1
|
Jones-Weinert C, Mainz L, Karlseder J. Telomere function and regulation from mouse models to human ageing and disease. Nat Rev Mol Cell Biol 2025; 26:297-313. [PMID: 39614014 DOI: 10.1038/s41580-024-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 12/01/2024]
Abstract
Telomeres protect the ends of chromosomes but shorten following cell division in the absence of telomerase activity. When telomeres become critically short or damaged, a DNA damage response is activated. Telomeres then become dysfunctional and trigger cellular senescence or death. Telomere shortening occurs with ageing and may contribute to associated maladies such as infertility, neurodegeneration, cancer, lung dysfunction and haematopoiesis disorders. Telomere dysfunction (sometimes without shortening) is associated with various diseases, known as telomere biology disorders (also known as telomeropathies). Telomere biology disorders include dyskeratosis congenita, Høyeraal-Hreidarsson syndrome, Coats plus syndrome and Revesz syndrome. Although mouse models have been invaluable in advancing telomere research, full recapitulation of human telomere-related diseases in mice has been challenging, owing to key differences between the species. In this Review, we discuss telomere protection, maintenance and damage. We highlight the differences between human and mouse telomere biology that may contribute to discrepancies between human diseases and mouse models. Finally, we discuss recent efforts to generate new 'humanized' mouse models to better model human telomere biology. A better understanding of the limitations of mouse telomere models will pave the road for more human-like models and further our understanding of telomere biology disorders, which will contribute towards the development of new therapies.
Collapse
Affiliation(s)
| | - Laura Mainz
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
2
|
Csizmar CM, Litzow MR, Saliba AN. Antibody-Based and Other Novel Agents in Adult B-Cell Acute Lymphoblastic Leukemia. Cancers (Basel) 2025; 17:779. [PMID: 40075627 PMCID: PMC11899621 DOI: 10.3390/cancers17050779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Despite notable progress in managing B-cell acute lymphoblastic leukemia (B-ALL) over recent decades, particularly in pediatric cohorts where the 5-year overall survival (OS) reaches 90%, outcomes for the 10-15% with relapsed and refractory disease remain unfavorable. This disparity is further accentuated in adults, where individuals over the age of 40 years undergoing aggressive multiagent chemotherapy continue to have lower survival rates. While the adoption of pediatric-inspired treatment protocols has enhanced complete remission (CR) rates among younger adults, 20-30% of these patients experience relapse, resulting in a subsequent 5-year OS rate of 40-50%. For relapsed B-ALL in adults, there is no universally accepted standard salvage therapy, and the median OS is short. The cornerstone of B-ALL treatment continues to be the utilization of combined cytotoxic chemotherapy regimens to maximize early and durable disease control. In this manuscript, we go beyond the multiagent chemotherapy medications developed prior to the 1980s and focus on the incorporation of antibody-based therapy for B-ALL with an eye on existing and upcoming approved indications for blinatumomab, inotuzumab ozogamicin, other monoclonal antibodies, and chimeric antigen receptor (CAR) T cell products in frontline and relapsed/refractory settings. In addition, we discuss emerging investigational therapies that harness the therapeutic vulnerabilities of the disease through targeting apoptosis, modifying epigenetics, and inhibiting the mTOR pathway.
Collapse
Affiliation(s)
- Clifford M. Csizmar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | | | - Antoine N. Saliba
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
3
|
Nichols A, Norman R, Chen Y, Choi Y, Striepen J, Salataj E, Toufektchan E, Koche R, Maciejowski J. Mitotic transcription ensures ecDNA inheritance through chromosomal tethering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637945. [PMID: 39990406 PMCID: PMC11844496 DOI: 10.1101/2025.02.12.637945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Extrachromosomal DNA (ecDNA) are circular DNA bodies that play critical roles in tumor progression and treatment resistance by amplifying oncogenes across a wide range of cancer types. ecDNA lack centromeres and are thus not constrained by typical Mendelian segregation, enabling their unequal accumulation within daughter cells and associated increases in copy number. Despite intrinsic links to their oncogenic potential, the fidelity and mechanisms of ecDNA inheritance are poorly understood. Here, we show that ecDNA are protected against cytosolic mis-segregation through mitotic clustering and by tethering to the telomeric and subtelomeric regions of mitotic chromosomes. ecDNA-chromosome tethering depends on BRD4 transcriptional co-activation and mitotic transcription of the long non-coding RNA PVT1 , which is co-amplified with MYC in colorectal and prostate cancer cell lines. Disruption of ecDNA-chromosome tethering through BRD4 inhibition, PVT1 depletion, or inhibiting mitotic transcription results in cytosolic mis-segregation, ecDNA reintegration, and the formation of homogeneously staining regions (HSRs). We propose that nuclear inheritance of ecDNA is facilitated by an RNA-mediated physical tether that links ecDNA to mitotic chromosomes and thus protects against cytosolic mis-segregation and chromosomal integration.
Collapse
|
4
|
Simovic-Lorenz M, Ernst A. Chromothripsis in cancer. Nat Rev Cancer 2025; 25:79-92. [PMID: 39548283 DOI: 10.1038/s41568-024-00769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Chromothripsis is a mutational phenomenon in which a single catastrophic event generates extensive rearrangements of one or a few chromosomes. This extreme form of genome instability has been detected in 30-50% of cancers. Studies conducted in the past few years have uncovered insights into how chromothripsis arises and deciphered some of the cellular and molecular consequences of chromosome shattering. This Review discusses the defining features of chromothripsis and describes its prevalence across different cancer types as indicated by the manifestations of chromothripsis detected in human cancer samples. The different mechanistic models of chromothripsis, derived from in vitro systems that enable causal inference through experimental manipulation, are discussed in detail. The contribution of chromothripsis to cancer development, the selective advantages that cancer cells might gain from chromothripsis, the evolutionary trajectories of chromothriptic tumours, and the potential vulnerabilities and therapeutic opportunities presented by chromothriptic cells are also highlighted.
Collapse
Affiliation(s)
- Milena Simovic-Lorenz
- Group Genome Instability in Tumors, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Aurélie Ernst
- Group Genome Instability in Tumors, German Cancer Research Center, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
5
|
Espejo Valle-Inclan J, De Noon S, Trevers K, Elrick H, van Belzen IAEM, Zumalave S, Sauer CM, Tanguy M, Butters T, Muyas F, Rust AG, Amary F, Tirabosco R, Giess A, Sosinsky A, Elgar G, Flanagan AM, Cortés-Ciriano I. Ongoing chromothripsis underpins osteosarcoma genome complexity and clonal evolution. Cell 2025; 188:352-370.e22. [PMID: 39814020 DOI: 10.1016/j.cell.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/05/2024] [Accepted: 12/07/2024] [Indexed: 01/18/2025]
Abstract
Osteosarcoma is the most common primary cancer of the bone, with a peak incidence in children and young adults. Using multi-region whole-genome sequencing, we find that chromothripsis is an ongoing mutational process, occurring subclonally in 74% of osteosarcomas. Chromothripsis generates highly unstable derivative chromosomes, the ongoing evolution of which drives the acquisition of oncogenic mutations, clonal diversification, and intra-tumor heterogeneity across diverse sarcomas and carcinomas. In addition, we characterize a new mechanism, termed loss-translocation-amplification (LTA) chromothripsis, which mediates punctuated evolution in about half of pediatric and adult high-grade osteosarcomas. LTA chromothripsis occurs when a single double-strand break triggers concomitant TP53 inactivation and oncogene amplification through breakage-fusion-bridge cycles. It is particularly prevalent in osteosarcoma and is not detected in other cancers driven by TP53 mutation. Finally, we identify the level of genome-wide loss of heterozygosity as a strong prognostic indicator for high-grade osteosarcoma.
Collapse
Affiliation(s)
| | - Solange De Noon
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Katherine Trevers
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Hillary Elrick
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Ianthe A E M van Belzen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Sonia Zumalave
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Carolin M Sauer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Mélanie Tanguy
- Scientific Research and Development, Genomics England, One Canada Square, London E14 5AB, UK
| | - Thomas Butters
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Francesc Muyas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Alistair G Rust
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Fernanda Amary
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Roberto Tirabosco
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Adam Giess
- Scientific Research and Development, Genomics England, One Canada Square, London E14 5AB, UK
| | | | - Greg Elgar
- Scientific Research and Development, Genomics England, One Canada Square, London E14 5AB, UK
| | - Adrienne M Flanagan
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK.
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK.
| |
Collapse
|
6
|
Zeng Y, Lv W, Tao H, Li C, Jiang S, Liang Y, Chen C, Yu T, Li Y, Wu S, Cui X, Liang N, Wang P, Xu H, Dong J, Teng H, Chen K, Mu K, Fan T, Cen X, Xu Z, Zhu M, Wang W, Mi J, Xiang X, Dong W, Yang H, Bolund L, Lin L, Song J, Song X, Luo Y, Lin C, Han P. Mapping the chromothripsis landscape in urothelial carcinoma unravels great intratumoral and intertumoral heterogeneity. iScience 2025; 28:111510. [PMID: 39790556 PMCID: PMC11714673 DOI: 10.1016/j.isci.2024.111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/24/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025] Open
Abstract
Chromothripsis, a hallmark of cancer, is characterized by extensive and localized DNA rearrangements involving one or a few chromosomes. However, its genome-wide frequency and characteristics in urothelial carcinoma (UC) remain largely unknown. Here, by analyzing single-regional and multi-regional whole-genome sequencing (WGS), we present the chromothripsis blueprint in 488 UC patients. Chromothripsis events exhibit significant intertumoral heterogeneity, being detected in 41% of UC patients, with an increase from 30% in non-muscle-invasive disease (Ta/1) to 53% in muscle-invasive disease (T2-4). The presence of chromothripsis correlates with an unstable cancer genome and poor clinical outcomes. Analysis of multi-regional WGS data from 52 patients revealed pronounced intratumoral heterogeneity with chromothripsis events detectable only in specific tumor regions rather than uniformly across all areas. Chromothripsis events evolve under positive selection and contribute to tumor dissemination. This study presents a comprehensive genome-wide chromothripsis landscape in UC, highlighting the significance of chromothripsis in UC development.
Collapse
Affiliation(s)
- Yuchen Zeng
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Wei Lv
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| | - Huiying Tao
- The 2nd Medical College of Binzhou Medical University, Yantai, Shandong 264003, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Conghui Li
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Shiqi Jiang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yuan Liang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Chen Chen
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Tianxi Yu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Yue Li
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Shuang Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Xin Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Ning Liang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Ping Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Huixin Xu
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| | - Jingjing Dong
- Department of General Medicine, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Huajing Teng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Kai Mu
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250033, China
| | - Tianda Fan
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xiaoping Cen
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
| | - Zhe Xu
- College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
| | - Ming Zhu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenting Wang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Xi Xiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
| | - Wei Dong
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Huanming Yang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lars Bolund
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lin Lin
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jinzhao Song
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Peng Han
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
| |
Collapse
|
7
|
Gil JV, Avetisyan G, de las Heras S, Miralles A, del Cañizo M, Rico Á, Valerio ME, Díaz V, Piñero P, Orellana C, Cervera J, Fuentes C, Fernández JM, Barragán E, Such E, Llop M. Atypical B-Cell Acute Lymphoblastic Leukemia with iAMP21 in the Context of Constitutional Ring Chromosome 21: A Case Report and Review of the Genetic Insights. Int J Mol Sci 2025; 26:357. [PMID: 39796213 PMCID: PMC11719716 DOI: 10.3390/ijms26010357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Recent studies have demonstrated the association between constitutional ring chromosome 21 (r(21)c) and the development of B-cell acute lymphoblastic leukemia (B-ALL) with intrachromosomal amplification of chromosome 21 (iAMP21). iAMP21 acts as a driver which is often accompanied by secondary alterations that influence disease progression. Here, we report an atypical case of iAMP21 B-ALL with a unique molecular profile in the context of r(21)c. The onset of B-ALL occurred significantly earlier than previously reported in iAMP21-ALL, likely due to the presence of r(21)c. Only scarce cases of iAMP21 with concomitant PAX5 fusions have been reported. Through an extensive genomic characterization, the novel WWOX::PAX5 as well as 13q12.2 deletion involving FLT3 overexpression was found. These findings suggest that r(21)c may induce chromosomal instability on chromosome 21, triggering chromothripsis and leading to iAMP21-ALL. This case provides valuable insights to unravel the complex interplay between germline and somatic genetic alterations in leukemia. Moreover, it underscores the need for thorough genetic evaluation and multidisciplinary management in patients with syndromic presentation, particularly when rare genetic events may contribute to hematologic malignancies.
