1
|
Gebert D, Hay AD, Hoang JP, Gibbon AE, Henderson IR, Teixeira FK. Analysis of 30 chromosome-level Drosophila genome assemblies reveals dynamic evolution of centromeric satellite repeats. Genome Biol 2025; 26:63. [PMID: 40102968 PMCID: PMC11917152 DOI: 10.1186/s13059-025-03527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND The Drosophila genus is ideal for studying genome evolution due to its relatively simple chromosome structure and small genome size, with rearrangements mainly restricted to within chromosome arms, such as Muller elements. However, work on the rapidly evolving repetitive genomic regions, composed of transposons and tandem repeats, have been hampered by the lack of genus-wide chromosome-level assemblies. RESULTS Integrating long-read genomic sequencing and chromosome capture technology, here we produce and annotate 30 chromosome-level genome assemblies within the Drosophila genus. Based on this dataset, we reveal the evolutionary dynamics of genome rearrangements across the Drosophila phylogeny, including the identification of genomic regions that show comparatively high structural stability throughout evolution. Moreover, within the ananassae subgroup, we uncover the emergence of new chromosome conformations and the rapid expansion of novel satellite DNA sequence families, which form large and continuous pericentromeric domains with higher-order repeat structures that are reminiscent of those observed in the human and Arabidopsis genomes. CONCLUSIONS These chromosome-level genome assemblies present a valuable resource for future research, the power of which is demonstrated by our analysis of genome rearrangements and chromosome evolution. In addition, based on our findings, we propose the ananassae subgroup as an ideal model system for studying the evolution of centromere structure.
Collapse
Affiliation(s)
- Daniel Gebert
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| | - Amir D Hay
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Present Address: Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jennifer P Hoang
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Adam E Gibbon
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Felipe Karam Teixeira
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| |
Collapse
|
2
|
Pal S, Oliver B, Przytycka TM. Cell-Type Specific Variation in X-Chromosome Dosage Compensation in Drosophila. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001501. [PMID: 40078405 PMCID: PMC11897817 DOI: 10.17912/micropub.biology.001501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Male Drosophila melanogaster require dosage compensation to equalize X-linked gene expression with autosomal expression. Leveraging the single-nucleus Fly Cell Atlas (FCA) dataset, which includes 388,918 nuclei across diverse tissues, we investigated cell-type-specific patterns of X-chromosome dosage compensation. Our analysis identified a continuum of cell groups based on their X-to-autosome (X/A) expression ratios ranging from anti-compensated to effectively compensated and overcompensated. Anti-compensation was predominantly observed in male reproductive tissues, while overcompensation was prevalent in neural cells. The expression levels of the dosage compensation machinery's non-coding RNAs, RoX1 and RoX2 , correlated with compensation levels, but were insufficient to fully explain the observed patterns of compensation. These findings reveal the complexity of dosage compensation and suggest that its regulation by the RoX RNAs is nonlinear, implicating potential alternative mechanisms in certain cell types.
Collapse
Affiliation(s)
- Soumitra Pal
- Neurobiology Neurodegeneration and Repair Lab, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
- Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States
| | - Brian Oliver
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, United States
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Teresa M. Przytycka
- Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
3
|
Kalita AI, Keller Valsecchi CI. Dosage compensation in non-model insects - progress and perspectives. Trends Genet 2025; 41:76-98. [PMID: 39341686 DOI: 10.1016/j.tig.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
In many multicellular eukaryotes, heteromorphic sex chromosomes are responsible for determining the sexual characteristics and reproductive functions of individuals. Sex chromosomes can cause a dosage imbalance between sexes, which in some species is re-equilibrated by dosage compensation (DC). Recent genomic advances have extended our understanding of DC mechanisms in insects beyond model organisms such as Drosophila melanogaster. We review current knowledge of insect DC, focusing on its conservation and divergence across orders, the evolutionary dynamics of neo-sex chromosomes, and the diversity of molecular mechanisms. We propose a framework to uncover DC regulators in non-model insects that relies on integrating evolutionary, genomic, and functional approaches. This comprehensive approach will facilitate a deeper understanding of the evolution and essentiality of gene regulatory mechanisms.
Collapse
|
4
|
Wei KHC, Chatla K, Bachtrog D. Single-cell RNA-seq of Drosophila miranda testis reveals the evolution and trajectory of germline sex chromosome regulation. PLoS Biol 2024; 22:e3002605. [PMID: 38687805 PMCID: PMC11135767 DOI: 10.1371/journal.pbio.3002605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/29/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
Although sex chromosomes have evolved from autosomes, they often have unusual regulatory regimes that are sex- and cell-type-specific such as dosage compensation (DC) and meiotic sex chromosome inactivation (MSCI). The molecular mechanisms and evolutionary forces driving these unique transcriptional programs are critical for genome evolution but have been, in the case of MSCI in Drosophila, subject to continuous debate. Here, we take advantage of the younger sex chromosomes in D. miranda (XR and the neo-X) to infer how former autosomes acquire sex-chromosome-specific regulatory programs using single-cell and bulk RNA sequencing and ribosome profiling, in a comparative evolutionary context. We show that contrary to mammals and worms, the X down-regulation through germline progression is most consistent with the shutdown of DC instead of MSCI, resulting in half gene dosage at the end of meiosis for all 3 X's. Moreover, lowly expressed germline and meiotic genes on the neo-X are ancestrally lowly expressed, instead of acquired suppression after sex linkage. For the young neo-X, DC is incomplete across all tissue and cell types and this dosage imbalance is rescued by contributions from Y-linked gametologs which produce transcripts that are translated to compensate both gene and protein dosage. We find an excess of previously autosomal testis genes becoming Y-specific, showing that the neo-Y and its masculinization likely resolve sexual antagonism. Multicopy neo-sex genes are predominantly expressed during meiotic stages of spermatogenesis, consistent with their amplification being driven to interfere with mendelian segregation. Altogether, this study reveals germline regulation of evolving sex chromosomes and elucidates the consequences these unique regulatory mechanisms have on the evolution of sex chromosome architecture.
Collapse
Affiliation(s)
- Kevin H-C. Wei
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kamalakar Chatla
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
5
|
O'Neill RS, Sodeinde AK, Welsh FC, Fagerstrom CJ, Galletta BJ, Rusan NM. Spd-2 gene duplication reveals cell-type-specific pericentriolar material regulation. Curr Biol 2023; 33:3031-3040.e6. [PMID: 37379844 DOI: 10.1016/j.cub.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/25/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
Centrosomes are multi-protein organelles that function as microtubule (MT) organizing centers (MTOCs), ensuring spindle formation and chromosome segregation during cell division.1,2,3 Centrosome structure includes core centrioles that recruit pericentriolar material (PCM) that anchors γ-tubulin to nucleate MTs.1,2 In Drosophila melanogaster, PCM organization depends on proper regulation of proteins like Spd-2, which dynamically localizes to centrosomes and is required for PCM, γ-tubulin, and MTOC activity in brain neuroblast (NB) mitosis and male spermatocyte (SC) meiosis.4,5,6,7,8 Some cells have distinct requirements for MTOC activity due to differences in characteristics like cell size9,10 or whether they are mitotic or meiotic.11,12 How centrosome proteins achieve cell-type-specific functional differences is poorly understood. Previous work identified alternative splicing13 and binding partners14 as contributors to cell-type-specific differences in centrosome function. Gene duplication, which can generate paralogs with specialized functions,15,16 is also implicated in centrosome gene evolution,17 including cell-type-specific centrosome genes.18,19 To gain insight into cell-type-specific differences in centrosome protein function and regulation, we investigated a duplication of Spd-2 in Drosophila willistoni, which has Spd-2A (ancestral) and Spd-2B (derived). We find that Spd-2A functions in NB mitosis, whereas Spd-2B functions in SC meiosis. Ectopically expressed Spd-2B accumulates and functions in mitotic NBs, but ectopically expressed Spd-2A failed to accumulate in meiotic SCs, suggesting cell-type-specific differences in translation or protein stability. We mapped this failure to accumulate and function in meiosis to the C-terminal tail domain of Spd-2A, revealing a novel regulatory mechanism that can potentially achieve differences in PCM function across cell types.
Collapse
Affiliation(s)
- Ryan S O'Neill
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Afeez K Sodeinde
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Frances C Welsh
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Graduate Program, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA
| | - Carey J Fagerstrom
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian J Galletta
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nasser M Rusan
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Belkina EG, Seleznev DG, Sorokina SY, Kulikov AM, Lazebny OE. The Effect of Chromosomes on Courtship Behavior in Sibling Species of the Drosophila virilis Group. INSECTS 2023; 14:609. [PMID: 37504615 PMCID: PMC10380318 DOI: 10.3390/insects14070609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Prezygotic isolation mechanisms, particularly courtship behavior, play a significant role in the formation of reproductive barriers. The action of these mechanisms leads to the coexistence of numerous closely related insect species with specific adaptations in a shared or adjacent territory. The genetic basis of these mechanisms has been studied using closely related Drosophila species, such as the D. virilis group. However, the investigation of individual courtship behavior elements has been limited until recently, and the effect of genotype on the species-specific features of courtship as a whole has not been thoroughly examined. It should be noted that courtship behavior is not a typical quantitative trait that can be easily measured or quantified in both females and males, similar to traits like wing length or bristle number. Each courtship element involves the participation of both female and male partners, making the genetic analysis of this behavior complex. As a result, the traditional approach of genetic analysis for quantitative traits, which involves variance decomposition in a set of crosses, including parental species, F1 and F2 hybrids, and backcrosses of F1 to parental species, is not suitable for analyzing courtship behavior. To address this, we employed a modified design by introducing what we refer to as 'reference partners' during the testing of hybrid individuals from F1, F2, and backcrosses. These reference partners represented one of the parental species. This approach allowed us to categorize all possible test combinations into four groups based on the reference partner's sex (female or male) and their constant genotype towards one of the parental species (D. virilis or D. americana). The genotype of the second partner in the within-group test combinations varied from completely conspecific to completely heterospecific, based on the parental chromosomal sets. To assess the contribution of partner genotypes to the variability of courtship-element parameters, we employed structural equation modeling (SEM) instead of the traditional analysis of variance (ANOVA). SEM enabled us to estimate the regression of the proportion of chromosomes of a specific species type on the value of each courtship-element parameter in partners with varying genotypes across different test combinations. The aim of the current study was to analyze the involvement of sex chromosomes and autosomes in the formation of courtship structure in D. virilis and D. americana. The genetic analysis was complemented by video recording and formalization of courtship-ritual elements. D. virilis was found to be more sensitive to mate stimuli compared to D. americana. The majority of species-specific parameters, such as latency and duration of courtship elements (e.g., male and female song, following, licking, and circling), were shown to be influenced by the D. virilis genotype. However, not all of these parameters significantly impact copulation success, with the male song, licking, and following being the most significant. In females, the female song was found to have a significant relationship only with copulation duration. The influence of the female genotype on the species-specific parameters of courtship elements is primarily related to autosomes, while the male genotype is associated with the X chromosomes. The study suggests that sexual selection primarily occurs through acoustic and chemoreceptor channels.
