1
|
Conkling M, Hindle T, Xie Z, Liu W, Moore T, Pomponi SA. An in vitro cellular model for measuring the impact of thermal stress on Florida reef sponges. In Vitro Cell Dev Biol Anim 2025:10.1007/s11626-025-01034-1. [PMID: 40405044 DOI: 10.1007/s11626-025-01034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/27/2025] [Indexed: 05/24/2025]
Abstract
Coral reefs are threatened by recurrent mortality incidents in their native habitats brought on by natural and anthropogenic stressors. Elevated temperature has been indicated as a major causing factor. Although ongoing research is focused on corals, sponges are an important benthic organism on coral reefs and are often overlooked. An accurate and standardized method is needed to determine the environmental limits and thresholds of sponges commonly found on coral reefs. We established an in vitro sponge cell model and evaluated the effect of elevated temperatures on primary cell cultures of five common Florida reef sponges-Agelas clathrodes, Aplysina fulva, Cliona varians, Geodia neptuni, and Xestospongia muta. Analysis of the results revealed that the impact of increased temperatures had no significant effect at the cellular level, but there are changes at the molecular level. Shifts in the sponges' transcriptomic profiles induced by increased temperatures, trigger processes related to signal transduction, apoptosis, and cell repair pathways. Further elevation of temperature corresponding to local extremes activated the immune response and programmed cell death. The results of the present study are based on both cellular and molecular data obtained from the in vitro cell model which highlight the minimal response of all five species to thermal stress, providing an insight into the mechanisms involved in the adaptive process. Furthermore, they suggest a resilience of these sponges to the current thermal extremes, but a combination of factors could still lead to a loss of sponges on reefs. This study forms the basis for use of in vitro sponge cell models to evaluate other environmental parameters and stressors on additional sponge species.
Collapse
Affiliation(s)
- Megan Conkling
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL, 34946, USA.
| | - Tobin Hindle
- Department of Geosciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Zhixiao Xie
- Department of Geosciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Weibo Liu
- Department of Geosciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Timothy Moore
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL, 34946, USA
| | - Shirley A Pomponi
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL, 34946, USA
| |
Collapse
|
2
|
Ohkawa M, Kamata K, Kawsar SM, Gerdol M, Fujii Y, Ozeki Y. Characterization of HOL-30: a novel tandem-repeat galectin from the marine sponge Halichondria okadai. BBA ADVANCES 2025; 7:100153. [PMID: 40207211 PMCID: PMC11979922 DOI: 10.1016/j.bbadva.2025.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/22/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025] Open
Abstract
We here report the novel primary structure of a new member in the galectin family, the β-galactoside-binding lectin HOL-30, from the marine sponge Halichondria okadai, whose full-length sequence was determined thanks to the combination between Edman degradation and transcriptome analysis. The HOL-30 polypeptide is a tandem-repeat dimeric galectin, consisting of 281 amino acids, which includes two carbohydrate recognition domains (CRDs). Unlike most other galectins described in Porifera, HOL-30 did not have a signal peptide sequence for secretion. In solution, HOL-30 exhibited a molecular weight of 60 kDa, indicating a dimeric organization consisting of two 30 kDa tandem-repeat subunits stabilized by non-covalent interactions. Although the two CRDs had a similar predicted 3D structure, they displayed low pairwise sequence identity, approximately 20 %. HOL-30 exhibited glycan-binding affinities for type-1 (Galβ1-3GlcNAc) and type-2 (Galβ1-4GlcNAc) LacNAc. Furthermore, it also recognized blood type B-oligosaccharides on type-1 and type-2 LacNAc (Galα1-3Gal[Fucα1-2]β1-3/4GlcNAc), and blood type H-oligosaccharide on type-3 (Gal[Fucα1-2]β1-3GalNAcα). The glycan-binding properties of HOL-30 were compared with those of the hRTL galectin, previously identified in Chondrilla australiensis, consisting of tetrameric 15 kDa prototype subunits. The two sponge galectins displayed similar, but not identical, carbohydrate-binding properties, as evidenced by the fact that despite effectively binding to vertebrate cultured cells, HOL-30 had minimal impact on cell growth. Antiserum analysis revealed a mosaic distribution of HOL-30 in the parenchymal cells of sponge tissues within dense cell clusters surrounding the spicules.
Collapse
Affiliation(s)
- Mayuka Ohkawa
- Graduate School of NanoBiosciences, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Kenichi Kamata
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro, Tsurumi-Ku, Yokohama 230-0045 Japan
| | - Sarkar M.A. Kawsar
- Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331 Bangladesh
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5 34127 Trieste, Italy
| | - Yuki Fujii
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7, Huis Tem Bosch, Sasebo 859-3298 Nagasaki, Japan
| | - Yasuhiro Ozeki
- Graduate School of NanoBiosciences, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
3
|
Lavrov DV, Turner TL, Vicente J. Pervasive Mitochondrial tRNA Gene Loss in Clade B of Haplosclerid Sponges (Porifera, Demospongiae). Genome Biol Evol 2025; 17:evaf020. [PMID: 39913674 PMCID: PMC11886574 DOI: 10.1093/gbe/evaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2025] [Indexed: 03/08/2025] Open
Abstract
Mitochondrial tRNA gene loss and cytosolic tRNA import are two common phenomena in mitochondrial biology, but their importance is often under-appreciated in animals. This is because the mitochondrial DNA (mtDNA) of most bilaterally symmetrical animals (Bilateria) encodes a complete set of tRNAs required for mitochondrial translation. By contrast, the mtDNA of nonbilaterian animals (phyla Cnidaria, Ctenophora, Porifera, and Placozoa) often contains a reduced set of tRNA genes, necessitating tRNA import from the cytosol. Interestingly, in many nonbilaterian lineages, tRNA gene content appears to be set early in evolution and remains conserved thereafter. Here, we report that Clade B of haplosclerid sponges (CBHS) represents an exception to this pattern, displaying considerable variation in tRNA gene content even among relatively closely related species. We determined mt-genome sequences for eight CBHS species and analyzed them in conjunction with six previously available sequences. Additionally, we sequenced mt-genomes for two species of haplosclerid sponges outside the CBHS and used them with eight previously available sequences as outgroups. We found that tRNA gene content varied widely within CBHS, ranging from three in an undescribed Haliclona species (Haliclona sp. TLT785) to 25 in Xestospongia muta and X. testudinaria. Furthermore, we found that all CBHS species outside the genus Xestospongia lacked the atp9 gene, with some also lacking atp8. Analysis of nuclear sequences from Niphates digitalis revealed that both atp8 and atp9 had transferred to the nuclear genome, while the absence of mt-tRNA genes indicated their genuine loss. We argue that CBHS can serve as a valuable system for studying mt-tRNA gene loss, mitochondrial import of cytosolic tRNAs, and the impact of these processes on mitochondrial evolution.
Collapse
Affiliation(s)
- Dennis V Lavrov
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, Iowa 50011, USA
| | - Thomas L Turner
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106-9620, USA
| | - Jan Vicente
- Hawai’i Institute of Marine Biology, University of Hawai’i at Manoa, 46-007 Lilipuna Road, Kane’ohe, HI 96744-1346, USA
| |
Collapse
|
4
|
Koutsouveli V, Torres-Oliva M, Bayer T, Fuß J, Grossschmidt N, Marulanda-Gomez AM, Jensen N, Gill D, Schmitz RA, Pita L, Reusch TBH. The Chromosome-level Genome of the Ctenophore Mnemiopsis leidyi A. Agassiz, 1865 Reveals a Unique Immune Gene Repertoire. Genome Biol Evol 2025; 17:evaf006. [PMID: 39834228 PMCID: PMC11797021 DOI: 10.1093/gbe/evaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Ctenophora are basal marine metazoans, the sister group of all other animals. Mnemiopsis leidyi is one of the most successful invasive species worldwide with intense ecological and evolutionary research interest. Here, we generated a chromosome-level genome assembly of M. leidyi with a focus on its immune gene repertoire. The genome was 247.97 Mb, with N50 16.84 Mb, and 84.7% completeness. Its karyotype was 13 chromosomes. In this genome and that of two other ctenophores, Bolinopsis microptera and Hormiphora californensis, we detected a high number of protein domains related to potential immune receptors. Among those, proteins containing Toll/interleukin-1 (TIR2) domain, NACHT domain, Scavenger Receptor Cystein-Rich (SRCR) domain, or C-type Lectin domain (CTLD) were abundant and presented unique domain architectures in M. leidyi. M. leidyi seems to lack bona fide Toll-like Receptors, but it does possess a repertoire of 15 TIR2 domain-containing genes. Besides, we detected a bona fide NOD-like receptor and 38 NACHT domain-containing genes. In order to verify the function of those domain-containing genes, we exposed M. leidyi to the pathogen Vibrio coralliilyticus. Among the differentially expressed genes, we identified potential immune receptors, including four TIR2 domain-containing genes, all of which were upregulated in response to pathogen exposure. To conclude, many common immune receptor domains, highly conserved across metazoans, are already present in Ctenophora. These domains have large expansions and unique architectures in M. leidyi, findings consistent with the basal evolutionary position of this group, but still might have conserved functions in immunity and host-microbe interaction.
Collapse
Affiliation(s)
- Vasiliki Koutsouveli
- Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Division of Marine Ecology, Marine Symbioses Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | - Till Bayer
- Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Janina Fuß
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Nora Grossschmidt
- Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Angela M Marulanda-Gomez
- Division of Marine Ecology, Marine Symbioses Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Nadin Jensen
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Diana Gill
- Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Ruth A Schmitz
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Lucía Pita
- Marine Biology and Oceanography, Marine Biogeochemistry, Atmosphere and Climate, Institut de Ciències del Mar–Spanish National Research Council (CSIC), Barcelona, Spain
| | - Thorsten B H Reusch
- Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
5
|
Oda H, Nishiguchi S, Song C, Murata K, Uchihashi T, Suzuki Y. Nanoscale Visualization of Drosophila E-cadherin Ectodomain Fragments and Their Interactions Using DNA Origami Nanoblocks. J Mol Biol 2025; 437:168875. [PMID: 39581222 DOI: 10.1016/j.jmb.2024.168875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The adhesive function of cell surface proteins can be visually assessed through direct observation; however, the underlying structures that mediate adhesion typically remain invisible at the nanoscale level. This hinders knowledge on the diversity of molecular architectures responsible for cell-cell adhesion. Drosophila E-cadherin (DE-cadherin), a classical cadherin with a unique domain structure, demonstrates adhesive function; however, it lacks a structural model that explains its adhesion mechanism. Here, we present a novel application of DNA origami technology to create a cell-free, flat environment in which full DE-cadherin ectodomains are anchored using SNAP-tags and biotin-streptavidin interactions. DNA origami was assembled into a 120 nm long block, bearing 5 or 14 biotin:streptavidin sites that were evenly spaced on one lateral face. DE-cadherin ectodomain fragments were attached via biotinylated SNAP-tags. These decorated DNA origami nanoblocks were subjected to transmission electron and high-speed atomic force microscopy, which revealed a hinge-like site that separated the membrane-distal and -proximal portions of the DE-cadherin ectodomain, suggesting a role in mechanical flexibility. We also observed interactions between DE-cadherin ectodomains via their membrane-distal portions on single DNA origami nanoblocks. We reconstituted an adhesion-like process via pairing DNA origami nanoblocks using DE-cadherin ectodomain interactions. Homophilic associations of functional DE-cadherin ectodomains between the paired DNA origami nanoblocks were visualized at the nanoscale, displaying strand-like molecular configurations, likely representing the extracellular cadherin repeats without regular arrays of structural elements. This study introduces a DNA origami-based platform for reconstituting and visualizing cadherin ectodomain interactions, with potential applications for a broader range of adhesion molecules.
