1
|
Domsicova M, Korcekova J, Poturnayova A, Breier A. New Insights into Aptamers: An Alternative to Antibodies in the Detection of Molecular Biomarkers. Int J Mol Sci 2024; 25:6833. [PMID: 38999943 PMCID: PMC11240909 DOI: 10.3390/ijms25136833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Aptamers are short oligonucleotides with single-stranded regions or peptides that recently started to transform the field of diagnostics. Their unique ability to bind to specific target molecules with high affinity and specificity is at least comparable to many traditional biorecognition elements. Aptamers are synthetically produced, with a compact size that facilitates deeper tissue penetration and improved cellular targeting. Furthermore, they can be easily modified with various labels or functional groups, tailoring them for diverse applications. Even more uniquely, aptamers can be regenerated after use, making aptasensors a cost-effective and sustainable alternative compared to disposable biosensors. This review delves into the inherent properties of aptamers that make them advantageous in established diagnostic methods. Furthermore, we will examine some of the limitations of aptamers, such as the need to engage in bioinformatics procedures in order to understand the relationship between the structure of the aptamer and its binding abilities. The objective is to develop a targeted design for specific targets. We analyse the process of aptamer selection and design by exploring the current landscape of aptamer utilisation across various industries. Here, we illuminate the potential advantages and applications of aptamers in a range of diagnostic techniques, with a specific focus on quartz crystal microbalance (QCM) aptasensors and their integration into the well-established ELISA method. This review serves as a comprehensive resource, summarising the latest knowledge and applications of aptamers, particularly highlighting their potential to revolutionise diagnostic approaches.
Collapse
Affiliation(s)
- Michaela Domsicova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Jana Korcekova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Alexandra Poturnayova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Albert Breier
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| |
Collapse
|
2
|
Gulliver C, Busiau T, Byrne A, Findlay JE, Hoffmann R, Baillie GS. cAMP-phosphodiesterase 4D7 (PDE4D7) forms a cAMP signalosome complex with DHX9 and is implicated in prostate cancer progression. Mol Oncol 2024; 18:707-725. [PMID: 38126155 PMCID: PMC10920091 DOI: 10.1002/1878-0261.13572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/10/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
A robust body of work has demonstrated that a reduction in cAMP-specific 3',5'-cyclic phosphodiesterase 4D isoform 7 (PDE4D7) is linked with negative prostate cancer outcomes; however, the exact molecular mechanism that underpins this relationship is unknown. Epigenetic profiling has shown that the PDE4D gene can be hyper-methylated in transmembrane serine protease 2 (TMPRSS2)-ETS transcriptional regulator ERG (ERG) gene-fusion-positive prostate cancer (PCa) tumours, and this inhibits messenger RNA (mRNA) expression, leading to a paucity of cellular PDE4D7 protein. In an attempt to understand how the resulting aberrant cAMP signalling drives PCa growth, we immunopurified PDE4D7 and identified binding proteins by mass spectrometry. We used peptide array technology and proximity ligation assay to confirm binding between PDE4D7 and ATP-dependent RNA helicase A (DHX9), and in the design of a novel cell-permeable disruptor peptide that mimics the DHX9-binding region on PDE4D7. We discovered that PDE4D7 forms a signalling complex with the DExD/H-box RNA helicase DHX9. Importantly, disruption of the PDE4D7-DHX9 complex reduced proliferation of LNCaP cells, suggesting the complex is pro-tumorigenic. Additionally, we have identified a novel protein kinase A (PKA) phosphorylation site on DHX9 that is regulated by PDE4D7 association. In summary, we report the existence of a newly identified PDE4D7-DHX9 signalling complex that may be crucial in PCa pathogenesis and could represent a potential therapeutic target.
Collapse
Affiliation(s)
- Chloe Gulliver
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life ScienceUniversity of GlasgowUK
| | - Tara Busiau
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life ScienceUniversity of GlasgowUK
| | - Ashleigh Byrne
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life ScienceUniversity of GlasgowUK
| | - Jane E. Findlay
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life ScienceUniversity of GlasgowUK
| | - Ralf Hoffmann
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life ScienceUniversity of GlasgowUK
- Oncology SolutionsPhilips Research EuropeEindhovenThe Netherlands
| | - George S. Baillie
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life ScienceUniversity of GlasgowUK
| |
Collapse
|
3
|
Doherty C, Wilbanks B, Khatua S, Maher LJ. Aptamers in neuro-oncology: An emerging therapeutic modality. Neuro Oncol 2024; 26:38-54. [PMID: 37619244 PMCID: PMC10768989 DOI: 10.1093/neuonc/noad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 08/26/2023] Open
Abstract
Despite recent advances in the understanding of brain tumor pathophysiology, challenges associated with tumor location and characteristics have prevented significant improvement in neuro-oncology therapies. Aptamers are short, single-stranded DNA or RNA oligonucleotides that fold into sequence-specific, 3-dimensional shapes that, like protein antibodies, interact with targeted ligands with high affinity and specificity. Aptamer technology has recently been applied to neuro-oncology as a potential approach to innovative therapy. Preclinical research has demonstrated the ability of aptamers to overcome some obstacles that have traditionally rendered neuro-oncology therapies ineffective. Potential aptamer advantages include their small size, ability in some cases to penetrate the blood-brain barrier, inherent lack of immunogenicity, and applicability for discovering novel biomarkers. Herein, we review recent reports of aptamer applications in neuro-oncology including aptamers found by cell- and in vivo- Systematic Evolution of Ligands by Exponential Enrichment approaches, aptamer-targeted therapeutic delivery modalities, and aptamers in diagnostics and imaging. We further identify crucial future directions for the field that will be important to advance aptamer-based drugs or tools to clinical application in neuro-oncology.
Collapse
Affiliation(s)
- Caroline Doherty
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Medical Scientist Training Program, Mayo Clinic Graduate School of Biomedical Sciences and Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Brandon Wilbanks
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Biochemistry and Molecular Biology Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Louis James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Liu J, Ren Z, Sun Y, Xu L, Wei D, Tan W, Ding D. Investigation of the Relationship between Aptamers' Targeting Functions and Human Plasma Proteins. ACS NANO 2023; 17:24329-24342. [PMID: 38044589 DOI: 10.1021/acsnano.3c10238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Aptamers are single-stranded DNA or RNA molecules capable of recognizing targets via specific three-dimensional structures. Taking advantage of this unique targeting function, aptamers have been extensively applied to bioanalysis and disease theranostics. However, the targeting functionality of aptamers in the physiological milieu is greatly impeded compared with their in vitro applications. To investigate the physiological factors that adversely affect the in vivo targeting ability of aptamers, we herein systematically studied the interactions between human plasma proteins and aptamers and the specific effects of plasma proteins on aptamer targeting. Microscale thermophoresis and flow cytometry analysis showed that plasma interacted with aptamers, restricting their affinity toward targeted tumor cells. Further pull-down assay and proteomic identification verified that the interactions between aptamers and plasma proteins were mainly involved in complement activation and immune response as well as showed structure-selective and sequence-specific features. Particularly, the fibronectin 1 (FN1) protein showed dramatically specific interactions with nucleolin (NCL) targeting aptamer AS1411. The competitive binding between FN1 and NCL almost deprived the AS1411 aptamer's targeting ability in vivo. In order to maintain the targeting function in the physiological milieu, a series of optimizations were performed via the chemical modifications of AS1411 aptamer, and 3'-terminal pegylation was demonstrated to be resistant to the interaction with FN1, leading to improved tumor-targeting effects. This work emphasizes the physiological environment influences on aptamers targeting functionality and suggests that rational design and modification of aptamers to minimize the nonspecific interaction with plasma proteins might be effective to maintain aptamer functionality in future clinical uses.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhiqiang Ren
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Yang Sun
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Liujun Xu
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Dali Wei
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Ding Ding
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
5
|
Philippou S, Mastroyiannopoulos NP, Tomazou M, Oulas A, Ackers-Johnson M, Foo RS, Spyrou GM, Phylactou LA. Selective Delivery to Cardiac Muscle Cells Using Cell-Specific Aptamers. Pharmaceuticals (Basel) 2023; 16:1264. [PMID: 37765072 PMCID: PMC10534653 DOI: 10.3390/ph16091264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
In vivo SELEX is an advanced adaptation of Systematic Evolution of Ligands by Exponential Enrichment (SELEX) that allows the development of aptamers capable of recognizing targets directly within their natural microenvironment. While this methodology ensures a higher translation potential for the selected aptamer, it does not select for aptamers that recognize specific cell types within a tissue. Such aptamers could potentially improve the development of drugs for several diseases, including neuromuscular disorders, by targeting solely the proteins involved in their pathogenesis. Here, we describe our attempt to utilize in vivo SELEX with a modification in the methodology that drives the selection of intravenously injected aptamers towards a specific cell type of interest. Our data suggest that the incorporation of a cell enrichment step can direct the in vivo localization of RNA aptamers into cardiomyocytes, the cardiac muscle cells, more readily over other cardiac cells. Given the crucial role of cardiomyocytes in the disease pathology in DMD cardiomyopathy and therapy, these aptamers hold great potential as drug delivery vehicles with cardiomyocyte selectivity.