Collapse
Affiliation(s)
- Elena G Belkina
- Koltzov Institute of Developmental Biology, The Russian Academy of Sciences, 119334 Moscow, Russia
| | - Dmitry G Seleznev
- Papanin Institute for Biology of Inland Waters, The Russian Academy of Sciences, 152742 Rybinsk, Russia
| | - Svetlana Yu Sorokina
- Koltzov Institute of Developmental Biology, The Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alex M Kulikov
- Koltzov Institute of Developmental Biology, The Russian Academy of Sciences, 119334 Moscow, Russia
| | - Oleg E Lazebny
- Koltzov Institute of Developmental Biology, The Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
7
|
Breznak SM, Kotb NM, Rangan P. Dynamic regulation of ribosome levels and translation during development. Semin Cell Dev Biol 2023; 136:27-37. [PMID: 35725716 DOI: 10.1016/j.semcdb.2022.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/20/2022] [Accepted: 06/12/2022] [Indexed: 01/11/2023]
Abstract
The ability of ribosomes to translate mRNAs into proteins is the basis of all life. While ribosomes are essential for cell viability, reduction in levels of ribosomes can affect cell fate and developmental transitions in a tissue specific manner and can cause a plethora of related diseases called ribosomopathies. How dysregulated ribosomes homeostasis influences cell fate and developmental transitions is not fully understood. Model systems such as Drosophila and C. elegans oogenesis have been used to address these questions since defects in conserved steps in ribosome biogenesis result in stem cell differentiation and developmental defects. In this review, we first explore how ribosome levels affect stem cell differentiation. Second, we describe how ribosomal modifications and incorporation of ribosomal protein paralogs contribute to development. Third, we summarize how cells with perturbed ribosome biogenesis are sensed and eliminated during organismal growth.
Collapse
Affiliation(s)
- Shane M Breznak
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, 12222, USA
| | - Noor M Kotb
- Department of Biomedical Sciences, The School of Public Health, University at Albany SUNY, 11 Albany, NY 12222, USA
| | - Prashanth Rangan
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
8
|
Chang CH, Mejia Natividad I, Malik HS. Expansion and loss of sperm nuclear basic protein genes in Drosophila correspond with genetic conflicts between sex chromosomes. eLife 2023; 12:85249. [PMID: 36763410 PMCID: PMC9917458 DOI: 10.7554/elife.85249] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
Many animal species employ sperm nuclear basic proteins (SNBPs) or protamines to package sperm genomes tightly. SNBPs vary across animal lineages and evolve rapidly in mammals. We used a phylogenomic approach to investigate SNBP diversification in Drosophila species. We found that most SNBP genes in Drosophila melanogaster evolve under positive selection except for genes essential for male fertility. Unexpectedly, evolutionarily young SNBP genes are more likely to be critical for fertility than ancient, conserved SNBP genes. For example, CG30056 is dispensable for male fertility despite being one of three SNBP genes universally retained in Drosophila species. We found 19 independent SNBP gene amplification events that occurred preferentially on sex chromosomes. Conversely, the montium group of Drosophila species lost otherwise-conserved SNBP genes, coincident with an X-Y chromosomal fusion. Furthermore, SNBP genes that became linked to sex chromosomes via chromosomal fusions were more likely to degenerate or relocate back to autosomes. We hypothesize that autosomal SNBP genes suppress meiotic drive, whereas sex-chromosomal SNBP expansions lead to meiotic drive. X-Y fusions in the montium group render autosomal SNBPs dispensable by making X-versus-Y meiotic drive obsolete or costly. Thus, genetic conflicts between sex chromosomes may drive SNBP rapid evolution during spermatogenesis in Drosophila species.
Collapse
Affiliation(s)
- Ching-Ho Chang
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States
| | - Isabel Mejia Natividad
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, United States
| |
Collapse
|
9
|
Marco A. The chromosomal distribution of sex-biased microRNAs in Drosophila is non-adaptive. Genome Biol Evol 2022; 14:6637416. [PMID: 35809037 PMCID: PMC9290354 DOI: 10.1093/gbe/evac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2022] [Indexed: 11/24/2022] Open
Abstract
Genes are often differentially expressed between males and females. In Drosophila melanogaster, the analysis of sex-biased microRNAs (short noncoding regulatory molecules) has revealed striking differences with protein-coding genes. Mainly, the X chromosome is enriched in male-biased microRNA genes, although it is depleted of male-biased protein-coding genes. The paucity of male-biased genes in the X chromosome is generally explained by an evolutionary process called demasculinization. I suggest that the excess of male-biased microRNAs in the X chromosome is due to high rates of de novo emergence of microRNAs (mostly in other neighboring microRNAs), a tendency of novel microRNAs in the X chromosome to be expressed in testis, and to a lack of a demasculinization process. To test this hypothesis, I analyzed the expression profile of microRNAs in males, females, and gonads in D. pseudoobscura, in which an autosome translocated into the X chromosome effectively becoming part of a sex chromosome (neo-X). I found that the pattern of sex-biased expression is generally conserved between D. melanogaster and D. pseudoobscura. Also, orthologous microRNAs in both species conserve their chromosomal location, indicating that there is no evidence of demasculinization or other interchromosomal movement of microRNAs. Drosophila pseudoobscura-specific microRNAs in the neo-X chromosome tend to be male-biased and particularly expressed in testis. In summary, the apparent paradox resulting from male-biased protein-coding genes depleted in the X chromosome and an enrichment in male-biased microRNAs is consistent with different evolutionary dynamics between coding genes and short RNAs.
Collapse
Affiliation(s)
- Antonio Marco
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
10
|
Meisel RP, Asgari D, Schlamp F, Unckless RL. Induction and inhibition of Drosophila X chromosome gene expression are both impeded by the dosage compensation complex. G3 (BETHESDA, MD.) 2022; 12:6632659. [PMID: 35792851 PMCID: PMC9434221 DOI: 10.1093/g3journal/jkac165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022]
Abstract
Sex chromosomes frequently differ from the autosomes in the frequencies of genes with sexually dimorphic or tissue-specific expression. Multiple hypotheses have been put forth to explain the unique gene content of the X chromosome, including selection against male-beneficial X-linked alleles, expression limits imposed by the haploid dosage of the X in males, and interference by the dosage compensation complex on expression in males. Here, we investigate these hypotheses by examining differential gene expression in Drosophila melanogaster following several treatments that have widespread transcriptomic effects: bacterial infection, viral infection, and abiotic stress. We found that genes that are induced (upregulated) by these biotic and abiotic treatments are frequently under-represented on the X chromosome, but so are those that are repressed (downregulated) following treatment. We further show that whether a gene is bound by the dosage compensation complex in males can largely explain the paucity of both up- and downregulated genes on the X chromosome. Specifically, genes that are bound by the dosage compensation complex, or close to a dosage compensation complex high-affinity site, are unlikely to be up- or downregulated after treatment. This relationship, however, could partially be explained by a correlation between differential expression and breadth of expression across tissues. Nonetheless, our results suggest that dosage compensation complex binding, or the associated chromatin modifications, inhibit both up- and downregulation of X chromosome gene expression within specific contexts, including tissue-specific expression. We propose multiple possible mechanisms of action for the effect, including a role of Males absent on the first, a component of the dosage compensation complex, as a dampener of gene expression variance in both males and females. This effect could explain why the Drosophila X chromosome is depauperate in genes with tissue-specific or induced expression, while the mammalian X has an excess of genes with tissue-specific expression.
Collapse
Affiliation(s)
- Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, 3455 Cullen Blvd, Houston, TX 77204-5001, USA
| | - Danial Asgari
- Department of Biology and Biochemistry, University of Houston, 3455 Cullen Blvd, Houston, TX 77204-5001, USA
| | - Florencia Schlamp
- Department of Medicine, NYU Grossman School of Medicine, 435 E 30th St, New York, NY 10016, USA
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, 4055 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| |
Collapse
|
11
|
Evolution of sexual systems, sex chromosomes and sex-linked gene transcription in flatworms and roundworms. Nat Commun 2022; 13:3239. [PMID: 35688815 PMCID: PMC9187692 DOI: 10.1038/s41467-022-30578-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
Many species with separate male and female individuals (termed ‘gonochorism’ in animals) have sex-linked genome regions. Here, we investigate evolutionary changes when genome regions become completely sex-linked, by analyses of multiple species of flatworms (Platyhelminthes; among which schistosomes recently evolved gonochorism from ancestral hermaphroditism), and roundworms (Nematoda) which have undergone independent translocations of different autosomes. Although neither the evolution of gonochorism nor translocations fusing ancestrally autosomal regions to sex chromosomes causes inevitable loss of recombination, we document that formerly recombining regions show genomic signatures of recombination suppression in both taxa, and become strongly genetically degenerated, with a loss of most genes. Comparisons with hermaphroditic flatworm transcriptomes show masculinisation and some defeminisation in schistosome gonad gene expression. We also find evidence that evolution of sex-linkage in nematodes is accompanied by transcriptional changes and dosage compensation. Our analyses also identify sex-linked genes that could assist future research aimed at controlling some of these important parasites. Transitions between hermaphroditic and separate sexes are relatively understudied in animals compared to pants. Here, Wang et al. reconstruct the evolution of separate sexes in the flatworms and complex changes of sex chromosomes in the roundworms.
Collapse
|
12
|
The mysterious sex chromosomes of haploid plants. Heredity (Edinb) 2022; 129:17-21. [PMID: 35393551 PMCID: PMC9273592 DOI: 10.1038/s41437-022-00524-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 11/09/2022] Open
|
13
|
Cridland JM, Majane AC, Zhao L, Begun DJ. Population biology of accessory gland-expressed de novo genes in Drosophila melanogaster. Genetics 2022; 220:iyab207. [PMID: 34791207 PMCID: PMC8733444 DOI: 10.1093/genetics/iyab207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Early work on de novo gene discovery in Drosophila was consistent with the idea that many such genes have male-biased patterns of expression, including a large number expressed in the testis. However, there has been little formal analysis of variation in the abundance and properties of de novo genes expressed in different tissues. Here, we investigate the population biology of recently evolved de novo genes expressed in the Drosophila melanogaster accessory gland, a somatic male tissue that plays an important role in male and female fertility and the post mating response of females, using the same collection of inbred lines used previously to identify testis-expressed de novo genes, thus allowing for direct cross tissue comparisons of these genes in two tissues of male reproduction. Using RNA-seq data, we identify candidate de novo genes located in annotated intergenic and intronic sequence and determine the properties of these genes including chromosomal location, expression, abundance, and coding capacity. Generally, we find major differences between the tissues in terms of gene abundance and expression, though other properties such as transcript length and chromosomal distribution are more similar. We also explore differences between regulatory mechanisms of de novo genes in the two tissues and how such differences may interact with selection to produce differences in D. melanogaster de novo genes expressed in the two tissues.
