Success of ongoing clinical gene therapy trials depends on many factors such as selection of the correct genetic and anatomical target in the brain. In addition, selection of the viral vector capable of transfer of therapeutic gene into target cells, along with long-term expression that avoids immunotoxicity has to be established. As with any drug development strategy, delivery of gene therapy has to be consistent and predictable in each study subject. Failed drug and vector delivery will lead to failed clinical trials. In this article, we describe our experience with AAV viral vector delivery system, that allows us to optimize and monitor in real time viral vector administration into affected regions of the brain. In addition to discussing MRI-guided technology for administration of AAV vectors we have developed and now employ in current clinical trials, we also describe ways in which infusion cannula design and stereotactic trajectory may be used to maximize the anatomical coverage by using fluid backflow. This innovative approach enables more precise coverage by fitting the shape of the infusion to the shape of the anatomical target.
Collapse
Affiliation(s)
- Krystof S Bankiewicz
- Interventional Neuro Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94110, USA.
| | - Vivek Sudhakar
- Interventional Neuro Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94110, USA
| | - Lluis Samaranch
- Interventional Neuro Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94110, USA
| | - Waldy San Sebastian
- Interventional Neuro Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94110, USA
| | - John Bringas
- Interventional Neuro Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94110, USA
| | - John Forsayeth
- Interventional Neuro Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
39
|
GDNF and AADC Gene Therapy for Parkinson’s Disease. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
40
|
|
41
|
Nash KR, Gordon MN. Convection Enhanced Delivery of Recombinant Adeno-associated Virus into the Mouse Brain. Methods Mol Biol 2016; 1382:285-95. [PMID: 26611595 DOI: 10.1007/978-1-4939-3271-9_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Recombinant adeno-associated virus (rAAV) has become an extremely useful tool for the study of gene over expression or knockdown in the central nervous system of experimental animals. One disadvantage of intracranial injections of rAAV vectors into the brain parenchyma has been restricted distribution to relatively small volumes of the brain. Convection enhanced delivery (CED) is a method for delivery of clinically relevant amounts of therapeutic agents to large areas of the brain in a direct intracranial injection procedure. CED uses bulk flow to increase the hydrostatic pressure and thus improve volume distribution. The CED method has shown robust gene transfer and increased distribution within the CNS and can be successfully used for different serotypes of rAAV for increased transduction of the mouse CNS. This chapter details the surgical injection of rAAV by CED into a mouse brain.
Collapse
Affiliation(s)
- Kevin R Nash
- Molecular Pharmacology and Physiology Department, Byrd Alzheimer Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL, 33613, USA.
| | - Marcia N Gordon
- Molecular Pharmacology and Physiology Department, Byrd Alzheimer Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL, 33613, USA
| |
Collapse
|
42
|
Slow AAV2 clearance from the brain of nonhuman primates and anti-capsid immune response. Gene Ther 2015; 23:393-8. [PMID: 26510688 DOI: 10.1038/gt.2015.87] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/30/2015] [Accepted: 07/23/2015] [Indexed: 11/08/2022]
Abstract
Adeno-associated virus serotype 2 (AAV2) has previously been reported to be a slowly uncoating virus in peripheral tissues, but persistence of intact vector in primate brain has not been explored. Because some neurological gene therapies may require re-administration of the same vector to patients, it seems important to understand the optimal timeframe in which to consider such repeat intervention. Surprisingly, convection-enhanced delivery of AAV2 into the thalamus of nonhuman primates (NHPs) resulted in robust staining of neurons with A20 antibody that detected intact AAV2 particles at ∼1.5 months after infusion. However, by 2.5 months, no A20 staining was visible. These data confirmed earlier findings of persistence of intact AAV2 particles in ocular and hepatic tissues. In order to probe the potential consequences of this persistence, we infused AAV2-human aromatic L-amino acid decarboxylase into left and right thalamus of three NHPs, with a 3-month delay between infusions. During that interval, we immunized each animal subcutaneously with AAV2 virus-like particles (empty vector) in order to induce strong anti-capsid humoral immunity. Various high neutralizing antibody titers were achieved. The lowest titer animal showed infiltration of B lymphocytes and CD8(+) T cells into both the secondary and primary infusion sites. In the other two animals, extremely high titers resulted in no transduction of the second site and, therefore, no lymphocytic infiltration. However, such infiltration was prominent at the primary infusion site in each animal and was associated with overt neuronal loss and inflammation.
