1
|
Madheswaran T, Chellappan DK, Lye FSN, Dua K. Recent advances in the use of liquid crystalline nanoparticles for non-small cell lung cancer treatment. Expert Opin Drug Deliv 2025; 22:615-627. [PMID: 40022612 DOI: 10.1080/17425247.2025.2474693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/24/2025] [Accepted: 02/27/2025] [Indexed: 03/03/2025]
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) continues to pose a considerable health challenge with few therapeutic alternatives. Liquid crystalline nanoparticles (LCN) are nanostructured drug delivery systems made of lipid-based amphiphilic materials that self-assemble into crystalline phases in aqueous environments. LCN have become a promising way to treat NSCLC owing to their specific properties that make them useful for targeted delivery and controlled drug release. AREAS COVERED The review provides a brief overview of the use of LCN in the treatment of NSCLC. It explores their composition, fabrication methods, and characterization processes. The article further addresses several nanoparticle-based approaches for the treatment of NSCLC. Ultimately, it underscores the promise of LCNs as a promising drug delivery system for NSCLC and discusses the obstacles and outlook in this field. EXPERT OPINION LCN represents a promising frontier in the treatment of NSCLC, offering several specific advantages over conventional therapies. Utilizing their intrinsic self-assembly characteristics, LCN provides meticulous control over drug encapsulation, release kinetics, and cellular absorption, which are crucial for improving therapy success. LCN also has the capability for co-delivery of various drugs, facilitating synergistic therapeutic benefits and addressing multidrug resistance, a prevalent issue in NSCLC treatment.
Collapse
Affiliation(s)
- Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, IMU University, Kuala Lumpur, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research Development and Innovation, IMU University, Kuala Lumpur, Malaysia
| | - Dinesh Kumar Chellappan
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research Development and Innovation, IMU University, Kuala Lumpur, Malaysia
- Department of Life Sciences, School of Pharmacy, IMU University, Kuala Lumpur, Malaysia
| | - Fiona Sze Nee Lye
- School of Postgraduate Studies, IMU University, Kuala Lumpur, Selangor, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
2
|
Lv S, Yang J, Lin J, Huang X, Zhao H, Zhao C, Yang L. CDK4/6 inhibitors in lung cancer: current practice and future directions. Eur Respir Rev 2024; 33:230145. [PMID: 38355149 PMCID: PMC10865100 DOI: 10.1183/16000617.0145-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/11/2023] [Indexed: 02/16/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, and ∼85% of lung cancers are classified as nonsmall cell lung cancer (NSCLC). These malignancies can proliferate indefinitely, in part due to dysregulation of the cell cycle and the resulting abnormal cell growth. The specific activation of cyclin-dependent kinases 4 and 6 (CDK4/6) is closely linked to tumour proliferation. Approximately 80% of human tumours exhibit abnormalities in the cyclin D-CDK4/6-INK4-RB pathway. Specifically, CDK4/6 inhibitors either as monotherapy or combination therapy have been investigated in pre-clinical and clinical studies for the treatment of NSCLC, and promising results have been achieved. This review article focuses on research regarding the use of CDK4/6 inhibitors in NSCLC, including the characteristics and mechanisms of action of approved drugs and progress of pre-clinical and clinical research.
Collapse
Affiliation(s)
- Shuoshuo Lv
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
- These authors contributed equally to this work
| | - Jie Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
- These authors contributed equally to this work
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Chengguang Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Zhao D, Liu Y, Yi F, Zhao X, Lu K. Recent advances in the development of inhibitors targeting KRAS-G12C and its related pathways. Eur J Med Chem 2023; 259:115698. [PMID: 37542991 DOI: 10.1016/j.ejmech.2023.115698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
The RAS gene, also known as the mouse sarcoma virus, includes three genes (KRAS, HRAS, and NRAS) that are associated with human tumors. Among them, KRAS has the highest incidence of mutations in cancer, accounting for around 80% of cases. At the molecular level, the RAS gene plays a regulatory role in transcription and translation, while at the cellular level, it affects cell proliferation and migration, making it crucial for cancer development. In 2021, the FDA approved AMG510, the first direct inhibitor targeting the KRAS-G12C mutation, which has shown tumor regression, prolonged survival, and low off-target activity. However, with the increase of drug resistance, a single inhibitor is no longer sufficient to achieve the desired effect on tumors. Therefore, a large number of other highly efficient inhibitors are being developed at different stages. This article provides an overview of the mechanism of action targeting KRAS-G12C in the KRASGTP-KRASGDP cycle pathway, as well as the structure-activity relationship, structure optimization, and biological activity effects of inhibitors that target the upstream and downstream pathways, or combination therapy.
Collapse
Affiliation(s)
- Dongqiang Zhao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yu Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Fengchao Yi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
4
|
Cai X, Dou R, Guo C, Tang J, Li X, Chen J, Zhang J. Cationic Polymers as Transfection Reagents for Nucleic Acid Delivery. Pharmaceutics 2023; 15:pharmaceutics15051502. [PMID: 37242744 DOI: 10.3390/pharmaceutics15051502] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Nucleic acid therapy can achieve lasting and even curative effects through gene augmentation, gene suppression, and genome editing. However, it is difficult for naked nucleic acid molecules to enter cells. As a result, the key to nucleic acid therapy is the introduction of nucleic acid molecules into cells. Cationic polymers are non-viral nucleic acid delivery systems with positively charged groups on their molecules that concentrate nucleic acid molecules to form nanoparticles, which help nucleic acids cross barriers to express proteins in cells or inhibit target gene expression. Cationic polymers are easy to synthesize, modify, and structurally control, making them a promising class of nucleic acid delivery systems. In this manuscript, we describe several representative cationic polymers, especially biodegradable cationic polymers, and provide an outlook on cationic polymers as nucleic acid delivery vehicles.
Collapse
Affiliation(s)
- Xiaomeng Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Rui Dou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Chen Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiaruo Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Xiajuan Li
- Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), China National Center for Bioinformation, Beijing 100101, China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| |
Collapse
|
5
|
Guo L, Dou Y, Xia D, Yin Z, Xiang Y, Luo L, Zhang Y, Wang J, Liang T. SLOAD: a comprehensive database of cancer-specific synthetic lethal interactions for precision cancer therapy via multi-omics analysis. Database (Oxford) 2022; 2022:6677988. [PMID: 36029479 PMCID: PMC9419874 DOI: 10.1093/database/baac075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 08/20/2022] [Indexed: 11/14/2022]
Abstract
Abstract
Synthetic lethality has been widely concerned because of its potential role in cancer treatment, which can be harnessed to selectively kill cancer cells via identifying inactive genes in a specific cancer type and further targeting the corresponding synthetic lethal partners. Herein, to obtain cancer-specific synthetic lethal interactions, we aimed to predict genetic interactions via a pan-cancer analysis from multiple molecular levels using random forest and then develop a user-friendly database. First, based on collected public gene pairs with synthetic lethal interactions, candidate gene pairs were analyzed via integrating multi-omics data, mainly including DNA mutation, copy number variation, methylation and mRNA expression data. Then, integrated features were used to predict cancer-specific synthetic lethal interactions using random forest. Finally, SLOAD (http://www.tmliang.cn/SLOAD) was constructed via integrating these findings, which was a user-friendly database for data searching, browsing, downloading and analyzing. These results can provide candidate cancer-specific synthetic lethal interactions, which will contribute to drug designing in cancer treatment that can promote therapy strategies based on the principle of synthetic lethality.
Database URL http://www.tmliang.cn/SLOAD/
Collapse
Affiliation(s)
- Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yuyang Dou
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Daoliang Xia
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Zibo Yin
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yangyang Xiang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Lulu Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University , No. 1, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yuting Zhang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Jun Wang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University , No. 1, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| |
Collapse
|
6
|
Gao J, Xia Z, Vohidova D, Joseph J, Luo JN, Joshi N. Progress in non-viral localized delivery of siRNA therapeutics for pulmonary diseases. Acta Pharm Sin B 2022; 13:1400-1428. [PMID: 37139423 PMCID: PMC10150162 DOI: 10.1016/j.apsb.2022.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/01/2022] Open
Abstract
Emerging therapies based on localized delivery of siRNA to lungs have opened up exciting possibilities for treatment of different lung diseases. Localized delivery of siRNA to lungs has shown to result in severalfold higher lung accumulation than systemic route, while minimizing non-specific distribution in other organs. However, to date, only 2 clinical trials have explored localized delivery of siRNA for pulmonary diseases. Here we systematically reviewed recent advances in the field of pulmonary delivery of siRNA using non-viral approaches. We firstly introduce the routes of local administration and analyze the anatomical and physiological barriers towards effective local delivery of siRNA in lungs. We then discuss current progress in pulmonary delivery of siRNA for respiratory tract infections, chronic obstructive pulmonary diseases, acute lung injury, and lung cancer, list outstanding questions, and highlight directions for future research. We expect this review to provide a comprehensive understanding of current advances in pulmonary delivery of siRNA.
Collapse
|
7
|
Weiss A, Lorthiois E, Barys L, Beyer KS, Bomio-Confaglia C, Burks H, Chen X, Cui X, de Kanter R, Dharmarajan L, Fedele C, Gerspacher M, Guthy DA, Head V, Jaeger A, Núñez EJ, Kearns JD, Leblanc C, Maira SM, Murphy J, Oakman H, Ostermann N, Ottl J, Rigollier P, Roman D, Schnell C, Sedrani R, Shimizu T, Stringer R, Vaupel A, Voshol H, Wessels P, Widmer T, Wilcken R, Xu K, Zecri F, Farago AF, Cotesta S, Brachmann SM. Discovery, Preclinical Characterization, and Early Clinical Activity of JDQ443, a Structurally Novel, Potent, and Selective Covalent Oral Inhibitor of KRASG12C. Cancer Discov 2022; 12:1500-1517. [PMID: 35404998 PMCID: PMC9394399 DOI: 10.1158/2159-8290.cd-22-0158] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 04/01/2022] [Indexed: 01/07/2023]
Abstract
Covalent inhibitors of KRASG12C have shown antitumor activity against advanced/metastatic KRASG12C-mutated cancers, though resistance emerges and additional strategies are needed to improve outcomes. JDQ443 is a structurally unique covalent inhibitor of GDP-bound KRASG12C that forms novel interactions with the switch II pocket. JDQ443 potently inhibits KRASG12C-driven cellular signaling and demonstrates selective antiproliferative activity in KRASG12C-mutated cell lines, including those with G12C/H95 double mutations. In vivo, JDQ443 induces AUC exposure-driven antitumor efficacy in KRASG12C-mutated cell-derived (CDX) and patient-derived (PDX) tumor xenografts. In PDX models, single-agent JDQ443 activity is enhanced by combination with inhibitors of SHP2, MEK, or CDK4/6. Notably, the benefit of JDQ443 plus the SHP2 inhibitor TNO155 is maintained at reduced doses of either agent in CDX models, consistent with mechanistic synergy. JDQ443 is in clinical development as monotherapy and in combination with TNO155, with both strategies showing antitumor activity in patients with KRASG12C-mutated tumors. SIGNIFICANCE JDQ443 is a structurally novel covalent KRASG12C inhibitor with a unique binding mode that demonstrates potent and selective antitumor activity in cell lines and in vivo models. In preclinical models and patients with KRASG12C-mutated malignancies, JDQ443 shows potent antitumor activity as monotherapy and in combination with the SHP2 inhibitor TNO155. This article is highlighted in the In This Issue feature, p. 1397.
