1
|
Ortolan LS, Bansal P, Primavera VI, Freitas RJRX, Wei L, Epiphanio S, Kaushansky A, Smith JD. Nilotinib attenuates vascular pathology in experimental cerebral malaria. Blood Adv 2025; 9:2473-2488. [PMID: 39993234 DOI: 10.1182/bloodadvances.2024015364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 02/26/2025] Open
Abstract
ABSTRACT Cerebral malaria (CM), a life-threatening complication of Plasmodium falciparum infection, is characterized by the sequestration of infected erythrocytes in the brain microvasculature. Our study investigated the potential of repurposing tyrosine kinase inhibitors targeting BCR-ABL1 (BCR-ABL drugs), which are also known to be effective against P falciparum blood-stage parasites, for mitigating inflammation and blood-brain barrier breakdown in CM. Our analysis demonstrated differential protective effects of BCR-ABL drugs on primary human brain microvascular endothelial cells exposed to thrombin or a P falciparum-infected erythrocyte challenge. Bosutinib attenuated both thrombin- and parasite-induced barrier alterations, whereas nilotinib was only effective against thrombin, and imatinib protected against neither. Bosutinib's barrier protective effect was associated with reduced interendothelial gap formation and decreased phosphorylation of the adherens junction protein VE-cadherin and the focal adhesion protein paxillin. In the mouse experimental CM model, nilotinib showed superior efficacy over imatinib and bosutinib. In mice, nilotinib led to fewer brain hemorrhages and less vascular congestion than the antimalaria drug artesunate at similar levels of parasitemia control. Our findings provide important mechanistic insight into the activities of BCR-ABL drugs to suppress endothelial barrier disruptive signaling in vitro and to protect in a mouse model of CM. These findings can inform the repurposing of these drugs in malaria treatment, particularly for managing cerebral complications.
Collapse
Affiliation(s)
- Luana S Ortolan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Priyanka Bansal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Veronica I Primavera
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Rodrigo J R X Freitas
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ling Wei
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Sabrina Epiphanio
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Alexis Kaushansky
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Joseph D Smith
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
2
|
Day KP, Tan MH, He Q, Ruybal-Pesántez S, Zhan Q, Tiedje KE, Pascual M. Var genes, strain hyperdiversity, and malaria transmission dynamics. Trends Parasitol 2025:S1471-4922(25)00104-7. [PMID: 40393890 DOI: 10.1016/j.pt.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 05/22/2025]
Abstract
The microbiological paradigm for surveillance of diverse pathogens requires knowledge of the variation of the major surface antigen under the most intense immune selection as immune responses to these antigens drive transmission dynamics. This creates a pathway for population genetics/genomics to be combined with mathematical modelling to describe transmission dynamics to inform public health policy. Here we consider how we can bring population genetics and population dynamics together for a highly recombining pathogen like Plasmodium falciparum. We do this through the lens of what has been recently learnt about the population genetics of the var multigene family encoding the major surface antigen of the blood stages of Plasmodium falciparum, known as PfEMP1.
Collapse
Affiliation(s)
- Karen P Day
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia.
| | - Mun Hua Tan
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | - Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Mercedes Pascual
- Department of Biology and Department of Environmental Studies, New York University, New York, NY, USA
| |
Collapse
|
3
|
McDonnell S, MacCormick IJ, Harkin K, Medina RJ, Rodriguez A, Stitt AW. From Bench to Bedside: Unraveling Cerebral Malaria and Malarial Retinopathy by Combining Clinical and Pre-Clinical Perspectives. Curr Eye Res 2025; 50:512-526. [PMID: 39976257 DOI: 10.1080/02713683.2025.2463142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/21/2025]
Abstract
Infection with Plasmodium falciparum carries a significant risk of cerebral malaria (CM). Children are particularly susceptible to human CM (HCM) which manifests as an acute neurovascular encephalopathy leading to high levels of mortality. Occurring in parallel with CM, malarial retinopathy (MR) is readily detected on ophthalmoscopy as one or more of: white-centered retinal hemorrhage, retinal whitening, and vessel discoloration. It leads to several distinct types of blood retinal barrier (BRB) breakdown. The precise molecular mechanisms underpinning CM and MR remain ill-defined, but parasitemia is known to drive progressive neurovascular obstruction and inflammation leading to cerebral and retinal edema and ischemia. Extensive clinical studies in patients with CM have shown that retinal examination is a useful approach for understanding pathology and an indicator for risk of mortality and morbidity. Fully understanding the cellular and molecular mechanisms that underpin CM and MR is important for developing new therapeutic approaches and in this regard the murine model of experimental CM (ECM) has proved to offer considerable value. Much is known about brain pathology in this model although much less is understood about the retina. In this review, we seek to evaluate MR in clinical scenarios and make comparisons with the retina from mice with ECM. Through detailed in vivo and post-mortem studies in the mouse and human retina, this review highlights the links between CM and MR and how this will aid our understanding of the disease progression and pathogenesis.
Collapse
Affiliation(s)
- Shannon McDonnell
- The Wellcome Wolfson Institute For Experimental Medicine, Queen's University Belfast, Belfast, UK
| | | | - Kevin Harkin
- The Wellcome Wolfson Institute For Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Reinhold J Medina
- Department of Eye and Vision Sciences Institute for Life Course and Medical Science, University of Liverpool, Liverpool, UK
| | - Ana Rodriguez
- Department of Microbiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Alan W Stitt
- The Wellcome Wolfson Institute For Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
4
|
Sukati S, Rattanatham R, Masangkay FR, Tseng CP, Kotepui M. Alterations in von Willebrand Factor Levels in Patients with Malaria: A Systematic Review and Meta-Analysis of Disease Severity. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:767. [PMID: 40283058 PMCID: PMC12028635 DOI: 10.3390/medicina61040767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Background and Objectives: Elevated von Willebrand factor (vWF) levels have been reported in malaria, but their relationship with disease severity remains unclear. This study aimed to compare vWF levels between Plasmodium-infected and uninfected individuals and assess changes in severe infections. Materials and Methods: The systematic review was registered in PROSPERO (CRD42024558479). A comprehensive search across six databases identified studies reporting vWF levels in malaria. A meta-analysis was conducted using a random-effects model, with standardized mean difference (SMD) as the effect measure due to varying measurement units. Heterogeneity was assessed using the I2 statistic. Results: Of 1647 identified records, 26 studies met the inclusion criteria. The meta-analysis showed significantly higher vWF levels in Plasmodium-infected individuals compared to uninfected controls (p < 0.001, SMD: 2.689 [95% CI 1.362; 4.017], I2: 98.1%, 12 studies, 3109 participants). However, no significant difference was found between severe and less severe cases (p = 0.051, SMD: 3.551 [95% CI -0.007; 7.109], I2: 99.3%, 8 studies, 1453 participants). Conclusions: vWF levels are significantly elevated in individuals with Plasmodium infections, indicating a potential role in malaria pathophysiology. Although levels tend to be higher in severe cases, current evidence is insufficient to support vWF as a reliable marker for disease severity. Further prospective and well-controlled studies are needed to validate its diagnostic and prognostic value in malaria management.
Collapse
Affiliation(s)
- Suriyan Sukati
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand;
- Hematology and Transfusion Science Research Center, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Rujikorn Rattanatham
- Medical Technology Program, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| | | | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Manas Kotepui
- Medical Technology Program, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| |
Collapse
|
5
|
Hakimi H, Yamagishi J, Sakaguchi M, Fathi A, Lee JS, Verocai GG, Kawazu SI, Asada M. ves1α genes expression is the major determinant of Babesia bovis-infected erythrocytes cytoadhesion to endothelial cells. PLoS Pathog 2025; 21:e1012583. [PMID: 40294074 PMCID: PMC12064010 DOI: 10.1371/journal.ppat.1012583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 05/09/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Babesia bovis causes the most pathogenic form of babesiosis in cattle, resulting in high mortality in naive adults. This parasite invades red blood cells (RBCs) within the bovine hosts where they multiply and produce clinical disease. Babesia bovis exports numerous proteins into invaded RBCs changing its properties. Thus, the infected RBCs (iRBCs) are capable to cytoadhere in the microvasculature of internal organs and brain, leading to respiratory distress, neurologic signs, and mortality. Variant Erythrocyte Surface Antigen 1 (VESA1) is one of those exported proteins by B. bovis which represents a major virulence factor due to its central role in immune evasion by antigenic variation and intravascular parasite sequestration. VESA1 is a heterodimer protein encoded by ves1α and ves1β multigene family and localized on the ridges, the focal point for cytoadhesion. To gain further insights into the molecular mechanisms of cytoadhesion of B. bovis, we panned the parasites with bovine brain microvasculature endothelial cells, which resulted in obtaining several clones with different cytoadherence abilities. The transcriptome analysis of 2 high and 2 low cytoadherent clones revealed that ves1α sequences were diversified, likely resulting from genomic recombination. On the other hand, ves1β sequences were almost identical among these 4 clones. Insertion and expression of ves1α of a clone with high binding into ef-1α locus of a low binding clone increased cytoadherence confirming the role of ves1α suggested by our transcriptome data. Whole genome sequencing of cytoadherent clones revealed active locus of ves1 on chromosome 2. These results suggest that VESA1a proteins encoded by ves1α genes determine the cytoadherence strength of B. bovis and they are in the active site for recombination.
Collapse
Affiliation(s)
- Hassan Hakimi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Atefeh Fathi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Jae Seung Lee
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Guilherme G. Verocai
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Shin-ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Masahito Asada
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
6
|
Hadjimichael E, Deitsch KW. Variable surface antigen expression, virulence, and persistent infection by Plasmodium falciparum malaria parasites. Microbiol Mol Biol Rev 2025; 89:e0011423. [PMID: 39807932 PMCID: PMC11948492 DOI: 10.1128/mmbr.00114-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
SUMMARYThe human malaria parasite Plasmodium falciparum is known for its ability to maintain lengthy infections that can extend for over a year. This property is derived from the parasite's capacity to continuously alter the antigens expressed on the surface of the infected red blood cell, thereby avoiding antibody recognition and immune destruction. The primary target of the immune system is an antigen called PfEMP1 that serves as a cell surface receptor and enables infected cells to adhere to the vascular endothelium and thus avoid filtration by the spleen. The parasite's genome encodes approximately 60 antigenically distinct forms of PfEMP1, each encoded by individual members of the multicopy var gene family. This provides the parasite with a repertoire of antigenic types that it systematically cycles through over the course of an infection, thereby maintaining an infection until the repertoire is exhausted. While this model of antigenic variation based on var gene switching explains the dynamics of acute infections in individuals with limited anti-malarial immunity, it fails to explain reports of chronic, asymptomatic infections that can last over a decade. Recent field studies have led to a re-evaluation of previous conclusions regarding the prevalence of chronic infections, and the application of new technologies has provided insights into the molecular mechanisms that enable chronic infections and how these processes evolved.
Collapse
Affiliation(s)
- Evi Hadjimichael
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
7
|
Xue M, March L. Endothelial Protein C Receptor: A Multifunctional Mediator in the Pathophysiology of Rheumatoid Arthritis. Cells 2025; 14:485. [PMID: 40214439 PMCID: PMC11987911 DOI: 10.3390/cells14070485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
The endothelial protein C receptor (EPCR) is gaining recognition for its diverse functions that extend beyond its traditional role in the protein C anticoagulant pathway. This comprehensive review examines how EPCR contributes to the pathophysiology of rheumatoid arthritis (RA), an autoimmune disorder characterized by persistent inflammation and joint destruction. We explore how EPCR influences inflammatory responses and the coagulation cascade, affects endothelial function and vascular integrity, and regulates the characteristics of synovial fibroblasts in the context of RA. Furthermore, the review highlights the mechanisms by which EPCR affects disease progression, its potential use as a biomarker for disease activity, and the therapeutic implications of targeting EPCR in the treatment of RA. By synthesizing current research findings, this review aims to provide a detailed understanding of EPCR's role in RA, offering insights into innovative diagnostic and therapeutic strategies that could improve patient outcomes.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2065, Australia
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2065, Australia;
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2065, Australia;
- Department of Rheumatology, Royal North Shore Hospital, Syndey, NSW 2065, Australia
| |
Collapse
|
8
|
Chamberlain SG, Iwanaga S, Higgins MK. Immune evasion runs in the family: two surface protein families of Plasmodium falciparum-infected erythrocytes. Curr Opin Microbiol 2025; 85:102598. [PMID: 40112571 DOI: 10.1016/j.mib.2025.102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/13/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
Two protein families are found on the surfaces of erythrocytes infected with Plasmodium falciparum, a causative agent of deadly malaria. PfEMP1 are tethers binding endothelial receptors and holding infected erythrocytes to tissue and blood vessel surfaces, away from splenic clearance. RIFINs interact with immune receptors on natural killer cells, suppressing infected erythrocyte destruction. Both have expanded into families of diverse members to allow antigenic variation but retain surfaces of conserved chemistry and shape to bind human receptors. Recently discovered broadly inhibitory antibodies target one such surface on many EPCR-binding PfEMP1. Remarkable antibodies take this one step further, directly incorporating ectodomains of immune receptors into their loops, allowing RIFIN recognition. Finally, some RIFINs are targets of activating killer immune receptors, helping natural killer cells destroy infected erythrocytes. Studies of these two families therefore reveal a snapshot of the battle between this ancient parasite and the immune system of its human host.