Collapse
Affiliation(s)
- Styliana Philippou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Nikolaos P. Mastroyiannopoulos
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Anastasios Oulas
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Matthew Ackers-Johnson
- Cardiovascular Research Institute, Centre for Translational Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Roger S. Foo
- Cardiovascular Research Institute, Centre for Translational Medicine, National University of Singapore, Singapore 117599, Singapore
| | - George M. Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| |
Collapse
|
6
|
Puzzo F, Zhang C, Powell Gray B, Zhang F, Sullenger BA, Kay MA. Aptamer-programmable adeno-associated viral vectors as a novel platform for cell-specific gene transfer. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:383-397. [PMID: 36817723 PMCID: PMC9929486 DOI: 10.1016/j.omtn.2023.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Adeno-associated viruses (AAVs) are commonly used for in vivo gene therapy. Nevertheless, the wide tropism that characterizes these vectors limits specific targeting to a particular cell type or tissue. Here, we developed new chemically modified AAV vectors (Nε-AAVs) displaying a single site substitution on the capsid surface for post-production vector engineering through biorthogonal copper-free click chemistry. We were able to identify AAV vectors that would tolerate the unnatural amino acid substitution on the capsid without disrupting their packaging efficiency. We functionalized the Nε-AAVs through conjugation with DNA (AS1411) or RNA (E3) aptamers or with a folic acid moiety (FA). E3-, AS1411-, and FA-AAVs showed on average a 3- to 9-fold increase in transduction compared with their non-conjugated counterparts in different cancer cell lines. Using specific competitors, we established ligand-specific transduction. In vivo studies confirmed the selective uptake of FA-AAV and AS1411-AAV without off-target transduction in peripheral organs. Overall, the high versatility of these novel Nε-AAVs might pave the way to tailoring gene therapy vectors toward specific types of cells both for ex vivo and in vivo applications.
Collapse
Affiliation(s)
- Francesco Puzzo
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Chuanling Zhang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bethany Powell Gray
- Department of Surgery, Duke University School of Medicine, Durham, NC 27705, USA
| | - Feijie Zhang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Bruce A. Sullenger
- Department of Surgery, Duke University School of Medicine, Durham, NC 27705, USA
| | - Mark A. Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Chellini L, Pieraccioli M, Sette C, Paronetto MP. The DNA/RNA helicase DHX9 contributes to the transcriptional program of the androgen receptor in prostate cancer. J Exp Clin Cancer Res 2022; 41:178. [PMID: 35590370 PMCID: PMC9118622 DOI: 10.1186/s13046-022-02384-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Prostate cancer (PC) is the most commonly diagnosed male malignancy and an important cause of mortality. Androgen deprivation therapy is the first line treatment but, unfortunately, a large part of patients evolves to a castration-resistant stage, for which no effective cure is currently available. The DNA/RNA helicase DHX9 is emerging as an important regulator of cellular processes that are often deregulated in cancer.
Methods
To investigate whether DHX9 modulates PC cell transcriptome we performed RNA-sequencing analyses upon DHX9 silencing in the androgen-responsive cell line LNCaP. Bioinformatics and functional analyses were carried out to elucidate the mechanism of gene expression regulation by DHX9. Data from The Cancer Genome Atlas were mined to evaluate the potential role of DHX9 in PC.
Results
We found that up-regulation of DHX9 correlates with advanced stage and is associated with poor prognosis of PC patients. High-throughput RNA-sequencing analysis revealed that depletion of DHX9 in androgen-sensitive LNCaP cells affects expression of hundreds of genes, which significantly overlap with known targets of the Androgen Receptor (AR). Notably, AR binds to the DHX9 promoter and induces its expression, while Enzalutamide-mediated inhibition of AR activity represses DHX9 expression. Moreover, DHX9 interacts with AR in LNCaP cells and its depletion significantly reduced the recruitment of AR to the promoter region of target genes and the ability of AR to promote their expression in response to 5α-dihydrotestosterone. Consistently, silencing of DXH9 negatively affected androgen-induced PC cell proliferation and migration.
Conclusions
Collectively, our data uncover a new role of DHX9 in the control of the AR transcriptional program and establish the existence of an oncogenic DHX9/AR axis, which may represent a new druggable target to counteract PC progression.
Collapse
|
8
|
Gholikhani T, Kumar S, Valizadeh H, Mahdinloo S, Adibkia K, Zakeri-Milani P, Barzegar-Jalali M, Jimenez B. Advances in Aptamers-Based Applications in Breast Cancer: Drug Delivery, Therapeutics, and Diagnostics. Int J Mol Sci 2022; 23:ijms232214475. [PMID: 36430951 PMCID: PMC9695968 DOI: 10.3390/ijms232214475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Aptamers are synthetic single-stranded oligonucleotides (such as RNA and DNA) evolved in vitro using Systematic Evolution of Ligands through Exponential enrichment (SELEX) techniques. Aptamers are evolved to have high affinity and specificity to targets; hence, they have a great potential for use in therapeutics as delivery agents and/or in treatment strategies. Aptamers can be chemically synthesized and modified in a cost-effective manner and are easy to hybridize to a variety of nano-particles and other agents which has paved a way for targeted therapy and diagnostics applications such as in breast tumors. In this review, we systematically explain different aptamer adoption approaches to therapeutic or diagnostic uses when addressing breast tumors. We summarize the current therapeutic techniques to address breast tumors including aptamer-base approaches. We discuss the next aptamer-based therapeutic and diagnostic approaches targeting breast tumors. Finally, we provide a perspective on the future of aptamer-based sensors for breast therapeutics and diagnostics. In this section, the therapeutic applications of aptamers will be discussed for the targeting therapy of breast cancer.
Collapse
Affiliation(s)
- Tooba Gholikhani
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
- NanoRa Pharmaceuticals Ltd., Tabriz 5166-15731, Iran
| | - Shalen Kumar
- IQ Science Limited, Wellington 5010, New Zealand
| | - Hadi Valizadeh
- Drug Applied Research Centre, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Somayeh Mahdinloo
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Mohammad Barzegar-Jalali
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Balam Jimenez
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Correspondence:
| |
Collapse
|
9
|
Kohlberger M, Gadermaier G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol Appl Biochem 2022; 69:1771-1792. [PMID: 34427974 PMCID: PMC9788027 DOI: 10.1002/bab.2244] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/22/2021] [Indexed: 12/30/2022]
Abstract
Within the last decade, the application range of aptamers in biochemistry and medicine has expanded rapidly. More than just a replacement for antibodies, these intrinsically structured RNA- or DNA-oligonucleotides show great potential for utilization in diagnostics, specific drug delivery, and treatment of certain medical conditions. However, what is analyzed less frequently is the process of aptamer identification known as systematic evolution of ligands by exponential enrichment (SELEX) and the functional mechanisms that lie at its core. SELEX involves numerous singular processes, each of which contributes to the success or failure of aptamer generation. In this review, critical steps during aptamer selection are discussed in-depth, and specific problems are presented along with potential solutions. The discussed aspects include the size and molecule type of the selected target, the nature and stringency of the selection process, the amplification step with its possible PCR bias, the efficient regeneration of RNA or single-stranded DNA, and the different sequencing procedures and screening assays currently available. Finally, useful quality control steps and their role within SELEX are presented. By understanding the mechanisms through which aptamer selection is influenced, the design of more efficient SELEX procedures leading to a higher success rate in aptamer identification is enabled.
Collapse
Affiliation(s)
- Michael Kohlberger
- Department of BiosciencesParis Lodron University SalzburgSalzburgAustria,Christian Doppler Laboratory for Biosimilar CharacterizationParis Lodron University SalzburgSalzburgAustria
| | - Gabriele Gadermaier
- Department of BiosciencesParis Lodron University SalzburgSalzburgAustria,Christian Doppler Laboratory for Biosimilar CharacterizationParis Lodron University SalzburgSalzburgAustria
| |
Collapse
|
10
|
Sousa DA, Carneiro M, Ferreira D, Moreira FTC, Sales MGFV, Rodrigues LR. Recent advances in the selection of cancer-specific aptamers for the development of biosensors. Curr Med Chem 2022; 29:5850-5880. [PMID: 35209816 DOI: 10.2174/0929867329666220224155037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
An early diagnosis has the potential to greatly decrease cancer mortality. For that purpose, specific cancer biomarkers have been molecularly targeted by aptamer sequences to enable an accurate and rapid detection. Aptamer-based biosensors for cancer diagnostics are a promising alternative to those using antibodies, due to their high affinity and specificity to the target molecules and advantageous production. Synthetic nucleic acid aptamers are generated by in vitro Systematic Evolution of Ligands by Exponential enrichment (SELEX) methodologies that have been improved over the years to enhance the efficacy and to shorten the selection process. Aptamers have been successfully applied in electrochemical, optical, photoelectrochemical and piezoelectrical-based detection strategies. These aptasensors comprise a sensitive, accurate and inexpensive option for cancer detection being used as point-of-care devices. This review highlights the recent advances in cancer biomarkers, achievements and optimizations made in aptamer selection, as well as the different aptasensors developed for the detection of several cancer biomarkers.