Collapse
Affiliation(s)
- Julie M Cridland
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Alex C Majane
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
14
|
Ricchio J, Uno F, Carvalho AB. New Genes in the Drosophila Y Chromosome: Lessons from D. willistoni. Genes (Basel) 2021; 12:genes12111815. [PMID: 34828421 PMCID: PMC8623413 DOI: 10.3390/genes12111815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 01/05/2023] Open
Abstract
Y chromosomes play important roles in sex determination and male fertility. In several groups (e.g., mammals) there is strong evidence that they evolved through gene loss from a common X-Y ancestor, but in Drosophila the acquisition of new genes plays a major role. This conclusion came mostly from studies in two species. Here we report the identification of the 22 Y-linked genes in D. willistoni. They all fit the previously observed pattern of autosomal or X-linked testis-specific genes that duplicated to the Y. The ratio of gene gains to gene losses is ~25 in D. willistoni, confirming the prominent role of gene gains in the evolution of Drosophila Y chromosomes. We also found four large segmental duplications (ranging from 62 kb to 303 kb) from autosomal regions to the Y, containing ~58 genes. All but four of these duplicated genes became pseudogenes in the Y or disappeared. In the GK20609 gene the Y-linked copy remained functional, whereas its original autosomal copy degenerated, demonstrating how autosomal genes are transferred to the Y chromosome. Since the segmental duplication that carried GK20609 contained six other testis-specific genes, it seems that chance plays a significant role in the acquisition of new genes by the Drosophila Y chromosome.
Collapse
|
15
|
Su Q, He H, Zhou Q. On the Origin and Evolution of Drosophila New Genes during Spermatogenesis. Genes (Basel) 2021; 12:1796. [PMID: 34828402 PMCID: PMC8621406 DOI: 10.3390/genes12111796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 01/16/2023] Open
Abstract
The origin of functional new genes is a basic biological process that has significant contribution to organismal diversity. Previous studies in both Drosophila and mammals showed that new genes tend to be expressed in testes and avoid the X chromosome, presumably because of meiotic sex chromosome inactivation (MSCI). Here, we analyze the published single-cell transcriptome data of Drosophila adult testis and find an enrichment of male germline mitotic genes, but an underrepresentation of meiotic genes on the X chromosome. This can be attributed to an excess of autosomal meiotic genes that were derived from their X-linked mitotic progenitors, which provides direct cell-level evidence for MSCI in Drosophila. We reveal that new genes, particularly those produced by retrotransposition, tend to exhibit an expression shift toward late spermatogenesis compared with their parental copies, probably due to the more intensive sperm competition or sexual conflict. Our results dissect the complex factors including age, the origination mechanisms and the chromosomal locations that influence the new gene origination and evolution in testes, and identify new gene cases that show divergent cell-level expression patterns from their progenitors for future functional studies.
Collapse
Affiliation(s)
- Qianwei Su
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; (Q.S.); (H.H.)
| | - Huangyi He
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; (Q.S.); (H.H.)
| | - Qi Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; (Q.S.); (H.H.)
- Department of Neuroscience and Developmental Biology, University of Vienna, 1030 Vienna, Austria
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
| |
Collapse
|
16
|
Bracewell R, Bachtrog D. Complex Evolutionary History of the Y Chromosome in Flies of the Drosophila obscura Species Group. Genome Biol Evol 2021; 12:494-505. [PMID: 32176296 PMCID: PMC7199386 DOI: 10.1093/gbe/evaa051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2020] [Indexed: 12/23/2022] Open
Abstract
The Drosophila obscura species group shows dramatic variation in karyotype, including transitions among sex chromosomes. Members of the affinis and pseudoobscura subgroups contain a neo-X chromosome (a fusion of the X with an autosome), and ancestral Y genes have become autosomal in species harboring the neo-X. Detailed analysis of species in the pseudoobscura subgroup revealed that ancestral Y genes became autosomal through a translocation to the small dot chromosome. Here, we show that the Y-dot translocation is restricted to the pseudoobscura subgroup, and translocation of ancestral Y genes in the affinis subgroup likely followed a different route. We find that most ancestral Y genes have translocated to unique autosomal or X-linked locations in different taxa of the affinis subgroup, and we propose a dynamic model of sex chromosome formation and turnover in the obscura species group. Our results suggest that Y genes can find unique paths to escape unfavorable genomic environments that form after sex chromosome–autosome fusions.
Collapse
Affiliation(s)
- Ryan Bracewell
- Department of Integrative Biology, University of California, Berkeley
| | - Doris Bachtrog
- Department of Integrative Biology, University of California, Berkeley
| |
Collapse
|
17
|
Wang Z, Zhang J, Xu X, Witt C, Deng Y, Chen G, Meng G, Feng S, Xu L, Szekely T, Zhang G, Zhou Q. Phylogeny and sex chromosome evolution of palaeognathae. J Genet Genomics 2021; 49:109-119. [PMID: 34872841 DOI: 10.1016/j.jgg.2021.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022]
Abstract
Many paleognaths (ratites and tinamous) have a pair of homomorphic ZW sex chromosomes in contrast to the highly differentiated sex chromosomes of most other birds. To understand the evolutionary causes for the different tempos of sex chromosome evolution, we produced female genomes of 12 paleognathous species and reconstructed the phylogeny and the evolutionary history of paleognathous sex chromosomes. We uncovered that Palaeognathae sex chromosomes had undergone stepwise recombination suppression and formed a pattern of "evolutionary strata". Nine of the 15 studied species' sex chromosomes have maintained homologous recombination in their long pseudoautosomal regions extending more than half of the entire chromosome length. We found that in older strata, the W chromosome suffered more serious functional gene loss. Their homologous Z-linked regions, compared with other genomic regions, have produced an excess of species-specific autosomal duplicated genes that evolved female-specific expression, in contrast to their broadly expressed progenitors. We speculate the "defeminization" of Z chromosome with underrepresentation of female-biased genes and slow divergence of sex chromosomes of paleognaths might be related to their distinctive mode of sexual selection targeting females that evolved in their common ancestors.
Collapse
Affiliation(s)
- Zongji Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria; Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Jilin Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Xiaoman Xu
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Christopher Witt
- Department of Biology and the Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yuan Deng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Guangji Chen
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Guanliang Meng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Shaohong Feng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Luohao Xu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria
| | - Tamas Szekely
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Milner Center for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA1 7AY, UK
| | - Guojie Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria; Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.
| |
Collapse
|
18
|
Mahadevaraju S, Fear JM, Akeju M, Galletta BJ, Pinheiro MMLS, Avelino CC, Cabral-de-Mello DC, Conlon K, Dell'Orso S, Demere Z, Mansuria K, Mendonça CA, Palacios-Gimenez OM, Ross E, Savery M, Yu K, Smith HE, Sartorelli V, Yang H, Rusan NM, Vibranovski MD, Matunis E, Oliver B. Dynamic sex chromosome expression in Drosophila male germ cells. Nat Commun 2021; 12:892. [PMID: 33563972 PMCID: PMC7873209 DOI: 10.1038/s41467-021-20897-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023] Open
Abstract
Given their copy number differences and unique modes of inheritance, the evolved gene content and expression of sex chromosomes is unusual. In many organisms the X and Y chromosomes are inactivated in spermatocytes, possibly as a defense mechanism against insertions into unpaired chromatin. In addition to current sex chromosomes, Drosophila has a small gene-poor X-chromosome relic (4th) that re-acquired autosomal status. Here we use single cell RNA-Seq on fly larvae to demonstrate that the single X and pair of 4th chromosomes are specifically inactivated in primary spermatocytes, based on measuring all genes or a set of broadly expressed genes in testis we identified. In contrast, genes on the single Y chromosome become maximally active in primary spermatocytes. Reduced X transcript levels are due to failed activation of RNA-Polymerase-II by phosphorylation of Serine 2 and 5.
Collapse
Affiliation(s)
- Sharvani Mahadevaraju
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Justin M Fear
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Miriam Akeju
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Brian J Galletta
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mara M L S Pinheiro
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP 05508-090, São Paulo, Brazil
| | - Camila C Avelino
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP 05508-090, São Paulo, Brazil
| | - Diogo C Cabral-de-Mello
- Instituto de Biociências/IB, Departamento de Biologia Geral e Aplicada, UNESP-Universidade Estadual Paulista, Rio Claro, São Paulo, 13506-900, Brazil
| | - Katie Conlon
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Stafania Dell'Orso
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zelalem Demere
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Kush Mansuria
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Carolina A Mendonça
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP 05508-090, São Paulo, Brazil
| | - Octavio M Palacios-Gimenez
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP 05508-090, São Paulo, Brazil
- Department of Evolutionary Biology and Department of Organismal Biology, Systematic Biology, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden
| | - Eli Ross
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Max Savery
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kevin Yu
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Harold E Smith
- Genomics Core, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Haiwang Yang
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria D Vibranovski
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP 05508-090, São Paulo, Brazil
| | - Erika Matunis
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Brian Oliver
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Chen XI, Mei Y, Chen M, Jing D, He Y, Liu F, He K, Li F. InSexBase: an annotated genomic resource of sex chromosomes and sex-biased genes in insects. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6122465. [PMID: 33507270 PMCID: PMC7904046 DOI: 10.1093/database/baab001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022]
Abstract
Sex determination and the regulation of sexual dimorphism are among the most fascinating topics in modern biology. As the most species-rich group of sexually reproducing organisms on Earth, insects have multiple sex determination systems. Though sex chromosomes and sex-biased genes are well-studied in dozens of insects, their gene sequences are scattered in various databases. Moreover, a shortage of annotation hinders the deep mining of these data. Here, we collected the chromosome-level sex chromosome data of 49 insect species, including 34 X chromosomes, 15 Z chromosomes, 5 W chromosomes and 2 Y chromosomes. We also obtained Y-linked contigs of four insects species—Anopheles gambiae, Drosophila innubila, Drosophila yakuba and Tribolium castaneum. The unannotated chromosome-level sex chromosomes were annotated using a standard pipeline, yielding a total of 123 030 protein-coding genes, 2 159 427 repeat sequences, 894 miRNAs, 1574 rRNAs, 5105 tRNAs, 395 snoRNAs (small nucleolar RNA), 54 snRNAs (small nuclear RNA) and 5959 other ncRNAs (non-coding RNA). In addition, 36 781 sex-biased genes were identified by analyzing 62 RNA-seq (RNA sequencing) datasets. Together with 5707 sex-biased genes from the Drosophila genus collected from the Sex-Associated Gene Database, we obtained a total of 42 488 sex-biased genes from 13 insect species. All these data were deposited into InSexBase, a new user-friendly database of insect sex chromosomes and sex-biased genes. Database URL:http://www.insect-genome.com/Sexdb/.