Collapse
Affiliation(s)
- Samuel G Chamberlain
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, United Kingdom
| | - Shiroh Iwanaga
- Department of Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan; Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
9
|
Porqueddu T, Zorrinho-Almeida M, De Niz M, Casas-Sánchez A, Introini V, Sanz Sender S, Carrasqueira D, Figueiredo LM, Bernabeu M, Silva Pereira S. Bioengineered 3D microvessels and complementary animal models reveal mechanisms of Trypanosoma congolense sequestration. Commun Biol 2025; 8:321. [PMID: 40011598 PMCID: PMC11865532 DOI: 10.1038/s42003-025-07739-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/14/2025] [Indexed: 02/28/2025] Open
Abstract
In the mammalian host, Trypanosoma congolense cytoadheres, or sequesters, to the vascular endothelium. Although sequestration influences clinical outcome, disease severity and organ pathology, its determinants and mediators remain unknown. Challenges such as the variability of animal models, the only-recently developed tools to genetically manipulate the parasite, and the lack of physiologically-relevant in vitro models have hindered progress. Here, we engineered brain and cardiac 3D bovine endothelial microvessel models that mimic the bovine brain microvasculature and the bovine aorta, respectively. By perfusing these models with two T. congolense strains, we investigated the roles of flow for parasite sequestration and tropism for different endothelial beds. We discovered that sequestration is dependent on cyclic adenosine monophosphate (cAMP) signalling, closely linked to parasite proliferation, but not associated with parasite transmission to the tsetse fly vector. Finally, by comparing the expression profiles of sequestered and non-sequestered parasites collected from a rodent model, we showed gene expression changes in sequestered parasites, including of surface variant antigens. This work presents a physiologically-relevant platform to study trypanosome interactions with the vasculature and provides a deeper understanding of the molecular and biophysical mechanisms underlying T. congolense sequestration.
Collapse
Affiliation(s)
- Teresa Porqueddu
- Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Maria Zorrinho-Almeida
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, Oeiras, Portugal
| | - Mariana De Niz
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Center for Advanced Microscopy and Nikon Imaging Center, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Aitor Casas-Sánchez
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | - Diana Carrasqueira
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, Oeiras, Portugal
| | | | | | - Sara Silva Pereira
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, Oeiras, Portugal.
| |
Collapse
|
10
|
Chaturvedi R, Sharma A. Key Facets for the Elimination of Vector-Borne Diseases Filariasis, Leishmaniasis, and Malaria. ACS Infect Dis 2025; 11:287-304. [PMID: 39784679 DOI: 10.1021/acsinfecdis.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Vector-borne diseases are caused by microbes transmitted to humans through vectors such as mosquitoes, ticks, flies, and other arthropods. Three vector-borne diseases, filariasis, leishmaniasis, and malaria, are significant parasitic diseases which are responsible for long-term morbidity and mortality affecting millions globally. These diseases exhibit several similarities in transmission, health impacts, and the challenges faced in their control and prevention. By identifying these commonalities and fostering cooperation among disease control programs, we can strengthen our efforts to combat them and hence enhance the health of at-risk populations. This review summarizes the key points associated with the epidemiology, transmission dynamics, and therapeutic regimes for each disease, presenting a holistic overview of these three eliminable diseases.
Collapse
Affiliation(s)
- Rini Chaturvedi
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Amit Sharma
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, New Delhi-110067, India
| |
Collapse
|
11
|
Chen J, Bai Y, He X, Xiao W, Chen L, Wong YK, Wang C, Gao P, Cheng G, Xu L, Yang C, Liao F, Han G, Sun J, Xu C, Wang J. The spatiotemporal transcriptional profiling of murine brain during cerebral malaria progression and after artemisinin treatment. Nat Commun 2025; 16:1540. [PMID: 39934099 PMCID: PMC11814382 DOI: 10.1038/s41467-024-52223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 08/28/2024] [Indexed: 02/13/2025] Open
Abstract
Cerebral malaria (CM) is a severe encephalopathy caused by Plasmodium parasite infection, resulting in thousands of annual deaths and neuro-cognitive sequelae even after anti-malarial drugs treatment. Despite efforts to dissect the mechanism, the cellular transcriptomic reprogramming within the spatial context remains elusive. Here, we constructed single-cell and spatial transcriptome atlases of experimental CM (ECM) male murine brain tissues with or without artesunate (ART) treatment. We identified activated inflammatory endothelial cells during ECM, characterized by a disrupted blood-brain barrier, increased antigen presentation, and leukocyte adhesion. We also observed that inflammatory microglia enhance antigen presentation pathway such as MHC-I to CD8+ cytotoxic T cells. The latter underwent an inflammatory state transition with up-regulated cytokine expression and cytotoxic activity. Multi-omics analysis revealed that the activated interferon-gamma response of injured neurons during ECM and persisted after ART treatment. Overall, our research provides valuable resources for understanding malaria parasite-host interaction mechanisms and adjuvant therapy development.
Collapse
Affiliation(s)
- Jiayun Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Yunmeng Bai
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Xueling He
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Xiao
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
- Department of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lina Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yin Kwan Wong
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Chen Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Peng Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Guangqing Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liting Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chuanbin Yang
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Fulong Liao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guang Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Jichao Sun
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Chengchao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Department of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
12
|
Tan MH, Tiedje KE, Feng Q, Zhan Q, Pascual M, Shim H, Chan YB, Day KP. A paradoxical population structure of var DBLα types in Africa. PLoS Pathog 2025; 21:e1012813. [PMID: 39903780 PMCID: PMC11793742 DOI: 10.1371/journal.ppat.1012813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 12/06/2024] [Indexed: 02/06/2025] Open
Abstract
The var multigene family encodes Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), central to host-parasite interactions. Genome structure studies have identified three major groups of var genes by specific upstream sequences (upsA, B, or C). Var with these ups groups have different chromosomal locations, transcriptional directions, and associations with disease severity. Here we explore temporal and spatial diversity of a region of var genes encoding the DBLα domain of PfEMP1 in Africa. By applying a novel ups classification algorithm (cUps) to publicly-available DBLα sequence datasets, we categorised DBLα according to association with the three ups groups, thereby avoiding the need to sequence complete genes. Data from deep sequencing of DBLα types in a local population in northern Ghana surveyed seven times from 2012 to 2017 found variants with rare-to-moderate-to-extreme frequencies, and the common variants were temporally stable in this local endemic area. Furthermore, we observed that every isolate repertoire, whether mono- or multiclonal, comprised DBLα types occurring with these frequency ranges implying a common genome structure. When comparing African countries of Ghana, Gabon, Malawi, and Uganda, we report that some DBLα types were consistently found at high frequencies in multiple African countries while others were common only at the country level. The implication of these local and pan-Africa population patterns is discussed in terms of advantage to the parasite with regards to within-host adaptation and resilience to malaria control.
Collapse
Affiliation(s)
- Mun Hua Tan
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Qian Feng
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Mercedes Pascual
- Department of Biology, New York University, New York, New York, United States of America
| | - Heejung Shim
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Yao-ban Chan
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Karen P. Day
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
13
|
Lyimo E, Makenga G, Turner L, Lavstsen T, Lusingu JPA, Van geertruyden JP, Minja DTR, Wang CW, Baraka V. The impact of intermittent preventive treatment in school aged children with dihydroartemisinin piperaquine and artesunate amodiaquine on IgG response against six blood stage Plasmodium falciparum antigens. PLoS One 2025; 20:e0316482. [PMID: 39883707 PMCID: PMC11781616 DOI: 10.1371/journal.pone.0316482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/11/2024] [Indexed: 02/01/2025] Open
Abstract
Several interventional strategies have been implemented in malaria endemic areas where the burden is high, that include among others, intermittent preventive treatment (IPT), a tactic that blocks transmission and can reduce disease morbidity. However, the implementation IPT strategies raises a genuine concern, intervening the development of naturally acquired immunity to malaria which requires continuous contact with parasite antigens. This study investigated whether dihydroartemisinin-piperaquine (DP) or artesunate-amodiaquine (ASAQ) IPT in schoolchildren (IPTsc) impairs IgG reactivity to six malaria antigens. An IPTsc trial in north-eastern Tanzania administered three doses of DP or ASAQ at four-monthly intervals and the schoolchildren were followed up. This study compared IgG reactivity against GLURP-R2, MSP1, MSP3, and CIDR domains (CIDRa1.1, CIDRa1.4, and CIDRa1.5) of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP-1) in intervention and control groups using enzyme linked immunosorbent assay (ELISA) technique. During the study, 369 schoolchildren were available for analysis, 119, 134 and 116 participants in the control, DP and ASAQ groups, respectively. Breadth of malaria antigen recognition increased significantly during and after the intervention phases and did not differ between the study groups (Trend test: DP, z-score = 5.92, p < 0.001, ASAQ, z-score = 6.64, p < 0.001 and control, z-score = 5.85, p < 0.001). There were no differences between the control and ASAQ group in the recognition of any of the tested antigens at all visits. In the DP group, however, during the intervention period IPTsc did not impair antibody against MSP1, MSP3, CIDRa1.1, CIDRa1.4 and CIDRa1.5, but it did impair against GLURP-R2. The current study has shown that effective IPTsc with DP or ASAQ does not interfere with the development of antibodies against malaria antigens of the blood stages, suggesting that the advancement of naturally acquired immunity to malaria is not impeded by IPTsc interventions.
Collapse
Affiliation(s)
- Eric Lyimo
- Tanga Research Centre, National Institute for Medical Research, Tanga, Tanzania
- Mwanza Research Centre, National Institute for Medical Research, Mwanza, Tanzania
- Department of Immunology and Microbiology, Centre for translational Medicine and Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Geofrey Makenga
- Tanga Research Centre, National Institute for Medical Research, Tanga, Tanzania
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Louise Turner
- Department of Immunology and Microbiology, Centre for translational Medicine and Parasitology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Lavstsen
- Department of Immunology and Microbiology, Centre for translational Medicine and Parasitology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - John P. A. Lusingu
- Tanga Research Centre, National Institute for Medical Research, Tanga, Tanzania
| | | | - Daniel T. R. Minja
- Tanga Research Centre, National Institute for Medical Research, Tanga, Tanzania
| | - Christian W. Wang
- Department of Immunology and Microbiology, Centre for translational Medicine and Parasitology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vito Baraka
- Tanga Research Centre, National Institute for Medical Research, Tanga, Tanzania
| |
Collapse
|
14
|
Wang S, Yang L, He W, Zheng M, Zou Y. Cell Membrane Camouflaged Biomimetic Nanoparticles as a Versatile Platform for Brain Diseases Treatment. SMALL METHODS 2025; 9:e2400096. [PMID: 38461538 DOI: 10.1002/smtd.202400096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Although there are various advancements in biomedical in the past few decades, there are still challenges in the treatment of brain diseases. The main difficulties are the inability to deliver a therapeutic dose of the drug to the brain through the blood-brain barrier (BBB) and the serious side effects of the drug. Thus, it is essential to select biocompatible drug carriers and novel therapeutic tools to better enhance the effect of brain disease treatment. In recent years, biomimetic nanoparticles (BNPs) based on natural cell membranes, which have excellent biocompatibility and low immunogenicity, are widely used in the treatment of brain diseases to enable the drug to successfully cross the BBB and target brain lesions. BNPs can prolong the circulation time in vivo, are more conducive to drug aggregation in brain lesions. Cell membranes (CMs) from cancer cells (CCs), red blood cells (RBCs), white blood cells (WBCs), and so on are used as biomimetic coatings for nanoparticles (NPs) to achieve the ability to target, evade clearance, or stimulate the immune system. This review summarizes the application of different cell sources as BNPs coatings in the treatment of brain diseases and discusses the possibilities and challenges of clinical translation.