Collapse
Affiliation(s)
- Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Shigetaka Nishiguchi
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Chihong Song
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Kazuyoshi Murata
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yuki Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| |
Collapse
|
6
|
Ruperti F, Dzieciatkowska M, Pankey MS, Asensio CS, Anselmetti D, Fernàndez-Busquets X, Nichols SA. Proteomic analysis of the sponge Aggregation Factor implicates an ancient toolkit for allorecognition and adhesion in animals. Proc Natl Acad Sci U S A 2024; 121:e2409125121. [PMID: 39693348 DOI: 10.1073/pnas.2409125121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
The discovery that sponges (Porifera) can fully regenerate from aggregates of dissociated cells launched them as one of the earliest experimental models to study the evolution of cell adhesion and allorecognition in animals. This process depends on an extracellular glycoprotein complex called the Aggregation Factor (AF), which is composed of proteins thought to be unique to sponges. We used quantitative proteomics to identify additional AF components and interacting proteins in the classical model, Clathria prolifera, and compared them to proteins involved in cell interactions in Bilateria. Our results confirm MAFp3/p4 proteins as the primary components of the AF but implicate related proteins with calx-beta and wreath domains as additional components. Using AlphaFold, we unveiled close structural similarities of AF components to protein domains in other animals, previously masked by the mutational decay of sequence similarity. The wreath domain, believed to be unique to the AF, was predicted to contain a central beta-sandwich of the same organization as the vWFD domain (also found in extracellular, gel-forming glycoproteins in other animals). Additionally, many copurified proteins share a conserved C-terminus, containing divergent immunoglobulin (Ig) and Fn3 domains predicted to serve as an AF-interaction interface. One of these proteins, MAF-associated protein 1, resembles Ig superfamily cell adhesion molecules and we hypothesize that it may function to link the AF to the surface of cells. Our results highlight the existence of an ancient toolkit of conserved protein domains regulating cell-cell and cell-extracellular matrix protein interactions in all animals, and likely reflect a common origin of cell adhesion and allorecognition.
Collapse
Affiliation(s)
- Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045
| | - M Sabrina Pankey
- Department of Molecular, Cellular and Biomedical Science, University of New Hampshire, Durham, NH 03824
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO 80208
| | - Dario Anselmetti
- Nanomalaria Group, Faculty of Physics, Experimental Biophysics, Bielefeld University, Bielefeld 33501, Germany
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Barcelona Institute for Global Health, Hospital Clínic Universitat de Barcelona, Barcelona 08036, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Scott A Nichols
- Department of Biological Sciences, University of Denver, Denver, CO 80208
| |
Collapse
|
7
|
Rocher C, Vernale A, Fierro‐Constaín L, Séjourné N, Chenesseau S, Marschal C, Issartel J, Le Goff E, Stroebel D, Jouvion J, Dutilleul M, Matthews C, Marschal F, Brouilly N, Massey‐Harroche D, Schenkelaars Q, Ereskovsky A, Le Bivic A, Renard E, Borchiellini C. The Buds of Oscarella lobularis (Porifera, Homoscleromorpha): A New Convenient Model for Sponge Cell and Evolutionary Developmental Biology. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:503-528. [PMID: 39364688 PMCID: PMC11587685 DOI: 10.1002/jez.b.23271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 10/05/2024]
Abstract
The comparative study of the four non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera) provides insights into the origin of bilaterian traits. To complete our knowledge of the cell biology and development of these animals, additional non-bilaterian models are needed. Given the developmental, histological, ecological, and genomic differences between the four sponge classes (Demospongiae, Calcarea, Homoscleromorpha, and Hexactinellida), we have been developing the Oscarella lobularis (Porifera, class Homoscleromorpha) model over the past 15 years. Here, we report a new step forward by inducing, producing, and maintaining in vitro thousands of clonal buds that now make possible various downstream applications. This study provides a full description of bud morphology, physiology, cells and tissues, from their formation to their development into juveniles, using adapted cell staining protocols. In addition, we show that buds have outstanding capabilities of regeneration after being injured and of re-epithelization after complete cell dissociation. Altogether, Oscarella buds constitute a relevant all-in-one sponge model to access a large set of biological processes, including somatic morphogenesis, epithelial morphogenesis, cell fate, body axes formation, nutrition, contraction, ciliary beating, and respiration.
Collapse
Grants
- This work was funded by the Centre National de la recherche Scientifique (CNRS, UMR7263 and UMR7288) : project for international scientific cooperation (PICS) STraS involving CR, AE, SC, ER, CB, ELG, ALB, DMH, CM, AV), and also by the Aix-Marseille University and the A*MIDEX foundation project (ANR-11-IDEX-0001-02 to CB, ER, ALB, CR, NS, SC, ChM, AE;
- AMX-18-INT-021 to CB, ER, ALB, CR, DML, NB, CM); as well as the National research agency (ANR) : ANR-21-CE13-0013-02 to ALB, DML, CB, ER, CR, CM, SC and ANR-22-CE13-0026 to DS, JJ, ER, CB, QS, CR, CM, SC); ALB, DMH and NB are supported by the LabEx INFORM (ANR-11-LABX-0054) both funded by the «Investissements d'Avenir » French Government program, managed by the French National Research Agency (ANR).
- The DB RAS government basic research program no. 0088-2021-0009 (TEM studies) to AE. AE also acknowledge the Saint-Petersburg State University (Saint-Petersburg, Russia) and the Koltzov Institute of Developmental Biology of Russian Academy of Sciences (Moscow, Russia) for their technical and financial support to perform some of the experiments.
- The region Sud/PACA and Aix-Marseille University are also acknowledged for funding PhD fellowships of Laura Fierro-Constaín and Amélie Vernale, respectively. The light and electron microscopy experiments were performed at the PiCSL-FBI core facility (IBDM, AMU-Marseille), a member of the France-BioImaging National Research Infrastructure (ANR-10-INBS-04).
- This work was funded by the Centre National de la recherche Scientifique (CNRS, UMR7263 and UMR7288) : project for international scientific cooperation (PICS) STraS involving CR, AE, SC, ER, CB, ELG, ALB, DMH, CM, AV), and also by the Aix-Marseille University and the A*MIDEX foundation project (ANR-11-IDEX-0001-02 to CB, ER, ALB, CR, NS, SC, ChM, AE; AMX-18-INT-021 to CB, ER, ALB, CR, DML, NB, CM); as well as the National research agency (ANR) : ANR-21-CE13-0013-02 to ALB, DML, CB, ER, CR, CM, SC and ANR-22-CE13-0026 to DS, JJ, ER, CB, QS, CR, CM, SC); ALB, DMH and NB are supported by the LabEx INFORM (ANR-11-LABX-0054) both funded by the «Investissements d'Avenir » French Government program, managed by the French National Research Agency (ANR). The DB RAS government basic research program no. 0088-2021-0009 (TEM studies) to AE. AE also acknowledge the Saint-Petersburg State University (Saint-Petersburg, Russia) and the Koltzov Institute of Developmental Biology of Russian Academy of Sciences (Moscow, Russia) for their technical and financial support to perform some of the experiments. The region Sud/PACA and Aix-Marseille University are also acknowledged for funding PhD fellowships of Laura Fierro-Constaín and Amélie Vernale, respectively. The light and electron microscopy experiments were performed at the PiCSL-FBI core facility (IBDM, AMU-Marseille), a member of the France-BioImaging National Research Infrastructure (ANR-10-INBS-04).
Collapse
Affiliation(s)
- Caroline Rocher
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | - Amélie Vernale
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
- Aix Marseille UniversityMarseilleFrance
| | | | - Nina Séjourné
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | | | | | - Julien Issartel
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | - Emilie Le Goff
- ISEM, CNRS, IRDUniversity of MontpellierMontpellierFrance
| | - David Stroebel
- ENS, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS)Université PSLParisFrance
| | - Julie Jouvion
- ENS, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS)Université PSLParisFrance
| | - Morgan Dutilleul
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | | | - Florent Marschal
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | | | | | | | | | | | - Emmanuelle Renard
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
- Aix Marseille UniversityMarseilleFrance
| | | |
Collapse
|
8
|
Monk T, Dennler N, Ralph N, Rastogi S, Afshar S, Urbizagastegui P, Jarvis R, van Schaik A, Adamatzky A. Electrical Signaling Beyond Neurons. Neural Comput 2024; 36:1939-2029. [PMID: 39141803 DOI: 10.1162/neco_a_01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 08/16/2024]
Abstract
Neural action potentials (APs) are difficult to interpret as signal encoders and/or computational primitives. Their relationships with stimuli and behaviors are obscured by the staggering complexity of nervous systems themselves. We can reduce this complexity by observing that "simpler" neuron-less organisms also transduce stimuli into transient electrical pulses that affect their behaviors. Without a complicated nervous system, APs are often easier to understand as signal/response mechanisms. We review examples of nonneural stimulus transductions in domains of life largely neglected by theoretical neuroscience: bacteria, protozoans, plants, fungi, and neuron-less animals. We report properties of those electrical signals-for example, amplitudes, durations, ionic bases, refractory periods, and particularly their ecological purposes. We compare those properties with those of neurons to infer the tasks and selection pressures that neurons satisfy. Throughout the tree of life, nonneural stimulus transductions time behavioral responses to environmental changes. Nonneural organisms represent the presence or absence of a stimulus with the presence or absence of an electrical signal. Their transductions usually exhibit high sensitivity and specificity to a stimulus, but are often slow compared to neurons. Neurons appear to be sacrificing the specificity of their stimulus transductions for sensitivity and speed. We interpret cellular stimulus transductions as a cell's assertion that it detected something important at that moment in time. In particular, we consider neural APs as fast but noisy detection assertions. We infer that a principal goal of nervous systems is to detect extremely weak signals from noisy sensory spikes under enormous time pressure. We discuss neural computation proposals that address this goal by casting neurons as devices that implement online, analog, probabilistic computations with their membrane potentials. Those proposals imply a measurable relationship between afferent neural spiking statistics and efferent neural membrane electrophysiology.
Collapse
Affiliation(s)
- Travis Monk
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Nik Dennler
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Nicholas Ralph
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Shavika Rastogi
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Saeed Afshar
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Pablo Urbizagastegui
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Russell Jarvis
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
| |
Collapse
|
9
|
Bonchuk AN, Balagurov KI, Baradaran R, Boyko KM, Sluchanko NN, Khrustaleva AM, Burtseva AD, Arkova OV, Khalisova KK, Popov VO, Naschberger A, Georgiev PG. The Arthropoda-specific Tramtrack group BTB protein domains use previously unknown interface to form hexamers. eLife 2024; 13:e96832. [PMID: 39221775 PMCID: PMC11426971 DOI: 10.7554/elife.96832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024] Open
Abstract
BTB (bric-a-brack, Tramtrack, and broad complex) is a diverse group of protein-protein interaction domains found within metazoan proteins. Transcription factors contain a dimerizing BTB subtype with a characteristic N-terminal extension. The Tramtrack group (TTK) is a distinct type of BTB domain, which can multimerize. Single-particle cryo-EM microscopy revealed that the TTK-type BTB domains assemble into a hexameric structure consisting of three canonical BTB dimers connected through a previously uncharacterized interface. We demonstrated that the TTK-type BTB domains are found only in Arthropods and have undergone lineage-specific expansion in modern insects. The Drosophila genome encodes 24 transcription factors with TTK-type BTB domains, whereas only four have non-TTK-type BTB domains. Yeast two-hybrid analysis revealed that the TTK-type BTB domains have an unusually broad potential for heteromeric associations presumably through a dimer-dimer interaction interface. Thus, the TTK-type BTB domains are a structurally and functionally distinct group of protein domains specific to Arthropodan transcription factors.
Collapse
Affiliation(s)
- Artem N Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of SciencesMoscowRussian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Konstantin I Balagurov
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of SciencesMoscowRussian Federation
| | - Rozbeh Baradaran
- Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology Russian Academy of SciencesMoscowRussian Federation
| | - Nikolai N Sluchanko
- Bach Institute of Biochemistry, Research Center of Biotechnology Russian Academy of SciencesMoscowRussian Federation
| | - Anastasia M Khrustaleva
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of SciencesMoscowRussian Federation
| | - Anna D Burtseva
- Bach Institute of Biochemistry, Research Center of Biotechnology Russian Academy of SciencesMoscowRussian Federation
- Moscow Institute of Physics and Technology, Institutsky lane 9MoscowRussian Federation
| | - Olga V Arkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Karina K Khalisova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of SciencesMoscowRussian Federation
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology Russian Academy of SciencesMoscowRussian Federation
| | - Andreas Naschberger
- Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Pavel G Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of SciencesMoscowRussian Federation
| |
Collapse
|
10
|
Gizzio J, Thakur A, Haldane A, Post CB, Levy RM. Evolutionary sequence and structural basis for the distinct conformational landscapes of Tyr and Ser/Thr kinases. Nat Commun 2024; 15:6545. [PMID: 39095350 PMCID: PMC11297160 DOI: 10.1038/s41467-024-50812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Protein kinases are molecular machines with rich sequence variation that distinguishes the two main evolutionary branches - tyrosine kinases (TKs) from serine/threonine kinases (STKs). Using a sequence co-variation Potts statistical energy model we previously concluded that TK catalytic domains are more likely than STKs to adopt an inactive conformation with the activation loop in an autoinhibitory folded conformation, due to intrinsic sequence effects. Here we investigate the structural basis for this phenomenon by integrating the sequence-based model with structure-based molecular dynamics (MD) to determine the effects of mutations on the free energy difference between active and inactive conformations, using a thermodynamic cycle involving many (n = 108) protein-mutation free energy perturbation (FEP) simulations in the active and inactive conformations. The sequence and structure-based results are consistent and support the hypothesis that the inactive conformation DFG-out Activation Loop Folded, is a functional regulatory state that has been stabilized in TKs relative to STKs over the course of their evolution via the accumulation of residue substitutions in the activation loop and catalytic loop that facilitate distinct substrate binding modes in trans and additional modes of regulation in cis for TKs.
