1
|
Zhao Y, Liu J, Hu L, Yao X, Tu R, Goto T, Zhang L, Wu X, Liu G, Dai H. Novel "hot spring"-mimetic scaffolds for sequential neurovascular network reconstruction and osteoporosis reversion. Biomaterials 2025; 320:123191. [PMID: 40056610 DOI: 10.1016/j.biomaterials.2025.123191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 03/10/2025]
Abstract
Neurovascular network damage and excessive hydrogen peroxide (H2O2) accumulation are the main obstacles for osteoporotic bone defect repair. It is extremely essential to endow the implants with sequential neuroangiogenesis promotion and osteoporosis pathological microenvironment improvement. Hot springs exhibits excellent facilitation on angiogenesis and bone regeneration due to abundant minerals, trace elements and modest thermal stimulation. Inspired by the hot spring effect, we propose a novel porous photothermal calcium magnesium phosphate bone cement (MCPC) compounded with manganese-substituted Fe3O4 (MnxFe3-xO4), which is perfused by temperature-responsive PLGA hydrogel loaded with vascular endothelial growth factor (VEGF) and nerve growth factor (NGF). At the initial stage of implantation, MnxFe3-xO4 scavenges excessive H2O2 under the heat stimulation triggered by near-infrared (NIR) light, and the factors are released from the hydrogel that stimulate the impaired neurovascular network reconstruction; at the later stage, the continuous hot spring effect maintains mild thermal stimulation and sustained release of bioactive ions (Ca2+, Mn2+, Mg2+ and PO43-), which inhibits osteoclast function and activity, and promotes osteogenic differentiation and mineralization. The osteoporotic bone defect model in ovariectomized (OVX) rats further verifies that a synergy effect of photothermal therapy and bioactive factors/ions significantly promotes neurovascular bone regeneration. It demonstrates that the hot spring mimetic effect possesses huge potential for the sequential treatment of osteoporosis bone defect.
Collapse
Affiliation(s)
- Yanan Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiawei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Liangcong Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaokang Yao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Rong Tu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Takashi Goto
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Lianmeng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China; National energy key laboratory for new hydrogen-ammonia energy technologies,Foshan Xianhu Laboratory, Foshan 528200, China.
| |
Collapse
|
2
|
Mohanta SK, Heron C, Klaus-Bergmann A, Horstmann H, Brakenhielm E, Giannarelli C, Habenicht AJR, Gerhardt H, Weber C. Metabolic and Immune Crosstalk in Cardiovascular Disease. Circ Res 2025; 136:1433-1453. [PMID: 40403115 DOI: 10.1161/circresaha.125.325496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Cardiovascular diseases including atherosclerosis and heart failure, arise from the intricate interplay of metabolic, immune, and neural dysregulation within vascular and cardiac tissues: This review focuses on integrating recent advances in metabolic and immune crosstalk of the cardiac vasculature that affects cardiometabolic health and disease progression. Coronary and lymphatic endothelial cells regulate cardiac metabolism, and their dysfunction is linked to cardiovascular diseases. Lymphatics maintain tissue homeostasis, including clearing metabolic waste, lipids, and immune cells, and their maladaptation in metabolic diseases worsens outcomes. Altered vascular endothelial metabolism in heart failure drives immune-mediated inflammation, fibrosis, and adverse cardiac remodeling. Concurrently, artery tertiary lymphoid organs formed in the adventitia of advanced atherosclerotic arteries, serve as pivotal neuroimmune hubs, coordinating local immunity through T and B cell activation and neurovascular signaling via artery-brain circuits. T cells within plaques and artery tertiary lymphoid organs undergo clonal expansion as a result of peripheral tolerance breakdown, with proinflammatory CD4+ and CD8+ subsets amplifying atherosclerosis, effects further shaped by systemic immune activation. Therapeutic strategies targeting endothelial cell metabolism, lymphatic dysfunction, neuroimmune crosstalk, and T cell plasticity hold promise for integrated cardiovascular disease management.
Collapse
Affiliation(s)
- Sarajo K Mohanta
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), LMU University Hospital, Munich, Germany (S.K.M., A.J.R.H., C.W.)
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany (S.K.M., A.J.R.H., C.W.)
| | - Coraline Heron
- UnivRouen Normandie, INSERM EnVI, UMR 1096, Rouen, France (C.H., E.B.)
| | - Alexandra Klaus-Bergmann
- Integrative Vascular Biology Laboratory, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (A.K.-B., H.G.)
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany (A.K.-B., H.G.)
| | - Hauke Horstmann
- Cardiology and Angiology, Medical Center (H.H.), University of Freiburg, Freiburg, Germany
- Faculty of Medicine (H.H.), University of Freiburg, Freiburg, Germany
- Department of Medicine, Division of Cardiology (H.H., C.G.), NYU Grossman School of Medicine, New York, NY
| | - Ebba Brakenhielm
- UnivRouen Normandie, INSERM EnVI, UMR 1096, Rouen, France (C.H., E.B.)
| | - Chiara Giannarelli
- Department of Medicine, Division of Cardiology (H.H., C.G.), NYU Grossman School of Medicine, New York, NY
- Department of Pathology (C.G.), NYU Grossman School of Medicine, New York, NY
| | - Andreas J R Habenicht
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), LMU University Hospital, Munich, Germany (S.K.M., A.J.R.H., C.W.)
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany (S.K.M., A.J.R.H., C.W.)
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China (A.J.R.H.)
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (A.K.-B., H.G.)
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany (A.K.-B., H.G.)
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), LMU University Hospital, Munich, Germany (S.K.M., A.J.R.H., C.W.)
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany (S.K.M., A.J.R.H., C.W.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands (C.W.)
| |
Collapse
|
3
|
Jensen L, Guo Z, Sun X, Jing X, Yang Y, Cao Y. Angiogenesis, signaling pathways, and animal models. Chin Med J (Engl) 2025; 138:1153-1162. [PMID: 40254738 PMCID: PMC12091601 DOI: 10.1097/cm9.0000000000003561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Indexed: 04/22/2025] Open
Abstract
ABSTRACT The vasculature plays a critical role in homeostasis and health as well as in the development and progression of a wide range of diseases, including cancer, cardiovascular diseases, metabolic diseases (and their complications), chronic inflammatory diseases, ophthalmic diseases, and neurodegenerative diseases. As such, the growth of the vasculature mediates normal development and physiology, as well as disease, when pathologically induced vessels are morphologically and functionally altered owing to an imbalance of angiogenesis-stimulating and angiogenesis-inhibiting factors. This review offers an overview of the angiogenic process and discusses recent findings that provide additional interesting nuances to this process, including the roles of intussusception and angiovasculogenesis, which may hold promise for future therapeutic interventions. In addition, we review the methodology, including those of in vitro and in vivo assays, which has helped build the vast amount of knowledge on angiogenesis available today and identify important remaining knowledge gaps that should be bridged through future research.
Collapse
Affiliation(s)
- Lasse Jensen
- Department of Health, Medical and Caring Sciences, Unit of Diagnostics and Specialist Medicine, Linköping University, Linköping SE-58183, Sweden
| | - Ziheng Guo
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoting Sun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vison and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325024, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 17165, Sweden
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 17165, Sweden
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 17165, Sweden
| |
Collapse
|
4
|
Huang H, Feng Y, Xu Y, Liu J, Peng W, Zeng L, Zeng Y, Liu J, He X, Liu H. Anlotinib mediates intrinsic drug resistance in hepatoblastoma through the GAD1/GABA pathway. Pediatr Res 2025:10.1038/s41390-025-04074-1. [PMID: 40369243 DOI: 10.1038/s41390-025-04074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/11/2025] [Accepted: 03/16/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Intrinsic resistance reduces the effectiveness of many anticancer therapies. Anlotinib, a small-molecule multi-targeted tyrosine kinase inhibitor, has shown potential in treating hepatoblastoma. This study investigates the role of γ-aminobutyric acid (GABA) in anlotinib resistance using in vivo and in vitro models. METHODS HuH-6 hepatoblastoma cells were implanted into nude mice to assess the effects of anlotinib on tumor growth. Neurotransmitter-targeted metabolomics was performed to analyze neurotransmitter metabolism in xenograft tumor tissues. In vitro, HuH-6 and HepG2 cells were treated with anlotinib to evaluate changes in GABA synthesis, degradation, and associated protein expression. RESULTS Anlotinib significantly inhibited HuH-6 tumor growth but was less effective than cisplatin. Neurotransmitter-targeted metabolomics showed tumors treated with anlotinib exhibited increased GABA levels. Anlotinib treatment also upregulated the protein expression of GAD1, a key enzyme in GABA synthesis. In vitro, anlotinib treatment enhanced GABA release and GAD1 expression in hepatoblastoma cells. Exogenous GABA stimulation promoted cell proliferation in vitro and tumor growth in vivo. Notably, GAD1 knockdown enhanced anlotinib's inhibitory effects on hepatoblastoma in vitro and in vivo. CONCLUSION Anlotinib induces intrinsic resistance in hepatoblastoma by upregulating GAD1 and increasing GABA accumulation. Targeting GAD1 may enhance anlotinib's therapeutic efficacy and help overcome resistance. IMPACT Anlotinib upregulates GAD1 to enhance GABA synthesis, driving intrinsic resistance in hepatoblastoma by activating tumor-promoting GABA signaling in the tumor microenvironment. First identification of the GAD1/GABA axis as a critical mediator of anlotinib resistance, expanding understanding of neurotransmitter-driven drug tolerance in pediatric cancers. GAD1 knockdown synergizes with anlotinib to overcome resistance, establishing a combinatorial strategy to enhance antitumor efficacy in preclinical models. Proposes targeting GABA metabolism to optimize anlotinib-based therapies, addressing unmet needs in refractory hepatoblastoma treatment.
Collapse
Affiliation(s)
- Haijin Huang
- Department of Pediatric Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Provincial Clinical Research Center for Vascular Anomalies, The First Affiliated Hospital of GanNan Medical University, Ganzhou, Jiangxi, China
| | - Yanping Feng
- Department of Neurological Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yuhui Xu
- Department of Respiratory Medicine, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Jianping Liu
- Department of General Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wei Peng
- Department of Pediatric Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Linshan Zeng
- Department of Pediatric Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yong Zeng
- Department of Pediatric Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jinping Liu
- Department of Pediatric Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiao He
- Department of General Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
| | - Haijin Liu
- Department of Pediatric Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
- Jiangxi Provincial Clinical Research Center for Vascular Anomalies, The First Affiliated Hospital of GanNan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
5
|
Koppel CJ, De Henau CMS, Vreeken D, DeRuiter MC, Jongbloed MRM, van Gils JM. The Role of the Axonal Guidance Cue Semaphorin 3A in Innervation of the Postnatal Heart in Health and Disease. Can J Cardiol 2025; 41:899-910. [PMID: 39746509 DOI: 10.1016/j.cjca.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
During cardiac development, the heart is innervated by the autonomous nervous system. After development, neurons of the autonomic nervous system have limited capacity for growth and regeneration. However, in recent decades, it has become clear that cardiac nerves can regenerate after cardiac damage. Excessive reinnervation, so-called sympathetic hyperinnervation, may render patients vulnerable to ventricular arrhythmias and heart failure. Several studies have investigated axonal guidance cues as mediators of cardiac innervation. Axonal guidance cues direct neuronal growth of the axon and play a significant role in the regeneration and remodelling of cardiac autonomic innervation after cardiac damage. This review focusses on the current literature regarding the axonal guidance cue group of semaphorins and their function in the healthy and diseased postnatal heart. In view of cardiac innervation, most studies have focussed on semaphorin 3A (SEMA3A), whereas less is known about the function of the other semaphorin classes. SEMA3A is a neuronal repellent and is associated with a decrease in the density of sympathetic neurons in the heart. Its decline in expression after myocardial infarction plays a role in the development of sympathetic hyperinnervation and the subsequent increased risk of ventricular arrhythmias. In congestive heart failure, the opposite occurs: an increase in SEMA3A expression underlies decreased nerve density that may also serve as a substrate for ventricular arrhythmias. Although the literature on their role in cardiac innervation is still relatively scarce, semaphorins, especially SEMA3A, seem worthwhile to consider when exploring options to modulate pathologic innervation patterns in cardiovascular disease.
Collapse
Affiliation(s)
- Claire J Koppel
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Charlotte M S De Henau
- Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Dianne Vreeken
- Department of Cardiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Marco C DeRuiter
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Monique R M Jongbloed
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands; Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Janine M van Gils
- Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
6
|
Jie J, Ju J, Wang Z, Chen J, Wu LP, Sun J. Organoid-Like Neurovascular Spheroids Promote the Recovery of Hypoxic-Ischemic Skin Flaps Through the Activation of Autophagy. Adv Healthc Mater 2025:e2405154. [PMID: 40237031 DOI: 10.1002/adhm.202405154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/16/2025] [Indexed: 04/17/2025]
Abstract
Crosstalk between nerves and blood vessels plays a crucial role in flap development, injury repair, and homeostasis maintenance. However, in most flap transplantation strategies, the interactions between nerves and blood vessels have been ignored, leading to unsatisfactory repair effects. In this study, highly sprouting organoid-like neurovascular spheroids (NVUs) with P34HB porous microsphere cores embedding in a supportive microenvironment of Gelatin Methacryloyl hydrogel are developed. Cell-laden porous microspheres successfully recapitulated neurovascular coupling by providing a biomimetic extracellular microenvironment for neural and vascular cells at an in vivo cell density. The results demonstrated that neurovascular spheres formed complex vascular plexuses and secreted extracellular matrix, improving in vivo regeneration of skin flap. Autophagy activation regulated by nerves is detected along with the assembly of vascular networks, suggesting its role in neovascularization. By incorporating fibroblasts, highly biomimetic organoid-like models composed of dermis, vasculature, and innervation are facilely developed to mimic dermal tissues. This stable and highly reproducible in vitro model can be utilized for organ repair and mechanistic exploration.