Collapse
Affiliation(s)
- Andreas Weiss
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Louise Barys
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kim S. Beyer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Heather Burks
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Xueying Chen
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Xiaoming Cui
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Ruben de Kanter
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Carmine Fedele
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Marc Gerspacher
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Victoria Head
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ashley Jaeger
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | - Jeffrey D. Kearns
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | | | - Jason Murphy
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Helen Oakman
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Nils Ostermann
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Johannes Ottl
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Danielle Roman
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Richard Sedrani
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Rowan Stringer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Andrea Vaupel
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Hans Voshol
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Rainer Wilcken
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kun Xu
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Frederic Zecri
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Anna F. Farago
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts.,Corresponding Authors: Saskia M. Brachman, Novartis Institutes for BioMedical Research (NIBR), WSJ-386/3/13.01, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-616-9640-63; E-mail: ; Anna F. Farago, NIBR, 250 Massachusetts Avenue, Cambridge, MA 02139. Phone: 617-871-8000; E-mail: ; and Simona Cotesta, NIBR, WSJ-386/13/10, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-797-9792-70; E-mail:
| | - Simona Cotesta
- Novartis Institutes for BioMedical Research, Basel, Switzerland.,Corresponding Authors: Saskia M. Brachman, Novartis Institutes for BioMedical Research (NIBR), WSJ-386/3/13.01, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-616-9640-63; E-mail: ; Anna F. Farago, NIBR, 250 Massachusetts Avenue, Cambridge, MA 02139. Phone: 617-871-8000; E-mail: ; and Simona Cotesta, NIBR, WSJ-386/13/10, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-797-9792-70; E-mail:
| | - Saskia M. Brachmann
- Novartis Institutes for BioMedical Research, Basel, Switzerland.,Corresponding Authors: Saskia M. Brachman, Novartis Institutes for BioMedical Research (NIBR), WSJ-386/3/13.01, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-616-9640-63; E-mail: ; Anna F. Farago, NIBR, 250 Massachusetts Avenue, Cambridge, MA 02139. Phone: 617-871-8000; E-mail: ; and Simona Cotesta, NIBR, WSJ-386/13/10, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-797-9792-70; E-mail:
| |
Collapse
|
8
|
Liu Z, Li Y, Li C, Yu L, Chang Y, Qu M. Delivery of coenzyme Q10 with mitochondria-targeted nanocarrier attenuates renal ischemia-reperfusion injury in mice. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112536. [PMID: 34857313 DOI: 10.1016/j.msec.2021.112536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Ischemia-reperfusion (I/R) injury causes high morbidity, mortality, and healthcare costs. I/R induces acute kidney injury through exacerbating the mitochondrial damage and increasing inflammatory and oxidative responses. Here, we developed the mitochondria-targeted nanocarrier to delivery of Coenzyme Q10 (CoQ10) for renal I/R treatment in animal model. The mitochondria-targeted TPP CoQ10 nanoparticles (T-NPCoQ10) were synthesized through ABC miktoarm polymers method and characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The I/R mouse model and oxygen-glucose deprivation/reperfusion (D/R) model were created to examine the role of T-NPCoQ10 on renal I/R. Mitochondrial DNA damage, apoptosis, and inflammatory cytokines were measured in I/R injury mice. Plasma creatinine, urea nitrogen, tubular injury score was tested to assess the renal function. T-NPCoQ10 nanoparticles could be delivered to renal mitochondria preciously and efficiently. T-NPCoQ10 administration attenuated oxidative injury in both cell and animal models significantly, alleviated mtDNA damage, suppressed inflammatory and apoptotic responses, and improved renal function. The mitochondria specific CoQ10 delivery provided a precious and efficient method for protecting inflammatory and oxidative responses of I/R-induced renal damage.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Anesthesiology, Cangzhou Central Hospital, Teaching Hospital of Tianjin Medical University, Cangzhou 061000, Hebei, China.
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Teaching Hospital of Tianjin Medical University, Cangzhou 061000, Hebei, China
| | - Chunlei Li
- Department of Anesthesiology, Cangzhou Central Hospital, Teaching Hospital of Tianjin Medical University, Cangzhou 061000, Hebei, China
| | - Lili Yu
- Department of Anesthesiology, Cangzhou Central Hospital, Teaching Hospital of Tianjin Medical University, Cangzhou 061000, Hebei, China
| | - Yulin Chang
- Department of Anesthesiology, Cangzhou Central Hospital, Teaching Hospital of Tianjin Medical University, Cangzhou 061000, Hebei, China
| | - Min Qu
- Department of Anesthesiology, Cangzhou Central Hospital, Teaching Hospital of Tianjin Medical University, Cangzhou 061000, Hebei, China
| |
Collapse
|
9
|
Tang D, Kroemer G, Kang R. Oncogenic KRAS blockade therapy: renewed enthusiasm and persistent challenges. Mol Cancer 2021; 20:128. [PMID: 34607583 PMCID: PMC8489073 DOI: 10.1186/s12943-021-01422-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
Across a broad range of human cancers, gain-of-function mutations in RAS genes (HRAS, NRAS, and KRAS) lead to constitutive activity of oncoproteins responsible for tumorigenesis and cancer progression. The targeting of RAS with drugs is challenging because RAS lacks classic and tractable drug binding sites. Over the past 30 years, this perception has led to the pursuit of indirect routes for targeting RAS expression, processing, upstream regulators, or downstream effectors. After the discovery that the KRAS-G12C variant contains a druggable pocket below the switch-II loop region, it has become possible to design irreversible covalent inhibitors for the variant with improved potency, selectivity and bioavailability. Two such inhibitors, sotorasib (AMG 510) and adagrasib (MRTX849), were recently evaluated in phase I-III trials for the treatment of non-small cell lung cancer with KRAS-G12C mutations, heralding a new era of precision oncology. In this review, we outline the mutations and functions of KRAS in human tumors and then analyze indirect and direct approaches to shut down the oncogenic KRAS network. Specifically, we discuss the mechanistic principles, clinical features, and strategies for overcoming primary or secondary resistance to KRAS-G12C blockade.
Collapse
Affiliation(s)
- Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China. .,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Reggiani F, Sauta E, Torricelli F, Zanetti E, Tagliavini E, Santandrea G, Gobbi G, Damia G, Bellazzi R, Ambrosetti D, Ciarrocchi A, Sancisi V. An integrative functional genomics approach reveals EGLN1 as a novel therapeutic target in KRAS mutated lung adenocarcinoma. Mol Cancer 2021; 20:63. [PMID: 33823854 PMCID: PMC8022436 DOI: 10.1186/s12943-021-01357-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Francesca Reggiani
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, via Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Elisabetta Sauta
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, via Risorgimento 80, 42123, Reggio Emilia, Italy.,Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, via Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elena Tagliavini
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Gobbi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, via Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Riccardo Bellazzi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Davide Ambrosetti
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, via Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, via Risorgimento 80, 42123, Reggio Emilia, Italy.
| |
Collapse
|
11
|
Kumar V, Yadavilli S, Kannan R. A review on RNAi therapy for NSCLC: Opportunities and challenges. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1677. [PMID: 33174364 DOI: 10.1002/wnan.1677] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the primary cause of cancer death worldwide. Despite developments in chemotherapy and targeted therapies, the 5-year survival rate has remained at approximately 16% for the last four decades. NSCLC is a heterogeneous group of tumors that, through mutations and drivers, also demonstrate intra-tumor heterogeneity. Thus, current treatment approaches revolve around targeting these oncogenes, often using small molecule inhibitors and chemotherapeutics. However, the efficacy of these therapies has been crippled by acquired and inherent drug-resistance in the tumor, accompanied by increased therapeutic dosages and subsequent devastating off-target effects for patients. Evidently, there is a critical need for developing treatment methodologies more effective than the current standard of care. Fortunately, RNA interference, particularly small interfering RNA (siRNA), presents an alternative of silencing specific oncogenes to control tumor growth. Although siRNA therapy is subject to rapid degradation and poor internalization in vivo, nanoparticles can serve as nontoxic and efficient delivery vehicles, even introducing combinational delivery of multiple therapeutic agents. Indeed, siRNA-nanoconstructs possess extraordinary potential as an innovative modality to address clinical needs. This state-of-the-art review summarizes the recent advancements in the development of novel nanosystems for delivering siRNA to NSCLC tumors and analyzes the efficacy of representative examples. By illuminating the most promising biomarkers for silencing, we hope to streamline current therapeutic efforts and highlight powerful translational opportunities to combat NSCLC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Vignesh Kumar
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| | - Sairam Yadavilli
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| | - Raghuraman Kannan
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
12
|
Pereira-Silva M, Jarak I, Alvarez-Lorenzo C, Concheiro A, Santos AC, Veiga F, Figueiras A. Micelleplexes as nucleic acid delivery systems for cancer-targeted therapies. J Control Release 2020; 323:442-462. [DOI: 10.1016/j.jconrel.2020.04.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/09/2023]
|
13
|
Chen CK, Huang PK, Law WC, Chu CH, Chen NT, Lo LW. Biodegradable Polymers for Gene-Delivery Applications. Int J Nanomedicine 2020; 15:2131-2150. [PMID: 32280211 PMCID: PMC7125329 DOI: 10.2147/ijn.s222419] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
Gene-based therapies have emerged as a new modality for combating a myriad of currently incurable diseases. However, the fragile nature of gene therapeutics has significantly hampered their biomedical applications. Correspondingly, the development of gene-delivery vectors is of critical importance for gene-based therapies. To date, a variety of gene-delivery vectors have been created and utilized for gene delivery. In general, they can be categorized into viral- and non-viral vectors. Due to safety issues associated with viral vectors, non-viral vectors have recently attracted much more research focus. Of these non-viral vectors, polymeric vectors, which have been preferred due to their low immunogenicity, ease of production, controlled chemical composition and high chemical versatility, have constituted an ideal alternative to viral vectors. In particular, biodegradable polymers, which possess advantageous biocompatibility and biosafety, have been considered to have great potential in clinical applications. In this context, the aim of this review is to introduce the recent development and progress of biodegradable polymers for gene delivery applications, especially for their chemical structure design, gene delivery capacity and additional biological functions. Accordingly, we first define and categorize biodegradable polymers, followed by describing their corresponding degradation mechanisms. Various types of biodegradable polymers resulting from natural and synthetic polymers will be introduced and their applications in gene delivery will be examined. Finally, a future perspective regarding the development of biodegradable polymer vectors will be given.