Collapse
|
43
|
Viral vector delivery of neurotrophic factors for Parkinson's disease therapy. Expert Rev Mol Med 2015; 17:e8. [DOI: 10.1017/erm.2015.6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterised by the progressive loss of midbrain dopaminergic neurons, which causes motor impairments. Current treatments involve dopamine replacement to address the disease symptoms rather than its cause. Factors that promote the survival of dopaminergic neurons have been proposed as novel therapies for PD. Several dopaminergic neurotrophic factors (NTFs) have been examined for their ability to protect and/or restore degenerating dopaminergic neurons, both in animal models and in clinical trials. These include glial cell line-derived neurotrophic factor, neurturin, cerebral dopamine neurotrophic factor and growth/differentiation factor 5. Delivery of these NTFs via injection or infusion to the brain raises several practical problems. A new delivery approach for NTFs involves the use of recombinant viral vectors to enable long-term expression of these factors in brain cells. Vectors used include those based on adenoviruses, adeno-associated viruses and lentiviruses. Here we review progress to date on the potential of each of these four NTFs as novel therapeutic strategies for PD, as well as the challenges that have arisen, from pre-clinical analysis to clinical trials. We conclude by discussing recently-developed approaches to optimise the delivery of NTF-carrying viral vectors to the brain.
Collapse
|
44
|
Brady ML, Raghavan R, Block W, Grabow B, Ross C, Kubota K, Alexander AL, Emborg ME. The Relation between Catheter Occlusion and Backflow during Intraparenchymal Cerebral Infusions. Stereotact Funct Neurosurg 2015; 93:102-109. [PMID: 25721097 DOI: 10.1159/000367665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022]
Abstract
Background/Aims: The distribution of infusate into the brain by convection-enhanced delivery can be affected by backflow along the catheter shaft. This work assesses the following: (1) whether tissue coring and occlusion of the catheter lumen occurs when an open end-port catheter is inserted, (2) whether there is a relationship between intracatheter pressure and backflow, and (3) whether catheter occlusion increases backflow. Methods: Freshly excised monkey brains were used to assess tissue coring and its correlation with the behavior of the line pressure. In vivo infusions of gadolinium solution into monkey putamen at 1 μl/min were conducted with and without a stylet during insertion. The effect of flow during insertion was evaluated in vivo in the pig thalamus. MRI and line pressure were continuously monitored during in vivo infusions. Results: Ex vivo testing showed that open end-port insertions always cored tissue (which temporarily plugs the catheter tip) and increased pressure followed by a rapid fall after its expulsion. Catheter insertion with a stylet in place prevented coring but not flow insertion; neither affected backflow. Conclusion: Open end-port catheters occlude during insertion, which can be prevented by temporarily closing the port with a stylet but not by infusing while inserting. Backflow was not completely prevented by any insertion method. © 2015 S. Karger AG, Basel.
Collapse
|
45
|
Burnett R, Ibañez CE, Pettersson PL, Chen CI, Parab S, Huang T, Robbins J, Bankiewicz K, Aghi M, Logg C, Kasahara N, Pertschuk D, Gruber HE, Jolly DJ. Maintaining therapeutic activity in the operating room: compatibility of a gamma-retroviral replicating vector with clinical materials and biofluids. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14024. [PMID: 26015967 PMCID: PMC4362351 DOI: 10.1038/mtm.2014.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 11/28/2022]
Abstract
Toca 511 is a novel retroviral replicating vector, encoding a modified yeast cytosine deaminase, administered to recurrent high grade glioma patients in Phase 1 trials by stereotactic, transcranial injection into the tumor or into the walls of the resection cavity. A key issue, with little published data, is vector biocompatibility with agents likely to be encountered in a neurosurgical setting. We tested biocompatibility of Toca 511 with: delivery devices; MRI contrast agents, including ProHance supporting coinjection for real time MRI-guided intratumoral delivery; hemostatic agents; biofluids (blood and cerebrospinal fluid); potential adjuvants; and a needleless vial adapter that reduces risk of accidental needle sticks. Toca 511 is stable upon thawing at ambient temperature for at least 6 hours, allowing sufficient time for administration, and its viability is not reduced in the presence of: stainless steel and silica-based delivery devices; the potential MRI contrast agent, Feraheme; ProHance at several concentrations; the hemostatic agent SURGIFOAM; blood; cerebrospinal fluid; and the needleless vial adapter. Toca 511 is not compatible with the hemostatic agent SURGICEL or with extended exposures to titanium-based biopsy needles.