Collapse
Affiliation(s)
- Junjin Jie
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingyi Ju
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Chen
- Key Laboratory of Immune Response and Immunotherapy, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Lin-Ping Wu
- Key Laboratory of Immune Response and Immunotherapy, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
7
|
Liu J, Kang J, Zou T, Hu M, Zhang Y, Lin S, Liang Y, Zhong J, Zhao Y, Wei X, Zhang C. Functional cobalt-doped hydrogel scaffold enhances concurrent vascularization and neurogenesis. J Nanobiotechnology 2025; 23:179. [PMID: 40205442 PMCID: PMC11984231 DOI: 10.1186/s12951-025-03218-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/10/2025] [Indexed: 04/11/2025] Open
Abstract
Achieving functional tissue regeneration hinges on the coordinated growth of intricate blood vessels and nerves within the defect area. However, current strategies do not offer a reliable and effective way to fulfill this critical need. To address this challenge, a three-dimensional (3D) gelatin methacryloyl-multi-walled carbon nanotube/cobalt (GelMA-MWCNTs/Co) hydrogel with controlled release of cobalt (Co) ions was developed for hypoxia-mimicking and dual beneficial effects on promoting vasculogenesis and neurogenesis. GelMA-MWCNTs/Co hydrogel exhibited sustained release of Co ions, promoting laden cell viability and long-term cell survival. GelMA-MWCNTs/Co hydrogel effectively enhanced human umbilical vein endothelial cells (HUVECs) vasculogenesis when cocultured with stem cells from apical papilla (SCAP). Moreover, this hydrogel facilitated the interaction between the pre-formed vascular and neural-like structures generated by electrical stimulation-induced SCAP (iSCAP). Furthermore, our in vivo study revealed that the GelMA-MWCNTs/Co hydrogel remarkably enhanced neovascularization and accelerated anastomosis with the host vasculature. The pre-vascularized scaffolds boosted the presence of neural differentiated SCAP in the regenerated tissue. This study provided proof of integrating functional Co ions release materials and dental-derived stem cells within a hydrogel scaffold as a promising potential for achieving simultaneous vascularization and neurogenesis.
Collapse
Affiliation(s)
- Junqing Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Jun Kang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ting Zou
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, China
| | - Mingxin Hu
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yuchen Zhang
- Department of Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shulan Lin
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ye Liang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Jialin Zhong
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yi Zhao
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University, Fuzhou, China
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Gerhardt T, Huynh P, McAlpine CS. Neuroimmune circuits in the plaque and bone marrow regulate atherosclerosis. Cardiovasc Res 2025; 120:2395-2407. [PMID: 39086175 PMCID: PMC11976727 DOI: 10.1093/cvr/cvae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 06/01/2024] [Indexed: 08/02/2024] Open
Abstract
Atherosclerosis remains the leading cause of death globally. Although its focal pathology is atheroma that develops in arterial walls, atherosclerosis is a systemic disease involving contributions by many organs and tissues. It is now established that the immune system causally contributes to all phases of atherosclerosis. Recent and emerging evidence positions the nervous system as a key modulator of inflammatory processes that underlie atherosclerosis. This neuroimmune cross-talk, we are learning, is bidirectional, and immune-regulated afferent signalling is becoming increasingly recognized in atherosclerosis. Here, we summarize data and concepts that link the immune and nervous systems in atherosclerosis by focusing on two important sites, the arterial vessel and the bone marrow.
Collapse
Affiliation(s)
- Teresa Gerhardt
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friede Springer Center for Cardiovascular Prevention at Charité, Berlin, Germany
| | - Pacific Huynh
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Cameron S McAlpine
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
9
|
Kyritsi K, Pacholczyk R, Douglass E, Yu M, Fang H, Zhou G, Kaur B, Wang Q, Munn DH, Hong B. β-blocker suppresses both tumoral sympathetic neurons and perivascular macrophages during oncolytic herpes virotherapy. J Immunother Cancer 2025; 13:e011322. [PMID: 40187755 PMCID: PMC11973798 DOI: 10.1136/jitc-2024-011322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/23/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND The autonomic nervous system (ANS) plays a key role in regulating tumor development and therapy resistance in various solid tumors. Within the ANS, the sympathetic nervous system (SNS) is typically associated with protumor effects. However, whether the SNS influences the antitumor efficacy of intratumoral injections of oncolytic herpes simplex virus (oHSV) in solid tumors remains unknown. METHODS In this study, we examined SNS innervation and its interaction with immune cell infiltration in both human and murine triple-negative breast cancer models during intratumoral oHSV injections and SNS blockade on oHSV's antitumor activity. RESULTS Intratumor oHSV injection promotes SNS innervation accompanied by CD45+cell infiltration in both the human MDA-MB-468 orthotopic model and the murine 4T1 mammary tumor model. Mechanistically, tumor-secreted factors vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and transforming growth factor beta (TGF-β) and transcription factors (CREB, AP-1, MeCP2, and REST), which promote SNS innervation, were found to be upregulated in oHSV-treated tumors. Combining the SNS antagonist, a β-blocker, with oHSV significantly increased immune cell infiltration, particularly CD8+T cells in oHSV-treated 4T1 tumors. Single-cell messenger RNA sequencing revealed that oHSV injection upregulated a specific population of perivascular macrophages (pvMacs) expressing high levels of VEGFA, CD206, CCL3, and CCL4, which suppress T-cell activation. The use of a β-blocker reduced the infiltration of oHSV-induced pvMacs, transition to inflammatory macrophages expressing Hexb, enhancing the diversity of T-cell receptor clonotypes. Further analysis suggested that TGF-β signaling within the tumor partially mediates SNS activation in the 4T1 model. CONCLUSION Our findings demonstrate that combining a β-blocker with oHSV significantly enhances the antitumor efficacy of oHSV in breast cancer by targeting TGF-β-mediated SNS innervation and immunosuppression.
Collapse
Affiliation(s)
- Konstantina Kyritsi
- Department of Pathology, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Rafal Pacholczyk
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Eugene Douglass
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| | - Miao Yu
- Genomics core, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Hui Fang
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Gang Zhou
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Balveen Kaur
- Department of Pathology, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Qin Wang
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, Georgia, USA
| | - David H Munn
- Department of Pediatrics, Pediatric Immunotherapy Program, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Bangxing Hong
- Department of Pathology, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
10
|
Karjalainen J, Hain S, Progatzky F. Glial-immune interactions in barrier organs. Mucosal Immunol 2025; 18:271-278. [PMID: 39716688 DOI: 10.1016/j.mucimm.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Neuro-immune interactions within barrier organs, such as lung, gut, and skin, are crucial in regulating tissue homeostasis, inflammatory responses, and host defence. Our rapidly advancing understanding of peripheral neuroimmunology is transforming the field of barrier tissue immunology, offering a fresh perspective for developing therapies for complex chronic inflammatory disorders affecting barrier organs. However, most studies have primarily examined interactions between the peripheral nervous system and the immune system from a neuron-focused perspective, while glial cells, the nonneuronal cells of the nervous system, have received less attention. Glial cells were long considered as mere bystanders, only supporting their neuronal neighbours, but recent discoveries mainly on enteric glial cells in the intestine have implicated these cells in immune-regulation and inflammatory disease pathogenesis. In this review, we will highlight the bi-directional interactions between peripheral glial cells and the immune system and discuss the emerging immune regulatory functions of glial cells in barrier organs.
Collapse
Affiliation(s)
| | - Sofia Hain
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Fränze Progatzky
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Zhang H, Zhao Z, Wu C. Bioactive Inorganic Materials for Innervated Multi-Tissue Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415344. [PMID: 40013907 PMCID: PMC11967777 DOI: 10.1002/advs.202415344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/04/2025] [Indexed: 02/28/2025]
Abstract
Tissue engineering aims to repair damaged tissues with physiological functions recovery. Although several therapeutic strategies are there for tissue regeneration, the functional recovery of regenerated tissues still poses significant challenges due to the lack of concerns of tissue innervation. Design rationale of multifunctional biomaterials with both tissue-induction and neural induction activities shows great potential for functional tissue regeneration. Recently, the research and application of inorganic biomaterials attracts increasing attention in innervated multi-tissue regeneration, such as central nerves, bone, and skin, because of its superior tunable chemical composition, topographical structures, and physiochemical properties. More importantly, inorganic biomaterials are easily combined with other organic materials, biological factors, and external stimuli to enhance their therapeutic effects. This review presents a comprehensive overview of recent advancements of inorganic biomaterials for innervated multi-tissue regeneration. It begins with introducing classification and properties of typical inorganic biomaterials and design rationale of inorganic-based material composites. Then, recent progresses of inorganic biomaterials in regenerating various nerves and nerve-innervated tissues with functional recovery are systematically reviewed. Finally, the existing challenges and future perspectives are proposed. This review may pave the way for the direction of inorganic biomaterials and offers a new strategy for tissue regeneration in combination of innervation.
Collapse
Affiliation(s)
- Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Ziyi Zhao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
12
|
Nabeel Mustafa A, Salih Mahdi M, Ballal S, Chahar M, Verma R, Ali Al-Nuaimi AM, Kumar MR, Kadhim A Al-Hussein R, Adil M, Jasem Jawad M. Netrin-1: Key insights in neural development and disorders. Tissue Cell 2025; 93:102678. [PMID: 39719818 DOI: 10.1016/j.tice.2024.102678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024]
Abstract
Netrin-1, an essential extracellular protein, has gained significant attention due to its pivotal role in guiding axon and cell migration during embryonic development. The fundamental significance of netrin-1 in developmental biology is reflected in its high conservation across different species as a part of the netrin family. The bifunctional nature of netrin-1 demonstrates its functional versatility, as it can function as either a repellent or an attractant according to the context and the expressed receptors on the target cells including the deleted in colorectal cancer (DCC), the uncoordinated-5 (UNC5), DSCAM, Neogenin-1, Adenosine A2b and Draxin receptors. By directing axonal growth cones toward the appropriate targets, netrin-1 is a critical actor in the formation of the intricate architecture of the nervous system. Netrin-1 is believed to be involved in additional biological and pathological processes in addition to its traditional function in neural development. The behavior of a diverse array of cell types is influenced by controlling cell adhesion and movement, which is impacted by netrin-1. It is a molecule of interest in both developmental biology and clinical research because of its involvement in angiogenesis, tumorigenesis, inflammation, and tissue regeneration, as confirmed by recent studies. The therapeutic capability of netrin-1 in disorders such as cancer, neurodegenerative disorders, and cardiovascular diseases warrants significant attention.
Collapse
Affiliation(s)
| | | | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bengaluru, Karnataka, India
| | - Mamata Chahar
- Department of Chemistry, NIMS University, Jaipur, Rajasthan, India
| | - Rajni Verma
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | | | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | | | | | | |
Collapse
|
13
|
Saulle I, Vitalyos AV, D’Agate D, Clerici M, Biasin M. Unveiling the impact of ERAP1 and ERAP2 on migration, angiogenesis and ER stress response. Front Cell Dev Biol 2025; 13:1564649. [PMID: 40226591 PMCID: PMC11985534 DOI: 10.3389/fcell.2025.1564649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
Recent studies have investigated the key roles exerted by ERAP1 and ERAP2 in maintaining cellular homeostasis, emphasizing their functions beyond traditional antigen processing and presentation. In particular, genetic variants of these IFNγ-inducible aminopeptidases significantly impact critical cellular pathways, including migration, angiogenesis, and autophagy, which are essential in immune responses and disease processes. ERAP1's influence on endothelial cell migration and VEGF-driven angiogenesis, along with ERAP2's role in managing stress-induced autophagy via the UPR, highlights their importance in cellular adaptation to stress and disease outcomes, including autoimmune diseases, cancer progression, and infections. By presenting recent insights into ERAP1 and ERAP2 functions, this review underscores their potential as therapeutic targets in immune regulation and cellular stress-response pathways.