Collapse
Affiliation(s)
- Shiyu Wang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Longfei Yang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Wenya He
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Meng Zheng
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Zou
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
15
|
McLean FE, Omondi BR, Diallo N, Otoboh S, Kifude C, Abdi AI, Lim R, Otto TD, Ghumra A, Rowe JA. Identification of novel PfEMP1 variants containing domain cassettes 11, 15 and 8 that mediate the Plasmodium falciparum virulence-associated rosetting phenotype. PLoS Pathog 2025; 21:e1012434. [PMID: 39804943 PMCID: PMC11759366 DOI: 10.1371/journal.ppat.1012434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/24/2025] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a diverse family of variant surface antigens, encoded by var genes, that mediates binding of infected erythrocytes to human cells and plays a key role in parasite immune evasion and malaria pathology. The increased availability of parasite genome sequence data has revolutionised the study of PfEMP1 diversity across multiple P. falciparum isolates. However, making functional sense of genomic data relies on the ability to infer binding phenotype from var gene sequence. For P. falciparum rosetting, the binding of infected erythrocytes to uninfected erythrocytes, the analysis of var gene/PfEMP1 sequences encoding the phenotype is limited, with only eight rosette-mediating PfEMP1 variants described to date. These known rosetting PfEMP1 variants fall into two types, characterised by N-terminal domains known as "domain cassette" 11 (DC11) and DC16. Here we test the hypothesis that DC11 and DC16 are the only PfEMP1 types in the P. falciparum genome that mediate rosetting, by examining a set of thirteen recent culture-adapted Kenyan parasite lines. We first analysed the var gene/PfEMP1 repertoires of the Kenyan lines and identified an average of three DC11 or DC16 PfEMP1 variants per genotype. In vitro rosette selection of the parasite lines yielded four with a high rosette frequency, and analysis of their var gene transcription, infected erythrocyte PfEMP1 surface expression, rosette disruption and erythrocyte binding function identified four novel rosette-mediating PfEMP1 variants. Two of these were of the predicted DC11 type (one showing the dual rosetting/IgM-Fc-binding phenotype), whereas two contained DC15 (DBLα1.2-CIDRα1.5b) a PfEMP1 type not previously associated with rosetting. We also showed that a Thai parasite line expressing a DC8-like PfEMP1 binds to erythrocytes to form rosettes. Hence, these data expand current knowledge of rosetting mechanisms and emphasize that the PfEMP1 types mediating rosetting are more diverse than previously recognised.
Collapse
Affiliation(s)
- Florence E. McLean
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian R. Omondi
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Nouhoum Diallo
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stanley Otoboh
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carolyne Kifude
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Abdirahman I. Abdi
- KEMRI-Wellcome Trust Research Programme: Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Rivka Lim
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas D. Otto
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ashfaq Ghumra
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - J. Alexandra Rowe
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Joof F, Hu R, Saidi A, Seydel KB, Cohee LM, Zheng Y, Smith JD. Plasma From Older Children in Malawi Inhibits Plasmodium falciparum Binding in 3-Dimensional Brain Microvessels. J Infect Dis 2024; 230:e1402-e1411. [PMID: 38875153 PMCID: PMC11646604 DOI: 10.1093/infdis/jiae315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024] Open
Abstract
A hallmark of cerebral malaria is sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the brain microcirculation. Antibodies contribute to malaria immunity, but it remains unclear whether functional antibodies targeting parasite-expressed ligand can block cytoadhesion in the brain. Here, we screened the plasma of older children and young adults in Malawi to characterize the antibody response against the P. falciparum-IE surface and used a bioengineered 3-dimensional (3D) human brain microvessel model incorporating variable flow dynamics to measure adhesion-blocking responses. We found a strong correlation between surface antibody reactivity by flow cytometry and reduced P. falciparum-IE binding in 3D microvessels. Moreover, there was a threshold of surface antibody reactivity necessary to achieve robust inhibitory activity. Our findings provide evidence of the acquisition of adhesion-blocking antibodies against cerebral binding variants in people exposed to stable P. falciparum transmission and suggest the quality of the inhibitory response can be influenced by flow dynamics.
Collapse
Affiliation(s)
- Fatou Joof
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Ruoqian Hu
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Alex Saidi
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Karl B Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Lauren M Cohee
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Joseph D Smith
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Reyes RA, Raghavan SSR, Hurlburt NK, Introini V, Bol S, Kana IH, Jensen RW, Martinez-Scholze E, Gestal-Mato M, López-Gutiérrez B, Sanz S, Bancells C, Fernández-Quintero ML, Loeffler JR, Ferguson JA, Lee WH, Martin GM, Theander TG, Lusingu JPA, Minja DTR, Ssewanyana I, Feeney ME, Greenhouse B, Ward AB, Bernabeu M, Pancera M, Turner L, Bunnik EM, Lavstsen T. Broadly inhibitory antibodies to severe malaria virulence proteins. Nature 2024; 636:182-189. [PMID: 39567685 DOI: 10.1038/s41586-024-08220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
Malaria pathology is driven by the accumulation of Plasmodium falciparum-infected erythrocytes in microvessels1. This process is mediated by the polymorphic erythrocyte membrane protein 1 (PfEMP1) adhesion proteins of the parasite. A subset of PfEMP1 variants that bind to human endothelial protein C receptor (EPCR) through their CIDRα1 domains is responsible for severe malaria pathogenesis2. A longstanding question is whether individual antibodies can recognize the large repertoire of circulating PfEMP1 variants. Here we describe two broadly reactive and inhibitory human monoclonal antibodies to CIDRα1. The antibodies isolated from two different individuals exhibited similar and consistent EPCR-binding inhibition of diverse CIDRα1 domains, representing five of the six subclasses of CIDRα1. Both antibodies inhibited EPCR binding of both recombinant full-length and native PfEMP1 proteins, as well as parasite sequestration in bioengineered 3D human brain microvessels under physiologically relevant flow conditions. Structural analyses of the two antibodies in complex with three different CIDRα1 antigen variants reveal similar binding mechanisms that depend on interactions with three highly conserved amino acid residues of the EPCR-binding site in CIDRα1. These broadly reactive antibodies are likely to represent a common mechanism of acquired immunity to severe malaria and offer novel insights for the design of a vaccine or treatment targeting severe malaria.
Collapse
Affiliation(s)
- Raphael A Reyes
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sai Sundar Rajan Raghavan
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicholas K Hurlburt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Sebastiaan Bol
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ikhlaq Hussain Kana
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Rasmus W Jensen
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Elizabeth Martinez-Scholze
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | - Johannes R Loeffler
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - James Alexander Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Greg Michael Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Thor G Theander
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - John P A Lusingu
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - Daniel T R Minja
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | | | - Margaret E Feeney
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Louise Turner
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark.
| | - Evelien M Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Thomas Lavstsen
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark.
| |
Collapse
|
18
|
Tran TM. Human antibodies offer broad inhibition against variable proteins of the malaria parasite. Nature 2024; 636:54-55. [PMID: 39567799 DOI: 10.1038/d41586-024-03555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
|
19
|
Li S, Tao B, Wan J, Montecino-Rodriguez E, Wang P, Ma F, Sun B, Gu Y, Ramadoss S, Su L, Sun Q, Hoeve JT, Stiles L, Collins J, van Dam RM, Tamboline M, Taschereau R, Shirihai O, Kitchen DB, Pellegrini M, Graeber T, Dorshkind K, Xu S, Deb A. A humanized monoclonal antibody targeting an ectonucleotidase rescues cardiac metabolism and heart function after myocardial infarction. Cell Rep Med 2024; 5:101795. [PMID: 39454569 PMCID: PMC11604407 DOI: 10.1016/j.xcrm.2024.101795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Myocardial infarction (MI) results in aberrant cardiac metabolism, but no therapeutics have been designed to target cardiac metabolism to enhance heart repair. We engineer a humanized monoclonal antibody against the ectonucleotidase ENPP1 (hENPP1mAb) that targets metabolic crosstalk in the infarcted heart. In mice expressing human ENPP1, systemic administration of hENPP1mAb metabolically reprograms myocytes and non-myocytes and leads to a significant rescue of post-MI heart dysfunction. Using metabolomics, single-nuclear transcriptomics, and cellular respiration studies, we show that the administration of the hENPP1mAb induces organ-wide metabolic and transcriptional reprogramming of the heart that enhances myocyte cellular respiration and decreases cell death and fibrosis in the infarcted heart. Biodistribution and safety studies showed specific organ-wide distribution with the antibody being well tolerated. In humanized animals, with drug clearance kinetics similar to humans, we demonstrate that a single "shot" of the hENPP1mAb after MI is sufficient to rescue cardiac dysfunction.
Collapse
Affiliation(s)
- Shen Li
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bo Tao
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jijun Wan
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Enca Montecino-Rodriguez
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ping Wang
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Baiming Sun
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yiqian Gu
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sivakumar Ramadoss
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lianjiu Su
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Qihao Sun
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Johanna Ten Hoeve
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Metabolomics Center, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Linsey Stiles
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffrey Collins
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - R Michael van Dam
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mikayla Tamboline
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard Taschereau
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Orian Shirihai
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Matteo Pellegrini
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thomas Graeber
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Metabolomics Center, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kenneth Dorshkind
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Shili Xu
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Aymoz-Bressot T, Canis M, Meurisse F, Wijkhuisen A, Favier B, Mousseau G, Dupressoir A, Heidmann T, Bacquin A. Cell-Int: a cell-cell interaction assay to identify native membrane protein interactions. Life Sci Alliance 2024; 7:e202402844. [PMID: 39237366 PMCID: PMC11377309 DOI: 10.26508/lsa.202402844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
Intercellular protein-protein interactions (PPIs) have pivotal roles in biological functions and diseases. Membrane proteins are therefore a major class of drug targets. However, studying such intercellular PPIs is challenging because of the properties of membrane proteins. Current methods commonly use purified or modified proteins that are not physiologically relevant and hence might mischaracterize interactions occurring in vivo. Here, we describe Cell-Int: a cell interaction assay for studying plasma membrane PPIs. The interaction signal is measured through conjugate formation between two populations of cells each expressing either a ligand or a receptor. In these settings, membrane proteins are in their native environment thus being physiologically relevant. Cell-Int has been applied to the study of diverse protein partners, and enables to investigate the inhibitory potential of blocking antibodies, as well as the retargeting of fusion proteins for therapeutic development. The assay was also validated for screening applications and could serve as a platform for identifying new protein interactors.
Collapse
Affiliation(s)
- Thibaud Aymoz-Bressot
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Marie Canis
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- VIROXIS, Gustave Roussy, Villejuif, France
| | - Florian Meurisse
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Paris, France
| | - Anne Wijkhuisen
- Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), Gif-sur-Yvette, France
| | - Benoit Favier
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Paris, France
| | | | - Anne Dupressoir
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Thierry Heidmann
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- VIROXIS, Gustave Roussy, Villejuif, France
| | | |
Collapse
|
21
|
Bailey RD, Lawton JG, Niangaly A, Stucke EM, Bailey JA, Berry AA, Ouattara A, Coulibaly D, Lyke KE, Laurens MB, Zhou AE, Pablo J, Jasinskas A, Nakajima R, Adams M, Takala-Harrison S, Kouriba B, Kone AK, Guindo A, Rowe JA, Diallo DA, Doumbo OK, Felgner PL, Plowe CV, Thera MA, Travassos MA. Children with hemoglobin C or S trait have low serologic responses to a subset of malaria variant surface antigens. J Infect 2024; 89:106257. [PMID: 39216830 PMCID: PMC11546587 DOI: 10.1016/j.jinf.2024.106257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Children with hemoglobin AC or AS have decreased susceptibility to clinical malaria. Parasite variant surface antigen (VSA) presentation on the surface of infected erythrocytes is altered in erythrocytes with hemoglobin C (Hb AC) or sickle trait (Hb AS) mutations in vitro. The protective role of incomplete or altered VSA presentation against clinical malaria in individuals with Hb AC or AS is unclear. Using a high-throughput protein microarray, we sought to use serological responses to VSAs as a measure of host exposure to VSAs among Malian children with Hb AC, Hb AS, or wildtype hemoglobin (Hb AA). In uncomplicated malaria, when compared to Hb AA children, Hb AC children had significantly lower serological responses to extracellular Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) domains but did not differ in responses to intracellular PfEMP1 domains and other VSAs, including members of the repetitive interspersed family (RIFIN) and subtelomeric variable open reading frame (STEVOR) family. Healthy children with Hb AC and Hb AS genotypes recognized fewer extracellular PfEMP1s compared to children with Hb AA, especially CD36-binding PfEMP1s. These reduced serologic responses may reflect reduced VSA presentation or lower parasite exposure in children with Hb AC or AS and provide insights into mechanisms of protection.