Collapse
Affiliation(s)
- Chih-Kuang Chen
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung80424, Taiwan
| | - Ping-Kuan Huang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung40724, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, People’s Republic of China
| | - Chia-Hui Chu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan35053, Taiwan
| | - Nai-Tzu Chen
- Institute of New Drug Development, China Medical University, Taichung40402, Taiwan
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan35053, Taiwan
| |
Collapse
|
14
|
Chu QS. Targeting non-small cell lung cancer: driver mutation beyond epidermal growth factor mutation and anaplastic lymphoma kinase fusion. Ther Adv Med Oncol 2020; 12:1758835919895756. [PMID: 32047535 PMCID: PMC6984433 DOI: 10.1177/1758835919895756] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
The identification of driver mutations in epidermal growth factor receptor, anaplastic lymphoma kinase, the BRAF and ROS1 genes and subsequent successful clinical development of kinase inhibitors not only significantly improves clinical outcomes but also facilitates the discovery of other novel driver mutations in non-small cell lung cancer. These driver mutations can be categorized into mutations in or near the kinase domain, gene amplification or fusion. In this review, BRAF V600E, EGFR and HER-2 exon 20 mutation, FGFR1-4, K-RAS, MET, neuregulin-1, NRTK, PI3K/AKT/mTOR, RET and ROS1 gene aberration and their therapeutics will be discussed.
Collapse
Affiliation(s)
- Quincy S. Chu
- Division of Medical Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| |
Collapse
|
15
|
Giopanou I, Pintzas A. RAS and BRAF in the foreground for non-small cell lung cancer and colorectal cancer: Similarities and main differences for prognosis and therapies. Crit Rev Oncol Hematol 2019; 146:102859. [PMID: 31927392 DOI: 10.1016/j.critrevonc.2019.102859] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Lung and colorectal cancer are included in the most tremendously threatening diseases in terms of incidence and death. Although they are located in completely different organs and differ in various characteristics they do share some common features, especially regarding their molecular mutational profile. Among several commonly mutated genes KRAS and BRAF are spotted to be highly associated with patient's poor disease outcome and resistance to targeted therapies mostly in liaison with other mutant activated genes. Many studies have shed light in these mechanisms for disease progression and numerous preclinical models, clinical trials and meta-analysis reports investigate the impact of specific treatments or combination of therapies. The present review is an effort to compare the mutational imprint of these genes between the two diseases and their impact in prognosis, current therapy, mechanisms of therapy resistance and future therapeutic plans and provide a spherical perspective regarding the systemic molecular profile of cancer.
Collapse
Affiliation(s)
- Ioanna Giopanou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Alexandros Pintzas
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece.
| |
Collapse
|
16
|
Wu HZ, Xiao JQ, Xiao SS, Cheng Y. KRAS: A Promising Therapeutic Target for Cancer Treatment. Curr Top Med Chem 2019; 19:2081-2097. [PMID: 31486755 DOI: 10.2174/1568026619666190905164144] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) is the most commonly mutated oncogene in human cancer. The developments of many cancers depend on sustained expression and signaling of KRAS, which makes KRAS a high-priority therapeutic target. Scientists have not successfully developed drugs that target KRAS, although efforts have been made last three decades. In this review, we highlight the emerging experimental strategies of impairing KRAS membrane localization and the direct targeting of KRAS. We also conclude the combinatorial therapies and RNA interference technology for the treatment of KRAS mutant cancers. Moreover, the virtual screening approach to discover novel KRAS inhibitors and synthetic lethality interactors of KRAS are discussed in detail.
Collapse
Affiliation(s)
- Hai-Zhou Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Jia-Qi Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Song-Shu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| |
Collapse
|
17
|
Efficient nanocarriers of siRNA therapeutics for cancer treatment. Transl Res 2019; 214:62-91. [PMID: 31369717 DOI: 10.1016/j.trsl.2019.07.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 02/02/2023]
Abstract
Nanocarriers as drug delivery systems are promising and becoming popular, especially for cancer treatment. In addition to improving the pharmacokinetics of poorly soluble hydrophobic drugs by solubilizing them in a hydrophobic core, nanocarriers allow cancer-specific combination drug deliveries by inherent passive targeting phenomena and adoption of active targeting strategies. Nanoparticle-drug formulations can enhance the safety, pharmacokinetic profiles, and bioavailability of locally or systemically administered drugs, leading to improved therapeutic efficacy. Gene silencing by RNA interference (RNAi) is rapidly developing as a personalized field of cancer treatment. Small interfering RNAs (siRNAs) can be used to switch off specific cancer genes, in effect, "silence the gene, silence the cancer." siRNA can be used to silence specific genes that produce harmful or abnormal proteins. The activity of siRNA can be used to harness cellular machinery to destroy a corresponding sequence of mRNA that encodes a disease-causing protein. At present, the main barrier to implementing siRNA therapies in clinical practice is the lack of an effective delivery system that protects the siRNA from nuclease degradation, delivers to it to cancer cells, and releases it into the cytoplasm of targeted cancer cells, without creating adverse effects. This review provides an overview of various nanocarrier formulations in both research and clinical applications with a focus on combinations of siRNA and chemotherapeutic drug delivery systems for the treatment of multidrug resistant cancer. The use of various nanoparticles for siRNA-drug delivery, including liposomes, polymeric nanoparticles, dendrimers, inorganic nanoparticles, exosomes, and red blood cells for targeted drug delivery in cancer is discussed.
Collapse
|
18
|
Chen F, Alphonse MP, Liu Y, Liu Q. Targeting Mutant KRAS for Anticancer Therapy. Curr Top Med Chem 2019; 19:2098-2113. [DOI: 10.2174/1568026619666190902151307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Abstract
:Over the past decades, designing therapeutic strategies to target KRAS-mutant cancers, which is one of the most frequent mutant oncogenes among all cancer types, have proven unsuccessful regardless of many concerted attempts. There are key challenges for KRAS-mutant anticancer therapy, as the complex cellular processes involved in KRAS signaling has present. Herein, we highlight the emerging therapeutic approaches for inhibiting KRAS signaling and blocking KRAS functions, in hope to serve as a more effective guideline for future development of therapeutics.
Collapse
Affiliation(s)
- Fengqian Chen
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX 79416, United States
| | - Martin P. Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 216, 1550 Orleans Street, Baltimore, MD 21231, United States
| | - Yan Liu
- Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, United States
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 216, 1550 Orleans Street, Baltimore, MD 21231, United States
| |
Collapse
|
19
|
Sittithumcharee G, Suppramote O, Vaeteewoottacharn K, Sirisuksakun C, Jamnongsong S, Laphanuwat P, Suntiparpluacha M, Matha A, Chusorn P, Buraphat P, Kakanaporn C, Charngkaew K, Silsirivanit A, Korphaisarn K, Limsrichamrern S, Tripatara P, Pairojkul C, Wongkham S, Sampattavanich S, Okada S, Jirawatnotai S. Dependency of Cholangiocarcinoma on Cyclin D-Dependent Kinase Activity. Hepatology 2019; 70:1614-1630. [PMID: 31077409 DOI: 10.1002/hep.30704] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Abstract
Cholangiocarcinoma (CCA) is a bile duct cancer with a very poor prognosis. Currently, there is no effective pharmacological treatment available for it. We showed that CCA ubiquitously relies on cyclin-dependent kinases 4 and 6 (CDK4/6) activity to proliferate. Primary CCA tissues express high levels of cyclin D1 and the specific marker of CDK4/6 activity, phospho-RB Ser780. Treatment of a 15-CCA cell line collection by pharmacological CDK4/6 inhibitors leads to reduced numbers of cells in the S-phase and senescence in most of the CCA cell lines. We found that expression of retinoblastoma protein (pRB) is required for activity of the CDK4/6 inhibitor, and that loss of pRB conferred CDK4/6 inhibitor-drug resistance. We also identified that sensitivity of CCA to CDK4/6 inhibition is associated with the activated KRAS signature. Effectiveness of CDK4/6 inhibition for CCA was confirmed in the three-dimensional spheroid-, xenograft-, and patient-derived xenograft models. Last, we identified a list of genes whose expressions can be used to predict response to the CDK4/6 inhibitor. Conclusion: We investigated a ubiquitous dependency of CCA on CDK4/6 activity and the universal response to CDK4/6 inhibition. We propose that the CDK4/6-pRB pathway is a suitable therapeutic target for CCA treatment.
Collapse
Affiliation(s)
- Gunya Sittithumcharee
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Orawan Suppramote
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Chumphon Sirisuksakun
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supawan Jamnongsong
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phatthamon Laphanuwat
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Monthira Suntiparpluacha
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Arriya Matha
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Porncheera Chusorn
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pongsakorn Buraphat
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chumpot Kakanaporn
- Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Komgrid Charngkaew
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Krittiya Korphaisarn
- Division of Oncology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somchai Limsrichamrern
- Department of Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pinpat Tripatara
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chawalit Pairojkul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Siwanon Jirawatnotai
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
20
|
Konate K, Dussot M, Aldrian G, Vaissière A, Viguier V, Neira IF, Couillaud F, Vivès E, Boisguerin P, Deshayes S. Peptide-Based Nanoparticles to Rapidly and Efficiently "Wrap 'n Roll" siRNA into Cells. Bioconjug Chem 2019; 30:592-603. [PMID: 30586303 DOI: 10.1021/acs.bioconjchem.8b00776] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Delivery of small interfering RNA (siRNA) as a therapeutic tool is limited due to critical obstacles such as the cellular barrier, the negative charges of the siRNA molecule, and its instability in serum. Several siRNA delivery systems have been constructed using cell-penetrating peptides (CPPs) since the CPPs have shown a high potential for oligonucleotide delivery into the cells, especially by forming nanoparticles. In this study, we have developed a new family of short (15mer or 16mer) tryptophan-(W) and arginine-(R) rich Amphipathic Peptides (WRAP) able to form stable nanoparticles and to enroll siRNA molecules into cells. The lead peptides, WRAP1 and WRAP5, form defined nanoparticles smaller than 100 nm as characterized by biophysical methods. Furthermore, they have several benefits as oligonucleotide delivery tools such as the rapid encapsulation of the siRNA, the efficient siRNA delivery in several cell types, and the high gene silencing activity, even in the presence of serum. In conclusion, we have designed a new family of CPPs specifically dedicated for siRNA delivery through nanoparticle formation. Our results indicate that the WRAP family has significant potential for the safe, efficient, and rapid delivery of siRNA for diverse applications.
