1
|
Davic RD. Newcomb-Benford number law and ecological processes. PLoS One 2025; 20:e0310205. [PMID: 40153682 PMCID: PMC11952760 DOI: 10.1371/journal.pone.0310205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/27/2024] [Indexed: 03/30/2025] Open
Abstract
The Newcomb-Benford number law has found applications in the natural and social sciences for decades, with limited ecological attention. The aim of this communication is to highlight a statistical correspondence between the first significant digit frequencies of the Benford probability distribution and ecological systems in a balanced state of dynamic equilibrium. Analytical methods, including multidimensional Euclidean distance, Cohen-W effect size, Kossovsky sum of squared deviations (SSD), and Pearson residuals are presented to facilitate the identification of this canonical representation across multiple levels of ecological organization and scale. Case studies reveal novel applications of the Benford distribution for detecting impending state transitions in marginally stable systems, as well as temporal and spatial divergence of ecological information through the measurement of Kullback-Leibler relative entropy. Widespread documentation of the leading digit phenomenon is expected as ecologists revisit empirical datasets and formalize sampling protocols for its detection. The conversion of randomly collected sets of arithmetic data into logarithmic probabilities of first significant digits presents unique opportunities to advance our understanding of ecological processes related with stability, complexity, and maturity.
Collapse
Affiliation(s)
- Robert D. Davic
- State of Ohio Environmental Protection Agency, Columbus, Ohio, United States of America
| |
Collapse
|
2
|
Delgado-Baquerizo M, Eldridge DJ, Liu YR, Liu ZW, Coleine C, Trivedi P. Soil biodiversity and function under global change. PLoS Biol 2025; 23:e3003093. [PMID: 40146744 DOI: 10.1371/journal.pbio.3003093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/28/2025] [Indexed: 03/29/2025] Open
Abstract
Soil organisms represent the most abundant and diverse organisms on the planet and support almost every ecosystem function we know, and thus impact our daily lives. Some of these impacts have been well-documented, such as the role of soil organisms in regulating soil fertility and carbon sequestration; processes that have direct implications for essential ecosystem services including food security and climate change mitigation. Moreover, soil biodiversity also plays a critical role in supporting other aspects from One Health-the combined health of humans, animals, and the environment-to the conservation of historic structures such as monuments. Unfortunately, soil biodiversity is also highly vulnerable to a growing number of stressors associated with global environmental change. Understanding how and when soil biodiversity supports these functions, and how it will adapt to changing environmental conditions, is crucial for conserving soils and maintaining soil processes for future generations. In this Essay, we discuss the fundamental importance of soil biodiversity for supporting multiple ecosystem services and One Health, and further highlight essential knowledge gaps that need to be addressed to conserve soil biodiversity for the next generations.
Collapse
Affiliation(s)
- Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Zhong-Wen Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
3
|
Wang X, Liang C, Dini-Andreote F, Zhou S, Jiang Y. Impacts of trophic interactions on carbon accrual in soils. Trends Microbiol 2025; 33:277-284. [PMID: 39616038 DOI: 10.1016/j.tim.2024.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 03/08/2025]
Abstract
The transformation and stabilization of soil organic carbon (SOC) are important processes of global carbon (C) cycling, with implications for climate change. Much attention has been given to microbial anabolic processes driving SOC accrual. These are referred to as the soil microbial carbon pump (MCP), which emphasizes the contribution of microbial metabolism and necromass to the stable soil C pool. However, we still lack a fundamental understanding of how trophic interactions between soil fauna and microbiota modulate microbial necromass production and, consequently, SOC formation. Here, we provide an ecological perspective on the impacts of trophic interactions on modulating necromass formation and C accrual in soils. We discuss the mechanisms of trophic interactions in the context of food web ecology, with a focus on trophic control of microbial population densities and their influences on soil microbiota assembly. We foresee that integrating trophic interactions into the soil MCP framework can provide a more comprehensive basis for guiding future research efforts to elucidate the mechanisms modulating microbial necromass and SOC formation in terrestrial ecosystems. This perspective offers an ecological foundation for leveraging the use of biological interventions to enhance SOC accrual, providing valuable insights for sustainable C management strategies.
Collapse
Affiliation(s)
- Xiaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chao Liang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Francisco Dini-Andreote
- Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shungui Zhou
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Kajihara KT, Yuan M, Amend AS, Cetraro N, Darcy JL, Fraiola KMS, Frank K, McFall-Ngai M, Medeiros MCI, Nakayama KK, Nelson CE, Rollins RL, Sparagon WJ, Swift SOI, Téfit MA, Yew JY, Yogi D, Hynson NA. Diversity, connectivity and negative interactions define robust microbiome networks across land, stream, and sea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631746. [PMID: 39829850 PMCID: PMC11741383 DOI: 10.1101/2025.01.07.631746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In this era of rapid global change, factors influencing the stability of ecosystems and their functions have come into the spotlight. For decades the relationship between stability and complexity has been investigated in modeled and empirical systems, yet results remain largely context dependent. To overcome this we leverage a multiscale inventory of fungi and bacteria ranging from single sites along an environmental gradient, to habitats inclusive of land, sea and stream, to an entire watershed. We use networks to assess the relationship between microbiome complexity and robustness and identify fundamental principles of stability. We demonstrate that while some facets of complexity are positively associated with robustness, others are not. Beyond positive biodiversity x robustness relationships we find that the number of "gatekeeper" species or those that are highly connected and central within their networks, and the proportion of predicted negative interactions are universal indicators of robust microbiomes. With the potential promise of microbiome engineering to address global challenges ranging from human to ecosystem health we identify properties of microbiomes for future experimental studies that may enhance their stability. We emphasize that features beyond biodiversity and additional characteristics beyond stability such as adaptability should be considered in these efforts.
Collapse
Affiliation(s)
- Kacie T Kajihara
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Mengting Yuan
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Anthony S Amend
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Nicolas Cetraro
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - John L Darcy
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Kauaoa M S Fraiola
- United States Geological Survey Pacific Islands Climate Adaptation Center, Honolulu, HI 96822, USA
| | - Kiana Frank
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Margaret McFall-Ngai
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Matthew C I Medeiros
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Kirsten K Nakayama
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Randi L Rollins
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Wesley J Sparagon
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Sean O I Swift
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Mélisandre A Téfit
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Danyel Yogi
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Nicole A Hynson
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
5
|
Gaedke U, Li X, Guill C, Hemerik L, de Ruiter PC. Seasonal Shifts in Trophic Interaction Strength Drive Stability of Natural Food Webs. Ecol Lett 2025; 28:e70075. [PMID: 39891499 PMCID: PMC11786205 DOI: 10.1111/ele.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
It remains challenging to understand why natural food webs are remarkably stable despite highly variable environmental factors and population densities. We investigated the dynamics in the structure and stability of Lake Constance's pelagic food web using 7 years of high-frequency observations of biomasses and production, leading to 59 seasonally resolved quantitative food web descriptions. We assessed the dynamics in asymptotic food web stability through maximum loop weight, which revealed underlying stability mechanisms. Maximum loop weight showed a recurrent seasonal pattern with a consistently high stability despite pronounced dynamics in biomasses, fluxes and productivity. This stability resulted from seasonal rewiring of the food web, driven by energetic constraints within loops and their embedding into food web structure. The stabilising restructuring emerged from counter-acting effects of metabolic activity and competitiveness/susceptibility to predation within a diverse grazer community on loop weight. This underscores the role of functional diversity in promoting food web stability.
Collapse
Affiliation(s)
- Ursula Gaedke
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Xiaoxiao Li
- School of Ecology, Environment and ResourcesGuangdong University of TechnologyGuangzhouChina
| | - Christian Guill
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Lia Hemerik
- Biometris, Department of Mathematical and Statistical MethodsWageningen UniversityWageningenThe Netherlands
| | - Peter C. de Ruiter
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
- Biometris, Department of Mathematical and Statistical MethodsWageningen UniversityWageningenThe Netherlands
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
6
|
Lin Z, Qi X, Li M, Duan Y, Gao H, Liu G, Khan S, Mu H, Cai Q, Messyasz B, Wu N. Differential impacts of small hydropower plants on macroinvertebrate communities upstream and downstream under ecological flow. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123070. [PMID: 39490011 DOI: 10.1016/j.jenvman.2024.123070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Hydropower dams influence freshwater biodiversity by altering river flow patterns and habitat conditions. With the global surge in small hydropower plants (SHPs), their impacts on aquatic ecosystems have become increasingly recognized. However, most previous studies did not consider the recently implemented ecological flows. Consequently, the effects of SHPs under ecological flow conditions on aquatic organisms, such as macroinvertebrate communities, remain unclear. We surveyed 15 SHPs in the Oujiang region, establishing sampling sites upstream of the intake dams (S1), in dam-induced reservoirs (S2), in dewatered sections downstream of the dams with ecological flows (S3), and in sections with restored natural flow (S4). By comparing macroinvertebrate community composition, diversity, functional feeding groups, and network structures in these areas, we assessed the ecological response of macroinvertebrates to SHPs under ecological flows. Our research found that SHPs significantly impact macroinvertebrate communities. Specifically, at site S2, stagnant water species replaced those typically found in flowing conditions, resulting in a marked difference in species composition between S2 and other sites. Compared to S1 and S4, diversity indices at S2 and S3 were lower, with filterers and collectors dominating the functional feeding groups at S2 and S3. Co-occurrence network analysis revealed that network complexity at S2 and S3 was lower than at S1 and S4. Additionally, S3 was less affected by SHPs than S2, underscoring the importance of ecological flow replenishment. Overall, our research confirmed the remarkable influence of SHPs on S2 macroinvertebrate community, and emphasized the importance of maintaining sufficient ecological flow to the downstream aquatic organism of S3 reach. We suggest a comprehensive assessment of the potential environmental impacts of SHPs, particularly the negative effects caused by insufficient ecological flow, to ensure the sustainable development of ecosystems.