Collapse
Affiliation(s)
- X I Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Yang Mei
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Mengyao Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Dong Jing
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Yumin He
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Feiling Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Kang He
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Fei Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| |
Collapse
|
20
|
Kulikov AM, Sorokina SY, Melnikov AI, Gornostaev NG, Seleznev DG, Lazebny OE. The effects of the sex chromosomes on the inheritance of species-specific traits of the copulatory organ shape in Drosophila virilis and Drosophila lummei. PLoS One 2020; 15:e0244339. [PMID: 33373382 PMCID: PMC7771703 DOI: 10.1371/journal.pone.0244339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022] Open
Abstract
The shape of the male genitalia in many taxa is the most rapidly evolving morphological structure, often driving reproductive isolation, and is therefore widely used in systematics as a key character to distinguish between sibling species. However, only a few studies have used the genital arch of the male copulatory organ as a model to study the genetic basis of species-specific differences in the Drosophila copulatory system. Moreover, almost nothing is known about the effects of the sex chromosomes on the shape of the male mating organ. In our study, we used a set of crosses between D. virilis and D. lummei and applied the methods of quantitative genetics to assess the variability of the shape of the male copulatory organ and the effects of the sex chromosomes and autosomes on its variance. Our results showed that the male genital shape depends on the species composition of the sex chromosomes and autosomes. Epistatic interactions of the sex chromosomes with autosomes and the species origin of the Y-chromosome in a male in interspecific crosses also influenced the expression of species-specific traits in the shape of the male copulatory system. Overall, the effects of sex chromosomes were comparable to the effects of autosomes despite the great differences in gene numbers between them. It may be reasonably considered that sexual selection for specific genes associated with the shape of the male mating organ prevents the demasculinization of the X chromosome.
Collapse
Affiliation(s)
- Alex M. Kulikov
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Svetlana Yu. Sorokina
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Anton I. Melnikov
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Nick G. Gornostaev
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitriy G. Seleznev
- Department of Ecology of Aquatic Invertebrates, Papanin Institute for Biology of Inland Waters of the Russian Academy of Sciences, Borok village, Yaroslavl Region, Russia
| | - Oleg E. Lazebny
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| |
Collapse
|
21
|
The Female-Specific W Chromosomes of Birds Have Conserved Gene Contents but Are Not Feminized. Genes (Basel) 2020; 11:genes11101126. [PMID: 32992746 PMCID: PMC7599627 DOI: 10.3390/genes11101126] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/19/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Sex chromosomes are unique genomic regions with sex-specific or sex-biased inherent patterns and are expected to be more frequently subject to sex-specific selection. Substantial knowledge on the evolutionary patterns of sex-linked genes have been gained from the studies on the male heterogametic systems (XY male, XX female), but the understanding of the role of sex-specific selection in the evolution of female-heterogametic sex chromosomes (ZW female, ZZ male) is limited. Here we collect the W-linked genes of 27 birds, covering the three major avian clades: Neoaves (songbirds), Galloanserae (chicken), and Palaeognathae (ratites and tinamous). We find that the avian W chromosomes exhibit very conserved gene content despite their independent evolution of recombination suppression. The retained W-linked genes have higher dosage-sensitive and higher expression level than the lost genes, suggesting the role of purifying selection in their retention. Moreover, they are not enriched in ancestrally female-biased genes, and have not acquired new ovary-biased expression patterns after becoming W-linked. They are broadly expressed across female tissues, and the expression profile of the W-linked genes in females is not deviated from that of the homologous Z-linked genes. Together, our new analyses suggest that female-specific positive selection on the avian W chromosomes is limited, and the gene content of the W chromosomes is mainly shaped by purifying selection.
Collapse
|
22
|
Abstract
Sex chromosomes and sex determining genes can evolve fast, with the sex-linked chromosomes often differing between closely related species. Population genetics theory has been developed and tested to explain the rapid evolution of sex chromosomes and sex determination. However, we do not know why the sex chromosomes are divergent in some taxa and conserved in others. Addressing this question requires comparing closely related taxa with conserved and divergent sex chromosomes to identify biological features that could explain these differences. Cytological karyotypes suggest that muscid flies (e.g., house fly) and blow flies are such a taxonomic pair. The sex chromosomes appear to differ across muscid species, whereas they are conserved across blow flies. Despite the cytological evidence, we do not know the extent to which muscid sex chromosomes are independently derived along different evolutionary lineages. To address that question, we used genomic and transcriptomic sequence data to identify young sex chromosomes in two closely related muscid species, horn fly (Haematobia irritans) and stable fly (Stomoxys calcitrans). We provide evidence that the nascent sex chromosomes of horn fly and stable fly were derived independently from each other and from the young sex chromosomes of the closely related house fly (Musca domestica). We present three different scenarios that could have given rise to the sex chromosomes of horn fly and stable fly, and we describe how the scenarios could be distinguished. Distinguishing between these scenarios in future work could identify features of muscid genomes that promote sex chromosome divergence.
Collapse
|
23
|
Abbott JK, Chippindale AK, Morrow EH. The microevolutionary response to male-limited X-chromosome evolution in Drosophila melanogaster reflects macroevolutionary patterns. J Evol Biol 2020; 33:738-750. [PMID: 32176391 DOI: 10.1111/jeb.13618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/23/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022]
Abstract
Due to its hemizygous inheritance and role in sex determination, the X-chromosome is expected to play an important role in the evolution of sexual dimorphism and to be enriched for sexually antagonistic genetic variation. By forcing the X-chromosome to only be expressed in males over >40 generations, we changed the selection pressures on the X to become similar to those experienced by the Y. This releases the X from any constraints arising from selection in females and should lead to specialization for male fitness, which could occur either via direct effects of X-linked loci or trans-regulation of autosomal loci by the X. We found evidence of masculinization via up-regulation of male-benefit sexually antagonistic genes and down-regulation of X-linked female-benefit genes. Potential artefacts of the experimental evolution protocol are discussed and cannot be wholly discounted, leading to several caveats. Interestingly, we could detect evidence of microevolutionary changes consistent with previously documented macroevolutionary patterns, such as changes in expression consistent with previously established patterns of sexual dimorphism, an increase in the expression of metabolic genes related to mito-nuclear conflict and evidence that dosage compensation effects can be rapidly altered. These results confirm the importance of the X in the evolution of sexual dimorphism and as a source for sexually antagonistic genetic variation and demonstrate that experimental evolution can be a fruitful method for testing theories of sex chromosome evolution.
Collapse
Affiliation(s)
- Jessica K Abbott
- Section for Evolutionary Ecology, Department of Biology, Lund University, Lund, Sweden
| | | | - Edward H Morrow
- Department of Environmental and Life Sciences, Karlstad University, Karlstad, Sweden
| |
Collapse
|
24
|
Fan X, Han W, Teng L, Jiang P, Zhang X, Xu D, Li C, Pellegrini M, Wu C, Wang Y, Kaczurowski MJS, Lin X, Tirichine L, Mock T, Ye N. Single-base methylome profiling of the giant kelp Saccharina japonica reveals significant differences in DNA methylation to microalgae and plants. THE NEW PHYTOLOGIST 2020; 225:234-249. [PMID: 31419316 PMCID: PMC6916402 DOI: 10.1111/nph.16125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 08/06/2019] [Indexed: 05/28/2023]
Abstract
Brown algae have convergently evolved plant-like body plans and reproductive cycles, which in plants are controlled by differential DNA methylation. This contribution provides the first single-base methylome profiles of haploid gametophytes and diploid sporophytes of a multicellular alga. Although only c. 1.4% of cytosines in Saccharina japonica were methylated mainly at CHH sites and characterized by 5-methylcytosine (5mC), there were significant differences between life-cycle stages. DNA methyltransferase 2 (DNMT2), known to efficiently catalyze tRNA methylation, is assumed to methylate the genome of S. japonica in the structural context of tRNAs as the genome does not encode any other DNA methyltransferases. Circular and long noncoding RNA genes were the most strongly methylated regulatory elements in S. japonica. Differential expression of genes was negatively correlated with DNA methylation with the highest methylation levels measured in both haploid gametophytes. Hypomethylated and highly expressed genes in diploid sporophytes included genes involved in morphogenesis and halogen metabolism. The data herein provide evidence that cytosine methylation, although occurring at a low level, is significantly contributing to the formation of different life-cycle stages, tissue differentiation and metabolism in brown algae.