Collapse
Affiliation(s)
- Karidia Konate
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237 , Université de Montpellier , 1919 Route de Mende , 34293 Montpellier Cedex 5, France
| | - Marion Dussot
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237 , Université de Montpellier , 1919 Route de Mende , 34293 Montpellier Cedex 5, France
| | - Gudrun Aldrian
- Sys2Diag , UMR 9005-CNRS/ALCEDIAG , 1682 Rue de la Valsière , 34184 Montpellier Cedex 4, France
| | - Anaïs Vaissière
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237 , Université de Montpellier , 1919 Route de Mende , 34293 Montpellier Cedex 5, France
| | - Véronique Viguier
- Université de Montpellier , Place Eugène Bataillon , 34095 Montpellier , France
| | - Isabel Ferreiro Neira
- EA 7435 IMOTION (Imagerie moléculaire et thérapies innovantes en oncologie) , Université de Bordeaux , 146 rue Leo Saignat , 33076 Bordeaux , France
| | - Franck Couillaud
- EA 7435 IMOTION (Imagerie moléculaire et thérapies innovantes en oncologie) , Université de Bordeaux , 146 rue Leo Saignat , 33076 Bordeaux , France
| | - Eric Vivès
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237 , Université de Montpellier , 1919 Route de Mende , 34293 Montpellier Cedex 5, France
| | - Prisca Boisguerin
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237 , Université de Montpellier , 1919 Route de Mende , 34293 Montpellier Cedex 5, France
| | - Sébastien Deshayes
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237 , Université de Montpellier , 1919 Route de Mende , 34293 Montpellier Cedex 5, France
| |
Collapse
|
21
|
Gopalan PK, Villegas AG, Cao C, Pinder-Schenck M, Chiappori A, Hou W, Zajac-Kaye M, Ivey AM, Kaye FJ. CDK4/6 inhibition stabilizes disease in patients with p16-null non-small cell lung cancer and is synergistic with mTOR inhibition. Oncotarget 2018; 9:37352-37366. [PMID: 30647837 PMCID: PMC6324768 DOI: 10.18632/oncotarget.26424] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/16/2018] [Indexed: 12/24/2022] Open
Abstract
Aberrant activation of CDK4/6 kinase is the most common somatic event in non-small cell lung cancer (NSCLC). Palbociclib is a highly specific CDK4/6 inhibitor shown to inhibit cell cycle progression and promote cellular senescence. We conducted a phase 2 clinical trial of palbociclib in 19 previously-treated patients with advanced NSCLC. Only patients with p16-null staining by immunohistochemistry and documented tumor progression were eligible. The primary endpoint was tumor response rate. Palbociclib therapy alone was well-tolerated. Of 16 evaluable patients who received > 1 month of therapy, there were no objective responses. However, 8 patients (50%) with previously progressive NSCLC had stable disease (SD) lasting a range of 4-10.5 months. Median overall survival (OS) for all cases was 5.1 months, and median overall survival for the subset of patients with SD was 16.6 months. We also performed preclinical testing of palbociclib in combination with 13 different targeted or cytotoxic chemotherapeutic agents using a cell viability assay. Only the combination of palbociclib and mTOR inhibitors resulted in synergistic growth inhibition, particularly in tumors carrying RAS mutations. Our findings warrant further clinical investigation of the combination of palbociclib and mTOR inhibitors, especially in patients carrying activated RAS mutations.
Collapse
Affiliation(s)
- Priya K Gopalan
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Andres Gordillo Villegas
- Department of Medicine, University of Florida, Gainesville, FL, USA.,Current address: Sangamo Therapeutics, Richmond, CA, USA
| | - Chunxia Cao
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Mary Pinder-Schenck
- Moffitt Cancer Center, Tampa, FL, USA.,Current address: Merck, Philadelphia, PA, USA
| | | | - Wei Hou
- Department of Biostatistics, University of Florida, Gainesville, FL, USA.,Current address: Division of Epidemiology and Biostatistics, Stony Brook University, Stony Brook, NY, USA
| | - Maria Zajac-Kaye
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, USA
| | - Alison M Ivey
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Frederic J Kaye
- Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
22
|
Liang S, Zheng J, Wu W, Li Q, Saw PE, Chen J, Xu X, Yao H, Yao Y. A Robust Nanoparticle Platform for RNA Interference in Macrophages to Suppress Tumor Cell Migration. Front Pharmacol 2018; 9:1465. [PMID: 30618757 PMCID: PMC6302002 DOI: 10.3389/fphar.2018.01465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 11/30/2018] [Indexed: 11/13/2022] Open
Abstract
Macrophages are one of the most abundant immune cells in the solid tumor and their increased density is associated with the specific pathological features of cancers, including invasiveness, metastasis, immunosuppression, neovascularization, and poor response to therapy. Therefore, reprogramming macrophage behavior is emerging as a promising therapeutic modality for cancer treatment. RNA interference (RNAi) technology is one of the powerful strategies for the regulation of macrophage activities by silencing specific genes. However, as polyanionic biomacromolecules, RNAi therapeutics such as small interfering RNA (siRNA) cannot readily cross cell membrane and thus specific delivery vehicles are required to facilitate the cytosolic siRNA delivery. Herein, we developed a robust nanoparticle (NP) platform for efficient siRNA delivery and gene silencing in macrophages. This NP platform is composed of biodegradable poly (ethylene glycol)-b-poly (𝜀-caprolactone) (PEG-b-PCL), poly (𝜀-caprolactone)-b-poly (2-aminoethyl ethylene phosphate) (PCL-b-PPEEA), and PCL homopolymer. We chose CC-chemokine ligand 18 (CCL-18) as a proof of concept therapeutic target and our results demonstrate that the CCL-18 silencing in macrophages can significantly inhibit the migration of breast cancer cells. The successful regulation of the macrophage behavior demonstrated herein shows great potential as an effective strategy for cancer therapy.
Collapse
Affiliation(s)
- Shi Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junmeng Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Quan Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yandan Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Aredo JV, Padda SK. Management of KRAS-Mutant Non-Small Cell Lung Cancer in the Era of Precision Medicine. Curr Treat Options Oncol 2018; 19:43. [PMID: 29951788 DOI: 10.1007/s11864-018-0557-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OPINION STATEMENT The discovery of genomic alterations that drive the development and progression of non-small cell lung cancer (NSCLC) has transformed how we treat metastatic disease. However, the promise of precision medicine remains elusive for the most commonly mutated oncogene in NSCLC, KRAS. This is perhaps due to the substantial heterogeneity within the broader genomic context of KRAS-mutant NSCLC. At this time, approaches for treating metastatic KRAS-mutant NSCLC mirror those for treating NSCLC that lacks a known driver mutation, including standard chemotherapeutic and immunotherapeutic approaches. Ongoing research aims to define further subgroups of KRAS-mutant NSCLC based on mutation subtype and co-occurring mutations. These efforts offer the potential to optimize standard-of-care regimens within these emerging subgroups and harness innovative strategies to realize precision medicine in this setting.
Collapse
Affiliation(s)
- Jacqueline V Aredo
- Department of Medicine, Division of Oncology, Stanford Cancer Institute/Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, CA, 94305, USA
| | - Sukhmani K Padda
- Department of Medicine, Division of Oncology, Stanford Cancer Institute/Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
24
|
Tran TD, Kwon YK. Hierarchical closeness-based properties reveal cancer survivability and biomarker genes in molecular signaling networks. PLoS One 2018; 13:e0199109. [PMID: 29912931 PMCID: PMC6005509 DOI: 10.1371/journal.pone.0199109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Specific molecular signaling networks underlie different cancer types and quantitative analyses on those cancer networks can provide useful information about cancer treatments. Their structural metrics can reveal survivability of cancer patients and be used to identify biomarker genes for early cancer detection. In this study, we devised a novel structural metric called hierarchical closeness (HC) entropy and found that it was negatively correlated with 5-year survival rates. We also made an interesting observation that a network of higher HC entropy was likely to be more robust against mutations. This finding suggested that cancers of high HC entropy tend to be incurable because their signaling networks are robust to perturbations caused by treatment. We also proposed a novel core identification method based on the reachability factor in the HC measure. The cores were permitted to decompose such that the negative relationship between HC entropy and cancer survival rate was consistently conserved in every core level. Interestingly, we observed that many promising biomarker genes for early cancer detection reside in the innermost core of a signaling network. Taken together, the proposed analyses of the hierarchical structure of cancer signaling networks may be useful in developing future novel cancer treatments.
Collapse
Affiliation(s)
- Tien-Dzung Tran
- Complex Systems and Bioinformatics Lab, Hanoi University of Industry, Hanoi, Viet Nam
- * E-mail: (TDT); (YKK)
| | - Yung-Keun Kwon
- School of IT Convergence, University of Ulsan, Ulsan, Republic of Korea
- * E-mail: (TDT); (YKK)
| |
Collapse
|
25
|
Russo I, Carrizzo A, Bochicchio S, Piazza O, Lamberti G, Barba AA, Vecchione C, Zeppa P, Iovino P, Bucci C, Santonicola A, Ciacci C. siRNA Delivery for Control of Cyclin D1 and E2F1 Expression in Crohn's Disease. Transl Med UniSa 2018; 17:25-33. [PMID: 30083520 PMCID: PMC6067069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Evidence in inflammatory bowel diseases (IBD) supports a connection between inflammation and cancer due to the alteration of the cell cycle with loss of control at the G1/S checkpoint. In this study, we analyze the expression and modulation of CyD1 and E2F1 in colon explants from Crohn's disease (CD) patients. We used ex vivo culture of colon explants from 4 CD patients and 2 healthy controls, stimulated with lipopolysaccharide from Escherichia Coli (EC-LPS). Commercial siRNAs for CyD1 and E2F1 inhibition were encapsulated in Invivofectamine® and in purposely produced nanoliposomal vectors to silencing CyD1 and E2F1 expression. Western blot analysis was used to investigate the effect of siRNA on CyD1, E2F1 and cyclooxygenase 2 (COX-2) expression. In CD patients colon explants, CyD1 and E2F1 increased after the inflammatory stimulus but siRNA silencing attenuated their expression and controlled the COX-2 expression too. These data represent a prelimiary exploration of in vitro siRNA use.