Collapse
Affiliation(s)
- Ryan Burnett
- Tocagen Inc., Bunker Hill St. , San Diego, CA, USA
| | | | | | - Ching-I Chen
- Tocagen Inc., Bunker Hill St. , San Diego, CA, USA
| | | | | | - Joan Robbins
- Tocagen Inc., Bunker Hill St. , San Diego, CA, USA
| | - Krystof Bankiewicz
- Department of Neurological Surgery, University of California San Francisco (UCSF) , San Francisco, CA, USA
| | - Manish Aghi
- Department of Neurological Surgery, University of California San Francisco (UCSF) , San Francisco, CA, USA
| | - Christopher Logg
- Department of Medicine, University of California Los Angeles (UCLA) , Los Angeles, CA, USA
| | - Noriyuki Kasahara
- Department of Medicine, University of California Los Angeles (UCLA) , Los Angeles, CA, USA
| | | | | | | |
Collapse
|
46
|
Emborg ME, Hurley SA, Joers V, Tromp DPM, Swanson CR, Ohshima-Hosoyama S, Bondarenko V, Cummisford K, Sonnemans M, Hermening S, Blits B, Alexander AL. Titer and product affect the distribution of gene expression after intraputaminal convection-enhanced delivery. Stereotact Funct Neurosurg 2014; 92:182-94. [PMID: 24943657 DOI: 10.1159/000360584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/12/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND The efficacy and safety of intracerebral gene therapy for brain disorders like Parkinson's disease depends on the appropriate distribution of gene expression. OBJECTIVES To assess whether the distribution of gene expression is affected by vector titer and protein type. METHODS Four adult macaque monkeys seronegative for adeno-associated virus 5 (AAV5) received a 30-µl inoculation of a high- or a low-titer suspension of AAV5 encoding glial cell line-derived neurotrophic factor (GDNF) or green fluorescent protein (GFP) in the right and left ventral postcommissural putamen. The inoculations were conducted using convection-enhanced delivery and intraoperative MRI (IMRI). RESULTS IMRI confirmed targeting and infusion cloud irradiation from the catheter tip into the surrounding area. A postmortem analysis 6 weeks after surgery revealed GFP and GDNF expression ipsilateral to the injection site that had a titer-dependent distribution. GFP and GDNF expression was also observed in fibers in the substantia nigra (SN) pars reticulata (pr), demonstrating anterograde transport. Few GFP-positive neurons were present in the SN pars compacta (pc), possibly by direct retrograde transport of the vector. GDNF was present in many neurons of the SNpc and SNpr. CONCLUSIONS After controlling for target and infusate volume, the intracerebral distribution of the gene product was affected by the vector titer and product biology.