Collapse
Affiliation(s)
- José Vicente Gil
- Accredited Research Group on Hematology, Instituto de Investigación Sanitaria la Fe, 46026 Valencia, Spain
| | - Gayane Avetisyan
- Accredited Research Group on Hematology, Instituto de Investigación Sanitaria la Fe, 46026 Valencia, Spain
| | - Sandra de las Heras
- Accredited Research Group on Hematology, Instituto de Investigación Sanitaria la Fe, 46026 Valencia, Spain
| | - Alberto Miralles
- Accredited Research Group on Hematology, Instituto de Investigación Sanitaria la Fe, 46026 Valencia, Spain
| | - María del Cañizo
- Onco-Hematology Unit, Pediatrics Service, Hospital General Universitario de Alicante, 03010 Alicante, Spain
| | - Ángela Rico
- Onco-Hematology Unit, Pediatrics Service, Hospital General Universitario de Alicante, 03010 Alicante, Spain
| | - María Eli Valerio
- Onco-Hematology Unit, Pediatrics Service, Hospital General Universitario de Alicante, 03010 Alicante, Spain
| | - Vanesa Díaz
- Hematology Diagnostic Unit, Hematology Service, Hospital General Universitario de Alicante, 03010 Alicante, Spain
| | - Paula Piñero
- Hematology Diagnostic Unit, Hematology Service, Hospital General Universitario de Alicante, 03010 Alicante, Spain
| | - Carmen Orellana
- Genetics Unit, Hospital Universitario y Politécnico la Fe, 46026 Valencia, Spain
| | - José Cervera
- Genetics Unit, Hospital Universitario y Politécnico la Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC CB16/12/00284, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carolina Fuentes
- Onco-Hematology Unit, Pediatrics Service, Hospital Universitario y Politécnico la Fe, 46026 Valencia, Spain
| | - José María Fernández
- Onco-Hematology Unit, Pediatrics Service, Hospital Universitario y Politécnico la Fe, 46026 Valencia, Spain
| | - Eva Barragán
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC CB16/12/00284, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Molecular Biology Unit, Clinical Analysis Service, Hospital Universitario y Politécnico la Fe, 46026 Valencia, Spain
| | - Esperanza Such
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC CB16/12/00284, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Hematology Diagnostic Unit, Hematology Service, Hospital Universitario y Politécnico la Fe, 46026 Valencia, Spain
| | - Marta Llop
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC CB16/12/00284, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Molecular Biology Unit, Clinical Analysis Service, Hospital Universitario y Politécnico la Fe, 46026 Valencia, Spain
| |
Collapse
|
8
|
Hormann FM, Østergaard A, van den Broek S, Boeree A, van de Ven C, Escherich G, Sonneveld E, Boer JM, den Boer ML. Secondary lesions and sensitivity to signaling inhibitors in iAMP21 acute lymphoblastic leukemia. Hemasphere 2025; 9:e70069. [PMID: 39840380 PMCID: PMC11746935 DOI: 10.1002/hem3.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 11/14/2024] [Indexed: 01/23/2025] Open
Abstract
Intrachromosomal amplification of chromosome 21 (iAMP21) B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in children is a high-risk subtype for which targeted drugs are lacking. In this study, we determined the frequency of secondary lesions in 28 iAMP21 BCP-ALL patient samples and investigated cellular sensitivity for candidate-targeted drugs. iAMP21 was enriched in FLT3 aberrations (10.7% vs. 50.0%, p = 0.003) and SH2B3 inactivation (7.14% vs. 46.4%, p = 0.002), compared with 28 B-other cases, and these alterations co-occurred in 21.4%. The occurrence of lesions in CRLF2 and IL7R was similar between iAMP21 and B-other cases (25% vs. 17.9%, p = 0.746 and 7.14% vs. 0%, p = 0.491 respectively) as were mutations in JAK1 and JAK2 (3.57% vs. 0% and 10.7% vs. 10.7%, p = 1 for both). Sensitivity to the FLT3 inhibitor gilteritinib did not differ between iAMP21 and B-other cases irrespective of FLT3 status. However, iAMP21 samples harboring both FLT3-ITD and SH2B3 lesions showed the highest sensitivity. CRLF2-rearranged iAMP21 samples were slightly more sensitive to JAK inhibitor ruxolitinib than those without, although a lack of sensitivity was present in 50% of iAMP21 cases. Trametinib sensitivity varied among iAMP21 samples with over half of iAMP21 samples being sensitive irrespective of RAS-pathway mutation status or other secondary lesions. In summary, iAMP21 leukemias were enriched in FLT3 and in SH2B3 lesions, which when co-occurring affected sensitivity to FLT3 inhibition by gilteritinib but not JAK inhibition by ruxolitinib. Together, our results suggest that FLT3 and RAS signaling inhibitors are of interest for further (pre)clinical evaluation in iAMP21 BCP-ALL.
Collapse
Affiliation(s)
- Femke M. Hormann
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
- Oncode InstituteUtrechtNetherlands
- Department of Pediatric Oncology and HematologyErasmus MC‐Sophia Children's HospitalRotterdamNetherlands
| | - Anna Østergaard
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
| | - Stijn van den Broek
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
- Oncode InstituteUtrechtNetherlands
| | - Aurélie Boeree
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
- Oncode InstituteUtrechtNetherlands
| | - Cesca van de Ven
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
- Oncode InstituteUtrechtNetherlands
| | - Gabriele Escherich
- COALL–German Cooperative Study Group for Childhood Acute Lymphoblastic LeukemiaHamburgGermany
- Clinic of Pediatric Hematology and OncologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Edwin Sonneveld
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
| | - Judith M. Boer
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
- Oncode InstituteUtrechtNetherlands
| | - Monique L. den Boer
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
- Oncode InstituteUtrechtNetherlands
- Department of Pediatric Oncology and HematologyErasmus MC‐Sophia Children's HospitalRotterdamNetherlands
| |
Collapse
|
9
|
Pastorczak A, Urbanska Z, Styka B, Miarka-Walczyk K, Sedek L, Wypyszczak K, Wakulinska A, Nowicka Z, Szczepański T, Stańczak M, Fendler W, Kowalczyk J, Młynarski W, Lejman M. Genetic hallmarks and clinical implications of chromothripsis in childhood T-cell acute lymphoblastic leukemia. Leukemia 2024; 38:2344-2354. [PMID: 39192035 PMCID: PMC11518979 DOI: 10.1038/s41375-024-02370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024]
Abstract
Chromothripsis (cth) is a form of genomic instability leading to massive de novo structural chromosome rearrangements in a one-time catastrophic event. It can cause cancer-promoting alterations, such as loss of sequences for tumor-suppressor genes, formation of oncogenic fusions, and oncogene amplifications. We investigated the genetic background and clinical significance of cth in childhood T-cell acute lymphoblastic leukemia (T-ALL) patients. For this purpose, whole-genome copy number alterations were analyzed in 173 children with newly diagnosed T-ALL using high-density microarrays. Cth was identified in 10 T-ALL samples (5.78%). In six of them, cth occurred in a constitutional background of Nijmegen breakage syndrome (n = 5) or Li-Fraumeni syndrome (n = 1). Cth generated alterations, including deletions of CDKN2A/B (n = 4) and EZH2 (n = 4), amplifications of CDK6 (n = 2), and NUP214::ABL1 and TFG::GPR128 fusions. Cth-positive leukemias exhibited deletions involving the tumor-suppressor genes RB1 (n = 3), TP53 (n = 1) and MED12 (n = 2). Cth-positive T-ALL patients had a lower probability of 5-year overall survival (OS) [0.56 vs. 0.81; hazard ratio (HR) = 4.14 (1.42-12.02) p = 0.017] as did 5-year event-free survival [0.45 vs. 0.74; HR = 3.91 (1.52-10.08); p = 0.012]. Chromothripsis is an infrequent genomic phenomenon in pediatric T-ALL but is significantly associated with cancer-predisposing syndromes and may associate with inferior prognosis.
Collapse
Affiliation(s)
- Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
- Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz, Poland.
| | - Zuzanna Urbanska
- Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz, Poland
| | - Borys Styka
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, Lublin, Poland
| | | | - Lukasz Sedek
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - Kamila Wypyszczak
- Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz, Poland
| | - Anna Wakulinska
- Department of Oncology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Tomasz Szczepański
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - Marcin Stańczak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Jerzy Kowalczyk
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
- Institute of Medical Expertises, Lodz, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
10
|
Chen CY. Chromothripsis in myeloid malignancies. Ann Hematol 2024; 103:3955-3962. [PMID: 38814446 PMCID: PMC11512916 DOI: 10.1007/s00277-024-05814-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Chromothripsis refers to massive genomic rearrangements developed during a catastrophic event. In total acute myeloid leukemia (AML), the incidence of chromothripsis ranges from 0 to 6.6%, in cases of complex karyotype AML, the incidence of chromothripsis ranges from 27.3 to 100%, whereas in cases of AML with TP53 mutations, the incidence ranges from 11.1 to 90%. For other types of malignancies, the incidence of chromothripsis also varies, from 0 to 10.5% in myelodysplastic syndrome to up to 61.5% in cases of myelodysplastic syndrome with TP53 mutations.Chromothripsis is typically associated with complex karyotypes and TP53 mutations, and monosomal karyotypes are associated with the condition. ERG amplifications are frequently noted in cases of chromothripsis, whereas MYC amplifications are not. Moreover, FLT3 and NPM1 mutations are negatively associated with chromothripsis. Chromothripsis typically occurs in older patients with AML with low leukocyte counts and bone marrow blast counts. Rare cases of patients with chromothripsis who received intensive induction chemotherapy revealed low response rates and poor overall prognosis. Signal pathways in chromothripsis typically involve copy number gain and upregulation of oncogene gene sets that promote cancer growth and a concomitant copy number loss and downregulation of gene sets associated with tumor suppression functions.Patients with chromothripsis showed a trend of lower complete remission rate and worse overall survival in myeloid malignancy. Large-scale studies are required to further elucidate the causes and treatments of the condition.
Collapse
Affiliation(s)
- Chien-Yuan Chen
- Department of Internal Medicine, Division of Hematology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan.
- Department of Pathology, Cytogenetic laboratory, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
11
|
Ejaz U, Dou Z, Yao PY, Wang Z, Liu X, Yao X. Chromothripsis: an emerging crossroad from aberrant mitosis to therapeutic opportunities. J Mol Cell Biol 2024; 16:mjae016. [PMID: 38710586 PMCID: PMC11487160 DOI: 10.1093/jmcb/mjae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024] Open
Abstract
Chromothripsis, a type of complex chromosomal rearrangement originally known as chromoanagenesis, has been a subject of extensive investigation due to its potential role in various diseases, particularly cancer. Chromothripsis involves the rapid acquisition of tens to hundreds of structural rearrangements within a short period, leading to complex alterations in one or a few chromosomes. This phenomenon is triggered by chromosome mis-segregation during mitosis. Errors in accurate chromosome segregation lead to formation of aberrant structural entities such as micronuclei or chromatin bridges. The association between chromothripsis and cancer has attracted significant interest, with potential implications for tumorigenesis and disease prognosis. This review aims to explore the intricate mechanisms and consequences of chromothripsis, with a specific focus on its association with mitotic perturbations. Herein, we discuss a comprehensive analysis of crucial molecular entities and pathways, exploring the intricate roles of the CIP2A-TOPBP1 complex, micronuclei formation, chromatin bridge processing, DNA damage repair, and mitotic checkpoints. Moreover, the review will highlight recent advancements in identifying potential therapeutic targets and the underlying molecular mechanisms associated with chromothripsis, paving the way for future therapeutic interventions in various diseases.