Collapse
Affiliation(s)
- Zongwei Lin
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China
| | - Xinxin Qi
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China
| | - Mali Li
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China
| | - Yuke Duan
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China
| | - Huimin Gao
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China
| | - Guohao Liu
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China
| | - Sangar Khan
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China; Ningbo University Donghai Institute, Ningbo University, Ningbo, 315211, China
| | - Hongli Mu
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China; Ningbo University Donghai Institute, Ningbo University, Ningbo, 315211, China
| | - Qinghua Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Beata Messyasz
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, 61-614, Poland
| | - Naicheng Wu
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China; Ningbo University Donghai Institute, Ningbo University, Ningbo, 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
7
|
Chen C, Wang XW, Liu YY. Stability of Ecological Systems: A Theoretical Review. PHYSICS REPORTS 2024; 1088:1-41. [PMID: 40017996 PMCID: PMC11864804 DOI: 10.1016/j.physrep.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The stability of ecological systems is a fundamental concept in ecology, which offers profound insights into species coexistence, biodiversity, and community persistence. In this article, we provide a systematic and comprehensive review on the theoretical frameworks for analyzing the stability of ecological systems. Notably, we survey various stability notions, including linear stability, sign stability, diagonal stability, D-stability, total stability, sector stability, and structural stability. For each of these stability notions, we examine necessary or sufficient conditions for achieving such stability and demonstrate the intricate interplay of these conditions on the network structures of ecological systems. We further discuss the stability of ecological systems with higher-order interactions.
Collapse
Affiliation(s)
- Can Chen
- School of Data Science and Society and Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Xu-Wen Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
- Carl R. Woese Institute for Genomic Biology, Center for Artificial Intelligence and Modeling, University of Illinois at Urbana-Champaign, Champaign, 61801, IL, USA
| |
Collapse
|
8
|
Nereu M, Silva JS, Timóteo S. The disruption of birds' double mutualistic interactions in novel ecosystems. Proc Biol Sci 2024; 291:20241872. [PMID: 39437840 PMCID: PMC11495963 DOI: 10.1098/rspb.2024.1872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Non-native trees disrupt ecological processes vital to native plant communities. We studied how forests dominated by Acacia dealbata and Eucalyptus globulus affect the role of birds as dual pollinators and seed dispersers in a region heavily impacted by these two non-native species. We compared bird-plant interactions in the native and in the two non-native forest types. We constructed a multilayer regional network for each forest type and evaluated differences in network dissimilarity between networks. We also calculated the bird's importance in connecting processes and variables associated with module diversity. To determine how the networks react to changes in species richness, we did a simulation of species richness gradient and link percentage for each forest type. The number of birds acting both as pollinators and seed dispersers was higher in native than in non-native forests. However, birds in non-native forests still play a crucial role in maintaining the ecological services provided to native plant communities. However, the eucalyptus network exhibited a concerning simplification, forcing bird species to fully exploit the few remaining resources, leaving little room for structural adjustments and limiting the ecosystem's ability to withstand further species loss. These findings highlight how non-native trees may trigger cascading effects across trophic levels.
Collapse
Affiliation(s)
- Mauro Nereu
- TERRA Associate Laboratory, Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, Coimbra3000-456, Portugal
- Coimbra Agriculture School, Polytechnic Institute of Coimbra, Bencanta, Coimbra3045-601, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Joaquim S. Silva
- Coimbra Agriculture School, Polytechnic Institute of Coimbra, Bencanta, Coimbra3045-601, Portugal
| | - Sérgio Timóteo
- TERRA Associate Laboratory, Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, Coimbra3000-456, Portugal
| |
Collapse
|
9
|
Zhang T, Song B, Wang L, Li Y, Wang Y, Yuan M. Spartina alterniflora invasion reduces soil microbial diversity and weakens soil microbial inter-species relationships in coastal wetlands. Front Microbiol 2024; 15:1422534. [PMID: 39149207 PMCID: PMC11325588 DOI: 10.3389/fmicb.2024.1422534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Soil microorganisms play a crucial role in the plant invasion process, acting as both drivers of and responders to plant invasion. However, the effects of plant invasion on the complexity and stability of co-occurrence networks of soil microbial communities remain unclear. Here, we investigated how the invasion of Spartina alterniflora affected the diversity, composition, and co-occurrence networks of soil bacterial and fungal communities in the Yellow River Delta, China. Compared to the native plant (Suaeda salsa), S. alterniflora invasion decreased the α-diversity of soil bacterial communities but did not affect that of fungal communities. The β-diversity of soil bacterial and fungal communities under S. salsa and S. alterniflora habitats also differed dramatically. S. alterniflora invasion increased the relative abundance of the copiotrophic phylum Bacteroidota, whereas decreased the relative abundances of the oligotrophic phyla Acidobacteriota and Gemmatimonadota. Additionally, the relative abundance of Chytridiomycota, known for its role in degrading recalcitrant organic matter, increased substantially within the soil fungal community. Functional predictions revealed that S. alterniflora invasion increased the relative abundance of certain soil bacteria involved in carbon and nitrogen cycling, including aerobic chemoheterotrophy, nitrate reduction, and nitrate respiration. More importantly, S. alterniflora invasion reduced the complexity and stability of both soil bacterial and fungal community networks. The shifts in soil microbial community structure and diversity were mainly induced by soil available nutrients and soil salinity. Overall, our study highlights the profound impacts of S. alterniflora invasion on soil microbial communities, which could further indicate the modification of ecosystem functioning by invasive species.
Collapse
Affiliation(s)
- Tao Zhang
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, China
| | - Bing Song
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Luwen Wang
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Yong Li
- Beijing Key Laboratory of Wetland Services and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
| | - Yi Wang
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Min Yuan
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Kuppels A, Bayat HS, Gillmann SM, Schäfer RB, Vos M. Putting the Asymmetric Response Concept to the test: Modeling multiple stressor exposure and release in a stream food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174722. [PMID: 39004358 DOI: 10.1016/j.scitotenv.2024.174722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/08/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Communities in stream ecosystems often respond asymmetrically to increase and release of stressors, as indicated by slow and incomplete recovery. The Asymmetric Response Concept (ARC) posits that this is due to a shift in the relative importance of three mechanisms: tolerance, dispersal, and biotic interactions. In complex natural communities, these mechanisms may produce alternative outcomes through poorly understood indirect effects. To understand how the three mechanisms respond to different temporal stressor scenarios, we studied multiple scenarios using a stream food web model. We asked the following questions: Do groups of species decline as expected on the basis of individual tolerance rankings derived from laboratory experiments when they are embedded in a complex dynamic food web? Does the response of ecosystem function match that of communities? To address these questions, we aggregated data on individual tolerances at the level of functional groups and studied how single and multiple stressors affect food web dynamics and nutrient cycling. Multiple stressor scenarios involved different intensities of salt and temperature increase. Functional groups exhibited a different relative tolerance ranking between the laboratory and dynamic food web contexts. Salt as a single stressor had only minor and transient effects at low level but led to the loss of one or more functional groups at high level. In contrast, high temperature, alone or in combination with salt, caused the loss of functional groups at all tested levels. Patterns often differed between the response of communities and ecosystem function. We discuss our findings with respect to the ARC.
Collapse
Affiliation(s)
- Annabel Kuppels
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Theoretical and Applied Biodiversity Research, Bochum, Germany
| | - Helena S Bayat
- Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany; Research Center One Health Ruhr, University Alliance Ruhr & Faculty for Biology, University of Duisburg-Essen, Essen, Germany
| | - Svenja M Gillmann
- Department of Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
| | - Ralf B Schäfer
- Research Center One Health Ruhr, University Alliance Ruhr & Faculty for Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthijs Vos
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Theoretical and Applied Biodiversity Research, Bochum, Germany.
| |
Collapse
|
11
|
Parmentier T, Bonte D, De Laender F. A successional shift enhances stability in ant symbiont communities. Commun Biol 2024; 7:645. [PMID: 38802499 PMCID: PMC11130137 DOI: 10.1038/s42003-024-06305-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Throughout succession, communities undergo structural shifts, which can alter the relative abundances of species and how they interact. It is frequently asserted that these alterations beget stability, i.e. that succession selects for communities better able to resist perturbations. Yet, whether and how alterations of network structure affect stability during succession in complex communities is rarely studied in natural ecosystems. Here, we explore how network attributes influence stability of different successional stages of a natural network: symbiotic arthropod communities forming food webs inside red wood ant nests. We determined the abundance of 16 functional groups within the symbiont community across 51 host nests in the beginning and end stages of succession. Nest age was the main driver of the compositional shifts: symbiont communities in old nests contained more even species abundance distributions and a greater proportion of specialists. Based on the abundance data, we reconstructed interaction matrices and food webs of the symbiont community for each nest. We showed that the enhanced community evenness in old nests leads to an augmented food web stability in all but the largest symbiont communities. Overall, this study demonstrates that succession begets stability in a natural ecological network by making the community more even.
Collapse
Affiliation(s)
- Thomas Parmentier
- Terrestrial Ecology Unit, Department of Biology, University of Ghent, Ghent, Belgium.
- Research Unit of Environmental and Evolutionary Biology, naXys, ILEE, University of Namur, Namur, Belgium.
| | - Dries Bonte
- Terrestrial Ecology Unit, Department of Biology, University of Ghent, Ghent, Belgium
| | - Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology, naXys, ILEE, University of Namur, Namur, Belgium
| |
Collapse
|
12
|
Buche L, Bartomeus I, Godoy O. Multitrophic Higher-Order Interactions Modulate Species Persistence. Am Nat 2024; 203:458-472. [PMID: 38489780 DOI: 10.1086/729222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
AbstractEcologists increasingly recognize that interactions between two species can be affected by the density of a third species. How these higher-order interactions (HOIs) affect species persistence remains poorly understood. To explore the effect of HOIs stemming from multiple trophic layers on a plant community composition, we experimentally built a mesocosm with three plants and three pollinator species arranged in a fully nested and modified network structure. We estimated pairwise interactions among plants and between plants and pollinators, as well as HOIs initiated by a plant or a pollinator affecting plant species pairs. Using a structuralist approach, we evaluated the consequences of the statistically supported HOIs on the persistence probability of each of the three competing plant species and their combinations. HOIs substantially redistribute the strength and sign of pairwise interactions between plant species, promoting the opportunities for multispecies communities to persist compared with a non-HOI scenario. However, the physical elimination of a plant-pollinator link in the modified network structure promotes changes in per capita pairwise interactions and HOIs, resulting in a single-species community. Our study provides empirical evidence of the joint importance of HOIs and network structure in determining species persistence within diverse communities.