Collapse
MESH Headings
- Humans
- Antigens, Protozoan/immunology
- Antigens, Protozoan/genetics
- Child, Preschool
- Child
- Plasmodium falciparum/immunology
- Plasmodium falciparum/genetics
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Hemoglobin C/genetics
- Malaria, Falciparum/immunology
- Malaria, Falciparum/blood
- Sickle Cell Trait/genetics
- Sickle Cell Trait/blood
- Sickle Cell Trait/immunology
- Male
- Female
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Hemoglobin, Sickle/genetics
- Mali/epidemiology
- Infant
- Antigens, Surface/immunology
- Antigens, Surface/genetics
- Protein Array Analysis
- Adolescent
Collapse
Affiliation(s)
- Rachel D Bailey
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St., HSF1 Room 480, Baltimore, MD 21201, United States of America.
| | - Jonathan G Lawton
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St., HSF1 Room 480, Baltimore, MD 21201, United States of America.
| | - Amadou Niangaly
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, BP 1805, Point G, Bamako, Mali.
| | - Emily M Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St., HSF1 Room 480, Baltimore, MD 21201, United States of America.
| | - Jason A Bailey
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St., HSF1 Room 480, Baltimore, MD 21201, United States of America.
| | - Andrea A Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St., HSF1 Room 480, Baltimore, MD 21201, United States of America.
| | - Amed Ouattara
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St., HSF1 Room 480, Baltimore, MD 21201, United States of America.
| | - Drissa Coulibaly
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, BP 1805, Point G, Bamako, Mali.
| | - Kirsten E Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St., HSF1 Room 480, Baltimore, MD 21201, United States of America.
| | - Matthew B Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St., HSF1 Room 480, Baltimore, MD 21201, United States of America.
| | - Albert E Zhou
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St., HSF1 Room 480, Baltimore, MD 21201, United States of America.
| | - Jozelyn Pablo
- Division of Infectious Diseases, Department of Medicine, University of California, 101 The City Drive, Orange, CA 92868, United States of America.
| | - Algis Jasinskas
- Division of Infectious Diseases, Department of Medicine, University of California, 101 The City Drive, Orange, CA 92868, United States of America.
| | - Rie Nakajima
- Division of Infectious Diseases, Department of Medicine, University of California, 101 The City Drive, Orange, CA 92868, United States of America.
| | - Matthew Adams
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St., HSF1 Room 480, Baltimore, MD 21201, United States of America.
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St., HSF1 Room 480, Baltimore, MD 21201, United States of America.
| | - Bourema Kouriba
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, BP 1805, Point G, Bamako, Mali.
| | - Abdoulaye K Kone
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, BP 1805, Point G, Bamako, Mali.
| | - Aldiouma Guindo
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, BP 1805, Point G, Bamako, Mali.
| | - J Alexandra Rowe
- Center for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, United Kingdom.
| | - Dapa A Diallo
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St., HSF1 Room 480, Baltimore, MD 21201, United States of America.
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, BP 1805, Point G, Bamako, Mali.
| | - Philip L Felgner
- Division of Infectious Diseases, Department of Medicine, University of California, 101 The City Drive, Orange, CA 92868, United States of America.
| | - Christopher V Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St., HSF1 Room 480, Baltimore, MD 21201, United States of America.
| | - Mahamadou A Thera
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, BP 1805, Point G, Bamako, Mali.
| | - Mark A Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St., HSF1 Room 480, Baltimore, MD 21201, United States of America.
| |
Collapse
|
22
|
Kinyua AW, Turner L, Kimingi HW, Mwai K, Mwikali K, Andisi C, Sim BKL, Bejon P, Kapulu MC, Kinyanjui SM, Lavstsen T, Abdi AI. Antibodies to PfEMP1 and variant surface antigens: Protection after controlled human malaria infection in semi-immune Kenyan adults. J Infect 2024; 89:106252. [PMID: 39182654 PMCID: PMC11409615 DOI: 10.1016/j.jinf.2024.106252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVES Acquisition of antibodies to Plasmodium falciparum variant surface antigens (VSA) expressed on infected red blood cells (iRBCs) is associated with naturally acquired immunity to malaria. We have previously shown that antibodies to VSA on iRBCs are associated with protection against parasite growth in the context of controlled human malaria infection (CHMI). This study explored whether antibodies to recombinant antigens derived from PfEMP1 domains were independently associated with protection during CHMI in semi-immune Kenyan adults. METHODS We used a multiplex bead assay to measure levels of IgG antibody against a panel of 27 recombinant PfEMP1 antigens derived from the PfEMP1 repertoire of the 3D7 parasite clone. We measured IgG levels in plasma samples collected from the CHMI participants before inoculation with Sanaria® PfSPZ Challenge, on the day of diagnosis, and 35 days post-inoculation. Univariable and multivariable Cox regression analysis was used to evaluate the relationship between the levels of antibodies to the antigens and CHMI outcome. We also adjusted for previous data including antibodies to VSA on iRBCs, and we assessed the kinetics of antibody acquisition to the different PfEMP1 recombinant antigens over time. RESULTS All study participants had detectable antibodies to multiple PfEMP1 proteins before inoculation. All PfEMP1 antigens were associated with protection against parasite growth to the threshold criteria for treatment in CHMI, albeit with substantial collinearity. However, individual PfEMP1 antigens were not independently associated with protection following adjustment for breadth of reactivity to VSA on iRBCs and schizont extract. In addition, antibodies to PfEMP1 antigens derived from group B PfEMP1 were induced and sustained in the participants who could not control parasite growth. CONCLUSION This study shows that the breadth of antibody response to VSA on iRBCs, and not to specific PfEMP1 antigens, is predictive of protection against malaria in CHMI.
Collapse
Affiliation(s)
- Ann W Kinyua
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Louise Turner
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Hannah W Kimingi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kioko Mwikali
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Cheryl Andisi
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya
| | | | - Philip Bejon
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom
| | - Melissa C Kapulu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom
| | - Samson M Kinyanjui
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom; School of Business Studies, Strathmore University, Nairobi, Kenya
| | - Thomas Lavstsen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Abdirahman I Abdi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom.
| |
Collapse
|
23
|
Andrade CM, Carrasquilla M, Dabbas U, Briggs J, van Dijk H, Sergeev N, Sissoko A, Niangaly M, Ntalla C, LaVerriere E, Skinner J, Golob K, Richter J, Cisse H, Li S, Hendry JA, Asghar M, Doumtabe D, Farnert A, Ruppert T, Neafsey DE, Kayentao K, Doumbo S, Ongoiba A, Crompton PD, Traore B, Greenhouse B, Portugal S. Infection length and host environment influence on Plasmodium falciparum dry season reservoir. EMBO Mol Med 2024; 16:2349-2375. [PMID: 39284949 PMCID: PMC11473648 DOI: 10.1038/s44321-024-00127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 10/16/2024] Open
Abstract
Persistence of malaria parasites in asymptomatic hosts is crucial in areas of seasonally-interrupted transmission, where P. falciparum bridges wet seasons months apart. During the dry season, infected erythrocytes exhibit extended circulation with reduced cytoadherence, increasing the risk of splenic clearance of infected cells and hindering parasitaemia increase. However, what determines parasite persistence for long periods of time remains unknown. Here, we investigated whether seasonality affects plasma composition so that P. falciparum can detect and adjust to changing serological cues; or if alternatively, parasite infection length dictates clinical presentation and persistency. Data from Malian children exposed to alternating ~6-month wet and dry seasons show that plasma composition is unrelated to time of year in non-infected children, and that carrying P. falciparum only minimally affects plasma constitution in asymptomatic hosts. Parasites persisting in the blood of asymptomatic children from the dry into the ensuing wet season rarely if ever appeared to cause malaria in their hosts as seasons changed. In vitro culture in the presence of plasma collected in the dry or the wet seasons did not affect parasite development, replication or host-cell remodelling. The absence of a parasite-encoded sensing mechanism was further supported by the observation of similar features in P. falciparum persisting asymptomatically in the dry season and parasites in age- and sex-matched asymptomatic children in the wet season. Conversely, we show that P. falciparum clones transmitted early in the wet season had lower chance of surviving until the end of the following dry season, contrasting with a higher likelihood of survival of clones transmitted towards the end of the wet season, allowing for the re-initiation of transmission. We propose that the decreased virulence observed in persisting parasites during the dry season is not due to the parasites sensing ability, nor is it linked to a decreased capacity for parasite replication but rather a consequence decreased cytoadhesion associated with infection length.
Collapse
Affiliation(s)
- Carolina M Andrade
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | | | - Usama Dabbas
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jessica Briggs
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Hannah van Dijk
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nikolay Sergeev
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Awa Sissoko
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Moussa Niangaly
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Emily LaVerriere
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Jeff Skinner
- Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, MD, USA
| | - Klara Golob
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jeremy Richter
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hamidou Cisse
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Shanping Li
- Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, MD, USA
| | - Jason A Hendry
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Muhammad Asghar
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institute, Stockholm Sweden and Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Biology, Lund University, Lund, Sweden
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Didier Doumtabe
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Anna Farnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institute, Stockholm Sweden and Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | | | - Daniel E Neafsey
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Peter D Crompton
- Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, MD, USA
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bryan Greenhouse
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Silvia Portugal
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.
- Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
24
|
Shay TF, Jang S, Brittain TJ, Chen X, Walker B, Tebbutt C, Fan Y, Wolfe DA, Arokiaraj CM, Sullivan EE, Ding X, Wang TY, Lei Y, Chuapoco MR, Chou TF, Gradinaru V. Human cell surface-AAV interactomes identify LRP6 as blood-brain barrier transcytosis receptor and immune cytokine IL3 as AAV9 binder. Nat Commun 2024; 15:7853. [PMID: 39245720 PMCID: PMC11381518 DOI: 10.1038/s41467-024-52149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
Adeno-associated viruses (AAVs) are foundational gene delivery tools for basic science and clinical therapeutics. However, lack of mechanistic insight, especially for engineered vectors created by directed evolution, can hamper their application. Here, we adapt an unbiased human cell microarray platform to determine the extracellular and cell surface interactomes of natural and engineered AAVs. We identify a naturally-evolved and serotype-specific interaction between the AAV9 capsid and human interleukin 3 (IL3), with possible roles in host immune modulation, as well as lab-evolved low-density lipoprotein receptor-related protein 6 (LRP6) interactions specific to engineered capsids with enhanced blood-brain barrier crossing in non-human primates after intravenous administration. The unbiased cell microarray screening approach also allows us to identify off-target tissue binding interactions of engineered brain-enriched AAV capsids that may inform vectors' peripheral organ tropism and side effects. Our cryo-electron tomography and AlphaFold modeling of capsid-interactor complexes reveal LRP6 and IL3 binding sites. These results allow confident application of engineered AAVs in diverse organisms and unlock future target-informed engineering of improved viral and non-viral vectors for non-invasive therapeutic delivery to the brain.