Collapse
Affiliation(s)
- Umer Ejaz
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Phil Y Yao
- University of California San Diego School of Medicine, San Diego, CA 92103, USA
| | - Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| |
Collapse
|
12
|
Yu A, Yesilkanal A, Thakur A, Wang F, Yang Y, Phillips W, Wu X, Muir A, He X, Spitz F, Yang L. HYENA detects oncogenes activated by distal enhancers in cancer. Nucleic Acids Res 2024; 52:e77. [PMID: 39051548 PMCID: PMC11381332 DOI: 10.1093/nar/gkae646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Somatic structural variations (SVs) in cancer can shuffle DNA content in the genome, relocate regulatory elements, and alter genome organization. Enhancer hijacking occurs when SVs relocate distal enhancers to activate proto-oncogenes. However, most enhancer hijacking studies have only focused on protein-coding genes. Here, we develop a computational algorithm 'HYENA' to identify candidate oncogenes (both protein-coding and non-coding) activated by enhancer hijacking based on tumor whole-genome and transcriptome sequencing data. HYENA detects genes whose elevated expression is associated with somatic SVs by using a rank-based regression model. We systematically analyze 1146 tumors across 25 types of adult tumors and identify a total of 108 candidate oncogenes including many non-coding genes. A long non-coding RNA TOB1-AS1 is activated by various types of SVs in 10% of pancreatic cancers through altered 3-dimensional genome structure. We find that high expression of TOB1-AS1 can promote cell invasion and metastasis. Our study highlights the contribution of genetic alterations in non-coding regions to tumorigenesis and tumor progression.
Collapse
Affiliation(s)
- Anqi Yu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Ali E Yesilkanal
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Ashish Thakur
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Fan Wang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Yang Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - William Phillips
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Francois Spitz
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Lixing Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
13
|
Zhang CZ, Pellman D. Chromosome breakage-replication/fusion enables rapid DNA amplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608415. [PMID: 39229211 PMCID: PMC11370323 DOI: 10.1101/2024.08.17.608415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
DNA rearrangements are thought to arise from two classes of processes. The first class involves DNA breakage and fusion ("cut-and-paste") without net DNA gain or loss. The second class involves aberrant DNA replication ("copy-and-paste") and can produce either net DNA gain or loss. We previously demonstrated that the partitioning of chromosomes into aberrant structures of the nucleus, micronuclei or chromosome bridges, can generate cut-and-paste rearrangements by chromosome fragmentation and ligation. Surprisingly, in the progeny clones of single cells that have undergone chromosome bridge breakage, we identified large segmental duplications and short sequence insertions that are commonly attributed to copy-and-paste processes. Here, we demonstrate that both large duplications and short insertions are inherent outcomes of the replication and fusion of unligated DNA ends, a process we term breakage-replication/fusion (B-R/F). We propose that B-R/F provides a unifying explanation for complex rearrangement patterns including chromothripsis and chromoanasynthesis and enables rapid DNA amplification after chromosome fragmentation.
Collapse
|
14
|
Carey-Smith SL, Kotecha RS, Cheung LC, Malinge S. Insights into the Clinical, Biological and Therapeutic Impact of Copy Number Alteration in Cancer. Int J Mol Sci 2024; 25:6815. [PMID: 38999925 PMCID: PMC11241182 DOI: 10.3390/ijms25136815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Copy number alterations (CNAs), resulting from the gain or loss of genetic material from as little as 50 base pairs or as big as entire chromosome(s), have been associated with many congenital diseases, de novo syndromes and cancer. It is established that CNAs disturb the dosage of genomic regions including enhancers/promoters, long non-coding RNA and gene(s) among others, ultimately leading to an altered balance of key cellular functions. In cancer, CNAs have been associated with almost all steps of the disease: predisposition, initiation, development, maintenance, response to treatment, resistance, and relapse. Therefore, understanding how specific CNAs contribute to tumourigenesis may provide prognostic insight and ultimately lead to the development of new therapeutic approaches to improve patient outcomes. In this review, we provide a snapshot of what is currently known about CNAs and cancer, incorporating topics regarding their detection, clinical impact, origin, and nature, and discuss the integration of innovative genetic engineering strategies, to highlight the potential for targeting CNAs using novel, dosage-sensitive and less toxic therapies for CNA-driven cancer.
Collapse
Affiliation(s)
- Shannon L. Carey-Smith
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Rishi S. Kotecha
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Sébastien Malinge
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
15
|
Pagliaro L, Chen SJ, Herranz D, Mecucci C, Harrison CJ, Mullighan CG, Zhang M, Chen Z, Boissel N, Winter SS, Roti G. Acute lymphoblastic leukaemia. Nat Rev Dis Primers 2024; 10:41. [PMID: 38871740 DOI: 10.1038/s41572-024-00525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Acute lymphoblastic leukaemia (ALL) is a haematological malignancy characterized by the uncontrolled proliferation of immature lymphoid cells. Over past decades, significant progress has been made in understanding the biology of ALL, resulting in remarkable improvements in its diagnosis, treatment and monitoring. Since the advent of chemotherapy, ALL has been the platform to test for innovative approaches applicable to cancer in general. For example, the advent of omics medicine has led to a deeper understanding of the molecular and genetic features that underpin ALL. Innovations in genomic profiling techniques have identified specific genetic alterations and mutations that drive ALL, inspiring new therapies. Targeted agents, such as tyrosine kinase inhibitors and immunotherapies, have shown promising results in subgroups of patients while minimizing adverse effects. Furthermore, the development of chimeric antigen receptor T cell therapy represents a breakthrough in ALL treatment, resulting in remarkable responses and potential long-term remissions. Advances are not limited to treatment modalities alone. Measurable residual disease monitoring and ex vivo drug response profiling screening have provided earlier detection of disease relapse and identification of exceptional responders, enabling clinicians to adjust treatment strategies for individual patients. Decades of supportive and prophylactic care have improved the management of treatment-related complications, enhancing the quality of life for patients with ALL.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Cristina Mecucci
- Department of Medicine, Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nicolas Boissel
- Hôpital Saint-Louis, APHP, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Stuart S Winter
- Children's Minnesota Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy.
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
16
|
Hidalgo-Gómez G, Minguela A, Tazón-Vega B, Ribera J, Galián JA, Martínez-Banaclocha H, García-Garay M, Velasco P, Fuster-Soler JL, Armengol G, Ortega M. Clonal heterogeneity and genomic evolution in intrachromosomal amplification of chromosome 21: A case report. Br J Haematol 2024; 204:2512-2515. [PMID: 38665061 DOI: 10.1111/bjh.19485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/10/2024] [Indexed: 06/15/2024]
Affiliation(s)
- Gloria Hidalgo-Gómez
- Hematology Service, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology, and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Alfredo Minguela
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biomédica (IMIB), Murcia, Spain
| | - Bárbara Tazón-Vega
- Hematology Service, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Jordi Ribera
- Josep Carreras Leukaemia Research Institute, Hospital ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - José Antonio Galián
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biomédica (IMIB), Murcia, Spain
| | - Helios Martínez-Banaclocha
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biomédica (IMIB), Murcia, Spain
| | - María García-Garay
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biomédica (IMIB), Murcia, Spain
| | - Pablo Velasco
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - José Luis Fuster-Soler
- Pediatric Onco-Hematology Department, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Gemma Armengol
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology, and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Margarita Ortega
- Hematology Service, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
17
|
Yu A, Yesilkanal AE, Thakur A, Wang F, Yang Y, Phillips W, Wu X, Muir A, He X, Spitz F, Yang L. HYENA detects oncogenes activated by distal enhancers in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.09.523321. [PMID: 38076958 PMCID: PMC10705271 DOI: 10.1101/2023.01.09.523321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Somatic structural variations (SVs) in cancer can shuffle DNA content in the genome, relocate regulatory elements, and alter genome organization. Enhancer hijacking occurs when SVs relocate distal enhancers to activate proto-oncogenes. However, most enhancer hijacking studies have only focused on protein-coding genes. Here, we develop a computational algorithm "HYENA" to identify candidate oncogenes (both protein-coding and non-coding) activated by enhancer hijacking based on tumor whole-genome and transcriptome sequencing data. HYENA detects genes whose elevated expression is associated with somatic SVs by using a rank-based regression model. We systematically analyze 1,146 tumors across 25 types of adult tumors and identify a total of 108 candidate oncogenes including many non-coding genes. A long non-coding RNA TOB1-AS1 is activated by various types of SVs in 10% of pancreatic cancers through altered 3-dimensional genome structure. We find that high expression of TOB1-AS1 can promote cell invasion and metastasis. Our study highlights the contribution of genetic alterations in non-coding regions to tumorigenesis and tumor progression.
Collapse
Affiliation(s)
- Anqi Yu
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
| | - Ali E. Yesilkanal
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
| | - Ashish Thakur
- Department of Human Genetics, University of Chicago, Chicago IL, USA
| | - Fan Wang
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
| | - Yang Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
| | - William Phillips
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago IL, USA
| | - Francois Spitz
- Department of Human Genetics, University of Chicago, Chicago IL, USA
| | - Lixing Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
- Department of Human Genetics, University of Chicago, Chicago IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
18
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
19
|
Iorgulescu JB, Medeiros LJ, Patel KP. Predictive and prognostic molecular biomarkers in lymphomas. Pathology 2024; 56:239-258. [PMID: 38216400 DOI: 10.1016/j.pathol.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
Recent advances in molecular diagnostics have markedly expanded our understanding of the genetic underpinnings of lymphomas and catalysed a transformation in not just how we classify lymphomas, but also how we treat, target, and monitor affected patients. Reflecting these advances, the World Health Organization Classification, International Consensus Classification, and National Comprehensive Cancer Network guidelines were recently updated to better integrate these molecular insights into clinical practice. We summarise here the molecular biomarkers of lymphomas with an emphasis on biomarkers that have well-supported prognostic and predictive utility, as well as emerging biomarkers that show promise for clinical practice. These biomarkers include: (1) diagnostic entity-defining genetic abnormalities [e.g., B-cell acute lymphoblastic leukaemia (B-ALL) with KMT2A rearrangement]; (2) molecular alterations that guide patients' prognoses (e.g., TP53 loss frequently conferring worse prognosis); (3) mutations that serve as the targets of, and often a source of acquired resistance to, small molecular inhibitors (e.g., ABL1 tyrosine kinase inhibitors for B-ALL BCR::ABL1, hindered by ABL1 kinase domain resistance mutations); (4) the growing incorporation of molecular measurable residual disease (MRD) in the management of lymphoma patients (e.g., molecular complete response and sequencing MRD-negative criteria in multiple myeloma). Altogether, our review spans the spectrum of lymphoma types, from the genetically defined subclasses of precursor B-cell lymphomas to the highly heterogeneous categories of small and large cell mature B-cell lymphomas, Hodgkin lymphomas, plasma cell neoplasms, and T/NK-cell lymphomas, and provides an expansive summary of our current understanding of their molecular pathology.