Collapse
|
13
|
Song C, Spaak JW. Trophic tug-of-war: Coexistence mechanisms within and across trophic levels. Ecol Lett 2024; 27:e14409. [PMID: 38590122 DOI: 10.1111/ele.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Ecological communities encompass rich diversity across multiple trophic levels. While modern coexistence theory has been widely applied to understand community assembly, its traditional formalism only allows assembly within a single trophic level. Here, using an expanded definition of niche and fitness differences applicable to multitrophic communities, we study how diversity within and across trophic levels affects species coexistence. If each trophic level is analysed separately, both lower- and higher trophic levels are governed by the same coexistence mechanisms. In contrast, if the multitrophic community is analysed as a whole, different trophic levels are governed by different coexistence mechanisms: coexistence at lower trophic levels is predominantly limited by fitness differences, whereas coexistence at higher trophic levels is predominantly limited by niche differences. This dichotomy in coexistence mechanisms is supported by theoretical derivations, simulations of phenomenological and trait-based models, and a case study of a primeval forest ecosystem. Our work provides a general and testable prediction of coexistence mechanism operating in multitrophic communities.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Jurg W Spaak
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| |
Collapse
|
14
|
Vollert SA, Drovandi C, Adams MP. Unlocking ensemble ecosystem modelling for large and complex networks. PLoS Comput Biol 2024; 20:e1011976. [PMID: 38483981 DOI: 10.1371/journal.pcbi.1011976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/26/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024] Open
Abstract
The potential effects of conservation actions on threatened species can be predicted using ensemble ecosystem models by forecasting populations with and without intervention. These model ensembles commonly assume stable coexistence of species in the absence of available data. However, existing ensemble-generation methods become computationally inefficient as the size of the ecosystem network increases, preventing larger networks from being studied. We present a novel sequential Monte Carlo sampling approach for ensemble generation that is orders of magnitude faster than existing approaches. We demonstrate that the methods produce equivalent parameter inferences, model predictions, and tightly constrained parameter combinations using a novel sensitivity analysis method. For one case study, we demonstrate a speed-up from 108 days to 6 hours, while maintaining equivalent ensembles. Additionally, we demonstrate how to identify the parameter combinations that strongly drive feasibility and stability, drawing ecological insight from the ensembles. Now, for the first time, larger and more realistic networks can be practically simulated and analysed.
Collapse
Affiliation(s)
- Sarah A Vollert
- Centre for Data Science, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Christopher Drovandi
- Centre for Data Science, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Matthew P Adams
- Centre for Data Science, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Chemical Engineering, The University of Queensland, St Lucia, Australia
| |
Collapse
|
15
|
Skene KR. Systems theory, thermodynamics and life: Integrated thinking across ecology, organization and biological evolution. Biosystems 2024; 236:105123. [PMID: 38244715 DOI: 10.1016/j.biosystems.2024.105123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
In this paper we explore the relevance and integration of system theory and thermodynamics in terms of the Earth system. It is proposed that together, these fields explain the evolution, organization, functionality and directionality of life on Earth. We begin by summarizing historical and current thinking on the definition of life itself. We then investigate the evidence for a single unit of life. Given that any definition of life and its levels of organization are intertwined, we explore how the Earth system is structured and functions from an energetic perspective, by outlining relevant thermodynamic theory relating to molecular, metabolic, cellular, individual, population, species, ecosystem and biome organization. We next investigate the fundamental relationships between systems theory and thermodynamics in terms of the Earth system, examining the key characteristics of self-assembly, self-organization (including autonomy), emergence, non-linearity, feedback and sub-optimality. Finally, we examine the relevance of systems theory and thermodynamics with reference to two specific aspects: the tempo and directionality of evolution and the directional and predictable process of ecological succession. We discuss the importance of the entropic drive in understanding altruism, multicellularity, mutualistic and antagonistic relationships and how maximum entropy production theory may explain patterns thought to evidence the intermediate disturbance hypothesis.
Collapse
Affiliation(s)
- Keith R Skene
- Biosphere Research Institute, Angus, United Kingdom.
| |
Collapse
|
16
|
Li C, Chen J, Liao X, Ramus AP, Angelini C, Liu L, Silliman BR, Bertness MD, He Q. Shorebirds-driven trophic cascade helps restore coastal wetland multifunctionality. Nat Commun 2023; 14:8076. [PMID: 38057308 PMCID: PMC10700615 DOI: 10.1038/s41467-023-43951-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
Ecosystem restoration has traditionally focused on re-establishing vegetation and other foundation species at basal trophic levels, with mixed outcomes. Here, we show that threatened shorebirds could be important to restoring coastal wetland multifunctionality. We carried out surveys and manipulative field experiments in a region along the Yellow Sea affected by the invasive cordgrass Spartina alterniflora. We found that planting native plants alone failed to restore wetland multifunctionality in a field restoration experiment. Shorebird exclusion weakened wetland multifunctionality, whereas mimicking higher predation before shorebird population declines by excluding their key prey - crab grazers - enhanced wetland multifunctionality. The mechanism underlying these effects is a simple trophic cascade, whereby shorebirds control crab grazers that otherwise suppress native vegetation recovery and destabilize sediments (via bioturbation). Our findings suggest that harnessing the top-down effects of shorebirds - through habitat conservation, rewilding, or temporary simulation of consumptive or non-consumptive effects - should be explored as a nature-based solution to restoring the multifunctionality of degraded coastal wetlands.
Collapse
Affiliation(s)
- Chunming Li
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Jianshe Chen
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Xiaolin Liao
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Aaron P Ramus
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Christine Angelini
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Brian R Silliman
- Nicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, NC, 28516, USA
| | - Mark D Bertness
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI, 02912, USA
| | - Qiang He
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.
| |
Collapse
|
17
|
Koch F, Neutel AM, Barnes DKA, Tielbӧrger K, Zarfl C, Allhoff KT. Competitive hierarchies in bryozoan assemblages mitigate network instability by keeping short and long feedback loops weak. Commun Biol 2023; 6:690. [PMID: 37402788 DOI: 10.1038/s42003-023-05060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
Competitive hierarchies in diverse ecological communities have long been thought to lead to instability and prevent coexistence. However, system stability has never been tested, and the relation between hierarchy and instability has never been explained in complex competition networks parameterised with data from direct observation. Here we test model stability of 30 multispecies bryozoan assemblages, using estimates of energy loss from observed interference competition to parameterise both the inter- and intraspecific interactions in the competition networks. We find that all competition networks are unstable. However, instability is mitigated considerably by asymmetries in the energy loss rates brought about by hierarchies of strong and weak competitors. This asymmetric organisation results in asymmetries in the interaction strengths, which reduces instability by keeping the weight of short (positive) and longer (positive and negative) feedback loops low. Our results support the idea that interference competition leads to instability and exclusion but demonstrate that this is not because of, but despite, competitive hierarchy.
Collapse
Affiliation(s)
- Franziska Koch
- University of Tübingen, Tübingen, Germany.
- University of Hohenheim, Stuttgart, Germany.
| | | | | | | | | | - Korinna T Allhoff
- University of Tübingen, Tübingen, Germany.
- University of Hohenheim, Stuttgart, Germany.
- KomBioTa - Center for Biodiversity and Integrative Taxonomy, University of Hohenheim & State Museum of Natural History, Stuttgart, Germany.
| |
Collapse
|
18
|
Leclerc C, Reynaud N, Danis PA, Moatar F, Daufresne M, Argillier C, Usseglio-Polatera P, Verneaux V, Dedieu N, Frossard V, Sentis A. Temperature, productivity, and habitat characteristics collectively drive lake food web structure. GLOBAL CHANGE BIOLOGY 2023; 29:2450-2465. [PMID: 36799515 DOI: 10.1111/gcb.16642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/07/2023] [Accepted: 02/12/2023] [Indexed: 05/28/2023]
Abstract
While many efforts have been devoted to understand variations in food web structure among terrestrial and aquatic ecosystems, the environmental factors influencing food web structure at large spatial scales remain hardly explored. Here, we compiled biodiversity inventories to infer food web structure of 67 French lakes using an allometric niche-based model and tested how environmental variables (temperature, productivity, and habitat) influence them. By applying a multivariate analysis on 20 metrics of food web topology, we found that food web structural variations are represented by two distinct complementary and independent structural descriptors. The first is related to the overall trophic diversity, whereas the second is related to the vertical structure. Interestingly, the trophic diversity descriptor was mostly explained by habitat size (26.7% of total deviance explained) and habitat complexity (20.1%) followed by productivity (dissolved organic carbon: 16.4%; nitrate: 9.1%) and thermal variations (10.7%). Regarding the vertical structure descriptor, it was mostly explained by water thermal seasonality (39.0% of total deviance explained) and habitat depth (31.9%) followed by habitat complexity (8.5%) and size (5.5%) as well as annual mean temperature (5.6%). Overall, we found that temperature, productivity, and habitat characteristics collectively shape lake food web structure. We also found that intermediate levels of productivity, high levels of temperature (mean and seasonality), as well as large habitats are associated with the largest and most complex food webs. Our findings, therefore, highlight the importance of focusing on these three components especially in the context of global change, as significant structural changes in aquatic food webs could be expected under increased temperature, pollution, and habitat alterations.
