1
|
Nagai R, Milam O, Niwa T, Howell W, Best J, Yoshida H, Freeburg C, Koomen J, Fujii K. Ribosomal expansion segment contributes to translation fidelity via N-terminal processing of ribosomal proteins. Nucleic Acids Res 2025; 53:gkaf448. [PMID: 40433980 PMCID: PMC12117404 DOI: 10.1093/nar/gkaf448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 04/30/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Eukaryotic ribosomes exhibit higher mRNA translation fidelity than prokaryotic ribosomes, partly due to eukaryote-specific ribosomal RNA (rRNA) insertions. Among these, expansion segment 27L (ES27L) on the 60S subunit enhances fidelity by anchoring methionine aminopeptidase (MetAP) at the nascent protein exit tunnel, accelerating co-translational N-terminal initiator methionine (iMet) processing. However, the mechanisms by which iMet processing influences translation fidelity remain unknown. Using yeast in vitro translation (IVT) systems, we found that inhibiting co-translational iMet processing does not impact ribosome decoding of ongoing peptide synthesis. Instead, our novel method to monitor iMet processing in vivo revealed that ribosomes purified from strains lacking MetAP ribosomal association (ES27L Δb1-4) or major yeast MetAP (Δmap1) increase iMet retention on ribosomal proteins (RPs). Given the densely packed structure of ribosomes, iMet retention on RPs may distort ribosomal structure and impair its function. Indeed, reconstituted IVT systems containing iMet-retaining ribosome subunits from ES27L Δb1-4 strain, combined with translation factors from wild-type strains, elucidated that iMet retention on the 40S ribosomal subunit causes translation errors. Our study demonstrated the critical role of ES27L in adjusting ribosome association of universally conserved MetAP enzyme to fine-tune iMet processing of key RPs, thereby ensuring the structural integrity and functional accuracy of eukaryotic ribosomes.
Collapse
Affiliation(s)
- Riku Nagai
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, United States
| | - Olivia L Milam
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, United States
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Kanagawa 226-8503, Japan
| | - William J Howell
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, United States
| | - Jacob A Best
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, United States
| | - Hideji Yoshida
- Department of Physics, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Carver D Freeburg
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, United States
| | - John M Koomen
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL 33612, United States
| | - Kotaro Fujii
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, United States
| |
Collapse
|
2
|
Zhang H, Ling J. Serine mistranslation induces the integrated stress response through the P stalk. J Biol Chem 2025; 301:108447. [PMID: 40147769 PMCID: PMC12022490 DOI: 10.1016/j.jbc.2025.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that support robust and accurate protein synthesis. A rapidly expanding number of studies show that mutations in aaRSs lead to multiple human diseases, including neurological disorders and cancer. How aaRS mutations impact human health is not fully understood. In particular, our knowledge of how aminoacylation errors affect stress responses and fitness in eukaryotic cells remains limited. The integrated stress response (ISR) is an adaptive mechanism in response to multiple stresses. However, chronic activation of the ISR contributes to the development of multiple diseases such as neuropathies. In this study, we show that Ser misincorporation into Ala and Thr codons, resulting from either aaRS-editing defects or mutations in tRNAs, activates the ISR. We further demonstrate that activation of the ISR by Ser mistranslation does not depend on the accumulation of uncharged tRNAs but rather requires the P stalk associated with the ribosome, implying that ribosome stalling and collision are involved. Our work highlights that certain types of aminoacylation errors can lead to chronic activation of the ISR, potentially affecting fitness and disease progression.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, USA.
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
3
|
Sun Y, Vermulst M. The hidden costs of imperfection: transcription errors in protein aggregation diseases. Curr Opin Genet Dev 2025; 93:102350. [PMID: 40300213 DOI: 10.1016/j.gde.2025.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/26/2025] [Accepted: 04/06/2025] [Indexed: 05/01/2025]
Abstract
At first glance, biological systems appear to operate with remarkable precision and order. Yet, closer examination reveals that this perfection is an illusion, biological processes are inherently prone to errors. Here, we describe recent evidence that indicates that errors that occur during transcription play an important role in neurological diseases. These errors, though transient, can have lasting consequences when they generate mutant proteins with amyloid or prion-like properties. Such proteins can seed aggregation cascades, converting wild-type counterparts into misfolded conformations, ultimately leading to toxic deposits seen in diseases like Alzheimer's and amyotrophic lateral sclerosis. These observations help to paint a fuller picture of the origins of neurodegenerative diseases in aging humans and suggest a unified mechanism by which they may arise.
Collapse
Affiliation(s)
- Yingwo Sun
- University of Southern California, School of Gerontology, Los Angeles 90089, United States
| | - Marc Vermulst
- University of Southern California, School of Gerontology, Los Angeles 90089, United States.
| |
Collapse
|
4
|
Gogoi J, Pawar KI, Sivakumar K, Bhatnagar A, Suma K, Ann KJ, Pottabathini S, Kruparani SP, Sankaranarayanan R. A metal ion mediated functional dichotomy encodes plasticity during translation quality control. Nat Commun 2025; 16:3625. [PMID: 40240361 PMCID: PMC12003907 DOI: 10.1038/s41467-025-58787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Proofreading during translation of the genetic code is a key process for not only translation quality control but also for its modulation under stress conditions to provide fitness advantage. A major class of proofreading modules represented by editing domains of alanyl-tRNA synthetase (AlaRS-Ed) and threonyl-tRNA synthetase (ThrRS-Ed) features a common fold and an invariant Zn2+ binding motif across life forms. Here, we reveal the structural basis and functional consequence along with the necessity for their operational dichotomy, i.e., the metal ion is ubiquitous in one and inhibitor for the other. The universally conserved Zn2+ in AlaRS-Ed protects its proofreading activity from reactive oxygen species (ROS) to maintain high fidelity Ala-codons translation, necessary for cell survival. On the other hand, mistranslation of Thr-codons is well tolerated by the cells, thereby allowing for a ROS-based modulation of ThrRS-Ed's activity. A single residue rooted over ~3.5 billion years of evolution has been shown to be primarily responsible for the functional divergence. The study presents a remarkable example of how protein quality control is integrated with redox signalling through leveraging the tunability of metal binding sites from the time of last universal common ancestor (LUCA).
Collapse
Affiliation(s)
- Jotin Gogoi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Komal Ishwar Pawar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Koushick Sivakumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akshay Bhatnagar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Katta Suma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Kezia J Ann
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | | | - Shobha P Kruparani
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Rajan Sankaranarayanan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Zong Z, Ren J, Yang B, Zhang L, Zhou F. Emerging roles of lysine lactyltransferases and lactylation. Nat Cell Biol 2025; 27:563-574. [PMID: 40185947 DOI: 10.1038/s41556-025-01635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/13/2025] [Indexed: 04/07/2025]
Abstract
Given its various roles in cellular functions, lactate is no longer considered a waste product of metabolism and lactate sensing is a pivotal step in the transduction of lactate signals. Lysine lactylation is a recently identified post-translational modification that serves as an intracellular mechanism of lactate sensing and transfer. Although acetyltransferases such as p300 exhibit general acyl transfer activity, no bona fide lactyltransferases have been identified. Recently, the protein synthesis machinery, alanyl-tRNA synthetase 1 (AARS1), AARS2 and their Escherichia coli orthologue AlaRS, have been shown to be able to sense lactate and mediate lactyl transfer and are thus considered pan-lactyltransferases. Here we highlight the mechanisms and functions of these lactyltransferases and discuss potential strategies that could be exploited for the treatment of human diseases.
Collapse
Affiliation(s)
- Zhi Zong
- The First Affiliated Hospital of Soochow University, Suzhou, China
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Jiang Ren
- MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bing Yang
- State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Long Zhang
- MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China.
- State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Fangfang Zhou
- The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Costa ACM, Dpf N, Júlio PR, Marchi-Silva R, De Aquino BM, de Oliveira Andrade S, Pereira DR, Mazzola TN, De Souza JM, Martinez ARM, França MC, Reis F, Touma Z, Niewold TB, Appenzeller S. Neuropsychiatric manifestations in systemic lupus erythematosus and Sjogren's disease. Autoimmun Rev 2025; 24:103756. [PMID: 39863044 DOI: 10.1016/j.autrev.2025.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Autoimmune diseases often present in a systemic manner, affecting various organs and tissues. Involvement of the central and peripheral nervous system is not uncommon in these conditions and is associated with high morbidity and mortality. Therefore, early recognition of the neuropsychiatric manifestations associated with rheumatologic diseases is essential for the introduction of appropriate therapies with the objective of providing a better quality of life for individuals. OBJECTIVE To provide a literature review of the neuropsychiatric manifestations related to Systemic Lupus Erythematosus (SLE) and primary Sjögren's Disease (pSD), through the description of signs, symptoms, and immunological variables associated with these conditions. METHODS A literature review was conducted by searching for national and international articles available in the SciELO and PubMed databases related to the description of neurological and psychiatric manifestations in patients with the rheumatologic diseases of interest in this study. RESULTS The main NP manifestations presented in SLE and pSD are discussed, focusing on clinical presentation and etiology. Treatment option are, however, mainly based on expert opinion, since a few randomized controlled trials have been done. CONCLUSIONS There is a high prevalence of neuropsychiatric manifestations associated with SLE and pSD. The variety of physiopathology pathways may explain the variety of symptoms, however pathological findings are rare. Multicenter studies on attribution protocols and treatment are necessary to address the current gaps.