Collapse
Affiliation(s)
- Xiao Fan
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
- Function Laboratory for Marine Fisheries Science and Food Production ProcessesQingdaoChina
- Key Laboratory of Exploration and Utilization of Aquatic Genetic ResourcesMinistry of EducationShanghai Ocean UniversityShanghai201306China
| | - Wentao Han
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
| | - Linhong Teng
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
- College of Life ScienceDezhou UniversityDezhou253023China
- Shandong Key Laboratory of BiophysicsDezhou UniversityDezhou253023China
| | - Peng Jiang
- Institute of OceanologyChinese Academy of SciencesQingdao266071China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
| | - Dong Xu
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
| | - Chang Li
- University of Chinese Academy of SciencesShenzhenChina
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental BiologyInstitute for Genomics and ProteomicsUniversity of CaliforniaLos AngelesCA90095USA
| | - Chunhui Wu
- Institute of OceanologyChinese Academy of SciencesQingdao266071China
| | - Yitao Wang
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
| | | | - Xin Lin
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean & Earth SciencesXiamen UniversityXiamenChina
| | - Leila Tirichine
- CNRS UMR 6286Faculté des Sciences et des TechniquesUniversité de Nantes2 rue de la Houssinière44322NantesFrance
| | - Thomas Mock
- School of Environmental SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Naihao Ye
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
- Function Laboratory for Marine Fisheries Science and Food Production ProcessesQingdaoChina
| |
Collapse
|
25
|
Massive gene amplification on a recently formed Drosophila Y chromosome. Nat Ecol Evol 2019; 3:1587-1597. [PMID: 31666742 PMCID: PMC7217032 DOI: 10.1038/s41559-019-1009-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022]
Abstract
Widespread loss of genes on the Y is considered a hallmark of sex chromosome differentiation. Here we show that the initial stages of Y evolution are driven by massive amplification of distinct classes of genes. The neo-Y chromosome of Drosophila miranda initially contained about 3000 protein-coding genes, but has gained over 3200 genes since its formation about 1.5 MY ago, primarily by tandem amplification of protein-coding genes ancestrally present on this chromosome. We show that distinct evolutionary processes may account for this drastic increase in gene number on the Y. Testis-specific and dosage sensitive genes appear to have amplified on the Y to increase male fitness. A distinct class of meiosis-related multi-copy Y genes independently co-amplified on the X, and their expansion is likely driven by conflicts over segregation. Co-amplified X/Y genes are highly expressed in testis, enriched for meiosis and RNAi functions, and are frequently targeted by small RNAs in testis. This suggests that their amplification is driven by X vs. Y antagonism for increased transmission, where sex chromosome drive suppression is likely mediated by sequence homology between the suppressor and distorter, through RNAi mechanism. Thus, our analysis suggests that newly emerged sex chromosomes are a battleground for sexual and meiotic conflict.
Collapse
|
26
|
Ellison C, Bachtrog D. Recurrent gene co-amplification on Drosophila X and Y chromosomes. PLoS Genet 2019; 15:e1008251. [PMID: 31329593 PMCID: PMC6690552 DOI: 10.1371/journal.pgen.1008251] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/12/2019] [Accepted: 06/18/2019] [Indexed: 12/19/2022] Open
Abstract
Y chromosomes often contain amplified genes which can increase dosage of male fertility genes and counteract degeneration via gene conversion. Here we identify genes with increased copy number on both X and Y chromosomes in various species of Drosophila, a pattern that has previously been associated with sex chromosome drive involving the Slx and Sly gene families in mice. We show that recurrent X/Y co-amplification appears to be an important evolutionary force that has shaped gene content evolution of sex chromosomes in Drosophila. We demonstrate that convergent acquisition and amplification of testis expressed gene families are common on Drosophila sex chromosomes, and especially on recently formed ones, and we carefully characterize one putative novel X/Y co-amplification system. We find that co-amplification of the S-Lap1/GAPsec gene pair on both the X and the Y chromosome occurred independently several times in members of the D. obscura group, where this normally autosomal gene pair is sex-linked due to a sex chromosome-autosome fusion. We explore several evolutionary scenarios that would explain this pattern of co-amplification. Investigation of gene expression and short RNA profiles at the S-Lap1/GAPsec system suggest that, like Slx/Sly in mice, these genes may be remnants of a cryptic sex chromosome drive system, however additional transgenic experiments will be necessary to validate this model. Regardless of whether sex chromosome drive is responsible for this co-amplification, our findings suggest that recurrent gene duplications between X and Y sex chromosomes could have a widespread effect on genomic and evolutionary patterns, including the epigenetic regulation of sex chromosomes, the distribution of sex-biased genes, and the evolution of hybrid sterility.
Collapse
Affiliation(s)
- Christopher Ellison
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
27
|
Specific Interactions Between Autosome and X Chromosomes Cause Hybrid Male Sterility in Caenorhabditis Species. Genetics 2019; 212:801-813. [PMID: 31064822 DOI: 10.1534/genetics.119.302202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/03/2019] [Indexed: 11/18/2022] Open
Abstract
Hybrid male progeny from interspecies crosses are more prone to sterility or inviability than hybrid female progeny, and the male sterility and inviability often demonstrate parent-of-origin asymmetry. However, the underlying genetic mechanism of asymmetric sterility or inviability remains elusive. We previously established a genome-wide hybrid incompatibility (HI) landscape between Caenorhabditis briggsae and C. nigoni by phenotyping a large collection of C. nigoni strains each carrying a C. briggsae introgression. In this study, we systematically dissect the genetic mechanism of asymmetric sterility and inviability in both hybrid male and female progeny between the two species. Specifically, we performed reciprocal crosses between C . briggsae and different C. nigoni strains that each carry a GFP-labeled C. briggsae genomic fragment referred to as introgression, and scored the HI phenotypes in the F1 progeny. The aggregated introgressions cover 94.6% of the C. briggsae genome, including 100% of the X chromosome. Surprisingly, we observed that two C. briggsae X fragments that produce C. nigoni male sterility as an introgression rescued hybrid F1 sterility in males fathered by C. briggsae Subsequent backcrossing analyses indicated that a specific interaction between the X-linked interaction and one autosome introgression is required to rescue the hybrid male sterility. In addition, we identified another two C. briggsae genomic intervals on chromosomes II and IV that can rescue the inviability, but not the sterility, of hybrid F1 males fathered by C. nigoni, suggesting the involvement of differential epistatic interactions in the asymmetric hybrid male fertility and inviability. Importantly, backcrossing of the rescued sterile males with C. nigoni led to the isolation of a 1.1-Mb genomic interval that specifically interacts with an X-linked introgression, which is essential for hybrid male fertility. We further identified three C. briggsae genomic intervals on chromosome I, II, and III that produced inviability in all F1 progeny, dependent on or independent of the parent-of-origin. Taken together, we identified multiple independent interacting loci that are responsible for asymmetric hybrid male and female sterility, and inviability, which lays a foundation for their molecular characterization.
Collapse
|
28
|
Ågren JA, Munasinghe M, Clark AG. Sexual conflict through mother's curse and father's curse. Theor Popul Biol 2019; 129:9-17. [PMID: 31054851 DOI: 10.1016/j.tpb.2018.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/15/2018] [Accepted: 12/27/2018] [Indexed: 12/31/2022]
Abstract
In contrast with autosomes, lineages of sex chromosomes reside for different amounts of time in males and females, and this transmission asymmetry makes them hotspots for sexual conflict. Similarly, the maternal inheritance of the mitochondrial genome (mtDNA) means that mutations that are beneficial in females can spread in a population even if they are deleterious in males, a form of sexual conflict known as Mother's Curse. While both Mother's Curse and sex chromosome induced sexual conflict have been well studied on their own, the interaction between mitochondrial genes and genes on sex chromosomes is poorly understood. Here, we use analytical models and computer simulations to perform a comprehensive examination of how transmission asymmetries of nuclear, mitochondrial, and sex chromosome-linked genes may both cause and resolve sexual conflicts. For example, the accumulation of male-biased Mother's Curse mtDNA mutations will lead to selection in males for compensatory nuclear modifier loci that alleviate the effect. We show how the Y chromosome, being strictly paternally transmitted provides a particularly safe harbor for such modifiers. This analytical framework also allows us to discover a novel kind of sexual conflict, by which Y chromosome-autosome epistasis may result in the spread of male beneficial but female deleterious mutations in a population. We christen this phenomenon Father's Curse. Extending this analytical framework to ZW sex chromosome systems, where males are the heterogametic sex, we also show how W-autosome epistasis can lead to a novel kind of nuclear Mother's Curse. Overall, this study provides a comprehensive framework to understand how genetic transmission asymmetries may both cause and resolve sexual conflicts.
Collapse
Affiliation(s)
- J Arvid Ågren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14583, USA
| | - Manisha Munasinghe
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14583, USA; Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
29
|
Cally JG, Stuart-Fox D, Holman L. Meta-analytic evidence that sexual selection improves population fitness. Nat Commun 2019; 10:2017. [PMID: 31043615 PMCID: PMC6494874 DOI: 10.1038/s41467-019-10074-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/16/2019] [Indexed: 01/12/2023] Open
Abstract
Sexual selection has manifold ecological and evolutionary consequences, making its net effect on population fitness difficult to predict. A powerful empirical test is to experimentally manipulate sexual selection and then determine how population fitness evolves. Here, we synthesise 459 effect sizes from 65 experimental evolution studies using meta-analysis. We find that sexual selection on males tends to elevate the mean and reduce the variance for many fitness traits, especially in females and in populations evolving under stressful conditions. Sexual selection had weaker effects on direct measures of population fitness such as extinction rate and proportion of viable offspring, relative to traits that are less closely linked to population fitness. Overall, we conclude that the beneficial population-level consequences of sexual selection typically outweigh the harmful ones and that the effects of sexual selection can differ between sexes and environments. We discuss the implications of these results for conservation and evolutionary biology. Sexual selection has the potential to either increase or decrease absolute fitness. Here, Cally et al. perform a meta-analysis of 65 experimental evolution studies and find that sexual selection on males tends to increase fitness, especially in females evolving under stressful conditions.
Collapse
Affiliation(s)
- Justin G Cally
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Luke Holman
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
30
|
Ellison C, Bachtrog D. Contingency in the convergent evolution of a regulatory network: Dosage compensation in Drosophila. PLoS Biol 2019; 17:e3000094. [PMID: 30742611 PMCID: PMC6417741 DOI: 10.1371/journal.pbio.3000094] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/14/2019] [Accepted: 01/18/2019] [Indexed: 11/18/2022] Open
Abstract
The repeatability or predictability of evolution is a central question in evolutionary biology and most often addressed in experimental evolution studies. Here, we infer how genetically heterogeneous natural systems acquire the same molecular changes to address how genomic background affects adaptation in natural populations. In particular, we take advantage of independently formed neo-sex chromosomes in Drosophila species that have evolved dosage compensation by co-opting the dosage-compensation male-specific lethal (MSL) complex to study the mutational paths that have led to the acquisition of hundreds of novel binding sites for the MSL complex in different species. This complex recognizes a conserved 21-bp GA-rich sequence motif that is enriched on the X chromosome, and newly formed X chromosomes recruit the MSL complex by de novo acquisition of this binding motif. We identify recently formed sex chromosomes in the D. melanica and D. robusta species groups by genome sequencing and generate genomic occupancy maps of the MSL complex to infer the location of novel binding sites. We find that diverse mutational paths were utilized in each species to evolve hundreds of de novo binding motifs along the neo-X, including expansions of microsatellites and transposable element (TE) insertions. However, the propensity to utilize a particular mutational path differs between independently formed X chromosomes and appears to be contingent on genomic properties of that species, such as simple repeat or TE density. This establishes the "genomic environment" as an important determinant in predicting the outcome of evolutionary adaptations.