Collapse
Affiliation(s)
- Timothy F Shay
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Seongmin Jang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Tyler J Brittain
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Xinhong Chen
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Beth Walker
- Charles River Laboratories, High Peak Business Park, Buxton Road, Chinley, SK23 6FJ, UK
| | - Claire Tebbutt
- Charles River Laboratories, High Peak Business Park, Buxton Road, Chinley, SK23 6FJ, UK
| | - Yujie Fan
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Damien A Wolfe
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Cynthia M Arokiaraj
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Erin E Sullivan
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Xiaozhe Ding
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ting-Yu Wang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yaping Lei
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Miguel R Chuapoco
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Tsui-Fen Chou
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Viviana Gradinaru
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
25
|
Xue M, Lin H, Lynch T, Bereza-Malcolm L, Sinnathurai P, Thomas R, Keen H, Hill C, Lester S, Wechalekar M, March L. Exploring the association between circulating endothelial protein C receptor and disease activity of rheumatoid arthritis in a pilot study. Rheumatol Adv Pract 2024; 8:rkae096. [PMID: 39184533 PMCID: PMC11343369 DOI: 10.1093/rap/rkae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/28/2024] [Indexed: 08/27/2024] Open
Abstract
Objectives To investigate whether circulating endothelial protein C receptor (EPCR) is associated with disease activity and inflammatory markers in rheumatoid arthritis. Methods Thirty-eight RA patients and 21 healthy controls (HC) were recruited via the A3BC biobank. Peripheral blood mononuclear cells and plasma were isolated from the blood of these participants. Plasma soluble (s)EPCR, IL-6, IL-17 and sCD14 were measured by enzyme-linked immunosorbent assay, cell membrane-associated (m)EPCR by flow cytometry; EPCR gene H3 single nucleotide polymorphism (SNP), which contributes to high plasma sEPCR levels, by PCR and DNA sequencing. Data were analysed using FlowJo10 and GraphPad Prism 10. Results RA patients had higher levels of mEPCR on T cells and plasma sEPCR compared with HC. No difference in the EPCR gene H3 SNP G genotype frequency was found between RA and HC. This SNP was significantly correlated with higher sEPCR levels in HC but not in RA patients. In RA, plasma sEPCR levels were positively correlated with IL-6, IL-17, sCD14, anti-CCP and rheumatoid factor. In contrast, mEPCR levels on T cells and natural killer cells (NK) were inversely associated with disease activity measures including 28/66 swollen joint count, 28/68 tender joint count and/or DAS28-CRP/ESR scores, and positively correlated with EPCR gene H3 SNP, which was also correlated with lower disease activity measures in RA. Conclusion Our findings suggest that EPCR may play an important role in RA, with plasma sEPCR being potentially associated with inflammatory markers and mEPCR and the EPCR gene H3 SNP possibly related to disease activity measures.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Haiyan Lin
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Tom Lynch
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Lara Bereza-Malcolm
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Premarani Sinnathurai
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
- Department of Rheumatology, Royal North Shore Hospital, Syndey, NSW, Australia
| | - Ranjeny Thomas
- Frazer Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Helen Keen
- Medical School, The University of Western Australia, Perth, WA, Australia
- Department of Rheumatology, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Catherine Hill
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Rheumatology Research Group, Paediatrics, and Paediatric Rheumatology, Basil Hetzel Institute and The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Susan Lester
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Rheumatology Research Group, Paediatrics, and Paediatric Rheumatology, Basil Hetzel Institute and The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Mihir Wechalekar
- Rheumatology Synovial Tissue Translational Research Group, Flinders University, Adelaide, SA, Australia
- Rheumatology Unit, Flinders Medical Centre, Adelaide, SA, Australia
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
- Department of Rheumatology, Royal North Shore Hospital, Syndey, NSW, Australia
| |
Collapse
|
26
|
Jin Z, Pang W, Zhao Y, Min H, Yao S, Bian Z, Wen Y, Peng C, Cao Y, Zheng L. Oral administration of IPI549 protects mice from neuropathology and an overwhelming inflammatory response during experimental cerebral malaria. Int J Parasitol Drugs Drug Resist 2024; 25:100539. [PMID: 38621317 PMCID: PMC11021959 DOI: 10.1016/j.ijpddr.2024.100539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
Infection with Plasmodium falciparum is often deadly when it results in cerebral malaria, which is associated with neuropathology described as an overwhelming inflammatory response and mechanical obstruction of cerebral microvascular. PI3Kγ is a critical component of intracellular signal transduction and plays a central role in regulating cell chemotaxis, migration, and activation. The purpose of this study was to examine the relationship between inhibiting the PI3Kγ pathway and the outcome of experimental cerebral malaria (ECM) in C57BL/6J mice infected with the mouse malaria parasite, Plasmodium berghei ANKA. We observed that oral administration of the PI3Kγ inhibitor IPI549 after infection completely protected mice from ECM. IPI549 treatment significantly dampened the magnitude of inflammatory responses, with reduced production of pro-inflammatory factors, decreased T cell activation, and altered differentiation of antigen-presenting cells. IPI549 treatment protected the infected mice from neuropathology, as assessed by an observed reduction of pathogenic T cells in the brain. Treating the infected mice with IPI549 three days after parasite inoculation improved the murine blood brain barrier (BBB) integrity and helped the mice pass the onset of ECM. Together, these data indicate that oral administration of the PI3Kγ inhibitor IPI549 has a suppressive role in host inflammation and alleviates cerebral pathology, which supports IPI549 as a new malaria treatment option with potential therapeutic implications for cerebral malaria.
Collapse
Affiliation(s)
- Zhuoru Jin
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China; Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Pang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Shijie Yao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Zhifang Bian
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yixin Wen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Chuanyang Peng
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China; Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Li Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
27
|
Chen J, Fang M, Li Y, Ding H, Zhang X, Jiang X, Zhang J, Zhang C, Lu Z, Luo M. Cell surface protein-protein interaction profiling for biological network analysis and novel target discovery. LIFE MEDICINE 2024; 3:lnae031. [PMID: 39872863 PMCID: PMC11749001 DOI: 10.1093/lifemedi/lnae031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/28/2024] [Indexed: 01/30/2025]
Abstract
The secretome is composed of cell surface membrane proteins and extracellular secreted proteins that are synthesized via secretory machinery, accounting for approximately one-third of human protein-encoding genes and playing central roles in cellular communication with the external environment. Secretome protein-protein interactions (SPPIs) mediate cell proliferation, apoptosis, and differentiation, as well as stimulus- or cell-specific responses that regulate a diverse range of biological processes. Aberrant SPPIs are associated with diseases including cancer, immune disorders, and illness caused by infectious pathogens. Identifying the receptor/ligand for a secretome protein or pathogen can be a challenging task, and many SPPIs remain obscure, with a large number of orphan receptors and ligands, as well as viruses with unknown host receptors, populating the SPPI network. In addition, proteins with known receptors/ligands may also interact with alternative uncharacterized partners and exert context-dependent effects. In the past few decades, multiple varied approaches have been developed to identify SPPIs, and these methods have broad applications in both basic and translational research. Here, we review and discuss the technologies for SPPI profiling and the application of these technologies in identifying novel targets for immunotherapy and anti-infectious agents.
Collapse
Affiliation(s)
- Jiaojiao Chen
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Maoxin Fang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuwei Li
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Haodong Ding
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xinyu Zhang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoyi Jiang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jinlan Zhang
- The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Chengcheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhigang Lu
- The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
- Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Min Luo
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
28
|
Riedmiller I, Fougeroux C, Jensen RW, Kana IH, Sander AF, Theander TG, Lavstsen T, Turner L. Mosaic and cocktail capsid-virus-like particle vaccines for induction of antibodies against the EPCR-binding CIDRα1 domain of PfEMP1. PLoS One 2024; 19:e0302243. [PMID: 39046960 PMCID: PMC11268589 DOI: 10.1371/journal.pone.0302243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
The sequestration of Plasmodium falciparum-infected erythrocytes to the host endothelium is central to the pathogenesis of malaria. The sequestration is mediated by the parasite´s diverse Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) variants, which bind select human receptors on the endothelium. Severe malaria is associated with PfEMP1 binding human endothelial protein C receptor (EPCR) via their CIDRα1 domains. Antibodies binding and inhibiting across the sequence diverse CIDRα1 domains are likely important in acquired immunity against severe malaria. In this study, we explored if immunization with AP205 bacteriophage capsid-virus-like particles (cVLPs) presenting a mosaic of diverse CIDRα1 protein variants would stimulate broadly reactive and inhibitory antibody responses in mice. Three different mosaic cVLP vaccines each composed of five CIDRα1 protein variants with varying degrees of sequence conservation of residues at and near the EPCR binding site, were tested. All mosaic cVLP vaccines induced functional antibodies comparable to those induced by matched cocktails of cVLPs decorated with the single CIDRα1 variant. No broadly reactive responses were observed. However, the vaccines did induce some cross-reactivity and inhibition within the CIDRα1 subclasses included in the vaccines, demonstrating potential use of the cVLP vaccine platform for the design of multivalent vaccines.
Collapse
Affiliation(s)
- Ilary Riedmiller
- Department of Immunology and Microbiology, Centre for translational Medicine and Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Rasmus W. Jensen
- Department of Immunology and Microbiology, Centre for translational Medicine and Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ikhlaq H. Kana
- Department of Immunology and Microbiology, Centre for translational Medicine and Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Thor G. Theander
- Department of Immunology and Microbiology, Centre for translational Medicine and Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Lavstsen
- Department of Immunology and Microbiology, Centre for translational Medicine and Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise Turner
- Department of Immunology and Microbiology, Centre for translational Medicine and Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Askonas C, Storm J, Camarda G, Craig A, Pain A. Transcriptional responses of brain endothelium to Plasmodium falciparum patient-derived isolates in vitro. Microbiol Spectr 2024; 12:e0072724. [PMID: 38864616 PMCID: PMC11218514 DOI: 10.1128/spectrum.00727-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024] Open
Abstract
A hallmark of cerebral malaria (CM) is sequestration of Plasmodium falciparum-infected erythrocytes (IE) within the brain microvasculature. Binding of IE to endothelium reduces microvascular flow and, combined with an inflammatory response, perturbs endothelial barrier function, resulting in breakdown of the blood-brain barrier (BBB). Cytoadherence leads to activation of the endothelium and alters a range of cell processes affecting signaling pathways, receptor expression, coagulation, and disruption of BBB integrity. Here, we investigated whether CM-derived parasites elicit differential effects on human brain microvascular endothelial cells (HBMECs), as compared to uncomplicated malaria (UM)-derived parasites. Patient-derived IE from UM and CM clinical cases, as well as non-binding skeleton-binding protein 1 knockout parasites, were overlaid onto tumour necrosis factor (TNF)-activated HBMECs. Gene expression analysis of endothelial responses was performed using probe-based assays of a panel of genes involved in inflammation, apoptosis, endothelial barrier function, and prostacyclin synthesis pathway. We observed a significant effect on endothelial transcriptional responses in the presence of IE, yet there was no significant correlation between HBMEC responses and type of clinical syndrome (UM or CM). Furthermore, there was no correlation between HBMEC gene expression and both binding itself and level of IE binding to HBMECs, as we detected the same change in endothelial responses when employing both binding and non-binding parasites. Our results suggest that interaction of IE with endothelial cells in this co-culture model induces some endothelial responses that are independent of clinical origin and independent of the expression of the major variant antigen Plasmodium falciparum erythrocyte membrane protein 1 on the IE surface. IMPORTANCE Cerebral malaria (CM) is the most prevalent and deadly complication of severe Plasmodium falciparum infection. A hallmark of this disease is sequestration of P. falciparum-infected erythrocytes (IE) in brain microvasculature that ultimately results in breakdown of the blood-brain barrier. Here, we compared the effect of P. falciparum parasites derived from uncomplicated malaria (UM) and CM cases on the relative gene expression of human brain microvascular endothelial cells (HBMECs) for a panel of genes. We observed a significant effect on the endothelial transcriptional response in the presence of IE, yet there is no significant correlation between HBMEC responses and the type of clinical syndrome (UM or CM). Furthermore, there was no correlation between HBMEC gene expression and both binding itself and the level of IE binding to HBMECs. Our results suggest that interaction of IE with endothelial cells induces endothelial responses that are independent of clinical origin and not entirely driven by surface Plasmodium falciparum erythrocyte membrane protein 1 expression.
Collapse
Affiliation(s)
- Caroline Askonas
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Janet Storm
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Grazia Camarda
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alister Craig
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Arnab Pain
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
30
|
Powell GT, Faro A, Zhao Y, Stickney H, Novellasdemunt L, Henriques P, Gestri G, White ER, Ren J, Lu W, Young RM, Hawkins TA, Cavodeassi F, Schwarz Q, Dreosti E, Raible DW, Li VSW, Wright GJ, Jones EY, Wilson SW. Cachd1 interacts with Wnt receptors and regulates neuronal asymmetry in the zebrafish brain. Science 2024; 384:573-579. [PMID: 38696577 PMCID: PMC7615972 DOI: 10.1126/science.ade6970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/27/2024] [Indexed: 05/04/2024]
Abstract
Neurons on the left and right sides of the nervous system often show asymmetric properties, but how such differences arise is poorly understood. Genetic screening in zebrafish revealed that loss of function of the transmembrane protein Cachd1 resulted in right-sided habenula neurons adopting left-sided identity. Cachd1 is expressed in neuronal progenitors, functions downstream of asymmetric environmental signals, and influences timing of the normally asymmetric patterns of neurogenesis. Biochemical and structural analyses demonstrated that Cachd1 can bind simultaneously to Lrp6 and Frizzled family Wnt co-receptors. Consistent with this, lrp6 mutant zebrafish lose asymmetry in the habenulae, and epistasis experiments support a role for Cachd1 in modulating Wnt pathway activity in the brain. These studies identify Cachd1 as a conserved Wnt receptor-interacting protein that regulates lateralized neuronal identity in the zebrafish brain.