Collapse
Affiliation(s)
- Ilaria Russo
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, 84081, Baronissi (SA), Italy, IRCCS Neuromed, Pozzilli (IS), 86077, Italy
| | - Albino Carrizzo
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, 84081, Baronissi (SA), Italy, IRCCS Neuromed, Pozzilli (IS), 86077, Italy
| | - Sabrina Bochicchio
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, Fisciano (SA) – ITALY,Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, Fisciano (SA) - ITALY
| | - Ornella Piazza
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, 84081, Baronissi (SA), Italy, IRCCS Neuromed, Pozzilli (IS), 86077, Italy
| | - Gaetano Lamberti
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, Fisciano (SA) - ITALY
| | - Anna Angela Barba
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, Fisciano (SA) – ITALY
| | - Carmine Vecchione
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, 84081, Baronissi (SA), Italy, IRCCS Neuromed, Pozzilli (IS), 86077, Italy
| | - Pio Zeppa
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, 84081, Baronissi (SA), Italy, IRCCS Neuromed, Pozzilli (IS), 86077, Italy
| | - Paola Iovino
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, 84081, Baronissi (SA), Italy, IRCCS Neuromed, Pozzilli (IS), 86077, Italy
| | - Cristina Bucci
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, 84081, Baronissi (SA), Italy, IRCCS Neuromed, Pozzilli (IS), 86077, Italy
| | - Antonella Santonicola
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, 84081, Baronissi (SA), Italy, IRCCS Neuromed, Pozzilli (IS), 86077, Italy
| | - Carolina Ciacci
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, 84081, Baronissi (SA), Italy, IRCCS Neuromed, Pozzilli (IS), 86077, Italy
| |
Collapse
|
26
|
Russo I, Carrizzo A, Bochicchio S, Piazza O, Lamberti G, Barba AA, Vecchione C, Zeppa P, Iovino P, Bucci C, Santonicola A, Ciacci C. siRNA Delivery for Control of Cyclin D1 and E2F1 Expression in Crohn's Disease. Transl Med UniSa 2018; 17:22-30. [PMID: 30050877 PMCID: PMC6056255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Evidence in inflammatory bowel diseases (IBD) supports a connection between inflammation and cancer due to the alteration of the cell cycle with loss of control at the G1/S checkpoint. In this study, we analyze the expression and modulation of CyD1 and E2F1 in colon explants from Crohn's disease (CD) patients. We used ex vivo culture of colon explants from 4 CD patients and 2 healthy controls, stimulated with lipopolysaccharide from Escherichia Coli (EC-LPS). Commercial siRNAs for CyD1 and E2F1 inhibition were encapsulated in Invivofectamine® and in purposely produced nanoliposomal vectors to silencing CyD1 and E2F1 expression. Western blot analysis was used to investigate the effect of siRNA on CyD1, E2F1 and cyclooxygenase 2 (COX-2) expression. In CD patients colon explants, CyD1 and E2F1 increased after the inflammatory stimulus but siRNA silencing attenuated their expression and controlled the COX-2 expression too. These data represent a prelimiary exploration of in vitro siRNA use.
Collapse
Affiliation(s)
- Ilaria Russo
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, 84081, Baronissi (SA), Italy, IRCCS Neuromed, Pozzilli (IS), 86077, Italy
| | - Albino Carrizzo
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, 84081, Baronissi (SA), Italy, IRCCS Neuromed, Pozzilli (IS), 86077, Italy
| | - Sabrina Bochicchio
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, Fisciano (SA) – ITALY,Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, Fisciano (SA) - ITALY
| | - Ornella Piazza
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, 84081, Baronissi (SA), Italy, IRCCS Neuromed, Pozzilli (IS), 86077, Italy
| | - Gaetano Lamberti
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, Fisciano (SA) - ITALY
| | - Anna Angela Barba
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, Fisciano (SA) – ITALY
| | - Carmine Vecchione
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, 84081, Baronissi (SA), Italy, IRCCS Neuromed, Pozzilli (IS), 86077, Italy
| | - Pio Zeppa
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, 84081, Baronissi (SA), Italy, IRCCS Neuromed, Pozzilli (IS), 86077, Italy
| | - Paola Iovino
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, 84081, Baronissi (SA), Italy, IRCCS Neuromed, Pozzilli (IS), 86077, Italy
| | - Cristina Bucci
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, 84081, Baronissi (SA), Italy, IRCCS Neuromed, Pozzilli (IS), 86077, Italy
| | - Antonella Santonicola
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, 84081, Baronissi (SA), Italy, IRCCS Neuromed, Pozzilli (IS), 86077, Italy
| | - Carolina Ciacci
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, 84081, Baronissi (SA), Italy, IRCCS Neuromed, Pozzilli (IS), 86077, Italy
| |
Collapse
|
27
|
Cannataro VL, Gaffney SG, Stender C, Zhao ZM, Philips M, Greenstein AE, Townsend JP. Heterogeneity and mutation in KRAS and associated oncogenes: evaluating the potential for the evolution of resistance to targeting of KRAS G12C. Oncogene 2018; 37:2444-2455. [PMID: 29453361 DOI: 10.1038/s41388-017-0105-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/19/2022]
Abstract
Activating mutations in RAS genes are associated with approximately 20% of all human cancers. New targeted therapies show preclinical promise in inhibiting the KRAS G12C variant. However, concerns exist regarding the effectiveness of such therapies in vivo given the possibilities of existing intratumor heterogeneity or de novo mutation leading to treatment resistance. We performed deep sequencing of 27 KRAS G12-positive lung tumors to determine the prevalence of other oncogenic mutations within KRAS or within commonly mutated downstream genes that could confer resistance at the time of treatment. We also passaged patient-derived xenografts to assess the potential for novel KRAS mutation to arise during subsequent tumor evolution. Furthermore, we estimate the de novo mutation rate in KRAS position 12 and in genes downstream of KRAS. Finally, we present an approach for estimation of the selection intensity for these point mutations that explains their high prevalence in tumors. We find no evidence of heterogeneity that may compromise KRAS G12C targeted therapy within sequenced lung tumors or passaged xenografts. We find that mutations that confer resistance are even less likely to occur downstream of KRAS than to occur within KRAS. Our approach predicts that BRAF V600E would provide the highest fitness advantage for de novo-resistant subclones. Overall, our findings suggest that resistance to targeted therapy of KRAS G12C-positive tumors is unlikely to be present at the time of treatment and, among the de novo mutations likely to confer resistance, mutations in BRAF, a gene with targeted inhibitors presently available, result in subclones with the highest fitness advantage.
Collapse
Affiliation(s)
| | | | - Carly Stender
- Department of Biostatistics, Yale University, New Haven, CT, USA
| | - Zi-Ming Zhao
- Department of Biostatistics, Yale University, New Haven, CT, USA
| | - Mark Philips
- Departments of Medicine, Cell Biology, and Pharmacology, New York University School of Medicine, New York, NY, USA
| | | | - Jeffrey P Townsend
- Department of Biostatistics, Yale University, New Haven, CT, USA. .,Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA. .,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
28
|
Zarredar H, Ansarin K, Baradaran B, Ahdi Khosroshahi S, Farajnia S. Potential Molecular Targets in the Treatment of Lung Cancer Using siRNA Technology. Cancer Invest 2018; 36:37-58. [DOI: 10.1080/07357907.2017.1416393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Safar Farajnia
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Non-canonical roles of PFKFB3 in regulation of cell cycle through binding to CDK4. Oncogene 2018; 37:1685-1698. [PMID: 29335521 DOI: 10.1038/s41388-017-0072-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/16/2017] [Accepted: 11/08/2017] [Indexed: 01/06/2023]
Abstract
There is growing interest in studying the molecular mechanisms of crosstalk between cancer metabolism and the cell cycle. 6-phosphate fructose-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) is a well-known glycolytic activator that plays an important role in tumorigenesis. We investigated whether PFKFB3 was directly involved in oncogenic signaling networks. Mass Spectrometry showed that PFKFB3 interacts with cyclin-dependent kinase (CDK) 4, which controls the transition from G1 phase to S phase of the cell cycle. Further analysis indicated that lysine 147 was a key site for the binding of PFKBFB3 to CDK4. PFKFB3 binding resulted in the accumulation of CDK4 protein by inhibiting ubiquitin proteasome degradation mediated by the heat shock protein 90-Cdc37-CDK4 complex. The proteasome-dependent degradation of CDK4 was accelerated by disrupting the interaction of PFKFB3 with CDK4 by mutating lysine (147) to alanine. Blocking PFKFB3-CDK4 interaction improved the therapeutic effect of FDA-approved CDK4 inhibitor palbociclib on breast cancer. These findings suggest that PFKFB3 is a hub for coordinating cell cycle and glucose metabolism. Combined targeting of PFKFB3 and CDK4 may be new strategy for breast cancer treatment.