Collapse
Affiliation(s)
- Diana A Sousa
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
| | - Mariana Carneiro
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, Porto, Portugal
| | - Débora Ferreira
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
| | - Felismina T C Moreira
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, Porto, Portugal
| | - Maria Goreti F V Sales
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Lígia R Rodrigues
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
11
|
Liu S, He L, Wu J, Wu X, Xie L, Dai W, Chen L, Xie F, Liu Z. DHX9 contributes to the malignant phenotypes of colorectal cancer via activating NF-κB signaling pathway. Cell Mol Life Sci 2021; 78:8261-8281. [PMID: 34773477 PMCID: PMC11072136 DOI: 10.1007/s00018-021-04013-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/27/2021] [Accepted: 10/24/2021] [Indexed: 12/25/2022]
Abstract
Colorectal cancer (CRC) is the leading cause of cancer-related mortality worldwide, which makes it urgent to identify novel therapeutic targets for CRC treatment. In this study, DHX9 was filtered out as the prominent proliferation promoters of CRC by siRNA screening. Moreover, DHX9 was overexpressed in CRC cell lines, clinical CRC tissues and colitis-associated colorectal cancer (CAC) mouse model. The upregulation of DHX9 was positively correlated with poor prognosis in patients with CRC. Through gain- and loss-of function experiments, we found that DHX9 promoted CRC cell proliferation, colony formation, apoptosis resistance, migration and invasion in vitro. Furthermore, a xenograft mouse model and a hepatic metastasis mouse model were utilized to confirm that forced overexpression of DHX9 enhanced CRC outgrowth and metastasis in vivo, while DHX9 ablation produced the opposite effect. Mechanistically, from one aspect, DHX9 enhances p65 phosphorylation, promotes p65 nuclear translocation to facilitate NF-κB-mediated transcriptional activity. From another aspect, DHX9 interacts with p65 and RNA polymerase II (RNA Pol II) to enhance the downstream targets of NF-κB (e.g., Survivin, Snail) expression to potentiate the malignant phenotypes of CRC. Together, our results suggest that DHX9 may be a potential therapeutic target for prevention and treatment of CRC patients.
Collapse
Affiliation(s)
- Shenglan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Liangmei He
- Department of Gastroenterology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junhong Wu
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinqiang Wu
- Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lu Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Wei Dai
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lingxia Chen
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Fuhua Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
12
|
Guo Y, Shi M, Liu X, Liang H, Gao L, Liu Z, Li J, Yu D, Li K. Selection and preliminary application of DNA aptamer targeting A549 excreta in cell culture media. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
SNORA42 promotes oesophageal squamous cell carcinoma development through triggering the DHX9/p65 axis. Genomics 2021; 113:3015-3029. [PMID: 34182081 DOI: 10.1016/j.ygeno.2021.06.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are an important group of non-coding RNAs that have been reported to play a key role in the occurrence and development of various cancers. Here we demonstrate that Small nucleolar RNA 42 (SNORA42) enhanced the proliferation and migration of Oesophageal squamous carcinoma cells (ESCC) via the DHX9/p65 axis. Our results found that SNORA42 was significantly upregulated in ESCC cell lines, tissues and serum of ESCC patients. The high expression level of SNORA42 was positively correlated with malignant characteristics and over survival probability of patients with ESCC. Through in vitro and in vivo approaches, we demonstrated that knockdown of SNORA42 significantly impeded ESCC growth and metastasis whereas overexpression of SNORA42 got opposite effects. Mechanically, SNORA42 promoted DHX9 expression by attenuating DHX9 transports into the cytoplasm, to protect DHX9 from being ubiquitinated and degraded. From the KEGG analysis of Next-Generation Sequencing, the NF-κB pathway was one of the most regulated pathways by SNORA42. SNORA42 enhanced phosphorylation of p65 and this effect could be reversed by NF-κB inhibitor, BAY11-7082. Moreover, SNORA42 activated NF-κB signaling through promoting the transcriptional co-activator DHX9 interacted with p-p65, inducing NF-κB downstream gene expression. In summary, our study highlights the potential of SNORA42 is up-regulated in ESCC and promotes ESCC development partly via interacting with DHX9 and triggering the DHX9/p65 axis.
Collapse
|
14
|
DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy. Cells 2021; 10:cells10061540. [PMID: 34207140 PMCID: PMC8234093 DOI: 10.3390/cells10061540] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cell cycle is regulated through numerous signaling pathways that determine whether cells will proliferate, remain quiescent, arrest, or undergo apoptosis. Abnormal cell cycle regulation has been linked to many diseases. Thus, there is an urgent need to understand the diverse molecular mechanisms of how the cell cycle is controlled. RNA helicases constitute a large family of proteins with functions in all aspects of RNA metabolism, including unwinding or annealing of RNA molecules to regulate pre-mRNA, rRNA and miRNA processing, clamping protein complexes on RNA, or remodeling ribonucleoprotein complexes, to regulate gene expression. RNA helicases also regulate the activity of specific proteins through direct interaction. Abnormal expression of RNA helicases has been associated with different diseases, including cancer, neurological disorders, aging, and autosomal dominant polycystic kidney disease (ADPKD) via regulation of a diverse range of cellular processes such as cell proliferation, cell cycle arrest, and apoptosis. Recent studies showed that RNA helicases participate in the regulation of the cell cycle progression at each cell cycle phase, including G1-S transition, S phase, G2-M transition, mitosis, and cytokinesis. In this review, we discuss the essential roles and mechanisms of RNA helicases in the regulation of the cell cycle at different phases. For that, RNA helicases provide a rich source of targets for the development of therapeutic or prophylactic drugs. We also discuss the different targeting strategies against RNA helicases, the different types of compounds explored, the proposed inhibitory mechanisms of the compounds on specific RNA helicases, and the therapeutic potential of these compounds in the treatment of various disorders.
Collapse
|
15
|
Swaminathan G, Shigna A, Kumar A, Byroju VV, Durgempudi VR, Dinesh Kumar L. RNA Interference and Nanotechnology: A Promising Alliance for Next Generation Cancer Therapeutics. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.694838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cancer is a significant health hazard of the 21st century, and GLOBOCAN predicts increasing cancer incidence in the coming decades. Though several conventional treatment modalities exist, most of them end up causing off-target and debilitating effects, and drug resistance acquisition. Advances in our understanding of tumor molecular biology offer alternative strategies for precise, robust, and potentially less toxic treatment paradigms for circumventing the disease at the cellular and molecular level. Several deregulated molecules associated with tumorigenesis have been developed as targets in RNA interference (RNAi) based cancer therapeutics. RNAi, a post-transcriptional gene regulation mechanism, has significantly gained attention because of its precise multi-targeted gene silencing. Although the RNAi approach is favorable, the direct administration of small oligonucleotides has not been fruitful because of their inherent lower half-lives and instability in the biological systems. Moreover, the lack of an appropriate delivery system to the primary site of the tumor that helps determine the potency of the drug and its reach, has limited the effective medical utilization of these bio-drugs. Nanotechnology, with its unique characteristics of enhanced permeation and better tumor-targeting efficiency, offers promising solutions owing to the various possibilities and amenability for modifications of the nanoparticles to augment cancer therapeutics. Nanoparticles could be made multimodal, by designing and synthesizing multiple desired functionalities, often resulting in unique and potentially applicable biological structures. A small number of Phase I clinical trials with systemically administered siRNA molecules conjugated with nanoparticles have been completed and the results are promising, indicating that, these new combinatorial therapies can successfully and safely be used to inhibit target genes in cancer patients to alleviate some of the disease burden. In this review, we highlight different types of nano-based delivery strategies for engineering Nano-RNAi-based bio drugs. Furthermore, we have highlighted the insights gained from current research that are entering the preclinical evaluation and information about initial clinical developments, shaping the future for next generation cancer therapeutics.
Collapse
|
16
|
Subjakova V, Oravczova V, Hianik T. Polymer Nanoparticles and Nanomotors Modified by DNA/RNA Aptamers and Antibodies in Targeted Therapy of Cancer. Polymers (Basel) 2021; 13:341. [PMID: 33494545 PMCID: PMC7866063 DOI: 10.3390/polym13030341] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Polymer nanoparticles and nano/micromotors are novel nanostructures that are of increased interest especially in the diagnosis and therapy of cancer. These structures are modified by antibodies or nucleic acid aptamers and can recognize the cancer markers at the membrane of the cancer cells or in the intracellular side. They can serve as a cargo for targeted transport of drugs or nucleic acids in chemo- immuno- or gene therapy. The various mechanisms, such as enzyme, ultrasound, magnetic, electrical, or light, served as a driving force for nano/micromotors, allowing their transport into the cells. This review is focused on the recent achievements in the development of polymer nanoparticles and nano/micromotors modified by antibodies and nucleic acid aptamers. The methods of preparation of polymer nanoparticles, their structure and properties are provided together with those for synthesis and the application of nano/micromotors. The various mechanisms of the driving of nano/micromotors such as chemical, light, ultrasound, electric and magnetic fields are explained. The targeting drug delivery is based on the modification of nanostructures by receptors such as nucleic acid aptamers and antibodies. Special focus is therefore on the method of selection aptamers for recognition cancer markers as well as on the comparison of the properties of nucleic acid aptamers and antibodies. The methods of immobilization of aptamers at the nanoparticles and nano/micromotors are provided. Examples of applications of polymer nanoparticles and nano/micromotors in targeted delivery and in controlled drug release are presented. The future perspectives of biomimetic nanostructures in personalized nanomedicine are also discussed.