Collapse
Affiliation(s)
- Christopher Ellison
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Kim M, Faucillion ML, Larsson J. RNA-on-X 1 and 2 in Drosophila melanogaster fulfill separate functions in dosage compensation. PLoS Genet 2018; 14:e1007842. [PMID: 30532158 PMCID: PMC6301720 DOI: 10.1371/journal.pgen.1007842] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/20/2018] [Accepted: 11/20/2018] [Indexed: 02/03/2023] Open
Abstract
In Drosophila melanogaster, the male-specific lethal (MSL) complex plays a key role in dosage compensation by stimulating expression of male X-chromosome genes. It consists of MSL proteins and two long noncoding RNAs, roX1 and roX2, that are required for spreading of the complex on the chromosome and are redundant in the sense that loss of either does not affect male viability. However, despite rapid evolution, both roX species are present in diverse Drosophilidae species, raising doubts about their full functional redundancy. Thus, we have investigated consequences of deleting roX1 and/or roX2 to probe their specific roles and redundancies in D. melanogaster. We have created a new mutant allele of roX2 and show that roX1 and roX2 have partly separable functions in dosage compensation. In larvae, roX1 is the most abundant variant and the only variant present in the MSL complex when the complex is transmitted (physically associated with the X-chromosome) in mitosis. Loss of roX1 results in reduced expression of the genes on the X-chromosome, while loss of roX2 leads to MSL-independent upregulation of genes with male-biased testis-specific transcription. In roX1 roX2 mutant, gene expression is strongly reduced in a manner that is not related to proximity to high-affinity sites. Our results suggest that high tolerance of mis-expression of the X-chromosome has evolved. We propose that this may be a common property of sex-chromosomes, that dosage compensation is a stochastic process and its precision for each individual gene is regulated by the density of high-affinity sites in the locus.
Collapse
Affiliation(s)
- Maria Kim
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - Jan Larsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
32
|
Lee H, Oliver B. Non-canonical Drosophila X chromosome dosage compensation and repressive topologically associated domains. Epigenetics Chromatin 2018; 11:62. [PMID: 30355339 PMCID: PMC6199721 DOI: 10.1186/s13072-018-0232-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022] Open
Abstract
Background In animals with XY sex chromosomes, X-linked genes from a single X chromosome in males are imbalanced relative to autosomal genes. To minimize the impact of genic imbalance in male Drosophila, there is a dosage compensation complex (MSL) that equilibrates X-linked gene expression with the autosomes. There are other potential contributions to dosage compensation. Hemizygous autosomal genes located in repressive chromatin domains are often derepressed. If this homolog-dependent repression occurs on the X, which has no pairing partner, then derepression could contribute to male dosage compensation. Results We asked whether different chromatin states or topological associations correlate with X chromosome dosage compensation, especially in regions with little MSL occupancy. Our analyses demonstrated that male X chromosome genes that are located in repressive chromatin states are depleted of MSL occupancy; however, they show dosage compensation. The genes in these repressive regions were also less sensitive to knockdown of MSL components. Conclusions Our results suggest that this non-canonical dosage compensation is due to the same transacting derepression that occurs on autosomes. This mechanism would facilitate immediate compensation during the evolution of sex chromosomes from autosomes. This mechanism is similar to that of C. elegans, where enhanced recruitment of X chromosomes to the nuclear lamina dampens X chromosome expression as part of the dosage compensation response in XX individuals. Electronic supplementary material The online version of this article (10.1186/s13072-018-0232-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hangnoh Lee
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD, USA. .,Section on Cell Cycle Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Brian Oliver
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Ma WJ, Veltsos P, Toups MA, Rodrigues N, Sermier R, Jeffries DL, Perrin N. Tissue Specificity and Dynamics of Sex-Biased Gene Expression in a Common Frog Population with Differentiated, Yet Homomorphic, Sex Chromosomes. Genes (Basel) 2018; 9:E294. [PMID: 29895802 PMCID: PMC6027210 DOI: 10.3390/genes9060294] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Sex-biased genes are central to the study of sexual selection, sexual antagonism, and sex chromosome evolution. We describe a comprehensive de novo assembled transcriptome in the common frog Rana temporaria based on five developmental stages and three adult tissues from both sexes, obtained from a population with karyotypically homomorphic but genetically differentiated sex chromosomes. This allows the study of sex-biased gene expression throughout development, and its effect on the rate of gene evolution while accounting for pleiotropic expression, which is known to negatively correlate with the evolutionary rate. Overall, sex-biased genes had little overlap among developmental stages and adult tissues. Late developmental stages and gonad tissues had the highest numbers of stage- or tissue-specific genes. We find that pleiotropic gene expression is a better predictor than sex bias for the evolutionary rate of genes, though it often interacts with sex bias. Although genetically differentiated, the sex chromosomes were not enriched in sex-biased genes, possibly due to a very recent arrest of XY recombination. These results extend our understanding of the developmental dynamics, tissue specificity, and genomic localization of sex-biased genes.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Paris Veltsos
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, IN 47405, USA.
| | - Melissa A Toups
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Nicolas Rodrigues
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Roberto Sermier
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Daniel L Jeffries
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| |
Collapse
|
34
|
A Comparison of Selective Pressures in Plant X-Linked and Autosomal Genes. Genes (Basel) 2018; 9:genes9050234. [PMID: 29751495 PMCID: PMC5977174 DOI: 10.3390/genes9050234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 01/30/2023] Open
Abstract
Selection is expected to work differently in autosomal and X-linked genes because of their ploidy difference and the exposure of recessive X-linked mutations to haploid selection in males. However, it is not clear whether these expectations apply to recently evolved sex chromosomes, where many genes retain functional X- and Y-linked gametologs. We took advantage of the recently evolved sex chromosomes in the plant Silene latifolia and its closely related species to compare the selective pressures between hemizygous and non-hemizygous X-linked genes as well as between X-linked genes and autosomal genes. Our analysis, based on over 1000 genes, demonstrated that, similar to animals, X-linked genes in Silene evolve significantly faster than autosomal genes—the so-called faster-X effect. Contrary to expectations, faster-X divergence was detectable only for non-hemizygous X-linked genes. Our phylogeny-based analyses of selection revealed no evidence for faster adaptation in X-linked genes compared to autosomal genes. On the other hand, partial relaxation of purifying selection was apparent on the X-chromosome compared to the autosomes, consistent with a smaller genetic diversity in S. latifolia X-linked genes (πx = 0.016; πaut = 0.023). Thus, the faster-X divergence in S. latifolia appears to be a consequence of the smaller effective population size rather than of a faster adaptive evolution on the X-chromosome. We argue that this may be a general feature of “young” sex chromosomes, where the majority of X-linked genes are not hemizygous, preventing haploid selection in heterogametic sex.
Collapse
|
35
|
Abstract
Here we describe a collection of re-sequenced inbred lines of Drosophila serrata, sampled from a natural population situated deep within the species endemic distribution in Brisbane, Australia. D. serrata is a member of the speciose montium group whose members inhabit much of south east Asia and has been well studied for aspects of climatic adaptation, sexual selection, sexual dimorphism, and mate recognition. We sequenced 110 lines that were inbred via 17-20 generations of full-sib mating at an average coverage of 23.5x with paired-end Illumina reads. 15,228,692 biallelic SNPs passed quality control after being called using the Joint Genotyper for Inbred Lines (JGIL). Inbreeding was highly effective and the average levels of residual heterozygosity (0.86%) were well below theoretical expectations. As expected, linkage disequilibrium decayed rapidly, with r2 dropping below 0.1 within 100 base pairs. With the exception of four closely related pairs of lines which may have been due to technical errors, there was no statistical support for population substructure. Consistent with other endemic populations of other Drosophila species, preliminary population genetic analyses revealed high nucleotide diversity and, on average, negative Tajima’s D values. A preliminary GWAS was performed on a cuticular hydrocarbon trait, 2-Me-C28 revealing 4 SNPs passing Bonferroni significance residing in or near genes. One gene Cht9 may be involved in the transport of CHCs from the site of production (oenocytes) to the cuticle. Our panel will facilitate broader population genomic and quantitative genetic studies of this species and serve as an important complement to existing D. melanogaster panels that can be used to test for the conservation of genetic architectures across the Drosophila genus.
Collapse
|
36
|
Veltsos P, Fang Y, Cossins AR, Snook RR, Ritchie MG. Mating system manipulation and the evolution of sex-biased gene expression in Drosophila. Nat Commun 2017; 8:2072. [PMID: 29233985 PMCID: PMC5727229 DOI: 10.1038/s41467-017-02232-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/14/2017] [Indexed: 12/15/2022] Open
Abstract
Sex differences in dioecious animals are pervasive and result from gene expression differences. Elevated sexual selection has been predicted to increase the number and expression of male-biased genes, and experimentally imposing monogamy on Drosophila melanogaster has led to a relative feminisation of the transcriptome. Here, we test this hypothesis further by subjecting another polyandrous species, D. pseudoobscura, to 150 generations of experimental monogamy or elevated polyandry. We find that sex-biased genes do change in expression but, contrary to predictions, there is usually masculinisation of the transcriptome under monogamy, although this depends on tissue and sex. We also identify and describe gene expression changes following courtship experience. Courtship often influences gene expression, including patterns in sex-biased gene expression. Our results confirm that mating system manipulation disproportionately influences sex-biased gene expression but show that the direction of change is dynamic and unpredictable.
Collapse
Affiliation(s)
- Paris Veltsos
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, St Andrews, KY16 9TH, UK.,Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Yongxiang Fang
- Centre for Genomic Researc, Institute for Integrative Biology, University of Liverpool, Liverpool, L69 7BX, UK
| | - Andrew R Cossins
- Centre for Genomic Researc, Institute for Integrative Biology, University of Liverpool, Liverpool, L69 7BX, UK
| | - Rhonda R Snook
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK. .,Zoologiska Institutionen (Ekologi), Stockholm University, 106 91, Stockholm, Sweden.
| | - Michael G Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, St Andrews, KY16 9TH, UK.
| |
Collapse
|
37
|
Chatterjee RN. Dosage compensation and its roles in evolution of sex chromosomes and phenotypic dimorphism: lessons from Drosophila, C.elegans and mammals. THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0223-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
38
|
Mahajan S, Bachtrog D. Convergent evolution of Y chromosome gene content in flies. Nat Commun 2017; 8:785. [PMID: 28978907 PMCID: PMC5627270 DOI: 10.1038/s41467-017-00653-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 07/18/2017] [Indexed: 11/25/2022] Open
Abstract
Sex-chromosomes have formed repeatedly across Diptera from ordinary autosomes, and X-chromosomes mostly conserve their ancestral genes. Y-chromosomes are characterized by abundant gene-loss and an accumulation of repetitive DNA, yet the nature of the gene repertoire of fly Y-chromosomes is largely unknown. Here we trace gene-content evolution of Y-chromosomes across 22 Diptera species, using a subtraction pipeline that infers Y genes from male and female genome, and transcriptome data. Few genes remain on old Y-chromosomes, but the number of inferred Y-genes varies substantially between species. Young Y-chromosomes still show clear evidence of their autosomal origins, but most genes on old Y-chromosomes are not simply remnants of genes originally present on the proto-sex-chromosome that escaped degeneration, but instead were recruited secondarily from autosomes. Despite almost no overlap in Y-linked gene content in different species with independently formed sex-chromosomes, we find that Y-linked genes have evolved convergent gene functions associated with testis expression. Thus, male-specific selection appears as a dominant force shaping gene-content evolution of Y-chromosomes across fly species. While X-chromosome gene content tends to be conserved, Y-chromosome evolution is dynamic and difficult to reconstruct. Here, Mahajan and Bachtrog use a subtraction pipeline to identify Y-linked genes in 22 Diptera species, revealing patterns of Y-chromosome gene-content evolution.