Collapse
Affiliation(s)
- Irma Saulle
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche, Milano, Italy
- Università degli Studi di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milano, Italy
| | | | - Daniel D’Agate
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche, Milano, Italy
| | - Mario Clerici
- Università degli Studi di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milano, Italy
- IRCCS, Fondazione Don Carlo Gnocchi, Milano, Italy
| | - Mara Biasin
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche, Milano, Italy
| |
Collapse
|
14
|
Soliman Y, Al-Khodor J, Yildirim Köken G, Mustafaoglu N. A guide for blood-brain barrier models. FEBS Lett 2025; 599:599-644. [PMID: 39533665 DOI: 10.1002/1873-3468.15053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Understanding the intricate mechanisms underlying brain-related diseases hinges on unraveling the pivotal role of the blood-brain barrier (BBB), an essential dynamic interface crucial for maintaining brain equilibrium. This review offers a comprehensive analysis of BBB physiology, delving into its cellular and molecular components while exploring a wide range of in vivo and in vitro BBB models. Notably, recent advancements in 3D cell culture techniques are explicitly discussed, as they have significantly improved the fidelity of BBB modeling by enabling the replication of physiologically relevant environments under flow conditions. Special attention is given to the cellular aspects of in vitro BBB models, alongside discussions on advances in stem cell technologies, providing valuable insights into generating robust cellular systems for BBB modeling. The diverse array of cell types used in BBB modeling, depending on their sources, is meticulously examined in this comprehensive review, scrutinizing their respective derivation protocols and implications. By synthesizing diverse approaches, this review sheds light on the improvements of BBB models to capture physiological conditions, aiding in understanding BBB interactions in health and disease conditions to foster clinical developments.
Collapse
Affiliation(s)
- Yomna Soliman
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
- Faculty of Pharmacy, Mansoura University, Egypt
| | - Jana Al-Khodor
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
| | | | - Nur Mustafaoglu
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
- Sabancı University Nanotechnology Research and Application Center, Istanbul, Turkey
| |
Collapse
|
15
|
Kacimi L, Prevot V. GnRH and Cognition. Endocrinology 2025; 166:bqaf033. [PMID: 39996304 DOI: 10.1210/endocr/bqaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/06/2025] [Accepted: 02/23/2025] [Indexed: 02/26/2025]
Abstract
GnRH is traditionally recognized as the central regulator of reproduction through its pulsatile secretion, which governs the hypothalamic-pituitary-gonadal axis. However, recent evidence has highlighted its broader role in brain development and function, including in cognitive and higher intellectual processes. GnRH production follows distinct phases, from its early activation during minipuberty-the first postnatal activation of GnRH neurons during the infantile period-, its reactivation and stabilization starting at puberty, and its eventual decline with age and the loss of gonadal steroid feedback. This evolution depends on the establishment, maturation and activation of GnRH neurons, a complex process regulated by the cellular and molecular environment of these neurons, including multiple neuronal and glial types as well as a minipubertal "switch" in gene expression, the perturbation of which may have long-term or delayed consequences for both reproductive and cognitive function. The cognitive role of GnRH may be related to its recently revealed involvement in maintaining myelination and synaptic plasticity, whereas disruptions in its finely tuned rhythmic secretion, either age-related or pathological, are associated with cognitive decline and neurodegenerative disorders. Restoring physiological GnRH levels and pulsatility can reverse age-related cognitive decline and improve sensory functions even in adulthood, suggesting a mobilization of the "cognitive reserve" in both animal models and human patients. This review highlights recent advances in our understanding of the GnRH system and the therapeutic potential of pulsatile GnRH therapy to mitigate age-related cognitive decline and neurodegenerative processes.
Collapse
Affiliation(s)
- Loïc Kacimi
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, FHU 1000 days for health, EGID, DistALZ, UMR_S112, Lille 59000, France
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, FHU 1000 days for health, EGID, DistALZ, UMR_S112, Lille 59000, France
| |
Collapse
|
16
|
Autio JA, Kimura I, Ose T, Matsumoto Y, Ohno M, Urushibata Y, Ikeda T, Glasser MF, Van Essen DC, Hayashi T. Mapping vascular network architecture in primate brain using ferumoxytol-weighted laminar MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.16.594068. [PMID: 38798334 PMCID: PMC11118324 DOI: 10.1101/2024.05.16.594068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mapping the vascular organization of the brain is of great importance across various domains of basic neuroimaging research, diagnostic radiology, and neurology. However, the intricate task of precisely mapping vasculature across brain regions and cortical layers presents formidable challenges, resulting in a limited understanding of neurometabolic factors influencing the brain's microvasculature. Addressing this gap, our study investigates whole-brain vascular volume using ferumoxytol-weighted laminar-resolution multi-echo gradient-echo imaging in macaque monkeys. We validate the results with published data for vascular densities and compare them with cytoarchitecture, neuron and synaptic densities. The ferumoxytol-induced change in transverse relaxation rate ( Δ R 2 * ), an indirect proxy measure of cerebral blood volume (CBV), was mapped onto twelve equivolumetric laminar cortical surfaces. Our findings reveal that CBV varies 3-fold across the brain, with the highest vascular volume observed in the inferior colliculus and lowest in the corpus callosum. In the cerebral cortex, CBV is notably high in early primary sensory areas and low in association areas responsible for higher cognitive functions. Classification of CBV into distinct groups unveils extensive replication of translaminar vascular network motifs, suggesting distinct computational energy supply requirements in areas with varying cytoarchitecture types. Regionally, baselineR 2 * and CBV exhibit positive correlations with neuron density and negative correlations with receptor densities. Adjusting image resolution based on the critical sampling frequency of penetrating cortical vessels allows us to delineate approximately 30% of the arterial-venous vessels. Collectively, these results mark significant methodological and conceptual advancements, contributing to the refinement of cerebrovascular MRI. Furthermore, our study establishes a linkage between neurometabolic factors and the vascular network architecture in the primate brain.
Collapse
Affiliation(s)
- Joonas A. Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ikko Kimura
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takayuki Ose
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yuki Matsumoto
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masahiro Ohno
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | | | - Takuro Ikeda
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Matthew F. Glasser
- Department of Radiology, Washington University Medical School, St. Louis, MO, United States
- Department of Neuroscience, Washington University Medical School, St. Louis, MO, United States
| | - David C. Van Essen
- Department of Neuroscience, Washington University Medical School, St. Louis, MO, United States
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
17
|
Zhao X, Yao M, Wang Y, Feng C, Yang Y, Tian L, Bao C, Li X, Zhu X, Zhang X. Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7223-7250. [PMID: 39869030 DOI: 10.1021/acsami.4c16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network. In recent years, increasing research has revealed the critical role of nerves in bone metabolism. Nerve fibers regulate bone cells through neurotransmitters, neuropeptides, and peripheral glial cells. Furthermore, nerves also coordinate with the vascular and immune systems to jointly construct a microenvironment favorable for bone regeneration. As a signaling driver of bone formation, neuroregulation spans the entire process of bone physiological activities from the embryonic formation to postmaturity remodeling and repair. However, there is currently a lack of comprehensive summaries of these regulatory mechanisms. Therefore, this review sketches out the function of nerves during bone formation and regeneration. Then, we elaborate on the mechanisms of neurovascular coupling and neuromodulation of bone immunity. Finally, we discuss several novel strategies for neuro-bone tissue engineering (NBTE) based on neuroregulation of bone, focusing on the coordinated regeneration of nerve and bone tissue.
Collapse
Affiliation(s)
- Xiangrong Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meilin Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuyi Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cong Feng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Luoqiang Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
18
|
Huang J, Xue J, Huang J, Zhang X, Zhang H, Du L, Zhai D, Huan Z, Zhu Y, Wu C. An injectable hyaluronic acid/lithium calcium silicate soft tissue filler with vascularization and collagen regeneration. Bioact Mater 2025; 44:256-268. [PMID: 39507373 PMCID: PMC11539074 DOI: 10.1016/j.bioactmat.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
The significance of collagen and vascular in skin augmentation have been recognized in recent years. However, current skin tissue fillers, e.g. hyaluronic acid (HA) or HA-based hydrogel, fail to meet the perfect augmentation requirements due to their inadequate long-term support effect and the lack of tissue-inducing activity. Herein, an injectable skin filler containing hyaluronic acid (HA) hydrogel and lithium calcium silicate (LCS, Li2Ca4Si4O13) bioceramic microspheres was developed for skin tissue fillers, owing to the excellent biological function of silicate bioceramics. The HA-LCS fillers could be easily injected through a tiny standard medical needle (27 G) with force of less than 36 N, and showed good biocompatibility both in vitro and in vivo. Furthermore, the bioactive ions released from HA-LCS fillers significantly enhanced the expression of vascularization-related genes and collagen-related genes. Importantly, the HA-LCS fillers not only stimulated the regeneration of mature blood vessels, but also promoted collagen secretion in dermal skin and filling area. This study not only presented an injectable filler with enhanced regeneration of blood vessels and collagen, but also provided a new strategy for developing tissue-induced fillers based on bioactive components of silicate bioceramics.
Collapse
Affiliation(s)
- Jinzhou Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Jianmin Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Jimin Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Xinxin Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Lin Du
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
| | - Zhiguang Huan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| |
Collapse
|
19
|
Seyithanoğlu M, Meşen S, Comez A, Meşen A, Beyoğlu A, Baykişi Y, Alkan Baylan F. The potential of serum elabela levels as a marker of diabetic retinopathy: results from a pilot cross-sectional study. PeerJ 2025; 13:e18841. [PMID: 39802191 PMCID: PMC11724653 DOI: 10.7717/peerj.18841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Background The aim of this study is to examine the relationship between elabela (ELA), a recently identified peptide also known as Toddler and Apela, and diabetic retinopathy (DR). ELA, produced in various tissues, acts as a natural ligand for the apelin receptor (APJ). Upon reviewing the existing literature, only one study was found investigating ELA, one of the APJ ligands, in the pathogenesis of DR. Methods In our study the patient group comprising individuals diagnosed with type 2 diabetes mellitus (DM), categorized into three subgroups based on detailed fundus examination: those without DR (non-DR) (n = 20), non-proliferative DR (NPDR) (n = 20), and proliferative DR (PDR) (n = 20). A control group (n = 20) consisted of individuals without DM. Blood samples were collected during outpatient clinic admission to measure serum ELA levels, which were determined using a commercial ELISA kit. Results The age, sex, and body mass index of the between groups were similar (p = 0.905, 0.985 and 0.241, respectively). The HbA1c levels of the between DM subgroups were similar (p = 0.199). Serum ELA levels were 217.19 ± 97.54 pg/mL in the non-DR group, 221.76 ± 93.12 pg/mL in the NPDR group, 302.35 ± 146.17 pg/mL in the PDR group and 216.49 ± 58.85 pg/mL in the control group. While ELA levels were higher in DM patients compared to the control group, this elevation did not reach statistical significance. Further analysis dividing DM patients into subgroups (non-DR, NPDR, and PDR) revealed higher ELA levels in the PDR group compared to the other subgroups, but this increase was not statistically significant. Conclusion Despite the absence of a significant difference in our study, the identification of elevated ELA levels in the PDR group offers valuable insights for future investigations exploring the association between DR and ELA.
Collapse
Affiliation(s)
- Muhammed Seyithanoğlu
- Department of Biochemistry, Kahramanmaraş Sütçü İmam University Faculty of Medicine, Kahramanmaraş, Turkey
| | - Selma Meşen
- Department of Ophthalmology, Kahramanmaraş Sütçü İmam University Faculty of Medicine, Kahramanmaraş, Turkey
| | - Aysegul Comez
- Department of Ophthalmology, Kahramanmaraş Sütçü İmam University Faculty of Medicine, Kahramanmaraş, Turkey
| | - Ali Meşen
- Department of Ophthalmology, Kahramanmaraş Sütçü İmam University Faculty of Medicine, Kahramanmaraş, Turkey
| | - Abdullah Beyoğlu
- Department of Ophthalmology, Kahramanmaraş Sütçü İmam University Faculty of Medicine, Kahramanmaraş, Turkey
| | - Yaşarcan Baykişi
- Department of Biochemistry, Kahramanmaraş Sütçü İmam University Faculty of Medicine, Kahramanmaraş, Turkey
| | - Filiz Alkan Baylan
- Department of Biochemistry, Kahramanmaraş Sütçü İmam University Faculty of Medicine, Kahramanmaraş, Turkey
| |
Collapse
|
20
|
El-Ghannam A, Sultana F, Dréau D, Tiwari A, Yang IH, AlFotawi R, Knabe-Ducheyne C. Novel 3D printed bioactive SiC orthopedic screw promotes bone growth associated activities by macrophages, neurons, and osteoblasts. J Biomed Mater Res A 2025; 113:e37801. [PMID: 39319410 DOI: 10.1002/jbm.a.37801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Ceramic additive manufacturing currently relies on binders or high-energy lasers, each with limitations affecting final product quality and suitability for medical applications. To address these challenges, our laboratory has devised a surface activation technique for ceramic particles that eliminates the necessity for polymer binders or high-energy lasers in ceramic additive manufacturing. We utilized this method to 3D print bioactive SiC orthopedic screws and evaluated their properties. The study's findings reveal that chemical oxidation of SiC activated its surface, enabling 3D printing of orthopedic screws in a binder jet printer. Post-processing impregnation with NaOH and/or NH4OH strengthened the scaffold by promoting silica crystallization or partial conversion of silicon oxide into silicon nitride. The silica surface of the SiC 3D printed orthopedic screws facilitated osteoblast and neuron adhesion and extensive axon synthesis. The silicate ions released from the 3D printed SiC screws favorably modulated macrophage immune responses toward an M1 phenotype as indicated by the inhibition of TNFα secretions and of reactive oxygen species (ROS) expression along with the promotion of IL6R shedding. In contrast, under the same experimental conditions, Ti ions released from Ti6Al4V discs promoted macrophage TNFα secretion and ROS expression. In vivo tests demonstrated direct bone deposition on the SiC scaffold and a strong interfacial bond between the implanted SiC and bone. Immunostaining showed innervation, mineralization, and vascularization of the newly formed bone at the interface with SiC. Taken altogether, the 3D printed SiC orthopedic screws foster a favorable environment for wound healing and bone regeneration. The novel 3D printing method, based on ceramic surface activation represents a significant advancement in ceramic additive manufacturing and is applicable to a wide variety of materials.