Collapse
Affiliation(s)
| | | | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F1, 842 48 Bratislava, Slovakia; (V.S.); (V.O.)
| |
Collapse
|
17
|
Zhou H, Zheng XD, Lin CM, Min J, Hu S, Hu Y, Li LY, Chen JS, Liu YM, Li HD, Meng XM, Li J, Yang YR, Xu T. Advancement and properties of circular RNAs in prostate cancer: An emerging and compelling frontier for discovering. Int J Biol Sci 2021; 17:651-669. [PMID: 33613119 PMCID: PMC7893591 DOI: 10.7150/ijbs.52266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/18/2020] [Indexed: 01/12/2023] Open
Abstract
Prostate cancer (PC) is the most common carcinoma among men worldwide which results in 26% of leading causes of cancer-related death. However, the ideal and effective molecular marker remains elusive. CircRNA, initially observed in plant-infected viruses and Sendai virus in 1979, is generated from pre-mRNA back-splicing and comes in to play by adequate expression. The differential expression in prostate tissues compared with the control reveals the promising capacity in modulating processes including carcinogenesis and metastasis. However, the biological mechanisms of regulatory network in PC needs to systemically concluded. In this review, we enlightened the comprehensive studies on the definite mechanisms of circRNAs affecting tumor progression and metastasis. What's more, we validated the potential clinical application of circRNAs serving as diagnostic and prognostic biomarker. The discussion and analysis in circRNAs will broaden our knowledge of the pathogenesis of PC and further optimize the current therapies against different condition.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC West District, University of Science and Technology of China, Hefei 230031, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Xu-Dong Zheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Chang-Ming Lin
- Department of Urology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230011, China
| | - Jie Min
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Liang-Yun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Jia-Si Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Yu-Min Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Hao-Dong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Ya-Ru Yang
- Department of Clinical Trial Research Center, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| |
Collapse
|
18
|
Gulliver C, Hoffmann R, Baillie GS. The enigmatic helicase DHX9 and its association with the hallmarks of cancer. Future Sci OA 2020; 7:FSO650. [PMID: 33437516 PMCID: PMC7787180 DOI: 10.2144/fsoa-2020-0140] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Much interest has been expended lately in characterizing the association between DExH-Box helicase 9 (DHX9) dysregulation and malignant development, however, the enigmatic nature of DHX9 has caused conflict as to whether it regularly functions as an oncogene or tumor suppressor. The impact of DHX9 on malignancy appears to be cell-type specific, dependent upon the availability of binding partners and activation of inter-connected signaling pathways. Realization of DHX9's pivotal role in the development of several hallmarks of cancer has boosted the enzyme's potential as a cancer biomarker and therapeutic target, opening up novel avenues for exploring DHX9 in precision medicine applications. Our review discusses the ascribed functions of DHX9 in cancer, explores its enigmatic nature and potential as an antineoplastic target.
Collapse
Affiliation(s)
- Chloe Gulliver
- Institute of Cardiovascular & Medical Science, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Ralf Hoffmann
- Institute of Cardiovascular & Medical Science, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
- Philips Research Europe, High Tech Campus, Eindhoven, The Netherlands
| | - George S Baillie
- Institute of Cardiovascular & Medical Science, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
19
|
Ochoa S, Milam VT. Modified Nucleic Acids: Expanding the Capabilities of Functional Oligonucleotides. Molecules 2020; 25:E4659. [PMID: 33066073 PMCID: PMC7587394 DOI: 10.3390/molecules25204659] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
In the last three decades, oligonucleotides have been extensively investigated as probes, molecular ligands and even catalysts within therapeutic and diagnostic applications. The narrow chemical repertoire of natural nucleic acids, however, imposes restrictions on the functional scope of oligonucleotides. Initial efforts to overcome this deficiency in chemical diversity included conservative modifications to the sugar-phosphate backbone or the pendant base groups and resulted in enhanced in vivo performance. More importantly, later work involving other modifications led to the realization of new functional characteristics beyond initial intended therapeutic and diagnostic prospects. These results have inspired the exploration of increasingly exotic chemistries highly divergent from the canonical nucleic acid chemical structure that possess unnatural physiochemical properties. In this review, the authors highlight recent developments in modified oligonucleotides and the thrust towards designing novel nucleic acid-based ligands and catalysts with specifically engineered functions inaccessible to natural oligonucleotides.
Collapse
Affiliation(s)
- Steven Ochoa
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Valeria T. Milam
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
20
|
Li HT, Wei B, Li ZQ, Wang X, Jia WX, Xu YZ, Liu JY, Shao MN, Chen SX, Mo NF, Zhao D, Zuo WP, Qin J, Li P, Zhang QL, Yang XL. Diagnostic and prognostic value of MCM3 and its interacting proteins in hepatocellular carcinoma. Oncol Lett 2020; 20:308. [PMID: 33093917 PMCID: PMC7573876 DOI: 10.3892/ol.2020.12171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Aberrant DNA replication is one of the driving forces behind oncogenesis. Furthermore, minichromosome maintenance complex component 3 (MCM3) serves an essential role in DNA replication. Therefore, in the present study, the diagnostic and prognostic value of MCM3 and its interacting proteins in hepatocellular carcinoma (HCC) were investigated. By utilizing The Cancer Genome Atlas (TCGA) database, global MCM3 mRNA levels were assessed in HCC and normal liver tissues. Its effects were further analyzed by reverse transcription-quantitative PCR (RT-qPCR), western blotting and immunohistochemistry in 78 paired HCC and adjacent tissues. Functional and pathway enrichment analyses were performed using the Search Tool for the Retrieval of Interacting Genes database. The expression levels of proteins that interact with MCM3 were also analyzed using the TCGA database and RT-qPCR. Finally, algorithms combining receiver operating characteristic (ROC) curves were constructed using binary logistic regression using the TCGA results. Increased MCM3 mRNA expression with high α-fetoprotein levels and advanced Edmondson-Steiner grade were found to be characteristic of HCC. Survival analysis revealed that high MCM3 expression was associated with poor outcomes in patients with HCC. In addition, MCM3 protein expression was associated with increased tumor invasion in HCC tissues. MCM3 and its interacting proteins were found to be primarily involved in DNA replication, cell cycle and a number of binding processes. Algorithms combining ROCs of MCM3 and its interacting proteins were found to have improved HCC diagnosis ability compared with MCM3 and other individual diagnostic markers. In conclusion, MCM3 appears to be a promising diagnostic biomarker for HCC. Additionally, the present study provides a basis for the multi-gene diagnosis of HCC using MCM3.
Collapse
Affiliation(s)
- Hong-Tao Li
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Bing Wei
- College of International Education, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Zhou-Quan Li
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Xiao Wang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Department of Pathology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wen-Xian Jia
- College of Pharmacy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yan-Zhen Xu
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Jia-Yi Liu
- Department of Pathology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Meng-Nan Shao
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Sui-Xia Chen
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Nan-Fang Mo
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Dong Zhao
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Wen-Pu Zuo
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian Qin
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ping Li
- Department of Pathology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qin-Le Zhang
- Genetic and Metabolic Central Laboratory, The Maternal and Children Health Hospital of Guangxi, Nanning, Guangxi 530005, P.R. China
| | - Xiao-Li Yang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| |
Collapse
|
21
|
Nimjee SM, Sullenger BA. Therapeutic Aptamers: Evolving to Find their Clinical Niche. Curr Med Chem 2020; 27:4181-4193. [PMID: 31573879 DOI: 10.2174/0929867326666191001125101] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The discovery that short oligonucleotides, termed aptamers, can fold into three-dimensional structures that allow them to selectively bind and inhibit the activity of pathogenic proteins is now over 25 years old. The invention of the SELEX methodology heralded in an era in which such nucleic acid-based ligands could be generated against a wide variety of therapeutic targets. RESULTS A large number of aptamers have now been identified by combinatorial chemistry methods in the laboratory and moreover, an increasing number have been discovered in nature. The affinities and activities of such aptamers have often been compared to that of antibodies, yet only a few of these agents have made it into clinical studies compared to a large and increasing number of therapeutic antibodies. One therapeutic aptamer targeting VEGF has made it to market, while 3 others have advanced as far as phase III clinical trials. CONCLUSION In this manuscript, we hope the reader appreciates that the success of aptamers becoming a class of drugs is less about nucleic acid biochemistry and more about target validation and overall drug chemistry.
Collapse
Affiliation(s)
- Shahid M Nimjee
- Department of Neurological Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Bruce A Sullenger
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
22
|
Aptamers Against Live Targets: Is In Vivo SELEX Finally Coming to the Edge? MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:192-204. [PMID: 32585627 PMCID: PMC7321788 DOI: 10.1016/j.omtn.2020.05.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/18/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Targeted therapeutics underwent a revolution with the entry of monoclonal antibodies in the medical toolkit. Oligonucleotide aptamers form another family of target agents that have been lagging behind in reaching the clinical arena in spite of their potential clinical translation. Some of the reasons for this might be related to the challenge in identifying aptamers with optimal in vivo specificity, and the nature of their pharmacokinetics. Aptamers usually show exquisite specificity, but they are also molecules that display dynamic structures subject to changing environments. Temperature, ion atmosphere, pH, and other variables are factors that could determine the affinity and specificity of aptamers. Thus, it is important to tune the aptamer selection process to the conditions in which you want your final aptamer to function; ideally, for in vivo applications, aptamers should be selected in an in vivo-like system or, ultimately, in a whole in vivo organism. In this review we recapitulate the implementations in systematic evolution of ligands by exponential enrichment (SELEX) to obtain aptamers with the best in vivo activity.