Collapse
Affiliation(s)
- Shivani Mahajan
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, 94720, USA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, 94720, USA.
| |
Collapse
|
39
|
Papa F, Windbichler N, Waterhouse RM, Cagnetti A, D'Amato R, Persampieri T, Lawniczak MKN, Nolan T, Papathanos PA. Rapid evolution of female-biased genes among four species of Anopheles malaria mosquitoes. Genome Res 2017; 27:1536-1548. [PMID: 28747381 PMCID: PMC5580713 DOI: 10.1101/gr.217216.116] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/18/2017] [Indexed: 01/09/2023]
Abstract
Understanding how phenotypic differences between males and females arise from the sex-biased expression of nearly identical genomes can reveal important insights into the biology and evolution of a species. Among Anopheles mosquito species, these phenotypic differences include vectorial capacity, as it is only females that blood feed and thus transmit human malaria. Here, we use RNA-seq data from multiple tissues of four vector species spanning the Anopheles phylogeny to explore the genomic and evolutionary properties of sex-biased genes. We find that, in these mosquitoes, in contrast to what has been found in many other organisms, female-biased genes are more rapidly evolving in sequence, expression, and genic turnover than male-biased genes. Our results suggest that this atypical pattern may be due to the combination of sex-specific life history challenges encountered by females, such as blood feeding. Furthermore, female propensity to mate only once in nature in male swarms likely diminishes sexual selection of post-reproductive traits related to sperm competition among males. We also develop a comparative framework to systematically explore tissue- and sex-specific splicing to document its conservation throughout the genus and identify a set of candidate genes for future functional analyses of sex-specific isoform usage. Finally, our data reveal that the deficit of male-biased genes on the X Chromosomes in Anopheles is a conserved feature in this genus and can be directly attributed to chromosome-wide transcriptional regulation that de-masculinizes the X in male reproductive tissues.
Collapse
Affiliation(s)
- Francesco Papa
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Nikolai Windbichler
- Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Robert M Waterhouse
- University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
- Massachusetts Institute of Technology and the Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Alessia Cagnetti
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
- Polo d'Innovazione di Genomica, Genetica e Biologia, 06132 Perugia, Italy
| | - Rocco D'Amato
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Tania Persampieri
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
- Polo d'Innovazione di Genomica, Genetica e Biologia, 06132 Perugia, Italy
| | | | - Tony Nolan
- Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Philippos Aris Papathanos
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
40
|
Meisel RP, Gonzales CA, Luu H. The house fly Y Chromosome is young and minimally differentiated from its ancient X Chromosome partner. Genome Res 2017; 27:1417-1426. [PMID: 28619849 PMCID: PMC5538557 DOI: 10.1101/gr.215509.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 06/08/2017] [Indexed: 12/21/2022]
Abstract
Canonical ancient sex chromosome pairs consist of a gene rich X (or Z) Chromosome and a male-limited (or female-limited) Y (or W) Chromosome that is gene poor. In contrast to highly differentiated sex chromosomes, nascent sex chromosome pairs are homomorphic or very similar in sequence content. Nascent sex chromosomes can arise if an existing sex chromosome fuses to an autosome or an autosome acquires a new sex-determining locus/allele. Sex chromosomes often differ between closely related species and can even be polymorphic within species, suggesting that nascent sex chromosomes arise frequently over the course of evolution. Previously documented sex chromosome transitions involve changes to both members of the sex chromosome pair (X and Y, or Z and W). The house fly has sex chromosomes that resemble the ancestral fly karyotype that originated ∼100 million yr ago; therefore, the house fly is expected to have X and Y Chromosomes with different gene content. We tested this hypothesis using whole-genome sequencing and transcriptomic data, and we discovered little evidence for genetic differentiation between the X and Y in house fly. We propose that the house fly has retained the ancient X Chromosome, but the ancestral Y was replaced by an X Chromosome carrying a new male determining gene. Our proposed hypothesis provides a mechanism for how one member of a sex chromosome pair can experience evolutionary turnover while the other member remains unaffected.
Collapse
Affiliation(s)
- Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Christopher A Gonzales
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Hoang Luu
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
41
|
Lipinska AP, Toda NRT, Heesch S, Peters AF, Cock JM, Coelho SM. Multiple gene movements into and out of haploid sex chromosomes. Genome Biol 2017; 18:104. [PMID: 28595587 PMCID: PMC5463336 DOI: 10.1186/s13059-017-1201-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long-term evolution of sex chromosomes is a dynamic process shaped by gene gain and gene loss. Sex chromosome gene traffic has been studied in XY and ZW systems but no detailed analyses have been carried out for haploid phase UV sex chromosomes. Here, we explore sex-specific sequences of seven brown algal species to understand the dynamics of the sex-determining region (SDR) gene content across 100 million years of evolution. RESULTS A core set of sex-linked genes is conserved across all the species investigated, but we also identify modifications of both the U and the V SDRs that occurred in a lineage-specific fashion. These modifications involve gene loss, gene gain and relocation of genes from the SDR to autosomes. Evolutionary analyses suggest that the SDR genes are evolving rapidly and that this is due to relaxed purifying selection. Expression analysis indicates that genes that were acquired from the autosomes have been retained in the SDR because they confer a sex-specific role in reproduction. By examining retroposed genes in Saccharina japonica, we demonstrate that UV sex chromosomes have generated a disproportionate number of functional orphan retrogenes compared with autosomes. Movement of genes out of the UV sex chromosome could be a means to compensate for gene loss from the non-recombining region, as has been suggested for Y-derived retrogenes in XY sexual systems. CONCLUSION This study provides the first analysis of gene traffic in a haploid UV system and identifies several features of general relevance to the evolution of sex chromosomes.
Collapse
Affiliation(s)
- Agnieszka P Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Nicholas R T Toda
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Svenja Heesch
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | | | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France.
| |
Collapse
|
42
|
Cassone BJ, Kay RGG, Daugherty MP, White BJ. Comparative Transcriptomics of Malaria Mosquito Testes: Function, Evolution, and Linkage. G3 (BETHESDA, MD.) 2017; 7:1127-1136. [PMID: 28159865 PMCID: PMC5386861 DOI: 10.1534/g3.117.040089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/31/2017] [Indexed: 01/05/2023]
Abstract
Testes-biased genes evolve rapidly and are important in the establishment, solidification, and maintenance of reproductive isolation between incipient species. The Anopheles gambiae complex, a group of at least eight isomorphic mosquito species endemic to Sub-Saharan Africa, is an excellent system to explore the evolution of testes-biased genes. Within this group, the testes are an important tissue in the diversification process because hybridization between species results in sterile hybrid males, but fully fertile females. We conducted RNA sequencing of A. gambiae and A. merus carcass and testes to explore tissue- and species-specific patterns of gene expression. Our data provides support for transcriptional repression of X-linked genes in the male germline, which likely drives demasculinization of the X chromosome. Testes-biased genes predominately function in cellular differentiation and show a number of interesting patterns indicative of their rapid evolution, including elevated dN/dS values, low evolutionary conservation, poor annotation in existing reference genomes, and a high likelihood of differential expression between species.
Collapse
Affiliation(s)
- Bryan J Cassone
- Department of Biology, Brandon University, Manitoba R7A 6A9, Canada
| | - Raissa G G Kay
- Department of Entomology, University of California, Riverside, California 92521
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, California 92521
| | - Matthew P Daugherty
- Department of Entomology, University of California, Riverside, California 92521
| | - Bradley J White
- Department of Entomology, University of California, Riverside, California 92521
| |
Collapse
|
43
|
Allen SL, Bonduriansky R, Sgro CM, Chenoweth SF. Sex-biased transcriptome divergence along a latitudinal gradient. Mol Ecol 2017; 26:1256-1272. [PMID: 28100025 DOI: 10.1111/mec.14015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 12/26/2022]
Abstract
Sex-dependent gene expression is likely an important genomic mechanism that allows sex-specific adaptation to environmental changes. Among Drosophila species, sex-biased genes display remarkably consistent evolutionary patterns; male-biased genes evolve faster than unbiased genes in both coding sequence and expression level, suggesting sex differences in selection through time. However, comparatively little is known of the evolutionary process shaping sex-biased expression within species. Latitudinal clines offer an opportunity to examine how changes in key ecological parameters also influence sex-specific selection and the evolution of sex-biased gene expression. We assayed male and female gene expression in Drosophila serrata along a latitudinal gradient in eastern Australia spanning most of its endemic distribution. Analysis of 11 631 genes across eight populations revealed strong sex differences in the frequency, mode and strength of divergence. Divergence was far stronger in males than females and while latitudinal clines were evident in both sexes, male divergence was often population specific, suggesting responses to localized selection pressures that do not covary predictably with latitude. While divergence was enriched for male-biased genes, there was no overrepresentation of X-linked genes in males. By contrast, X-linked divergence was elevated in females, especially for female-biased genes. Many genes that diverged in D. serrata have homologs also showing latitudinal divergence in Drosophila simulans and Drosophila melanogaster on other continents, likely indicating parallel adaptation in these distantly related species. Our results suggest that sex differences in selection play an important role in shaping the evolution of gene expression over macro- and micro-ecological spatial scales.