Collapse
|
30
|
Efficacy of the combination of MEK and CDK4/6 inhibitors in vitro and in vivo in KRAS mutant colorectal cancer models. Oncotarget 2018; 7:39595-39608. [PMID: 27167191 PMCID: PMC5129956 DOI: 10.18632/oncotarget.9153] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/16/2016] [Indexed: 02/06/2023] Open
Abstract
Purpose Though the efficacy of MEK inhibitors is being investigated in KRAS-mutant colorectal cancers (CRC), early clinical trials of MEK inhibitor monotherapy did not reveal significant antitumor activity. Resistance to MEK inhibitor monotherapy developed through a variety of mechanisms converging in ERK reactivation. Since ERK increases cyclin D expression and increases entry into the cell cycle, we hypothesized that the combination of MEK inhibitors and CDK4/6 inhibitors would have synergistic antitumor activity and cause tumor regression in vivo. Results The combination of MEK and CDK4/6 inhibitors synergistically inhibited cancer cell growth in vitro and caused tumor regression in vivo in cell line and patient-derived xenograft models. Combination therapy markedly decreased levels of phosphorylated ribosomal protein S6 both in vitro and in vivo and decreased Ki67 staining in vivo. Experimental Design We performed in vitro proliferation, colony formation, apoptosis, and senescence assays, and Western blots, on a panel of 11 KRAS mutant CRC cell lines treated with the MEK inhibitor MEK162, the CDK4/6 inhibitor palbociclib, or the combination. We also treated 4 KRAS mutant CRC cell line and patient-derived xenografts with the MEK inhibitor trametinib, the CDK4/6 inhibitor palbociclib, or the combination, and performed immunohistochemical and reverse phase protein array analysis. Conclusions Combined inhibition of both MEK and CDK4/6 is effective in preclinical models of KRAS mutant CRC and justifies a planned phase II clinical trial in patients with refractory KRAS-mutant CRC. Efficacy of the combination of MEK and CDK4/6 inhibitors in vitro and in vivo in KRAS mutant colorectal cancer models.
Collapse
|
31
|
Daoud A, Chu QS. Targeting Novel but Less Common Driver Mutations and Chromosomal Translocations in Advanced Non-Small Cell Lung Cancer. Front Oncol 2017; 7:222. [PMID: 29034207 PMCID: PMC5626928 DOI: 10.3389/fonc.2017.00222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 09/01/2017] [Indexed: 01/25/2023] Open
Abstract
Discovery of the epidermal growth factor receptor gene mutation and the anaplastic lymphoma kinase chromosomal translocation in non-small cell lung cancer has prompted efforts around the world to identify many less common targetable oncogenic drivers. Such concerted efforts have been variably successful in both non-squamous and squamous cell carcinomas of the lung. Some of the targeted therapies for these oncogenic drivers have received regulatory approval for clinical use, while others have modest clinical benefit. In this mini-review, several of these targets will be reviewed.
Collapse
Affiliation(s)
- Alia Daoud
- Department of Medical Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Quincy S. Chu
- Department of Medical Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
32
|
Palbociclib, a selective CDK4/6 inhibitor, enhances the effect of selumetinib in RAS-driven non-small cell lung cancer. Cancer Lett 2017; 408:130-137. [PMID: 28866094 DOI: 10.1016/j.canlet.2017.08.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 11/21/2022]
Abstract
KRAS is one of the most commonly mutated oncogenes in non-small cell lung cancer (NSCLC). Resistance to MEK inhibitor monotherapy develops through a variety of mechanisms. CDK4 was reported to have a synthetic lethal interaction with KRAS. In this study, we demonstrated the combination effects of the MEK inhibitor selumetinib and the CDK4/6 inhibitor palbociclib in RAS-driven NSCLC. In vitro, cell lines with CDKN2A mutations were insensitive to selumetinib. We used siRNA and pharmacologic inhibition of CDK4 and found that the combination of selumetinib and palbociclib synergistically inhibited RAS-driven NSCLC cases with CDKN2A mutations but not those with wild type CDKN2A. The combination treatment potentiated growth inhibition and increased the population of cells in G1 phase. Selumetinib completely inhibited p-ERK but not p-RB. The addition of palbociclib markedly inhibited p-RB and downregulated survivin expression. In vivo, the combination treatment inhibited the growth of NSCLC xenografts, which correlated with decreased levels of p-RB, downregulated survivin and decreased Ki-67 staining. These data suggest that the combination treatment of palbociclib and selumetinib is effective in preclinical models of RAS-driven NSCLC with CDKN2A mutations.
Collapse
|
33
|
Li L, Hu X, Zhang M, Ma S, Yu F, Zhao S, Liu N, Wang Z, Wang Y, Guan H, Pan X, Gao Y, Zhang Y, Liu Y, Yang Y, Tang X, Li M, Liu C, Li Z, Mei X. Dual Tumor-Targeting Nanocarrier System for siRNA Delivery Based on pRNA and Modified Chitosan. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:169-183. [PMID: 28918019 PMCID: PMC5503097 DOI: 10.1016/j.omtn.2017.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 02/07/2023]
Abstract
Highly specific and efficient delivery of siRNA is still unsatisfactory. Herein, a dual tumor-targeting siRNA delivery system combining pRNA dimers with chitosan nanoparticles (CNPPs) was designed to improve the specificity and efficiency of siRNA delivery. In this dual delivery system, folate-conjugated and PEGylated chitosan nanoparticles encapsulating pRNA dimers were used as the first class of delivery system and would selectively deliver intact pRNA dimers near or into target cells. pRNA dimers simultaneously carrying siRNA and targeting aptamer, the second class of delivery system, would specifically deliver siRNA into the target cells via aptamer-mediated endocytosis or proper particle size. To certify the delivering efficiency of this dual system, CNPPs, pRNA dimers alone, chitosan nanoparticles containing siRNA with folate conjugation and PEGylation (CNPS), and chitosan nanoparticles containing pRNA dimers alone (CN) were first prepared. Then, we observed that treatment with CNPPs resulted in increased cellular uptake, higher cell apoptosis, stronger cell cytotoxicity, and more efficacious gene silencing compared to the other three formulations. Higher accumulation of siRNA in the tumor site, stronger tumor inhibition, and longer circulating time were also observed with CNPPs compared to other formulations. In conclusion, this dual nanocarrier system showed high targeting and favorable therapeutic efficacy both in vitro and in vivo. Thereby, a new approach is provided in this study for specific and efficient delivery of siRNA, which lays a foundation for the development of pRNA hexamers, which can simultaneously carry six different substances.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaoqin Hu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Min Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Siyu Ma
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Fanglin Yu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Shiqing Zhao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Nan Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhiyuan Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yu Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Guan
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiujie Pan
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yue Gao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yue Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yan Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yang Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xuemei Tang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Mingyuan Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Cheng Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhiping Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Xingguo Mei
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
34
|
Aldrian G, Vaissière A, Konate K, Seisel Q, Vivès E, Fernandez F, Viguier V, Genevois C, Couillaud F, Démèné H, Aggad D, Covinhes A, Barrère-Lemaire S, Deshayes S, Boisguerin P. PEGylation rate influences peptide-based nanoparticles mediated siRNA delivery in vitro and in vivo. J Control Release 2017; 256:79-91. [PMID: 28411182 DOI: 10.1016/j.jconrel.2017.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 11/24/2022]
Abstract
Small interfering RNAs (siRNAs) present a strong therapeutic potential because of their ability to inhibit the expression of any desired protein. Recently, we developed the retro-inverso amphipathic RICK peptide as novel non-covalent siRNA carrier. This peptide is able to form nanoparticles (NPs) by self-assembling with the siRNA resulting in the fully siRNA protection based on its protease resistant peptide sequence. With regard to an in vivo application, we investigated here the influence of the polyethylene glycol (PEG) grafting to RICK NPs on their in vitro and in vivo siRNA delivery properties. A detailed structural study shows that PEGylation did not alter the NP formation (only decrease in zeta potential) regardless of the used PEGylation rates. Compared to the native RICK:siRNA NPs, low PEGylation rates (≤20%) of the NPs did not influence their cellular internalization capacity as well as their knock-down specificity (over-expressed or endogenous system) in vitro. Because the behavior of PEGylated NPs could differ in their in vivo application, we analyzed the repartition of fluorescent labeled NPs injected at the one-cell stage in zebrafish embryos as well as their pharmacokinetic (PK) profile after administration to mice. After an intra-cardiac injection of the PEGylated NPs, we could clearly determine that 20% PEG-RICK NPs reduce significantly liver and kidney accumulation. NPs with 20% PEGylation constitutes a modular, easy-to-handle drug delivery system which could be adapted to other types of functional moieties to develop safe and biocompatible delivery systems for the clinical application of RNAi-based cancer therapeutics.
Collapse
Affiliation(s)
- Gudrun Aldrian
- Sys2Diag, CNRS UMR 9005/ALCEDIAG, 1682 Rue de la Valsière, 34184 Montpellier Cedex 4, France
| | - Anaïs Vaissière
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Karidia Konate
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Quentin Seisel
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Eric Vivès
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Frédéric Fernandez
- Microscopie Electronique et Analytique, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Véronique Viguier
- Microscopie Electronique et Analytique, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Coralie Genevois
- EA 7435 IMOTION (Imagerie moléculaire et thérapies innovantes en oncologie), Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Franck Couillaud
- EA 7435 IMOTION (Imagerie moléculaire et thérapies innovantes en oncologie), Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Héléne Démèné
- Centre de Biochimie Structurale, CNRS UMR 5048, Inserm U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Dina Aggad
- Institut des Biomolécules Max Mousseron, CNRS UMR 5247, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Aurélie Covinhes
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Inserm U661, Université de Montpellier, 141 Rue de la Cardonille, 34094 Montpellier Cedex 5, France.; Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Inserm U661, Université de Montpellier, 141 Rue de la Cardonille, 34094 Montpellier Cedex 5, France.; Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Sébastien Deshayes
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Prisca Boisguerin
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
35
|
Tao Z, Le Blanc JM, Wang C, Zhan T, Zhuang H, Wang P, Yuan Z, Lu B. Coadministration of Trametinib and Palbociclib Radiosensitizes KRAS-Mutant Non-Small Cell Lung Cancers In Vitro and In Vivo. Clin Cancer Res 2016; 22:122-33. [PMID: 26728409 DOI: 10.1158/1078-0432.ccr-15-0589] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate the potential roles that p16 (CDKN2A) and RB activation have in sensitization to MEK inhibitor in resistant KRAS-mutant non-small cell lung cancer cells (NSCLC) in vitro and in vivo. EXPERIMENTAL DESIGN Cell viability was measured with MTS assays. Effects of administration of radiation and combination drug treatments were evaluated by clonogenic assay, flow cytometry, and Western blots. DNA repair was assessed using immunofluorescent analysis. Finally, lung cancer xenografts were used to examine in vivo effects of drug treatment and radiation therapy. RESULTS In this study, we showed that sensitivity to MEK inhibitor correlated to the RB/p16/CDK4 pathway and knockdown of RB induced resistance in cell lines sensitive to MEK inhibitor. Also, overexpression of p16 and inhibition of CDK4 had the ability to sensitize normally resistant cell lines. Our data indicated that the MEK inhibitor (trametinib, GSK112012) cooperated with the CDK4/6 inhibitor (palbociclib, PD0332991) to strongly reduce cell viability of KRAS-mutant NSCLCs that were resistant to the MEK inhibitor in vitro and in vivo. In addition, we report for the first time that resistance of KRAS-mutant NSCLCs to MEK inhibitor is, at least partly, due to p16 mutation status, and we described a drug combination that efficiently reactivates the RB tumor suppressor pathway to trigger radiosensitizing effects, apoptosis, and cell-cycle arrest. CONCLUSIONS Our findings suggest that MEK inhibitor in combination with CDK4/6 inhibitor has significant anti-KRAS-mutant NSCLC activity and radiosensitizing effect in preclinical models, potentially providing a novel therapeutic strategy for patients with advanced KRAS-mutant NSCLCs.