Collapse
Affiliation(s)
| | - Nunes Dpf
- Department of Orthopedics, Rheumatology and Traumatology-School of Medical Sciences, University of Campinas, Brazil; Autoimmunity Lab, School of Medical Sciences, University of Campinas, Brazil
| | - Paulo Rogério Júlio
- Autoimmunity Lab, School of Medical Sciences, University of Campinas, Brazil; Child and Adolescent Graduate Program, School of Medical Sciences, University of Campinas, Brazil
| | - Rodrigo Marchi-Silva
- Autoimmunity Lab, School of Medical Sciences, University of Campinas, Brazil; Medical Pathophysiology Graduate Program, School of Medical Sciences, Universidade Estadual de Campinas, Brazil
| | - Bruna Martins De Aquino
- Autoimmunity Lab, School of Medical Sciences, University of Campinas, Brazil; Medical Pathophysiology Graduate Program, School of Medical Sciences, Universidade Estadual de Campinas, Brazil
| | - Samuel de Oliveira Andrade
- Autoimmunity Lab, School of Medical Sciences, University of Campinas, Brazil; Medical Pathophysiology Graduate Program, School of Medical Sciences, Universidade Estadual de Campinas, Brazil
| | - Danilo Rodrigues Pereira
- Autoimmunity Lab, School of Medical Sciences, University of Campinas, Brazil; Medical Pathophysiology Graduate Program, School of Medical Sciences, Universidade Estadual de Campinas, Brazil
| | - Tais Nitsch Mazzola
- Autoimmunity Lab, School of Medical Sciences, University of Campinas, Brazil; Center for Investigation in Pediatrics, School of Medical Sciences, University of Campinas, Brazil
| | - Jean Marcos De Souza
- Department of Medicine, School of Medical Sciences, University of Campinas, Brazil
| | | | | | - Fabiano Reis
- Department of Anestiology and Radiology, School of Medical Sciences, University of Campinas, Brazil
| | - Zahi Touma
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Canada; University of Toronto Lupus Clinic, Centre for Prognosis Studies in Rheumatic Diseases, Toronto Western Hospital, Shroeder Arthritis Institute, Toronto, ON, Canada
| | - Timothy B Niewold
- Hospital of Special Surgery, Department of Medicine, New York, NY, USA; Weill Cornell Medicine, Department of Medicine, New York, NY, USA
| | - Simone Appenzeller
- Department of Orthopedics, Rheumatology and Traumatology-School of Medical Sciences, University of Campinas, Brazil; Autoimmunity Lab, School of Medical Sciences, University of Campinas, Brazil.
| |
Collapse
|
7
|
Rashad S, Marahleh A. Metabolism Meets Translation: Dietary and Metabolic Influences on tRNA Modifications and Codon Biased Translation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70011. [PMID: 40119534 PMCID: PMC11928779 DOI: 10.1002/wrna.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/24/2025]
Abstract
Transfer RNA (tRNA) is not merely a passive carrier of amino acids, but an active regulator of mRNA translation controlling codon bias and optimality. The synthesis of various tRNA modifications is regulated by many "writer" enzymes, which utilize substrates from metabolic pathways or dietary sources. Metabolic and bioenergetic pathways, such as one-carbon (1C) metabolism and the tricarboxylic acid (TCA) cycle produce essential substrates for tRNA modifications synthesis, such as S-Adenosyl methionine (SAM), sulfur species, and α-ketoglutarate (α-KG). The activity of these metabolic pathways can directly impact codon decoding and translation via regulating tRNA modifications levels. In this review, we discuss the complex interactions between diet, metabolism, tRNA modifications, and mRNA translation. We discuss how nutrient availability, bioenergetics, and intermediates of metabolic pathways, modulate the tRNA modification landscape to fine-tune protein synthesis. Moreover, we highlight how dysregulation of these metabolic-tRNA interactions contributes to disease pathogenesis, including cancer, metabolic disorders, and neurodegenerative diseases. We also discuss the new emerging field of GlycoRNA biology drawing parallels from glycobiology and metabolic diseases to guide future directions in this area. Throughout our discussion, we highlight the links between specific modifications, their metabolic/dietary precursors, and various diseases, emphasizing the importance of a metabolism-centric tRNA view in understanding many pathologies. Future research should focus on uncovering the interplay between metabolism and tRNA in specific cellular and disease contexts. Addressing these gaps will guide new research into novel disease interventions.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Aseel Marahleh
- Frontier Research Institute for Interdisciplinary SciencesTohoku UniversitySendaiJapan
- Graduate School of DentistryTohoku UniversitySendaiJapan
| |
Collapse
|
8
|
Zhang P, Duan CB, Xu HL, Zhao XY, Huang DC, Jin B, Sha Q, Miu S, Bian Q, Guo DL, Deng F, Gao J, Sukhbaatar O, Sun Q, Zhang MZ, Zhang WH, Gu YC. Dual-Target Inhibitors─Discovery of Novel Diphenyl-(Thio)ether-Containing Benzoxaborole Derivatives as Potential Antifungal and Herbicidal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4497-4506. [PMID: 39935368 DOI: 10.1021/acs.jafc.4c06951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
LeuRS and PPO are important targets in the development of green pesticides; novel diphenyl-(thio)ether-containing benzoxaborole derivatives were designed and synthesized as novel dual-target enzyme inhibitors; their antifungal activities against six kinds of common plant pathogens in vitro and their herbicidal activities against purslane and barnyard grass were studied. Most of the target compounds showed excellent antifungal activity against six kinds of plant pathogenic fungi in vitro, and this is highlighted by compounds 6c and 6h, both displayed 100.0% inhibition effects against three kinds of the tested plant pathogenic fungi under the concentrations of 50.0 μg/mL, and the EC50 value of compound 6r against Rhizoctonia solani was 0.763 μg/mL, significantly lower than that of boscalid (1.20 μg/mL). In addition, compound 6c was also used in negative control experiments, and the results revealed that compound 6c had no significant effect on the growth of noninfected plants. Meanwhile, most of the compounds also demonstrated promising herbicidal activity, as compounds 6b, 6h, 6m, and 7e showed effective control on purslane and barnyard grass. Beyond that, compound 6s demonstrated certain safety against rape. Enzymatic inhibition experiments further confirmed that compound 7e exhibited remarkable inhibitory activity against NtPPO. Moreover, the molecular docking results between 6c and 7g and tLeuRS and NtPPO further revealed the mechanisms of action for their biological activities. In summary, compounds 6b, 6c, 6h, 7e, and 7g showed excellent antifungal and herbicidal activities and can be further studied as new antifungal and herbicidal agents in the next step.
Collapse
Affiliation(s)
- Pei Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Bao Duan
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui-Lin Xu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin-Ying Zhao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dai-Chuan Huang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Jin
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiang Sha
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shiji Miu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Da-Le Guo
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Deng
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Otgonpurev Sukhbaatar
- Department of Chemistry, School of Applied Sciences, Mongolian University of Life Sciences, Zaisan, 17024 Ulaanbaatar, Mongolia
| | - Qi Sun
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ming-Zhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire, Bracknell RG42 6EY, U.K
| |
Collapse
|
9
|
Kok G, Schene IF, Ilcken EF, Alcaraz PS, Mendes M, Smith DEC, Salomons G, Shehata S, Jans JJM, Maroofian R, Hoek TA, van Es RM, Rehmann H, Nieuwenhuis ES, Vos HR, Fuchs SA. Isoleucine-to-valine substitutions support cellular physiology during isoleucine deprivation. Nucleic Acids Res 2025; 53:gkae1184. [PMID: 39657787 PMCID: PMC11724295 DOI: 10.1093/nar/gkae1184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) couple tRNAs with their corresponding amino acids. While ARSs can bind structurally similar amino acids, extreme specificity is ensured by subsequent editing activity. Yet, we found that upon isoleucine (I) restriction, healthy fibroblasts consistently incorporated valine (V) into proteins at isoleucine codons, resulting from misacylation of tRNAIle with valine by wildtype IARS1. Using a dual-fluorescent reporter of translation, we found that valine supplementation could fully compensate for isoleucine depletion and restore translation to normal levels in healthy, but not IARS1 deficient cells. Similarly, the antiproliferative effects of isoleucine deprivation could be fully restored by valine supplementation in healthy, but not IARS1 deficient cells. This indicates I > V substitutions help prevent translational termination and maintain cellular function in human primary cells during isoleucine deprivation. We suggest that this is an example of a more general mechanism in mammalian cells to preserve translational speed at the cost of translational fidelity in response to (local) amino acid deficiencies.
Collapse
Affiliation(s)
- Gautam Kok
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Imre F Schene
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Eveline F Ilcken
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Paula Sobrevals Alcaraz
- Center for Molecular Medicine, University Medical Center Utrecht, Oncode Institute, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marisa I Mendes
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Desiree E C Smith
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Gajja Salomons
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sawsan Shehata
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Judith J M Jans
- Laboratory of Metabolic Diseases, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Tim A Hoek
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Robert M van Es
- Center for Molecular Medicine, University Medical Center Utrecht, Oncode Institute, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Holger Rehmann
- Department Energy and Biotechnology, Flensburg University of Applied Sciences, Kanzleistraße 91–93 24943 Flensburg, Germany
| | - Edward E S Nieuwenhuis
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Harmjan R Vos
- Center for Molecular Medicine, University Medical Center Utrecht, Oncode Institute, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sabine A Fuchs
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| |
Collapse
|
10
|
Poplawski J, Montina T, Metz GAS. Early life stress shifts critical periods and causes precocious visual cortex development. PLoS One 2024; 19:e0316384. [PMID: 39739746 DOI: 10.1371/journal.pone.0316384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025] Open
Abstract
The developing nervous system displays remarkable plasticity in response to sensory stimulation during critical periods of development. Critical periods may also increase the brain's vulnerability to adverse experiences. Here we show that early-life stress (ELS) in mice shifts the timing of critical periods in the visual cortex. ELS induced by animal transportation on postnatal day 12 accelerated the opening and closing of the visual cortex critical period along with earlier maturation of visual acuity. Staining of a molecular correlate that marks the end of critical period plasticity revealed premature emergence of inhibitory perineuronal nets (PNNs) following ELS. ELS also drove lasting changes in visual cortex mRNA expression affecting genes linked to psychiatric disease risk, with hemispheric asymmetries favoring the right side. NMR spectroscopy and a metabolomics approach revealed that ELS was accompanied by activated energy metabolism and protein biosynthesis. Thus, ELS may accelerate visual system development, resulting in premature opening and closing of critical period plasticity. Overall, the data suggest that ELS desynchronizes the orchestrated temporal sequence of regional brain development potentially leading to long-term functional deficiencies. These observations provide new insights into a neurodevelopmental expense to adaptative brain plasticity. These findings also suggest that shipment of laboratory animals during vulnerable developmental ages may result in long lasting phenotypes, introducing critical confounds to the experimental design.
Collapse
Affiliation(s)
- Janet Poplawski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
11
|
Yin M, Zhou H, Zhu Y, Lin M, Wu Y, Wu J, Xu H, Hsieh CY, Hou T, Chen J, Wu J. Multi-Modal CLIP-Informed Protein Editing. HEALTH DATA SCIENCE 2024; 4:0211. [PMID: 39703565 PMCID: PMC11658819 DOI: 10.34133/hds.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/17/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
Background: Proteins govern most biological functions essential for life, and achieving controllable protein editing has made great advances in probing natural systems, creating therapeutic conjugates, and generating novel protein constructs. Recently, machine learning-assisted protein editing (MLPE) has shown promise in accelerating optimization cycles and reducing experimental workloads. However, current methods struggle with the vast combinatorial space of potential protein edits and cannot explicitly conduct protein editing using biotext instructions, limiting their interactivity with human feedback. Methods: To fill these gaps, we propose a novel method called ProtET for efficient CLIP-informed protein editing through multi-modality learning. Our approach comprises 2 stages: In the pretraining stage, contrastive learning aligns protein-biotext representations encoded by 2 large language models (LLMs). Subsequently, during the protein editing stage, the fused features from editing instruction texts and original protein sequences serve as the final editing condition for generating target protein sequences. Results: Comprehensive experiments demonstrated the superiority of ProtET in editing proteins to enhance human-expected functionality across multiple attribute domains, including enzyme catalytic activity, protein stability, and antibody-specific binding ability. ProtET improves the state-of-the-art results by a large margin, leading to substantial stability improvements of 16.67% and 16.90%. Conclusions: This capability positions ProtET to advance real-world artificial protein editing, potentially addressing unmet academic, industrial, and clinical needs.