Collapse
|
23
|
Díaz-Fernández A, Lorenzo-Gómez R, Miranda-Castro R, de-Los-Santos-Álvarez N, Lobo-Castañón MJ. Electrochemical aptasensors for cancer diagnosis in biological fluids - A review. Anal Chim Acta 2020; 1124:1-19. [PMID: 32534661 DOI: 10.1016/j.aca.2020.04.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
The tunability of SELEX procedure is an essential feature to supply bioaffinity receptors (aptamers) almost on demand for analytical and therapeutic purposes. This longstanding ambition is, however, not straightforward. Non-invasive cancer diagnosis, so called liquid biopsy, requires collection of body fluids with minimal or no sample pretreatment. In those raw matrices, aptamers must recognize minute amounts of biomarkers that are not unique entities but large sets of variants evolving with the disease stage. The susceptibility of aptasensors to assay conditions has driven the selection of aptamers to natural environments to ensure their optimum performance in clinical samples. We present herein a compilation of the SELEX procedures in natural milieus. By revising the electrochemical aptasensors applied to clinical samples for cancer diagnosis and tracing back to the original SELEX we analyze whether aptamers raised using these SELEX strategies are being incorporated to the diagnostic devices and how aptasensors are finding their way to a market dominated by antibody-based assays.
Collapse
Affiliation(s)
- Ana Díaz-Fernández
- Dpto. Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| | - Ramón Lorenzo-Gómez
- Dpto. Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| | - Rebeca Miranda-Castro
- Dpto. Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| | - Noemí de-Los-Santos-Álvarez
- Dpto. Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| | - María Jesús Lobo-Castañón
- Dpto. Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| |
Collapse
|
24
|
Banerjee S, Yoon H, Yebra M, Tang CM, Gilardi M, Shankara Narayanan JS, White RR, Sicklick JK, Ray P. Anti-KIT DNA Aptamer for Targeted Labeling of Gastrointestinal Stromal Tumor. Mol Cancer Ther 2020; 19:1173-1182. [PMID: 32127469 PMCID: PMC7202956 DOI: 10.1158/1535-7163.mct-19-0959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/30/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Gastrointestinal stromal tumor (GIST), the most common sarcoma, is characterized by KIT protein overexpression, and tumors are frequently driven by oncogenic KIT mutations. Targeted inhibition of KIT revolutionized GIST therapy and ushered in the era of precision medicine for the treatment of solid malignancies. Here, we present the first use of a KIT-specific DNA aptamer for targeted labeling of GIST. We found that an anti-KIT DNA aptamer bound cells in a KIT-dependent manner and was highly specific for GIST cell labeling in vitro Functionally, the KIT aptamer bound extracellular KIT in a manner similar to KIT mAb staining, and was trafficked intracellularly in vitro The KIT aptamer bound dissociated primary human GIST cells in a mutation agnostic manner such that tumors with KIT and PDGFRA mutations were labeled. In addition, the KIT aptamer specifically labeled intact human GIST tissue ex vivo, as well as peritoneal xenografts in mice with high sensitivity. These results represent the first use of an aptamer-based method for targeted detection of GIST in vitro and in vivo.
Collapse
Affiliation(s)
- Sudeep Banerjee
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
- Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Hyunho Yoon
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Mayra Yebra
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Chih-Min Tang
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Mara Gilardi
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Jayanth S Shankara Narayanan
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Rebekah R White
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Jason K Sicklick
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California.
| | - Partha Ray
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California.
| |
Collapse
|
25
|
Shrivastava G, Bakshi HA, Aljabali AA, Mishra V, Hakkim FL, Charbe NB, Kesharwani P, Chellappan DK, Dua K, Tambuwala MM. Nucleic Acid Aptamers as a Potential Nucleus Targeted Drug Delivery System. Curr Drug Deliv 2020; 17:101-111. [PMID: 31906837 DOI: 10.2174/1567201817666200106104332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/04/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nucleus targeted drug delivery provides several opportunities for the treatment of fatal diseases such as cancer. However, the complex nucleocytoplasmic barriers pose significant challenges for delivering a drug directly and efficiently into the nucleus. Aptamers representing singlestranded DNA and RNA qualify as next-generation highly advanced and personalized medicinal agents that successfully inhibit the expression of certain proteins; possess extraordinary gene-expression for manoeuvring the diseased cell's fate with negligible toxicity. In addition, the precisely directed aptamers to the site of action present a tremendous potential to reach the nucleus by escaping the ensuing barriers to exhibit a better drug activity and gene expression. OBJECTIVE This review epigrammatically highlights the significance of targeted drug delivery and presents a comprehensive description of the principal barriers faced by the nucleus targeted drug delivery paradigm and ensuing complexities thereof. Eventually, the progress of nucleus targeting with nucleic acid aptamers and success achieved so far have also been reviewed. METHODS Systematic literature search was conducted of research published to date in the field of nucleic acid aptamers. CONCLUSION The review specifically points out the contribution of individual aptamers as the nucleustargeting agent rather than aptamers in conjugated form.
Collapse
Affiliation(s)
- Garima Shrivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
| | - Hamid A Bakshi
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry BT52 1SA Northern Ireland, United Kingdom
| | - Alaa A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara (Punjab), India
| | - Faruck L Hakkim
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Oman
| | - Nitin B Charbe
- Departamento de Quimica Organica, Facultad de Quimicay de Farmacia, Pontificia Universidad Catolica de Chile, Av. Vicuña McKenna 4860, Macul, Santiago 7820436, Chile
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Murtaza M Tambuwala
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry BT52 1SA Northern Ireland, United Kingdom
| |
Collapse
|
26
|
Liu J, Guo B. RNA-based therapeutics for colorectal cancer: Updates and future directions. Pharmacol Res 2019; 152:104550. [PMID: 31866285 DOI: 10.1016/j.phrs.2019.104550] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/12/2019] [Accepted: 11/16/2019] [Indexed: 01/20/2023]
Abstract
Colorectal cancer (CRC) is one of the most common causes of cancer death worldwide. While standard chemotherapy and new targeted therapy have been improved recently, problems such as multidrug resistance (MDR) and severe side effects remain unresolved. RNAs are essential to all biological processes including cell proliferation and differentiation, cell cycle, apoptosis, activation of tumor suppressor genes, suppression of oncogenes. Therefore, there are various potential approaches to address genetic disease like CRC at the RNA level. In contrast to conventional treatments, RNA-based therapeutics such as RNA interference, antisense oligonucleotides, RNA aptamer, ribozymes, have the advantages of high specificity, high potency and low toxicity. It has gained more and more attention due to the flexibility in modulating a wide range of targets. Here, we highlight recent advances and clinical studies involving RNA-based therapeutics and CRC. We also discuss their advantages and limitations that remain to be overcome for the treatment of human CRC.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, United States.
| | - Bin Guo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, United States.
| |
Collapse
|
27
|
Song Z, Zhuo Z, Ma Z, Hou C, Chen G, Xu G. Hsa_Circ_0001206 is downregulated and inhibits cell proliferation, migration and invasion in prostate cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2449-2464. [PMID: 31198063 DOI: 10.1080/21691401.2019.1626866] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Our study is to explore the expression profiles and potential functions of circRNAs in prostate cancer (PCa). A total of 95 circRNAs and 830 mRNAs were screened to be significantly differentially expressed in PCa tissues by microarrays. Co-expression and competitive endogenous RNA (ceRNA) network were constructed to reveal the potential regulatory mechanisms of circRNAs. Three circRNAs, hsa_circ_0001206, hsa_circ_0001633, and hsa_circ_0009061 were validated to be down-regulated in PCa by quantitative real-time PCR (qRT-PCR) and hsa_circ_0001206 as well as hsa_circ_0009061 was significantly associated with clinical features of PCa patients. Meanwhile, Receiver Operating Characteristic (ROC) curves showed their good diagnostic value as biomarkers for PCa. The down-regulation of hsa_circ_001206 was partly because of the regulation of DExH-Box Helicase 9 (DHX9). Moreover, overexpression of hsa_circ_0001206 inhibited PCa cell proliferation, migration, and invasion in vitro and prevented tumor growth in vivo. Dual-luciferase reporter assays showed hsa_circ_0001206 could directly bind to miR-1285-5p. The expression of Smad4, a well-known suppressive gene in PCa, can be increased by overexpression of hsa_circ_0001206 and this effect could be partly reversed by co-transfection of miR-1285-5p mimic. The study revealed expression profiles and potential functions of circRNAs and demonstrated hsa_circ_0001206 played a suppressive role in the pathogenesis of PCa.