Collapse
Affiliation(s)
- Zhen Tao
- Department of Radiation Oncology, Bodine Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Justin M Le Blanc
- Department of Radiation Oncology, Bodine Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Chenguang Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Tingting Zhan
- Department of Pharmacology and Experimental Therapeutics, Division of Biostatistics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hongqing Zhuang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Bo Lu
- Department of Radiation Oncology, Bodine Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
36
|
Nagel R, Semenova EA, Berns A. Drugging the addict: non-oncogene addiction as a target for cancer therapy. EMBO Rep 2016; 17:1516-1531. [PMID: 27702988 PMCID: PMC5090709 DOI: 10.15252/embr.201643030] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022] Open
Abstract
Historically, cancers have been treated with chemotherapeutics aimed to have profound effects on tumor cells with only limited effects on normal tissue. This approach was followed by the development of small‐molecule inhibitors that can target oncogenic pathways critical for the survival of tumor cells. The clinical targeting of these so‐called oncogene addictions, however, is in many instances hampered by the outgrowth of resistant clones. More recently, the proper functioning of non‐mutated genes has been shown to enhance the survival of many cancers, a phenomenon called non‐oncogene addiction. In the current review, we will focus on the distinct non‐oncogenic addictions found in cancer cells, including synthetic lethal interactions, the underlying stress phenotypes, and arising therapeutic opportunities.
Collapse
Affiliation(s)
- Remco Nagel
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ekaterina A Semenova
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Yilmaz ZE, Jérôme C. Polyphosphoesters: New Trends in Synthesis and Drug Delivery Applications. Macromol Biosci 2016; 16:1745-1761. [PMID: 27654308 DOI: 10.1002/mabi.201600269] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/18/2016] [Indexed: 11/06/2022]
Abstract
Polymers with repeating phosphoester linkages in the backbone are biodegradable materials that emerge as a promising class of novel biomaterials, especially in the field of drug delivery systems. In contrast to aliphatic polyesters, the pentavalency of the phosphorus atom offers a large diversity of structures and as a consequence a wide range of properties for these materials. In this paper, it is focused on the synthesis of well-defined polyphosphoesters (PPEs) by organocatalyzed ring-opening polymerization, improving the functionalities by combination with click reactions, degradation of functional PPEs and their cytotoxicity, and inputs for applications in drug delivery.
Collapse
Affiliation(s)
- Zeynep Ergul Yilmaz
- Center for Education and Research on Macromolecules (CERM), University of Liège (ULg), CESAM-RU, Sart Tilman, Building B6a, Liège, B-4000, Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), University of Liège (ULg), CESAM-RU, Sart Tilman, Building B6a, Liège, B-4000, Belgium
| |
Collapse
|
38
|
Iskandar K, Rezlan M, Yadav SK, Foo CHJ, Sethi G, Qiang Y, Bellot GL, Pervaiz S. Synthetic Lethality of a Novel Small Molecule Against Mutant KRAS-Expressing Cancer Cells Involves AKT-Dependent ROS Production. Antioxid Redox Signal 2016; 24:781-94. [PMID: 26714745 DOI: 10.1089/ars.2015.6362] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIMS We recently reported the death-inducing activity of a small-molecule compound, C1, which triggered reactive oxygen species (ROS)-dependent autophagy-associated apoptosis in a variety of human cancer cell lines. In this study, we examine the ability of the compound to specifically target cancer cells harboring mutant KRAS with minimal activity against wild-type (WT) RAS-expressing cells. RESULTS HCT116 cells expressing mutated KRAS are susceptible, while the WT-expressing HT29 cells are resistant. Interestingly, C1 triggers activation of mutant RAS, which results in the downstream phosphorylation and activation of AKT/PKB. Gene knockdown of KRAS or AKT or their pharmacological inhibition resulted in the abrogation of C1-induced ROS production and rescued tumor colony-forming ability. We also made use of HCT116 mutant KRAS knockout (KO) cells, which express only a single WT KRAS allele. Exposure of KO cells to C1 failed to increase mitochondrial ROS and cell death, unlike the parental cells harboring mutant KRAS. Similarly, mutant KRAS-transformed prostate epithelial cells (RWPE-1-RAS) were more sensitive to the ROS-producing and death-inducing effects of C1 than the vector only expressing RWPE-1 cells. An in vivo model of xenograft tumors generated with HCT116 KRAS(WT/MUT) or KRAS(WT/-) cells showed the efficacy of C1 treatment and its ability to affect the relative mitotic index in tumors harboring KRAS mutant. INNOVATION AND CONCLUSION These data indicate a synthetic lethal effect against cells carrying mutant KRAS, which could have therapeutic implications given the paucity of KRAS-specific chemotherapeutic strategies. Antioxid. Redox Signal. 24, 781-794.
Collapse
Affiliation(s)
- Kartini Iskandar
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Majidah Rezlan
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Sanjiv Kumar Yadav
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Chuan Han Jonathan Foo
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Gautam Sethi
- 2 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Yu Qiang
- 3 Genome Institute of Singapore , A*STAR, Singapore, Singapore
| | - Gregory L Bellot
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,4 Department of Hand and Reconstructive Microsurgery, National University Health System , Singapore, Singapore
| | - Shazib Pervaiz
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,5 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,6 National University Cancer Institute, National University Health System , Singapore, Singapore .,7 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|
39
|
Abstract
Uncontrolled cellular proliferation, mediated by dysregulation of the cell-cycle machinery and activation of cyclin-dependent kinases (CDKs) to promote cell-cycle progression, lies at the heart of cancer as a pathological process. Clinical implementation of first-generation, nonselective CDK inhibitors, designed to inhibit this proliferation, was originally hampered by the high risk of toxicity and lack of efficacy noted with these agents. The emergence of a new generation of selective CDK4/6 inhibitors, including ribociclib, abemaciclib and palbociclib, has enabled tumour types in which CDK4/6 has a pivotal role in the G1-to-S-phase cell-cycle transition to be targeted with improved effectiveness, and fewer adverse effects. Results of pivotal phase III trials investigating palbociclib in patients with advanced-stage oestrogen receptor (ER)-positive breast cancer have demonstrated a substantial improvement in progression-free survival, with a well-tolerated toxicity profile. Mechanisms of acquired resistance to CDK4/6 inhibitors are beginning to emerge that, although unwelcome, might enable rational post-CDK4/6 inhibitor therapeutic strategies to be identified. Extending the use of CDK4/6 inhibitors beyond ER-positive breast cancer is challenging, and will likely require biomarkers that are predictive of a response, and the use of combination therapies in order to optimize CDK4/6 targeting.
Collapse
Affiliation(s)
- Ben O'Leary
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Richard S Finn
- Division of Haematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Nicholas C Turner
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.,Breast Unit, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| |
Collapse
|
40
|
Yaswen P, MacKenzie KL, Keith WN, Hentosh P, Rodier F, Zhu J, Firestone GL, Matheu A, Carnero A, Bilsland A, Sundin T, Honoki K, Fujii H, Georgakilas AG, Amedei A, Amin A, Helferich B, Boosani CS, Guha G, Ciriolo MR, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Niccolai E, Aquilano K, Ashraf SS, Nowsheen S, Yang X. Therapeutic targeting of replicative immortality. Semin Cancer Biol 2015; 35 Suppl:S104-S128. [PMID: 25869441 PMCID: PMC4600408 DOI: 10.1016/j.semcancer.2015.03.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
Abstract
One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed "senescence," can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells' heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy.
Collapse
Affiliation(s)
- Paul Yaswen
- Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, United States.
| | - Karen L MacKenzie
- Children's Cancer Institute Australia, Kensington, New South Wales, Australia.
| | | | | | | | - Jiyue Zhu
- Washington State University College of Pharmacy, Pullman, WA, United States.
| | | | | | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, HUVR, Consejo Superior de Investigaciones Cientificas, Universdad de Sevilla, Seville, Spain.
| | | | | | | | | | | | | | - Amr Amin
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| | | | - Gunjan Guha
- SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust, Guildford, Surrey, United Kingdom
| | | | - Asfar S Azmi
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | | | | | | | | | - S Salman Ashraf
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
41
|
Sun CY, Shen S, Xu CF, Li HJ, Liu Y, Cao ZT, Yang XZ, Xia JX, Wang J. Tumor Acidity-Sensitive Polymeric Vector for Active Targeted siRNA Delivery. J Am Chem Soc 2015; 137:15217-24. [DOI: 10.1021/jacs.5b09602] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chun-Yang Sun
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Song Shen
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Cong-Fei Xu
- Hefei
National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Hong-Jun Li
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Yang Liu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Zhi-Ting Cao
- Hefei
National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Xian-Zhu Yang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Jin-Xing Xia
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Jun Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
- Hefei
National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, PR China
- Innovation
Center for Cell Signaling Network, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| |
Collapse
|
42
|
Chen S, Rong L, Lei Q, Cao PX, Qin SY, Zheng DW, Jia HZ, Zhu JY, Cheng SX, Zhuo RX, Zhang XZ. A surface charge-switchable and folate modified system for co-delivery of proapoptosis peptide and p53 plasmid in cancer therapy. Biomaterials 2015; 77:149-63. [PMID: 26599622 DOI: 10.1016/j.biomaterials.2015.11.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022]
Abstract
To improve the tumor therapeutic efficiency and reduce undesirable side effects, ternary FK/p53/PEG-PLL(DA) complexes with a detachable surface shielding layer were designed. The FK/p53/PEG-PLL(DA) complexes were fabricated by coating the folate incorporated positively charged FK/p53 complexes with charge-switchable PEG-shield (PEG-PLL(DA)) through electrostatic interaction. At the physiological pH 7.4 in the bloodstream, PEG-PLL(DA) could extend the circulating time by shielding the positively charged FK/p53 complexes. After the accumulation of the FK/p53/PEG-PLL(DA) complexes in tumor sites, tumor-acidity-triggered charge switch led to the detachment of PEG-PLL(DA) from the FK/p53 complexes, and resulted in efficient tumor cell entry by folate-mediated uptake and electrostatic attraction. Stimulated by the high content glutathione (GSH) in cytoplasm, the cleavage of disulfide bond resulted in the liberation of proapoptosis peptide C-KLA(TPP) and the p53 gene, which exerted the combined tumor therapy by regulating both intrinsic and extrinsic apoptotic pathways. Both in vitro and in vivo studies confirmed that the ternary detachable complexes FK/p53/PEG-PLL(DA) could enhance antitumor efficacy and reduce adverse effects to normal cells. These findings indicate that the tumor-triggered decomplexation of FK/p53/PEG-PLL(DA) supplies a useful strategy for targeting delivery of different therapeutic agents in synergetic anticancer therapy.