Collapse
Affiliation(s)
- Mingze Yin
- School of Medicine,
Zhejiang University, Hangzhou, China
| | - Hanjing Zhou
- College of Computer Science and Technology,
Zhejiang University, Hangzhou, China
| | - Yiheng Zhu
- College of Computer Science and Technology,
Zhejiang University, Hangzhou, China
| | - Miao Lin
- Medical Big Data Center, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences),
Southern Medical University, Guangzhou, China
| | - Yixuan Wu
- School of Medicine,
Zhejiang University, Hangzhou, China
| | - Jialu Wu
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hongxia Xu
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chang-Yu Hsieh
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jintai Chen
- AI Thrust, Information Hub, HKUST (Guangzhou), Guangzhou, China
| | - Jian Wu
- Second Affiliated Hospital School of Medicine, Hangzhou, China
- School of Public Health,
Zhejiang University, Hangzhou, China
- Institute of Wenzhou, Wenzhou, China
| |
Collapse
|
12
|
Mao H, Xu M, Wang H, Liu Y, Wang F, Gao Q, Zhao S, Ma L, Hu X, Zhang X, Xi G, Fang X, Shi Y. Transcriptional patterns of brain structural abnormalities in CSVD-related cognitive impairment. Front Aging Neurosci 2024; 16:1503806. [PMID: 39679256 PMCID: PMC11638219 DOI: 10.3389/fnagi.2024.1503806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Background Brain structural abnormalities have been associated with cognitive impairment in individuals with small cerebral vascular disease (CSVD). However, the molecular and cellular factors making the different brain structural regions more vulnerable to CSVD-related cognitive impairment remain largely unknown. Materials and methods Voxel-based morphology (VBM) was performed on the structural magnetic resonance imaging data of 46 CSVD-related cognitive impairment and 73 healthy controls to analyze and compare the gray matter volume (GMV) between the 2 groups. Transcriptome-neuroimaging spatial correlation analysis was carried out in combination with the Allen Human Brain Atlas to explore gene expression profiles associated with changes in cortical morphology in CSVD-related cognitive impairment. Results VBM analysis demonstrated extensive decreased GMV in CSVD-related cognitive impairment in the bilateral temporal lobe and thalamus, especially the hippocampus, thalamus, parahippocampus, and fusiform, and the left temporal lobe showed a more severe atrophy than the right temporal lobe. These brain structural alterations were closely related to memory and executive function deficits in CSVD-related cognitive impairment. Furthermore, a total of 1,580 genes were revealed to be significantly associated with regional change in GMV. The negatively and positively GMV-linked gene expression profiles were mainly enriched in RNA polymerase II, catalytic activity acting on a nucleic acid, aminoacyltransferase activity, axonogenesis, Golgi membrane, and cell junction organization. Conclusion Our findings suggest that brain morphological abnormalities in CSVD-related cognitive impairment are linked to molecular changes involving complex polygenic mechanisms, highlighting the interplay between genetic influences and structural alterations relevant to CSVD-related cognitive impairment.
Collapse
Affiliation(s)
- Haixia Mao
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Min Xu
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Hui Wang
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yuankun Liu
- Department of Neurosurgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Feng Wang
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Qianqian Gao
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Songyun Zhao
- Department of Neurosurgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Lin Ma
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xiaoyun Hu
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xiaoxuan Zhang
- Department of Neurosurgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Guangjun Xi
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xiangming Fang
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yachen Shi
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
13
|
Verheijen BM, Vermulst M. Linking Environmental Genotoxins to Neurodegenerative Diseases Through Transcriptional Mutagenesis. Int J Mol Sci 2024; 25:11429. [PMID: 39518982 PMCID: PMC11545915 DOI: 10.3390/ijms252111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 11/16/2024] Open
Abstract
Numerous lines of evidence suggest that DNA damage contributes to the initiation, progression, and severity of neurodegenerative diseases. However, the molecular mechanisms responsible for this relationship remain unclear. This review integrates historical data with contemporary findings to propose that DNA damage exacerbates neurodegenerative diseases by inducing transcription errors. First, we describe the scientific rationale and basic biological concepts that underpin this hypothesis. Then, we provide epidemiological, cellular, and molecular data to support this idea, and we describe new and recently published observations that suggest that the former high incidence of neurodegenerative disease in Guam may have been driven by DNA damage-induced transcription errors. Finally, we explore the long-term implications of these findings on our understanding of the impact of genotoxic stress on human aging and disease.
Collapse
Affiliation(s)
- Bert M. Verheijen
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marc Vermulst
- School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
14
|
Isaacson JR, Berg MD, Yeung W, Villén J, Brandl CJ, Moehring AJ. Impact of tRNA-induced proline-to-serine mistranslation on the transcriptome of Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae151. [PMID: 38989890 PMCID: PMC11373654 DOI: 10.1093/g3journal/jkae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/16/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Mistranslation is the misincorporation of an amino acid into a polypeptide. Mistranslation has diverse effects on multicellular eukaryotes and is implicated in several human diseases. In Drosophila melanogaster, a serine transfer RNA (tRNA) that misincorporates serine at proline codons (P→S) affects male and female flies differently. The mechanisms behind this discrepancy are currently unknown. Here, we compare the transcriptional response of male and female flies to P→S mistranslation to identify genes and cellular processes that underlie sex-specific differences. Both males and females downregulate genes associated with various metabolic processes in response to P→S mistranslation. Males downregulate genes associated with extracellular matrix organization and response to negative stimuli such as wounding, whereas females downregulate aerobic respiration and ATP synthesis genes. Both sexes upregulate genes associated with gametogenesis, but females also upregulate cell cycle and DNA repair genes. These observed differences in the transcriptional response of male and female flies to P→S mistranslation have important implications for the sex-specific impact of mistranslation on disease and tRNA therapeutics.
Collapse
Affiliation(s)
| | - Matthew D Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - William Yeung
- Department of Biology, Western University, London, Canada, N6A 5B7
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
15
|
Watkins RR, Kavoor A, Musier-Forsyth K. Strategies for detecting aminoacylation and aminoacyl-tRNA editing in vitro and in cells. Isr J Chem 2024; 64:e202400009. [PMID: 40066018 PMCID: PMC11892019 DOI: 10.1002/ijch.202400009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Indexed: 03/14/2025]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) maintain translational fidelity by ensuring the formation of correct aminoacyl-tRNA pairs. Numerous point mutations in human aaRSs have been linked to disease phenotypes. Structural studies of aaRSs from human pathogens encoding unique domains support these enzymes as potential candidates for therapeutics. Studies have shown that the identity of tRNA pools in cells changes between different cell types and under stress conditions. While traditional radioactive aminoacylation analyses can determine the effect of disease-causing mutations on aaRS function, these assays are not amenable to drug discovery campaigns and do not take into account the variability of the intracellular tRNA pools. Here, we review modern techniques to characterize aaRS activity in vitro and in cells. The cell-based approaches analyse the aminoacyl-tRNA pool to observe trends in aaRS activity and fidelity. Taken together, these approaches allow high-throughput drug screening of aaRS inhibitors and systems-level analyses of the dynamic tRNA population under a variety of conditions and disease states.
Collapse
Affiliation(s)
- Rylan R. Watkins
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH, USA
| | - Arundhati Kavoor
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
16
|
Schuntermann DB, Jaskolowski M, Reynolds NM, Vargas-Rodriguez O. The central role of transfer RNAs in mistranslation. J Biol Chem 2024; 300:107679. [PMID: 39154912 PMCID: PMC11415595 DOI: 10.1016/j.jbc.2024.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Transfer RNAs (tRNA) are essential small non-coding RNAs that enable the translation of genomic information into proteins in all life forms. The principal function of tRNAs is to bring amino acid building blocks to the ribosomes for protein synthesis. In the ribosome, tRNAs interact with messenger RNA (mRNA) to mediate the incorporation of amino acids into a growing polypeptide chain following the rules of the genetic code. Accurate interpretation of the genetic code requires tRNAs to carry amino acids matching their anticodon identity and decode the correct codon on mRNAs. Errors in these steps cause the translation of codons with the wrong amino acids (mistranslation), compromising the accurate flow of information from DNA to proteins. Accumulation of mutant proteins due to mistranslation jeopardizes proteostasis and cellular viability. However, the concept of mistranslation is evolving, with increasing evidence indicating that mistranslation can be used as a mechanism for survival and acclimatization to environmental conditions. In this review, we discuss the central role of tRNAs in modulating translational fidelity through their dynamic and complex interplay with translation factors. We summarize recent discoveries of mistranslating tRNAs and describe the underlying molecular mechanisms and the specific conditions and environments that enable and promote mistranslation.
Collapse
Affiliation(s)
- Dominik B Schuntermann
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Noah M Reynolds
- School of Integrated Sciences, Sustainability, and Public Health, University of Illinois Springfield, Springfield, Illinois, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
17
|
Parker M, Zheng Z, Lasarev MR, Larsen MC, Vande Loo A, Alexandridis RA, Newton MA, Shelef MA, McCoy SS. Novel autoantibodies help diagnose anti-SSA antibody negative Sjögren disease and predict abnormal labial salivary gland pathology. Ann Rheum Dis 2024; 83:1169-1180. [PMID: 38702176 PMCID: PMC11569393 DOI: 10.1136/ard-2023-224936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/11/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVES Sjögren disease (SjD) diagnosis often requires either positive anti-SSA antibodies or a labial salivary gland biopsy with a positive focus score (FS). One-third of patients with SjD lack anti-SSA antibodies (SSA-), requiring a positive FS for diagnosis. Our objective was to identify novel autoantibodies to diagnose 'seronegative' SjD. METHODS IgG binding to a high-density whole human peptidome array was quantified using sera from SSA- SjD cases and matched non-autoimmune controls. We identified the highest bound peptides using empirical Bayesian statistical filters, which we confirmed in an independent cohort comprising SSA- SjD (n=76), sicca-controls without autoimmunity (n=75) and autoimmune-feature controls (SjD features but not meeting SjD criteria; n=41). In this external validation, we used non-parametric methods for binding abundance and controlled false discovery rate in group comparisons. For predictive modelling, we used logistic regression, model selection methods and cross-validation to identify clinical and peptide variables that predict SSA- SjD and FS positivity. RESULTS IgG against a peptide from D-aminoacyl-tRNA deacylase (DTD2) bound more in SSA- SjD than sicca-controls (p=0.004) and combined controls (sicca-controls and autoimmune-feature controls combined; p=0.003). IgG against peptides from retroelement silencing factor-1 and DTD2 were bound more in FS-positive than FS-negative participants (p=0.010; p=0.012). A predictive model incorporating clinical variables showed good discrimination between SjD versus control (area under the curve (AUC) 74%) and between FS-positive versus FS-negative (AUC 72%). CONCLUSION We present novel autoantibodies in SSA- SjD that have good predictive value for SSA- SjD and FS positivity.