Collapse
Affiliation(s)
- Joan Gizzio
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA, USA
- Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - Abhishek Thakur
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA, USA
- Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - Allan Haldane
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA, USA
- Department of Physics, Temple University, Philadelphia, PA, USA
| | - Carol Beth Post
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Ronald M Levy
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA, USA.
- Department of Chemistry, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Wörheide G, Francis WR, Deister F, Krebs S, Erpenbeck D, Vargas S. The genomes of the aquarium sponges Tethya wilhelma and Tethya minuta (Porifera: Demospongiae). F1000Res 2024; 13:679. [PMID: 39193510 PMCID: PMC11347921 DOI: 10.12688/f1000research.150836.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Sponges (Phylum Porifera) are aquatic sessile metazoans found worldwide in marine and freshwater environments. They are significant in the animal tree of life as one of the earliest-branching metazoan lineages and as filter feeders play crucial ecological roles, particularly in coral reefs, but are susceptible to the effects of climate change. In the face of the current biodiversity crisis, genomic data is crucial for species conservation efforts and predicting their evolutionary potential in response to environmental changes. However, there is a limited availability of culturable sponge species with annotated high-quality genomes to further comprehensive insights into animal evolution, function, and their response to the ongoing global change. Despite the publication of a few high-quality annotated sponge genomes, there remains a gap in resources for culturable sponge species. To address this gap, we provide high quality draft genomes of the two congeneric aquarium species Tethya wilhelma and Tethya minuta, small ball-shaped demosponges that are easily maintained long-term in ex situ culture. As such, they offer promising opportunities as laboratory models to contribute to advancing our understanding of sponge biology and provide valuable resources for studying animal evolution, function, and responses to environmental challenges.
Collapse
Affiliation(s)
- Gert Wörheide
- Bayerische Staatssammlung für Paläontologie und Geologie, Staatliche Naturwissenschaftliche Sammlungen Bayerns, Munich, Bavaria, 80333, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Warren R. Francis
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Fabian Deister
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dirk Erpenbeck
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Sergio Vargas
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| |
Collapse
|
12
|
Guzman C, Mohri K, Nakamura R, Miyake M, Tsuchiya Y, Tomii K, Watanabe H. Neuronal and non-neuronal functions of the synaptic cell adhesion molecule neurexin in Nematostella vectensis. Nat Commun 2024; 15:6495. [PMID: 39090098 PMCID: PMC11294457 DOI: 10.1038/s41467-024-50818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The evolutionary transition from diffusion-mediated cell-cell communication to faster, targeted synaptic signaling in animal nervous systems is still unclear. Genome sequencing analyses have revealed a widespread distribution of synapse-related genes among early-diverging metazoans, but how synaptic machinery evolved remains largely unknown. Here, we examine the function of neurexins (Nrxns), a family of presynaptic cell adhesion molecules with critical roles in bilaterian chemical synapses, using the cnidarian model, Nematostella vectensis. Delta-Nrxns are expressed mainly in neuronal cell clusters that exhibit both peptidergic and classical neurotransmitter signaling. Knockdown of δ-Nrxn reduces spontaneous peristalsis of N. vectensis polyps. Interestingly, gene knockdown and pharmacological studies suggest that δ-Nrxn is involved in glutamate- and glycine-mediated signaling rather than peptidergic signaling. Knockdown of the epithelial α-Nrxn reveals a major role in cell adhesion between ectodermal and endodermal epithelia. Overall, this study provides molecular, functional, and cellular insights into the pre-neural function of Nrxns, as well as key information for understanding how and why they were recruited to the synaptic machinery.
Collapse
Affiliation(s)
- Christine Guzman
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Biology, Institute of Zoology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Kurato Mohri
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ryotaro Nakamura
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Minato Miyake
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuko Tsuchiya
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
13
|
Bonchuk AN, Georgiev PG. C2H2 proteins: Evolutionary aspects of domain architecture and diversification. Bioessays 2024; 46:e2400052. [PMID: 38873893 DOI: 10.1002/bies.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
The largest group of transcription factors in higher eukaryotes are C2H2 proteins, which contain C2H2-type zinc finger domains that specifically bind to DNA. Few well-studied C2H2 proteins, however, demonstrate their key role in the control of gene expression and chromosome architecture. Here we review the features of the domain architecture of C2H2 proteins and the likely origin of C2H2 zinc fingers. A comprehensive investigation of proteomes for the presence of proteins with multiple clustered C2H2 domains has revealed a key difference between groups of organisms. Unlike plants, transcription factors in metazoans contain clusters of C2H2 domains typically separated by a linker with the TGEKP consensus sequence. The average size of C2H2 clusters varies substantially, even between genomes of higher metazoans, and with a tendency to increase in combination with SCAN, and especially KRAB domains, reflecting the increasing complexity of gene regulatory networks.
Collapse
Affiliation(s)
- Artem N Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel G Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Marulanda-Gomez AM, Ribes M, Franzenburg S, Hentschel U, Pita L. Transcriptomic responses of Mediterranean sponges upon encounter with symbiont microbial consortia. BMC Genomics 2024; 25:674. [PMID: 38972970 PMCID: PMC11229196 DOI: 10.1186/s12864-024-10548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Sponges (phylum Porifera) constantly interact with microbes. They graze on microbes from the water column by filter-feeding and they harbor symbiotic partners within their bodies. In experimental setups, sponges take up symbionts at lower rates compared with seawater microbes. This suggests that sponges have the capacity to differentiate between microbes and preferentially graze in non-symbiotic microbes, although the underlying mechanisms of discrimination are still poorly understood. Genomic studies showed that, compared to other animal groups, sponges present an extended repertoire of immune receptors, in particular NLRs, SRCRs, and GPCRs, and a handful of experiments showed that sponges regulate the expression of these receptors upon encounter with microbial elicitors. We hypothesize that sponges may rely on differential expression of their diverse repertoire of poriferan immune receptors to sense different microbial consortia while filter-feeding. To test this, we characterized the transcriptomic response of two sponge species, Aplysina aerophoba and Dysidea avara, upon incubation with microbial consortia extracted from A. aerophoba in comparison with incubation with seawater microbes. The sponges were sampled after 1 h, 3 h, and 5 h for RNA-Seq differential gene expression analysis. RESULTS D. avara incubated with A. aerophoba-symbionts regulated the expression of genes related to immunity, ubiquitination, and signaling. Within the set of differentially-expressed immune genes we identified different families of Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs). These results represent the first experimental evidence that different types of NLRs are involved in microbial discrimination in a sponge. In contrast, the transcriptomic response of A. aerophoba to its own symbionts involved comparatively fewer genes and lacked genes encoding for immune receptors. CONCLUSION Our work suggests that: (i) the transcriptomic response of sponges upon microbial exposure may imply "fine-tuning" of baseline gene expression as a result of their interaction with microbes, (ii) the differential response of sponges to microbial encounters varied between the species, probably due to species-specific characteristics or related to host's traits, and (iii) immune receptors belonging to different families of NLR-like genes played a role in the differential response to microbes, whether symbionts or food bacteria. The regulation of these receptors in sponges provides further evidence of the potential role of NLRs in invertebrate host-microbe interactions. The study of sponge responses to microbes exemplifies how investigating different animal groups broadens our knowledge of the evolution of immune specificity and symbiosis.
Collapse
Affiliation(s)
| | - Marta Ribes
- Institut de Ciències del Mar, ICM - CSIC, Barcelona, Spain
| | - Sören Franzenburg
- Research Group Genetics and Bioinformatics/Systems Immunology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Ute Hentschel
- RD3 Marine Ecology, RU Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Lucia Pita
- Institut de Ciències del Mar, ICM - CSIC, Barcelona, Spain.
| |
Collapse
|
15
|
Whittle CA, Extavour CG. Gene Protein Sequence Evolution Can Predict the Rapid Divergence of Ovariole Numbers in the Drosophila melanogaster Subgroup. Genome Biol Evol 2024; 16:evae118. [PMID: 38848313 PMCID: PMC11272079 DOI: 10.1093/gbe/evae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/01/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Ovaries play key roles in fitness and evolution: they are essential female reproductive structures that develop and house the eggs in sexually reproducing animals. In Drosophila, the mature ovary contains multiple tubular egg-producing structures known as ovarioles. Ovarioles arise from somatic cellular structures in the larval ovary called terminal filaments (TFs), formed by TF cells and subsequently enclosed by sheath (SH) cells. As in many other insects, ovariole number per female varies extensively in Drosophila. At present, however, there is a striking gap of information on genetic mechanisms and evolutionary forces that shape the well-documented rapid interspecies divergence of ovariole numbers. To address this gap, here we studied genes associated with Drosophila melanogaster ovariole number or functions based on recent experimental and transcriptional datasets from larval ovaries, including TFs and SH cells, and assessed their rates and patterns of molecular evolution in five closely related species of the melanogaster subgroup that exhibit species-specific differences in ovariole numbers. From comprehensive analyses of protein sequence evolution (dN/dS), branch-site positive selection, expression specificity (tau), and phylogenetic regressions (phylogenetic generalized least squares), we report evidence of 42 genes that showed signs of playing roles in the genetic basis of interspecies evolutionary change of Drosophila ovariole number. These included the signaling genes upd2 and Ilp5 and extracellular matrix genes vkg and Col4a1, whose dN/dS predicted ovariole numbers among species. Together, we propose a model whereby a set of ovariole-involved gene proteins have an enhanced evolvability, including adaptive evolution, facilitating rapid shifts in ovariole number among Drosophila species.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
16
|
Holzem M, Boutros M, Holstein TW. The origin and evolution of Wnt signalling. Nat Rev Genet 2024; 25:500-512. [PMID: 38374446 DOI: 10.1038/s41576-024-00699-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
The Wnt signal transduction pathway has essential roles in the formation of the primary body axis during development, cellular differentiation and tissue homeostasis. This animal-specific pathway has been studied extensively in contexts ranging from developmental biology to medicine for more than 40 years. Despite its physiological importance, an understanding of the evolutionary origin and primary function of Wnt signalling has begun to emerge only recently. Recent studies on very basal metazoan species have shown high levels of conservation of components of both canonical and non-canonical Wnt signalling pathways. Furthermore, some pathway proteins have been described also in non-animal species, suggesting that recruitment and functional adaptation of these factors has occurred in metazoans. In this Review, we summarize the current state of research regarding the evolutionary origin of Wnt signalling, its ancestral function and the characteristics of the primal Wnt ligand, with emphasis on the importance of genomic studies in various pre-metazoan and basal metazoan species.
Collapse
Affiliation(s)
- Michaela Holzem
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany.
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany.
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Michael Boutros
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas W Holstein
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
17
|
Cho CJ, Brown JW, Mills JC. Origins of cancer: ain't it just mature cells misbehaving? EMBO J 2024; 43:2530-2551. [PMID: 38773319 PMCID: PMC11217308 DOI: 10.1038/s44318-024-00099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
A pervasive view is that undifferentiated stem cells are alone responsible for generating all other cells and are the origins of cancer. However, emerging evidence demonstrates fully differentiated cells are plastic, can be coaxed to proliferate, and also play essential roles in tissue maintenance, regeneration, and tumorigenesis. Here, we review the mechanisms governing how differentiated cells become cancer cells. First, we examine the unique characteristics of differentiated cell division, focusing on why differentiated cells are more susceptible than stem cells to accumulating mutations. Next, we investigate why the evolution of multicellularity in animals likely required plastic differentiated cells that maintain the capacity to return to the cell cycle and required the tumor suppressor p53. Finally, we examine an example of an evolutionarily conserved program for the plasticity of differentiated cells, paligenosis, which helps explain the origins of cancers that arise in adults. Altogether, we highlight new perspectives for understanding the development of cancer and new strategies for preventing carcinogenic cellular transformations from occurring.