Collapse
Affiliation(s)
- J Bryan Iorgulescu
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
20
|
Krupina K, Goginashvili A, Cleveland DW. Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements. Nat Rev Genet 2024; 25:196-210. [PMID: 37938738 PMCID: PMC10922386 DOI: 10.1038/s41576-023-00663-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 11/09/2023]
Abstract
Complex chromosome rearrangements, known as chromoanagenesis, are widespread in cancer. Based on large-scale DNA sequencing of human tumours, the most frequent type of complex chromosome rearrangement is chromothripsis, a massive, localized and clustered rearrangement of one (or a few) chromosomes seemingly acquired in a single event. Chromothripsis can be initiated by mitotic errors that produce a micronucleus encapsulating a single chromosome or chromosomal fragment. Rupture of the unstable micronuclear envelope exposes its chromatin to cytosolic nucleases and induces chromothriptic shattering. Found in up to half of tumours included in pan-cancer genomic analyses, chromothriptic rearrangements can contribute to tumorigenesis through inactivation of tumour suppressor genes, activation of proto-oncogenes, or gene amplification through the production of self-propagating extrachromosomal circular DNAs encoding oncogenes or genes conferring anticancer drug resistance. Here, we discuss what has been learned about the mechanisms that enable these complex genomic rearrangements and their consequences in cancer.
Collapse
Affiliation(s)
- Ksenia Krupina
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Alexander Goginashvili
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
He J, Munir F, Catueno S, Connors JS, Gibson A, Robusto L, McCall D, Nunez C, Roth M, Tewari P, Garces S, Cuglievan B, Garcia MB. Biological Markers of High-Risk Childhood Acute Lymphoblastic Leukemia. Cancers (Basel) 2024; 16:858. [PMID: 38473221 PMCID: PMC10930495 DOI: 10.3390/cancers16050858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) has witnessed substantial improvements in prognosis; however, a subset of patients classified as high-risk continues to face higher rates of relapse and increased mortality. While the National Cancer Institute (NCI) criteria have traditionally guided risk stratification based on initial clinical information, recent advances highlight the pivotal role of biological markers in shaping the prognosis of childhood ALL. This review delves into the emerging understanding of high-risk childhood ALL, focusing on molecular, cytogenetic, and immunophenotypic markers. These markers not only contribute to unraveling the underlying mechanisms of the disease, but also shed light on specific clinical patterns that dictate prognosis. The paradigm shift in treatment strategies, exemplified by the success of tyrosine kinase inhibitors in Philadelphia chromosome-positive leukemia, underscores the importance of recognizing and targeting precise risk factors. Through a comprehensive exploration of high-risk childhood ALL characteristics, this review aims to enhance our comprehension of the disease, offering insights into its molecular landscape and clinical intricacies in the hope of contributing to future targeted and tailored therapies.
Collapse
Affiliation(s)
- Jiasen He
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Faryal Munir
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Samanta Catueno
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Jeremy S. Connors
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Amber Gibson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Lindsay Robusto
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - David McCall
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Cesar Nunez
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Michael Roth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Priti Tewari
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Sofia Garces
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Miriam B. Garcia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| |
Collapse
|
22
|
Ijaz J, Harry E, Raine K, Menzies A, Beal K, Quail MA, Zumalave S, Jung H, Coorens THH, Lawson ARJ, Leongamornlert D, Francies HE, Garnett MJ, Ning Z, Campbell PJ. Haplotype-specific assembly of shattered chromosomes in esophageal adenocarcinomas. CELL GENOMICS 2024; 4:100484. [PMID: 38232733 PMCID: PMC10879010 DOI: 10.1016/j.xgen.2023.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/13/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
The epigenetic landscape of cancer is regulated by many factors, but primarily it derives from the underlying genome sequence. Chromothripsis is a catastrophic localized genome shattering event that drives, and often initiates, cancer evolution. We characterized five esophageal adenocarcinoma organoids with chromothripsis using long-read sequencing and transcriptome and epigenome profiling. Complex structural variation and subclonal variants meant that haplotype-aware de novo methods were required to generate contiguous cancer genome assemblies. Chromosomes were assembled separately and scaffolded using haplotype-resolved Hi-C reads, producing accurate assemblies even with up to 900 structural rearrangements. There were widespread differences between the chromothriptic and wild-type copies of chromosomes in topologically associated domains, chromatin accessibility, histone modifications, and gene expression. Differential epigenome peaks were most enriched within 10 kb of chromothriptic structural variants. Alterations in transcriptome and higher-order chromosome organization frequently occurred near differential epigenetic marks. Overall, chromothripsis reshapes gene regulation, causing coordinated changes in epigenetic landscape, transcription, and chromosome conformation.
Collapse
Affiliation(s)
- Jannat Ijaz
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK.
| | | | - Keiran Raine
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Health Innovation East, Unit C, Magog Court, Shelford Bottom, Cambridge CB22 3AD, UK
| | | | | | | | - Sonia Zumalave
- Mobile Genomes and Disease, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | | | - Tim H H Coorens
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Hayley E Francies
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK; GSK, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | | | - Zemin Ning
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | | |
Collapse
|
23
|
Nassour J, Przetocka S, Karlseder J. Telomeres as hotspots for innate immunity and inflammation. DNA Repair (Amst) 2024; 133:103591. [PMID: 37951043 PMCID: PMC10842095 DOI: 10.1016/j.dnarep.2023.103591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/05/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Aging is marked by the gradual accumulation of deleterious changes that disrupt organ function, creating an altered physiological state that is permissive for the onset of prevalent human diseases. While the exact mechanisms governing aging remain a subject of ongoing research, there are several cellular and molecular hallmarks that contribute to this biological process. This review focuses on two factors, namely telomere dysfunction and inflammation, which have emerged as crucial contributors to the aging process. We aim to discuss the mechanistic connections between these two distinct hallmarks and provide compelling evidence highlighting the loss of telomere protection as a driver of pro-inflammatory states associated with aging. By reevaluating the interplay between telomeres, innate immunity, and inflammation, we present novel perspectives on the etiology of aging and its associated diseases.
Collapse
Affiliation(s)
- Joe Nassour
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, 12801 E. 17th Ave, Aurora, CO 80045, USA; The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Sara Przetocka
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
24
|
Pieters R, Mullighan CG, Hunger SP. Advancing Diagnostics and Therapy to Reach Universal Cure in Childhood ALL. J Clin Oncol 2023; 41:5579-5591. [PMID: 37820294 PMCID: PMC10730082 DOI: 10.1200/jco.23.01286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 10/13/2023] Open
Abstract
Systemic combination chemotherapy and intrathecal chemotherapy markedly increased the survival rate of children with ALL. In the past two decades, the use of minimal (measurable) residual disease (MRD) measurements early in therapy improved risk group stratification with subsequent treatment intensifications for patients at high risk of relapse, and enabled a reduction of treatment for low-risk patients. The recent development of more sensitive MRD technologies may further affect risk stratification. Molecular genetic profiling has led to the discovery of many new subtypes and their driver genetic alterations. This increased our understanding of the biological basis of ALL, improved risk classification, and enabled implementation of precision medicine. In the past decade, immunotherapies, including bispecific antibodies, antibody-drug conjugates, and cellular therapies directed against surface proteins, led to more effective and less toxic therapies, replacing intensive chemotherapy courses and allogeneic stem-cell transplantation in patients with relapsed and refractory ALL, and are now being tested in newly diagnosed patients. It has taken 50-60 years to increase the cure rate in childhood ALL from 0% to 90% by stepwise improvements in chemotherapy. This review provides an overview of how the developments over the past 10-15 years mentioned above have significantly changed the diagnostic and treatment approach in ALL, and discusses how the integrated use of molecular and immunotherapeutic insights will very likely direct efforts to cure those children with ALL who are not cured today, and improve the quality of life for survivors who should have decades of life ahead. Future efforts must focus on making effective, yet very expensive, new technologies and therapies available to children with ALL worldwide.
Collapse
Affiliation(s)
- Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Charles G. Mullighan
- Department of Pathology and Hematological Malignancies Program, Comprehensive Cancer Center, St Jude Children's Research Hospital, Memphis, TN
| | - Stephen P. Hunger
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
25
|
Brierley CK, Yip BH, Orlando G, Goyal H, Wen S, Wen J, Levine MF, Jakobsdottir GM, Rodriguez-Meira A, Adamo A, Bashton M, Hamblin A, Clark SA, O'Sullivan J, Murphy L, Olijnik AA, Cotton A, Narina S, Pruett-Miller SM, Enshaei A, Harrison C, Drummond M, Knapper S, Tefferi A, Antony-Debré I, Thongjuea S, Wedge DC, Constantinescu S, Papaemmanuil E, Psaila B, Crispino JD, Mead AJ. Chromothripsis orchestrates leukemic transformation in blast phase MPN through targetable amplification of DYRK1A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570880. [PMID: 38106192 PMCID: PMC10723394 DOI: 10.1101/2023.12.08.570880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Chromothripsis, the process of catastrophic shattering and haphazard repair of chromosomes, is a common event in cancer. Whether chromothripsis might constitute an actionable molecular event amenable to therapeutic targeting remains an open question. We describe recurrent chromothripsis of chromosome 21 in a subset of patients in blast phase of a myeloproliferative neoplasm (BP-MPN), which alongside other structural variants leads to amplification of a region of chromosome 21 in ∼25% of patients ('chr21amp'). We report that chr21amp BP-MPN has a particularly aggressive and treatment-resistant phenotype. The chr21amp event is highly clonal and present throughout the hematopoietic hierarchy. DYRK1A , a serine threonine kinase and transcription factor, is the only gene in the 2.7Mb minimally amplified region which showed both increased expression and chromatin accessibility compared to non-chr21amp BP-MPN controls. We demonstrate that DYRK1A is a central node at the nexus of multiple cellular functions critical for BP-MPN development, including DNA repair, STAT signalling and BCL2 overexpression. DYRK1A is essential for BP-MPN cell proliferation in vitro and in vivo , and DYRK1A inhibition synergises with BCL2 targeting to induce BP-MPN cell apoptosis. Collectively, these findings define the chr21amp event as a prognostic biomarker in BP-MPN and link chromothripsis to a druggable target.
Collapse
|
26
|
Espejo Valle-Inclán J, Cortés-Ciriano I. ReConPlot: an R package for the visualization and interpretation of genomic rearrangements. Bioinformatics 2023; 39:btad719. [PMID: 38058190 PMCID: PMC10710371 DOI: 10.1093/bioinformatics/btad719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023] Open
Abstract
MOTIVATION Whole-genome sequencing studies of human tumours have revealed that complex forms of structural variation, collectively known as complex genome rearrangements (CGRs), are pervasive across diverse cancer types. Detection, classification, and mechanistic interpretation of CGRs requires the visualization of complex patterns of somatic copy number aberrations (SCNAs) and structural variants (SVs). However, there is a lack of tools specifically designed to facilitate the visualization and study of CGRs. RESULTS We present ReConPlot (REarrangement and COpy Number PLOT), an R package that provides functionalities for the joint visualization of SCNAs and SVs across one or multiple chromosomes. ReConPlot is based on the popular ggplot2 package, thus allowing customization of plots and the generation of publication-quality figures with minimal effort. Overall, ReConPlot facilitates the exploration, interpretation, and reporting of CGR patterns. AVAILABILITY AND IMPLEMENTATION The R package ReConPlot is available at https://github.com/cortes-ciriano-lab/ReConPlot. Detailed documentation and a tutorial with examples are provided with the package.
Collapse
Affiliation(s)
- Jose Espejo Valle-Inclán
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| |
Collapse
|
27
|
Antić Ž, Lentes J, Bergmann AK. Cytogenetics and genomics in pediatric acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2023; 36:101511. [PMID: 38092485 DOI: 10.1016/j.beha.2023.101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 12/18/2023]
Abstract
The last five decades have witnessed significant improvement in diagnostics, treatment and management of children with acute lymphoblastic leukaemia (ALL). These advancements have become possible through progress in our understanding of the genetic and biological background of ALL, resulting in the introduction of risk-adapted treatment and novel therapeutic targets, e.g., tyrosine kinase inhibitors for BCR::ABL1-positive ALL. Further advances in the taxonomy of ALL and the discovery of new genetic biomarkers and therapeutic targets, as well as the introduction of targeted and immunotherapies into the frontline treatment protocols, may improve management and outcome of children with ALL. In this review we describe the current developments in the (cyto)genetic diagnostics and management of children with ALL, and provide an overview of the most important advances in the genetic classification of ALL. Furthermore, we discuss perspectives resulting from the development of new techniques, including artificial intelligence (AI).