Collapse
Affiliation(s)
- Maxwell Parker
- Department of Medicine, University of Wisconsin School of Medicine and Health, Madison, Wisconsin, USA
| | - Zihao Zheng
- Department of Medicine, University of Wisconsin School of Medicine and Health, Madison, Wisconsin, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael R Lasarev
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michele C Larsen
- Department of Medicine, University of Wisconsin School of Medicine and Health, Madison, Wisconsin, USA
| | - Addie Vande Loo
- Department of Medicine, University of Wisconsin School of Medicine and Health, Madison, Wisconsin, USA
| | - Roxana A Alexandridis
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael A Newton
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Miriam A Shelef
- Department of Medicine, University of Wisconsin School of Medicine and Health, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Sara S McCoy
- Department of Medicine, University of Wisconsin School of Medicine and Health, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, Madison, Wisconsin, USA
| |
Collapse
|
18
|
Park J, Desai H, Liboy-Lugo JM, Gu S, Jowhar Z, Xu A, Floor SN. IGHMBP2 deletion suppresses translation and activates the integrated stress response. Life Sci Alliance 2024; 7:e202302554. [PMID: 38803225 PMCID: PMC11109757 DOI: 10.26508/lsa.202302554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
IGHMBP2 is a nonessential, superfamily 1 DNA/RNA helicase that is mutated in patients with rare neuromuscular diseases SMARD1 and CMT2S. IGHMBP2 is implicated in translational and transcriptional regulation via biochemical association with ribosomal proteins, pre-rRNA processing factors, and tRNA-related species. To uncover the cellular consequences of perturbing IGHMBP2, we generated full and partial IGHMBP2 deletion K562 cell lines. Using polysome profiling and a nascent protein synthesis assay, we found that IGHMBP2 deletion modestly reduces global translation. We performed Ribo-seq and RNA-seq and identified diverse gene expression changes due to IGHMBP2 deletion, including ATF4 up-regulation. With recent studies showing the integrated stress response (ISR) can contribute to tRNA metabolism-linked neuropathies, we asked whether perturbing IGHMBP2 promotes ISR activation. We generated ATF4 reporter cell lines and found IGHMBP2 knockout cells demonstrate basal, chronic ISR activation. Our work expands upon the impact of IGHMBP2 in translation and elucidates molecular mechanisms that may link mutant IGHMBP2 to severe clinical phenotypes.
Collapse
Affiliation(s)
- Jesslyn Park
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Hetvee Desai
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - José M Liboy-Lugo
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Sohyun Gu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Ziad Jowhar
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Albert Xu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
19
|
Li ZH, Zhou XL. Eukaryotic AlaX provides multiple checkpoints for quality and quantity of aminoacyl-tRNAs in translation. Nucleic Acids Res 2024; 52:7825-7842. [PMID: 38869066 PMCID: PMC11260482 DOI: 10.1093/nar/gkae486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Translational fidelity relies critically on correct aminoacyl-tRNA supply. The trans-editing factor AlaX predominantly hydrolyzes Ser-tRNAAla, functioning as a third sieve of alanyl-tRNA synthetase (AlaRS). Despite extensive studies in bacteria and archaea, the mechanism of trans-editing in mammals remains largely unknown. Here, we show that human AlaX (hAlaX), which is exclusively distributed in the cytoplasm, is an active trans-editing factor with strict Ser-specificity. In vitro, both hAlaX and yeast AlaX (ScAlaX) were capable of hydrolyzing nearly all Ser-mischarged cytoplasmic and mitochondrial tRNAs; and robustly edited cognate Ser-charged cytoplasmic and mitochondrial tRNASers. In vivo or cell-based studies revealed that loss of ScAlaX or hAlaX readily induced Ala- and Thr-to-Ser misincorporation. Overexpression of hAlaX impeded the decoding efficiency of consecutive Ser codons, implying its regulatory role in Ser codon decoding. Remarkably, yeast cells with ScAlaX deletion responded differently to translation inhibitor treatment, with a gain in geneticin resistance, but sensitivity to cycloheximide, both of which were rescued by editing-capable ScAlaX, alanyl- or threonyl-tRNA synthetase. Altogether, our results demonstrated the previously undescribed editing peculiarities of eukaryotic AlaXs, which provide multiple checkpoints to maintain the speed and fidelity of genetic decoding.
Collapse
Affiliation(s)
- Zi-Han Li
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Xiao-Long Zhou
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
20
|
Cruz E, Vargas-Rodriguez O. The role of tRNA identity elements in aminoacyl-tRNA editing. Front Microbiol 2024; 15:1437528. [PMID: 39101037 PMCID: PMC11295145 DOI: 10.3389/fmicb.2024.1437528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
The rules of the genetic code are implemented by the unique features that define the amino acid identity of each transfer RNA (tRNA). These features, known as "identity elements," mark tRNAs for recognition by aminoacyl-tRNA synthetases (ARSs), the enzymes responsible for ligating amino acids to tRNAs. While tRNA identity elements enable stringent substrate selectivity of ARSs, these enzymes are prone to errors during amino acid selection, leading to the synthesis of incorrect aminoacyl-tRNAs that jeopardize the fidelity of protein synthesis. Many error-prone ARSs have evolved specialized domains that hydrolyze incorrectly synthesized aminoacyl-tRNAs. These domains, known as editing domains, also exist as free-standing enzymes and, together with ARSs, safeguard protein synthesis fidelity. Here, we discuss how the same identity elements that define tRNA aminoacylation play an integral role in aminoacyl-tRNA editing, synergistically ensuring the correct translation of genetic information into proteins. Moreover, we review the distinct strategies of tRNA selection used by editing enzymes and ARSs to avoid undesired hydrolysis of correctly aminoacylated tRNAs.
Collapse
Affiliation(s)
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
21
|
Çiftçi YC, Yurtsever Y, Akgül B. Long non-coding RNA-mediated modulation of endoplasmic reticulum stress under pathological conditions. J Cell Mol Med 2024; 28:e18561. [PMID: 39072992 DOI: 10.1111/jcmm.18561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Endoplasmic reticulum (ER) stress, which ensues from an overwhelming protein folding capacity, activates the unfolded protein response (UPR) in an effort to restore cellular homeostasis. As ER stress is associated with numerous diseases, it is highly important to delineate the molecular mechanisms governing the ER stress to gain insight into the disease pathology. Long non-coding RNAs, transcripts with a length of over 200 nucleotides that do not code for proteins, interact with proteins and nucleic acids, fine-tuning the UPR to restore ER homeostasis via various modes of actions. Dysregulation of specific lncRNAs is implicated in the progression of ER stress-related diseases, presenting these molecules as promising therapeutic targets. The comprehensive analysis underscores the importance of understanding the nuanced interplay between lncRNAs and ER stress for insights into disease mechanisms. Overall, this review consolidates current knowledge, identifies research gaps and offers a roadmap for future investigations into the multifaceted roles of lncRNAs in ER stress and associated diseases to shed light on their pivotal roles in the pathogenesis of related diseases.
Collapse
Affiliation(s)
- Yusuf Cem Çiftçi
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yiğit Yurtsever
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
22
|
Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm SDP, Heinemann IU, O’Donoghue P. Mechanisms and Delivery of tRNA Therapeutics. Chem Rev 2024; 124:7976-8008. [PMID: 38801719 PMCID: PMC11212642 DOI: 10.1021/acs.chemrev.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.
Collapse
Affiliation(s)
- Cian Ward
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sarah D. P. Wilhelm
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
23
|
Lv X, Zhang R, Li S, Jin X. tRNA Modifications and Dysregulation: Implications for Brain Diseases. Brain Sci 2024; 14:633. [PMID: 39061374 PMCID: PMC11274612 DOI: 10.3390/brainsci14070633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Transfer RNAs (tRNAs) are well-known for their essential function in protein synthesis. Recent research has revealed a diverse range of chemical modifications that tRNAs undergo, which are crucial for various cellular processes. These modifications are necessary for the precise and efficient translation of proteins and also play important roles in gene expression regulation and cellular stress response. This review examines the role of tRNA modifications and dysregulation in the pathophysiology of various brain diseases, including epilepsy, stroke, neurodevelopmental disorders, brain tumors, Alzheimer's disease, and Parkinson's disease. Through a comprehensive analysis of existing research, our study aims to elucidate the intricate relationship between tRNA dysregulation and brain diseases. This underscores the critical need for ongoing exploration in this field and provides valuable insights that could facilitate the development of innovative diagnostic tools and therapeutic approaches, ultimately improving outcomes for individuals grappling with complex neurological conditions.
Collapse
Affiliation(s)
- Xinxin Lv
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Ruorui Zhang
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Shanshan Li
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| |
Collapse
|
24
|
Isaacson JR, Berg MD, Jagiello J, Yeung W, Charles B, Villén J, Brandl CJ, Moehring AJ. Mistranslating tRNA variants have anticodon- and sex-specific impacts on Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598535. [PMID: 38915589 PMCID: PMC11195196 DOI: 10.1101/2024.06.11.598535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Transfer RNAs (tRNAs) are vital in determining the specificity of translation. Mutations in tRNA genes can result in the misincorporation of amino acids into nascent polypeptides in a process known as mistranslation. Since mistranslation has different impacts, depending on the type of amino acid substitution, our goal here was to compare the impact of different mistranslating tRNASer variants on fly development, lifespan, and behaviour. We established two mistranslating fly lines, one with a tRNASer variant that misincorporates serine at valine codons (V→S) and the other that misincorporates serine at threonine codons (T→S). While both mistranslating tRNAs increased development time and developmental lethality, the severity of the impacts differed depending on amino acid substitution and sex. The V→S variant extended embryonic, larval, and pupal development whereas the T→S only extended larval and pupal development. Females, but not males, containing either mistranslating tRNA presented with significantly more anatomical deformities than controls. Mistranslating females also experienced extended lifespan whereas mistranslating male lifespan was unaffected. In addition, mistranslating flies from both sexes showed improved locomotion as they aged, suggesting delayed neurodegeneration. Therefore, although mistranslation causes detrimental effects, we demonstrate that mistranslation also has positive effects on complex traits such as lifespan and locomotion. This has important implications for human health given the prevalence of tRNA variants in humans.