Collapse
Affiliation(s)
- Zhenyu Song
- a Department of Urology, Jinshan Hospital of Fudan University , Shanghai , China
| | - Zhiyuan Zhuo
- a Department of Urology, Jinshan Hospital of Fudan University , Shanghai , China
| | - Zhe Ma
- a Department of Urology, Jinshan Hospital of Fudan University , Shanghai , China
| | - Chuansheng Hou
- a Department of Urology, Jinshan Hospital of Fudan University , Shanghai , China
| | - Gang Chen
- a Department of Urology, Jinshan Hospital of Fudan University , Shanghai , China
| | - Guoxiong Xu
- b Center Laboratory, Jinshan Hospital, Fudan University , Shanghai , China
| |
Collapse
|
28
|
Yan J, Xiong H, Cai S, Wen N, He Q, Liu Y, Peng D, Liu Z. Advances in aptamer screening technologies. Talanta 2019; 200:124-144. [DOI: 10.1016/j.talanta.2019.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/20/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
|
29
|
Civit L, Theodorou I, Frey F, Weber H, Lingnau A, Gröber C, Blank M, Dambrune C, Stunden J, Beyer M, Schultze J, Latz E, Ducongé F, Kubbutat MHG, Mayer G. Targeting hormone refractory prostate cancer by in vivo selected DNA libraries in an orthotopic xenograft mouse model. Sci Rep 2019; 9:4976. [PMID: 30899039 PMCID: PMC6428855 DOI: 10.1038/s41598-019-41460-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
The targeting of specific tissue is a major challenge for the effective use of therapeutics and agents mediating this targeting are strongly demanded. We report here on an in vivo selection technology that enables the de novo identification of pegylated DNA aptamers pursuing tissue sites harbouring a hormone refractory prostate tumour. To this end, two libraries, one of which bearing an 11 kDa polyethylene glycol (PEG) modification, were used in an orthotopic xenograft prostate tumour mouse model for the selection process. Next-generation sequencing revealed an in vivo enriched pegylated but not a naïve DNA aptamer recognising prostate cancer tissue implanted either subcutaneous or orthotopically in mice. This aptamer represents a valuable and cost-effective tool for the development of targeted therapies for prostate cancer. The described selection strategy and its analysis is not limited to prostate cancer but will be adaptable to various tissues, tumours, and metastases. This opens the path towards DNA aptamers being experimentally and clinically engaged as molecules for developing targeted therapy strategies.
Collapse
Affiliation(s)
- Laia Civit
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Ioanna Theodorou
- CEA, DRT, Institut de biologie François-Jacob, Molecular Imaging Research Center (MIRCen), UMR CNRS 9199, 18 Route du Panorama, 92260, Roses, France
| | - Franziska Frey
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Holger Weber
- KTB Tumorforschungsgesellschaft mbH, Research Division ProQinase, Breisacher Str. 117, 79106, Freiburg, Germany.,ProQinase GmbH, Breisacher Straße 117, 79106, Freiburg, Germany
| | - Andreas Lingnau
- KTB Tumorforschungsgesellschaft mbH, Research Division ProQinase, Breisacher Str. 117, 79106, Freiburg, Germany.,Genmab B.V., Yalelaan 60, 3584 CM, Utrecht, The Netherlands
| | - Carsten Gröber
- AptaIT GmbH, Am Klopferspitz 19a, 82152, Planegg, Martinsried, Germany
| | - Michael Blank
- AptaIT GmbH, Am Klopferspitz 19a, 82152, Planegg, Martinsried, Germany
| | - Chloé Dambrune
- CEA, DRT, Institut de biologie François-Jacob, Molecular Imaging Research Center (MIRCen), UMR CNRS 9199, 18 Route du Panorama, 92260, Roses, France
| | - James Stunden
- Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Marc Beyer
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics at the DZNE and the University of Bonn, Sigmund-Freud-Str. 27, 53127, Bonn, Germany.,Molecular Immunology in Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Joachim Schultze
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics at the DZNE and the University of Bonn, Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Frédéric Ducongé
- CEA, DRT, Institut de biologie François-Jacob, Molecular Imaging Research Center (MIRCen), UMR CNRS 9199, 18 Route du Panorama, 92260, Roses, France
| | - Michael H G Kubbutat
- KTB Tumorforschungsgesellschaft mbH, Research Division ProQinase, Breisacher Str. 117, 79106, Freiburg, Germany.,ProQinase GmbH, Breisacher Straße 117, 79106, Freiburg, Germany
| | - Günter Mayer
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany. .,Center of Aptamer Research and Development (CARD), University of Bonn, Gerhard-Domagk Str. 1, 53121, Bonn, Germany.
| |
Collapse
|
30
|
Chen L, He W, Jiang H, Wu L, Xiong W, Li B, Zhou Z, Qian Y. In vivo SELEX of bone targeting aptamer in prostate cancer bone metastasis model. Int J Nanomedicine 2018; 14:149-159. [PMID: 30613143 PMCID: PMC6306056 DOI: 10.2147/ijn.s188003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose PB is one of the most severe complications of late stage prostate cancer and negatively impacts patient quality of life. A major challenge for the treatment of cancer bone metastasis is the management of efficient drug delivery to metastatic bone lesion. We aimed to explore the use of aptamers as promising tools to develop a targeted drug delivery system for PBs. Materials and methods In vivo SELEX was applied to identify bone targeting aptamer in a mouse model with PBs. Results The aptamer (designated as “PB”) with the highest bone targeting frequency in mice bearing PC3 PB was selected for further analysis. The PB aptamer specifically targeted modulated endothelial cells in response to cancer cells in the bones of mice bearing PC3 PBs. The targeting efficiency of the PB aptamer conjugated to gold particles was verified in vivo. Conclusion This investigation highlights the promise of in vivo SELEX for the discovery of bone targeting aptamers for use in drug delivery.
Collapse
Affiliation(s)
- Lingxiao Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Huichuan Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Longxiang Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Xiong
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bolun Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhihua Zhou
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Yuna Qian
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou, Zhejiang 325001, China, .,School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China, .,Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing 400045, China,
| |
Collapse
|
31
|
Kumar S, Jain S, Dilbaghi N, Ahluwalia AS, Hassan AA, Kim KH. Advanced Selection Methodologies for DNAzymes in Sensing and Healthcare Applications. Trends Biochem Sci 2018; 44:190-213. [PMID: 30559045 DOI: 10.1016/j.tibs.2018.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
DNAzymes have been widely explored owing to their excellent catalytic activity in a broad range of applications, notably in sensing and biomedical devices. These newly discovered applications have built high hopes for designing novel catalytic DNAzymes. However, the selection of efficient DNAzymes is a challenging process but one that is of crucial importance. Initially, systemic evolution of ligands by exponential enrichment (SELEX) was a labor-intensive and time-consuming process, but recent advances have accelerated the automated generation of DNAzyme molecules. This review summarizes recent advances in SELEX that improve the affinity and specificity of DNAzymes. The thriving generation of new DNAzymes is expected to open the door to several healthcare applications. Therefore, a significant portion of this review is dedicated to various biological applications of DNAzymes, such as sensing, therapeutics, and nanodevices. In addition, discussion is further extended to the barriers encountered for the real-life application of these DNAzymes to provide a foundation for future research.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India; Department of Civil Engineering, College of Engineering, University of Nebraska at Lincoln, PO Box 886105, Lincoln, NE 68588-6105, USA.
| | - Shikha Jain
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India
| | | | - Ashraf Aly Hassan
- Department of Civil Engineering, College of Engineering, University of Nebraska at Lincoln, PO Box 886105, Lincoln, NE 68588-6105, USA
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
32
|
Camorani S, Fedele M, Zannetti A, Cerchia L. TNBC Challenge: Oligonucleotide Aptamers for New Imaging and Therapy Modalities. Pharmaceuticals (Basel) 2018; 11:ph11040123. [PMID: 30428522 PMCID: PMC6316260 DOI: 10.3390/ph11040123] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022] Open
Abstract
Compared to other breast cancers, triple-negative breast cancer (TNBC) usually affects younger patients, is larger in size, of higher grade and is biologically more aggressive. To date, conventional cytotoxic chemotherapy remains the only available treatment for TNBC because it lacks expression of the estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2), and no alternative targetable molecules have been identified so far. The high biological and clinical heterogeneity adds a further challenge to TNBC management and requires the identification of new biomarkers to improve detection by imaging, thus allowing the specific treatment of each individual TNBC subtype. The Systematic Evolution of Ligands by EXponential enrichment (SELEX) technique holds great promise to the search for novel targetable biomarkers, and aptamer-based molecular approaches have the potential to overcome obstacles of current imaging and therapy modalities. In this review, we highlight recent advances in oligonucleotide aptamers used as imaging and/or therapeutic agents in TNBC, discussing the potential options to discover, image and hit new actionable targets in TNBC.
Collapse
Affiliation(s)
- Simona Camorani
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore (IEOS), CNR, 80145 Naples, Italy.
| | - Monica Fedele
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore (IEOS), CNR, 80145 Naples, Italy.
| | | | - Laura Cerchia
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore (IEOS), CNR, 80145 Naples, Italy.
| |
Collapse
|
33
|
Matz KM, Guzman RM, Goodman AG. The Role of Nucleic Acid Sensing in Controlling Microbial and Autoimmune Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 345:35-136. [PMID: 30904196 PMCID: PMC6445394 DOI: 10.1016/bs.ircmb.2018.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Innate immunity, the first line of defense against invading pathogens, is an ancient form of host defense found in all animals, from sponges to humans. During infection, innate immune receptors recognize conserved molecular patterns, such as microbial surface molecules, metabolites produces during infection, or nucleic acids of the microbe's genome. When initiated, the innate immune response activates a host defense program that leads to the synthesis proteins capable of pathogen killing. In mammals, the induction of cytokines during the innate immune response leads to the recruitment of professional immune cells to the site of infection, leading to an adaptive immune response. While a fully functional innate immune response is crucial for a proper host response and curbing microbial infection, if the innate immune response is dysfunctional and is activated in the absence of infection, autoinflammation and autoimmune disorders can develop. Therefore, it follows that the innate immune response must be tightly controlled to avoid an autoimmune response from host-derived molecules, yet still unencumbered to respond to infection. In this review, we will focus on the innate immune response activated from cytosolic nucleic acids, derived from the microbe or host itself. We will depict how viruses and bacteria activate these nucleic acid sensing pathways and their mechanisms to inhibit the pathways. We will also describe the autoinflammatory and autoimmune disorders that develop when these pathways are hyperactive. Finally, we will discuss gaps in knowledge with regard to innate immune response failure and identify where further research is needed.