Collapse
Affiliation(s)
- Charles J Cho
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
18
|
Sheloukhova L, Watanabe H. Evolution of glial cells: a non-bilaterian perspective. Neural Dev 2024; 19:10. [PMID: 38907299 PMCID: PMC11193209 DOI: 10.1186/s13064-024-00184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
Nervous systems of bilaterian animals generally consist of two cell types: neurons and glial cells. Despite accumulating data about the many important functions glial cells serve in bilaterian nervous systems, the evolutionary origin of this abundant cell type remains unclear. Current hypotheses regarding glial evolution are mostly based on data from model bilaterians. Non-bilaterian animals have been largely overlooked in glial studies and have been subjected only to morphological analysis. Here, we provide a comprehensive overview of conservation of the bilateral gliogenic genetic repertoire of non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera). We overview molecular and functional features of bilaterian glial cell types and discuss their possible evolutionary history. We then examine which glial features are present in non-bilaterians. Of these, cnidarians show the highest degree of gliogenic program conservation and may therefore be crucial to answer questions about glial evolution.
Collapse
Affiliation(s)
- Larisa Sheloukhova
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| |
Collapse
|
19
|
Mörsdorf D, Knabl P, Genikhovich G. Highly conserved and extremely evolvable: BMP signalling in secondary axis patterning of Cnidaria and Bilateria. Dev Genes Evol 2024; 234:1-19. [PMID: 38472535 PMCID: PMC11226491 DOI: 10.1007/s00427-024-00714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Bilateria encompass the vast majority of the animal phyla. As the name states, they are bilaterally symmetric, that is with a morphologically clear main body axis connecting their anterior and posterior ends, a second axis running between their dorsal and ventral surfaces, and with a left side being roughly a mirror image of their right side. Bone morphogenetic protein (BMP) signalling has widely conserved functions in the formation and patterning of the second, dorso-ventral (DV) body axis, albeit to different extents in different bilaterian species. Whilst initial findings in the fruit fly Drosophila and the frog Xenopus highlighted similarities amongst these evolutionarily very distant species, more recent analyses featuring other models revealed considerable diversity in the mechanisms underlying dorsoventral patterning. In fact, as phylogenetic sampling becomes broader, we find that this axis patterning system is so evolvable that even its core components can be deployed differently or lost in different model organisms. In this review, we will try to highlight the diversity of ways by which BMP signalling controls bilaterality in different animals, some of which do not belong to Bilateria. Future research combining functional analyses and modelling is bound to give us some understanding as to where the limits to the extent of the evolvability of BMP-dependent axial patterning may lie.
Collapse
Affiliation(s)
- David Mörsdorf
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria
| | - Paul Knabl
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Vienna, Austria
| | - Grigory Genikhovich
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
20
|
Gizzio J, Thakur A, Haldane A, Levy RM. Evolutionary sequence and structural basis for the distinct conformational landscapes of Tyr and Ser/Thr kinases. RESEARCH SQUARE 2024:rs.3.rs-4048991. [PMID: 38746330 PMCID: PMC11092858 DOI: 10.21203/rs.3.rs-4048991/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Protein kinases are molecular machines with rich sequence variation that distinguishes the two main evolutionary branches - tyrosine kinases (TKs) from serine/threonine kinases (STKs). Using a sequence co-variation Potts statistical energy model we previously concluded that TK catalytic domains are more likely than STKs to adopt an inactive conformation with the activation loop in an autoinhibitory "folded" conformation, due to intrinsic sequence effects. Here we investigated the structural basis for this phenomenon by integrating the sequence-based model with structure-based molecular dynamics (MD) to determine the effects of mutations on the free energy difference between active and inactive conformations, using a novel thermodynamic cycle involving many (n=108) protein-mutation free energy perturbation (FEP) simulations in the active and inactive conformations. The sequence and structure-based results are consistent and support the hypothesis that the inactive conformation "DFG-out Activation Loop Folded", is a functional regulatory state that has been stabilized in TKs relative to STKs over the course of their evolution via the accumulation of residue substitutions in the activation loop and catalytic loop that facilitate distinct substrate binding modes in trans and additional modes of regulation in cis for TKs.
Collapse
Affiliation(s)
- Joan Gizzio
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania 19122
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| | - Abhishek Thakur
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania 19122
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| | - Allan Haldane
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania 19122
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122
| | - Ronald M. Levy
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania 19122
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| |
Collapse
|
21
|
Gizzio J, Thakur A, Haldane A, Post CB, Levy RM. Evolutionary sequence and structural basis for the distinct conformational landscapes of Tyr and Ser/Thr kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584161. [PMID: 38559238 PMCID: PMC10979876 DOI: 10.1101/2024.03.08.584161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Protein kinases are molecular machines with rich sequence variation that distinguishes the two main evolutionary branches - tyrosine kinases (TKs) from serine/threonine kinases (STKs). Using a sequence co-variation Potts statistical energy model we previously concluded that TK catalytic domains are more likely than STKs to adopt an inactive conformation with the activation loop in an autoinhibitory "folded" conformation, due to intrinsic sequence effects. Here we investigated the structural basis for this phenomenon by integrating the sequence-based model with structure-based molecular dynamics (MD) to determine the effects of mutations on the free energy difference between active and inactive conformations, using a novel thermodynamic cycle involving many (n=108) protein-mutation free energy perturbation (FEP) simulations in the active and inactive conformations. The sequence and structure-based results are consistent and support the hypothesis that the inactive conformation "DFG-out Activation Loop Folded", is a functional regulatory state that has been stabilized in TKs relative to STKs over the course of their evolution via the accumulation of residue substitutions in the activation loop and catalytic loop that facilitate distinct substrate binding modes in trans and additional modes of regulation in cis for TKs.
Collapse
Affiliation(s)
- Joan Gizzio
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania 19122
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| | - Abhishek Thakur
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania 19122
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| | - Allan Haldane
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania 19122
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122
| | - Carol Beth Post
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| | - Ronald M. Levy
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania 19122
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| |
Collapse
|
22
|
Shah K, He S, Turner DJ, Corbo J, Rebbani K, Dominguez D, Bateman JM, Cheloufi S, Igreja C, Valkov E, Murn J. Regulation by the RNA-binding protein Unkempt at its effector interface. Nat Commun 2024; 15:3159. [PMID: 38605040 PMCID: PMC11009413 DOI: 10.1038/s41467-024-47449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
How RNA-binding proteins (RBPs) convey regulatory instructions to the core effectors of RNA processing is unclear. Here, we document the existence and functions of a multivalent RBP-effector interface. We show that the effector interface of a conserved RBP with an essential role in metazoan development, Unkempt, is mediated by a novel type of 'dual-purpose' peptide motifs that can contact two different surfaces of interacting proteins. Unexpectedly, we find that the multivalent contacts do not merely serve effector recruitment but are required for the accuracy of RNA recognition by Unkempt. Systems analyses reveal that multivalent RBP-effector contacts can repurpose the principal activity of an effector for a different function, as we demonstrate for the reuse of the central eukaryotic mRNA decay factor CCR4-NOT in translational control. Our study establishes the molecular assembly and functional principles of an RBP-effector interface.
Collapse
Affiliation(s)
- Kriti Shah
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, USA
- Center for RNA Biology and Medicine, 900 University Ave, Riverside, CA, 92521, USA
| | - Shiyang He
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, USA
- Center for RNA Biology and Medicine, 900 University Ave, Riverside, CA, 92521, USA
| | - David J Turner
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Joshua Corbo
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
| | - Khadija Rebbani
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joseph M Bateman
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, SE5 9RX, London, UK
| | - Sihem Cheloufi
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, USA
- Center for RNA Biology and Medicine, 900 University Ave, Riverside, CA, 92521, USA
- Stem Cell Center, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Cátia Igreja
- Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, D-72076, Tübingen, Germany
| | - Eugene Valkov
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Jernej Murn
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, USA.
- Center for RNA Biology and Medicine, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
23
|
Liu F, Ryu T, Ravasi T, Wang X, Wang G, Li Z. Niche-dependent sponge hologenome expression profiles and the host-microbes interplay: a case of the hawaiian demosponge Mycale Grandis. ENVIRONMENTAL MICROBIOME 2024; 19:22. [PMID: 38589941 PMCID: PMC11000336 DOI: 10.1186/s40793-024-00563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Most researches on sponge holobionts focus primarily on symbiotic microbes, yet data at the level of the sponge hologenome are still relatively scarce. Understanding of the sponge host and its microbial gene expression profiles and the host-microbes interplay in different niches represents a key aspect of sponge hologenome. Using the Hawaiian demosponge Mycale grandis in different niches as a model, i.e. on rocks, on the surface of coral Porites compressa, under alga Gracilaria salicornia, we compared the bacterial and fungal community structure, functional gene diversity, expression pattern and the host transcriptome by integrating open-format (deep sequencing) and closed-format (GeoChip microarray) high-throughput techniques. RESULTS Little inter-niche variation in bacterial and fungal phylogenetic diversity was detected for M. grandis in different niches, but a clear niche-dependent variability in the functional gene diversity and expression pattern of M. grandis host and its symbiotic microbiota was uncovered by GeoChip microarray and transcriptome analyses. Particularly, sponge host genes related to innate immunity and microbial recognition showed a strong correlation with the microbial symbionts' functional gene diversity and transcriptional richness in different niches. The cross-niche variability with respect to the symbiont functional gene diversity and the transcriptional richness of M. grandis holobiont putatively reflects the interplay of niche-specific selective pressure and the symbiont functional diversity. CONCLUSIONS Niche-dependent gene expression profiles of M. grandis hologenome and the host-microbes interplay were suggested though little inter-niche variation in bacterial and fungal diversity was detected, particularly the sponge innate immunity was found to be closely related to the symbiotic microbes. Altogether, these findings provide novel insights into the black box of one sponge holobiont in different niches at the hologenome level.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Taewoo Ryu
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, 904-0495, Okinawa, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, 904-0495, Okinawa, Japan
| | - Xin Wang
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 32611, Gainesville, FL, USA
| | - Guangyi Wang
- School of Environmental Science and Engineering, Tianjin University, 300072, Tianjin, P. R. China
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
| |
Collapse
|
24
|
Vandepas LE, Stefani C, Domeier PP, Traylor-Knowles N, Goetz FW, Browne WE, Lacy-Hulbert A. Extracellular DNA traps in a ctenophore demonstrate immune cell behaviors in a non-bilaterian. Nat Commun 2024; 15:2990. [PMID: 38582801 PMCID: PMC10998917 DOI: 10.1038/s41467-024-46807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/08/2024] [Indexed: 04/08/2024] Open
Abstract
The formation of extracellular DNA traps (ETosis) is a first response mechanism by specific immune cells following exposure to microbes. Initially characterized in vertebrate neutrophils, cells capable of ETosis have been discovered recently in diverse non-vertebrate taxa. To assess the conservation of ETosis between evolutionarily distant non-vertebrate phyla, we observed and quantified ETosis using the model ctenophore Mnemiopsis leidyi and the oyster Crassostrea gigas. Here we report that ctenophores - thought to have diverged very early from the metazoan stem lineage - possess immune-like cells capable of phagocytosis and ETosis. We demonstrate that both Mnemiopsis and Crassostrea immune cells undergo ETosis after exposure to diverse microbes and chemical agents that stimulate ion flux. We thus propose that ETosis is an evolutionarily conserved metazoan defense against pathogens.
Collapse
Affiliation(s)
- Lauren E Vandepas
- NRC Research Associateship Program, Seattle, WA, USA.
- Northwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, Seattle, WA, 98112, USA.
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA.