Collapse
Affiliation(s)
- Camille Leclerc
- INRAE, Aix-Marseille Univ., RECOVER, Aix-en-Provence, France
- Pôle R&D Écosystèmes Lacustres (ECLA), OFB-INRAE-USMB, Aix-en-Provence, France
| | - Nathalie Reynaud
- INRAE, Aix-Marseille Univ., RECOVER, Aix-en-Provence, France
- Pôle R&D Écosystèmes Lacustres (ECLA), OFB-INRAE-USMB, Aix-en-Provence, France
| | - Pierre-Alain Danis
- Pôle R&D Écosystèmes Lacustres (ECLA), OFB-INRAE-USMB, Aix-en-Provence, France
- OFB, Service ECOAQUA, DRAS, Aix-en-Provence, France
| | - Florentina Moatar
- RiverLy, INRAE, Centre de Lyon-Grenoble Auvergne-Rhône-Alpes, Villeurbanne, France
| | - Martin Daufresne
- INRAE, Aix-Marseille Univ., RECOVER, Aix-en-Provence, France
- Pôle R&D Écosystèmes Lacustres (ECLA), OFB-INRAE-USMB, Aix-en-Provence, France
| | - Christine Argillier
- INRAE, Aix-Marseille Univ., RECOVER, Aix-en-Provence, France
- Pôle R&D Écosystèmes Lacustres (ECLA), OFB-INRAE-USMB, Aix-en-Provence, France
| | | | - Valérie Verneaux
- UMR CNRS 6249, Laboratoire Chrono-Environnement, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Nicolas Dedieu
- UMR CNRS 6249, Laboratoire Chrono-Environnement, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Victor Frossard
- Pôle R&D Écosystèmes Lacustres (ECLA), OFB-INRAE-USMB, Aix-en-Provence, France
- Université Savoie Mont-Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| | - Arnaud Sentis
- INRAE, Aix-Marseille Univ., RECOVER, Aix-en-Provence, France
- Pôle R&D Écosystèmes Lacustres (ECLA), OFB-INRAE-USMB, Aix-en-Provence, France
| |
Collapse
|
19
|
Zhang X, Yi Y, Cao Y, Yang Z. Disentangling the effects of phosphorus loading on food web stability in a large shallow lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116991. [PMID: 36508976 DOI: 10.1016/j.jenvman.2022.116991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Excessive nutrient loads reduce ecosystem resilience, resulting in fundamental changes in ecosystem structure and function when exceeding a certain threshold. However, quantitative analysis of the processes by which nutrient loading affects ecosystem resilience requires further exploration. Food web stability is at the heart of ecosystem resilience. In this study, we simulated the dynamics of the food web under different phosphorus loads for Lake Baiyangdian using the PCLake model and calculated the food web stability. Our results showed that there was a good correspondence between the food web stability and ecosystem state response to phosphorus loads. This relationship confirmed that food web stability could be regarded as a signal for the state transition in a real lake ecosystem. Moreover, our estimates suggested that food web stability was influenced only by several functional groups and their interaction strength. Diatoms and zooplankton were the key functional groups that affected food web stability. Phosphorus loads alter the distribution of functional group biomass, which in turn affects energy delivery and, ultimately, the stability of the food web. Corresponding to functional groups, the interactions among zooplankton, diatoms and detritus had the greatest impact, and the interaction strength of the three was positively correlated with food web stability. Overall, our study explained that food-web stability was critical to characterize ecosystem resilience response to external disturbances and can be turned into a scientific tool for lake ecosystem management.
Collapse
Affiliation(s)
- Xiaoxin Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Jiangsu Engineering Laboratory for Environmental Functional Materials, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, 223300, China
| | - Yujun Yi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Yuanxin Cao
- Jiangsu Engineering Laboratory for Environmental Functional Materials, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, 223300, China
| | - Zhifeng Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
20
|
Polazzo F, Hermann M, Crettaz-Minaglia M, Rico A. Impacts of extreme climatic events on trophic network complexity and multidimensional stability. Ecology 2023; 104:e3951. [PMID: 36484732 PMCID: PMC10078413 DOI: 10.1002/ecy.3951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Untangling the relationship between network complexity and ecological stability under climate change is an arduous challenge for theoretical and empirical ecology. Even more so, when considering extreme climatic events. Here, we studied the effects of extreme climatic events (heatwaves) on the complexity of realistic freshwater ecosystems using topological and quantitative trophic network metrics. Next, we linked changes in network complexity with the investigation of four stability components (temporal stability, resistance, resilience, and recovery) of community's functional, compositional, and energy flux stability. We found reduction in topological network complexity to be correlated with reduction of functional and compositional resistance. However, temperature-driven increase in link-weighted network complexity increased functional and energy flux recovery and resilience, but at the cost of increased compositional instability. Overall, we propose an overarching approach to elucidate the effects of climate change on multidimensional stability through the lens of network complexity, providing helpful insights for preserving ecosystems stability under climate change.
Collapse
Affiliation(s)
- Francesco Polazzo
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Madrid, Spain
| | - Markus Hermann
- Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, The Netherlands
| | - Melina Crettaz-Minaglia
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Madrid, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Madrid, Spain.,Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
21
|
Luboeinski J, Claro L, Pomi A, Mizraji E. Stabilization through self-coupling in networks of small-world and scale-free topology. Sci Rep 2023; 13:1089. [PMID: 36658183 PMCID: PMC9851597 DOI: 10.1038/s41598-023-27809-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Mechanisms that ensure the stability of dynamical systems are of vital importance, in particular in our globalized and increasingly interconnected world. The so-called connectivity-stability dilemma denotes the theoretical finding that increased connectivity between the components of a large dynamical system drastically reduces its stability. This result has promoted controversies within ecology and other fields of biology, especially, because organisms as well as ecosystems constitute systems that are both highly connected and stable. Hence, it has been a major challenge to find ways to stabilize complex systems while preserving high connectivity at the same time. Investigating the stability of networks that exhibit small-world or scale-free topology is of particular interest, since these topologies have been found in many different types of real-world networks. Here, we use an approach to stabilize recurrent networks of small-world and scale-free topology by increasing the average self-coupling strength of the units of a network. For both topologies, we find that there is a sharp transition from instability to asymptotic stability. Then, most importantly, we find that the average self-coupling strength needed to stabilize a system increases much slower than its size. It appears that the qualitative shape of this relationship is the same for small-world and scale-free networks, while scale-free networks can require higher magnitudes of self-coupling. We further explore the stabilization of networks with Kronecker-Leskovec topology. Finally, we argue that our findings, in particular the stabilization of large recurrent networks through small increases in the unit self-regulation, are of practical importance for the stabilization of diverse types of complex systems.
Collapse
Affiliation(s)
- Jannik Luboeinski
- grid.7450.60000 0001 2364 4210Department of Computational Neuroscience, III. Institute of Physics – Biophysics, University of Göttingen, Göttingen, Germany ,grid.11630.350000000121657640Biophysics and Systems Biology Section, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Luis Claro
- grid.11630.350000000121657640Biophysics and Systems Biology Section, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Andrés Pomi
- grid.11630.350000000121657640Biophysics and Systems Biology Section, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Mizraji
- grid.11630.350000000121657640Biophysics and Systems Biology Section, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
22
|
Lukić D, Pormehr N, Beladjal L, Vad CF, Ptacnik R, Van Stappen G, Agh N, Horváth Z. Life-history omnivory in the fairy shrimp Branchinecta orientalis (Branchiopoda: Anostraca). HYDROBIOLOGIA 2023; 850:901-909. [PMID: 36776478 PMCID: PMC9905153 DOI: 10.1007/s10750-022-05132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/22/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
UNLABELLED Very little is known about the feeding of naupliar and juvenile life stages of omnivorous fairy shrimps (Crustacea: Anostraca). Here, we aim to reveal whether the fairy shrimp Branchinecta orientalis is an ontogenetic omnivore and at which age and ontogenetic stage they gain the ability to feed on zooplankton. We assess how food uptake rates change with age until reaching maturity by providing algae (pico- and nanoplanktonic unicellular algae) and zooplankton (rotifers and copepod nauplii) as food in individual experiments. We found that the fairy shrimp B. orientalis started to feed on both types of algal prey immediately after hatching. Nanoplanktonic algae likely represented the most important food source until reaching maturity. Moreover, fairy shrimps started to feed on zooplankton already when they were 7 days old. Slow-moving rotifers gradually gained importance in the fairy shrimp diet with time. Our results reveal an ontogenetic change in the prey spectrum of fairy shrimp. The systematic shift towards omnivory likely affects both phyto- and zooplankton community composition, possibly contributing to temporal changes in food web dynamics in fairy shrimp habitats, and temporary ponds, which may warrant more detailed investigations in future studies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10750-022-05132-z.
Collapse
Affiliation(s)
- Dunja Lukić
- WasserCluster Lunz, Lunz am See, Austria
- Research Department for Limnology Mondsee, University of Innsbruck, Innsbruck, Austria
| | - Navid Pormehr
- Laboratory of Aquaculture & Artemia Reference Centre, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering-Block F, Ghent University, Ghent, Belgium
| | - Lynda Beladjal
- Terrestrial Ecology Unit, Department of Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Csaba F. Vad
- WasserCluster Lunz, Lunz am See, Austria
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
- National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, Budapest, Hungary
| | | | - Gilbert Van Stappen
- Laboratory of Aquaculture & Artemia Reference Centre, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering-Block F, Ghent University, Ghent, Belgium
| | - Naser Agh
- Department of Biology and Aquaculture, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Zsόfia Horváth
- WasserCluster Lunz, Lunz am See, Austria
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
- National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, Budapest, Hungary
| |
Collapse
|
23
|
Vimercati L, Bueno de Mesquita CP, Johnson BW, Mineart D, DeForce E, Vimercati Molano Y, Ducklow H, Schmidt SK. Dynamic trophic shifts in bacterial and eukaryotic communities during the first 30 years of microbial succession following retreat of an Antarctic glacier. FEMS Microbiol Ecol 2022; 98:6762214. [PMID: 36251461 DOI: 10.1093/femsec/fiac122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 01/21/2023] Open
Abstract
We examined microbial succession along a glacier forefront in the Antarctic Peninsula representing ∼30 years of deglaciation to contrast bacterial and eukaryotic successional dynamics and abiotic drivers of community assembly using sequencing and soil properties. Microbial communities changed most rapidly early along the chronosequence, and co-occurrence network analysis showed the most complex topology at the earliest stage. Initial microbial communities were dominated by microorganisms derived from the glacial environment, whereas later stages hosted a mixed community of taxa associated with soils. Eukaryotes became increasingly dominated by Cercozoa, particularly Vampyrellidae, indicating a previously unappreciated role for cercozoan predators during early stages of primary succession. Chlorophytes and Charophytes (rather than cyanobacteria) were the dominant primary producers and there was a spatio-temporal sequence in which major groups became abundant succeeding from simple ice Chlorophytes to Ochrophytes and Bryophytes. Time since deglaciation and pH were the main abiotic drivers structuring both bacterial and eukaryotic communities. Determinism was the dominant assembly mechanism for Bacteria, while the balance between stochastic/deterministic processes in eukaryotes varied along the distance from the glacier front. This study provides new insights into the unexpected dynamic changes and interactions across multiple trophic groups during primary succession in a rapidly changing polar ecosystem.