Collapse
Affiliation(s)
- Željko Antić
- Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Jana Lentes
- Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Anke K Bergmann
- Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
28
|
Yegorov YE. Olovnikov, Telomeres, and Telomerase. Is It Possible to Prolong a Healthy Life? BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1704-1718. [PMID: 38105192 DOI: 10.1134/s0006297923110032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 12/19/2023]
Abstract
The science of telomeres and telomerase has made tremendous progress in recent decades. In this review, we consider it first in a historical context (the Carrel-Hayflick-Olovnikov-Blackburn chain of discoveries) and then review current knowledge on the telomere structure and dynamics in norm and pathology. Central to the review are consequences of the telomere shortening, including telomere position effects, DNA damage signaling, and increased genetic instability. Cell senescence and role of telomere length in its development are discussed separately. Therapeutic aspects and risks of telomere lengthening methods including use of telomerase and other approaches are also discussed.
Collapse
Affiliation(s)
- Yegor E Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
29
|
Tueur G, Quessada J, De Bie J, Cuccuini W, Toujani S, Lefebvre C, Luquet I, Michaux L, Lafage-Pochitaloff M. Cytogenetics in the management of B-cell acute lymphoblastic leukemia: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103434. [PMID: 38064905 DOI: 10.1016/j.retram.2023.103434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Cytogenetic analysis is mandatory at initial assessment of B-cell acute lymphoblastic leukemia (B-ALL) due to its diagnostic and prognostic value. Results from chromosome banding analysis and complementary FISH are taken into account in therapeutic protocols and further completed by other techniques (RT-PCR, SNP-array, MLPA, NGS, OGM). Indeed, new genomic entities have been identified by NGS, mostly RNA sequencing, such as Ph-like ALL that can benefit from targeted therapy. Here, we have attempted to establish cytogenetic guidelines by reviewing the most recent published data including the novel 5th World Health Organization and International Consensus Classifications. We also focused on newly described cytogenomic entities and indicate alternative diagnostic tools such as NGS technology, as its importance is vastly increasing in the diagnostic setting.
Collapse
Affiliation(s)
- Giulia Tueur
- Laboratoire d'hématologie, Hôpital Avicenne, AP-HP, Bobigny 93000, France
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France; CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli Calmettes, Marseille 13009, France
| | - Jolien De Bie
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Wendy Cuccuini
- Laboratoire d'Hématologie, Unité de Cytogénétique, Hôpital Saint-Louis, AP-HP, Paris 75010, France
| | - Saloua Toujani
- Service de cytogénétique et biologie cellulaire, CHU de Rennes, Rennes 35033, France
| | - Christine Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble 38000, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, CHU Toulouse (IUCT-O), Toulouse 31000, France
| | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium; Katholieke Universiteit Leuven, Leuven 3000, Belgium
| | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France.
| |
Collapse
|
30
|
Bonaglia MC, Salvo E, Sironi M, Bertuzzo S, Errichiello E, Mattina T, Zuffardi O. Case Report: Decrypting an interchromosomal insertion associated with Marfan's syndrome: how optical genome mapping emphasizes the morbid burden of copy-neutral variants. Front Genet 2023; 14:1244983. [PMID: 37811140 PMCID: PMC10551147 DOI: 10.3389/fgene.2023.1244983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Optical genome mapping (OGM), which allows analysis of ultra-high molecular weight (UHMW) DNA molecules, represents a response to the restriction created by short-read next-generation-sequencing, even in cases where the causative variant is a neutral copy-number-variant insensitive to quantitative investigations. This study aimed to provide a molecular diagnosis to a boy with Marfan syndrome (MFS) and intellectual disability (ID) carrying a de novo translocation involving chromosomes 3, 4, and 13 and a 1.7 Mb deletion at the breakpoint of chromosome 3. No FBN1 alteration explaining his Marfan phenotype was highlighted. UHMW gDNA was isolated from both the patient and his parents and processed using OGM. Genome assembly was followed by variant calling and annotation. Multiple strategies confirmed the results. The 3p deletion, which disrupted ROBO2, (MIM*602431) included three copy-neutral insertions. Two came from chromosome 13; the third contained 15q21.1, including the FBN1 from intron-45 onwards, thus explaining the MFS phenotype. We could not attribute the ID to a specific gene variant nor to the reshuffling of topologically associating domains (TADs). Our patient did not have vesicular reflux-2, as reported by missense alterations of ROBO2 (VUR2, MIM#610878), implying that reduced expression of all or some isoforms has a different effect than some of the point mutations. Indeed, the ROBO2 expression pattern and its role as an axon-guide suggests that its partial deletion is responsible for the patient's neurological phenotype. Conclusion: OGM testing 1) highlights copy-neutral variants that could remain invisible if no loss of heterozygosity is observed and 2) is mandatory before other molecular studies in the presence of any chromosomal rearrangement for an accurate genotype-phenotype relationship.
Collapse
Affiliation(s)
| | - Eliana Salvo
- Cytogenetics Laboratory, Scientific Institute, IRCCS E. Medea, Lecco, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute, IRCCS E. Medea, Lecco, Italy
| | - Sara Bertuzzo
- Cytogenetics Laboratory, Scientific Institute, IRCCS E. Medea, Lecco, Italy
| | - Edoardo Errichiello
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Teresa Mattina
- Medical Genetics Unit, University of Catania, Catania, Italy
- Clinic G.B. Morgagni, Catania, Italy
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
31
|
Li C, Chen L, Pan G, Zhang W, Li SC. Deciphering complex breakage-fusion-bridge genome rearrangements with Ambigram. Nat Commun 2023; 14:5528. [PMID: 37684230 PMCID: PMC10491683 DOI: 10.1038/s41467-023-41259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Breakage-fusion-bridge (BFB) is a complex rearrangement that leads to tumor malignancy. Existing models for detecting BFBs rely on the ideal BFB hypothesis, ruling out the possibility of BFBs entangled with other structural variations, that is, complex BFBs. We propose an algorithm Ambigram to identify complex BFB and reconstruct the rearranged structure of the local genome during the cancer subclone evolution process. Ambigram handles data from short, linked, long, and single-cell sequences, and optical mapping technologies. Ambigram successfully deciphers the gold- or silver-standard complex BFBs against the state-of-the-art in multiple cancers. Ambigram dissects the intratumor heterogeneity of complex BFB events with single-cell reads from melanoma and gastric cancer. Furthermore, applying Ambigram to liver and cervical cancer data suggests that the BFB mechanism may mediate oncovirus integrations. BFB also exists in noncancer genomics. Investigating the complete human genome reference with Ambigram suggests that the BFB mechanism may be involved in two genome reorganizations of Homo Sapiens during evolution. Moreover, Ambigram discovers the signals of recurrent foldback inversions and complex BFBs in whole genome data from the 1000 genome project, and congenital heart diseases, respectively.
Collapse
Affiliation(s)
- Chaohui Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Lingxi Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Guangze Pan
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Wenqian Zhang
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
32
|
Chaux F, Agier N, Garrido C, Fischer G, Eberhard S, Xu Z. Telomerase-independent survival leads to a mosaic of complex subtelomere rearrangements in Chlamydomonas reinhardtii. Genome Res 2023; 33:1582-1598. [PMID: 37580131 PMCID: PMC10620057 DOI: 10.1101/gr.278043.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Telomeres and subtelomeres, the genomic regions located at chromosome extremities, are essential for genome stability in eukaryotes. In the absence of the canonical maintenance mechanism provided by telomerase, telomere shortening induces genome instability. The landscape of the ensuing genome rearrangements is not accessible by short-read sequencing. Here, we leverage Oxford Nanopore Technologies long-read sequencing to survey the extensive repertoire of genome rearrangements in telomerase mutants of the model green microalga Chlamydomonas reinhardtii In telomerase-mutant strains grown for hundreds of generations, most chromosome extremities were capped by short telomere sequences that were either recruited de novo from other loci or maintained in a telomerase-independent manner. Other extremities did not end with telomeres but only with repeated subtelomeric sequences. The subtelomeric elements, including rDNA, were massively rearranged and involved in breakage-fusion-bridge cycles, translocations, recombinations, and chromosome circularization. These events were established progressively over time and displayed heterogeneity at the subpopulation level. New telomere-capped extremities composed of sequences originating from more internal genomic regions were associated with high DNA methylation, suggesting that de novo heterochromatin formation contributes to the restoration of chromosome end stability in C. reinhardtii The diversity of alternative strategies present in the same organism to maintain chromosome integrity and the variety of rearrangements found in telomerase mutants are remarkable, and illustrate genome plasticity at short timescales.
Collapse
Affiliation(s)
- Frédéric Chaux
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| | - Nicolas Agier
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| | - Clotilde Garrido
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| | - Gilles Fischer
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| | - Stephan Eberhard
- Sorbonne Université, CNRS, UMR7141, Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light-Sensing in Microalgae, 75005 Paris, France
| | - Zhou Xu
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France;
| |
Collapse
|
33
|
Gao Q, Ryan SL, Iacobucci I, Ghate PS, Cranston RE, Schwab C, Elsayed AH, Shi L, Pounds S, Lei S, Baviskar P, Pei D, Cheng C, Bashton M, Sinclair P, Bentley DR, Ross MT, Kingsbury Z, James T, Roberts KG, Devidas M, Fan Y, Chen W, Chang TC, Wu G, Carroll A, Heerema N, Valentine V, Valentine M, Yang W, Yang JJ, Moorman AV, Harrison CJ, Mullighan CG. The genomic landscape of acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21. Blood 2023; 142:711-723. [PMID: 37216686 PMCID: PMC10460677 DOI: 10.1182/blood.2022019094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Intrachromosomal amplification of chromosome 21 defines a subtype of high-risk childhood acute lymphoblastic leukemia (iAMP21-ALL) characterized by copy number changes and complex rearrangements of chromosome 21. The genomic basis of iAMP21-ALL and the pathogenic role of the region of amplification of chromosome 21 to leukemogenesis remains incompletely understood. In this study, using integrated whole genome and transcriptome sequencing of 124 patients with iAMP21-ALL, including rare cases arising in the context of constitutional chromosomal aberrations, we identified subgroups of iAMP21-ALL based on the patterns of copy number alteration and structural variation. This large data set enabled formal delineation of a 7.8 Mb common region of amplification harboring 71 genes, 43 of which were differentially expressed compared with non-iAMP21-ALL ones, including multiple genes implicated in the pathogenesis of acute leukemia (CHAF1B, DYRK1A, ERG, HMGN1, and RUNX1). Using multimodal single-cell genomic profiling, including single-cell whole genome sequencing of 2 cases, we documented clonal heterogeneity and genomic evolution, demonstrating that the acquisition of the iAMP21 chromosome is an early event that may undergo progressive amplification during disease ontogeny. We show that UV-mutational signatures and high mutation load are characteristic secondary genetic features. Although the genomic alterations of chromosome 21 are variable, these integrated genomic analyses and demonstration of an extended common minimal region of amplification broaden the definition of iAMP21-ALL for more precise diagnosis using cytogenetic or genomic methods to inform clinical management.