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
| | - Caroline Stefani
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Phillip P Domeier
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Nikki Traylor-Knowles
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, 33149, USA
| | - Frederick W Goetz
- Northwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - William E Browne
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Adam Lacy-Hulbert
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| |
Collapse
|
25
|
Kalienkova V, Dandamudi M, Paulino C, Lynagh T. Structural basis for excitatory neuropeptide signaling. Nat Struct Mol Biol 2024; 31:717-726. [PMID: 38337033 PMCID: PMC11026163 DOI: 10.1038/s41594-023-01198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/05/2023] [Indexed: 02/12/2024]
Abstract
Rapid signaling between neurons is mediated by ligand-gated ion channels, cell-surface proteins with an extracellular ligand-binding domain and a membrane-spanning ion channel domain. The degenerin/epithelial sodium channel (DEG/ENaC) superfamily is diverse in terms of its gating stimuli, with some DEG/ENaCs gated by neuropeptides, and others gated by pH, mechanical force or enzymatic activity. The mechanism by which ligands bind to and activate DEG/ENaCs is poorly understood. Here we dissected the structural basis for neuropeptide-gated activity of a neuropeptide-gated DEG/ENaC, FMRFamide-gated sodium channel 1 (FaNaC1) from the annelid worm Malacoceros fuliginosus, using cryo-electron microscopy. Structures of FaNaC1 in the ligand-free resting state and in several ligand-bound states reveal the ligand-binding site and capture the ligand-induced conformational changes of channel gating, which we verified with complementary mutagenesis experiments. Our results illuminate channel gating in DEG/ENaCs and offer a structural template for experimental dissection of channel pharmacology and ion conduction.
Collapse
Affiliation(s)
- Valeria Kalienkova
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Cristina Paulino
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
- Biochemistry Center, Heidelberg University, Heidelberg, Germany.
| | - Timothy Lynagh
- Michael Sars Centre, University of Bergen, Bergen, Norway.
| |
Collapse
|
26
|
Zhang B, Jia C, Li M, Wang K, Chen J, Zhao J. Multiomics integration for the function of bacterial outer membrane vesicles in the larval settlement of marine sponges. Front Microbiol 2024; 15:1268813. [PMID: 38468855 PMCID: PMC10925772 DOI: 10.3389/fmicb.2024.1268813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/26/2024] [Indexed: 03/13/2024] Open
Abstract
Bacterial outer membrane vesicles (OMVs) contain a variety of chemical compounds and play significant roles in maintaining symbiotic relationships in a changing ocean, but little is known about their function, particularly in sponge larval development. During the growth of sponge Tedania sp., OMVs from Bacteroidetes species significantly promoted larval settlement, and Tenacibaculum mesophilum SP-7-OMVs were selected as a representative strain for further investigation. According to OMVs metabolomics, larval settlement might be connected to organic acids and derivatives. The multiomics analysis of the T. mesophilum genome, SP-7-OMVs metabolome, and larval transcriptome revealed 47 shared KEGG pathways. Among the number of candidate metabolites, arginine was chosen for its greater ability to increase the settlement rate and its role as the principal substrate for nitric oxide (NO) synthesis of sponge larvae. In summary, these results demonstrated that sponge-associated bacteria might utilize OMVs and their cargo to support host development and make up for host metabolic pathway deficiencies. This study enhances our fundamental knowledge of OMVs in interactions between metazoan hosts and microorganisms that are crucial in the coevolution of marine ecosystems and the complex marine environment.
Collapse
Affiliation(s)
- Beibei Zhang
- College of Ocean and Earth Sciences, Xiamen University, Xaimen, Fujian, China
| | - Chenzheng Jia
- College of Ocean and Earth Sciences, Xiamen University, Xaimen, Fujian, China
| | - Mingyu Li
- College of Ocean and Earth Sciences, Xiamen University, Xaimen, Fujian, China
| | - Kai Wang
- College of Ocean and Earth Sciences, Xiamen University, Xaimen, Fujian, China
| | - Jun Chen
- College of Ocean and Earth Sciences, Xiamen University, Xaimen, Fujian, China
| | - Jing Zhao
- College of Ocean and Earth Sciences, Xiamen University, Xaimen, Fujian, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
27
|
Talajić A, Dominko K, Lončarić M, Ambriović-Ristov A, Ćetković H. The ancestral type of the R-RAS protein has oncogenic potential. Cell Mol Biol Lett 2024; 29:27. [PMID: 38383288 PMCID: PMC10882905 DOI: 10.1186/s11658-024-00546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND The R-RAS2 is a small GTPase highly similar to classical RAS proteins at the regulatory and signaling levels. The high evolutionary conservation of R-RAS2, its links to basic cellular processes and its role in cancer, make R-RAS2 an interesting research topic. To elucidate the evolutionary history of R-RAS proteins, we investigated and compared structural and functional properties of ancestral type R-RAS protein with human R-RAS2. METHODS Bioinformatics analysis were used to elucidate the evolution of R-RAS proteins. Intrinsic GTPase activity of purified human and sponge proteins was analyzed with GTPase-GloTM Assay kit. The cell model consisted of human breast cancer cell lines MCF-7 and MDA-MB-231 transiently transfected with EsuRRAS2-like or HsaRRAS2. Biological characterization of R-RAS2 proteins was performed by Western blot on whole cell lysates or cell adhesion protein isolates, immunofluorescence and confocal microscopy, MTT test, colony formation assay, wound healing and Boyden chamber migration assays. RESULTS We found that the single sponge R-RAS2-like gene/protein probably reflects the properties of the ancestral R-RAS protein that existed prior to duplications during the transition to Bilateria, and to Vertebrata. Biochemical characterization of sponge and human R-RAS2 showed that they have the same intrinsic GTPase activity and RNA binding properties. By testing cell proliferation, migration and colony forming efficiency in MDA-MB-231 human breast cancer cells, we showed that the ancestral type of the R-RAS protein, sponge R-RAS2-like, enhances their oncogenic potential, similar to human R-RAS2. In addition, sponge and human R-RAS2 were not found in focal adhesions, but both homologs play a role in their regulation by increasing talin1 and vinculin. CONCLUSIONS This study suggests that the ancestor of all animals possessed an R-RAS2-like protein with oncogenic properties similar to evolutionarily more recent versions of the protein, even before the appearance of true tissue and the origin of tumors. Therefore, we have unraveled the evolutionary history of R-RAS2 in metazoans and improved our knowledge of R-RAS2 properties, including its structure, regulation and function.
Collapse
Affiliation(s)
- Antea Talajić
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Kristina Dominko
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Marija Lončarić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Helena Ćetković
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
28
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
29
|
van der Sprong J, de Voogd NJ, McCormack GP, Sandoval K, Schätzle S, Voigt O, Erpenbeck D, Wörheide G, Vargas S. A novel target-enriched multilocus assay for sponges (Porifera): Red Sea Haplosclerida (Demospongiae) as a test case. Mol Ecol Resour 2024; 24:e13891. [PMID: 38010340 DOI: 10.1111/1755-0998.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023]
Abstract
With declining biodiversity worldwide, a better understanding of species diversity and their relationships is imperative for conservation and management efforts. Marine sponges are species-rich ecological key players on coral reefs, but their species diversity is still poorly understood. This is particularly true for the demosponge order Haplosclerida, whose systematic relationships are contentious due to the incongruencies between morphological and molecular phylogenetic hypotheses. The single gene markers applied in previous studies did not resolve these discrepancies. Hence, there is a high need for a genome-wide approach to derive a phylogenetically robust classification and understand this group's evolutionary relationships. To this end, we developed a target enrichment-based multilocus probe assay for the order Haplosclerida using transcriptomic data. This probe assay consists of 20,000 enrichment probes targeting 2956 ultraconserved elements in coding (i.e. exon) regions across the genome and was tested on 26 haplosclerid specimens from the Red Sea. Our target-enrichment approach correctly placed our samples in a well-supported phylogeny, in agreement with previous haplosclerid molecular phylogenies. Our results demonstrate the applicability of high-resolution genomic methods in a systematically complex marine invertebrate group and provide a promising approach for robust phylogenies of Haplosclerida. Subsequently, this will lead to biologically unambiguous taxonomic revisions, better interpretations of biological and ecological observations and new avenues for applied research, conservation and managing declining marine diversity.
Collapse
Affiliation(s)
- Joëlle van der Sprong
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicole Joy de Voogd
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Grace Patricia McCormack
- Molecular Evolution and Systematics Laboratory, Zoology, School of Natural Sciences & Ryan Institute, University of Galway, Galway, Ireland
| | - Kenneth Sandoval
- Molecular Evolution and Systematics Laboratory, Zoology, School of Natural Sciences & Ryan Institute, University of Galway, Galway, Ireland
| | - Simone Schätzle
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Oliver Voigt
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dirk Erpenbeck
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Bavarian State Collections of Palaeontology and Geology, Munich, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
30
|
Goodheart JA, Rio RA, Taraporevala NF, Fiorenza RA, Barnes SR, Morrill K, Jacob MAC, Whitesel C, Masterson P, Batzel GO, Johnston HT, Ramirez MD, Katz PS, Lyons DC. A chromosome-level genome for the nudibranch gastropod Berghia stephanieae helps parse clade-specific gene expression in novel and conserved phenotypes. BMC Biol 2024; 22:9. [PMID: 38233809 PMCID: PMC10795318 DOI: 10.1186/s12915-024-01814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND How novel phenotypes originate from conserved genes, processes, and tissues remains a major question in biology. Research that sets out to answer this question often focuses on the conserved genes and processes involved, an approach that explicitly excludes the impact of genetic elements that may be classified as clade-specific, even though many of these genes are known to be important for many novel, or clade-restricted, phenotypes. This is especially true for understudied phyla such as mollusks, where limited genomic and functional biology resources for members of this phylum have long hindered assessments of genetic homology and function. To address this gap, we constructed a chromosome-level genome for the gastropod Berghia stephanieae (Valdés, 2005) to investigate the expression of clade-specific genes across both novel and conserved tissue types in this species. RESULTS The final assembled and filtered Berghia genome is comparable to other high-quality mollusk genomes in terms of size (1.05 Gb) and number of predicted genes (24,960 genes) and is highly contiguous. The proportion of upregulated, clade-specific genes varied across tissues, but with no clear trend between the proportion of clade-specific genes and the novelty of the tissue. However, more complex tissue like the brain had the highest total number of upregulated, clade-specific genes, though the ratio of upregulated clade-specific genes to the total number of upregulated genes was low. CONCLUSIONS Our results, when combined with previous research on the impact of novel genes on phenotypic evolution, highlight the fact that the complexity of the novel tissue or behavior, the type of novelty, and the developmental timing of evolutionary modifications will all influence how novel and conserved genes interact to generate diversity.
Collapse
Affiliation(s)
- Jessica A Goodheart
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA.
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| | - Robin A Rio
- Bioengineering Department, Stanford University, Stanford, CA, USA
| | - Neville F Taraporevala
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Department of Wildland Resources, Utah State University, Logan, UT, USA
| | - Rose A Fiorenza
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Seth R Barnes
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Kevin Morrill
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Mark Allan C Jacob
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Carl Whitesel
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Park Masterson
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Grant O Batzel
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Hereroa T Johnston
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - M Desmond Ramirez
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Paul S Katz
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Deirdre C Lyons
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
31
|
Kloc M, Halasa M, Kubiak JZ, Ghobrial RM. Invertebrate Immunity, Natural Transplantation Immunity, Somatic and Germ Cell Parasitism, and Transposon Defense. Int J Mol Sci 2024; 25:1072. [PMID: 38256145 PMCID: PMC10815962 DOI: 10.3390/ijms25021072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
While the vertebrate immune system consists of innate and adaptive branches, invertebrates only have innate immunity. This feature makes them an ideal model system for studying the cellular and molecular mechanisms of innate immunity sensu stricto without reciprocal interferences from adaptive immunity. Although invertebrate immunity is evolutionarily older and a precursor of vertebrate immunity, it is far from simple. Despite lacking lymphocytes and functional immunoglobulin, the invertebrate immune system has many sophisticated mechanisms and features, such as long-term immune memory, which, for decades, have been exclusively attributed to adaptive immunity. In this review, we describe the cellular and molecular aspects of invertebrate immunity, including the epigenetic foundation of innate memory, the transgenerational inheritance of immunity, genetic immunity against invading transposons, the mechanisms of self-recognition, natural transplantation, and germ/somatic cell parasitism.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA; (M.H.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Marta Halasa
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA; (M.H.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Jacek Z. Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute (WIM-PIB), Szaserow 128, 04-141 Warsaw, Poland;
- Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, CNRS, UMR 6290, 35043 Rennes, France
| | - Rafik M. Ghobrial
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA; (M.H.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
32
|
Díez-Vives C, Riesgo A. High compositional and functional similarity in the microbiome of deep-sea sponges. THE ISME JOURNAL 2024; 18:wrad030. [PMID: 38365260 PMCID: PMC10837836 DOI: 10.1093/ismejo/wrad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 02/18/2024]
Abstract
Sponges largely depend on their symbiotic microbes for their nutrition, health, and survival. This is especially true in high microbial abundance (HMA) sponges, where filtration is usually deprecated in favor of a larger association with prokaryotic symbionts. Sponge-microbiome association is substantially less understood for deep-sea sponges than for shallow water species. This is most unfortunate, since HMA sponges can form massive sponge grounds in the deep sea, where they dominate the ecosystems, driving their biogeochemical cycles. Here, we assess the microbial transcriptional profile of three different deep-sea HMA sponges in four locations of the Cantabrian Sea and compared them to shallow water HMA and LMA (low microbial abundance) sponge species. Our results reveal that the sponge microbiome has converged in a fundamental metabolic role for deep-sea sponges, independent of taxonomic relationships or geographic location, which is shared in broad terms with shallow HMA species. We also observed a large number of redundant microbial members performing the same functions, likely providing stability to the sponge inner ecosystem. A comparison between the community composition of our deep-sea sponges and another 39 species of HMA sponges from deep-sea and shallow habitats, belonging to the same taxonomic orders, suggested strong homogeneity in microbial composition (i.e. weak species-specificity) in deep sea species, which contrasts with that observed in shallow water counterparts. This convergence in microbiome composition and functionality underscores the adaptation to an extremely restrictive environment with the aim of exploiting the available resources.