Collapse
Affiliation(s)
- Ahmed El-Ghannam
- Department of Mechanical Engineering and Engineering Science, UNC Charlotte, Charlotte, North Carolina, USA
| | - Farjana Sultana
- Department of Mechanical Engineering and Engineering Science, UNC Charlotte, Charlotte, North Carolina, USA
| | - Didier Dréau
- Department of Biological Sciences, UNC Charlotte, Charlotte, North Carolina, USA
| | - Arjun Tiwari
- Department of Mechanical Engineering and Engineering Science, UNC Charlotte, Charlotte, North Carolina, USA
| | - In Hong Yang
- Department of Mechanical Engineering and Engineering Science, UNC Charlotte, Charlotte, North Carolina, USA
| | - Randa AlFotawi
- Department of Oral and Maxillofacial Surgery, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
21
|
Qiao M, Zhang R, Xuan X, Yan S, Dong H. Promising Adventitia in Atherosclerosis. Curr Vasc Pharmacol 2025; 23:147-161. [PMID: 39812038 DOI: 10.2174/0115701611306375241211084246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/19/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025]
Abstract
The adventitia, the artery's most intricate layer, has received little attention. During atherosclerosis, adventitia components undergo significant changes, such as angiogenesis, lymphangiogenesis, Artery Tertiary Lymphoid Organ (ATLO) formation, axon density increase, fibroblast activation, and stem cell differentiation. The reasons behind these changes and their contribution to atherosclerosis are beginning to be understood. In this review, we summarize the adventitia components and their role in normal arteries and then discuss the changes, pathogenesis, and potential clinical application of the adventitia in atherosclerosis.
Collapse
Affiliation(s)
- Maolin Qiao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuezhen Xuan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sheng Yan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
22
|
Zuhour M, İnce B, Oltulu P, Gök O, Tekecik Z. A New Concept in Peripheral Nerve Repair: Incorporating the Tunica Adventitia. J Reconstr Microsurg 2024. [PMID: 39706220 DOI: 10.1055/a-2491-3447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
BACKGROUND Pedicled, prefabricated, and free nerve flaps have several drawbacks, such as requiring microsurgical anastomosis, the need for secondary operations and the risk of developing thrombosis. In this study, we aimed to vascularize the repaired nerve in a single session by establishing a connection between the epineurium of the repaired median nerve and the tunica adventitia of the brachial artery. METHODS The technique was performed on the median nerves of a total of 42 rats over 13 weeks. While group 1 didn't receive any intervention, the following three groups (2, 3, and 4) received classic treatments (coaptation, graft, and vein conduit). In addition to classic treatments, the other three groups (5, 6, and 7) were vascularized by attaching the adventitia of the brachial artery to the repaired nerves. Nerve regeneration was evaluated using functional tests, immunohistochemical analysis, and electron microscope. RESULTS The vascularized groups (5, 6, and 7) showed earlier functional recovery (p < 0.05). Vascularization reduced inflammation in the coaptation group, reduced fibrosis and degeneration in the nerve graft group, and reduced fibrosis, degeneration and disorganization while increased the number of passing fibers and myelination in the vein conduit group (p < 0.05). Vascularization provided superior ultrastructural findings. Microscopic analysis revealed a novel finding of "zone of neurovascular interaction" between the adventitia and the regenerating nerve. CONCLUSION Vascularizing the repaired nerves with this new technique provided faster functional and better histological healing. Unlike classic vascularization techniques, this method does not require microsurgical anastomosis, does not carry the risk of thrombosis, and does not necessitate secondary operations. The "zone of neurovascular interaction" identified in this study revealed regenerating axon clusters alongside newly developed blood vessels. This important finding highlights a potential role of the tunica adventitia in nerve regeneration.
Collapse
Affiliation(s)
- Moath Zuhour
- Department of Plastic, Reconstructive and Aesthetic Surgery, Private Hospital of Büyükşehir, Konya, Turkey
| | - Bilsev İnce
- Department of Plastic, Reconstructive and Aesthetic Surgery, Private Clinic, İzmir, Turkey
| | - Pembe Oltulu
- Department of Medical Pathology, Necmettin Erbakan University, Meram Faculty of Medicine, Konya, Turkey
| | - Orhan Gök
- Department of Plastic, Reconstructive and Aesthetic Surgery, Necmettin Erbakan University, Meram Faculty of Medicine, Konya, Turkey
| | - Zülal Tekecik
- Department of Medical Pathology, Hospital of Büyükşehir, Nevşehir, Turkey
| |
Collapse
|
23
|
Lin R, Lin H, Zhu C, Zeng J, Hou J, Xu T, Tan Y, Zhou X, Ma Y, Yang M, Wei K, Yu B, Wu H, Cui Z. Sensory nerve EP4 facilitates heterotopic ossification by regulating angiogenesis-coupled bone formation. J Orthop Translat 2024; 49:325-338. [PMID: 39568804 PMCID: PMC11576939 DOI: 10.1016/j.jot.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 11/22/2024] Open
Abstract
Objective Heterotopic ossification (HO) refers to the abnormal development of bone in soft tissue rather than within bone itself. Previous research has shown that sensory nerve prostaglandin E2 receptor 4 (EP4) signaling not only governs pain perception but also influences bone formation. However, the relationship between sensory nerve EP4 and the pathogenesis of HO in the Achilles tendon remains unclear. This study aims to investigate this relationship and the underlying mechanisms. Methods We generated sensory nerve EP4-specific knockout mice, with the genotype of Avil-CreEP4fl/fl, was propagated. Transcriptome sequencing and bioinformatics analysis techniques were used to identify the potential molecular pathways involving with sensory nerve EP4. Additionally, a neurectomy mouse model was created by transecting the sciatic nerve transection, to examine the effects and mechanisms of peripheral innervation on HO in vivo. Micro-CT, immunofluorescence (IF), Hematoxylin and Eosin (H&E) Staining, Safranin O-Fast Green staining and western blotting were used to analyze changes in cellular and tissue components. Results We here observed an increase in sensory nerve EP4 and H-type vessels during the pathogenesis of HO in both human subjects and mice. Proximal neurectomy through sciatic nerve transection or the targeted knockout of EP4 in sensory nerves hindered angiogenesis-dependent bone formation and the development of HO at the traumatic site of the Achilles tendon. Furthermore, we identified the Efnb2 (Ephrin-B2)/Dll4 (Delta-like ligand 4) axis as a potential downstream element influenced by sensory nerve EP4 in the regulation of HO. Notably, administration of an EP4 inhibitor demonstrated the ability to alleviate HO. Based on these findings, sensory nerve EP4 emerges as an innovative and promising approach for managing HO. Conclusion Our findings demonstrate that the sensory nerve EP4 promotes ectopic bone formation by modulating angiogenesis-associated osteogenesis during HO. The translational potential of this article Our results provide a mechanistic rationale for targeting sensory nerve EP4 as a promising candidate for HO therapy.
Collapse
Affiliation(s)
- Rongmin Lin
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Hancheng Lin
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chencheng Zhu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jieming Zeng
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, Guangdong, 510515, China
| | - Jiahui Hou
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ting Xu
- Department of Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yihui Tan
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510130, China
| | - Xuyou Zhou
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuan Ma
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Mankai Yang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Kuanhai Wei
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Hangtian Wu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhuang Cui
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
24
|
Huynh P, Hoffmann JD, Gerhardt T, Kiss MG, Zuraikat FM, Cohen O, Wolfram C, Yates AG, Leunig A, Heiser M, Gaebel L, Gianeselli M, Goswami S, Khamhoung A, Downey J, Yoon S, Chen Z, Roudko V, Dawson T, Ferreira da Silva J, Ameral NJ, Morgenroth-Rebin J, D'Souza D, Koekkoek LL, Jacob W, Munitz J, Lee D, Fullard JF, van Leent MMT, Roussos P, Kim-Schulze S, Shah N, Kleinstiver BP, Swirski FK, Leistner D, St-Onge MP, McAlpine CS. Myocardial infarction augments sleep to limit cardiac inflammation and damage. Nature 2024; 635:168-177. [PMID: 39478215 PMCID: PMC11998484 DOI: 10.1038/s41586-024-08100-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/23/2024] [Indexed: 11/06/2024]
Abstract
Sleep is integral to cardiovascular health1,2. Yet, the circuits that connect cardiovascular pathology and sleep are incompletely understood. It remains unclear whether cardiac injury influences sleep and whether sleep-mediated neural outputs contribute to heart healing and inflammation. Here we report that in humans and mice, monocytes are actively recruited to the brain after myocardial infarction (MI) to augment sleep, which suppresses sympathetic outflow to the heart, limiting inflammation and promoting healing. After MI, microglia rapidly recruit circulating monocytes to the brain's thalamic lateral posterior nucleus (LPN) via the choroid plexus, where they are reprogrammed to generate tumour necrosis factor (TNF). In the thalamic LPN, monocytic TNF engages Tnfrsf1a-expressing glutamatergic neurons to increase slow wave sleep pressure and abundance. Disrupting sleep after MI worsens cardiac function, decreases heart rate variability and causes spontaneous ventricular tachycardia. After MI, disrupting or curtailing sleep by manipulating glutamatergic TNF signalling in the thalamic LPN increases cardiac sympathetic input which signals through the β2-adrenergic receptor of macrophages to promote a chemotactic signature that increases monocyte influx. Poor sleep in the weeks following acute coronary syndrome increases susceptibility to secondary cardiovascular events and reduces the heart's functional recovery. In parallel, insufficient sleep in humans reprogrammes β2-adrenergic receptor-expressing monocytes towards a chemotactic phenotype, enhancing their migratory capacity. Collectively, our data uncover cardiogenic regulation of sleep after heart injury, which restricts cardiac sympathetic input, limiting inflammation and damage.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Chemotaxis, Leukocyte
- Choroid Plexus/metabolism
- Glutamic Acid/metabolism
- Heart/physiopathology
- Heart Rate
- Inflammation/pathology
- Inflammation/prevention & control
- Lateral Thalamic Nuclei/metabolism
- Macrophages/cytology
- Macrophages/metabolism
- Mice, Inbred C57BL
- Microglia/cytology
- Microglia/metabolism
- Monocytes/cytology
- Monocytes/metabolism
- Myocardial Infarction/physiopathology
- Myocardial Infarction/complications
- Myocardial Infarction/pathology
- Myocardial Infarction/metabolism
- Myocardium/pathology
- Myocardium/metabolism
- Neurons/metabolism
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Sleep/physiology
- Sleep, Slow-Wave/physiology
- Sympathetic Nervous System/physiopathology
- Tachycardia, Ventricular/physiopathology
- Tachycardia, Ventricular/etiology
- Tachycardia, Ventricular/metabolism
- Tumor Necrosis Factors/metabolism
Collapse
Affiliation(s)
- Pacific Huynh
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jan D Hoffmann
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, NYC Health and Hospitals/Elmhurst, Elmhurst, Queens, NY, USA
| | - Teresa Gerhardt
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Germany and Berlin Institute of Health, Berlin, Germany
| | - Máté G Kiss
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Faris M Zuraikat
- Center of Excellence for Sleep and Circadian Research, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Oren Cohen
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher Wolfram
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Germany and Berlin Institute of Health, Berlin, Germany
| | - Abi G Yates
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Leunig
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Merlin Heiser
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lena Gaebel
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matteo Gianeselli
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sukanya Goswami
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Annie Khamhoung
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey Downey
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seonghun Yoon
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhihong Chen
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vladimir Roudko
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Travis Dawson
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joana Ferreira da Silva
- Center for Genomic Medicine, Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Natalie J Ameral
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Jarod Morgenroth-Rebin
- Center for Genomic Medicine, Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Darwin D'Souza
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura L Koekkoek
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Walter Jacob
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jazz Munitz
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donghoon Lee
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Fullard
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mandy M T van Leent
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neomi Shah
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Filip K Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Leistner
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Germany and Berlin Institute of Health, Berlin, Germany
- Department of Medicine, Cardiology/Angiology, Goethe University Hospital, Frankfurt, Germany
| | - Marie-Pierre St-Onge
- Center of Excellence for Sleep and Circadian Research, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Cameron S McAlpine
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
25
|
Xu K, Wang Q, Zhang Y, Huang Y, Liu Q, Chen M, Wang C. Benzo(a)pyrene exposure impacts cerebrovascular development in zebrafish embryos and the antagonistic effect of berberine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174980. [PMID: 39053545 DOI: 10.1016/j.scitotenv.2024.174980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) widely present in the environment, but their effect on cerebrovascular development has been rarely reported. In this study, dechorionated zebrafish embryos at 24 hpf were exposed to benzo(a)pyrene (BaP) at 0.5, 5 and 50 nM for 48 h, cerebrovascular density showed a significant reduction in the 5 and 50 nM groups. The expression of aryl hydrocarbon receptor (AhR) was significantly increased. Transcriptomic analysis showed that the pathway of positive regulation of vascular development was down-regulated and the pathway of inflammation response was up-regulated. The transcription of main genes related to vascular development, such as vegf, bmper, cdh5, f3b, itgb1 and prkd1, was down-regulated. Addition of AhR-specific inhibitor CH233191 in the 50 nM BaP group rescued cerebrovascular developmental defects and down-regulation of relative genes, suggesting that BaP-induced cerebrovascular defects was AhR-dependent. The cerebrovascular defects were persistent into adult fish raised in clean water, showing that the relative area of vascular network, the length of vessels per unit area and the number of vascular junctions per unit area were significantly decreased in the 50 nM group. Supplementation of berberine (BBR), a naturally derived medicine from a Chinese medicinal herb, alleviated BaP-induced cerebrovascular defects, accompanied by the restoration of altered expression of AhR and relative genes, which might be due to that BBR promoted BaP elimination via enhancing detoxification enzyme activities, suggesting that BBR could be a potential agent in the prevention of cerebrovascular developmental defects caused by PAHs.