Collapse
Affiliation(s)
- Qingsong Gao
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sarra L. Ryan
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Pankaj S. Ghate
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ruth E. Cranston
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Claire Schwab
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Abdelrahman H. Elsayed
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Lei Shi
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Shaohua Lei
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Deqing Pei
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Matthew Bashton
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Paul Sinclair
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - David R. Bentley
- Illumina Cambridge, Ltd, Illumina Centre, Great Abingdon, Cambridge, United Kingdom
| | - Mark T. Ross
- Illumina Cambridge, Ltd, Illumina Centre, Great Abingdon, Cambridge, United Kingdom
| | - Zoya Kingsbury
- Illumina Cambridge, Ltd, Illumina Centre, Great Abingdon, Cambridge, United Kingdom
| | - Terena James
- Illumina Cambridge, Ltd, Illumina Centre, Great Abingdon, Cambridge, United Kingdom
| | - Kathryn G. Roberts
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Andrew Carroll
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Nyla Heerema
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Virginia Valentine
- Cytogenetics Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN
| | - Marcus Valentine
- Cytogenetics Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jun J. Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Anthony V. Moorman
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Christine J. Harrison
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
34
|
Leongamornlert D, Gutiérrez-Abril J, Lee S, Barretta E, Creasey T, Gundem G, Levine MF, Arango-Ossa JE, Liosis K, Medina-Martinez JS, Zuborne Alapi K, Kirkwood AA, Clifton-Hadley L, Patrick P, Jones D, O’Neill L, Butler AP, Harrison CJ, Campbell P, Patel B, Moorman AV, Fielding AK, Papaemmanuil E. Diagnostic utility of whole genome sequencing in adults with B-other acute lymphoblastic leukemia. Blood Adv 2023; 7:3862-3873. [PMID: 36867579 PMCID: PMC10405200 DOI: 10.1182/bloodadvances.2022008992] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/12/2023] [Indexed: 03/04/2023] Open
Abstract
Genomic profiling during the diagnosis of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in adults is used to guide disease classification, risk stratification, and treatment decisions. Patients for whom diagnostic screening fails to identify disease-defining or risk-stratifying lesions are classified as having B-other ALL. We screened a cohort of 652 BCP-ALL cases enrolled in UKALL14 to identify and perform whole genome sequencing (WGS) of paired tumor-normal samples. For 52 patients with B-other, we compared the WGS findings with data from clinical and research cytogenetics. WGS identified a cancer-associated event in 51 of 52 patients, including an established subtype defining genetic alterations that were previously missed with standard-of-care (SoC) genetics in 5 of them. Of the 47 true B-other ALL, we identified a recurrent driver in 87% (41). A complex karyotype via cytogenetics emerges as a heterogeneous group, including distinct genetic alterations associated with either favorable (DUX4-r) or poor outcomes (MEF2D-r and IGK::BCL2). For a subset of 31 cases, we integrated the findings from RNA sequencing (RNA-seq) analysis to include fusion gene detection and classification based on gene expression. Compared with RNA-seq, WGS was sufficient to detect and resolve recurrent genetic subtypes; however, RNA-seq can provide orthogonal validation of findings. In conclusion, we demonstrated that WGS can identify clinically relevant genetic abnormalities missed with SoC testing as well as identify leukemia driver events in virtually all cases of B-other ALL.
Collapse
Affiliation(s)
- Daniel Leongamornlert
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Jesús Gutiérrez-Abril
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - SooWah Lee
- Department of Haematology, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Emilio Barretta
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas Creasey
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gunes Gundem
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Max F. Levine
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Juan E. Arango-Ossa
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Konstantinos Liosis
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Juan S. Medina-Martinez
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Krisztina Zuborne Alapi
- Department of Haematology, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Amy A. Kirkwood
- Cancer Research UK & UCL Cancer Trials Centre, UCL Cancer Institute, UCL, London, United Kingdom
| | - Laura Clifton-Hadley
- Cancer Research UK & UCL Cancer Trials Centre, UCL Cancer Institute, UCL, London, United Kingdom
| | - Pip Patrick
- Cancer Research UK & UCL Cancer Trials Centre, UCL Cancer Institute, UCL, London, United Kingdom
| | - David Jones
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Laura O’Neill
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Adam P. Butler
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Christine J. Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Peter Campbell
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Bela Patel
- Department of Haemato-Oncology, Barts Cancer Institute, Queen Mary University, London, United Kingdom
| | - Anthony V. Moorman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Adele K. Fielding
- Department of Haematology, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Elli Papaemmanuil
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
35
|
Lee JJK, Jung YL, Cheong TC, Espejo Valle-Inclan J, Chu C, Gulhan DC, Ljungström V, Jin H, Viswanadham VV, Watson EV, Cortés-Ciriano I, Elledge SJ, Chiarle R, Pellman D, Park PJ. ERα-associated translocations underlie oncogene amplifications in breast cancer. Nature 2023; 618:1024-1032. [PMID: 37198482 PMCID: PMC10307628 DOI: 10.1038/s41586-023-06057-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 04/05/2023] [Indexed: 05/19/2023]
Abstract
Focal copy-number amplification is an oncogenic event. Although recent studies have revealed the complex structure1-3 and the evolutionary trajectories4 of oncogene amplicons, their origin remains poorly understood. Here we show that focal amplifications in breast cancer frequently derive from a mechanism-which we term translocation-bridge amplification-involving inter-chromosomal translocations that lead to dicentric chromosome bridge formation and breakage. In 780 breast cancer genomes, we observe that focal amplifications are frequently connected to each other by inter-chromosomal translocations at their boundaries. Subsequent analysis indicates the following model: the oncogene neighbourhood is translocated in G1 creating a dicentric chromosome, the dicentric chromosome is replicated, and as dicentric sister chromosomes segregate during mitosis, a chromosome bridge is formed and then broken, with fragments often being circularized in extrachromosomal DNAs. This model explains the amplifications of key oncogenes, including ERBB2 and CCND1. Recurrent amplification boundaries and rearrangement hotspots correlate with oestrogen receptor binding in breast cancer cells. Experimentally, oestrogen treatment induces DNA double-strand breaks in the oestrogen receptor target regions that are repaired by translocations, suggesting a role of oestrogen in generating the initial translocations. A pan-cancer analysis reveals tissue-specific biases in mechanisms initiating focal amplifications, with the breakage-fusion-bridge cycle prevalent in some and the translocation-bridge amplification in others, probably owing to the different timing of DNA break repair. Our results identify a common mode of oncogene amplification and propose oestrogen as its mechanistic origin in breast cancer.
Collapse
Affiliation(s)
- Jake June-Koo Lee
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Youngsook Lucy Jung
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Taek-Chin Cheong
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Chong Chu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Doga C Gulhan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Viktor Ljungström
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Hu Jin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Emma V Watson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Stephen J Elledge
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - David Pellman
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Davis K, Sheikh T, Aggarwal N. Emerging molecular subtypes and therapies in acute lymphoblastic leukemia. Semin Diagn Pathol 2023; 40:202-215. [PMID: 37120350 DOI: 10.1053/j.semdp.2023.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/01/2023]
Abstract
Tremendous strides have been made in the molecular and cytogenetic classification of acute lymphoblastic leukemia based on gene expression profiling data, leading to an expansion of entities in the recent International Consensus Classification (ICC) of myeloid neoplasms and acute leukemias and 2022 WHO Classification of Tumours: Haematolymphoid Tumors, 5th edition. This increased diagnostic and therapeutic complexity can be overwhelming, and this review compares nomenclature differences between the ICC and WHO 5th edition publications, compiles key features of each entity, and provides a diagnostic algorithmic approach. In covering B-lymphoblastic leukemia (B-ALL), we divided the entities into established (those present in the revised 4th edition WHO) and novel (those added to either the ICC or WHO 5th edition) groups. The established B-ALL entities include B-ALL with BCR::ABL1 fusion, BCR::ABL1-like features, KMT2A rearrangement, ETV6::RUNX1 rearrangement, high hyperdiploidy, hypodiploidy (focusing on near haploid and low hypodiploid), IGH::IL3 rearrangement, TCF3::PBX1 rearrangement, and iAMP21. The novel B-ALL entities include B-ALL with MYC rearrangement; DUX4 rearrangement; MEF2D rearrangement; ZNF384 or ZNF362 rearrangement, NUTM1 rearrangement; HLF rearrangement; UBTF::ATXN7L3/PAN3,CDX2; mutated IKZF1 N159Y; mutated PAX5 P80R; ETV6::RUNX1-like features; PAX5 alteration; mutated ZEB2 (p.H1038R)/IGH::CEBPE; ZNF384 rearranged-like; KMT2A-rearranged-like; and CRLF2 rearrangement (non-Ph-like). Classification of T-ALL is complex with some variability in how the subtypes are defined in recent literature. It was classified as early T-precursor lymphoblastic leukemia/lymphoma and T-ALL, NOS in the WHO revised 4th edition and WHO 5th edition. The ICC added an entity into early T-cell precursor ALL, BCL11B-activated, and also added provisional entities subclassified based on transcription factor families that are aberrantly activated.
Collapse
Affiliation(s)
- Katelynn Davis
- Department of Hematopathology, School of Medicine and UPMC, University of Pittsburgh, USA
| | | | - Nidhi Aggarwal
- Department of Hematopathology, School of Medicine and UPMC, University of Pittsburgh, USA.
| |
Collapse
|
37
|
Rajan S, Zaccaria S, Cannon MV, Cam M, Gross AC, Raphael BJ, Roberts RD. Structurally Complex Osteosarcoma Genomes Exhibit Limited Heterogeneity within Individual Tumors and across Evolutionary Time. CANCER RESEARCH COMMUNICATIONS 2023; 3:564-575. [PMID: 37066022 PMCID: PMC10093779 DOI: 10.1158/2767-9764.crc-22-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Osteosarcoma is an aggressive malignancy characterized by high genomic complexity. Identification of few recurrent mutations in protein coding genes suggests that somatic copy-number aberrations (SCNA) are the genetic drivers of disease. Models around genomic instability conflict-it is unclear whether osteosarcomas result from pervasive ongoing clonal evolution with continuous optimization of the fitness landscape or an early catastrophic event followed by stable maintenance of an abnormal genome. We address this question by investigating SCNAs in >12,000 tumor cells obtained from human osteosarcomas using single-cell DNA sequencing, with a degree of precision and accuracy not possible when inferring single-cell states using bulk sequencing. Using the CHISEL algorithm, we inferred allele- and haplotype-specific SCNAs from this whole-genome single-cell DNA sequencing data. Surprisingly, despite extensive structural complexity, these tumors exhibit a high degree of cell-cell homogeneity with little subclonal diversification. Longitudinal analysis of patient samples obtained at distant therapeutic timepoints (diagnosis, relapse) demonstrated remarkable conservation of SCNA profiles over tumor evolution. Phylogenetic analysis suggests that the majority of SCNAs were acquired early in the oncogenic process, with relatively few structure-altering events arising in response to therapy or during adaptation to growth in metastatic tissues. These data further support the emerging hypothesis that early catastrophic events, rather than sustained genomic instability, give rise to structural complexity, which is then preserved over long periods of tumor developmental time. Significance Chromosomally complex tumors are often described as genomically unstable. However, determining whether complexity arises from remote time-limited events that give rise to structural alterations or a progressive accumulation of structural events in persistently unstable tumors has implications for diagnosis, biomarker assessment, mechanisms of treatment resistance, and represents a conceptual advance in our understanding of intratumoral heterogeneity and tumor evolution.