Collapse
Affiliation(s)
- Cristina Díez-Vives
- Department of Systems Biology, Centro Nacional de Biotecnología, c/ Darwin, 3, 28049 Madrid, Spain
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
| | - Ana Riesgo
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), c/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
33
|
Hsiao J, Deng LC, Moroz LL, Chalasani SH, Edsinger E. Ocean to Tree: Leveraging Single-Molecule RNA-Seq to Repair Genome Gene Models and Improve Phylogenomic Analysis of Gene and Species Evolution. Methods Mol Biol 2024; 2757:461-490. [PMID: 38668979 PMCID: PMC11112408 DOI: 10.1007/978-1-0716-3642-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Understanding gene evolution across genomes and organisms, including ctenophores, can provide unexpected biological insights. It enables powerful integrative approaches that leverage sequence diversity to advance biomedicine. Sequencing and bioinformatic tools can be inexpensive and user-friendly, but numerous options and coding can intimidate new users. Distinct challenges exist in working with data from diverse species but may go unrecognized by researchers accustomed to gold-standard genomes. Here, we provide a high-level workflow and detailed pipeline to enable animal collection, single-molecule sequencing, and phylogenomic analysis of gene and species evolution. As a demonstration, we focus on (1) PacBio RNA-seq of the genome-sequenced ctenophore Mnemiopsis leidyi, (2) diversity and evolution of the mechanosensitive ion channel Piezo in genetic models and basal-branching animals, and (3) associated challenges and solutions to working with diverse species and genomes, including gene model updating and repair using single-molecule RNA-seq. We provide a Python Jupyter Notebook version of our pipeline (GitHub Repository: Ctenophore-Ocean-To-Tree-2023 https://github.com/000generic/Ctenophore-Ocean-To-Tree-2023 ) that can be run for free in the Google Colab cloud to replicate our findings or modified for specific or greater use. Our protocol enables users to design new sequencing projects in ctenophores, marine invertebrates, or other novel organisms. It provides a simple, comprehensive platform that can ease new user entry into running their evolutionary sequence analyses.
Collapse
Affiliation(s)
- Jan Hsiao
- Molecular Neurobiology Laboratory, Salk Institute for Biological Study, La Jolla, CA 92037
| | - Lola Chenxi Deng
- Molecular Neurobiology Laboratory, Salk Institute for Biological Study, La Jolla, CA 92037
| | - Leonid L. Moroz
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080
- Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL32611
| | - Sreekanth H. Chalasani
- Molecular Neurobiology Laboratory, Salk Institute for Biological Study, La Jolla, CA 92037
| | - Eric Edsinger
- Molecular Neurobiology Laboratory, Salk Institute for Biological Study, La Jolla, CA 92037
| |
Collapse
|
34
|
Gooshvar S, Madhu G, Ruszczyk M, Prakash VN. Non-Bilaterians as Model Systems for Tissue Mechanics. Integr Comp Biol 2023; 63:1442-1454. [PMID: 37355780 DOI: 10.1093/icb/icad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023] Open
Abstract
In animals, epithelial tissues are barriers against the external environment, providing protection against biological, chemical, and physical damage. Depending on the organism's physiology and behavior, these tissues encounter different types of mechanical forces and need to provide a suitable adaptive response to ensure success. Therefore, understanding tissue mechanics in different contexts is an important research area. Here, we review recent tissue mechanics discoveries in three early divergent non-bilaterian systems-Trichoplax adhaerens, Hydra vulgaris, and Aurelia aurita. We highlight each animal's simple body plan and biology and unique, rapid tissue remodeling phenomena that play a crucial role in its physiology. We also discuss the emergent large-scale mechanics in these systems that arise from small-scale phenomena. Finally, we emphasize the potential of these non-bilaterian animals to be model systems in a bottom-up approach for further investigation in tissue mechanics.
Collapse
Affiliation(s)
- Setareh Gooshvar
- Department of Physics, College of Arts and Sciences, University of Miami, 33146 FL, USA
| | - Gopika Madhu
- Department of Physics, College of Arts and Sciences, University of Miami, 33146 FL, USA
| | - Melissa Ruszczyk
- Department of Physics, College of Arts and Sciences, University of Miami, 33146 FL, USA
| | - Vivek N Prakash
- Department of Physics, College of Arts and Sciences, University of Miami, 33146 FL, USA
- Department of Biology, College of Arts and Sciences, University of Miami, 33146 FL, USA
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, 33149 FL, USA
| |
Collapse
|
35
|
Groussman RD, Blaskowski S, Coesel SN, Armbrust EV. MarFERReT, an open-source, version-controlled reference library of marine microbial eukaryote functional genes. Sci Data 2023; 10:926. [PMID: 38129449 PMCID: PMC10739892 DOI: 10.1038/s41597-023-02842-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Metatranscriptomics generates large volumes of sequence data about transcribed genes in natural environments. Taxonomic annotation of these datasets depends on availability of curated reference sequences. For marine microbial eukaryotes, current reference libraries are limited by gaps in sequenced organism diversity and barriers to updating libraries with new sequence data, resulting in taxonomic annotation of about half of eukaryotic environmental transcripts. Here, we introduce Marine Functional EukaRyotic Reference Taxa (MarFERReT), a marine microbial eukaryotic sequence library designed for use with taxonomic annotation of eukaryotic metatranscriptomes. We gathered 902 publicly accessible marine eukaryote genomes and transcriptomes and assessed their sequence quality and cross-contamination issues, selecting 800 validated entries for inclusion in MarFERReT. Version 1.1 of MarFERReT contains reference sequences from 800 marine eukaryotic genomes and transcriptomes, covering 453 species- and strain-level taxa, totaling nearly 28 million protein sequences with associated NCBI and PR2 Taxonomy identifiers and Pfam functional annotations. The MarFERReT project repository hosts containerized build scripts, documentation on installation and use case examples, and information on new versions of MarFERReT.
Collapse
Affiliation(s)
- R D Groussman
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA.
| | - S Blaskowski
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA
- Molecular Engineering and Sciences Institute, University of Washington, Molecular Engineering & Sciences Building 3946 W Stevens Way NE, Seattle, WA, 98195, USA
| | - S N Coesel
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA
| | - E V Armbrust
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA.
| |
Collapse
|
36
|
Zimmermann B, Montenegro JD, Robb SMC, Fropf WJ, Weilguny L, He S, Chen S, Lovegrove-Walsh J, Hill EM, Chen CY, Ragkousi K, Praher D, Fredman D, Schultz D, Moran Y, Simakov O, Genikhovich G, Gibson MC, Technau U. Topological structures and syntenic conservation in sea anemone genomes. Nat Commun 2023; 14:8270. [PMID: 38092765 PMCID: PMC10719294 DOI: 10.1038/s41467-023-44080-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
There is currently little information about the evolution of gene clusters, genome architectures and karyotypes in early branching animals. Slowly evolving anthozoan cnidarians can be particularly informative about the evolution of these genome features. Here we report chromosome-level genome assemblies of two related anthozoans, the sea anemones Nematostella vectensis and Scolanthus callimorphus. We find a robust set of 15 chromosomes with a clear one-to-one correspondence between the two species. Both genomes show chromosomal conservation, allowing us to reconstruct ancestral cnidarian and metazoan chromosomal blocks, consisting of at least 19 and 16 ancestral linkage groups, respectively. We show that, in contrast to Bilateria, the Hox and NK clusters of investigated cnidarians are largely disintegrated, despite the presence of staggered hox/gbx expression in Nematostella. This loss of microsynteny conservation may be facilitated by shorter distances between cis-regulatory sequences and their cognate transcriptional start sites. We find no clear evidence for topologically associated domains, suggesting fundamental differences in long-range gene regulation compared to vertebrates. These data suggest that large sets of ancestral metazoan genes have been retained in ancestral linkage groups of some extant lineages; yet, higher order gene regulation with associated 3D architecture may have evolved only after the cnidarian-bilaterian split.
Collapse
Affiliation(s)
- Bob Zimmermann
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Research platform SinCeReSt, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Juan D Montenegro
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Research platform SinCeReSt, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Sofia M C Robb
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Whitney J Fropf
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Lukas Weilguny
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Shuonan He
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Jessica Lovegrove-Walsh
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Eric M Hill
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Cheng-Yi Chen
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Katerina Ragkousi
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
- Department of Biology, Amherst College, Amherst, MA, 01002, USA
| | - Daniela Praher
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - David Fredman
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Darrin Schultz
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Yehu Moran
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Research platform SinCeReSt, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
| | - Ulrich Technau
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Research platform SinCeReSt, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Max Perutz laboratories, University of Vienna, Dr. Bohrgasse 5, 1030, Vienna, Austria.
| |
Collapse
|
37
|
Lavrov DV, Diaz MC, Maldonado M, Morrow CC, Perez T, Pomponi SA, Thacker RW. Phylomitogenomics bolsters the high-level classification of Demospongiae (phylum Porifera). PLoS One 2023; 18:e0287281. [PMID: 38048310 PMCID: PMC10695373 DOI: 10.1371/journal.pone.0287281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
Class Demospongiae is the largest in the phylum Porifera (Sponges) and encompasses nearly 8,000 accepted species in three subclasses: Keratosa, Verongimorpha, and Heteroscleromorpha. Subclass Heteroscleromorpha contains ∼90% of demosponge species and is subdivided into 17 orders. The higher level classification of demosponges underwent major revision as the result of nearly three decades of molecular studies. However, because most of the previous molecular work only utilized partial data from a small number of nuclear and mitochondrial (mt) genes, this classification scheme needs to be tested by larger datasets. Here we compiled a mt dataset for 136 demosponge species-including 64 complete or nearly complete and six partial mt-genome sequences determined or assembled for this study-and used it to test phylogenetic relationships among Demospongiae in general and Heteroscleromorpha in particular. We also investigated the phylogenetic position of Myceliospongia araneosa, a highly unusual demosponge without spicules and spongin fibers, currently classified as Demospongiae incertae sedis, for which molecular data were not available. Our results support the previously inferred sister-group relationship between Heteroscleromorpha and Keratosa + Verongimorpha and suggest five main clades within Heteroscleromorpha: Clade C0 composed of order Haplosclerida; Clade C1 composed of Scopalinida, Sphaerocladina, and Spongillida; Clade C2 composed of Axinellida, Biemnida, Bubarida; Clade C3 composed of Tetractinellida; and Clade C4 composed of Agelasida, Clionaida, Desmacellida, Merliida, Suberitida, Poecilosclerida, Polymastiida, and Tethyida. The inferred relationships among these clades were (C0(C1(C2(C3+C4)))). Analysis of molecular data from M. araneosa placed it in the C3 clade as a sister taxon to the highly skeletonized tetractinellids Microscleroderma sp. and Leiodermatium sp. Molecular clock analysis dated divergences among the major clades in Heteroscleromorpha from the Cambrian to the Early Silurian, the origins of most heteroscleromorph orders in the middle Paleozoic, and the most basal splits within these orders around the Paleozoic to Mesozoic transition. Overall, the results of this study are mostly congruent with the accepted classification of Heteroscleromorpha, but add temporal perspective and new resolution to phylogenetic relationships within this subclass.