Collapse
Affiliation(s)
- Gareth T. Powell
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- Wellcome Trust Sanger Institute; Cambridge CB10 1SA, UK
| | - Ana Faro
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Heather Stickney
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- Departments of Otolaryngology-HNS and Biological Structure, University of Washington; Seattle, WA 98195-7420, USA
- Ambry Genetics; Aliso Viejo, CA 92656, USA
| | - Laura Novellasdemunt
- The Francis Crick Institute; London, NW1 1AT, UK
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology; 08028, Barcelona, Spain
| | - Pedro Henriques
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - Gaia Gestri
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | | | - Jingshan Ren
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Weixian Lu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Rodrigo M. Young
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- Institute of Ophthalmology, University College London; London, EC1V 9EL, UK
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor; Camino La Piramide 5750, 8580745, Santiago, Chile
| | - Thomas A. Hawkins
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - Florencia Cavodeassi
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- St. George’s, University of London; London, SW17 0RE, UK
| | - Quenten Schwarz
- Institute of Ophthalmology, University College London; London, EC1V 9EL, UK
| | - Elena Dreosti
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - David W. Raible
- Departments of Otolaryngology-HNS and Biological Structure, University of Washington; Seattle, WA 98195-7420, USA
| | | | - Gavin J. Wright
- Wellcome Trust Sanger Institute; Cambridge CB10 1SA, UK
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York; York, YO10 5DD, UK
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Stephen W. Wilson
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| |
Collapse
|
31
|
Shaham SH, Joshi P, Shabeer Ali H, Yadav K, Sharma A, Mugale MN, Tripathi R. Role of angiotensin pathway and its target therapy to rescue from experimental cerebral malaria. Microbes Infect 2024; 26:105333. [PMID: 38570086 DOI: 10.1016/j.micinf.2024.105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Cerebral malaria (CM) induced by Plasmodium falciparum is a devastating neurological complication that may lead the patient to coma and death. This study aimed to protect Plasmodium-infected C57BL6 mice from CM by targeting the angiotensin II type 1 (AT1) receptor, which is considered the common connecting link between hypertension and CM. In CM, AT-1 mediates blood-brain barrier (BBB) damage through the overexpression of β-catenin. The AT-1-inhibiting drugs, such as irbesartan and losartan, were evaluated for the prevention of CM. The effectiveness of these drugs was determined by the down regulation of β-catenin, TCF, LEF, ICAM-1, and VCAM-1 in the drug-treated groups. The expression levels of VE-cadherin and vinculin, essential for the maintenance of BBB integrity, were found to be restored in the drug-treated groups. The pro-inflammatory cytokine levels were decreased, and the anti-inflammatory cytokine levels increased with the treatment. As a major highlight, the mean survival time of treated mice was found to be increased even in the absence of treatment with an anti-malarial agent. The combination of irbesartan or losartan with the anti-malarial agent α/β-arteether has contributed to an 80% cure rate, which is higher than the 60% cure rate observed with α/β-arteether alone treatment.
Collapse
Affiliation(s)
- Salique Hassan Shaham
- Department of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Lucknow-226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prince Joshi
- Department of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - H Shabeer Ali
- Department of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Kanchan Yadav
- Department of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Anamika Sharma
- Department of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Madhav Nilakanth Mugale
- Department of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Renu Tripathi
- Department of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Lucknow-226031, India.
| |
Collapse
|
32
|
O’Hehir ZD, Lynch T, O’Neill S, March L, Xue M. Endothelial Protein C Receptor and Its Impact on Rheumatic Disease. J Clin Med 2024; 13:2030. [PMID: 38610795 PMCID: PMC11012567 DOI: 10.3390/jcm13072030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Endothelial Protein C Receptor (EPCR) is a key regulator of the activated protein C anti-coagulation pathway due to its role in the binding and activation of this protein. EPCR also binds to other ligands such as Factor VII and X, γδ T-cells, plasmodium falciparum erythrocyte membrane protein 1, and Secretory group V Phospholipases A2, facilitating ligand-specific functions. The functions of EPCR can also be regulated by soluble (s)EPCR that competes for the binding sites of membrane-bound (m)EPCR. sEPCR is created when mEPCR is shed from the cell surface. The propensity of shedding alters depending on the genetic haplotype of the EPCR gene that an individual may possess. EPCR plays an active role in normal homeostasis, anti-coagulation pathways, inflammation, and cell stemness. Due to these properties, EPCR is considered a potential effector/mediator of inflammatory diseases. Rheumatic diseases such as rheumatoid arthritis and systemic lupus erythematosus are autoimmune/inflammatory conditions that are associated with elevated EPCR levels and disease activity, potentially driven by EPCR. This review highlights the functions of EPCR and its contribution to rheumatic diseases.
Collapse
Affiliation(s)
- Zachary Daniel O’Hehir
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney at Royal North Shore Hospital, Sydney, NSW 2065, Australia;
| | - Tom Lynch
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Sean O’Neill
- Department of Rheumatology, Royal North Shore Hospital, Syndey, NSW 2065, Australia;
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
- Department of Rheumatology, Royal North Shore Hospital, Syndey, NSW 2065, Australia;
| | - Meilang Xue
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney at Royal North Shore Hospital, Sydney, NSW 2065, Australia;
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| |
Collapse
|
33
|
Hviid L, Jensen AR, Deitsch KW. PfEMP1 and var genes - Still of key importance in Plasmodium falciparum malaria pathogenesis and immunity. ADVANCES IN PARASITOLOGY 2024; 125:53-103. [PMID: 39095112 DOI: 10.1016/bs.apar.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The most severe form of malaria, caused by infection with Plasmodium falciparum parasites, continues to be an important cause of human suffering and poverty. The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of clonally variant antigens, which mediates the adhesion of infected erythrocytes to the vascular endothelium in various tissues and organs, is a central component of the pathogenesis of the disease and a key target of the acquired immune response to malaria. Much new knowledge has accumulated since we published a systematic overview of the PfEMP1 family almost ten years ago. In this chapter, we therefore aim to summarize research progress since 2015 on the structure, function, regulation etc. of this key protein family of arguably the most important human parasite. Recent insights regarding PfEMP1-specific immune responses and PfEMP1-specific vaccination against malaria, as well as an outlook for the coming years are also covered.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Anja R Jensen
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
34
|
Bensalel J, Gallego-Delgado J. Exploring adjunctive therapies for cerebral malaria. Front Cell Infect Microbiol 2024; 14:1347486. [PMID: 38410724 PMCID: PMC10895034 DOI: 10.3389/fcimb.2024.1347486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Cerebral malaria (CM) is one of the most severe complications of malaria infection characterized by coma and neurological effects. Despite standardized treatment of malaria infection with artemisinin-based combination therapies (ACT), the mortality rate is still high, and it primarily affects pediatric patients. ACT reduces parasitemia but fails to adequately target the pathogenic mechanisms underlying CM, including blood-brain-barrier (BBB) disruption, endothelial activation/dysfunction, and hyperinflammation. The need for adjunctive therapies to specifically treat this form of severe malaria is critical as hundreds of thousands of people continue to die each year from this disease. Here we present a summary of some potential promising therapeutic targets and treatments for CM, as well as some that have been tested and deemed ineffective or, in some cases, even deleterious. Further exploration into these therapeutic agents is warranted to assess the effectiveness of these potential treatments for CM patients.
Collapse
Affiliation(s)
- Johanna Bensalel
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, NY, United States
- Department of Biological Sciences, Lehman College, City University of New York, New York, NY, United States
| | - Julio Gallego-Delgado
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, NY, United States
- Department of Biological Sciences, Lehman College, City University of New York, New York, NY, United States
- Ph.D. Program in Biochemistry, The Graduate Center, The City University of New York, New York, NY, United States
| |
Collapse
|
35
|
Reyes RA, Raghavan SSR, Hurlburt NK, Introini V, Kana IH, Jensen RW, Martinez-Scholze E, Gestal-Mato M, Bau CB, Fernández-Quintero ML, Loeffler JR, Ferguson JA, Lee WH, Martin GM, Theander TG, Ssewanyana I, Feeney ME, Greenhouse B, Bol S, Ward AB, Bernabeu M, Pancera M, Turner L, Bunnik EM, Lavstsen T. Broadly inhibitory antibodies against severe malaria virulence proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577124. [PMID: 38328068 PMCID: PMC10849712 DOI: 10.1101/2024.01.25.577124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Plasmodium falciparum pathology is driven by the accumulation of parasite-infected erythrocytes in microvessels. This process is mediated by the parasite's polymorphic erythrocyte membrane protein 1 (PfEMP1) adhesion proteins. A subset of PfEMP1 variants that bind human endothelial protein C receptor (EPCR) through their CIDRα1 domains is responsible for severe malaria pathogenesis. A longstanding question is whether individual antibodies can recognize the large repertoire of circulating PfEMP1 variants. Here, we describe two broadly reactive and binding-inhibitory human monoclonal antibodies against CIDRα1. The antibodies isolated from two different individuals exhibited a similar and consistent EPCR-binding inhibition of 34 CIDRα1 domains, representing five of the six subclasses of CIDRα1. Both antibodies inhibited EPCR binding of both recombinant full-length and native PfEMP1 proteins as well as parasite sequestration in bioengineered 3D brain microvessels under physiologically relevant flow conditions. Structural analyses of the two antibodies in complex with two different CIDRα1 antigen variants reveal similar binding mechanisms that depend on interactions with three highly conserved amino acid residues of the EPCR-binding site in CIDRα1. These broadly reactive antibodies likely represent a common mechanism of acquired immunity to severe malaria and offer novel insights for the design of a vaccine or treatment targeting severe malaria.
Collapse
Affiliation(s)
- Raphael A. Reyes
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Sai Sundar Rajan Raghavan
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas K. Hurlburt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Viola Introini
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona 08003, Spain
| | - Ikhlaq Hussain Kana
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Rasmus W. Jensen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Elizabeth Martinez-Scholze
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Maria Gestal-Mato
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona 08003, Spain
| | | | | | - Johannes R. Loeffler
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James Alexander Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Greg Michael Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thor G. Theander
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | | | - Margaret E. Feeney
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94110, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Sebastiaan Bol
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maria Bernabeu
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona 08003, Spain
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Louise Turner
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Thomas Lavstsen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| |
Collapse
|
36
|
Andradi-Brown C, Wichers-Misterek JS, von Thien H, Höppner YD, Scholz JAM, Hansson H, Filtenborg Hocke E, Gilberger TW, Duffy MF, Lavstsen T, Baum J, Otto TD, Cunnington AJ, Bachmann A. A novel computational pipeline for var gene expression augments the discovery of changes in the Plasmodium falciparum transcriptome during transition from in vivo to short-term in vitro culture. eLife 2024; 12:RP87726. [PMID: 38270586 PMCID: PMC10945709 DOI: 10.7554/elife.87726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The pathogenesis of severe Plasmodium falciparum malaria involves cytoadhesive microvascular sequestration of infected erythrocytes, mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 variants are encoded by the highly polymorphic family of var genes, the sequences of which are largely unknown in clinical samples. Previously, we published new approaches for var gene profiling and classification of predicted binding phenotypes in clinical P. falciparum isolates (Wichers et al., 2021), which represented a major technical advance. Building on this, we report here a novel method for var gene assembly and multidimensional quantification from RNA-sequencing that outperforms the earlier approach of Wichers et al., 2021, on both laboratory and clinical isolates across a combination of metrics. Importantly, the tool can interrogate the var transcriptome in context with the rest of the transcriptome and can be applied to enhance our understanding of the role of var genes in malaria pathogenesis. We applied this new method to investigate changes in var gene expression through early transition of parasite isolates to in vitro culture, using paired sets of ex vivo samples from our previous study, cultured for up to three generations. In parallel, changes in non-polymorphic core gene expression were investigated. Modest but unpredictable var gene switching and convergence towards var2csa were observed in culture, along with differential expression of 19% of the core transcriptome between paired ex vivo and generation 1 samples. Our results cast doubt on the validity of the common practice of using short-term cultured parasites to make inferences about in vivo phenotype and behaviour.