Collapse
Affiliation(s)
| | - Matthew D. Berg
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195
| | - Jessica Jagiello
- Department of Biology, Western University, N6A 5B7, London, Canada
| | - William Yeung
- Department of Biology, Western University, N6A 5B7, London, Canada
| | - Brendan Charles
- Department of Biology, Western University, N6A 5B7, London, Canada
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195
| | | | | |
Collapse
|
25
|
Marshall GF, Fasol M, Davies FCJ, Le Seelleur M, Fernandez Alvarez A, Bennett-Ness C, Gonzalez-Sulser A, Abbott CM. Face-valid phenotypes in a mouse model of the most common mutation in EEF1A2-related neurodevelopmental disorder. Dis Model Mech 2024; 17:dmm050501. [PMID: 38179821 PMCID: PMC10855229 DOI: 10.1242/dmm.050501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
De novo heterozygous missense mutations in EEF1A2, encoding neuromuscular translation-elongation factor eEF1A2, are associated with developmental and epileptic encephalopathies. We used CRISPR/Cas9 to recapitulate the most common mutation, E122K, in mice. Although E122K heterozygotes were not observed to have convulsive seizures, they exhibited frequent electrographic seizures and EEG abnormalities, transient early motor deficits and growth defects. Both E122K homozygotes and Eef1a2-null mice developed progressive motor abnormalities, with E122K homozygotes reaching humane endpoints by P31. The null phenotype is driven by progressive spinal neurodegeneration; however, no signs of neurodegeneration were observed in E122K homozygotes. The E122K protein was relatively stable in neurons yet highly unstable in skeletal myocytes, suggesting that the E122K/E122K phenotype is instead driven by loss of function in muscle. Nevertheless, motor abnormalities emerged far earlier in E122K homozygotes than in nulls, suggesting a toxic gain of function and/or a possible dominant-negative effect. This mouse model represents the first animal model of an EEF1A2 missense mutation with face-valid phenotypes and has provided mechanistic insights needed to inform rational treatment design.
Collapse
Affiliation(s)
- Grant F. Marshall
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Melissa Fasol
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Faith C. J. Davies
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Matthew Le Seelleur
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alejandra Fernandez Alvarez
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Cavan Bennett-Ness
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alfredo Gonzalez-Sulser
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Catherine M. Abbott
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
26
|
Ević V, Rokov-Plavec J. Interplay between mistranslation and oxidative stress in Escherichia coli. Arh Hig Rada Toksikol 2024; 75:147-154. [PMID: 38963138 PMCID: PMC11223507 DOI: 10.2478/aiht-2024-75-3834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/01/2024] [Accepted: 05/01/2024] [Indexed: 07/05/2024] Open
Abstract
Mistakes in translation are mostly associated with toxic effects in the cell due to the production of functionally aberrant and misfolded proteins. However, under certain circumstances mistranslation can have beneficial effects and enable cells to preadapt to other stress conditions. Mistranslation may be caused by mistakes made by aminoacyl-tRNA synthetases, essential enzymes that link amino acids to cognate tRNAs. There is an Escherichia coli strain expressing isoleucyl-tRNA synthetase mutant variant with inactivated editing domain which produces mistranslated proteomes where valine (Val) and norvaline (Nva) are misincorporated into proteins instead of isoleucine. We compared this strain with the wild-type to determine the effects of such mistranslation on bacterial growth in oxidative stress conditions. When the cells were pre-incubated with 0.75 mmol/L Nva or 1.5 mmol/L Val or Nva and exposed to hydrogen peroxide, no beneficial effect of mistranslation was observed. However, when the editing-deficient strain was cultivated in medium supplemented with 0.75 mmol/L Val up to the early or mid-exponential phase of growth and then exposed to oxidative stress, it slightly outgrew the wild-type grown in the same conditions. Our results therefore show a modest adaptive effect of isoleucine mistranslation on bacterial growth in oxidative stress, but only in specific conditions. This points to a delicate balance between deleterious and beneficial effects of mistranslation.
Collapse
Affiliation(s)
- Valentina Ević
- University of Zagreb Faculty of Science, Department of Chemistry, Zagreb, Croatia
| | - Jasmina Rokov-Plavec
- University of Zagreb Faculty of Science, Department of Chemistry, Zagreb, Croatia
| |
Collapse
|
27
|
Isaacson JR, Berg MD, Yeung W, Villén J, Brandl CJ, Moehring AJ. Impact of tRNA-induced proline-to-serine mistranslation on the transcriptome of Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593249. [PMID: 38766246 PMCID: PMC11100759 DOI: 10.1101/2024.05.08.593249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Mistranslation is the misincorporation of an amino acid into a polypeptide. Mistranslation has diverse effects on multicellular eukaryotes and is implicated in several human diseases. In Drosophila melanogaster, a serine transfer RNA (tRNA) that misincorporates serine at proline codons (P→S) affects male and female flies differently. The mechanisms behind this discrepancy are currently unknown. Here, we compare the transcriptional response of male and female flies to P→S mistranslation to identify genes and cellular processes that underlie sex-specific differences. Both males and females downregulate genes associated with various metabolic processes in response to P→S mistranslation. Males downregulate genes associated with extracellular matrix organization and response to negative stimuli such as wounding, whereas females downregulate aerobic respiration and ATP synthesis genes. Both sexes upregulate genes associated with gametogenesis, but females also upregulate cell cycle and DNA repair genes. These observed differences in the transcriptional response of male and female flies to P→S mistranslation have important implications for the sex-specific impact of mistranslation on disease and tRNA therapeutics.
Collapse
Affiliation(s)
| | - Matthew D. Berg
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195
| | - William Yeung
- Department of Biology, Western University, N6A 5B7, London, Canada
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195
| | | | | |
Collapse
|
28
|
Zong Z, Xie F, Wang S, Wu X, Zhang Z, Yang B, Zhou F. Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis. Cell 2024; 187:2375-2392.e33. [PMID: 38653238 DOI: 10.1016/j.cell.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/01/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Lysine lactylation is a post-translational modification that links cellular metabolism to protein function. Here, we find that AARS1 functions as a lactate sensor that mediates global lysine lacylation in tumor cells. AARS1 binds to lactate and catalyzes the formation of lactate-AMP, followed by transfer of lactate to the lysince acceptor residue. Proteomics studies reveal a large number of AARS1 targets, including p53 where lysine 120 and lysine 139 in the DNA binding domain are lactylated. Generation and utilization of p53 variants carrying constitutively lactylated lysine residues revealed that AARS1 lactylation of p53 hinders its liquid-liquid phase separation, DNA binding, and transcriptional activation. AARS1 expression and p53 lacylation correlate with poor prognosis among cancer patients carrying wild type p53. β-alanine disrupts lactate binding to AARS1, reduces p53 lacylation, and mitigates tumorigenesis in animal models. We propose that AARS1 contributes to tumorigenesis by coupling tumor cell metabolism to proteome alteration.
Collapse
Affiliation(s)
- Zhi Zong
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China; MOE Key Laboratory of Geriatric Disease and Immunology, Soochow University, Suzhou, Jiangsu, China; Jiangsu key laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Shuai Wang
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China; MOE Key Laboratory of Geriatric Disease and Immunology, Soochow University, Suzhou, Jiangsu, China; Jiangsu key laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Xiaojin Wu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bing Yang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China; MOE Key Laboratory of Geriatric Disease and Immunology, Soochow University, Suzhou, Jiangsu, China; Jiangsu key laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
29
|
Xia X, Wu Y, Chen Z, Du D, Chen X, Zhang R, Yan J, Wong IN, Huang R. Colon cancer inhibitory properties of Caulerpa lentillifera polysaccharide and its molecular mechanisms based on three-dimensional cell culture model. Int J Biol Macromol 2024; 267:131574. [PMID: 38615857 DOI: 10.1016/j.ijbiomac.2024.131574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Caulerpa lentillifera is rich in polysaccharides, and its polysaccharides show a significant effect in different biological activities including anti-cancer activity. As an edible algae-derived polysaccharide, exploring the role of colon cancer can better develop the application from a dietary therapy perspective. However, more in-depth studies of C. lentillifera polysaccharide on anti-colon cancer activity and mechanism are needed. In this study, we found that Caulerpa lentillifera polysaccharides (CLP) showed potential anti-colon cancer effect on human colon cancer cell HT29 in monolayer (IC50 = 1.954 mg/mL) and spheroid (IC50 = 0.402 mg/mL). Transcriptomics and metabolomics analyses revealed that CLP had an inhibitory effect on HT29 3D spheroid cells by activating aminoacyl-tRNA biosynthesis as well as arginine and proline metabolism pathways. Furthermore, the anti-colon cancer effects of CLP were confirmed through other human colon cancer cell HCT116 and LoVo in monolayer cells (IC50 = 1.890 mg/mL and 1.437 mg/mL, respectively) and 3D spheroid cells (IC50 = 0.344 mg/mL and 0.975 mg/mL, respectively), and three patient-derived organoids with IC50 values of 6.333-8.780 mg/mL. This study provided basic data for the potential application of CLP in adjuvant therapeutic food for colon cancer on multiple levels, while further investigation of detailed mechanism in vivo was still required.
Collapse
Affiliation(s)
- Xuewei Xia
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yulin Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou 510535, China; Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Danyi Du
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Guangzhou 510515, China
| | - Xiaodan Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Rongxin Zhang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Centre, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Jun Yan
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
30
|
Izadi M, Ali TA, Shurrab FM, Aharpour E, Pourkarimi E. Tryptophanyl-tRNA synthetase-1 (WARS-1) depletion and high tryptophan concentration lead to genomic instability in Caenorhabditis elegans. Cell Death Discov 2024; 10:165. [PMID: 38575580 PMCID: PMC10995160 DOI: 10.1038/s41420-024-01917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
The fidelity of translation is ensured by a family of proteins named aminoacyl-tRNA synthetases (ARSs), making them crucial for development and survival. More recently, mutations in the tryptophanyl-tRNA synthetase 1 (WARS1) have been linked to various human diseases, from intellectual disability to various types of cancer. To understand the function of WARS1, we investigated the effect of WARS-1 depletion during the mitotic and meiotic cell cycle in the developing germline of Caenorhabditis elegans (C. elegans) and demonstrated the role of WARS-1 in genome integrity. wars-1 knockdown results in cell cycle arrest of the mitotically active germ cells. Such mitotic arrest is also associated with canonical DNA damage-induced checkpoint signaling in mitotic and meiotic germ cells. Significantly, such DNA checkpoint activation is associated with the morphological anomalies in chromatin structures that are the hallmarks of genome instability, such as the formation of chromatin bridges, micronuclei, and chromatin buds. We demonstrated that knocking down wars-1 results in an elevation of the intracellular concentration of tryptophan and its catabolites, a surprising finding emphasizing the impact of cellular amino acid availability and organismal/individual dietary uptake on genome integrity. Our result demonstrates that exposing C. elegans to a high tryptophan dosage leads to DNA damage checkpoint activation and a significant increase in the tryptophan metabolites. Targeting tryptophan catabolism, the least utilized amino acid in nature, can be important in developing new cancer therapeutic approaches. All in all, we have strong evidence that knocking down wars-1 results in defects in genomic integrity.