Collapse
Affiliation(s)
- Dennis V. Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
| | - Maria C. Diaz
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, United States of America
- Museo Marino de Margarita, Boca de Río, Nueva Esparta, Venezuela
| | - Manuel Maldonado
- Department of Marine Ecology, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Girona, Spain
| | - Christine C. Morrow
- Zoology Department, School of Natural Sciences & Ryan Institute, NUI Galway, University Road, Galway, Ireland
- Ireland and Queen’s University Marine Laboratory, Portaferry, Northern Ireland
| | - Thierry Perez
- Institut Méditerranéen de la Biodiversité et d’Ecologie marine et continentale (IMBE), CNRS, Aix-Marseille Université, IRD, Avignon Université City, Provence, France
| | - Shirley A. Pomponi
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, United States of America
| | - Robert W. Thacker
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States of America
- Smithsonian Tropical Research Institute, Balboa, Panama City, Republic of Panama
| |
Collapse
|
38
|
Fodor I, Yañez-Guerra LA, Kiss B, Büki G, Pirger Z. Copper-transporting ATPases throughout the animal evolution - From clinics to basal neuron-less animals. Gene 2023; 885:147720. [PMID: 37597707 DOI: 10.1016/j.gene.2023.147720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Copper-transporting ATPases are a group of heavy metal-transporting proteins and which can be found in all living organisms. In animals, they are generally referred to as ATP7 proteins and are involved in many different physiological processes including the maintaining of copper homeostasis and the supply of copper to cuproenzymes. A single ATP7 gene is present in non-chordate animals while it is divided into ATP7A and ATP7B in chordates. In humans, dysfunction of ATP7 proteins can lead to severe genetic disorders, such as, Menkes disease and Wilson's disease, which are characterized by abnormal copper transport and accumulation, causing significant health complications. Therefore, there is a substantial amount of research on ATP7 genes and ATP7 proteins in humans and mice to understand pathophysiological conditions and find potential therapeutic interventions. Copper-transporting ATPases have also been investigated in some non-mammalian vertebrates, protostomes, single-cellular eukaryotes, prokaryotes, and archaea to gain useful evolutionary insights. However, ATP7 function in many animals has been somewhat neglected, particularly in non-bilaterians. Previous reviews on this topic only broadly summarized the available information on the function and evolution of ATP7 genes and ATP7 proteins and included only the classic vertebrate and invertebrate models. Given this, and the fact that a considerable amount of new information on this topic has been published in recent years, the present study was undertaken to provide an up-to-date, comprehensive summary of ATP7s/ATP7s and give new insights into their evolutionary relationships. Additionally, this work provides a framework for studying these genes and proteins in non-bilaterians. As early branching animals, they are important to understand the evolution of function of these proteins and their important role in copper homeostasis and neurotransmission.
Collapse
Affiliation(s)
- István Fodor
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, H-8237 Tihany, Hungary.
| | | | - Bence Kiss
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Gergely Büki
- Department of Medical Genetics, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, H-8237 Tihany, Hungary
| |
Collapse
|
39
|
Shah K, He S, Turner DJ, Corbo J, Rebbani K, Bateman JM, Cheloufi S, Igreja C, Valkov E, Murn J. A paradigm for regulation at the effector interface with RNA-binding proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558714. [PMID: 37790431 PMCID: PMC10542489 DOI: 10.1101/2023.09.20.558714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
RNA-binding proteins (RBPs) are key regulators of gene expression, but how RBPs convey regulatory instructions to the core effectors of RNA processing is unclear. Here we document the existence and functions of a multivalent RBP-effector interface. We show that the effector interface of a deeply conserved RBP with an essential role in metazoan development, Unkempt, is mediated by a novel type of 'dual-purpose' peptide motifs that can contact two different surfaces of interacting proteins. Unexpectedly, we find that the multivalent contacts do not merely serve effector recruitment but are required for the accuracy of RNA recognition by the recruiting RBP. Systems analyses reveal that multivalent RBP-effector contacts can repurpose the principal activity of an effector for a different function, as we demonstrate for reuse of the central eukaryotic mRNA decay factor CCR4-NOT in translational control. Our study establishes the molecular assembly and functional principles of an RBP-effector interface, with implications for the evolution and function of RBP-operated regulatory networks.
Collapse
Affiliation(s)
- Kriti Shah
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA 92521, U.S.A
- Center for RNA Biology and Medicine, 900 University Ave, Riverside, CA 92521, U.S.A
- These authors contributed equally
| | - Shiyang He
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA 92521, U.S.A
- Center for RNA Biology and Medicine, 900 University Ave, Riverside, CA 92521, U.S.A
- These authors contributed equally
| | - David J. Turner
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
- These authors contributed equally
| | - Joshua Corbo
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, U.S.A
| | - Khadija Rebbani
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Joseph M. Bateman
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Sihem Cheloufi
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA 92521, U.S.A
- Center for RNA Biology and Medicine, 900 University Ave, Riverside, CA 92521, U.S.A
- Stem Cell Center, University of California, Riverside, 900 University Ave, Riverside, CA 92521, U.S.A
| | - Cátia Igreja
- Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, D-72076 Tübingen, Germany
| | - Eugene Valkov
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Jernej Murn
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA 92521, U.S.A
- Center for RNA Biology and Medicine, 900 University Ave, Riverside, CA 92521, U.S.A
- Lead contact
| |
Collapse
|
40
|
Steffen K, Proux-Wéra E, Soler L, Churcher A, Sundh J, Cárdenas P. Whole genome sequence of the deep-sea sponge Geodia barretti (Metazoa, Porifera, Demospongiae). G3 (BETHESDA, MD.) 2023; 13:jkad192. [PMID: 37619978 PMCID: PMC10542158 DOI: 10.1093/g3journal/jkad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023]
Abstract
Sponges are among the earliest branching extant animals. As such, genetic data from this group are valuable for understanding the evolution of various traits and processes in other animals. However, like many marine organisms, they are notoriously difficult to sequence, and hence, genomic data are scarce. Here, we present the draft genome assembly for the North Atlantic deep-sea high microbial abundance species Geodia barretti Bowerbank 1858, from a single individual collected on the West Coast of Sweden. The nuclear genome assembly has 4,535 scaffolds, an N50 of 48,447 bp and a total length of 144 Mb; the mitochondrial genome is 17,996 bp long. BUSCO completeness was 71.5%. The genome was annotated using a combination of ab initio and evidence-based methods finding 31,884 protein-coding genes.
Collapse
Affiliation(s)
- Karin Steffen
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| | - Estelle Proux-Wéra
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna SE-17121, Sweden
| | - Lucile Soler
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Uppsala University, Uppsala 752 37, Sweden
| | - Allison Churcher
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Umeå University, Umeå 901 87, Sweden
| | - John Sundh
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna SE-17121, Sweden
| | - Paco Cárdenas
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| |
Collapse
|
41
|
Xiang X, Vilar Gomez AA, Blomberg SP, Yuan H, Degnan BM, Degnan SM. Potential for host-symbiont communication via neurotransmitters and neuromodulators in an aneural animal, the marine sponge Amphimedon queenslandica. Front Neural Circuits 2023; 17:1250694. [PMID: 37841893 PMCID: PMC10570526 DOI: 10.3389/fncir.2023.1250694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Interkingdom signalling within a holobiont allows host and symbionts to communicate and to regulate each other's physiological and developmental states. Here we show that a suite of signalling molecules that function as neurotransmitters and neuromodulators in most animals with nervous systems, specifically dopamine and trace amines, are produced exclusively by the bacterial symbionts of the demosponge Amphimedon queenslandica. Although sponges do not possess a nervous system, A. queenslandica expresses rhodopsin class G-protein-coupled receptors that are structurally similar to dopamine and trace amine receptors. When sponge larvae, which express these receptors, are exposed to agonists and antagonists of bilaterian dopamine and trace amine receptors, we observe marked changes in larval phototactic swimming behaviour, consistent with the sponge being competent to recognise and respond to symbiont-derived trace amine signals. These results indicate that monoamines synthesised by bacterial symbionts may be able to influence the physiology of the host sponge.
Collapse
Affiliation(s)
| | | | | | | | | | - Sandie M. Degnan
- Centre for Marine Science, School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
42
|
Kumala L, Thomsen M, Canfield DE. Respiration kinetics and allometric scaling in the demosponge Halichondria panicea. BMC Ecol Evol 2023; 23:53. [PMID: 37726687 PMCID: PMC10507823 DOI: 10.1186/s12862-023-02163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The aquiferous system in sponges represents one of the simplest circulatory systems used by animals for the internal uptake and distribution of oxygen and metabolic substrates. Its modular organization enables sponges to metabolically scale with size differently than animals with an internal circulatory system. In this case, metabolic rate is typically limited by surface to volume constraints to maintain an efficient supply of oxygen and food. Here, we consider the linkeage between oxygen concentration, the respiration rates of sponges and sponge size. RESULTS We explored respiration kinetics for individuals of the demosponge Halichondria panicea with varying numbers of aquiferous modules (nmodules = 1-102). From this work we establish relationships between the sponge size, module number, maximum respiration rate (Rmax) and the half-saturation constant, Km, which is the oxygen concentration producing half of the maximum respiration rate, Rmax. We found that the nmodules in H. panicea scales consistently with sponge volume (Vsp) and that Rmax increased with sponge size with a proportionality > 1. Conversly, we found a lack of correlation between Km and sponge body size suggesting that oxygen concentration does not control the size of sponges. CONCLUSIONS The present study reveals that the addition of aquiferous modules (with a mean volume of 1.59 ± 0.22 mL) enables H. panicea in particular, and likely demosponges in general, to grow far beyond constraints limiting the size of their component modules and independent of ambient oxygen levels.
Collapse
Affiliation(s)
- Lars Kumala
- Department of Biology, University of Southern Denmark, Odense M, 5230, Denmark.
- Marine Biological Research Centre, University of Southern Denmark, Kerteminde, 5300, Denmark.
- Nordcee, Department of Biology, University of Southern Denmark, Odense M, 5230, Denmark.
| | - Malte Thomsen
- Department of Biology, University of Southern Denmark, Odense M, 5230, Denmark
- Marine Biological Research Centre, University of Southern Denmark, Kerteminde, 5300, Denmark
- Nordcee, Department of Biology, University of Southern Denmark, Odense M, 5230, Denmark
| | - Donald E Canfield
- Department of Biology, University of Southern Denmark, Odense M, 5230, Denmark
- Nordcee, Department of Biology, University of Southern Denmark, Odense M, 5230, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Odense M, 5230, Denmark
| |
Collapse
|
43
|
Ruiz-Trillo I, Kin K, Casacuberta E. The Origin of Metazoan Multicellularity: A Potential Microbial Black Swan Event. Annu Rev Microbiol 2023; 77:499-516. [PMID: 37406343 DOI: 10.1146/annurev-micro-032421-120023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The emergence of animals from their unicellular ancestors is a major evolutionary event. Thanks to the study of diverse close unicellular relatives of animals, we now have a better grasp of what the unicellular ancestor of animals was like. However, it is unclear how that unicellular ancestor of animals became the first animals. To explain this transition, two popular theories, the choanoblastaea and the synzoospore, have been proposed. We will revise and expose the flaws in these two theories while showing that, due to the limits of our current knowledge, the origin of animals is a biological black swan event. As such, the origin of animals defies retrospective explanations. Therefore, we should be extra careful not to fall for confirmation biases based on few data and, instead, embrace this uncertainty and be open to alternative scenarios. With the aim to broaden the potential explanations on how animals emerged, we here propose two novel and alternative scenarios. In any case, to find the answer to how animals evolved, additional data will be required, as will the hunt for microscopic creatures that are closely related to animals but have not yet been sampled and studied.