Collapse
Affiliation(s)
- Ke Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qian Wang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, PR China
| | - Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Yuehong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qingfeng Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Meng Chen
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
26
|
Morton AB, Jacobsen NL, Diller AR, Kendra JA, Golpasandi S, Cornelison DDW, Segal SS. Inducible deletion of endothelial cell Efnb2 delays capillary regeneration and attenuates myofibre reinnervation following myotoxin injury in mice. J Physiol 2024; 602:4907-4927. [PMID: 39196901 PMCID: PMC11466691 DOI: 10.1113/jp285402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 07/22/2024] [Indexed: 08/30/2024] Open
Abstract
Acute injury of skeletal muscle disrupts myofibres, microvessels and motor innervation. Myofibre regeneration is well characterized, however its relationship with the regeneration of microvessels and motor nerves is undefined. Endothelial cell (EC) ephrin-B2 (Efnb2) is required for angiogenesis during embryonic development and promotes neurovascular regeneration in the adult. We hypothesized that, following acute injury to skeletal muscle, loss of EC Efnb2 would impair microvascular regeneration and the recovery of neuromuscular junction (NMJ) integrity. Mice (aged 3-6 months) were bred for EC-specific conditional knockout (CKO) of Efnb2 following tamoxifen injection with non-injected CKO mice as controls (CON). The gluteus maximus, tibialis anterior or extensor digitorum longus muscle was then injured with local injection of BaCl2. Intravascular staining with wheat germ agglutinin revealed diminished capillary area in the gluteus maximus of CKO vs. CON at 5 days post-injury (dpi); both recovered to uninjured (0 dpi) level by 10 dpi. At 0 dpi, tibialis anterior isometric force of CKO was less than CON. At 10 dpi, isometric force was reduced by half in both groups. During intermittent contractions (75 Hz, 330 ms s-1, 120 s), isometric force fell during indirect (sciatic nerve) stimulation whereas force was maintained during direct (electrical field) stimulation of myofibres. Neuromuscular transmission failure correlated with perturbed presynaptic (terminal Schwann cells) and postsynaptic (nicotinic acetylcholine receptors) NMJ morphology in CKO. Resident satellite cell number on extensor digitorum longus myofibres did not differ between groups. Following acute injury of skeletal muscle, loss of Efnb2 in ECs delays capillary regeneration and attenuates recovery of NMJ structure and function. KEY POINTS: The relationship between microvascular regeneration and motor nerve regeneration following skeletal muscle injury is undefined. Expression of Efnb2 in endothelial cells (ECs) is essential to vascular development and promotes neurovascular regeneration in the adult. To test the hypothesis that EfnB2 in ECs is required for microvascular regeneration and myofibre reinnervation, we induced conditional knockout of Efnb2 in ECs of mice. Acute injury was then induced by BaCl2 injection into gluteus maximus, tibialis anterior or extensor digitorum longus (EDL) muscle. Capillary regeneration was reduced at 5 days post-injury (dpi) in gluteus maximus of conditional knockout vs. controls; at 10 dpi, neither differed from uninjured. Nerve stimulation revealed neuromuscular transmission failure in tibialis anterior with perturbed neuromuscular junction structure. Resident satellite cell number on EDL myofibres did not differ between groups. Conditional knockout of EC Efnb2 delays capillary regeneration and attenuates recovery of neuromuscular junction structure and function.
Collapse
Affiliation(s)
- Aaron B. Morton
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212
| | - Nicole L. Jacobsen
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212
| | | | - Jacob A. Kendra
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
| | - Shadi Golpasandi
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
| | - DDW Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Steven S. Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212
- Dalton Cardiovascular Research Center, Columbia, MO 65211
- Department of Biomedical Sciences, University of Missouri; Columbia, MO 65201
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri; Columbia, MO 65211
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211
| |
Collapse
|
27
|
Li C, Xiang Z, Hou M, Yu H, Peng P, Lv Y, Ma C, Ding H, Jiang Y, Liu Y, Zhou H, Feng S. miR-NPs-RVG promote spinal cord injury repair: implications from spinal cord-derived microvascular endothelial cells. J Nanobiotechnology 2024; 22:590. [PMID: 39342236 PMCID: PMC11438374 DOI: 10.1186/s12951-024-02797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) often leads to a loss of motor and sensory function. Axon regeneration and outgrowth are key events for functional recovery after spinal cord injury. Endogenous growth of axons is associated with a variety of factors. Inspired by the relationship between developing nerves and blood vessels, we believe spinal cord-derived microvascular endothelial cells (SCMECs) play an important role in axon growth. RESULTS We found SCMECs could promote axon growth when co-cultured with neurons in direct and indirect co-culture systems via downregulating the miR-323-5p expression of neurons. In rats with spinal cord injury, neuron-targeting nanoparticles were employed to regulate miR-323-5p expression in residual neurons and promote function recovery. CONCLUSIONS Our study suggests that SCMEC can promote axon outgrowth by downregulating miR-323-5p expression within neurons, and miR-323-5p could be selected as a potential target for spinal cord injury repair.
Collapse
Affiliation(s)
- Chao Li
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Zhenyang Xiang
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Mengfan Hou
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Hao Yu
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Peng Peng
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yigang Lv
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Chao Ma
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Han Ding
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yunpeng Jiang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yang Liu
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| | - Hengxing Zhou
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Shiqing Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
- The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, People's Republic of China.
| |
Collapse
|
28
|
Gahlawat S, Oruc D, Paul N, Ragheb M, Patel S, Fasasi O, Sharma P, Shreiber DI, Freeman JW. Tissue Engineered 3D Constructs for Volumetric Muscle Loss. Ann Biomed Eng 2024; 52:2325-2347. [PMID: 39085677 PMCID: PMC11329418 DOI: 10.1007/s10439-024-03541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 08/02/2024]
Abstract
Severe injuries to skeletal muscles, including cases of volumetric muscle loss (VML), are linked to substantial tissue damage, resulting in functional impairment and lasting disability. While skeletal muscle can regenerate following minor damage, extensive tissue loss in VML disrupts the natural regenerative capacity of the affected muscle tissue. Existing clinical approaches for VML, such as soft-tissue reconstruction and advanced bracing methods, need to be revised to restore tissue function and are associated with limitations in tissue availability and donor-site complications. Advancements in tissue engineering (TE), particularly in scaffold design and the delivery of cells and growth factors, show promising potential for regenerating damaged skeletal muscle tissue and restoring function. This article provides a brief overview of the pathophysiology of VML and critiques the shortcomings of current treatments. The subsequent section focuses on the criteria for designing TE scaffolds, offering insights into various natural and synthetic biomaterials and cell types for effectively regenerating skeletal muscle. We also review multiple TE strategies involving both acellular and cellular scaffolds to encourage the development and maturation of muscle tissue and facilitate integration, vascularization, and innervation. Finally, the article explores technical challenges hindering successful translation into clinical applications.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Doga Oruc
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Nikhil Paul
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Mark Ragheb
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Swati Patel
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Oyinkansola Fasasi
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Peeyush Sharma
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Joseph W Freeman
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA.
| |
Collapse
|
29
|
Bordett R, Danazumi KB, Wijekoon S, Garcia CJ, Abdulmalik S, Kumbar SG. Advancements in stimulation therapies for peripheral nerve regeneration. Biomed Mater 2024; 19:052008. [PMID: 39025114 PMCID: PMC11425301 DOI: 10.1088/1748-605x/ad651d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Soft-tissue injuries affecting muscles, nerves, vasculature, tendons, and ligaments often diminish the quality of life due to pain, loss of function, and financial burdens. Both natural healing and surgical interventions can result in scarring, which potentially may impede functional recovery and lead to persistent pain. Scar tissue, characterized by a highly disorganized fibrotic extracellular matrix, may serve as a physical barrier to regeneration and drug delivery. While approaches such as drugs, biomaterials, cells, external stimulation, and other physical forces show promise in mitigating scarring and promoting regenerative healing, their implementation remains limited and challenging. Ultrasound, laser, electrical, and magnetic forms of external stimulation have been utilized to promote soft tissue as well as neural tissue regeneration. After stimulation, neural tissues experience increased proliferation of Schwann cells, secretion of neurotropic factors, production of myelin, and growth of vasculature, all aimed at supporting axon regeneration and innervation. Yet, the outcomes of healing vary depending on the pathophysiology of the damaged nerve, the timing of stimulation following injury, and the specific parameters of stimulation employed. Increased treatment intensity and duration have been noted to hinder the healing process by inducing tissue damage. These stimulation modalities, either alone or in combination with nerve guidance conduits and scaffolds, have been demonstrated to promote healing. However, the literature currently lacks a detailed understanding of the stimulation parameters used for nerve healing applications. In this article, we aim to address this gap by summarizing existing reports and providing an overview of stimulation parameters alongside their associated healing outcomes.
Collapse
Affiliation(s)
- Rosalie Bordett
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Khadija B Danazumi
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Suranji Wijekoon
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Christopher J Garcia
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Sangamesh G Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, United States of America
| |
Collapse
|
30
|
Xu M, Zhu M, Qin Q, Xing X, Archer M, Ramesh S, Cherief M, Li Z, Levi B, Clemens TL, James AW. Neuronal regulation of bone and tendon injury repair: a focused review. J Bone Miner Res 2024; 39:1045-1060. [PMID: 38836494 PMCID: PMC12106280 DOI: 10.1093/jbmr/zjae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Beyond the sensation of pain, peripheral nerves have been shown to play crucial roles in tissue regeneration and repair. As a highly innervated organ, bone can recover from injury without scar formation, making it an interesting model in which to study the role of nerves in tissue regeneration. As a comparison, tendon is a musculoskeletal tissue that is hypo-innervated, with repair often resulting in scar formation. Here, we reviewed the significance of innervation in 3 stages of injury repair (inflammatory, reparative, and remodeling) in 2 commonly injured musculoskeletal tissues: bone and tendon. Based on this focused review, we conclude that peripheral innervation is essential for phases of proper bone and tendon repair, and that nerves may dynamically regulate the repair process through interactions with the injury microenvironment via a variety of neuropeptides or neurotransmitters. A deeper understanding of neuronal regulation of musculoskeletal repair, and the crosstalk between nerves and the musculoskeletal system, will enable the development of future therapies for tissue healing.
Collapse
Affiliation(s)
- Mingxin Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Manyu Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Sowmya Ramesh
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Benjamin Levi
- Department of Surgery, University of Texas Southwestern, Dallas, TX 75390, United States
| | - Thomas L Clemens
- Department of Orthopaedics, University of Maryland, Baltimore, MD 21205, United States
- Department of Research Services, Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, United States
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
31
|
Erickson AG, Motta A, Kastriti ME, Edwards S, Coulpier F, Théoulle E, Murtazina A, Poverennaya I, Wies D, Ganofsky J, Canu G, Lallemend F, Topilko P, Hadjab S, Fried K, Ruhrberg C, Schwarz Q, Castellani V, Bonanomi D, Adameyko I. Motor innervation directs the correct development of the mouse sympathetic nervous system. Nat Commun 2024; 15:7065. [PMID: 39152112 PMCID: PMC11329663 DOI: 10.1038/s41467-024-51290-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
The sympathetic nervous system controls bodily functions including vascular tone, cardiac rhythm, and the "fight-or-flight response". Sympathetic chain ganglia develop in parallel with preganglionic motor nerves extending from the neural tube, raising the question of whether axon targeting contributes to sympathetic chain formation. Using nerve-selective genetic ablations and lineage tracing in mouse, we reveal that motor nerve-associated Schwann cell precursors (SCPs) contribute sympathetic neurons and satellite glia after the initial seeding of sympathetic ganglia by neural crest. Motor nerve ablation causes mispositioning of SCP-derived sympathoblasts as well as sympathetic chain hypoplasia and fragmentation. Sympathetic neurons in motor-ablated embryos project precociously and abnormally towards dorsal root ganglia, eventually resulting in fusion of sympathetic and sensory ganglia. Cell interaction analysis identifies semaphorins as potential motor nerve-derived signaling molecules regulating sympathoblast positioning and outgrowth. Overall, central innervation functions both as infrastructure and regulatory niche to ensure the integrity of peripheral ganglia morphogenesis.