Collapse
Affiliation(s)
- Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, UCB 334, 1900 Pleasant St, Boulder, CO 80309, United States
| | - Clifton P Bueno de Mesquita
- DOE Joint Genome Institute Lawrence Berkeley National Laboratory 1 Cyclotron Road, Berkeley, CA 94720, United States
| | - Ben W Johnson
- Department of Geological and Atmospheric Sciences 253 Science Hall 2237 Osborn Drive Ames, Iowa 50011-3212, United States
| | - Dana Mineart
- Department of Geological and Atmospheric Sciences 253 Science Hall 2237 Osborn Drive Ames, Iowa 50011-3212, United States
| | - Emelia DeForce
- Integrative Oceanography Division Scripps Institution of Oceanography 9500 Gilman Drive La Jolla, CA 92093 5, United States
| | - Ylenia Vimercati Molano
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, UCB 334, 1900 Pleasant St, Boulder, CO 80309, United States
| | - Hugh Ducklow
- Lamont-Doherty Earth Observatory P.O. Box 1000 61 Route 9W Palisades, NY 10964-1000, United States
| | - Steven K Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, UCB 334, 1900 Pleasant St, Boulder, CO 80309, United States
| |
Collapse
|
24
|
Composition and structure of winter aphid–parasitoid food webs along a latitudinal gradient in Chile. Oecologia 2022; 200:425-440. [DOI: 10.1007/s00442-022-05270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2022] [Indexed: 10/31/2022]
|
25
|
Mei C, Wang H, Cai K, Xiao R, Xu M, Li Z, Zhang Z, Cui J, Huang F. Characterization of soil microbial community activity and structure for reducing available Cd by rice straw biochar and Bacillus cereus RC-1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156202. [PMID: 35623534 DOI: 10.1016/j.scitotenv.2022.156202] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The combination of biochar and specific bacteria has been widely applied to remediate Cadmium-contaminated soil. But little is known about how such composites affect the dynamic distribution of metal fractions. This process is accompanied by the alternations of soil properties and microbial community structures. Composite of rice straw biochar and Bacillus cereus RC-1 were applied to investigate its impacts on Cd alleviation and soil microbial diversity and structure. The bacterial/biochar composite treatment decreased the fraction of HOAc-extractable Cd by 38.82%, and increased residual Cd by 23.95% compared to the untreated control. Moreover, compared with the untreated control, the composite treatment significantly increased the soil pH by about 1.5 units, and the activities of catalase, urease and invertase enzymes were increased by 42.39%, 30.50% and 31.20%, respectively. Composite treatment increased soil bacterial and fungal alpha diversity, the relative abundance of Bacillus, Streptomyces, Arthrobacter, and Aspergillus species were also increased. Mantel test and correlation analysis indicated that the effects associated with fungal communities in influencing soil properties were lower than that those of bacterial communities by different treatment. Aggregated boosted tree (ABT) models analysis showed that soil chemical proprieties (as determined by SOM, CEC, AN, etc.,) contributed over 50% of the changes in bacterial and fungal communities by the composite treatment. The co-occurrence network results showed that all treatments enhanced the correlation between OUT groups and improved the possible relationships in the bacterial and fungal communities, especially the interrelationships between bacteria and fungi after the Cd fractions stabilized. These findings provide a new insight to optimal strategies for the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Chuang Mei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Heng Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Kunzheng Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Rongbo Xiao
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Meili Xu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zishan Li
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhenyan Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Jingyi Cui
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Fei Huang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
26
|
Rahman T, Candolin U. Linking animal behavior to ecosystem change in disturbed environments. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.893453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental disturbances often cause individuals to change their behavior. The behavioral responses can induce a chain of reactions through the network of species interactions, via consumptive and trait mediated connections. Given that species interactions define ecosystem structure and functioning, changes to these interactions often have ecological repercussions. Here, we explore the transmission of behavioral responses through the network of species interactions, and how the responses influence ecological conditions. We describe the underlying mechanisms and the ultimate impact that the behavioral responses can have on ecosystem structure and functioning, including biodiversity and ecosystems stability and services. We explain why behavioral responses of some species have a larger impact than that of others on ecosystems, and why research should focus on these species and their interactions. With the work, we synthesize existing theory and empirical evidence to provide a conceptual framework that links behavior responses to altered species interactions, community dynamics, and ecosystem processes. Considering that species interactions link biodiversity to ecosystem functioning, a deeper understanding of behavioral responses and their causes and consequences can improve our knowledge of the mechanisms and pathways through which human activities alter ecosystems. This knowledge can improve our ability to predict the effects of ongoing disturbances on communities and ecosystems and decide on the interventions needed to mitigate negative effects.
Collapse
|
27
|
Kuiper JJ, Kooi BW, Peterson GD, Mooij WM. Bridging Theories for Ecosystem Stability Through Structural Sensitivity Analysis of Ecological Models in Equilibrium. Acta Biotheor 2022; 70:18. [PMID: 35737146 PMCID: PMC9225980 DOI: 10.1007/s10441-022-09441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
Abstract
Ecologists are challenged by the need to bridge and synthesize different approaches and theories to obtain a coherent understanding of ecosystems in a changing world. Both food web theory and regime shift theory shine light on mechanisms that confer stability to ecosystems, but from different angles. Empirical food web models are developed to analyze how equilibria in real multi-trophic ecosystems are shaped by species interactions, and often include linear functional response terms for simple estimation of interaction strengths from observations. Models of regime shifts focus on qualitative changes of equilibrium points in a slowly changing environment, and typically include non-linear functional response terms. Currently, it is unclear how the stability of an empirical food web model, expressed as the rate of system recovery after a small perturbation, relates to the vulnerability of the ecosystem to collapse. Here, we conduct structural sensitivity analyses of classical consumer-resource models in equilibrium along an environmental gradient. Specifically, we change non-proportional interaction terms into proportional ones, while maintaining the equilibrium biomass densities and material flux rates, to analyze how alternative model formulations shape the stability properties of the equilibria. The results reveal no consistent relationship between the stability of the original models and the proportionalized versions, even though they describe the same biomass values and material flows. We use these findings to critically discuss whether stability analysis of observed equilibria by empirical food web models can provide insight into regime shift dynamics, and highlight the challenge of bridging alternative modelling approaches in ecology and beyond.
Collapse
Affiliation(s)
- Jan J Kuiper
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, SE 10691, Stockholm, Sweden.
- Department of Aquatic Ecology, Netherlands Institute of Ecology, P.O. Box 50, 6700 AB, Wageningen, The Netherlands.
| | - Bob W Kooi
- Faculty of Science, VU University, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Garry D Peterson
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, SE 10691, Stockholm, Sweden
| | - Wolf M Mooij
- Department of Aquatic Ecology, Netherlands Institute of Ecology, P.O. Box 50, 6700 AB, Wageningen, The Netherlands
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
28
|
Yonatan Y, Amit G, Friedman J, Bashan A. Complexity-stability trade-off in empirical microbial ecosystems. Nat Ecol Evol 2022; 6:693-700. [PMID: 35484221 DOI: 10.1038/s41559-022-01745-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/22/2022] [Indexed: 12/12/2022]
Abstract
May's stability theory, which holds that large ecosystems can be stable up to a critical level of complexity, a product of the number of resident species and the intensity of their interactions, has been a central paradigm in theoretical ecology. So far, however, empirically demonstrating this theory in real ecological systems has been a long-standing challenge with inconsistent results. Especially, it is unknown whether this theory is pertinent in the rich and complex communities of natural microbiomes, mainly due to the challenge of reliably reconstructing such large ecological interaction networks. Here we introduce a computational framework for estimating an ecosystem's complexity without relying on a priori knowledge of its underlying interaction network. By applying this method to human-associated microbial communities from different body sites and sponge-associated microbial communities from different geographical locations, we found that in both cases the communities display a pronounced trade-off between the number of species and their effective connectance. These results suggest that natural microbiomes are shaped by stability constraints, which limit their complexity.
Collapse
Affiliation(s)
- Yogev Yonatan
- Physics Department, Bar-Ilan University, Ramat-Gan, Israel
| | - Guy Amit
- Physics Department, Bar-Ilan University, Ramat-Gan, Israel
| | - Jonathan Friedman
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Amir Bashan
- Physics Department, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
29
|
Guseva K, Darcy S, Simon E, Alteio LV, Montesinos-Navarro A, Kaiser C. From diversity to complexity: Microbial networks in soils. SOIL BIOLOGY & BIOCHEMISTRY 2022; 169:108604. [PMID: 35712047 PMCID: PMC9125165 DOI: 10.1016/j.soilbio.2022.108604] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 05/07/2023]
Abstract
Network analysis has been used for many years in ecological research to analyze organismal associations, for example in food webs, plant-plant or plant-animal interactions. Although network analysis is widely applied in microbial ecology, only recently has it entered the realms of soil microbial ecology, shown by a rapid rise in studies applying co-occurrence analysis to soil microbial communities. While this application offers great potential for deeper insights into the ecological structure of soil microbial ecosystems, it also brings new challenges related to the specific characteristics of soil datasets and the type of ecological questions that can be addressed. In this Perspectives Paper we assess the challenges of applying network analysis to soil microbial ecology due to the small-scale heterogeneity of the soil environment and the nature of soil microbial datasets. We review the different approaches of network construction that are commonly applied to soil microbial datasets and discuss their features and limitations. Using a test dataset of microbial communities from two depths of a forest soil, we demonstrate how different experimental designs and network constructing algorithms affect the structure of the resulting networks, and how this in turn may influence ecological conclusions. We will also reveal how assumptions of the construction method, methods of preparing the dataset, and definitions of thresholds affect the network structure. Finally, we discuss the particular questions in soil microbial ecology that can be approached by analyzing and interpreting specific network properties. Targeting these network properties in a meaningful way will allow applying this technique not in merely descriptive, but in hypothesis-driven research. Analysing microbial networks in soils opens a window to a better understanding of the complexity of microbial communities. However, this approach is unfortunately often used to draw conclusions which are far beyond the scientific evidence it can provide, which has damaged its reputation for soil microbial analysis. In this Perspectives Paper, we would like to sharpen the view for the real potential of microbial co-occurrence analysis in soils, and at the same time raise awareness regarding its limitations and the many ways how it can be misused or misinterpreted.