Collapse
Affiliation(s)
- Sanjana Rajan
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Simone Zaccaria
- Department of Computer Science, Princeton University, Princeton, New Jersey
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Matthew V. Cannon
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Maren Cam
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Amy C. Gross
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Benjamin J. Raphael
- Department of Computer Science, Princeton University, Princeton, New Jersey
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Ryan D. Roberts
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio
- Division of Pediatric Hematology, Oncology, and BMT, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
38
|
Ryan SL, Peden JF, Kingsbury Z, Schwab CJ, James T, Polonen P, Mijuskovic M, Becq J, Yim R, Cranston RE, Hedges DJ, Roberts KG, Mullighan CG, Vora A, Russell LJ, Bain R, Moorman AV, Bentley DR, Harrison CJ, Ross MT. Whole genome sequencing provides comprehensive genetic testing in childhood B-cell acute lymphoblastic leukaemia. Leukemia 2023; 37:518-528. [PMID: 36658389 PMCID: PMC9991920 DOI: 10.1038/s41375-022-01806-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
Childhood B-cell acute lymphoblastic leukaemia (B-ALL) is characterised by recurrent genetic abnormalities that drive risk-directed treatment strategies. Using current techniques, accurate detection of such aberrations can be challenging, due to the rapidly expanding list of key genetic abnormalities. Whole genome sequencing (WGS) has the potential to improve genetic testing, but requires comprehensive validation. We performed WGS on 210 childhood B-ALL samples annotated with clinical and genetic data. We devised a molecular classification system to subtype these patients based on identification of key genetic changes in tumour-normal and tumour-only analyses. This approach detected 294 subtype-defining genetic abnormalities in 96% (202/210) patients. Novel genetic variants, including fusions involving genes in the MAP kinase pathway, were identified. WGS results were concordant with standard-of-care methods and whole transcriptome sequencing (WTS). We expanded the catalogue of genetic profiles that reliably classify PAX5alt and ETV6::RUNX1-like subtypes. Our novel bioinformatic pipeline improved detection of DUX4 rearrangements (DUX4-r): a good-risk B-ALL subtype with high survival rates. Overall, we have validated that WGS provides a standalone, reliable genetic test to detect all subtype-defining genetic abnormalities in B-ALL, accurately classifying patients for the risk-directed treatment stratification, while simultaneously performing as a research tool to identify novel disease biomarkers.
Collapse
Affiliation(s)
- Sarra L Ryan
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - John F Peden
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Zoya Kingsbury
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Claire J Schwab
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Terena James
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Petri Polonen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Jenn Becq
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Richard Yim
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Ruth E Cranston
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Dale J Hedges
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ajay Vora
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | - Lisa J Russell
- Biosciences Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Robert Bain
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Anthony V Moorman
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - David R Bentley
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Christine J Harrison
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK.
| | - Mark T Ross
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK.
| |
Collapse
|
39
|
Hormann FM, Hoogkamer AQ, Boeree A, Sonneveld E, Escherich G, den Boer ML, Boer JM. Integrating copy number data of 64 iAMP21 BCP-ALL patients narrows the common region of amplification to 1.57 Mb. Front Oncol 2023; 13:1128560. [PMID: 36910655 PMCID: PMC9996016 DOI: 10.3389/fonc.2023.1128560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Background and purpose Intrachromosomal amplification of chromosome 21 (iAMP21) is a rare subtype of B-cell precursor acute lymphoblastic leukaemia (BCP-ALL). It is unknown how iAMP21 contributes to leukaemia. The currently known commonly amplified region is 5.1 Mb. Methods We aimed to narrow down the common region of amplification by using high resolution techniques. Array comparative genomic hybridization (aCGH) was used to determine copy number aberrations, Affymetrix U133 Plus2 expression arrays were used to determine gene expression. Genome-wide expression correlations were evaluated using Globaltest. Results We narrowed down the common region of amplification by combining copy number data from 12 iAMP21 cases with 52 cases from literature. The combined common region of amplification was 1.57 Mb, located from 36.07 to 37.64 Mb (GRCh38). This region is located telomeric from, but not including, RUNX1, which is the locus commonly used to diagnose iAMP21. This narrow region, which falls inside the Down Syndrome critical region, includes 13 genes of which the expression of eight genes was significantly upregulated compared with 143 non-iAMP21 B-other cases. Among these, transcriptional repressor RIPPLY3 (also known as DSCR6) was the highest overexpressed gene (fold change = 4.2, FDR < 0.001) and most strongly correlated (R = 0.58) with iAMP21-related genome-wide expression changes. Discussion The more precise definition of the common region of amplification could be beneficial in the diagnosis of iAMP21 based on copy number analysis from DNA sequencing or arrays as well as stimulate functional research into the role of the included genes in iAMP21 biology.
Collapse
Affiliation(s)
- Femke M Hormann
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands.,Erasmus Medical Center (MC) - Sophia Children's Hospital, Department of Pediatric Oncology and Hematology, Rotterdam, Netherlands
| | - Alex Q Hoogkamer
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Aurélie Boeree
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Edwin Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Dutch Childhood Oncology Group, Utrecht, Netherlands
| | - Gabriele Escherich
- Cooperative study group for childhood acute lymphoblastic leukaemia (COALL) - German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia, Hamburg, Germany.,Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Monique L den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands.,Erasmus Medical Center (MC) - Sophia Children's Hospital, Department of Pediatric Oncology and Hematology, Rotterdam, Netherlands.,Dutch Childhood Oncology Group, Utrecht, Netherlands
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
40
|
Zak T, Gao J, Behdad A, Mehta J, Altman JK, Ji P, Lu X, Sukhanova M. Clinicopathologic and genetic evaluation of B-lymphoblastic leukemia with intrachromosomal amplification of chromosome 21 (iAMP21) in adult patients. Leuk Lymphoma 2022; 63:3200-3207. [PMID: 35995457 DOI: 10.1080/10428194.2022.2113524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 01/12/2023]
Abstract
Intrachromosomal amplification of chromosome 21 (iAMP21) defines a rare provisional entity of B-cell acute lymphoblastic leukemia (B-ALL) in the current WHO classification and has been described as specific for pediatric patients with a median age at diagnosis of 9-10 years. We report two adult cases of B-ALL with iAMP21, one 31-year-old woman and one 40-year-old man, identified by karyotyping and next generation sequencing (NGS), with fluorescence in situ hybridization (FISH) pattern meeting diagnostic criteria for iAMP21. Both patients were treated on high-risk chemotherapeutic regimen followed by stem cell transplant. In contrast to reported high relapse rate within the first three years in pediatric population, our adult patients are alive in remission, with the interval from diagnosis to last follow up of 2.95 and 3.96 years. Our cases illustrate the importance of screening for iAMP21 in adult population when ETV6-RUNX1 FISH testing is not routinely performed for adult patients.
Collapse
Affiliation(s)
- Taylor Zak
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Juehua Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amir Behdad
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jayesh Mehta
- Department of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jessica K Altman
- Department of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peng Ji
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Madina Sukhanova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
41
|
Koleilat A, Smadbeck JB, Zepeda‐Mendoza CJ, Williamson CM, Pitel BA, Golden CL, Xu X, Greipp PT, Ketterling RP, Hoppman NL, Peterson JF, Harrison CJ, Akkari YMN, Tsuchiya KD, Shago M, Baughn LB. Characterization of unusual iAMP21 B-lymphoblastic leukemia (iAMP21-ALL) from the Mayo Clinic and Children's Oncology Group. Genes Chromosomes Cancer 2022; 61:710-719. [PMID: 35771717 PMCID: PMC9549522 DOI: 10.1002/gcc.23084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 01/01/2023] Open
Abstract
Acute lymphoblastic leukemia (B-ALL) with intrachromosomal amplification of chromosome 21 (iAMP21-ALL) represents a recurrent high-risk cytogenetic abnormality and accurate identification is critical for appropriate clinical management. Identification of iAMP21-ALL has historically relied on fluorescence in situ hybridization (FISH) using a RUNX1 probe. Current classification requires ≥ five copies of RUNX1 per cell and ≥ three additional copies of RUNX1 on a single abnormal iAMP21-chromosome. We sought to evaluate the performance of the RUNX1 probe in the identification of iAMP21-ALL. This study was a retrospective evaluation of iAMP21-ALL in the Mayo Clinic and Children's Oncology Group cohorts. Of 207 cases of iAMP21-ALL, 188 (91%) were classified as "typical" iAMP21-ALL, while 19 (9%) cases were classified as "unusual" iAMP21-ALL. The "unusual" iAMP21 cases did not meet the current definition of iAMP21 by FISH but were confirmed to have iAMP21 by chromosomal microarray. Half of the "unusual" iAMP21-ALL cases had less than five RUNX1 signals, while the remainder had ≥ five RUNX1 signals with some located apart from the abnormal iAMP21-chromosome. Nine percent of iAMP21-ALL cases fail to meet the FISH definition of iAMP21-ALL demonstrating that laboratories are at risk of misidentification of iAMP21-ALL when relying only on the RUNX1 FISH probe. Incorporation of chromosomal microarray testing circumvents these risks.
Collapse
Affiliation(s)
- Alaa Koleilat
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - James B. Smadbeck
- Division of Computational Biology, Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | | | - Cynthia M. Williamson
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Beth A. Pitel
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Crystal L. Golden
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Xinjie Xu
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA,Division of Hematopathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Patricia T. Greipp
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA,Division of Hematopathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Rhett P. Ketterling
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA,Division of Hematopathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Nicole L. Hoppman
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Jess F. Peterson
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA,Division of Hematopathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Christine J. Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research InstituteNewcastle University Centre for CancerNewcastle‐upon‐TyneUK
| | | | - Karen D. Tsuchiya
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWAUSA
| | - Mary Shago
- Department of Paediatric Laboratory Medicine, The Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
| | - Linda B. Baughn
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
42
|
Wei W, Schon KR, Elgar G, Orioli A, Tanguy M, Giess A, Tischkowitz M, Caulfield MJ, Chinnery PF. Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes. Nature 2022; 611:105-114. [PMID: 36198798 PMCID: PMC9630118 DOI: 10.1038/s41586-022-05288-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 08/29/2022] [Indexed: 02/02/2023]
Abstract
DNA transfer from cytoplasmic organelles to the cell nucleus is a legacy of the endosymbiotic event-the majority of nuclear-mitochondrial segments (NUMTs) are thought to be ancient, preceding human speciation1-3. Here we analyse whole-genome sequences from 66,083 people-including 12,509 people with cancer-and demonstrate the ongoing transfer of mitochondrial DNA into the nucleus, contributing to a complex NUMT landscape. More than 99% of individuals had at least one of 1,637 different NUMTs, with 1 in 8 individuals having an ultra-rare NUMT that is present in less than 0.1% of the population. More than 90% of the extant NUMTs that we evaluated inserted into the nuclear genome after humans diverged from apes. Once embedded, the sequences were no longer under the evolutionary constraint seen within the mitochondrion, and NUMT-specific mutations had a different mutational signature to mitochondrial DNA. De novo NUMTs were observed in the germline once in every 104 births and once in every 103 cancers. NUMTs preferentially involved non-coding mitochondrial DNA, linking transcription and replication to their origin, with nuclear insertion involving multiple mechanisms including double-strand break repair associated with PR domain zinc-finger protein 9 (PRDM9) binding. The frequency of tumour-specific NUMTs differed between cancers, including a probably causal insertion in a myxoid liposarcoma. We found evidence of selection against NUMTs on the basis of size and genomic location, shaping a highly heterogenous and dynamic human NUMT landscape.
Collapse
Affiliation(s)
- Wei Wei
- Department of Clinical Neuroscience, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Katherine R Schon
- Department of Clinical Neuroscience, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | - Marc Tischkowitz
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Patrick F Chinnery
- Department of Clinical Neuroscience, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
43
|
Bao L, Zhong X, Yang Y, Yang L. Starfish infers signatures of complex genomic rearrangements across human cancers. NATURE CANCER 2022; 3:1247-1259. [PMID: 35835961 PMCID: PMC11077613 DOI: 10.1038/s43018-022-00404-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Complex genomic rearrangements (CGRs) are common in cancer and are known to form via two aberrant cellular structures-micronuclei and chromatin bridges. However, which of these mechanisms is more relevant to CGR formation in cancer and whether there are other undiscovered mechanisms remain unknown. Here we developed a computational algorithm, 'Starfish', to analyze 2,014 CGRs from 2,428 whole-genome-sequenced (WGS) tumors and discovered six CGR signatures based on their copy number and breakpoint patterns. Extensive benchmarking showed that our CGR signatures are highly accurate and biologically meaningful. Three signatures can be attributed to known biological processes-micronuclei- and chromatin-bridge-induced chromothripsis and circular extrachromosomal DNA. Over half of the CGRs belong to the remaining three signatures, not reported previously. A unique signature, which we named 'hourglass chromothripsis', with localized breakpoints and a low amount of DNA loss, is abundant in prostate cancer. Hourglass chromothripsis is associated with mutant SPOP, which may induce genome instability.