Collapse
Affiliation(s)
- Clare Andradi-Brown
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Jan Stephan Wichers-Misterek
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Heidrun von Thien
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Yannick D Höppner
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Judith AM Scholz
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
| | - Helle Hansson
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Emma Filtenborg Hocke
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Tim Wolf Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Michael F Duffy
- Department of Microbiology and Immunology, University of MelbourneMelbourneAustralia
| | - Thomas Lavstsen
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW, KensingtonSydneyUnited Kingdom
| | - Thomas D Otto
- School of Infection & Immunity, MVLS, University of GlasgowGlasgowUnited Kingdom
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-RiemsHamburgGermany
| |
Collapse
|
37
|
Evbuomwan IO, Alejolowo OO, Elebiyo TC, Nwonuma CO, Ojo OA, Edosomwan EU, Chikwendu JI, Elosiuba NV, Akulue JC, Dogunro FA, Rotimi DE, Osemwegie OO, Ojo AB, Ademowo OG, Adeyemi OS, Oluba OM. In silico modeling revealed phytomolecules derived from Cymbopogon citratus (DC.) leaf extract as promising candidates for malaria therapy. J Biomol Struct Dyn 2024; 42:101-118. [PMID: 36974933 DOI: 10.1080/07391102.2023.2192799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
The emergence of varying levels of resistance to currently available antimalarial drugs significantly threatens global health. This factor heightens the urgency to explore bioactive compounds from natural products with a view to discovering and developing newer antimalarial drugs with novel mode of actions. Therefore, we evaluated the inhibitory effects of sixteen phytocompounds from Cymbopogon citratus leaf extract against Plasmodium falciparum drug targets such as P. falciparum circumsporozoite protein (PfCSP), P. falciparum merozoite surface protein 1 (PfMSP1) and P. falciparum erythrocyte membrane protein 1 (PfEMP1). In silico approaches including molecular docking, pharmacophore modeling and 3D-QSAR were adopted to analyze the inhibitory activity of the compounds under consideration. The molecular docking results indicated that a compound swertiajaponin from C. citratus exhibited a higher binding affinity (-7.8 kcal/mol) to PfMSP1 as against the standard artesunate-amodiaquine (-6.6 kcal/mol). Swertiajaponin also formed strong hydrogen bond interactions with LYS29, CYS30, TYR34, ASN52, GLY55 and CYS28 amino acid residues. In addition, quercetin another compound from C. citratus exhibited significant binding energies -6.8 and -8.3 kcal/mol with PfCSP and PfEMP1, respectively but slightly lower than the standard artemether-lumefantrine with binding energies of -7.4 kcal/mol against PfCSP and -8.7 kcal/mol against PfEMP1. Overall, the present study provides evidence that swertiajaponin and other phytomolecules from C. citratus have modulatory properties toward P. falciparum drug targets and thus may warrant further exploration in early drug discovery efforts against malaria. Furthermore, these findings lend credence to the folkloric use of C. citratus for malaria treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ikponmwosa Owen Evbuomwan
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
- Department of Food Science and Microbiology, Landmark University, Omu-Aran, Nigeria
| | - Omokolade Oluwaseyi Alejolowo
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | | | - Charles Obiora Nwonuma
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology and Computational Biochemistry Research Group, Department of Biochemistry, Bowen University, Iwo, Nigeria
| | - Evelyn Uwa Edosomwan
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
| | | | | | | | | | - Damilare Emmanuel Rotimi
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | | | | | - Olusegun George Ademowo
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
- Drug Research Laboratory, Institute of Advanced Medical Research and Training (IMRAT), College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluyomi Stephen Adeyemi
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
| | - Olarewaju Michael Oluba
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
38
|
Gill J, Singh H, Sharma A. Profiles of global mutations in the human intercellular adhesion molecule-1 (ICAM-1) shed light on population-specific malaria susceptibility. BMC Genomics 2023; 24:773. [PMID: 38093209 PMCID: PMC10720214 DOI: 10.1186/s12864-023-09846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Plasmodium falciparum is responsible for malaria-related morbidity and mortality. PfEMP1 (P. falciparum erythrocyte membrane protein 1) mediates infected erythrocytes adhesion to various surface vascular receptors, including intercellular adhesion molecule-1 (ICAM-1), associating this interaction with severe malaria in several studies. Genetic variation in host ICAM-1 plays a significant role in determining susceptibility to malaria infection via clinical phenotypes such as the ICAM-1Kilifi variant which has been reported to be associated with susceptibility in populations. Our genomic and structural analysis of single nucleotide polymorphisms (SNPs) in ICAM-1 revealed 9 unique mutations each in its distinct A-type and BC-type PfEMP1 DBLβ-interacting regions. These mutations are noted in only a few field isolates and mainly in the African/African American population. The ICAM-1Kilifi variant lies in a flexible loop proximal to the DBLβ-interacting region. This analysis will assist in establishing functional correlations of reported global mutations via experimental and clinical studies and in the tailored design of population-specific genetic surveillance studies. Understanding host polymorphism as an evolutionary force in diverse populations can help to predict predisposition to disease severity and will contribute towards laying the framework for designing population-specific personalized medicines for severe malaria.
Collapse
Affiliation(s)
- Jasmita Gill
- ICMR-National Institute of Malaria Research, Sector-8 Dwarka, New Delhi, India.
| | - Himmat Singh
- ICMR-National Institute of Malaria Research, Sector-8 Dwarka, New Delhi, India
| | - Amit Sharma
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
39
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023; 14:2150456. [PMID: 36419237 PMCID: PMC9815252 DOI: 10.1080/21505594.2022.2150456] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| |
Collapse
|
40
|
Tan MH, Tiedje KE, Feng Q, Zhan Q, Pascual M, Shim H, Chan YB, Day KP. A paradoxical population structure of var DBLα types in Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.05.565723. [PMID: 37986738 PMCID: PMC10659346 DOI: 10.1101/2023.11.05.565723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The var multigene family encodes the P. falciparum erythrocyte membrane protein 1 (PfEMP1), which is important in host-parasite interaction as a virulence factor and major surface antigen of the blood stages of the parasite, responsible for maintaining chronic infection. Whilst important in the biology of P. falciparum, these genes (50 to 60 genes per parasite genome) are routinely excluded from whole genome analyses due to their hyper-diversity, achieved primarily through recombination. The PfEMP1 head structure almost always consists of a DBLα-CIDR tandem. Categorised into different groups (upsA, upsB, upsC), different head structures have been associated with different ligand-binding affinities and disease severities. We study how conserved individual DBLα types are at the country, regional, and local scales in Sub-Saharan Africa. Using publicly-available sequence datasets and a novel ups classification algorithm, cUps, we performed an in silico exploration of DBLα conservation through time and space in Africa. In all three ups groups, the population structure of DBLα types in Africa consists of variants occurring at rare, low, moderate, and high frequencies. Non-rare variants were found to be temporally stable in a local area in endemic Ghana. When inspected across different geographical scales, we report different levels of conservation; while some DBLα types were consistently found in high frequencies in multiple African countries, others were conserved only locally, signifying local preservation of specific types. Underlying this population pattern is the composition of DBLα types within each isolate DBLα repertoire, revealed to also consist of a mix of types found at rare, low, moderate, and high frequencies in the population. We further discuss the adaptive forces and balancing selection, including host genetic factors, potentially shaping the evolution and diversity of DBLα types in Africa.
Collapse
Affiliation(s)
- Mun Hua Tan
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| | - Qian Feng
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Qi Zhan
- Department of Ecology and Evolution, University of Chicago; Chicago, Illinois, USA
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago; Chicago, Illinois, USA
| | - Heejung Shim
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Yao-Ban Chan
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| |
Collapse
|
41
|
Hadjilaou A, Brandi J, Riehn M, Friese MA, Jacobs T. Pathogenetic mechanisms and treatment targets in cerebral malaria. Nat Rev Neurol 2023; 19:688-709. [PMID: 37857843 DOI: 10.1038/s41582-023-00881-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Malaria, the most prevalent mosquito-borne infectious disease worldwide, has accompanied humanity for millennia and remains an important public health issue despite advances in its prevention and treatment. Most infections are asymptomatic, but a small percentage of individuals with a heavy parasite burden develop severe malaria, a group of clinical syndromes attributable to organ dysfunction. Cerebral malaria is an infrequent but life-threatening complication of severe malaria that presents as an acute cerebrovascular encephalopathy characterized by unarousable coma. Despite effective antiparasite drug treatment, 20% of patients with cerebral malaria die from this disease, and many survivors of cerebral malaria have neurocognitive impairment. Thus, an important unmet clinical need is to rapidly identify people with malaria who are at risk of developing cerebral malaria and to develop preventive, adjunctive and neuroprotective treatments for cerebral malaria. This Review describes important advances in the understanding of cerebral malaria over the past two decades and discusses how these mechanistic insights could be translated into new therapies.
Collapse
Affiliation(s)
- Alexandros Hadjilaou
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany.
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | - Johannes Brandi
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Mathias Riehn
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| |
Collapse
|
42
|
Howard C, Joof F, Hu R, Smith JD, Zheng Y. Probing cerebral malaria inflammation in 3D human brain microvessels. Cell Rep 2023; 42:113253. [PMID: 37819760 DOI: 10.1016/j.celrep.2023.113253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023] Open
Abstract
Sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the brain microcirculation is a hallmark of cerebral malaria (CM), which leads to endothelial activation, brain swelling, and death. Here, we probed CM inflammation in a perfusable 3D human brain microvessel model. 3D brain microvessels supported in vivo-like capacities for parasite binding and maturation in situ, leading to a distinct inflammatory response from the pro-inflammatory cytokine tumor necrosis factor α (TNF-α). By combining transcriptional analysis, imaging, and leukocyte perfusion, we showed that whereas TNF-α promotes a reversible inflammatory phenotype with widespread leukocyte recruitment, parasites induce unique stress response pathways and cause localized cell adhesivity changes, focal endothelial disruptions, and apoptosis. Furthermore, parasites modified the temporal kinetics of the TNF transcriptional response, suggesting augmented inflammatory damage with the two sequential stimuli. Our findings offer mechanistic insights into CM biology in a 3D brain microvessel mimetic platform and suggest that multiple events intersect to promote brain barrier inflammation in CM.
Collapse
Affiliation(s)
- Caitlin Howard
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Fatou Joof
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Ruoqian Hu
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Joseph D Smith
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA.
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
43
|
Tunali V, Korkmaz M. Emerging and Re-Emerging Parasitic Infections of the Central Nervous System (CNS) in Europe. Infect Dis Rep 2023; 15:679-699. [PMID: 37987400 PMCID: PMC10660548 DOI: 10.3390/idr15060062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
In a rapidly evolving global landscape characterized by increased international travel, migration, and ecological shifts, this study sheds light on the emergence of protozoal and helminthic infections targeting the central nervous system (CNS) within Europe. Despite being traditionally associated with tropical regions, these infections are progressively becoming more prevalent in non-endemic areas. By scrutinizing the inherent risks, potential outcomes, and attendant challenges, this study underscores the intricate interplay between diagnostic limitations, susceptibility of specific population subsets, and the profound influence of climate fluctuations. The contemporary interconnectedness of societies serves as a conduit for introducing and establishing these infections, warranting comprehensive assessment. This study emphasizes the pivotal role of heightened clinician vigilance, judicious public health interventions, and synergistic research collaborations to mitigate the potential consequences of these infections. Though rare, their profound impact on morbidity and mortality underscores the collective urgency required to safeguard the neurological well-being of the European populace. Through this multifaceted approach, Europe can effectively navigate the complex terrain posed with these emergent infections.