Collapse
Affiliation(s)
- Scott L Allen
- The School of Biological Sciences, The University of Queensland, St. Lucia, Qld, 4072, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Carla M Sgro
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Stephen F Chenoweth
- The School of Biological Sciences, The University of Queensland, St. Lucia, Qld, 4072, Australia
| |
Collapse
|
44
|
The transcriptional architecture of phenotypic dimorphism. Nat Ecol Evol 2017; 1:6. [PMID: 28812569 DOI: 10.1038/s41559-016-0006] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/06/2016] [Indexed: 12/11/2022]
Abstract
The profound differences in gene expression between the sexes are increasingly used to study the molecular basis of sexual dimorphism, sexual selection and sexual conflict. Studies of transcriptional architecture, based on comparisons of gene expression, have also been implemented for a wide variety of other intra-specific polymorphisms. These efforts are based on key assumptions regarding the relationship between transcriptional architecture, phenotypic variation and the target of selection. Some of these assumptions are better supported by available evidence than others. In all cases, the evidence is largely circumstantial, leaving considerable gaps in our understanding of the relationship between transcriptional and phenotypic dimorphism.
Collapse
|
45
|
Landeen EL, Muirhead CA, Wright L, Meiklejohn CD, Presgraves DC. Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline. PLoS Biol 2016; 14:e1002499. [PMID: 27404402 PMCID: PMC4942098 DOI: 10.1371/journal.pbio.1002499] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022] Open
Abstract
The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower—approximately 3-fold or more—for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution. Expression of sex-linked genes in the Drosophila male germline reflects a balance between an X chromosome-wide transcriptional suppression and long-term, gene-wise evolutionary recruitment of strong, compensatory promoter elements. The evolution of different sex chromosomes (e.g., X and Y) has occurred many times in animals and plants. One consequence of having different chromosome copy numbers between the sexes (XY males and XX females) is the evolution of sex chromosome-specific regulation, both in the soma (i.e., X chromosome dosage compensation) and in the male germline (i.e., meiotic sex chromosome inactivation). Understanding how the X is regulated in the male germline has implications for gene expression, the evolution of sex chromosome-specific gene content, and speciation. Surprisingly, how the X chromosome is regulated in the Drosophila melanogaster male germline remains unclear. We have characterized X suppression, a novel form of X chromosome transcriptional regulation specific to the Drosophila male germline. Our results reveal that transcription of the X is suppressed 2- to 4-fold for endogenous genes. We show that the X chromosome has evolved strong testis-specific promoters via the gene-by-gene recruitment of sequence elements that counteract transcriptional suppression of the X chromosome. These findings reveal a novel form of X chromosome regulation and lead to a new model for the control of gene expression in the Drosophila male germline.
Collapse
Affiliation(s)
- Emily L. Landeen
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail: (ELL); (DCP)
| | - Christina A. Muirhead
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- The Ronin Institute, Montclair, New Jersey, United States of America
| | - Lori Wright
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Colin D. Meiklejohn
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Daven C. Presgraves
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail: (ELL); (DCP)
| |
Collapse
|
46
|
Untangling the Contributions of Sex-Specific Gene Regulation and X-Chromosome Dosage to Sex-Biased Gene Expression in Caenorhabditis elegans. Genetics 2016; 204:355-69. [PMID: 27356611 DOI: 10.1534/genetics.116.190298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/27/2016] [Indexed: 01/31/2023] Open
Abstract
Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal's sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function.
Collapse
|
47
|
Nyberg KG, Machado CA. Comparative Expression Dynamics of Intergenic Long Noncoding RNAs in the Genus Drosophila. Genome Biol Evol 2016; 8:1839-58. [PMID: 27189981 PMCID: PMC4943187 DOI: 10.1093/gbe/evw116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Thousands of long noncoding RNAs (lncRNAs) have been annotated in eukaryotic genomes, but comparative transcriptomic approaches are necessary to understand their biological impact and evolution. To facilitate such comparative studies in Drosophila, we identified and characterized lncRNAs in a second Drosophilid—the evolutionary model Drosophila pseudoobscura. Using RNA-Seq and computational filtering of protein-coding potential, we identified 1,589 intergenic lncRNA loci in D. pseudoobscura. We surveyed multiple sex-specific developmental stages and found, like in Drosophila melanogaster, increasingly prolific lncRNA expression through male development and an overrepresentation of lncRNAs in the testes. Other trends seen in D. melanogaster, like reduced pupal expression, were not observed. Nonrandom distributions of female-biased and non-testis-specific male-biased lncRNAs between the X chromosome and autosomes are consistent with selection-based models of gene trafficking to optimize genomic location of sex-biased genes. The numerous testis-specific lncRNAs, however, are randomly distributed between the X and autosomes, and we cannot reject the hypothesis that many of these are likely to be spurious transcripts. Finally, using annotated lncRNAs in both species, we identified 134 putative lncRNA homologs between D. pseudoobscura and D. melanogaster and find that many have conserved developmental expression dynamics, making them ideal candidates for future functional analyses.
Collapse
Affiliation(s)
- Kevin G Nyberg
- Department of Biology, University of Maryland, College Park
| | | |
Collapse
|
48
|
Li R, Ren X, Bi Y, Ho VWS, Hsieh CL, Young A, Zhang Z, Lin T, Zhao Y, Miao L, Sarkies P, Zhao Z. Specific down-regulation of spermatogenesis genes targeted by 22G RNAs in hybrid sterile males associated with an X-Chromosome introgression. Genome Res 2016; 26:1219-32. [PMID: 27197225 PMCID: PMC5052035 DOI: 10.1101/gr.204479.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/16/2016] [Indexed: 12/23/2022]
Abstract
Hybrid incompatibility (HI) prevents gene flow between species, thus lying at the heart of speciation genetics. One of the most common HIs is male sterility. Two superficially contradictory observations exist for hybrid male sterility. First, an introgression on the X Chromosome is more likely to produce male sterility than on autosome (so-called large-X theory); second, spermatogenesis genes are enriched on the autosomes but depleted on the X Chromosome (demasculinization of X Chromosome). Analysis of gene expression in Drosophila hybrids suggests a genetic interaction between the X Chromosome and autosomes that is essential for male fertility. However, the prevalence of such an interaction and its underlying mechanism remain largely unknown. Here we examine the interaction in nematode species by contrasting the expression of both coding genes and transposable elements (TEs) between hybrid sterile males and its parental nematode males. We use two lines of hybrid sterile males, each carrying an independent introgression fragment from Caenorhabditis briggsae X Chromosome in an otherwise Caenorhabditis nigoni background, which demonstrate similar defects in spermatogenesis. We observe a similar pattern of down-regulated genes that are specific for spermatogenesis between the two hybrids. Importantly, the down-regulated genes caused by the X Chromosome introgressions show a significant enrichment on the autosomes, supporting an epistatic interaction between the X Chromosome and autosomes. We investigate the underlying mechanism of the interaction by measuring small RNAs and find that a subset of 22G RNAs specifically targeting the down-regulated spermatogenesis genes is significantly up-regulated in hybrids, suggesting that perturbation of small RNA-mediated regulation may contribute to the X-autosome interaction.
Collapse
Affiliation(s)
- Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yu Bi
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | | | - Amanda Young
- Illumina Incorporated, San Diego, California 92122, USA
| | - Zhihong Zhang
- Illumina Incorporated, San Diego, California 92122, USA
| | - Tingting Lin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanmei Zhao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Long Miao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peter Sarkies
- MRC Clinical Sciences Centre, London W12 0NN, United Kingdom; Institute of Clinical Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
49
|
Baker RH, Narechania A, DeSalle R, Johns PM, Reinhardt JA, Wilkinson GS. Spermatogenesis Drives Rapid Gene Creation and Masculinization of the X Chromosome in Stalk-Eyed Flies (Diopsidae). Genome Biol Evol 2016; 8:896-914. [PMID: 26951781 PMCID: PMC4824122 DOI: 10.1093/gbe/evw043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Throughout their evolutionary history, genomes acquire new genetic material that facilitates phenotypic innovation and diversification. Developmental processes associated with reproduction are particularly likely to involve novel genes. Abundant gene creation impacts the evolution of chromosomal gene content and general regulatory mechanisms such as dosage compensation. Numerous studies in model organisms have found complex and, at times contradictory, relationships among these genomic attributes highlighting the need to examine these patterns in other systems characterized by abundant sexual selection. Therefore, we examined the association among novel gene creation, tissue-specific gene expression, and chromosomal gene content within stalk-eyed flies. Flies in this family are characterized by strong sexual selection and the presence of a newly evolved X chromosome. We generated RNA-seq transcriptome data from the testes for three species within the family and from seven additional tissues in the highly dimorphic species, Teleopsis dalmanni. Analysis of dipteran gene orthology reveals dramatic testes-specific gene creation in stalk-eyed flies, involving numerous gene families that are highly conserved in other insect groups. Identification of X-linked genes for the three species indicates that the X chromosome arose prior to the diversification of the family. The most striking feature of this X chromosome is that it is highly masculinized, containing nearly twice as many testes-specific genes as expected based on its size. All the major processes that may drive differential sex chromosome gene content—creation of genes with male-specific expression, development of male-specific expression from pre-existing genes, and movement of genes with male-specific expression—are elevated on the X chromosome of T. dalmanni. This masculinization occurs despite evidence that testes expressed genes do not achieve the same levels of gene expression on the X chromosome as they do on the autosomes.
Collapse
Affiliation(s)
- Richard H Baker
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY
| | - Apurva Narechania
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY
| | - Philip M Johns
- Life Sciences Department, Yale-NUS College, Singapore, Singapore
| | | | | |
Collapse
|
50
|
Ávila V, Campos JL, Charlesworth B. The effects of sex-biased gene expression and X-linkage on rates of adaptive protein sequence evolution in Drosophila. Biol Lett 2016; 11:20150117. [PMID: 25926696 PMCID: PMC4424624 DOI: 10.1098/rsbl.2015.0117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A faster rate of adaptive evolution of X-linked genes compared with autosomal genes may be caused by the fixation of new recessive or partially recessive advantageous mutations (the Faster-X effect). This effect is expected to be largest for mutations that affect only male fitness and absent for mutations that affect only female fitness. We tested these predictions in Drosophila melanogaster by using genes with different levels of sex-biased expression and by estimating the extent of adaptive evolution of non-synonymous mutations from polymorphism and divergence data. We detected both a Faster-X effect and an effect of male-biased gene expression. There was no evidence for a strong association between the two effects—modest levels of male-biased gene expression increased the rate of adaptive evolution on both the autosomes and the X chromosome, but a Faster-X effect occurred for both unbiased genes and female-biased genes. The rate of genetic recombination did not influence the magnitude of the Faster-X effect, ruling out the possibility that it reflects less Hill–Robertson interference for X-linked genes.
Collapse
Affiliation(s)
- Victoria Ávila
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - José L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|