Collapse
Affiliation(s)
- Alek G Erickson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alessia Motta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Brain Research, Department of Neuroimmunology, Medical University Vienna, Vienna, Austria
| | - Steven Edwards
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fanny Coulpier
- Mondor Institute for Biomedical Research (IMRB), INSERM, Créteil, France
| | - Emy Théoulle
- University of Claude Bernard Lyon 1, MeLiS, CNRS, INSERM, NeuroMyoGene Institute, Lyon, France
| | - Aliia Murtazina
- Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, Sweden
| | - Irina Poverennaya
- Center for Brain Research, Department of Neuroimmunology, Medical University Vienna, Vienna, Austria
| | - Daniel Wies
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jeremy Ganofsky
- University of Claude Bernard Lyon 1, MeLiS, CNRS, INSERM, NeuroMyoGene Institute, Lyon, France
| | - Giovanni Canu
- University College London, Department of Ophthalmology London, London, UK
| | - Francois Lallemend
- Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, Sweden
| | - Piotr Topilko
- Mondor Institute for Biomedical Research (IMRB), INSERM, Créteil, France
| | - Saida Hadjab
- Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, Sweden
| | - Kaj Fried
- Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, Sweden
| | | | - Quenten Schwarz
- Center for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Valerie Castellani
- University of Claude Bernard Lyon 1, MeLiS, CNRS, INSERM, NeuroMyoGene Institute, Lyon, France
| | - Dario Bonanomi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Center for Brain Research, Department of Neuroimmunology, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
32
|
Zhang Y, Shen X, Deng S, Chen Q, Xu B. Neural Regulation of Vascular Development: Molecular Mechanisms and Interactions. Biomolecules 2024; 14:966. [PMID: 39199354 PMCID: PMC11353022 DOI: 10.3390/biom14080966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
As a critical part of the circulatory system, blood vessels transport oxygen and nutrients to every corner of the body, nourishing each cell, and also remove waste and toxins. Defects in vascular development and function are closely associated with many diseases, such as heart disease, stroke, and atherosclerosis. In the nervous system, the nervous and vascular systems are intricately connected in both development and function. First, peripheral blood vessels and nerves exhibit parallel distribution patterns. In the central nervous system (CNS), nerves and blood vessels form a complex interface known as the neurovascular unit. Second, the vascular system employs similar cellular and molecular mechanisms as the nervous system for its development. Third, the development and function of CNS vasculature are tightly regulated by CNS-specific signaling pathways and neural activity. Additionally, vascular endothelial cells within the CNS are tightly connected and interact with pericytes, astrocytes, neurons, and microglia to form the blood-brain barrier (BBB). The BBB strictly controls material exchanges between the blood and brain, maintaining the brain's microenvironmental homeostasis, which is crucial for the normal development and function of the CNS. Here, we comprehensively summarize research on neural regulation of vascular and BBB development and propose directions for future research.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Xinyu Shen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Shunze Deng
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Qiurong Chen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Bing Xu
- School of Life Sciences, Nantong University, Nantong 226019, China
| |
Collapse
|
33
|
Neto S, Reis A, Pinheiro M, Ferreira M, Neves V, Castanho TC, Santos N, Rodrigues AJ, Sousa N, Santos MAS, Moura GR. Unveiling the molecular landscape of cognitive aging: insights from polygenic risk scores, DNA methylation, and gene expression. Hum Genomics 2024; 18:75. [PMID: 38956648 PMCID: PMC11221141 DOI: 10.1186/s40246-024-00640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Aging represents a significant risk factor for the occurrence of cerebral small vessel disease, associated with white matter (WM) lesions, and to age-related cognitive alterations, though the precise mechanisms remain largely unknown. This study aimed to investigate the impact of polygenic risk scores (PRS) for WM integrity, together with age-related DNA methylation, and gene expression alterations, on cognitive aging in a cross-sectional healthy aging cohort. The PRSs were calculated using genome-wide association study (GWAS) summary statistics for magnetic resonance imaging (MRI) markers of WM integrity, including WM hyperintensities, fractional anisotropy (FA), and mean diffusivity (MD). These scores were utilized to predict age-related cognitive changes and evaluate their correlation with structural brain changes, which distinguish individuals with higher and lower cognitive scores. To reduce the dimensionality of the data and identify age-related DNA methylation and transcriptomic alterations, Sparse Partial Least Squares-Discriminant Analysis (sPLS-DA) was used. Subsequently, a canonical correlation algorithm was used to integrate the three types of omics data (PRS, DNA methylation, and gene expression data) and identify an individual "omics" signature that distinguishes subjects with varying cognitive profiles. RESULTS We found a positive association between MD-PRS and long-term memory, as well as a correlation between MD-PRS and structural brain changes, effectively discriminating between individuals with lower and higher memory scores. Furthermore, we observed an enrichment of polygenic signals in genes related to both vascular and non-vascular factors. Age-related alterations in DNA methylation and gene expression indicated dysregulation of critical molecular features and signaling pathways involved in aging and lifespan regulation. The integration of multi-omics data underscored the involvement of synaptic dysfunction, axonal degeneration, microtubule organization, and glycosylation in the process of cognitive aging. CONCLUSIONS These findings provide valuable insights into the biological mechanisms underlying the association between WM coherence and cognitive aging. Additionally, they highlight how age-associated DNA methylation and gene expression changes contribute to cognitive aging.
Collapse
Affiliation(s)
- Sonya Neto
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Andreia Reis
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Miguel Pinheiro
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Margarida Ferreira
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vasco Neves
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Teresa Costa Castanho
- ICVS - School of Medicine, Campus Gualtar, University of Minho, 4710-057, Braga, Portugal
- Clinical Academic Center - Braga (2CA-B), Braga, Portugal
| | - Nadine Santos
- ICVS - School of Medicine, Campus Gualtar, University of Minho, 4710-057, Braga, Portugal
- Clinical Academic Center - Braga (2CA-B), Braga, Portugal
| | - Ana João Rodrigues
- ICVS - School of Medicine, Campus Gualtar, University of Minho, 4710-057, Braga, Portugal
- Clinical Academic Center - Braga (2CA-B), Braga, Portugal
| | - Nuno Sousa
- ICVS - School of Medicine, Campus Gualtar, University of Minho, 4710-057, Braga, Portugal
- Clinical Academic Center - Braga (2CA-B), Braga, Portugal
- P5 Medical Center, Braga, Portugal
| | - Manuel A S Santos
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
- Multidisciplinary Institute of Aging, MIA-Portugal, Faculty of Medicine, University of Coimbra, Rua Largo 2, 3º, 3000-370, Coimbra, Portugal
| | - Gabriela R Moura
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
34
|
Huang SQ, Cao KX, Wang CL, Chen PL, Chen YX, Zhang YT, Yu SH, Bai ZX, Guo S, Liao MX, Li QW, Zhang GQ, He J, Xu YM. Decreasing mitochondrial fission ameliorates HIF-1α-dependent pathological retinal angiogenesis. Acta Pharmacol Sin 2024; 45:1438-1450. [PMID: 38565961 PMCID: PMC11192750 DOI: 10.1038/s41401-024-01262-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Angiogenesis plays a critical role in many pathological processes, including irreversible blindness in eye diseases such as retinopathy of prematurity. Endothelial mitochondria are dynamic organelles that undergo constant fusion and fission and are critical signalling hubs that modulate angiogenesis by coordinating reactive oxygen species (ROS) production and calcium signalling and metabolism. In this study, we investigated the role of mitochondrial dynamics in pathological retinal angiogenesis. We showed that treatment with vascular endothelial growth factor (VEGF; 20 ng/ml) induced mitochondrial fission in HUVECs by promoting the phosphorylation of dynamin-related protein 1 (DRP1). DRP1 knockdown or pretreatment with the DRP1 inhibitor Mdivi-1 (5 μM) blocked VEGF-induced cell migration, proliferation, and tube formation in HUVECs. We demonstrated that VEGF treatment increased mitochondrial ROS production in HUVECs, which was necessary for HIF-1α-dependent glycolysis, as well as proliferation, migration, and tube formation, and the inhibition of mitochondrial fission prevented VEGF-induced mitochondrial ROS production. In an oxygen-induced retinopathy (OIR) mouse model, we found that active DRP1 was highly expressed in endothelial cells in neovascular tufts. The administration of Mdivi-1 (10 mg·kg-1·d-1, i.p.) for three days from postnatal day (P) 13 until P15 significantly alleviated pathological angiogenesis in the retina. Our results suggest that targeting mitochondrial fission may be a therapeutic strategy for proliferative retinopathies and other diseases that are dependent on pathological angiogenesis.
Collapse
Affiliation(s)
- Shu-Qi Huang
- School of Basic Medical Sciences; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Kai-Xiang Cao
- School of Basic Medical Sciences; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Cai-Ling Wang
- School of Basic Medical Sciences; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Pei-Ling Chen
- School of Basic Medical Sciences; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi-Xin Chen
- School of Basic Medical Sciences; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu-Ting Zhang
- School of Basic Medical Sciences; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shi-Hui Yu
- School of Basic Medical Sciences; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zai-Xia Bai
- School of Basic Medical Sciences; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuai Guo
- School of Basic Medical Sciences; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mu-Xi Liao
- Department of Rehabilitation Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510080, China
| | - Qiao-Wen Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, 511520, China
| | - Guo-Qi Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, 511520, China.
| | - Jun He
- Department of Rehabilitation Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510080, China.
| | - Yi-Ming Xu
- School of Basic Medical Sciences; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
35
|
Thorngren J, Brboric A, Vasylovska S, Hjelmqvist D, Westermark GT, Saarimäki-Vire J, Kvist J, Balboa D, Otonkoski T, Carlsson PO, Lau J. Efficient Vascular and Neural Engraftment of Stem Cell-Derived Islets. Diabetes 2024; 73:1127-1139. [PMID: 38603470 PMCID: PMC11189832 DOI: 10.2337/db23-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Pluripotent stem cell-derived islets (SC-islets) have emerged as a new source for β-cell replacement therapy. The function of human islet transplants is hampered by excessive cell death posttransplantation; contributing factors include inflammatory reactions, insufficient revascularization, and islet amyloid formation. However, there is a gap in knowledge of the engraftment process of SC-islets. In this experimental study, we investigated the engraftment capability of SC-islets at 3 months posttransplantation and observed that cell apoptosis rates were lower but vascular density was similar in SC-islets compared with human islets. Whereas the human islet transplant vascular structures were a mixture of remnant donor endothelium and ingrowing blood vessels, the SC-islets contained ingrowing blood vessels only. Oxygenation in the SC-islet grafts was twice as high as that in the corresponding grafts of human islets, suggesting better vascular functionality. Similar to the blood vessel ingrowth, reinnervation of the SC-islets was four- to fivefold higher than that of the human islets. Both SC-islets and human islets contained amyloid at 1 and 3 months posttransplantation. We conclude that the vascular and neural engraftment of SC-islets are superior to those of human islets, but grafts of both origins develop amyloid, with potential long-term consequences. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Julia Thorngren
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anja Brboric
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Daisy Hjelmqvist
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Joey Lau
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
36
|
Biswas S, Shahriar S, Bachay G, Arvanitis P, Jamoul D, Brunken WJ, Agalliu D. Glutamatergic neuronal activity regulates angiogenesis and blood-retinal barrier maturation via Norrin/β-catenin signaling. Neuron 2024; 112:1978-1996.e6. [PMID: 38599212 PMCID: PMC11189759 DOI: 10.1016/j.neuron.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Interactions among neuronal, glial, and vascular components are crucial for retinal angiogenesis and blood-retinal barrier (BRB) maturation. Although synaptic dysfunction precedes vascular abnormalities in many retinal pathologies, how neuronal activity, specifically glutamatergic activity, regulates retinal angiogenesis and BRB maturation remains unclear. Using in vivo genetic studies in mice, single-cell RNA sequencing (scRNA-seq), and functional validation, we show that deep plexus angiogenesis and paracellular BRB maturation are delayed in Vglut1-/- retinas where neurons fail to release glutamate. By contrast, deep plexus angiogenesis and paracellular BRB maturation are accelerated in Gnat1-/- retinas, where constitutively depolarized rods release excessive glutamate. Norrin expression and endothelial Norrin/β-catenin signaling are downregulated in Vglut1-/- retinas and upregulated in Gnat1-/- retinas. Pharmacological activation of endothelial Norrin/β-catenin signaling in Vglut1-/- retinas rescues defects in deep plexus angiogenesis and paracellular BRB maturation. Our findings demonstrate that glutamatergic neuronal activity regulates retinal angiogenesis and BRB maturation by modulating endothelial Norrin/β-catenin signaling.