Collapse
Affiliation(s)
- Ksenia Guseva
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Corresponding author.
| | - Sean Darcy
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Eva Simon
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Lauren V. Alteio
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Alicia Montesinos-Navarro
- Centro de Investigaciones sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera Km 4.5, 46113, Moncada, Valencia, Spain
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Corresponding author.
| |
Collapse
|
30
|
Dong K, Yu Z, Kerfahi D, Lee SS, Li N, Yang T, Adams JM. Soil microbial co-occurrence networks become less connected with soil development in a high Arctic glacier foreland succession. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152565. [PMID: 34953844 DOI: 10.1016/j.scitotenv.2021.152565] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Classically, ecologists have considered that biota becomes more integrated and interdependent with ecosystem development in primary successional environments. However, recent work on soil microbial communities suggests that there may in fact be no change in network integration over successional time series. Here, we performed a test of this principle by identifying network-level topological features of the soil microbial co-occurrence networks in the primary successional foreland environment of the retreating high-Arctic glacier of Midtre Lovénbreen, Svalbard. Soil was sampled at sites along the foreland of inferred ages 10-90 years since deglaciation. DNA was extracted and amplicon sequenced for 16 s rRNA genes for bacteria and ITS1 region for fungi. Despite the chronologically-related soil pH decline and organic C/N accumulation, analysis on network-level topological features showed network integration did not change with inferred chronological ages, whereas network integration declined with decreasing pH and increasing total organic carbon (TOC) - both factors that can be viewed as an indicator of soil development. We also found that bacteria played a greater role in the network structure than fungi, with all keystone species in the microbial co-occurrence network being bacteria species. Both number and relative abundance of the keystone species were significantly higher when soil pH increased or TOC decreased. It appears that in the more extreme and less productive conditions of early primary succession, integration between members of soil biota into consortia may play a greater role in niche adaptation and survival. Our finding also emphasizes that ecosystem development is not simply a product of time but is influenced by locally heterogeneous factors.
Collapse
Affiliation(s)
- Ke Dong
- Life Science Major, Kyonggi University, Suwon, South Korea
| | - Zhi Yu
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Dorsaf Kerfahi
- School of Natural Sciences, Department of Biological Sciences, Keimyung University, Daegu, South Korea
| | - Sang-Seob Lee
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Nan Li
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Nanning, China
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jonathan M Adams
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
31
|
Yan C. Nestedness interacts with subnetwork structures and interconnection patterns to affect community dynamics in ecological multilayer networks. J Anim Ecol 2022; 91:738-751. [DOI: 10.1111/1365-2656.13665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Chuan Yan
- State Key Laboratory of Grassland Agro‐ecosystems Institute of Innovation Ecology & College of Life Sciences Lanzhou University Lanzhou 730000 China
- Yuzhong Mountain Ecosystems Observation and Research Station Lanzhou University Lanzhou 730000 China
| |
Collapse
|
32
|
Rapisardi G, Kryven I, Arenas A. Percolation in networks with local homeostatic plasticity. Nat Commun 2022; 13:122. [PMID: 35013243 PMCID: PMC8748765 DOI: 10.1038/s41467-021-27736-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Percolation is a process that impairs network connectedness by deactivating links or nodes. This process features a phase transition that resembles paradigmatic critical transitions in epidemic spreading, biological networks, traffic and transportation systems. Some biological systems, such as networks of neural cells, actively respond to percolation-like damage, which enables these structures to maintain their function after degradation and aging. Here we study percolation in networks that actively respond to link damage by adopting a mechanism resembling synaptic scaling in neurons. We explain critical transitions in such active networks and show that these structures are more resilient to damage as they are able to maintain a stronger connectedness and ability to spread information. Moreover, we uncover the role of local rescaling strategies in biological networks and indicate a possibility of designing smart infrastructures with improved robustness to perturbations.
Collapse
Affiliation(s)
- Giacomo Rapisardi
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, E-43007, Tarragona, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Ivan Kryven
- Mathematical Institute, Utrecht University, Budapestlaan 6, 3508 TA, Utrecht, The Netherlands
- Centre for Complex Systems Studies, 3584 CE, Utrecht, The Netherlands
| | - Alex Arenas
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, E-43007, Tarragona, Spain.
| |
Collapse
|
33
|
Baumgartner MT, Bianco Faria LD. The sensitivity of complex dynamic food webs to the loss of top omnivores. J Theor Biol 2022; 538:111027. [DOI: 10.1016/j.jtbi.2022.111027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022]
|
34
|
Zhang X, Yi Y, Yang Z. The long-term changes in food web structure and ecosystem functioning of a shallow lake: Implications for the lake management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113804. [PMID: 34626952 DOI: 10.1016/j.jenvman.2021.113804] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/16/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
The food web structure (FWS) and ecosystem functioning (EF) of lakes worldwide are impacted by multiple disturbances. The historical evolution of the FWS and EF are not well understood due to the lack of sufficient long-term records of biotic variations. This study reconstructed the food web models in the 1950s, 1980s, 1990s, 2000s, and 2010s for Baiyangdian Lake (BYDL), the largest shallow lake in northern China, using the Linear Inverse Modeling (LIM) and investigated EF in different periods. Our results confirmed that the FWS and EF of BYDL have undergone significant changes. The biomass of phytoplankton continuously increased, and the primary productivity of phytoplankton began to replace the primary productivity of submerged macrophytes in the 2000s and became the largest energy flow in the food web. Changes in the energy flow of primary producers are transmitted to high-trophic functional groups, which affects the diet composition of fish. Based on the ecological network analysis indices and food web stability indicators, it was concluded that after a turning point in the 1990s, the ecosystem showed initial stability and then gradually became unstable. Water level fluctuations and nutrient enrichment may be the key driving factors for changes in ecosystem state. Therefore, to maintain a good state of the ecosystem, we recommend implementing comprehensive management measures of hydrological management, nutrient-loading reduction, and biomanipulation. Furthermore, this study extended LIM to lake ecosystems, which may provide a new method for lake ecological environment management.
Collapse
Affiliation(s)
- Xiaoxin Zhang
- Ministry of Education Key Laboratory for Water and Sediment Science, School of Environment, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yujun Yi
- Ministry of Education Key Laboratory for Water and Sediment Science, School of Environment, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Zhifeng Yang
- Ministry of Education Key Laboratory for Water and Sediment Science, School of Environment, Beijing Normal University, Beijing, 100875, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
35
|
Liu D, Bhople P, Keiblinger KM, Wang B, An S, Yang N, Chater CCC, Yu F. Soil Rehabilitation Promotes Resilient Microbiome with Enriched Keystone Taxa than Agricultural Infestation in Barren Soils on the Loess Plateau. BIOLOGY 2021; 10:biology10121261. [PMID: 34943176 PMCID: PMC8698737 DOI: 10.3390/biology10121261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
Drylands provide crucial ecosystem and economic services across the globe. In barren drylands, keystone taxa drive microbial structure and functioning in soil environments. In the current study, the Chinese Loess plateau’s agricultural (AL) and twenty-year-old rehabilitated lands (RL) provided a unique opportunity to investigate land-use-mediated effects on barren soil keystone bacterial and fungal taxa. Therefore, soils from eighteen sites were collected for metagenomic sequencing of bacteria specific 16S rRNA and fungi specific ITS2 regions, respectively, and to conduct molecular ecological networks and construct microbial OTU-based correlation matrices. In RL soils we found a more complex bacterial network represented by a higher number of nodes and links, with a link percentage of 77%, and a lower number of nodes and links for OTU-based fungal networks compared to the AL soils. A higher number of keystone taxa was observed in the RL (66) than in the AL (49) soils, and microbial network connectivity was positively influenced by soil total nitrogen and microbial biomass carbon contents. Our results indicate that plant restoration and the reduced human interventions in RL soils could guide the development of a better-connected microbial network and ensure sufficient nutrient circulation in barren soils on the Loess plateau.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Northwest A&F University, Xianyang 712100, China; (B.W.); (S.A.)
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Correspondence: (D.L.); (F.Y.)
| | - Parag Bhople
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Katharina Maria Keiblinger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life-Sciences, 1190 Vienna, Austria;
| | - Baorong Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Northwest A&F University, Xianyang 712100, China; (B.W.); (S.A.)
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Northwest A&F University, Xianyang 712100, China; (B.W.); (S.A.)
| | - Nan Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
| | | | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Correspondence: (D.L.); (F.Y.)
| |
Collapse
|
36
|
Gruber N, Boyd PW, Frölicher TL, Vogt M. Biogeochemical extremes and compound events in the ocean. Nature 2021; 600:395-407. [PMID: 34912083 DOI: 10.1038/s41586-021-03981-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/01/2021] [Indexed: 12/30/2022]
Abstract
The ocean is warming, losing oxygen and being acidified, primarily as a result of anthropogenic carbon emissions. With ocean warming, acidification and deoxygenation projected to increase for decades, extreme events, such as marine heatwaves, will intensify, occur more often, persist for longer periods of time and extend over larger regions. Nevertheless, our understanding of oceanic extreme events that are associated with warming, low oxygen concentrations or high acidity, as well as their impacts on marine ecosystems, remains limited. Compound events-that is, multiple extreme events that occur simultaneously or in close sequence-are of particular concern, as their individual effects may interact synergistically. Here we assess patterns and trends in open ocean extremes based on the existing literature as well as global and regional model simulations. Furthermore, we discuss the potential impacts of individual and compound extremes on marine organisms and ecosystems. We propose a pathway to improve the understanding of extreme events and the capacity of marine life to respond to them. The conditions exhibited by present extreme events may be a harbinger of what may become normal in the future. As a consequence, pursuing this research effort may also help us to better understand the responses of marine organisms and ecosystems to future climate change.