Collapse
Affiliation(s)
- Marina E Emborg
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wis., USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ahn M, Bajsarowicz K, Oehler A, Lemus A, Bankiewicz K, DeArmond SJ. Convection-enhanced delivery of AAV2-PrPshRNA in prion-infected mice. PLoS One 2014; 9:e98496. [PMID: 24866748 PMCID: PMC4035323 DOI: 10.1371/journal.pone.0098496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/02/2014] [Indexed: 12/22/2022] Open
Abstract
Prion disease is caused by a single pathogenic protein (PrPSc), an abnormal conformer of the normal cellular prion protein PrPC. Depletion of PrPC in prion knockout mice makes them resistant to prion disease. Thus, gene silencing of the Prnp gene is a promising effective therapeutic approach. Here, we examined adeno-associated virus vector type 2 encoding a short hairpin RNA targeting Prnp mRNA (AAV2-PrP-shRNA) to suppress PrPC expression both in vitro and in vivo. AAV2-PrP-shRNA treatment suppressed PrP levels and prevented dendritic degeneration in RML-infected brain aggregate cultures. Infusion of AAV2-PrP-shRNA-eGFP into the thalamus of CD-1 mice showed that eGFP was transported to the cerebral cortex via anterograde transport and the overall PrPC levels were reduced by ∼70% within 4 weeks. For therapeutic purposes, we treated RML-infected CD-1 mice with AAV2-PrP-shRNA beginning at 50 days post inoculation. Although AAV2-PrP-shRNA focally suppressed PrPSc formation in the thalamic infusion site by ∼75%, it did not suppress PrPSc formation efficiently in other regions of the brain. Survival of mice was not extended compared to the untreated controls. Global suppression of PrPC in the brain is required for successful therapy of prion diseases.
Collapse
Affiliation(s)
- Misol Ahn
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- Department of Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - Krystyna Bajsarowicz
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Abby Oehler
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Azucena Lemus
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Krystof Bankiewicz
- Department of Neurosurgery and Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Stephen J. DeArmond
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- Department of Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Lerchner W, Corgiat B, Der Minassian V, Saunders RC, Richmond BJ. Injection parameters and virus dependent choice of promoters to improve neuron targeting in the nonhuman primate brain. Gene Ther 2014; 21:233-41. [PMID: 24401836 DOI: 10.1038/gt.2013.75] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 10/01/2013] [Accepted: 11/04/2013] [Indexed: 01/06/2023]
Abstract
We, like many others, wish to use modern molecular methods to alter neuronal functionality in primates. For us, this requires expression in a large proportion of the targeted cell population. Long generation times make germline modification of limited use. The size and intricate primate brain anatomy poses additional challenges. We surved methods using lentiviruses and serotypes of adeno-associated viruses (AAVs) to introduce active molecular material into cortical and subcortical regions of old-world monkey brains. Slow injections of AAV2 give well-defined expression of neurons in the cortex surrounding the injection site. Somewhat surprisingly we find that in the monkey the use of cytomegalovirus promoter in lentivirus primarily targets glial cells but few neurons. In contrast, with a synapsin promoter fragment the lentivirus expression is neuron specific at high transduction levels in all cortical layers. We also achieve specific targeting of tyrosine hydroxlase (TH)- rich neurons in the locus coeruleus and substantia nigra with a lentvirus carrying a fragment of the TH promoter. Lentiviruses carrying neuron specific promoters are suitable for both cortical and subcortical injections even when injected quickly.
Collapse
Affiliation(s)
- W Lerchner
- Laboratory of Neuropsychology, National Institute of Mental Health/NIMH/DHHS, Bethesda, MD, USA
| | - B Corgiat
- Laboratory of Neuropsychology, National Institute of Mental Health/NIMH/DHHS, Bethesda, MD, USA
| | - V Der Minassian
- Laboratory of Neuropsychology, National Institute of Mental Health/NIMH/DHHS, Bethesda, MD, USA
| | - R C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health/NIMH/DHHS, Bethesda, MD, USA
| | - B J Richmond
- Laboratory of Neuropsychology, National Institute of Mental Health/NIMH/DHHS, Bethesda, MD, USA
| |
Collapse
|
49
|