Collapse
Affiliation(s)
- Mahmoud Izadi
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, 34110, Qatar
| | - Tayyiba Akbar Ali
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, 34110, Qatar
| | - Farah M Shurrab
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, 34110, Qatar
| | | | - Ehsan Pourkarimi
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, 34110, Qatar.
| |
Collapse
|
31
|
Kumar P, Sankaranarayanan R. When Paul Berg meets Donald Crothers: an achiral connection through protein biosynthesis. Nucleic Acids Res 2024; 52:2130-2141. [PMID: 38407292 PMCID: PMC10954443 DOI: 10.1093/nar/gkae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024] Open
Abstract
Outliers in scientific observations are often ignored and mostly remain unreported. However, presenting them is always beneficial since they could reflect the actual anomalies that might open new avenues. Here, we describe two examples of the above that came out of the laboratories of two of the pioneers of nucleic acid research in the area of protein biosynthesis, Paul Berg and Donald Crothers. Their work on the identification of D-aminoacyl-tRNA deacylase (DTD) and 'Discriminator hypothesis', respectively, were hugely ahead of their time and were partly against the general paradigm at that time. In both of the above works, the smallest and the only achiral amino acid turned out to be an outlier as DTD can act weakly on glycine charged tRNAs with a unique discriminator base of 'Uracil'. This peculiar nature of glycine remained an enigma for nearly half a century. With a load of available information on the subject by the turn of the century, our work on 'chiral proofreading' mechanisms during protein biosynthesis serendipitously led us to revisit these findings. Here, we describe how we uncovered an unexpected connection between them that has implications for evolution of different eukaryotic life forms.
Collapse
Affiliation(s)
- Pradeep Kumar
- CSIR–Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Rajan Sankaranarayanan
- CSIR–Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
32
|
Kandel R, Jung J, Neal S. Proteotoxic stress and the ubiquitin proteasome system. Semin Cell Dev Biol 2024; 156:107-120. [PMID: 37734998 PMCID: PMC10807858 DOI: 10.1016/j.semcdb.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/01/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023]
Abstract
The ubiquitin proteasome system maintains protein homeostasis by regulating the breakdown of misfolded proteins, thereby preventing misfolded protein aggregates. The efficient elimination is vital for preventing damage to the cell by misfolded proteins, known as proteotoxic stress. Proteotoxic stress can lead to the collapse of protein homeostasis and can alter the function of the ubiquitin proteasome system. Conversely, impairment of the ubiquitin proteasome system can also cause proteotoxic stress and disrupt protein homeostasis. This review examines two impacts of proteotoxic stress, 1) disruptions to ubiquitin homeostasis (ubiquitin stress) and 2) disruptions to proteasome homeostasis (proteasome stress). Here, we provide a mechanistic description of the relationship between proteotoxic stress and the ubiquitin proteasome system. This relationship is illustrated by findings from several protein misfolding diseases, mainly neurodegenerative diseases, as well as from basic biology discoveries from yeast to mammals. In addition, we explore the importance of the ubiquitin proteasome system in endoplasmic reticulum quality control, and how proteotoxic stress at this organelle is alleviated. Finally, we highlight how cells utilize the ubiquitin proteasome system to adapt to proteotoxic stress and how the ubiquitin proteasome system can be genetically and pharmacologically manipulated to maintain protein homeostasis.
Collapse
Affiliation(s)
- Rachel Kandel
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States
| | - Jasmine Jung
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States
| | - Sonya Neal
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
33
|
Pranjic M, Spät P, Semanjski Curkovic M, Macek B, Gruic-Sovulj I, Mocibob M. Resilience and proteome response of Escherichia coli to high levels of isoleucine mistranslation. Int J Biol Macromol 2024; 262:130068. [PMID: 38340920 DOI: 10.1016/j.ijbiomac.2024.130068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Accurate pairing of amino acids and tRNAs is a prerequisite for faithful translation of genetic information during protein biosynthesis. Here we present the effects of proteome-wide mistranslation of isoleucine (Ile) by canonical valine (Val) or non-proteinogenic norvaline (Nva) in a genetically engineered Escherichia coli strain with an editing-defective isoleucyl-tRNA synthetase (IleRS). Editing-defective IleRS efficiently mischarges both Val and Nva to tRNAIle and impairs the translational accuracy of Ile decoding. When mistranslation was induced by the addition of Val or Nva to the growth medium, an Ile-to-Val or Ile-to-Nva substitution of up to 20 % was measured by high-resolution mass spectrometry. This mistranslation level impaired bacterial growth, promoted the SOS response and filamentation during stationary phase, caused global proteome dysregulation and upregulation of the cellular apparatus for maintaining proteostasis, including the major chaperones (GroES/EL, DnaK/DnaJ/GrpE and HtpG), the disaggregase ClpB and the proteases (Lon, HslV/HslU, ClpA, ClpS). The most important consequence of mistranslation appears to be non-specific protein aggregation, which is effectively counteracted by the disaggregase ClpB. Our data show that E. coli can sustain high isoleucine mistranslation levels and remain viable despite excessive protein aggregation and severely impaired translational fidelity. However, we show that inaccurate translation lowers bacterial resilience to heat stress and decreases bacterial survival at elevated temperatures.
Collapse
Affiliation(s)
- Marija Pranjic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Philipp Spät
- Interfaculty Institute of Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Maja Semanjski Curkovic
- Interfaculty Institute of Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Boris Macek
- Interfaculty Institute of Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia.
| | - Marko Mocibob
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia.
| |
Collapse
|
34
|
Zhang H, Ling J. Serine mistranslation induces the integrated stress response without accumulation of uncharged tRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578812. [PMID: 38370842 PMCID: PMC10871240 DOI: 10.1101/2024.02.04.578812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that support robust and accurate protein synthesis. A rapidly expanding number of studies show that mutations in aaRSs lead to multiple human diseases, including neurological disorders and cancer. Much remains unknown about how aaRS mutations impact human health. In particular, how aminoacylation errors affect stress responses and fitness in eukaryotic cells remains poorly understood. The integrated stress response (ISR) is an adaptive mechanism in response to multiple stresses. However, chronic activation of the ISR contributes to the development of multiple diseases (e.g., neuropathies). Here we show that Ser misincorporation into Ala and Thr codons, resulting from aaRS editing defects or mutations in tRNAs, constitutively active the ISR. Such activation does not appear to depend on the accumulation of uncharged tRNAs, implicating that Ser mistranslation may lead to ribosome stalling and collision.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
35
|
Popper B, Bürkle M, Ciccopiedi G, Marchioretto M, Forné I, Imhof A, Straub T, Viero G, Götz M, Schieweck R. Ribosome inactivation regulates translation elongation in neurons. J Biol Chem 2024; 300:105648. [PMID: 38219816 PMCID: PMC10869266 DOI: 10.1016/j.jbc.2024.105648] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ribosome speed in cells is widely unknown. In this study, we utilized a timed ribosome runoff approach, along with proteomics and transmission electron microscopy, to investigate global translation kinetics in cells. We found that ribosome speeds vary among various cell types, such as astrocytes, induced pluripotent human stem cells, human neural stem cells, and human and rat neurons. Of all cell types studied, mature cortical neurons exhibit the highest rate of translation. This finding is particularly remarkable because mature cortical neurons express the eukaryotic elongation factor 2 (eEF2) at lower levels than other cell types. Neurons solve this conundrum by inactivating a fraction of their ribosomes. As a result, the increase in eEF2 levels leads to a reduction of inactive ribosomes and an enhancement of active ones. Processes that alter the demand for active ribosomes, like neuronal excitation, cause increased inactivation of redundant ribosomes in an eEF2-dependent manner. Our data suggest a novel regulatory mechanism in which neurons dynamically inactivate ribosomes to facilitate translational remodeling. These findings have important implications for developmental brain disorders characterized by, among other things, aberrant translation.
Collapse
Affiliation(s)
- Bastian Popper
- Core Facility Animal Models, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Martina Bürkle
- Department of Physiological Genomics, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Giuliana Ciccopiedi
- Department for Cell Biology & Anatomy, Biomedical Center (BMC), LMU Munich, Munich, Germany; Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Marta Marchioretto
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, Povo, Italy
| | - Ignasi Forné
- Protein Analysis Unit, Department for Molecular Biology, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Axel Imhof
- Protein Analysis Unit, Department for Molecular Biology, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Tobias Straub
- Bioinformatics Core Facility, Department of Molecular Biology, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Gabriella Viero
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, Povo, Italy
| | - Magdalena Götz
- Department of Physiological Genomics, Biomedical Center (BMC), LMU Munich, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany; SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Rico Schieweck
- Department of Physiological Genomics, Biomedical Center (BMC), LMU Munich, Munich, Germany; Department for Cell Biology & Anatomy, Biomedical Center (BMC), LMU Munich, Munich, Germany; Institute of Biophysics, National Research Council (CNR) Unit at Trento, Povo, Italy.
| |
Collapse
|
36
|
Pereira M, Ribeiro DR, Berg M, Tsai AP, Dong C, Nho K, Kaiser S, Moutinho M, Soares AR. Amyloid pathology reduces ELP3 expression and tRNA modifications leading to impaired proteostasis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166857. [PMID: 37640114 DOI: 10.1016/j.bbadis.2023.166857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by accumulation of β-amyloid aggregates and loss of proteostasis. Transfer RNA (tRNA) modifications play a crucial role in maintaining proteostasis, but their impact in AD remains unclear. Here, we report that expression of the tRNA modifying enzyme ELP3 is reduced in the brain of AD patients and amyloid mouse models and negatively correlates with amyloid plaque mean density. We further show that SH-SY5Y neuronal cells carrying the amyloidogenic Swedish familial AD mutation (SH-SWE) display reduced ELP3 levels, tRNA hypomodifications and proteostasis impairments when compared to cells not carrying the mutation (SH-WT). Additionally, exposing SH-WT cells to the secretome of SH-SWE cells led to reduced ELP3 expression, wobble uridine tRNA hypomodification, and increased protein aggregation. Importantly, correcting tRNA deficits due to ELP3 reduction reverted proteostasis impairments. These findings suggest that amyloid pathology dysregulates proteostasis by reducing ELP3 expression and tRNA modification levels, and that targeting tRNA modifications may be a potential therapeutic avenue to restore neuronal proteostasis in AD and preserve neuronal function.
Collapse
Affiliation(s)
- Marisa Pereira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Diana R Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Maximilian Berg
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt, 60438, Germany
| | - Andy P Tsai
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Chuanpeng Dong
- Department of Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stefanie Kaiser
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt, 60438, Germany
| | - Miguel Moutinho
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ana R Soares
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
37
|
Davey-Young J, Hasan F, Tennakoon R, Rozik P, Moore H, Hall P, Cozma E, Genereaux J, Hoffman KS, Chan PP, Lowe TM, Brandl CJ, O’Donoghue P. Mistranslating the genetic code with leucine in yeast and mammalian cells. RNA Biol 2024; 21:1-23. [PMID: 38629491 PMCID: PMC11028032 DOI: 10.1080/15476286.2024.2340297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/04/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Translation fidelity relies on accurate aminoacylation of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (AARSs). AARSs specific for alanine (Ala), leucine (Leu), serine, and pyrrolysine do not recognize the anticodon bases. Single nucleotide anticodon variants in their cognate tRNAs can lead to mistranslation. Human genomes include both rare and more common mistranslating tRNA variants. We investigated three rare human tRNALeu variants that mis-incorporate Leu at phenylalanine or tryptophan codons. Expression of each tRNALeu anticodon variant in neuroblastoma cells caused defects in fluorescent protein production without significantly increased cytotoxicity under normal conditions or in the context of proteasome inhibition. Using tRNA sequencing and mass spectrometry we confirmed that each tRNALeu variant was expressed and generated mistranslation with Leu. To probe the flexibility of the entire genetic code towards Leu mis-incorporation, we created 64 yeast strains to express all possible tRNALeu anticodon variants in a doxycycline-inducible system. While some variants showed mild or no growth defects, many anticodon variants, enriched with G/C at positions 35 and 36, including those replacing Leu for proline, arginine, alanine, or glycine, caused dramatic reductions in growth. Differential phenotypic defects were observed for tRNALeu mutants with synonymous anticodons and for different tRNALeu isoacceptors with the same anticodon. A comparison to tRNAAla anticodon variants demonstrates that Ala mis-incorporation is more tolerable than Leu at nearly every codon. The data show that the nature of the amino acid substitution, the tRNA gene, and the anticodon are each important factors that influence the ability of cells to tolerate mistranslating tRNAs.