Collapse
Affiliation(s)
- Nicolas Gruber
- Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland.
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Thomas L Frölicher
- Climate and Environmental Physics, University of Bern, Bern, Switzerland.,Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Meike Vogt
- Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
37
|
Vuorinen KEM, Oksanen T, Oksanen L, Vuorisalo T, Speed JDM. Why don't all species overexploit? OIKOS 2021. [DOI: 10.1111/oik.08358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katariina E. M. Vuorinen
- Dept of Natural History, NTNU Univ. Museum, Norwegian Univ. of Science and Technology Trondheim Norway
| | - Tarja Oksanen
- Dept of Arctic and Marine Biology, UiT, The Arctic Univ. of Norway, Campus Alta Alta Norway
- Dept of Biology, Ecology Section, Univ. of Turku Turku Finland
| | - Lauri Oksanen
- Dept of Arctic and Marine Biology, UiT, The Arctic Univ. of Norway, Campus Alta Alta Norway
- Dept of Biology, Ecology Section, Univ. of Turku Turku Finland
| | - Timo Vuorisalo
- Dept of Biology, Ecology Section, Univ. of Turku Turku Finland
| | - James D. M. Speed
- Dept of Natural History, NTNU Univ. Museum, Norwegian Univ. of Science and Technology Trondheim Norway
| |
Collapse
|
38
|
He D, Zheng J, Ren L, Wu QL. Substrate type and plant phenolics influence epiphytic bacterial assembly during short-term succession. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148410. [PMID: 34146816 DOI: 10.1016/j.scitotenv.2021.148410] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
In natural ecosystems, large amounts of epiphytic bacteria live on the surfaces of submerged plants or non-biological substrates. Although it contributes greatly to host plant health or ecological functions in waters, little is known about the temporal dynamics and assembly mechanisms of epiphytic bacteria. To test whether host plant chemistry leads to divergent community dynamics, we investigated the fine scale temporal community successions of both epiphytic bacteria and the bacterioplankton of the surrounding water in two submerged plants and one non-biological artificial substance. We first observed differentiated epiphytic or surrounding water bacterial communities for different substrates in small spaces (approximately 1 m × 1 m). Selection played dominant roles in affecting the assembly of epiphytic bacteria in the high-phenolic plant Hydrilla verticillata, while for the artificial substance and the low-phenolic plant Vallisneria natans, drift and dispersal drove the assembly of both epiphytic bacteria and bacterioplankton. The higher selection may also contribute to higher turnover rates in both bacterioplankton and epiphytic communities of H. verticillata, with the latter changing drastically in approximately one week. Epiphytic bacteria in H. verticillata developed more complex networks with a higher proportion of positive links, suggesting that more intense interactions such as mutualism or facilitation may exist within epiphytic bacterial communities of the high-phenolic plant. Our results also implied that for the submerged macrophytes used in biological purification, the dynamics of epiphytic biofilm in the purification-related functional capacities might also be considered.
Collapse
Affiliation(s)
- Dan He
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiuwen Zheng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lijuan Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Department of Ecology, Institute of Hydrobiology, Jinan University, Guangzhou 510632, China.
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino Danish Center for Science and Education, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
39
|
Windsor FM, Tavella J, Rother DC, Raimundo RLG, Devoto M, Guimarães PR, Evans DM. Identifying plant mixes for multiple ecosystem service provision in agricultural systems using ecological networks. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Fredric M. Windsor
- School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
| | - Julia Tavella
- Facultad de Agronomía Universidad de Buenos Aires Buenos Aires Argentina
| | - Débora C. Rother
- Departamento de Ecologia Universidade de São Paulo São Paulo Brazil
| | - Rafael L. G. Raimundo
- Departamento de Engenharia e Meio Ambiente Universidade Federal da Paraíba Joao Pessoa Brazil
| | - Mariano Devoto
- Facultad de Agronomía Universidad de Buenos Aires Buenos Aires Argentina
| | | | - Darren M. Evans
- School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
| |
Collapse
|
40
|
Danet A, Mouchet M, Bonnaffé W, Thébault E, Fontaine C. Species richness and food-web structure jointly drive community biomass and its temporal stability in fish communities. Ecol Lett 2021; 24:2364-2377. [PMID: 34423526 DOI: 10.1111/ele.13857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 01/28/2023]
Abstract
Biodiversity-ecosystem functioning and food-web complexity-stability relationships are central to ecology. However, they remain largely untested in natural contexts. Here, we estimated the links among environmental conditions, richness, food-web structure, annual biomass and its temporal stability using a standardised monitoring dataset of 99 stream fish communities spanning from 1995 to 2018. We first revealed that both richness and average trophic level are positively related to annual biomass, with effects of similar strength. Second, we found that community stability is fostered by mean trophic level, while contrary to expectation, it is decreased by species richness. Finally, we found that environmental conditions affect both biomass and its stability mainly via effects on richness and network structure. Strikingly, the effect of species richness on community stability was mediated by population stability rather than synchrony, which contrasts with results from single trophic communities. We discuss the hypothesis that it could be a characteristic of multi-trophic communities.
Collapse
Affiliation(s)
- Alain Danet
- Centre d'Ecologie et des Sciences de la Conservation, UMR 7204 MNHN-CNRS-Sorbonne Université, Muséum national d'Histoire naturelle de Paris, Paris, France
| | - Maud Mouchet
- Centre d'Ecologie et des Sciences de la Conservation, UMR 7204 MNHN-CNRS-Sorbonne Université, Muséum national d'Histoire naturelle de Paris, Paris, France
| | - Willem Bonnaffé
- Ecological and Evolutionary Dynamics Lab, Department of Zoology, University of Oxford, Oxford, UK
| | - Elisa Thébault
- Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Créteil, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Colin Fontaine
- Centre d'Ecologie et des Sciences de la Conservation, UMR 7204 MNHN-CNRS-Sorbonne Université, Muséum national d'Histoire naturelle de Paris, Paris, France
| |
Collapse
|
41
|
McLeod AM, Leroux SJ. Incongruent drivers of network, species and interaction persistence in food webs. OIKOS 2021. [DOI: 10.1111/oik.08512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Anne M. McLeod
- Dept of Biology, Memorial Univ. of Newfoundland St John's NL Canada
| | - Shawn J. Leroux
- Dept of Biology, Memorial Univ. of Newfoundland St John's NL Canada
| |
Collapse
|
42
|
Duchenne F, Fontaine C, Teulière E, Thébault E. Phenological traits foster persistence of mutualistic networks by promoting facilitation. Ecol Lett 2021; 24:2088-2099. [PMID: 34218505 PMCID: PMC8518482 DOI: 10.1111/ele.13836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/02/2022]
Abstract
Morphological and phenological traits are key determinants of the structure of mutualistic networks. Both traits create forbidden links, but phenological traits can also decouple interaction in time. While such difference likely affects the indirect effects among species and consequently network persistence, it remains overlooked. Here, using a dynamic model, we show that networks structured by phenology favour facilitation over competition within guilds of pollinators and plants, thereby increasing network persistence, while the contrary holds for networks structured by morphology. We further show that such buffering of competition by phenological traits mostly beneficiate to specialists, the most vulnerable species otherwise, which propagate the most positive effects within guilds and promote nestedness. Our results indicate that beyond trophic mismatch, phenological shifts such as those induced by climate change are likely to affect indirect effects within mutualistic assemblages, with consequences for biodiversity.
Collapse
Affiliation(s)
- François Duchenne
- Institute of Ecology and Environmental Sciences of Paris, (Sorbonne Université, CNRS, Université Paris Est Créteil, INRAE, IRD), Paris, France.,Centre d'Ecologie et des Sciences de la Conservation, (CNRS, MNHN, Sorbonne Université), Paris, France.,Biodiversity and Conservation Biology Research Center, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Colin Fontaine
- Centre d'Ecologie et des Sciences de la Conservation, (CNRS, MNHN, Sorbonne Université), Paris, France
| | - Elsa Teulière
- Lycée Romain Rolland, Académie de Créteil (Education Nationale), Ivry-sur-Seine, France
| | - Elisa Thébault
- Institute of Ecology and Environmental Sciences of Paris, (Sorbonne Université, CNRS, Université Paris Est Créteil, INRAE, IRD), Paris, France
| |
Collapse
|
43
|
Bonnaffé W, Danet A, Legendre S, Edeline E. Comparison of size‐structured and species‐level trophic networks reveals antagonistic effects of temperature on vertical trophic diversity at the population and species level. OIKOS 2021. [DOI: 10.1111/oik.08173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Willem Bonnaffé
- Sorbonne Université, Université Paris Diderot, UPEC, CNRS, INRA, IRD, Inst. d'Ecologie et des Sciences de l'Environnement de Paris (iEES‐Paris) Paris France
- Ecological and Evolutionary Dynamics Lab, Dept of Zoology, Univ. of Oxford Oxford UK
- Inst. de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research Univ. Paris France
| | - Alain Danet
- Centre d'Ecologie et des Sciences de la Conservation, UMR 7204 MNHN‐CNRS‐Sorbonne Université, Muséum National d'Histoire Naturelle de Paris Paris France
| | - Stéphane Legendre
- Inst. de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research Univ. Paris France
| | - Eric Edeline
- Sorbonne Université, Université Paris Diderot, UPEC, CNRS, INRA, IRD, Inst. d'Ecologie et des Sciences de l'Environnement de Paris (iEES‐Paris) Paris France
- ESE Ecology and Ecosystem Health, INRA, Agrocampus Ouest Rennes France
| |
Collapse
|
44
|
Li X, Yang W, Gaedke U, de Ruiter PC. Energetic constraints imposed on trophic interaction strengths enhance resilience in empirical and model food webs. J Anim Ecol 2021; 90:2065-2076. [PMID: 33844855 DOI: 10.1111/1365-2656.13499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
Food web stability and resilience are at the heart of understanding the structure and functioning of ecosystems. Previous studies show that models of empirical food webs are substantially more stable than random ones, due to a few strong interactions embedded in a majority of weak interactions. Analyses of trophic interaction loops show that in empirical food webs the patterns of the interaction strengths prevent the occurrence of destabilizing heavy loops and thereby enhances resilience. Yet, it is still unexplored which biological mechanisms cause these patterns that enhance food web resilience. We quantified food web resilience using the real part of the maximum eigenvalue of the Jacobian matrix of the food web from a seagrass bed in the Yellow River Delta (YRD) wetland, that could be parametrized by the empirical data of the food web. We found that the empirically based Jacobian matrix of the YRD food web indicated a much higher resilience than random matrices with the same element values but arranged in random ways. Investigating the trophic interaction loops revealed that the high resilience was due to a negative correlation between the negative and positive interaction strengths (per capita top-down and bottom-up effects, respectively) within positive feedback loops with three species. The negative correlation showed that when the negative interaction strengths were strong the positive was weak, and vice versa. Our invented reformulation of loop weight in terms of biomasses and specific production rates showed that energetic properties of the trophic groups in the loop and mass-balance constraints, for example, the food uptake has to balance all losses, created the negative correlation between the interaction strengths. This result could be generalized using a dynamic intraguild predation model, which delivered the same pattern for a wide range of model parameters. Our results shed light on how energetic constraints at the trophic group and food web level create a pattern of interaction strengths within trophic interaction loops that enhances food web resilience.