Collapse
Affiliation(s)
- Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain;
- ICREA, Barcelona, Spain
| | - Koryu Kin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain;
| | - Elena Casacuberta
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain;
| |
Collapse
|
44
|
Kawasaki S, Kaneko T, Asano T, Maoka T, Takaichi S, Shomura Y. An ependymin-related blue carotenoprotein decorates marine blue sponge. J Biol Chem 2023; 299:105110. [PMID: 37517696 PMCID: PMC10470211 DOI: 10.1016/j.jbc.2023.105110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
Marine animals display diverse vibrant colors, but the mechanisms underlying their specific coloration remain to be clarified. Blue coloration is known to be achieved through a bathochromic shift of the orange carotenoid astaxanthin (AXT) by the crustacean protein crustacyanin, but other examples have not yet been well investigated. Here, we identified an ependymin (EPD)-related water-soluble blue carotenoprotein responsible for the specific coloration of the marine blue sponge Haliclona sp. EPD was originally identified in the fish brain as a protein involved in memory consolidation and neuronal regeneration. The purified blue protein, designated as EPD-related blue carotenoprotein-1, was identified as a secreted glycoprotein. We show that it consists of a heterodimer that binds orange AXT and mytiloxanthin and exhibits a bathochromic shift. Our crystal structure analysis of the natively purified EPD-related blue carotenoprotein-1 revealed that these two carotenoids are specifically bound to the heterodimer interface, where the polyene chains are aligned in parallel to each other like in β-crustacyanin, although the two proteins are evolutionary and structurally unrelated. Furthermore, using reconstitution assays, we found that incomplete bathochromic shifts occurred when the protein bound to only AXT or mytiloxanthin. Taken together, we identified an EPD in a basal metazoan as a blue protein that decorates the sponge body by binding specific structurally unrelated carotenoids.
Collapse
Affiliation(s)
- Shinji Kawasaki
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan.
| | - Takayuki Kaneko
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Tomomi Asano
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Takashi Maoka
- Research Institute for Production Development, Kyoto, Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Yasuhito Shomura
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, Japan.
| |
Collapse
|
45
|
Hehmeyer J, Spitz F, Marlow H. Shifting landscapes: the role of 3D genomic organizations in gene regulatory strategies. Curr Opin Genet Dev 2023; 81:102064. [PMID: 37390583 PMCID: PMC10547022 DOI: 10.1016/j.gde.2023.102064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/02/2023]
Abstract
3D genome folding enables the physical storage of chromosomes into the compact volume of a cell's nucleus, allows for the accurate segregation of chromatin to daughter cells, and has been shown to be tightly coupled to the way in which genetic information is converted into transcriptional programs [1-3]. Importantly, this link between chromatin architecture and gene regulation is a selectable feature in which modifications to chromatin organization accompany, or perhaps even drive the establishment of new regulatory strategies with enduring impacts on animal body plan complexity. Here, we discuss the nature of different 3D genome folding systems found across the tree of life, with particular emphasis on metazoans, and the relative influence of these systems on gene regulation. We suggest how the properties of these folding systems have influenced regulatory strategies employed by different lineages and may have catalyzed the partitioning and specialization of genetic programs that enabled multicellularity and organ-grade body plan complexity.
Collapse
Affiliation(s)
- Jenks Hehmeyer
- Department of Organismal Biology and Anatomy, The University of Chicago, USA
| | - François Spitz
- Department of Human Genetics, The University of Chicago, USA
| | - Heather Marlow
- Department of Organismal Biology and Anatomy, The University of Chicago, USA.
| |
Collapse
|
46
|
Günther J, Galuska SP. A brief history of galectin evolution. Front Immunol 2023; 14:1147356. [PMID: 37457740 PMCID: PMC10343441 DOI: 10.3389/fimmu.2023.1147356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Galectins are a family of carbohydrate-binding proteins found in vertebrates in great abundance and diversity in terms of both structure and ligand-binding properties as well as physiological function. Proteins with clear relationships to vertebrate galectins are already found in primitive Bilateria. The increasing amount of accessible well-annotated bilaterian genomes has allowed us to reveal, through synteny analyses, a new hypothesis about the phylogenetic history of the galectin family in this animal group. Thus, we can trace the genomic localization of the putative ancestral Bilateria galectin back to the scallops as a still very primitive slow-evolving bilaterian lineage. Intriguingly, our analyses show that the primordial galectin of the Deuterostomata most likely exhibited galectin-8-like characteristics. This basal standing galectin is characterized by a tandem-repeat type with two carbohydrate recognition domains as well as by a sialic acid binding property of the N-terminal domain, which is typical for galectin-8. With the help of synteny, the amplification of this potential primordial galectin to the broad galectin cosmos of modern jawed vertebrates can be reconstructed. Therefore, it is possible to distinguish between the paralogs resulting from small-scale duplication and the ohnologues generated by whole-genome duplication. Our findings support a substantially new hypothesis about the origin of the various members of the galectin family in vertebrates. This allows us to reveal new theories on the kinship relationships of the galectins of Gnatostomata. In addition, we focus for the first time on the galectines of the Cyclostomata, which as a sister group of jawed vertebrates providing important insights into the evolutionary history of the entire subphylum. Our studies also highlight a previously neglected member of the galectin family, galectin-related protein 2. This protein appears to be a widespread ohnologue of the original tandem-repeat ancestor within Gnathostomata that has not been the focus of galectin research due to its nonclassical galactose binding sequence motif and the fact that it was lost during mammalian evolution.
Collapse
|
47
|
Desplat Y, Warner JF, Blake EJ, Vijayan N, Cuvelier M, Blackwelder P, Lopez JV. Morphological and transcriptional effects of crude oil and dispersant exposure on the marine sponge Cinachyrella alloclada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162832. [PMID: 36924960 DOI: 10.1016/j.scitotenv.2023.162832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 05/13/2023]
Abstract
Marine sponges play important roles in benthic ecosystems. More than providing shelter and food to other species, they help maintain water quality by regulating nitrogen and ammonium levels in the water, and bioaccumulate heavy metals. This system, however, is particularly sensitive to sudden environmental changes including catastrophic pollution event such as oil spills. Hundreds of oil platforms are currently actively extracting oil and gas in the Gulf of Mexico. To test the vulnerability of the benthic ecosystems to oil spills, we utilized the Caribbean reef sponge, Cinachyrella alloclada, as a novel experimental indicator. We have exposed organisms to crude oil and oil dispersant for up to 24 h and measured resultant gene expression changes. Our findings indicate that 1-hour exposure to water accommodated fractions (WAF) was enough to elicit massive shifts in gene expression in sponges and host bacterial communities (8052 differentially expressed transcripts) with the up-regulation of stress related pathways, cancer related pathways, and cell integrity pathways. Genes that were upregulated included heat shock proteins, apoptosis, oncogenes (Rab/Ras, Src, CMYC), and several E3 ubiquitin ligases. 24-hour exposure of chemically enhanced WAF (CE-WAF) had the greatest impact to benthic communities, resulting in mostly downregulation of gene expression (4248 differentially expressed transcripts). Gene deregulation from 1-hour treatments follow this decreasing trend of toxicity: WAF > CE-WAF > Dispersant, while the 24-hour treatment showed a shift to CE-WAF > Dispersant > WAF in our experiments. Thus, this study supports the development of Cinachyrella alloclada as a research model organism and bioindicator species for Florida reefs and underscores the importance of developing more efficient and safer ways to remove oil in the event of a spill catastrophe.
Collapse
Affiliation(s)
- Yvain Desplat
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004, United States of America.
| | - Jacob F Warner
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28409, United States of America
| | - Emily J Blake
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004, United States of America
| | - Nidhi Vijayan
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004, United States of America
| | - Marie Cuvelier
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004, United States of America
| | - Patricia Blackwelder
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004, United States of America; UMCAM, Chemistry Department, University of Miami, Coral Gables, FL 33126, United States of America
| | - Jose V Lopez
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004, United States of America
| |
Collapse
|
48
|
Santini S, Schenkelaars Q, Jourda C, Duchesne M, Belahbib H, Rocher C, Selva M, Riesgo A, Vervoort M, Leys SP, Kodjabachian L, Le Bivic A, Borchiellini C, Claverie JM, Renard E. The compact genome of the sponge Oopsacas minuta (Hexactinellida) is lacking key metazoan core genes. BMC Biol 2023; 21:139. [PMID: 37337252 DOI: 10.1186/s12915-023-01619-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/09/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Explaining the emergence of the hallmarks of bilaterians is a central focus of evolutionary developmental biology-evodevo-and evolutionary genomics. For this purpose, we must both expand and also refine our knowledge of non-bilaterian genomes, especially by studying early branching animals, in particular those in the metazoan phylum Porifera. RESULTS We present a comprehensive analysis of the first whole genome of a glass sponge, Oopsacas minuta, a member of the Hexactinellida. Studying this class of sponge is evolutionary relevant because it differs from the three other Porifera classes in terms of development, tissue organization, ecology, and physiology. Although O. minuta does not exhibit drastic body simplifications, its genome is among the smallest of animal genomes sequenced so far, and surprisingly lacks several metazoan core genes (including Wnt and several key transcription factors). Our study also provides the complete genome of a symbiotic Archaea dominating the associated microbial community: a new Thaumarchaeota species. CONCLUSIONS The genome of the glass sponge O. minuta differs from all other available sponge genomes by its compactness and smaller number of encoded proteins. The unexpected loss of numerous genes previously considered ancestral and pivotal for metazoan morphogenetic processes most likely reflects the peculiar syncytial tissue organization in this group. Our work further documents the importance of convergence during animal evolution, with multiple convergent evolution of septate-like junctions, electrical-signaling and multiciliated cells in metazoans.
Collapse
Affiliation(s)
- Sébastien Santini
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
| | - Quentin Schenkelaars
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Jourda
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
- CIRAD, UMR PVBMT, La Réunion, France
| | - Marc Duchesne
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Hassiba Belahbib
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
| | - Caroline Rocher
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Marjorie Selva
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Madrid, Spain
- Department of Life Sciences, Natural History Museum of London, London, SW7 5BD, UK
| | - Michel Vervoort
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Laurent Kodjabachian
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Turing Center for Living Systems, Marseille, France
| | - André Le Bivic
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Marseille, France
| | | | | | - Emmanuelle Renard
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France.
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Marseille, France.
| |
Collapse
|
49
|
Smith GD, Ching WH, Cornejo-Páramo P, Wong ES. Decoding enhancer complexity with machine learning and high-throughput discovery. Genome Biol 2023; 24:116. [PMID: 37173718 PMCID: PMC10176946 DOI: 10.1186/s13059-023-02955-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Enhancers are genomic DNA elements controlling spatiotemporal gene expression. Their flexible organization and functional redundancies make deciphering their sequence-function relationships challenging. This article provides an overview of the current understanding of enhancer organization and evolution, with an emphasis on factors that influence these relationships. Technological advancements, particularly in machine learning and synthetic biology, are discussed in light of how they provide new ways to understand this complexity. Exciting opportunities lie ahead as we continue to unravel the intricacies of enhancer function.
Collapse
Affiliation(s)
- Gabrielle D Smith
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Wan Hern Ching
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia
| | - Paola Cornejo-Páramo
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Emily S Wong
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia.
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
50
|
Vandepas LE, Tassia MG, Halanych KM, Amemiya CT. Unexpected Distribution of Chitin and Chitin Synthase across Soft-Bodied Cnidarians. Biomolecules 2023; 13:biom13050777. [PMID: 37238647 DOI: 10.3390/biom13050777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Cnidarians are commonly recognized as sea jellies, corals, or complex colonies such as the Portuguese man-of-war. While some cnidarians possess rigid internal calcareous skeletons (e.g., corals), many are soft-bodied. Intriguingly, genes coding for the chitin-biosynthetic enzyme, chitin synthase (CHS), were recently identified in the model anemone Nematostella vectensis, a species lacking hard structures. Here we report the prevalence and diversity of CHS across Cnidaria and show that cnidarian chitin synthase genes display diverse protein domain organizations. We found that CHS is expressed in cnidarian species and/or developmental stages with no reported chitinous or rigid morphological structures. Chitin affinity histochemistry indicates that chitin is present in soft tissues of some scyphozoan and hydrozoan medusae. To further elucidate the biology of chitin in cnidarian soft tissues, we focused on CHS expression in N. vectensis. Spatial expression data show that three CHS orthologs are differentially expressed in Nematostella embryos and larvae during development, suggesting that chitin has an integral role in the biology of this species. Understanding how a non-bilaterian lineage such as Cnidaria employs chitin may provide new insight into hitherto unknown functions of polysaccharides in animals, as well as their role in the evolution of biological novelty.
Collapse
Affiliation(s)
- Lauren E Vandepas
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Michael G Tassia
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kenneth M Halanych
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- Departments of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Chris T Amemiya
- Department of Molecular and Cell Biology, University of California at Merced, Merced, CA 95343, USA
| |
Collapse
|