Collapse
Affiliation(s)
- Josephine Davey-Young
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Farah Hasan
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Peter Rozik
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Henry Moore
- Department of Biomolecular Engineering, Baskin School of Engineering & UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Peter Hall
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Ecaterina Cozma
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | | | - Patricia P. Chan
- Department of Biomolecular Engineering, Baskin School of Engineering & UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Todd M. Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering & UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Christopher J. Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
38
|
Wade C, Lynch DS. Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:263-271. [PMID: 39322383 DOI: 10.1016/b978-0-323-99209-1.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is an adult-onset, inherited white matter disorder encompassing two previously identified clinicopathologically similar entities: pigmentary orthochromatic leukodystrophy (POLD) and hereditary diffuse leukoencephalopathy with spheroids (HDLS). In this chapter, we discuss how advances in our genetic understanding of the condition have further delineated three distinct clinical entities within ALSP, namely CSF1R-related ALSP, AARS2-related leukoencephalopathy (AARS2-L), and AARS (HDLS-S). We provide descriptions of the clinical, radiologic, pathologic, and pathophysiologic findings in each entity, detailing their similarities and differences, and discuss current and future treatment options where available.
Collapse
Affiliation(s)
- Charles Wade
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College, London, United Kingdom
| | - David S Lynch
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; National Hospital for Neurology & Neurosurgery, Queen Square, London, United Kingdom.
| |
Collapse
|
39
|
Yuan C, Li Z, Luo X, Huang P, Guo L, Lu M, Xia J, Xiao Y, Zhou XL, Chen M. Mammalian trans-editing factor ProX is able to deacylate tRNA Thr mischarged with alanine. Int J Biol Macromol 2023; 253:127121. [PMID: 37778588 DOI: 10.1016/j.ijbiomac.2023.127121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
The precise coupling of tRNAs with their cognate amino acids, known as tRNA aminoacylation, is a stringently regulated process that governs translation fidelity. To ensure fidelity, organisms deploy multiple layers of editing mechanisms to correct mischarged tRNAs. Prior investigations have unveiled the propensity of eukaryotic AlaRS to erroneously attach alanine onto tRNACys and tRNAThr featuring the G4:U69 base pair. In light of this, and given ProXp-ala's capacity in deacylating Ala-tRNAPro, we embarked on exploring whether this trans-editing factor could extend its corrective function to encompass these mischarged tRNAs. Our in vitro deacylation assays demonstrate that murine ProXp-ala (mProXp-ala) is able to efficiently hydrolyze Ala-tRNAThr, while Ala-tRNACys remains unaffected. Subsequently, we determined the first structure of eukaryotic ProXp-ala, revealing a dynamic helix α2 involved in substrate binding. By integrating molecular dynamics simulations and biochemical assays, we pinpointed the pivotal interactions between mProXp-ala and Ala-tRNA, wherein the basic regions of mProXp-ala as well as the C3-G70 plays essential role in recognition. These observations collectively provide a cogent rationale for mProXp-ala's deacylation proficiency against Ala-tRNAThr. Our findings offer valuable insights into the translation quality control within higher eukaryotic organisms, where the fidelity of translation is safeguarded by the multi-functionality of extensively documented proteins.
Collapse
Affiliation(s)
- Chen Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zihan Li
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyu Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Pingping Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lijie Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Meiling Lu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China.
| | - Xiao-Long Zhou
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Meirong Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
40
|
Park JE, Desai H, Liboy-Lugo J, Gu S, Jowhar Z, Xu A, Floor SN. IGHMBP2 deletion suppresses translation and activates the integrated stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571166. [PMID: 38168189 PMCID: PMC10760061 DOI: 10.1101/2023.12.11.571166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
IGHMBP2 is a non-essential, superfamily 1 DNA/RNA helicase that is mutated in patients with rare neuromuscular diseases SMARD1 and CMT2S. IGHMBP2 is implicated in translational and transcriptional regulation via biochemical association with ribosomal proteins, pre-rRNA processing factors, and tRNA-related species. To uncover the cellular consequences of perturbing IGHMBP2, we generated full and partial IGHMBP2 deletion K562 cell lines. Using polysome profiling and a nascent protein synthesis assay, we found that IGHMBP2 deletion modestly reduces global translation. We performed Ribo-seq and RNA-seq and identified diverse gene expression changes due to IGHMBP2 deletion, including ATF4 upregulation. With recent studies showing the ISR can contribute to tRNA metabolism-linked neuropathies, we asked whether perturbing IGHMBP2 promotes ISR activation. We generated ATF4 reporter cell lines and found IGHMBP2 knockout cells demonstrate basal, chronic ISR activation. Our work expands upon the impact of IGHMBP2 in translation and elucidates molecular mechanisms that may link mutant IGHMBP2 to severe clinical phenotypes.
Collapse
Affiliation(s)
- Jesslyn E. Park
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, California, USA, 94143
| | - Hetvee Desai
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
| | - José Liboy-Lugo
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, California, USA, 94143
| | - Sohyun Gu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
| | - Ziad Jowhar
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California, USA, 94143
| | - Albert Xu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California, USA, 94143
| | - Stephen N. Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA, 94143
| |
Collapse
|
41
|
Liu F, Liu Z, Cheng W, Zhao Q, Zhang X, Zhang H, Yu M, Xu H, Gao Y, Jiang Q, Shi G, Wang L, Gu S, Wang J, Cao N, Chen Z. The PERK Branch of the Unfolded Protein Response Safeguards Protein Homeostasis and Mesendoderm Specification of Human Pluripotent Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303799. [PMID: 37890465 PMCID: PMC10724406 DOI: 10.1002/advs.202303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/14/2023] [Indexed: 10/29/2023]
Abstract
Cardiac development involves large-scale rearrangements of the proteome. How the developing cardiac cells maintain the integrity of the proteome during the rapid lineage transition remains unclear. Here it is shown that proteotoxic stress visualized by the misfolded and/or aggregated proteins appears during early cardiac differentiation of human pluripotent stem cells and is resolved by activation of the PERK branch of unfolded protein response (UPR). PERK depletion increases misfolded and/or aggregated protein accumulation, leading to pluripotency exit defect and impaired mesendoderm specification of human pluripotent stem cells. Mechanistically, it is found that PERK safeguards mesendoderm specification through its conserved downstream effector ATF4, which subsequently activates a novel transcriptional target WARS1, to cope with the differentiation-induced proteotoxic stress. The results indicate that protein quality control represents a previously unrecognized core component of the cardiogenic regulatory network. Broadly, these findings provide a framework for understanding how UPR is integrated into the developmental program by activating the PERK-ATF4-WARS1 axis.
Collapse
Affiliation(s)
- Fang Liu
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
- Department of Clinical LaboratoryThe First Affiliated Hospital of Anhui Medical UniversityHefei230022P. R. China
| | - Zhun Liu
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| | - Weisheng Cheng
- Prenatal Diagnosis CenterDepartment of Obstetrics and GynecologyThe First Affiliated Hospital of Anhui Medical UniversityHefei230022P. R. China
- Department of Medical InformaticsZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080P. R. China
| | - Qingquan Zhao
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| | - Xinyu Zhang
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| | - He Zhang
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| | - Miao Yu
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| | - He Xu
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| | - Yichen Gao
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| | - Qianrui Jiang
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| | - Guojun Shi
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity ResearchGuangdong Provincial Key Laboratory of DiabetologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangdong510080P. R. China
| | - Likun Wang
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Shanshan Gu
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| | - Jia Wang
- School of Health and Life SciencesUniversity of Health and Rehabilitation SciencesShandong266071China
| | - Nan Cao
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| | - Zhongyan Chen
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| |
Collapse
|
42
|
Flagg MP, Lam B, Lam DK, Le TM, Kao A, Slaiwa YI, Hampton RY. Exploring the "misfolding problem" by systematic discovery and analysis of functional-but-degraded proteins. Mol Biol Cell 2023; 34:ar125. [PMID: 37729018 PMCID: PMC10848938 DOI: 10.1091/mbc.e23-06-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
In both health and disease, the ubiquitin-proteasome system (UPS) degrades point mutants that retain partial function but have decreased stability compared with their wild-type counterparts. This class of UPS substrate includes routine translational errors and numerous human disease alleles, such as the most common cause of cystic fibrosis, ΔF508-CFTR. Yet, there is no systematic way to discover novel examples of these "minimally misfolded" substrates. To address that shortcoming, we designed a genetic screen to isolate functional-but-degraded point mutants, and we used the screen to study soluble, monomeric proteins with known structures. These simple parent proteins yielded diverse substrates, allowing us to investigate the structural features, cytotoxicity, and small-molecule regulation of minimal misfolding. Our screen can support numerous lines of inquiry, and it provides broad access to a class of poorly understood but biomedically critical quality-control substrates.