Collapse
Affiliation(s)
- Xiaoxiao Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China.,Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, China
| | - Ursula Gaedke
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Peter C de Ruiter
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Biometris, Wageningen University, Wageningen, The Netherlands.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
45
|
A novel approach to quantifying trophic interaction strengths and impact of invasive species in food webs. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02490-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractMeasuring ecological and economic impacts of invasive species is necessary for managing invaded food webs. Based on abundance, biomass and diet data of autochthonous and allochthonous fish species, we proposed a novel approach to quantifying trophic interaction strengths in terms of number of individuals and biomass that each species subtract to the others in the food web. This allowed to estimate the economic loss associated to the impact of an invasive species on commercial fish stocks, as well as the resilience of invaded food webs to further perturbations. As case study, we measured the impact of the invasive bass Micropterus salmoides in two lake communities differing in food web complexity and species richness, as well as the biotic resistance of autochthonous and allochthonous fish species against the invader. Resistance to the invader was higher, while its ecological and economic impact was lower, in the more complex and species-rich food web. The percid Perca fluviatilis and the whitefish Coregonus lavaretus were the two species that most limited the invader, representing meaningful targets for conservation biological control strategies. In both food webs, the limiting effect of allochthonous species against M. salmoides was higher than the effect of autochthonous ones. Simulations predicted that the eradication of the invader would increase food web resilience, while that an increase in fish diversity would preserve resilience also at high abundances of M. salmoides. Our results support the conservation of biodiverse food webs as a way to mitigate the impact of bass invasion in lake ecosystems. Notably, the proposed approach could be applied to any habitat and animal species whenever biomass and diet data can be obtained.
Collapse
|
46
|
Changes in Soil Features and Phytomass during Vegetation Succession in Sandy Areas. LAND 2021. [DOI: 10.3390/land10030265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This research was conducted on an area of inland sands characterised by various degrees of overgrowth by vegetation and soil stabilisation. This landscape’s origin is not natural but is connected to human industrial activities dating from early medieval times, which created a powerful centre for mining and metallurgy. This study aims to identify the changes in the above- and belowground phytomass in the initial stages of succession and their influence on the chemical properties and morphology of the soil. It was found that Salix arenaria dominated in primary phytomass production in all plots tested. The amounts of this species found in each community were as follows: 8.55 kg/400 m2 (algae–mosses), 188.97 kg/400 m2 (sand grassland–willow), 123.44 kg/400 m2 (pine–willow–mosses), 14.63 kg/400 m2 (sand grassland–mosses–willow), and 196.55 kg/400 m2 (willow–pine–sand grassland). A notable share of Koeleria glauca was found in the phytomass production of Plots IV (45.73 kg) and V (86.16 kg). Basic soil properties (pH, Corg, Nt), available plant elements (P), and plant nutrients (Ca, Mg, K, P, Fe) beneath the dominant plant species were examined. Soil acidity (pH) varied greatly, ranging from acidic (pH = 3.2) to weakly acidic (pH = 6.3). The content of organic carbon (Corg) in individual plots beneath the dominant species in the humus horizon ranged from 0.28% to 1.42%. The maximum contents of organic carbon and total nitrogen were found in organic (O) and organic-humus (OA) horizons. The highest Pavail content was found in organic and organic-humus horizons, ranging from 10.41 to 65.23 mg/kg, and in mineral horizons under K. glauca (24.10 mg/kg) and Salix acutifola (25.11 mg/kg). The soil features and phytomass were varied differently across individual sites, representing different stages of succession.
Collapse
|
47
|
Zatkos L, Arismendi I, Johnson SL, Penaluna BE. Geophysical templates modulate the structure of stream food webs dominated by omnivory. Ecosphere 2021. [DOI: 10.1002/ecs2.3444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Lauren Zatkos
- Department of Fisheries and Wildlife Oregon State University 2820 SW Campus Way Corvallis Oregon97331USA
| | - Ivan Arismendi
- Department of Fisheries and Wildlife Oregon State University 2820 SW Campus Way Corvallis Oregon97331USA
| | - Sherri L. Johnson
- USDA Forest ServicePacific Northwest Research Station 3200 Southwest Jefferson Way Corvallis Oregon97331USA
| | - Brooke E. Penaluna
- USDA Forest ServicePacific Northwest Research Station 3200 Southwest Jefferson Way Corvallis Oregon97331USA
| |
Collapse
|
48
|
Fei M, Kong X. Prey preference of top predators manipulates the functioning and stability of multi-trophic ecosystems. ECOLOGICAL COMPLEXITY 2021. [DOI: 10.1016/j.ecocom.2021.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Galiana N, Arnoldi JF, Barbier M, Acloque A, de Mazancourt C, Loreau M. Can biomass distribution across trophic levels predict trophic cascades? Ecol Lett 2020; 24:464-476. [PMID: 33314592 DOI: 10.1111/ele.13658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/14/2020] [Indexed: 11/30/2022]
Abstract
The biomass distribution across trophic levels (biomass pyramid) and cascading responses to perturbations (trophic cascades) are archetypal representatives of the interconnected set of static and dynamical properties of food chains. A vast literature has explored their respective ecological drivers, sometimes generating correlations between them. Here we instead reveal a fundamental connection: both pyramids and cascades reflect the dynamical sensitivity of the food chain to changes in species intrinsic rates. We deduce a direct relationship between cascades and pyramids, modulated by what we call trophic dissipation - a synthetic concept that encodes the contribution of top-down propagation of consumer losses in the biomass pyramid. Predictable across-ecosystem patterns emerge when systems are in similar regimes of trophic dissipation. Data from 31 aquatic mesocosm experiments demonstrate how our approach can reveal the causal mechanisms linking trophic cascades and biomass distributions, thus providing a road map to deduce reliable predictions from empirical patterns.
Collapse
Affiliation(s)
- Núria Galiana
- Theoretical and Experimental Ecology Station, CNRS, Moulis, 09200, France
| | - Jean-François Arnoldi
- Zoology Department, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Ireland
| | - Matthieu Barbier
- Theoretical and Experimental Ecology Station, CNRS, Moulis, 09200, France
| | - Amandine Acloque
- Theoretical and Experimental Ecology Station, CNRS, Moulis, 09200, France
| | | | - Michel Loreau
- Theoretical and Experimental Ecology Station, CNRS, Moulis, 09200, France
| |
Collapse
|
50
|
Lurgi M, Galiana N, Broitman BR, Kéfi S, Wieters EA, Navarrete SA. Geographical variation of multiplex ecological networks in marine intertidal communities. Ecology 2020; 101:e03165. [PMID: 32798321 DOI: 10.1002/ecy.3165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 11/11/2022]
Abstract
Understanding the drivers of geographical variation in species distributions, and the resulting community structure, constitutes one of the grandest challenges in ecology. Geographical patterns of species richness and composition have been relatively well studied. Less is known about how the entire set of trophic and non-trophic ecological interactions, and the complex networks that they create by gluing species together in complex communities, change across geographical extents. Here, we compiled data of species composition and three types of ecological interactions occurring between species in rocky intertidal communities across a large spatial extent (~970 km of shoreline) of central Chile, and analyzed the geographical variability in these multiplex networks (i.e., comprising several interaction types) of ecological interactions. We calculated nine network summary statistics common across interaction types, and additional network attributes specific to each of the different types of interactions. We then investigated potential environmental drivers of this multivariate network organization. These included variation in sea surface temperature and coastal upwelling, the main drivers of productivity in nearshore waters. Our results suggest that structural properties of multiplex ecological networks are affected by local species richness and modulated by factors influencing productivity and environmental predictability. Our results show that non-trophic negative interactions are more sensitive to spatially structured temporal environmental variation than feeding relationships, with non-trophic positive interactions being the least labile to it. We also show that environmental effects are partly mediated through changes in species richness and partly through direct influences on species interactions, probably associated to changes in environmental predictability and to bottom-up nutrient availability. Our findings highlight the need for a comprehensive picture of ecological interactions and their geographical variability if we are to predict potential effects of environmental changes on ecological communities.
Collapse
Affiliation(s)
- Miguel Lurgi
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS-Paul Sabatier University, Moulis, 09200, France.,Department of Biosciences, Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom
| | - Núria Galiana
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS-Paul Sabatier University, Moulis, 09200, France
| | - Bernardo R Broitman
- Departamento de Ciencias, Facultad de Artes Liberales & Bioengineering Innovation Center, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Padre Hurtado 750, Viña del Mar, Chile
| | - Sonia Kéfi
- ISEM, CNRS, IRD, EPHE, Univ. Montpellier, Place Eugène Bataillon, Montpellier, 34095, France
| | - Evie A Wieters
- Estación Costera de Investigaciones Marinas, LINC Global, Center for Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Osvaldo Marín 1672, Las Cruces, V Región, 2690000, Chile
| | - Sergio A Navarrete
- Estación Costera de Investigaciones Marinas, LINC Global, Center for Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Osvaldo Marín 1672, Las Cruces, V Región, 2690000, Chile
| |
Collapse
|