Collapse
Affiliation(s)
- Varol Tunali
- Department of Parasitology, Faculty of Medicine, Manisa Celal Bayar University, 45030 Manisa, Turkey
- Department of Emergency Medicine, Izmir Metropolitan Municipality Eşrefpaşa Hospital, 35170 Izmir, Turkey
| | - Metin Korkmaz
- Department of Parasitology, Faculty of Medicine, Ege University, 35100 Izmir, Turkey;
| |
Collapse
|
44
|
Tewey MA, Coulibaly D, Lawton JG, Stucke EM, Zhou AE, Berry AA, Bailey JA, Pike A, Dara A, Ouattara A, Lyke KE, Ifeonu O, Laurens MB, Adams M, Takala-Harrison S, Niangaly A, Kouriba B, Koné AK, Rowe JA, Doumbo OK, Patel JJ, Tan JC, Felgner PL, Plowe CV, Thera MA, Travassos MA. Natural immunity to malaria preferentially targets the endothelial protein C receptor-binding regions of PfEMP1s. mSphere 2023; 8:e0045123. [PMID: 37791774 PMCID: PMC10597466 DOI: 10.1128/msphere.00451-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023] Open
Abstract
Antibody responses to variant surface antigens (VSAs) produced by the malaria parasite Plasmodium falciparum may contribute to age-related natural immunity to severe malaria. One VSA family, P. falciparum erythrocyte membrane protein-1 (PfEMP1), includes a subset of proteins that binds endothelial protein C receptor (EPCR) in human hosts and potentially disrupts the regulation of inflammatory responses, which may lead to the development of severe malaria. We probed peptide microarrays containing segments spanning five PfEMP1 EPCR-binding domain variants with sera from 10 Malian adults and 10 children to determine the differences between adult and pediatric immune responses. We defined serorecognized peptides and amino acid residues as those that elicited a significantly higher antibody response than malaria-naïve controls. We aimed to identify regions consistently serorecognized among adults but not among children across PfEMP1 variants, potentially indicating regions that drive the development of immunity to severe malaria. Adult sera consistently demonstrated broader and more intense serologic responses to constitutive PfEMP1 peptides than pediatric sera, including peptides in EPCR-binding domains. Both adults and children serorecognized a significantly higher proportion of EPCR-binding peptides than peptides that do not directly participate in receptor binding, indicating a preferential development of serologic responses at functional residues. Over the course of a single malaria transmission season, pediatric serological responses increased between the start and the peak of the season, but waned as the transmission season ended. IMPORTANCE Severe malaria and death related to malaria disproportionately affect sub-Saharan children under 5 years of age, commonly manifesting as cerebral malaria and/or severe malarial anemia. In contrast, adults in malaria-endemic regions tend to experience asymptomatic or mild disease. Our findings indicate that natural immunity to malaria targets specific regions within the EPCR-binding domain, particularly peptides containing EPCR-binding residues. Epitopes containing these residues may be promising targets for vaccines or therapeutics directed against severe malaria. Our approach provides insight into the development of natural immunity to a binding target linked to severe malaria by characterizing an "adult-like" response as recognizing a proportion of epitopes within the PfEMP1 protein, particularly regions that mediate EPCR binding. This "adult-like" response likely requires multiple years of malaria exposure, as increases in pediatric serologic response over a single malaria transmission season do not appear significant.
Collapse
Affiliation(s)
- Madison A. Tewey
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Jonathan G. Lawton
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Emily M. Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Albert E. Zhou
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrea A. Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jason A. Bailey
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pike
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Antoine Dara
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amed Ouattara
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kirsten E. Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Olukemi Ifeonu
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew B. Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew Adams
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K. Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - J. Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | | | - John C. Tan
- Roche NimbleGen, Inc., Madison, Wisconsin, USA
| | - Philip L. Felgner
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California, USA
| | - Christopher V. Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mark A. Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Rajan Raghavan SS, Turner L, Jensen RW, Johansen NT, Jensen DS, Gourdon P, Zhang J, Wang Y, Theander TG, Wang K, Lavstsen T. Endothelial protein C receptor binding induces conformational changes to severe malaria-associated group A PfEMP1. Structure 2023; 31:1174-1183.e4. [PMID: 37582356 DOI: 10.1016/j.str.2023.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023]
Abstract
Severe Plasmodium falciparum malaria infections are caused by microvascular sequestration of parasites binding to the human endothelial protein C receptor (EPCR) via the multi-domain P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion ligands. Using cryogenic electron microscopy (Cryo-EM) and PfEMP1 sequence diversity analysis, we found that group A PfEMP1 CIDRα1 domains interact with the adjacent DBLα1 domain through central, conserved residues of the EPCR-binding site to adopt a compact conformation. Upon EPCR binding, the DBLα1 domain is displaced, and the EPCR-binding helix of CIDRα1 is turned, kinked, and twisted to reach a rearranged, stable EPCR-bound conformation. The unbound conformation and the required transition to the EPCR-bound conformation may represent a conformational masking mechanism of immune evasion for the PfEMP1 family.
Collapse
Affiliation(s)
- Sai Sundar Rajan Raghavan
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Louise Turner
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Rasmus W Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Nicolai Tidemand Johansen
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Skjold Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Pontus Gourdon
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jinqiu Zhang
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, China
| | - Yong Wang
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, China
| | - Thor Grundtvig Theander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Kaituo Wang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
46
|
Hassan I, Kanoi BN, Nagaoka H, Sattabongkot J, Udomsangpetch R, Tsuboi T, Takashima E. High-Throughput Antibody Profiling Identifies Targets of Protective Immunity against P. falciparum Malaria in Thailand. Biomolecules 2023; 13:1267. [PMID: 37627332 PMCID: PMC10452476 DOI: 10.3390/biom13081267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Malaria poses a significant global health challenge, resulting in approximately 600,000 deaths each year. Individuals living in regions with endemic malaria have the potential to develop partial immunity, thanks in part to the presence of anti-plasmodium antibodies. As efforts are made to optimize and implement strategies to reduce malaria transmission and ultimately eliminate the disease, it is crucial to understand how these interventions impact naturally acquired protective immunity. To shed light on this, our study focused on assessing antibody responses to a carefully curated library of P. falciparum recombinant proteins (n = 691) using samples collected from individuals residing in a low-malaria-transmission region of Thailand. We conducted the antibody assays using the AlphaScreen system, a high-throughput homogeneous proximity-based bead assay that detects protein interactions. We observed that out of the 691 variable surface and merozoite stage proteins included in the library, antibodies to 268 antigens significantly correlated with the absence of symptomatic malaria in an univariate analysis. Notably, the most prominent antigens identified were P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains. These results align with our previous research conducted in Uganda, suggesting that similar antigens like PfEMP1s might play a pivotal role in determining infection outcomes in diverse populations. To further our understanding, it remains critical to conduct functional characterization of these identified proteins, exploring their potential as correlates of protection or as targets for vaccine development.
Collapse
Affiliation(s)
- Ifra Hassan
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (I.H.); (H.N.)
| | - Bernard N. Kanoi
- Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika 01000, Kenya;
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (I.H.); (H.N.)
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Rachanee Udomsangpetch
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand;
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan;
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (I.H.); (H.N.)
| |
Collapse
|
47
|
Wiser MF. Knobs, Adhesion, and Severe Falciparum Malaria. Trop Med Infect Dis 2023; 8:353. [PMID: 37505649 PMCID: PMC10385726 DOI: 10.3390/tropicalmed8070353] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
Plasmodium falciparum can cause a severe disease with high mortality. A major factor contributing to the increased virulence of P. falciparum, as compared to other human malarial parasites, is the sequestration of infected erythrocytes in the capillary beds of organs and tissues. This sequestration is due to the cytoadherence of infected erythrocytes to endothelial cells. Cytoadherence is primarily mediated by a parasite protein expressed on the surface of the infected erythrocyte called P. falciparum erythrocyte membrane protein-1 (PfEMP1). PfEMP1 is embedded in electron-dense protuberances on the surface of the infected erythrocytes called knobs. These knobs are assembled on the erythrocyte membrane via exported parasite proteins, and the knobs function as focal points for the cytoadherence of infected erythrocytes to endothelial cells. PfEMP1 is a member of the var gene family, and there are approximately 60 antigenically distinct PfEMP1 alleles per parasite genome. Var gene expression exhibits allelic exclusion, with only a single allele being expressed by an individual parasite. This results in sequential waves of antigenically distinct infected erythrocytes and this antigenic variation allows the parasite to establish long-term chronic infections. A wide range of endothelial cell receptors can bind to the various PfEMP1 alleles, and thus, antigenic variation also results in a change in the cytoadherence phenotype. The cytoadherence phenotype may result in infected erythrocytes sequestering in different tissues and this difference in sequestration may explain the wide range of possible clinical manifestations associated with severe falciparum malaria.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA
| |
Collapse
|
48
|
Bhattacharjee S, Ghosh D, Saha R, Sarkar R, Kumar S, Khokhar M, Pandey RK. Mechanism of Immune Evasion in Mosquito-Borne Diseases. Pathogens 2023; 12:635. [PMID: 37242305 PMCID: PMC10222277 DOI: 10.3390/pathogens12050635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
In recent decades, mosquito-borne illnesses have emerged as a major health burden in many tropical regions. These diseases, such as malaria, dengue fever, chikungunya, yellow fever, Zika virus infection, Rift Valley fever, Japanese encephalitis, and West Nile virus infection, are transmitted through the bite of infected mosquitoes. These pathogens have been shown to interfere with the host's immune system through adaptive and innate immune mechanisms, as well as the human circulatory system. Crucial immune checkpoints such as antigen presentation, T cell activation, differentiation, and proinflammatory response play a vital role in the host cell's response to pathogenic infection. Furthermore, these immune evasions have the potential to stimulate the human immune system, resulting in other associated non-communicable diseases. This review aims to advance our understanding of mosquito-borne diseases and the immune evasion mechanisms by associated pathogens. Moreover, it highlights the adverse outcomes of mosquito-borne disease.
Collapse
Affiliation(s)
| | - Debanjan Ghosh
- Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Rounak Saha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605014, India
| | - Rima Sarkar
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Saurav Kumar
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Manoj Khokhar
- Department of Biochemistry, AIIMS, Jodhpur 342005, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Sweden
| |
Collapse
|
49
|
Thakar M, Noumbissi ME, Stins MF. Microvascular Environment Influences Brain Microvascular Heterogeneity: Relative Roles of Astrocytes and Oligodendrocytes for the EPCR Expression in the Brain Endothelium. Int J Mol Sci 2023; 24:6908. [PMID: 37108071 PMCID: PMC10138692 DOI: 10.3390/ijms24086908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Postmortem neuropathology shows clear regional differences in many brain diseases. For example, brains from cerebral malaria (CM) patients show more hemorrhagic punctae in the brain's white matter (WM) than grey matter (GM). The underlying reason for these differential pathologies is unknown. Here, we assessed the effect of the vascular microenvironment on brain endothelial phenotype, focusing endothelial protein C receptor (EPCR). We demonstrate that the basal level of EPCR expression in cerebral microvessels is heterogeneous in the WM compared to the GM. We used in vitro brain endothelial cell cultures and showed that the upregulation of EPCR expression was associated with exposure to oligodendrocyte conditioned media (OCM) compared to astrocyte conditioned media (ACM). Our findings shed light on the origin of the heterogeneity of molecular phenotypes at the microvascular level and might help better understand the variation in pathology seen in CM and other neuropathologies associated with vasculature in various brain regions.
Collapse
Affiliation(s)
- Manjusha Thakar
- Malaria Research Institute, Department Molecular Microbiology & Immunology, Johns Hopkins School Public Health, Baltimore, MD 21205, USA
| | - Midrelle E. Noumbissi
- Malaria Research Institute, Department Molecular Microbiology & Immunology, Johns Hopkins School Public Health, Baltimore, MD 21205, USA
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Monique F. Stins
- Malaria Research Institute, Department Molecular Microbiology & Immunology, Johns Hopkins School Public Health, Baltimore, MD 21205, USA
- Biomedical Research Institute of Southern California, Oceanside, CA 92056, USA
| |
Collapse
|
50
|
Silva-Pedrosa R, Campos J, Fernandes AM, Silva M, Calçada C, Marote A, Martinho O, Veiga MI, Rodrigues LR, Salgado AJ, Ferreira PE. Cerebral Malaria Model Applying Human Brain Organoids. Cells 2023; 12:cells12070984. [PMID: 37048057 PMCID: PMC10093648 DOI: 10.3390/cells12070984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Neural injuries in cerebral malaria patients are a significant cause of morbidity and mortality. Nevertheless, a comprehensive research approach to study this issue is lacking, so herein we propose an in vitro system to study human cerebral malaria using cellular approaches. Our first goal was to establish a cellular system to identify the molecular alterations in human brain vasculature cells that resemble the blood-brain barrier (BBB) in cerebral malaria (CM). Through transcriptomic analysis, we characterized specific gene expression profiles in human brain microvascular endothelial cells (HBMEC) activated by the Plasmodium falciparum parasites. We also suggest potential new genes related to parasitic activation. Then, we studied its impact at brain level after Plasmodium falciparum endothelial activation to gain a deeper understanding of the physiological mechanisms underlying CM. For that, the impact of HBMEC-P. falciparum-activated secretomes was evaluated in human brain organoids. Our results support the reliability of in vitro cellular models developed to mimic CM in several aspects. These systems can be of extreme importance to investigate the factors (parasitological and host) influencing CM, contributing to a molecular understanding of pathogenesis, brain injury, and dysfunction.
Collapse
Affiliation(s)
- Rita Silva-Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Aline Marie Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Miguel Silva
- Department of Experimental Biology, Section of Microbiology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Carla Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ligia R Rodrigues
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Eduardo Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|