Collapse
Affiliation(s)
- Keesha M Matz
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - R Marena Guzman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States; Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States.
| |
Collapse
|
34
|
Bayat P, Nosrati R, Alibolandi M, Rafatpanah H, Abnous K, Khedri M, Ramezani M. SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie 2018; 154:132-155. [PMID: 30193856 DOI: 10.1016/j.biochi.2018.09.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/02/2018] [Indexed: 12/14/2022]
Abstract
Systematic evolution of ligand by exponential enrichment (SELEX) is an efficient method used to isolate high-affinity single stranded oligonucleotides from a large random sequence pool. These SELEX-derived oligonucleotides named aptamer, can be selected against a broad spectrum of target molecules including proteins, cells, microorganisms and chemical compounds. Like antibodies, aptamers have a great potential in interacting with and binding to their targets through structural recognition and are therefore called "chemical antibodies". However, aptamers offer advantages over antibodies including smaller size, better tissue penetration, higher thermal stability, lower immunogenicity, easier production, lower cost of synthesis and facilitated conjugation or modification with different functional moieties. Thus, aptamers represent an attractive substitution for protein antibodies in the fields of biomarker discovery, diagnosis, imaging and targeted therapy. Enormous interest in aptamer technology triggered the development of SELEX that has underwent numerous modifications since its introduction in 1990. This review will discuss the recent advances in SELEX methods and their advantages and limitations. Aptamer applications are also briefly outlined in this review.
Collapse
Affiliation(s)
- Payam Bayat
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Khedri
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
35
|
Röthlisberger P, Hollenstein M. Aptamer chemistry. Adv Drug Deliv Rev 2018; 134:3-21. [PMID: 29626546 DOI: 10.1016/j.addr.2018.04.007] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded DNA or RNA molecules capable of tightly binding to specific targets. These functional nucleic acids are obtained by an in vitro Darwinian evolution method coined SELEX (Systematic Evolution of Ligands by EXponential enrichment). Compared to their proteinaceous counterparts, aptamers offer a number of advantages including a low immunogenicity, a relative ease of large-scale synthesis at affordable costs with little or no batch-to-batch variation, physical stability, and facile chemical modification. These alluring properties have propelled aptamers into the forefront of numerous practical applications such as the development of therapeutic and diagnostic agents as well as the construction of biosensing platforms. However, commercial success of aptamers still proceeds at a weak pace. The main factors responsible for this delay are the susceptibility of aptamers to degradation by nucleases, their rapid renal filtration, suboptimal thermal stability, and the lack of functional group diversity. Here, we describe the different chemical methods available to mitigate these shortcomings. Particularly, we describe the chemical post-SELEX processing of aptamers to include functional groups as well as the inclusion of modified nucleoside triphosphates into the SELEX protocol. These methods will be illustrated with successful examples of chemically modified aptamers used as drug delivery systems, in therapeutic applications, and as biosensing devices.
Collapse
|
36
|
Current state of in vivo panning technologies: Designing specificity and affinity into the future of drug targeting. Adv Drug Deliv Rev 2018; 130:39-49. [PMID: 29964079 DOI: 10.1016/j.addr.2018.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/24/2018] [Accepted: 06/22/2018] [Indexed: 11/20/2022]
Abstract
Targeting ligands are used in drug delivery to improve drug distribution to desired cells or tissues and to facilitate cellular entry. In vivo biopanning, whereby billions of potential ligand sequences are screened in biologically-relevant and complex conditions, is a powerful method for identification of novel target ligands. This tool has impacted drug delivery technologies and expanded our arsenal of therapeutics and diagnostics. Within this review we will discuss current in vivo panning technologies and ways that these technologies can be improved to advance next-generation drug delivery strategies.
Collapse
|
37
|
Oligonucleotide aptamers against tyrosine kinase receptors: Prospect for anticancer applications. Biochim Biophys Acta Rev Cancer 2018; 1869:263-277. [PMID: 29574128 DOI: 10.1016/j.bbcan.2018.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
Abstract
Transmembrane receptor tyrosine kinases (RTKs) play crucial roles in cancer cell proliferation, survival, migration and differentiation. Area of intense research is searching for effective anticancer therapies targeting these receptors and, to date, several monoclonal antibodies and small-molecule tyrosine kinase inhibitors have entered the clinic. However, some of these drugs show limited efficacy and give rise to acquired resistance. Emerging highly selective compounds for anticancer therapy are oligonucleotide aptamers that interact with their targets by recognizing a specific three-dimensional structure. Because of their nucleic acid nature, the rational design of advanced strategies to manipulate aptamers for both diagnostic and therapeutic applications is greatly simplified over antibodies. In this manuscript, we will provide a comprehensive overview of oligonucleotide aptamers as next generation strategies to efficiently target RTKs in human cancers.
Collapse
|
38
|
Selection and Identification of Skeletal-Muscle-Targeted RNA Aptamers. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 10:199-214. [PMID: 29499933 PMCID: PMC5862129 DOI: 10.1016/j.omtn.2017.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 01/16/2023]
Abstract
Oligonucleotide gene therapy has shown great promise for the treatment of muscular dystrophies. Nevertheless, the selective delivery to affected muscles has shown to be challenging because of their high representation in the body and the high complexity of their cell membranes. Current trials show loss of therapeutic molecules to non-target tissues leading to lower target efficacy. Therefore, strategies that increase uptake efficiency would be particularly compelling. To address this need, we applied a cell-internalization SELEX (Systematic Evolution of Ligands by Exponential Enrichment) approach and identified a skeletal muscle-specific RNA aptamer. A01B RNA aptamer preferentially internalizes in skeletal muscle cells and exhibits decreased affinity for off-target cells. Moreover, this in vitro selected aptamer retained its functionality in vivo, suggesting a potential new approach for targeting skeletal muscles. Ultimately, this will aid in the development of targeted oligonucleotide therapies against muscular dystrophies.
Collapse
|
39
|
Chen C, Zhou S, Cai Y, Tang F. Nucleic acid aptamer application in diagnosis and therapy of colorectal cancer based on cell-SELEX technology. NPJ Precis Oncol 2017; 1:37. [PMID: 29872716 PMCID: PMC5871892 DOI: 10.1038/s41698-017-0041-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022] Open
Abstract
Nucleic acid aptamers are a class of high-affinity nucleic acid ligands. They serve as “chemical antibodies” since their high affinity and specificity. Nucleic acid aptamers are generated from nucleic acid random-sequence using a systematic evolution of ligands by exponential enrichment (SELEX) technology. SELEX is a process of effectively selecting aptamers from different targets. A newly developed cell-based SELEX technique has been widely used in biomarker discovery, early diagnosis and targeted cancer therapy, particular at colorectal cancer (CRC). Combined with nanostructures, nano-aptamer-drug delivery system was constructed for drug delivery. Various nanostructures functionalized with aptamers are highly efficient and has been used in CRC therapeutic applications. In the present, we introduce a cell- SELEX technique, and summarize the potential application of aptamers as biomarkers in CRC diagnosis and therapy. And some characteristics of aptamer-targeted nanocarriers in CRC have been expatiated. The challenges and perspectives for cell-SELEX are also discussed.
Collapse
Affiliation(s)
- Chan Chen
- 1Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, 519000 Zhuhai, Guangdong China
| | - Shan Zhou
- 1Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, 519000 Zhuhai, Guangdong China
| | - Yongqiang Cai
- 1Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, 519000 Zhuhai, Guangdong China
| | - Faqing Tang
- 1Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, 519000 Zhuhai, Guangdong China.,2Clinical Laboratory, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410006 Changsha, China
| |
Collapse
|
40
|
Liu M, Yu X, Chen Z, Yang T, Yang D, Liu Q, Du K, Li B, Wang Z, Li S, Deng Y, He N. Aptamer selection and applications for breast cancer diagnostics and therapy. J Nanobiotechnology 2017; 15:81. [PMID: 29132385 PMCID: PMC5683342 DOI: 10.1186/s12951-017-0311-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022] Open
Abstract
Aptamers are short non-coding, single-stranded oligonucleotides (RNA or DNA) developed through Systematic Evolution of Ligands by Exponential enrichment (SELEX) in vitro. Similar to antibodies, aptamers can bind to specific targets with high affinity, and are considered promising therapeutic agents as they have several advantages over antibodies, including high specificity, stability, and non-immunogenicity. Furthermore, aptamers can be produced at a low cost and easily modified, and are, therefore, called "chemical antibodies". In the past years, a variety of aptamers specifically bound to both breast cancer biomarkers and cells had been selected. Besides, taking advantage of nanomaterials, there were a number of aptamer-nanomaterial conjugates been developed and widely investigated for diagnostics and targeted therapy of breast cancer. In this short review, we first present a systematical review of various aptamer selection methods. Then, various aptamer-based diagnostic and therapeutic strategies of breast cancer were provided. Finally, the current problems, challenges, and future perspectives in the field were thoroughly discussed.