Collapse
Affiliation(s)
- Saptarshi Biswas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Sanjid Shahriar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Galina Bachay
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Panos Arvanitis
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Danny Jamoul
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; John Jay College of Criminal Justice, City University of New York, New York, NY 10019, USA
| | - William J Brunken
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dritan Agalliu
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
37
|
Göhrig A, Hilfenhaus G, Rosseck F, Welzel M, Moser B, Barbone G, Kunze CA, Rein J, Wilken G, Böhmig M, Malinka T, Tacke F, Bahra M, Detjen KM, Fischer C. Placental growth factor promotes neural invasion and predicts disease prognosis in resectable pancreatic cancer. J Exp Clin Cancer Res 2024; 43:153. [PMID: 38816706 PMCID: PMC11138065 DOI: 10.1186/s13046-024-03066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Surgery represents the only curative treatment option for pancreatic ductal adenocarcinoma (PDAC), but recurrence in more than 85% of patients limits the success of curative-intent tumor resection. Neural invasion (NI), particularly the spread of tumor cells along nerves into extratumoral regions of the pancreas, constitutes a well-recognized risk factor for recurrence. Hence, monitoring and therapeutic targeting of NI offer the potential to stratify recurrence risk and improve recurrence-free survival. Based on the evolutionary conserved dual function of axon and vessel guidance molecules, we hypothesize that the proangiogenic vessel guidance factor placental growth factor (PlGF) fosters NI. To test this hypothesis, we correlated PlGF with NI in PDAC patient samples and functionally assessed its role for the interaction of tumor cells with nerves. METHODS Serum levels of PlGF and its soluble receptor sFlt1, and expression of PlGF mRNA transcripts in tumor tissues were determined by ELISA or qPCR in a retrospective discovery and a prospective validation cohort. Free circulating PlGF was calculated from the ratio PlGF/sFlt1. Incidence and extent of NI were quantified based on histomorphometric measurements and separately assessed for intratumoral and extratumoral nerves. PlGF function on reciprocal chemoattraction and directed neurite outgrowth was evaluated in co-cultures of PDAC cells with primary dorsal-root-ganglia neurons or Schwann cells using blocking anti-PlGF antibodies. RESULTS Elevated circulating levels of free PlGF correlated with NI and shorter overall survival in patients with PDAC qualifying for curative-intent surgery. Furthermore, high tissue PlGF mRNA transcript levels in patients undergoing curative-intent surgery correlated with a higher incidence and greater extent of NI spreading to tumor-distant extratumoral nerves. In turn, more abundant extratumoral NI predicted shorter disease-free and overall survival. Experimentally, PlGF facilitated directional and dynamic changes in neurite outgrowth of primary dorsal-root-ganglia neurons upon exposure to PDAC derived guidance and growth factors and supported mutual chemoattraction of tumor cells with neurons and Schwann cells. CONCLUSION Our translational results highlight PlGF as an axon guidance factor, which fosters neurite outgrowth and attracts tumor cells towards nerves. Hence, PlGF represents a promising circulating biomarker of NI and potential therapeutic target to improve the clinical outcome for patients with resectable PDAC.
Collapse
Affiliation(s)
- Andreas Göhrig
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- ECRC Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Georg Hilfenhaus
- Department of Hematology, Oncology & Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Charité Mitte, Berlin, Germany
| | - Friederike Rosseck
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Charité Mitte, Berlin, Germany
| | - Martina Welzel
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- ECRC Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benjamin Moser
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Gianluca Barbone
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Catarina Alisa Kunze
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Charité Mitte, Berlin, Germany
| | - Johannes Rein
- Department of Pulmonology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Charité Mitte, Berlin, Germany
| | - Gregor Wilken
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Michael Böhmig
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Gastroenterologie an der Krummen Lanke, Fischerhüttenstraße 109, Berlin, 14163, Germany
| | - Thomas Malinka
- Department of Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Marcus Bahra
- Department of Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum, Berlin, Germany
- Department of Oncological Surgery and Robotics, Waldfriede Hospital, Berlin, Germany
| | - Katharina M Detjen
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Christian Fischer
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
- ECRC Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
38
|
Choi C, Yun E, Song M, Kim J, Son JS, Cha C. Multiscale Control of Nanofiber-Composite Hydrogel for Complex 3D Cell Culture by Extracellular Matrix Composition and Nanofiber Alignment. Biomater Res 2024; 28:0032. [PMID: 38812742 PMCID: PMC11136538 DOI: 10.34133/bmr.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
In order to manipulate the complex behavior of cells in a 3-dimensional (3D) environment, it is important to provide the microenvironment that can accurately portray the complexity of highly anisotropic tissue structures. However, it is technically challenging to generate a complex microenvironment using conventional biomaterials that are mostly isotropic with limited bioactivity. In this study, the gelatin-hyaluronic acid hydrogel incorporated with aqueous-dispersible, short nanofibers capable of in situ alignment is developed to emulate the native heterogeneous extracellular matrix consisting of fibrous and non-fibrous components. The gelatin nanofibers containing magnetic nanoparticles, which could be aligned by external magnetic field, are dispersed and embedded in gelatin-hyaluronic acid hydrogel encapsulated with dermal fibroblasts. The aligned nanofibers via magnetic field could be safely integrated into the hydrogel, and the process could be repeated to generate larger 3D hydrogels with variable nanofiber alignments. The aligned nanofibers in the hydrogel can more effectively guide the anisotropic morphology (e.g., elongation) of dermal fibroblasts than random nanofibers, whereas myofibroblastic differentiation is more prominent in random nanofibers. At a given nanofiber configuration, the hydrogel composition having intermediate hyaluronic acid content induces myofibroblastic differentiation. These results indicate that modulating the degree of nanofiber alignment and the hyaluronic acid content of the hydrogel are crucial factors that critically influence the fibroblast phenotypes. The nanofiber-composite hydrogel capable of directional nanofiber alignment and tunable material composition can effectively induce a wide array of phenotypic plasticity in 3D cell culture.
Collapse
Affiliation(s)
- Cholong Choi
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering,
Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eunhye Yun
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering,
Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Minju Song
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering,
Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jiyun Kim
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering,
Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Sung Son
- Department of Chemical Engineering,
Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea
| | - Chaenyung Cha
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering,
Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
39
|
Li X, Cui Y, He X, Mao L. Hydrogel-Based Systems in Neuro-Vascularized Bone Regeneration: A Promising Therapeutic Strategy. Macromol Biosci 2024; 24:e2300484. [PMID: 38241425 DOI: 10.1002/mabi.202300484] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Indexed: 01/21/2024]
Abstract
Blood vessels and nerve fibers are distributed throughout the skeletal tissue, which enhance the development and function of each other and have an irreplaceable role in bone formation and remodeling. Despite significant progress in bone tissue engineering, the inadequacy of nerve-vascular network reconstruction remains a major limitation. This is partly due to the difficulty of integrating and regulating multiple tissue types with artificial materials. Thus, understanding the anatomy and underlying coupling mechanisms of blood vessels and nerve fibers within bone to further develop neuro-vascularized bone implant biomaterials is an extremely critical aspect in the field of bone regeneration. Hydrogels have good biocompatibility, controllable mechanical characteristics, and osteoconductive and osteoinductive properties, making them important candidates for research related to neuro-vascularized bone regeneration. This review reports the classification and physicochemical properties of hydrogels, with a focus on the application advantages and status of hydrogels for bone regeneration. The authors also highlight the effect of neurovascular coupling on bone repair and regeneration and the necessity of achieving neuro-vascularized bone regeneration. Finally, the recent progress and design strategies of hydrogel-based biomaterials for neuro-vascularized bone regeneration are discussed.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| | - Ya Cui
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| | - Xiaoya He
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| | - Lixia Mao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| |
Collapse
|
40
|
Peng Q, Zeng W. The protective role of endothelial GLUT1 in ischemic stroke. Brain Behav 2024; 14:e3536. [PMID: 38747733 PMCID: PMC11095318 DOI: 10.1002/brb3.3536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE To provide thorough insight on the protective role of endothelial glucose transporter 1 (GLUT1) in ischemic stroke. METHODS We comprehensively review the role of endothelial GLUT1 in ischemic stroke by narrating the findings concerning biological characteristics of GLUT1 in brain in depth, summarizing the changes of endothelial GLUT1 expression and activity during ischemic stroke, discussing how GLUT1 achieves its neuroprotective effect via maintaining endothelial function, and identifying some outstanding blind spots in current studies. RESULTS Endothelial GLUT1 maintains persistent high glucose and energy requirements of the brain by transporting glucose through the blood-brain barrier, which preserves endothelial function and is beneficial to stroke prognosis. CONCLUSION This review underscores the potential involvement of GLUT1 trafficking, activity modulation, and degradation, and we look forward to more clinical and animal studies to illuminate these mechanisms.
Collapse
Affiliation(s)
- Qiwei Peng
- Department of Critical Care Medicine, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology)Ministry of EducationWuhanChina
| | - Weiqi Zeng
- Department of NeurologyThe First People's Hospital of FoshanFoshanChina
| |
Collapse
|
41
|
da Silva BR, de Melo Reis RA, Ribeiro-Resende VT. A Comparative Investigation of Axon-Blood Vessel Growth Interaction in the Regenerating Sciatic and Optic Nerves in Adult Mice. Mol Neurobiol 2024; 61:2215-2227. [PMID: 37864766 DOI: 10.1007/s12035-023-03705-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
The vascular and the nervous systems share similarities in addition to their complex role in providing oxygen and nutrients to all cells. Both are highly branched networks that frequently grow close to one another during development. Vascular patterning and neural wiring share families of guidance cues and receptors. Most recently, this relationship has been investigated in terms of peripheral nervous system (PNS) regeneration, where nerves and blood vessels often run in parallel so endothelial cells guide the formation of the Büngner bands which support axonal regeneration. Here, we characterized the vascular response in regenerative models of the central and peripheral nervous system. After sciatic nerve crush, followed by axon regeneration, there was a significant increase in the blood vessel density 7 days after injury. In addition, the optic nerve crush model was used to evaluate intrinsic regenerative potential activated with a combined treatment that stimulated retinal ganglion cells (RGCs) regrowth. We observed that a 2-fold change in the total number of blood vessels occurred 7 days after optic nerve crush compared to the uncrushed nerve. The difference increased up to a 2.7-fold change 2 weeks after the crush. Interestingly, we did not observe differences in the total number of blood vessels 2 weeks after crush, compared to animals that had received combined treatment for regeneration and controls. Therefore, the vascular characterization showed that the increase in vascular density was not related to the efficiency of both peripheral and central axonal regeneration.
Collapse
Affiliation(s)
- Barbara Rangel da Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Ricardo A de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Victor Túlio Ribeiro-Resende
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil.
| |
Collapse
|
42
|
Zeng X, Ma S, Luo Y, Zhang Y, Wang Q, Zhang Z, Ke W, Ma Y, Hu H, Hartung T, Wei Y, Zhong X. Environmentally Relevant Concentrations of Tetrabromobisphenol A Exposure Impends Neurovascular Formation through Perturbing Mitochondrial Metabolism in Zebrafish Embryos and Human Primary Endothelial Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5267-5278. [PMID: 38478874 DOI: 10.1021/acs.est.3c10132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Tetrabromobisphenol A (TBBPA), the most extensively utilized brominated flame retardant, has raised growing concerns regarding its environmental and health risks. Neurovascular formation is essential for metabolically supporting neuronal networks. However, previous studies primarily concerned the neuronal injuries of TBBPA, its impact on the neurovascularture, and molecular mechanism, which are yet to be elucidated. In this study, 5, 30, 100, 300 μg/L of TBBPA were administered to Tg (fli1a: eGFP) zebrafish larvae at 2-72 h postfertilization (hpf). The findings revealed that TBBPA impaired cerebral and ocular angiogenesis in zebrafish. Metabolomics analysis showed that TBBPA-treated neuroendothelial cells exhibited disruption of the TCA cycle and the Warburg effect pathway. TBBPA induced a significant reduction in glycolysis and mitochondrial ATP production rates, accompanied by mitochondrial fragmentation and an increase in mitochondrial reactive oxygen species (mitoROS) production in neuroendothelial cells. The supplementation of alpha-ketoglutaric acid, a key metabolite of the TCA cycle, mitigated TBBPA-induced mitochondrial damage, reduced mitoROS production, and restored angiogenesis in zebrafish larvae. Our results suggested that TBBPA exposure impeded neurovascular injury via mitochondrial metabolic perturbation mediated by mitoROS signaling, providing novel insight into the neurovascular toxicity and mode of action of TBBPA.
Collapse
Affiliation(s)
- Xiangyu Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shengtao Ma
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Yijun Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yangjian Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhuyi Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weijian Ke
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ya Ma
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Haichen Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21230, United States
- University of Konstanz, Konstanz 78464, Germany
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
43
|
Matsui Y, Muramatsu F, Nakamura H, Noda Y, Matsumoto K, Kishima H, Takakura N. Brain-derived endothelial cells are neuroprotective in a chronic cerebral hypoperfusion mouse model. Commun Biol 2024; 7:338. [PMID: 38499610 PMCID: PMC10948829 DOI: 10.1038/s42003-024-06030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Whether organ-specific regeneration is induced by organ-specific endothelial cells (ECs) remains unelucidated. The formation of white matter lesions due to chronic cerebral hypoperfusion causes cognitive decline, depression, motor dysfunction, and even acute ischemic stroke. Vascular ECs are an important target for treating chronic cerebral hypoperfusion. Brain-derived ECs transplanted into a mouse chronic cerebral hypoperfusion model showed excellent angiogenic potential. They were also associated with reducing both white matter lesions and brain dysfunction possibly due to the high expression of neuroprotective humoral factors. The in vitro coculture of brain cells with ECs from several diverse organs suggested the function of brain-derived endothelium is affected within a brain environment due to netrin-1 and Unc 5B systems. We found brain CD157-positive ECs were more proliferative and beneficial in a mouse model of chronic cerebral hypoperfusion than CD157-negative ECs upon inoculation. We propose novel methods to improve the symptoms of chronic cerebral hypoperfusion using CD157-positive ECs.