Collapse
Affiliation(s)
- Si Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Lei Rong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Qi Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Peng-Xi Cao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Si-Yong Qin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Hui-Zhen Jia
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Jing-Yi Zhu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
43
|
Forest F, Yvorel V, Karpathiou G, Stachowicz ML, Vergnon JM, Fournel P, Tiffet O, Trombert B, Péoc'h M. Histomolecular profiling of pleomorphic, spindle cell, and giant cell carcinoma of the lung for targeted therapies. Hum Pathol 2015; 49:99-106. [PMID: 26826416 DOI: 10.1016/j.humpath.2015.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/25/2015] [Accepted: 10/01/2015] [Indexed: 11/18/2022]
Abstract
In pleomorphic, spindle cell, and giant cell carcinoma (PSCGC) of the lung, we wondered if an integrated diagnosis including morphological and immunohistochemical features could be related to molecular status. We performed immunohistochemistry on 35 PSCGCs against TTF1, napsin A, p40, ALK, ROS1, and c-MET. Mutational status regarding EGFR, KRAS, BRAF, HER2, and PIK3CA genes was established. Of 18 PSCGCs with adenocarcinomatous or "undifferentiated" carcinoma differentiation, 8 were mutated for EGFR (n = 1), KRAS (n = 2), BRAF (n = 1), HER2 (n = 3), and PIK3CA (n = 1). No PSCGC (0/4) with only squamous cell or adenosquamous (0/2) differentiation was mutated. c-MET overexpression was only seen in PSCGC with adenocarcinomatous or undifferentiated component (n = 5) without squamous cell component. ROS1 and ALK were negative. The presence of a "targetable mutation" was correlated to the presence of morphological or immunohistochemical adenocarcinomatous differentiation (P = .0137). Integrated diagnosis of an adenocarcinomatous component in PSCGC could be associated with the presence of targetable gene mutation. Because only PSCGC with adenocarcinomatous or undifferentiated carcinoma harbors mutations, whereas PSCGC with only squamous or adenosquamous differentiation does not in our study, this might represent a prescreening for patients with PSCGC to be tested for molecular targets. Our results emphasize that careful morphological examination and the use of immunohistochemistry might be useful for the selection of PSCGC tested for a mutational target.
Collapse
MESH Headings
- Adenocarcinoma/chemistry
- Adenocarcinoma/diagnosis
- Adenocarcinoma/drug therapy
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Adenocarcinoma of Lung
- Aged
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biopsy
- Carcinoma, Adenosquamous/chemistry
- Carcinoma, Adenosquamous/diagnosis
- Carcinoma, Adenosquamous/drug therapy
- Carcinoma, Adenosquamous/genetics
- Carcinoma, Adenosquamous/pathology
- Carcinoma, Giant Cell/chemistry
- Carcinoma, Giant Cell/diagnosis
- Carcinoma, Giant Cell/drug therapy
- Carcinoma, Giant Cell/genetics
- Carcinoma, Giant Cell/pathology
- Carcinoma, Squamous Cell/chemistry
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cell Differentiation
- DNA Mutational Analysis
- Female
- France
- Genetic Predisposition to Disease
- Humans
- Immunohistochemistry
- Lung Neoplasms/chemistry
- Lung Neoplasms/diagnosis
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Male
- Molecular Targeted Therapy
- Mutation
- Patient Selection
- Phenotype
- Predictive Value of Tests
- Retrospective Studies
Collapse
Affiliation(s)
- Fabien Forest
- Pathology Department, Saint-Etienne University Hospital, North Hospital, 42055 Saint Étienne CEDEX 2, France.
| | - Violaine Yvorel
- Pathology Department, Saint-Etienne University Hospital, North Hospital, 42055 Saint Étienne CEDEX 2, France
| | - Georgia Karpathiou
- Pathology Department, Saint-Etienne University Hospital, North Hospital, 42055 Saint Étienne CEDEX 2, France
| | - Marie-Laure Stachowicz
- Pathology Department, Saint-Etienne University Hospital, North Hospital, 42055 Saint Étienne CEDEX 2, France
| | - Jean-Michel Vergnon
- Pneumology Department, Saint-Etienne University Hospital, North Hospital, 42055 Saint Étienne CEDEX 2, France
| | - Pierre Fournel
- Lucien Neuwirth Cancer Institute, 42270 Saint Priest en Jarez, France
| | - Olivier Tiffet
- Thoracic Surgery Department, Saint-Etienne University Hospital, North Hospital, 42055 Saint Étienne CEDEX 2, France
| | - Béatrice Trombert
- Public Health and Medical Informatics Department, Saint-Etienne University Hospital, North Hospital, 42055 Saint Étienne CEDEX 2, France
| | - Michel Péoc'h
- Pathology Department, Saint-Etienne University Hospital, North Hospital, 42055 Saint Étienne CEDEX 2, France
| |
Collapse
|
44
|
Shen S, Sun CY, Du XJ, Li HJ, Liu Y, Xia JX, Zhu YH, Wang J. Co-delivery of platinum drug and siNotch1 with micelleplex for enhanced hepatocellular carcinoma therapy. Biomaterials 2015; 70:71-83. [PMID: 26302232 DOI: 10.1016/j.biomaterials.2015.08.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 02/07/2023]
Abstract
As part of HCC tumor cellularity, cancer stem cells (CSCs) are considered a major obstacle to eradicate hepatocellular carcinoma (HCC), which is the third most common cause of cancer-related death worldwide, and the accumulation of chemotherapeutic drug-resistant CSCs invariably accounts for poor prognosis and HCC relapse. In the present study, we explored the efficacy of co-delivery of platinum drug and siRNA targeting Notch1 to treat CSCs-harboring HCC. To overcome the challenging obstacles of platinum drug and siRNA in the systemic administration, we developed a micellar nanoparticle (MNP) to deliver platinum(IV) prodrug and siNotch1, hereafter referred to as (Pt(IV))MNP/siNotch1. We demonstrated that (Pt(IV))MNP/siNotch1 was able to efficiently deliver two drugs into both non-CSCs and CSCs of SMMC7721, a HCC cell line. We further found that siRNA-mediated inhibition of Notch1 suppression can increase the sensitivity of HCC cells to platinum drugs and decrease the percentage of HCC CSCs, and consequently resulting in enhanced proliferation inhibition and apoptosis induction in HCC cells in vitro. Moreover, our results indicated that the combined drug delivery system can remarkably augment drug enrichment in tumor tissues, substantially suppressing the tumor growth while avoiding the accumulation of CSCs in a synergistic manner in the SMMC7721 xenograft model.
Collapse
Affiliation(s)
- Song Shen
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Chun-Yang Sun
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Xiao-Jiao Du
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Hong-Jun Li
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Yang Liu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Jin-Xing Xia
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China.
| | - Yan-Hua Zhu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Jun Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, PR China; High Magnetic Field Laboratory of CAS, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|
45
|
Vymětalová L, Kryštof V. Potential Clinical Uses of CDK Inhibitors: Lessons from Synthetic Lethality Screens. Med Res Rev 2015; 35:1156-74. [DOI: 10.1002/med.21354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/24/2015] [Accepted: 05/23/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Ladislava Vymětalová
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR; Šlechtitelů 11 CZ-78371 Olomouc Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR; Šlechtitelů 11 CZ-78371 Olomouc Czech Republic
| |
Collapse
|
46
|
Kim YD, Park TE, Singh B, Maharjan S, Choi YJ, Choung PH, Arote RB, Cho CS. Nanoparticle-mediated delivery of siRNA for effective lung cancer therapy. Nanomedicine (Lond) 2015; 10:1165-88. [DOI: 10.2217/nnm.14.214] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is one of the most lethal diseases worldwide, and the survival rate is less than 15% even after the treatment. Unfortunately, chemotherapeutic treatments for lung cancer are accompanied by severe side effects, lack of selectivity and multidrug resistance. In order to overcome the limitations of conventional chemotherapy, nanoparticle-mediated RNA interference drugs represent a potential new approach due to selective silencing effect of oncogenes and multidrug resistance related genes. In this review, we provide recent advancements on nanoparticle-mediated siRNA delivery strategies including lipid system, polymeric system and rigid nanoparticles for lung cancer therapies. Importantly, codelivery of siRNA with conventional anticancer drugs and recent theranostic agents that offer great potential for lung cancer therapy is covered.
Collapse
Affiliation(s)
- Young-Dong Kim
- Department of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Tae-Eun Park
- Department of Agricultural Biotechnology & Research Institute for Agriculture & Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Bijay Singh
- Department of Agricultural Biotechnology & Research Institute for Agriculture & Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Sushila Maharjan
- Department of Agricultural Biotechnology & Research Institute for Agriculture & Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology & Research Institute for Agriculture & Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Pill-Hoon Choung
- Department of Oral & Maxillofacial Surgery & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Rohidas B. Arote
- Department of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology & Research Institute for Agriculture & Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
47
|
|
48
|
Wu SY, Lopez-Berestein G, Calin GA, Sood AK. RNAi therapies: drugging the undruggable. Sci Transl Med 2015; 6:240ps7. [PMID: 24920658 DOI: 10.1126/scitranslmed.3008362] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA interference (RNAi) therapy is a rapidly emerging platform for personalized cancer treatment. Recent advances in small interfering RNA delivery and target selection provide unprecedented opportunities for clinical translation. Here, we discuss these advances and present strategies for making RNAi-based therapy a viable part of cancer management.
Collapse
Affiliation(s)
- Sherry Y Wu
- Departments of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Gabriel Lopez-Berestein
- Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA. Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - George A Calin
- Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA. Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Anil K Sood
- Departments of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA. Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA.
| |
Collapse
|