Collapse
MESH Headings
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/therapeutic use
- Aptamers, Nucleotide/chemical synthesis
- Aptamers, Nucleotide/pharmacokinetics
- Aptamers, Nucleotide/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/diagnosis
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/therapy
- Cell Line, Tumor
- Doxorubicin/chemistry
- Doxorubicin/therapeutic use
- Epithelial Cell Adhesion Molecule/genetics
- Epithelial Cell Adhesion Molecule/metabolism
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression
- Humans
- Ligands
- Molecular Targeted Therapy/methods
- Nanotubes
- Protein Binding
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- SELEX Aptamer Technique
Collapse
Affiliation(s)
- Mei Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 People’s Republic of China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 People’s Republic of China
| | - Xiaocheng Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 People’s Republic of China
| | - Zhu Chen
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Green Chemistry and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007 People’s Republic of China
| | - Tong Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 People’s Republic of China
| | - Dandan Yang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 People’s Republic of China
| | - Qianqian Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 People’s Republic of China
| | - Keke Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 People’s Republic of China
| | - Bo Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 People’s Republic of China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 People’s Republic of China
| | - Song Li
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Green Chemistry and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007 People’s Republic of China
| | - Yan Deng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 People’s Republic of China
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Green Chemistry and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007 People’s Republic of China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 People’s Republic of China
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Green Chemistry and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007 People’s Republic of China
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW We will describe recently discovered smart aptamers with tumor specificity, with an emphasis on targeted delivery of novel therapeutic molecules, cancer-specific biomarkers, and immunotherapy. RECENT FINDINGS The development of cancer-specific aptamers has facilitated targeted delivery of potent therapeutic molecules to cancer cells without harming nontumoral cells. This specificity also makes it possible to discover novel cancer biomarkers. Furthermore, alternative immune-checkpoint blockade aptamers have been developed for combinational immunotherapy. SUMMARY Aptamers selected against cancer cells show cancer specificity, which has great potential for targeting. First, functionalizing targeted aptamers with therapeutic molecule payloads (e.g., small activating RNAs, antimitotic drugs, therapeutic antibodies, and peptides) facilitates successful delivery into cancer cells. This approach greatly improves the therapeutic index by minimizing side-effects in nontumoral cells. Second, cancer-specific proteins have been identified as cancer biomarkers through in-vitro and in-vivo selection, aptamer pull-down assays, and mass spectrometry. These newly discovered biomarkers improve therapeutic intervention and diagnostic specificity. In addition, the development of alternative immune-checkpoint blockade aptamers is suggested for use in combinational immunotherapeutic with current immune blockade regimens, to reduce the resistance and exhaustion of T cells in clinical trials. VIDEO ABSTRACT: http://links.lww.com/COON/A21.
Collapse
|
42
|
Development of aptamers against unpurified proteins. Biotechnol Bioeng 2017; 114:2706-2716. [DOI: 10.1002/bit.26389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/24/2017] [Accepted: 07/19/2017] [Indexed: 01/12/2023]
|
43
|
Catuogno S, Esposito CL. Aptamer Cell-Based Selection: Overview and Advances. Biomedicines 2017; 5:biomedicines5030049. [PMID: 28805744 PMCID: PMC5618307 DOI: 10.3390/biomedicines5030049] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
Aptamers are high affinity single-stranded DNA/RNA molecules, produced by a combinatorial procedure named SELEX (Systematic Evolution of Ligands by Exponential enrichment), that are emerging as promising diagnostic and therapeutic tools. Among selection strategies, procedures using living cells as complex targets (referred as "cell-SELEX") have been developed as an effective mean to generate aptamers for heavily modified cell surface proteins, assuring the binding of the target in its native conformation. Here we give an up-to-date overview on cell-SELEX technology, discussing the most recent advances with a particular focus on cancer cell targeting. Examples of the different protocol applications and post-SELEX strategies will be briefly outlined.
Collapse
Affiliation(s)
- Silvia Catuogno
- Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore", CNR, Naples 80100, Italy.
| | - Carla Lucia Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore", CNR, Naples 80100, Italy.
| |
Collapse
|
44
|
Volk DE, Lokesh GLR. Development of Phosphorothioate DNA and DNA Thioaptamers. Biomedicines 2017; 5:E41. [PMID: 28703779 PMCID: PMC5618299 DOI: 10.3390/biomedicines5030041] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/03/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid aptamers are short RNA- or DNA-based affinity reagents typically selected from combinatorial libraries to bind to a specific target such as a protein, a small molecule, whole cells or even animals. Aptamers have utility in the development of diagnostic, imaging and therapeutic applications due to their size, physico-chemical nature and ease of synthesis and modification to suit the application. A variety of oligonucleotide modifications have been used to enhance the stability of aptamers from nuclease degradation in vivo. The non-bridging oxygen atoms of the phosphodiester backbones of RNA and DNA aptamers can be substituted with one or two sulfur atoms, resulting in thioaptamers with phosphorothioate or phosphorodithioate linkages, respectively. Such thioaptamers are known to have increased binding affinity towards their target, as well as enhanced resistance to nuclease degradation. In this review, we discuss the development of phosphorothioate chemistry and thioaptamers, with a brief review of selection methods.
Collapse
Affiliation(s)
- David E Volk
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Ganesh L R Lokesh
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
45
|
He L, Chen Y, Wu Y, Xu Y, Zhang Z, Liu Z. Nucleic acid sensing pattern recognition receptors in the development of colorectal cancer and colitis. Cell Mol Life Sci 2017; 74:2395-2411. [PMID: 28224203 PMCID: PMC11107753 DOI: 10.1007/s00018-017-2477-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/02/2017] [Accepted: 01/26/2017] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths that is often associated with inflammation initiated by activation of pattern recognition receptors (PRRs). Nucleic acid sensing PRRs are one of the major subsets of PRRs that sense nucleic acid (DNA and RNA), mainly including some members of Toll-like receptors (TLR3, 7, 8, 9), AIM2-like receptors (AIM2, IFI16), STING, cGAS, RNA polymerase III, and DExD/H box nucleic acid helicases (such as RIG-I like receptors (RIG-I, MDA5, LPG2), DDX1, 3, 5, 7, 17, 21, 41, 60, and DHX9, 36). Activation of these receptors eventually leads to the release of cytokines and activation of immune cells, which are well known to play crucial roles in host defense against intracellular bacterial and virus infection. However, the functions of these nucleic acid sensing PRRs in the other diseases such as CRC and colitis remain largely unknown. Recent studies indicated that nucleic acid sensing PRRs contribute to CRC and/or colitis development, and therapeutic modulation of nucleic acid sensing PRRs may reduce the risk of CRC development. However, until now, a comprehensive review on the role of nucleic acid sensing PRRs in CRC and colitis is still lacking. This review provided an overview of the roles as well as the mechanisms of these nucleic acid sensing PRRs (AIM2, STING, cGAS, RIG-I and its downstream molecules, DDX3, 5, 6,17, and DHX9, 36) in CRC and colitis, which may aid the diagnosis, therapy, and prognostic prediction of CRC and colitis.
Collapse
Affiliation(s)
- Liangmei He
- Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yayun Chen
- Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yuanbing Wu
- Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Ying Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Zixiang Zhang
- The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
46
|
Cao S, Sun R, Wang W, Meng X, Zhang Y, Zhang N, Yang S. RNA helicase DHX9 may be a therapeutic target in lung cancer and inhibited by enoxacin. Am J Transl Res 2017; 9:674-682. [PMID: 28337295 PMCID: PMC5340702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
RNA helicase DHX9 is a member of human RNA enzymes. Previous studies have reported that DHX9 is highly expressed in various types of malignant tumor. However, its role in the progression of lung cancer remains to be fully clarified. The present study aims to investigate the oncogenic role of DHX9 in serum, tissues and lung cancer cell lines in vitro. We used RNA interference to downregulate DHX9 expression in A549 cells using a small interfering RNA lentiviral vector. Subsequently, enoxacin was used to inhibit cell proliferation, and this effect was detected using MTT. The results showed that DHX9 was overexpressed in the serum and tissues of lung cancer, especially in small cell lung cancer. Though enoxacin suppressed the proliferation of NSCLC cells, the inhibition effect was diminished when DHX9 was knocked down. In conclusion, the present study provided evidence suggesting that DHX9 was overexpressed in lung cancer and may contribute to the growth of lung cancer, and enoxacin may inhibit the proliferation based on DHX9. Thus DHX9 may be used as a diagnostic marker and a potential therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Shiguang Cao
- Department of Respiratory, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, China
- Department of Nuclear Medicine, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, China
| | - Ruiying Sun
- Department of Respiratory, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, China
| | - Wei Wang
- Department of Respiratory, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, China
| | - Xia Meng
- Department of Respiratory, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, China
| | - Yuping Zhang
- Department of Respiratory, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, China
| | - Na Zhang
- Department of Respiratory, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, China
| | - Shuanying Yang
- Department of Respiratory, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, China
| |
Collapse
|