Collapse
Affiliation(s)
- Yuichi Matsui
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hajime Nakamura
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshimi Noda
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kinnosuke Matsumoto
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
- World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| |
Collapse
|
44
|
Ouellette J, Crouch EE, Morel JL, Coelho-Santos V, Lacoste B. A Vascular-Centric Approach to Autism Spectrum Disorders. Neurosci Insights 2024; 19:26331055241235921. [PMID: 38476695 PMCID: PMC10929024 DOI: 10.1177/26331055241235921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Brain development and function are highly reliant on adequate establishment and maintenance of vascular networks. Early impairments in vascular health can impact brain maturation and energy metabolism, which may lead to neurodevelopmental anomalies. Our recent work not only provides novel insights into the development of cerebrovascular networks but also emphasizes the importance of their well-being for proper brain maturation. In particular, we have demonstrated that endothelial dysfunction in autism spectrum disorders (ASD) mouse models is causally related to altered behavior and brain metabolism. In the prenatal human brain, vascular cells change metabolic states in the second trimester. Such findings highlight the need to identify new cellular and molecular players in neurodevelopmental disorders, raising awareness about the importance of a healthy vasculature for brain development. It is thus essential to shift the mostly neuronal point of view in research on ASD and other neurodevelopmental disorders to also include vascular and metabolic features.
Collapse
Affiliation(s)
- Julie Ouellette
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Elizabeth E Crouch
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Jean-Luc Morel
- University Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
- University Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
| | - Vanessa Coelho-Santos
- Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Institute of Physiology, University of Coimbra, Coimbra, Portugal
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
45
|
Vasudevan V, Unni SN. Skin microcirculatory responses: A potential marker for early diabetic neuropathy assessment using a low-cost portable diffuse optical spectrometry device. JOURNAL OF BIOPHOTONICS 2024; 17:e202300335. [PMID: 38116917 DOI: 10.1002/jbio.202300335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/05/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Diffuse optical measurement is an evolving optical modality providing a fast and portable solution for microcirculation assessment. Diffuse optics in static and dynamic modalities are combined here in a system to assess hemodynamics in skin tissues of control and diabetic subjects. The in-house developed system consists of a laser source, fiber optic probe, a low-cost avalanche photodiode, a finite element model (FEM) derived static optical property estimator, and a software correlator for continuous flow monitoring through microvasculature. The studies demonstrated that the system quantifies the changes in blood flow rate in the immediate skin subsurface. The system is calibrated with in vitro flow models and a proof-of-concept was demonstrated on a limited number of subjects in a clinical environment. The flow changes in response to vasoconstrictive and vasodilative stimuli were analyzed and used to classify different stages of diabetes, including diabetic neuropathy.
Collapse
Affiliation(s)
- Vysakh Vasudevan
- Biophotonics Lab, Department of Applied Mechanics and Biomedical Engineering, IIT Madras, Chennai, India
| | - Sujatha Narayanan Unni
- Biophotonics Lab, Department of Applied Mechanics and Biomedical Engineering, IIT Madras, Chennai, India
| |
Collapse
|
46
|
Xue C, Zhu H, Wang H, Wang Y, Xu X, Zhou S, Liu D, Zhao Y, Qian T, Guo Q, He J, Zhang K, Gu Y, Gong L, Yang J, Yi S, Yu B, Wang Y, Liu Y, Yang Y, Ding F, Gu X. Skin derived precursors induced Schwann cells mediated tissue engineering-aided neuroregeneration across sciatic nerve defect. Bioact Mater 2024; 33:572-590. [PMID: 38111651 PMCID: PMC10726219 DOI: 10.1016/j.bioactmat.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023] Open
Abstract
A central question in neural tissue engineering is how the tissue-engineered nerve (TEN) translates detailed transcriptional signals associated with peripheral nerve regeneration into meaningful biological processes. Here, we report a skin-derived precursor-induced Schwann cell (SKP-SC)-mediated chitosan/silk fibroin-fabricated tissue-engineered nerve graft (SKP-SCs-TEN) that can promote sciatic nerve regeneration and functional restoration nearly to the levels achieved by autologous nerve grafts according to behavioral, histological, and electrophysiological evidence. For achieving better effect of neuroregeneration, this is the first time to jointly apply a dynamic perfusion bioreactor and the ascorbic acid to stimulate the SKP-SCs secretion of extracellular matrix (ECM). To overcome the limitation of traditional tissue-engineered nerve grafts, jointly utilizing SKP-SCs and their ECM components were motivated by the thought of prolongating the effect of support cells and their bioactive cues that promote peripheral nerve regeneration. To further explore the regulatory model of gene expression and the related molecular mechanisms involved in tissue engineering-aided peripheral nerve regeneration, we performed a cDNA microarray analysis of gene expression profiling, a comprehensive bioinformatics analysis and a validation study on the grafted segments and dorsal root ganglia tissues. A wealth of transcriptomic and bioinformatics data has revealed complex molecular networks and orchestrated functional regulation that may be responsible for the effects of SKP-SCs-TEN on promoting peripheral nerve regeneration. Our work provides new insights into transcriptomic features and patterns of molecular regulation in nerve functional recovery aided by SKP-SCs-TEN that sheds light on the broader possibilities for novel repair strategies of peripheral nerve injury.
Collapse
Affiliation(s)
- Chengbin Xue
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Hui Zhu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Hongkui Wang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Yaxian Wang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Xi Xu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, JS, 226001, PR China
| | - Songlin Zhou
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Dong Liu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Yahong Zhao
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Tianmei Qian
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Qi Guo
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
- Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China
| | - Jin He
- Medical School of Nantong University, Nantong, JS, 226001, PR China
| | - Kairong Zhang
- Medical School of Nantong University, Nantong, JS, 226001, PR China
| | - Yun Gu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Leilei Gong
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Jian Yang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Sheng Yi
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Bin Yu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Yongjun Wang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Yan Liu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Yumin Yang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Fei Ding
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Xiaosong Gu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| |
Collapse
|
47
|
Assali A, Chenaux G, Cho JY, Berto S, Ehrlich NA, Cowan CW. EphB1 controls long-range cortical axon guidance through a cell non-autonomous role in GABAergic cells. Development 2024; 151:dev201439. [PMID: 38345254 PMCID: PMC10946438 DOI: 10.1242/dev.201439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
EphB1 is required for proper guidance of cortical axon projections during brain development, but how EphB1 regulates this process remains unclear. We show here that EphB1 conditional knockout (cKO) in GABAergic cells (Vgat-Cre), but not in cortical excitatory neurons (Emx1-Cre), reproduced the cortical axon guidance defects observed in global EphB1 KO mice. Interestingly, in EphB1 cKOVgat mice, the misguided axon bundles contained co-mingled striatal GABAergic and somatosensory cortical glutamatergic axons. In wild-type mice, somatosensory axons also co-fasciculated with striatal axons, notably in the globus pallidus, suggesting that a subset of glutamatergic cortical axons normally follows long-range GABAergic axons to reach their targets. Surprisingly, the ectopic axons in EphB1 KO mice were juxtaposed to major blood vessels. However, conditional loss of EphB1 in endothelial cells (Tie2-Cre) did not produce the axon guidance defects, suggesting that EphB1 in GABAergic neurons normally promotes avoidance of these ectopic axons from the developing brain vasculature. Together, our data reveal a new role for EphB1 in GABAergic neurons to influence proper cortical glutamatergic axon guidance during brain development.
Collapse
Affiliation(s)
- Ahlem Assali
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - George Chenaux
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Jennifer Y. Cho
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathan A. Ehrlich
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Christopher W. Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| |
Collapse
|
48
|
Gipperich T, Hanesch U, Guido S, Schulze Bövingloh A. Polycaprolactone/Polylactic Acid Membrane Fails to Prevent Laminectomy-induced Sprouting of CGRP- and SP-immunopositive Nerve Fibres in the Dura mater lumbalis of Rats. ZEITSCHRIFT FUR ORTHOPADIE UND UNFALLCHIRURGIE 2024; 162:34-42. [PMID: 35915920 DOI: 10.1055/a-1838-5726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND CONTEXT Mechanisms and prevention of failed back surgery syndromes are rarely known in the clinical context. It has been shown that laminectomy induces outgrowth of putative nociceptive peptidergic afferents in the dura mater lumbalis of rats. PURPOSE We aimed to investigate whether the application of a polycaprolactone/polylactic acid membrane (Mesofol) after surgery inhibits sensory hyperinnervation. MATERIALS/METHODS Adult Lewis rats were assigned to three groups: Control (no manipulation), Laminectomy and Laminectomy + Mesofol. Six weeks post-surgery, the durae were removed, immunohistochemically stained for CGRP- and SP-positive afferents and their density quantified. RESULTS In controls, CGRP- and SP-positive neurons were predominantly found in ventral but rarely observed in dorsal parts of the dura. Following laminectomy, the density of afferents significantly increased ventrally, resulting in a dense network of nerve fibers. In dorsal regions, neuronal sprouting of was observed. Covering the dura with Mesofol after laminectomy had no impact on nerve fibre outgrowth. CONCLUSION Application of Mesofol neither prevents nor significantly diminishes the laminectomy-induced increase in the density of peptidergic afferents.
Collapse
Affiliation(s)
- Tobias Gipperich
- Allgemeine Orthopädie und Tumororthopädie, Universitätsklinikum Münster, Münster, Deutschland
| | - Ulrike Hanesch
- Institute for Health and Behavior, Universite du Luxembourg, Luxembourg, Luxemburg
| | - Saxler Guido
- Klinik für Orthopädie, Rheinland Klinikum Dormagen, Dormagen, Deutschland
| | | |
Collapse
|
49
|
Cao G, Ren L, Ma D. Recent Advances in Cell Sheet-Based Tissue Engineering for Bone Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:97-127. [PMID: 37639357 DOI: 10.1089/ten.teb.2023.0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In conventional bone tissue engineering, cells are seeded onto scaffolds to create three-dimensional (3D) tissues, but the cells on the scaffolds are unable to effectively perform their physiological functions due to their low density and viability. Cell sheet (CS) engineering is expected to be free from this limitation. CS engineering uses the principles of self-assembly and self-organization of endothelial and mesenchymal stem cells to prepare CSs as building blocks for engineering bone grafts. This process recapitulates the native tissue development, thus attracting significant attention in the field of bone regeneration. However, the method is still in the prebasic experimental stage in bone defect repair. To make the method clinically applicable and valuable in personalized and precision medicine, current research is focused on the preparation of multifunctionalized building blocks using CS technologies, such as 3D layered CSs containing microvascular structures. Considering the great potential of CS engineering in repairing bone defects, in this review, the types of cell technologies are first outlined. We then summarize the various types of CSs as building blocks for engineering bone grafts. Furthermore, the specific applications of CSs in bone repair are discussed. Finally, we present specific suggestions for accelerating the application of CS engineering in the clinical treatment of bone defects.
Collapse
Affiliation(s)
- Guoding Cao
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Department of Orthopaedics, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Liling Ren
- Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Dongyang Ma
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Department of Oral and Maxillofacial Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| |
Collapse
|
50
|
Chen YC, Martins TA, Marchica V, Panula P. Angiopoietin 1 and integrin beta 1b are vital for zebrafish brain development. Front Cell Neurosci 2024; 17:1289794. [PMID: 38235293 PMCID: PMC10792015 DOI: 10.3389/fncel.2023.1289794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Angiopoietin 1 (angpt1) is essential for angiogenesis. However, its role in neurogenesis is largely undiscovered. This study aimed to identify the role of angpt1 in brain development, the mode of action of angpt1, and its prime targets in the zebrafish brain. Methods We investigated the effects of embryonic brain angiogenesis and neural development using qPCR, in situ hybridization, microangiography, retrograde labeling, and immunostaining in the angpt1sa14264, itgb1bmi371, tekhu1667 mutant fish and transgenic overexpression of angpt1 in the zebrafish larval brains. Results We showed the co-localization of angpt1 with notch, delta, and nestin in the proliferation zone in the larval brain. Additionally, lack of angpt1 was associated with downregulation of TEK tyrosine kinase, endothelial (tek), and several neurogenic factors despite upregulation of integrin beta 1b (itgb1b), angpt2a, vascular endothelial growth factor aa (vegfaa), and glial markers. We further demonstrated that the targeted angpt1sa14264 and itgb1bmi371 mutant fish showed severely irregular cerebrovascular development, aberrant hindbrain patterning, expansion of the radial glial progenitors, downregulation of cell proliferation, deficiencies of dopaminergic, histaminergic, and GABAergic populations in the caudal hypothalamus. In contrast to angpt1sa14264 and itgb1bmi371 mutants, the tekhu1667 mutant fish regularly grew with no apparent phenotypes. Notably, the neural-specific angpt1 overexpression driven by the elavl3 (HuC) promoter significantly increased cell proliferation and neuronal progenitor cells but decreased GABAergic neurons, and this neurogenic activity was independent of its typical receptor tek. Discussion Our results prove that angpt1 and itgb1b, besides regulating vascular development, act as a neurogenic factor via notch and wnt signaling pathways in the neural proliferation zone in the developing brain, indicating a novel role of dual regulation of angpt1 in embryonic neurogenesis that supports the concept of angiopoietin-based therapeutics in neurological disorders.
Collapse
Affiliation(s)
- Yu-Chia Chen
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Tomás A. Martins
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Valentina Marchica
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| |
Collapse
|