Collapse
Affiliation(s)
- Matthew P. Flagg
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Breanna Lam
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Darren K. Lam
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Tiffany M. Le
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Andy Kao
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Yousif I. Slaiwa
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Randolph Y. Hampton
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
43
|
Aboelnga MM, Gauld JW. Screening a library of potential competitive inhibitors against bacterial threonyl-tRNA synthetase: DFT calculations. J Biomol Struct Dyn 2023; 42:13555-13563. [PMID: 37909495 DOI: 10.1080/07391102.2023.2276878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Due to the growing interest in directing aminoacyl-tRNA synthetases for antimicrobial therapies, evaluating the binding proficiency of potential inhibitors against this target holds significant importance. In this work, we proposed potential ligands that could properly bind to the crucial Zn(II) cofactor located in the active site of Threonyl-tRNA synthetases (ThrRS), potentially functioning as competitive inhibitors. Initially, detailed DFT quantum chemical study was conducted to examine the binding ability of threonine against unnatural amino acids to cofactor Zn(II). Then, the binding energy value for each suggested ligand has been determined and compared to the value determined for the native substrate, threonine. Our screening investigation showed that the native threonine should coordinate in a bidentate fashion to this Zn(II) which lead to the highest (binding energy) BE Thereby, the synthetic site of ThrRS rejects unnatural amino acids that cannot afford this type of coordination to Zn(II) ion which has been supported by our calculations. Moreover, based on their binding to the Zn(II) and the obtained BE values compared to the cognate threonine, many potent ligands have been suggested. Importantly, ligands with deprotonated warheads showed the highest binding ability amongst a list of potential hits. Further investigation on the selected ligands using molecular docking and QM/MM calculations confirmed our findings of the suggested ligands being able to bind efficiently in the active site of ThrRS. The suggested hits from this study should be valuable in paving routs for developing candidates as competitive inhibitors against the bacterial ThrRS.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed M Aboelnga
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| | - James W Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| |
Collapse
|
44
|
Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023; 37:e23219. [PMID: 37776328 DOI: 10.1096/fj.202202024rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
Collapse
Affiliation(s)
- Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jigneshkumar Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Saba Tabasum
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Akash Sabarwal
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
45
|
Zhang H, Murphy P, Yu J, Lee S, Tsai FTF, van Hoof A, Ling J. Coordination between aminoacylation and editing to protect against proteotoxicity. Nucleic Acids Res 2023; 51:10606-10618. [PMID: 37742077 PMCID: PMC10602869 DOI: 10.1093/nar/gkad778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/13/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that ligate amino acids to tRNAs, and often require editing to ensure accurate protein synthesis. Recessive mutations in aaRSs cause various neurological disorders in humans, yet the underlying mechanism remains poorly understood. Pathogenic aaRS mutations frequently cause protein destabilization and aminoacylation deficiency. In this study, we report that combined aminoacylation and editing defects cause severe proteotoxicity. We show that the ths1-C268A mutation in yeast threonyl-tRNA synthetase (ThrRS) abolishes editing and causes heat sensitivity. Surprisingly, experimental evolution of the mutant results in intragenic mutations that restore heat resistance but not editing. ths1-C268A destabilizes ThrRS and decreases overall Thr-tRNAThr synthesis, while the suppressor mutations in the evolved strains improve aminoacylation. We further show that deficiency in either ThrRS aminoacylation or editing is insufficient to cause heat sensitivity, and that ths1-C268A impairs ribosome-associated quality control. Our results suggest that aminoacylation deficiency predisposes cells to proteotoxic stress.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Parker Murphy
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Jason Yu
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Sukyeong Lee
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, TX 77030, USA
| | - Francis T F Tsai
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
46
|
Malnar Črnigoj M, Čerček U, Yin X, Ho MT, Repic Lampret B, Neumann M, Hermann A, Rouleau G, Suter B, Mayr M, Rogelj B. Phenylalanine-tRNA aminoacylation is compromised by ALS/FTD-associated C9orf72 C4G2 repeat RNA. Nat Commun 2023; 14:5764. [PMID: 37717009 PMCID: PMC10505166 DOI: 10.1038/s41467-023-41511-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
The expanded hexanucleotide GGGGCC repeat mutation in the C9orf72 gene is the main genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Under one disease mechanism, sense and antisense transcripts of the repeat are predicted to bind various RNA-binding proteins, compromise their function and cause cytotoxicity. Here we identify phenylalanine-tRNA synthetase (FARS) subunit alpha (FARSA) as the main interactor of the CCCCGG antisense repeat RNA in cytosol. The aminoacylation of tRNAPhe by FARS is inhibited by antisense RNA, leading to decreased levels of charged tRNAPhe. Remarkably, this is associated with global reduction of phenylalanine incorporation in the proteome and decrease in expression of phenylalanine-rich proteins in cellular models and patient tissues. In conclusion, this study reveals functional inhibition of FARSA in the presence of antisense RNA repeats. Compromised aminoacylation of tRNA could lead to impairments in protein synthesis and further contribute to C9orf72 mutation-associated pathology.
Collapse
Affiliation(s)
- Mirjana Malnar Črnigoj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Urša Čerček
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Xiaoke Yin
- King's BHF Centre, King's College London, London, SE5 9NU, UK
| | - Manh Tin Ho
- Institute of Cell Biology, University of Bern, Bern, 3012, Switzerland
| | - Barbka Repic Lampret
- Clinical Institute of Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
| | - Manuela Neumann
- Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, 72076, Germany
- Department of Neuropathology, University Hospital of Tübingen, Tübingen, 72076, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology and Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock/Greifswald, 18147, Rostock, Germany
| | - Guy Rouleau
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0G4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, H3A 0G4, Canada
| | - Beat Suter
- Institute of Cell Biology, University of Bern, Bern, 3012, Switzerland
| | - Manuel Mayr
- King's BHF Centre, King's College London, London, SE5 9NU, UK
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, 1000, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, 1000, Slovenia.
| |
Collapse
|
47
|
Girodat D, Wieden HJ, Blanchard SC, Sanbonmatsu KY. Geometric alignment of aminoacyl-tRNA relative to catalytic centers of the ribosome underpins accurate mRNA decoding. Nat Commun 2023; 14:5582. [PMID: 37696823 PMCID: PMC10495418 DOI: 10.1038/s41467-023-40404-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 07/27/2023] [Indexed: 09/13/2023] Open
Abstract
Accurate protein synthesis is determined by the two-subunit ribosome's capacity to selectively incorporate cognate aminoacyl-tRNA for each mRNA codon. The molecular basis of tRNA selection accuracy, and how fidelity can be affected by antibiotics, remains incompletely understood. Using molecular simulations, we find that cognate and near-cognate tRNAs delivered to the ribosome by Elongation Factor Tu (EF-Tu) can follow divergent pathways of motion into the ribosome during both initial selection and proofreading. Consequently, cognate aa-tRNAs follow pathways aligned with the catalytic GTPase and peptidyltransferase centers of the large subunit, while near-cognate aa-tRNAs follow pathways that are misaligned. These findings suggest that differences in mRNA codon-tRNA anticodon interactions within the small subunit decoding center, where codon-anticodon interactions occur, are geometrically amplified over distance, as a result of this site's physical separation from the large ribosomal subunit catalytic centers. These insights posit that the physical size of both tRNA and ribosome are key determinants of the tRNA selection fidelity mechanism.
Collapse
Affiliation(s)
- Dylan Girodat
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Hans-Joachim Wieden
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- New Mexico Consortium, Los Alamos, NM, 87545, USA.
| |
Collapse
|
48
|
Davies FCJ, Marshall GF, Pegram E, Gadd D, Abbott CM. Endogenous epitope tagging of eEF1A2 in mice reveals early embryonic expression of eEF1A2 and subcellular compartmentalisation of neuronal eEF1A1 and eEF1A2. Mol Cell Neurosci 2023; 126:103879. [PMID: 37429391 DOI: 10.1016/j.mcn.2023.103879] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
All vertebrate species express two independently-encoded forms of translation elongation factor eEF1A. In humans and mice eEF1A1 and eEF1A2 are 92 % identical at the amino acid level, but the well conserved developmental switch between the two variants in specific tissues suggests the existence of important functional differences. Heterozygous mutations in eEF1A2 result in neurodevelopmental disorders in humans; the mechanism of pathogenicity is unclear, but one hypothesis is that there is a dominant negative effect on eEF1A1 during development. The high degree of similarity between the eEF1A proteins has complicated expression analysis in the past; here we describe a gene edited mouse line in which we have introduced a V5 tag in the gene encoding eEF1A2. Expression analysis using anti-V5 and anti-eEF1A1 antibodies demonstrates that, in contrast to the prevailing view that eEF1A2 is only expressed postnatally, it is expressed from as early as E11.5 in the developing neural tube. Two colour immunofluorescence also reveals coordinated switching between eEF1A1 and eEF1A2 in different regions of postnatal brain. Completely reciprocal expression of the two variants is seen in post-weaning mouse brain with eEF1A1 expressed in oligodendrocytes and astrocytes and eEF1A2 in neuronal soma. Although eEF1A1 is absent from neuronal cell bodies after development, it is widely expressed in axons. This expression does not appear to coincide with myelin sheaths originating from oligodendrocytes but rather results from localised translation within the axon, suggesting that both variants are transcribed in neurons but show completely distinct subcellular localisation at the protein level. These findings will form an underlying framework for understanding how missense mutations in eEF1A2 result in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Faith C J Davies
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Grant F Marshall
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Eleanor Pegram
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom
| | - Danni Gadd
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom
| | - Catherine M Abbott
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
| |
Collapse
|
49
|
Abstract
Amino acid dysregulation has emerged as an important driver of disease progression in various contexts. l-Serine lies at a central node of metabolism, linking carbohydrate metabolism, transamination, glycine, and folate-mediated one-carbon metabolism to protein synthesis and various downstream bioenergetic and biosynthetic pathways. l-Serine is produced locally in the brain but is sourced predominantly from glycine and one-carbon metabolism in peripheral tissues via liver and kidney metabolism. Compromised regulation or activity of l-serine synthesis and disposal occurs in the context of genetic diseases as well as chronic disease states, leading to low circulating l-serine levels and pathogenesis in the nervous system, retina, heart, and aging muscle. Dietary interventions in preclinical models modulate sensory neuropathy, retinopathy, tumor growth, and muscle regeneration. A serine tolerance test may provide a quantitative readout of l-serine homeostasis that identifies patients who may be susceptible to neuropathy or responsive to therapy.
Collapse
Affiliation(s)
- Michal K Handzlik
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; ,
| | - Christian M Metallo
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; ,
| |
Collapse
|
50
|
Zhu G, Khalid F, Zhang D, Cao Z, Maity P, Kestler HA, Orioli D, Scharffetter-Kochanek K, Iben S. Ribosomal Dysfunction Is a Common Pathomechanism in Different Forms of Trichothiodystrophy. Cells 2023; 12:1877. [PMID: 37508541 PMCID: PMC10377840 DOI: 10.3390/cells12141877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Mutations in a broad variety of genes can provoke the severe childhood disorder trichothiodystrophy (TTD) that is classified as a DNA repair disease or a transcription syndrome of RNA polymerase II. In an attempt to identify the common underlying pathomechanism of TTD we performed a knockout/knockdown of the two unrelated TTD factors TTDN1 and RNF113A and investigated the consequences on ribosomal biogenesis and performance. Interestingly, interference with these TTD factors created a nearly uniform impact on RNA polymerase I transcription with downregulation of UBF, disturbed rRNA processing and reduction of the backbone of the small ribosomal subunit rRNA 18S. This was accompanied by a reduced quality of decoding in protein translation and the accumulation of misfolded and carbonylated proteins, indicating a loss of protein homeostasis (proteostasis). As the loss of proteostasis by the ribosome has been identified in the other forms of TTD, here we postulate that ribosomal dysfunction is a common underlying pathomechanism of TTD.
Collapse
Affiliation(s)
- Gaojie Zhu
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Fatima Khalid
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Danhui Zhang
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Zhouli Cao
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Hans A Kestler
- Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Donata Orioli
- Istituto di Genetica Molecolare L.L. Cavalli-Sforza CNR, 27100 Pavia, Italy
| | | | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| |
Collapse
|