Osting S, Bennett A, Power S, Wackett J, Hurley SA, Alexander AL, Agbandje-Mckena M, Burger C. Differential effects of two MRI contrast agents on the integrity and distribution of rAAV2 and rAAV5 in the rat striatum. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:4. [PMID: 26015943 PMCID: PMC4365861 DOI: 10.1038/mtm.2013.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 11/10/2022]
Abstract
Intraoperative magnetic resonance imaging (MRI) has been proposed as a method to optimize intracerebral targeting and for tracking infusate distribution in gene therapy trials for nervous system disorders. We thus investigated possible effects of two MRI contrast agents, gadoteridol (Gd) and galbumin (Gab), on the distribution and levels of transgene expression in the rat striatum and their effect on integrity and stability of recombinant adeno-associated virus (rAAV) particles. MRI studies showed that contrast agent distribution did not predict rAAV distribution. However, green fluorescent protein (GFP) immunoreactivity revealed an increase in distribution of rAAV5-GFP, but not rAAV2-GFP, in the presence of Gd when compared with viral vector injected alone. In contrast, Gab increased the distribution of rAAV2-GFP not rAAV5-GFP. These observations pointed to a direct effect of infused contrast agent on the rAAV particles. Negative-stain electron microscopy (EM), DNAase treatment, and differential scanning calorimetry (DSC) were used to monitor rAAV2 and rAAV5 particle integrity and stability following contrast agent incubation. EMs of rAAV2-GFP and rAAV5-GFP particles pretreated with Gd appear morphologically similar to the untreated sample; however, Gab treatment resulted in surface morphology changes and aggregation. A compromise of particle integrity was suggested by sensitivity of the packaged genome to DNAase treatment following Gab incubation but not Gd for both vectors. However, neither agent significantly affected particle stability when analyzed by DSC. An increase in T m was observed for AAV2 in lactated Ringer's buffer. These results thus highlight potential interactions between MRI contrast agents and AAV that might affect vector distribution and stability, as well as the stabilizing effect of lactated Ringer's solution on AAV2.
Collapse
Affiliation(s)
- Sue Osting
- Department of Neurology, University of Wisconsin , Madison, Wisconsin, USA
| | - Antonette Bennett
- Department of Biochemistry, University of Florida , Gainesville, Florida, USA
| | - Shelby Power
- Department of Neurology, University of Wisconsin , Madison, Wisconsin, USA
| | - Jordan Wackett
- Department of Neurology, University of Wisconsin , Madison, Wisconsin, USA
| | - Samuel A Hurley
- Department of Medical Physics, University of Wisconsin , Madison, Wisconsin, USA
| | - Andrew L Alexander
- Department of Medical Physics, University of Wisconsin , Madison, Wisconsin, USA ; Department of Psychiatry, University of Wisconsin , Madison, Wisconsin, USA ; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin , Madison, Wisconsin, USA
| | | | - Corinna Burger
- Department of Neurology, University of Wisconsin , Madison, Wisconsin, USA
| |
Collapse
|
50
|
Hullinger R, Ugalde J, Purón-Sierra L, Osting S, Burger C. The MRI contrast agent gadoteridol enhances distribution of rAAV1 in the rat hippocampus. Gene Ther 2013; 20:1172-7. [PMID: 24048419 PMCID: PMC3855498 DOI: 10.1038/gt.2013.47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 12/03/2022]
Abstract
Contrast agents are commonly used in combination with magnetic resonance imaging (MRI) to monitor the distribution of molecules in the brain. Recent experiments conducted in our laboratory have shown that co-infusion of recombinant Adeno-associated virus serotype 5 (rAAV5) and the MRI contrast agent gadoteridol (Gd) enhances vector transduction of in the rat striatum. The goal of this study was to determine whether gadoteridol may also be used as a tool to enhance transduction efficiency of rAAV1 and rAAV5 within the rat hippocampus. We show that Gd/rAAV1-GFP but not Gd/rAAV5-GFP co-infusion results in significantly higher distribution of the transgene both in the injected hemisphere as well as in the contralateral side and adjacent areas of cortex along the injection track. We also show that Gd/rAAV1-GFP co-infusion has no deleterious effect on hippocampal function as assessed by two tests of spatial memory formation. This work indicates that gadoteridol can be exploited as a method to increase transduction efficiency of AAV1 in the hippocampus for animal studies.
Collapse
Affiliation(s)
- R Hullinger
- 1] Department of Neurology, University of Wisconsin-Madison, Medical Sciences Center, 1300 University Ave, Room 73 Bardeen, Madison, WI, USA [2] Neuroscience Training Program, University of Wisconsin-Madison, Madison, USA
| | | | | | | | | |
Collapse
|