Collapse
Affiliation(s)
- Lisui Bao
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaoming Zhong
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Yang Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Lixing Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA.
| |
Collapse
|
44
|
Liddiard K, Aston-Evans AN, Cleal K, Hendrickson E, Baird D. POLQ suppresses genome instability and alterations in DNA repeat tract lengths. NAR Cancer 2022; 4:zcac020. [PMID: 35774233 PMCID: PMC9241439 DOI: 10.1093/narcan/zcac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
DNA polymerase theta (POLQ) is a principal component of the alternative non-homologous end-joining (ANHEJ) DNA repair pathway that ligates DNA double-strand breaks. Utilizing independent models of POLQ insufficiency during telomere-driven crisis, we found that POLQ - /- cells are resistant to crisis-induced growth deceleration despite sustaining inter-chromosomal telomere fusion frequencies equivalent to wild-type (WT) cells. We recorded longer telomeres in POLQ - / - than WT cells pre- and post-crisis, notwithstanding elevated total telomere erosion and fusion rates. POLQ - /- cells emerging from crisis exhibited reduced incidence of clonal gross chromosomal abnormalities in accordance with increased genetic heterogeneity. High-throughput sequencing of telomere fusion amplicons from POLQ-deficient cells revealed significantly raised frequencies of inter-chromosomal fusions with correspondingly depreciated intra-chromosomal recombinations. Long-range interactions culminating in telomere fusions with centromere alpha-satellite repeats, as well as expansions in HSAT2 and HSAT3 satellite and contractions in ribosomal DNA repeats, were detected in POLQ - / - cells. In conjunction with the expanded telomere lengths of POLQ - /- cells, these results indicate a hitherto unrealized capacity of POLQ for regulation of repeat arrays within the genome. Our findings uncover novel considerations for the efficacy of POLQ inhibitors in clinical cancer interventions, where potential genome destabilizing consequences could drive clonal evolution and resistant disease.
Collapse
Affiliation(s)
- Kate Liddiard
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Alys N Aston-Evans
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Kez Cleal
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
45
|
Brady SW, Roberts KG, Gu Z, Shi L, Pounds S, Pei D, Cheng C, Dai Y, Devidas M, Qu C, Hill AN, Payne-Turner D, Ma X, Iacobucci I, Baviskar P, Wei L, Arunachalam S, Hagiwara K, Liu Y, Flasch DA, Liu Y, Parker M, Chen X, Elsayed AH, Pathak O, Li Y, Fan Y, Michael JR, Rusch M, Wilkinson MR, Foy S, Hedges DJ, Newman S, Zhou X, Wang J, Reilly C, Sioson E, Rice SV, Pastor Loyola V, Wu G, Rampersaud E, Reshmi SC, Gastier-Foster J, Guidry Auvil JM, Gesuwan P, Smith MA, Winick N, Carroll AJ, Heerema NA, Harvey RC, Willman CL, Larsen E, Raetz EA, Borowitz MJ, Wood BL, Carroll WL, Zweidler-McKay PA, Rabin KR, Mattano LA, Maloney KW, Winter SS, Burke MJ, Salzer W, Dunsmore KP, Angiolillo AL, Crews KR, Downing JR, Jeha S, Pui CH, Evans WE, Yang JJ, Relling MV, Gerhard DS, Loh ML, Hunger SP, Zhang J, Mullighan CG. The genomic landscape of pediatric acute lymphoblastic leukemia. Nat Genet 2022; 54:1376-1389. [PMID: 36050548 PMCID: PMC9700506 DOI: 10.1038/s41588-022-01159-z] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Here, using whole-genome, exome and transcriptome sequencing of 2,754 childhood patients with ALL, we find that, despite a generally low mutation burden, ALL cases harbor a median of four putative somatic driver alterations per sample, with 376 putative driver genes identified varying in prevalence across ALL subtypes. Most samples harbor at least one rare gene alteration, including 70 putative cancer driver genes associated with ubiquitination, SUMOylation, noncoding transcripts and other functions. In hyperdiploid B-ALL, chromosomal gains are acquired early and synchronously before ultraviolet-induced mutation. By contrast, ultraviolet-induced mutations precede chromosomal gains in B-ALL cases with intrachromosomal amplification of chromosome 21. We also demonstrate the prognostic significance of genetic alterations within subtypes. Intriguingly, DUX4- and KMT2A-rearranged subtypes separate into CEBPA/FLT3- or NFATC4-expressing subgroups with potential clinical implications. Together, these results deepen understanding of the ALL genomic landscape and associated outcomes.
Collapse
Affiliation(s)
- Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhaohui Gu
- Department of Computational and Quantitative Medicine & Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yunfeng Dai
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chunxu Qu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ashley N Hill
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Debbie Payne-Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pradyuamna Baviskar
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Wei
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sasi Arunachalam
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Diane A Flasch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yu Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Matthew Parker
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Abdelrahman H Elsayed
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Omkar Pathak
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yongjin Li
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J Robert Michael
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mark R Wilkinson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dale J Hedges
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jian Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Colleen Reilly
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Edgar Sioson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen V Rice
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Victor Pastor Loyola
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Evadnie Rampersaud
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shalini C Reshmi
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Jaime M Guidry Auvil
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Office of Data Sharing, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patee Gesuwan
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Malcolm A Smith
- Cancer Therapeutics Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Naomi Winick
- Department of Pediatric Hematology Oncology and Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Richard C Harvey
- Department of Pathology, University of New Mexico Cancer Center, Albuquerque, NM, USA
| | | | - Eric Larsen
- Department of Pediatrics, Maine Children's Cancer Program, Scarborough, ME, USA
| | - Elizabeth A Raetz
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Michael J Borowitz
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Brent L Wood
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - William L Carroll
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | | | - Karen R Rabin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | - Kelly W Maloney
- Department of Pediatrics and Children's Hospital Colorado, University of Colorado, Aurora, CO, USA
| | - Stuart S Winter
- Children's Minnesota Research Institute and Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | - Michael J Burke
- Division of Pediatric Hematology-Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Wanda Salzer
- Uniformed Services University, School of Medicine, Bethesda, MD, USA
| | | | | | - Kristine R Crews
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sima Jeha
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William E Evans
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mary V Relling
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniela S Gerhard
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
46
|
Hamdan A, Ewing A. Unravelling the tumour genome: The evolutionary and clinical impacts of structural variants in tumourigenesis. J Pathol 2022; 257:479-493. [PMID: 35355264 PMCID: PMC9321913 DOI: 10.1002/path.5901] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
Structural variants (SVs) represent a major source of aberration in tumour genomes. Given the diversity in the size and type of SVs present in tumours, the accurate detection and interpretation of SVs in tumours is challenging. New classes of complex structural events in tumours are discovered frequently, and the definitions of the genomic consequences of complex events are constantly being refined. Detailed analyses of short-read whole-genome sequencing (WGS) data from large tumour cohorts facilitate the interrogation of SVs at orders of magnitude greater scale and depth. However, the inherent technical limitations of short-read WGS prevent us from accurately detecting and investigating the impact of all the SVs present in tumours. The expanded use of long-read WGS will be critical for improving the accuracy of SV detection, and in fully resolving complex SV events, both of which are crucial for determining the impact of SVs on tumour progression and clinical outcome. Despite the present limitations, we demonstrate that SVs play an important role in tumourigenesis. In particular, SVs contribute significantly to late-stage tumour development and to intratumoural heterogeneity. The evolutionary trajectories of SVs represent a window into the clonal dynamics in tumours, a comprehensive understanding of which will be vital for influencing patient outcomes in the future. Recent findings have highlighted many clinical applications of SVs in cancer, from early detection to biomarkers for treatment response and prognosis. As the methods to detect and interpret SVs improve, elucidating the full breadth of the complex SV landscape and determining how these events modulate tumour evolution will improve our understanding of cancer biology and our ability to capitalise on the utility of SVs in the clinical management of cancer patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Alhafidz Hamdan
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Ailith Ewing
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
47
|
Bone Marrow Stromal Cell Regeneration Profile in Treated B-Cell Precursor Acute Lymphoblastic Leukemia Patients: Association with MRD Status and Patient Outcome. Cancers (Basel) 2022; 14:cancers14133088. [PMID: 35804860 PMCID: PMC9265080 DOI: 10.3390/cancers14133088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022] Open
Abstract
For the last two decades, measurable residual disease (MRD) has become one of the most powerful independent prognostic factors in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, the effect of therapy on the bone marrow (BM) microenvironment and its potential relationship with the MRD status and disease free survival (DFS) still remain to be investigated. Here we analyzed the distribution of mesenchymal stem cells (MSC) and endothelial cells (EC) in the BM of treated BCP-ALL patients, and its relationship with the BM MRD status and patient outcome. For this purpose, the BM MRD status and EC/MSC regeneration profile were analyzed by multiparameter flow cytometry (MFC) in 16 control BM (10 children; 6 adults) and 1204 BM samples from 347 children and 100 adult BCP-ALL patients studied at diagnosis (129 children; 100 adults) and follow-up (824 childhood samples; 151 adult samples). Patients were grouped into a discovery cohort (116 pediatric BCP-ALL patients; 338 samples) and two validation cohorts (74 pediatric BCP-ALL, 211 samples; and 74 adult BCP-ALL patients; 134 samples). Stromal cells (i.e., EC and MSC) were detected at relatively low frequencies in all control BM (16/16; 100%) and in most BCP-ALL follow-up samples (874/975; 90%), while they were undetected in BCP-ALL BM at diagnosis. In control BM samples, the overall percentage of EC plus MSC was higher in children than adults (p = 0.011), but with a similar EC/MSC ratio in both groups. According to the MRD status similar frequencies of both types of BM stromal cells were detected in BCP-ALL BM studied at different time points during the follow-up. Univariate analysis (including all relevant prognostic factors together with the percentage of stromal cells) performed in the discovery cohort was used to select covariates for a multivariate Cox regression model for predicting patient DFS. Of note, an increased percentage of EC (>32%) within the BCP-ALL BM stromal cell compartment at day +78 of therapy emerged as an independent unfavorable prognostic factor for DFS in childhood BCP-ALL in the discovery cohort—hazard ratio (95% confidence interval) of 2.50 (1−9.66); p = 0.05—together with the BM MRD status (p = 0.031). Further investigation of the predictive value of the combination of these two variables (%EC within stromal cells and MRD status at day +78) allowed classification of BCP-ALL into three risk groups with median DFS of: 3.9, 3.1 and 1.1 years, respectively (p = 0.001). These results were confirmed in two validation cohorts of childhood BCP-ALL (n = 74) (p = 0.001) and adult BCP-ALL (n = 40) (p = 0.004) treated at different centers. In summary, our findings suggest that an imbalanced EC/MSC ratio in BM at day +78 of therapy is associated with a shorter DFS of BCP-ALL patients, independently of their MRD status. Further prospective studies are needed to better understand the pathogenic mechanisms involved.
Collapse
|
48
|
Verdoni AM, Zilla ML, Bullock G, Guinipero TL, Meade J, Yatsenko SA. B-cell acute lymphoblastic leukemia with iAMP21 in a patient with Down syndrome due to a constitutional isodicentric chromosome 21. Am J Med Genet A 2022; 188:2325-2330. [PMID: 35678493 DOI: 10.1002/ajmg.a.62864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 03/22/2022] [Accepted: 04/30/2022] [Indexed: 11/06/2022]
Abstract
Pediatric B-cell acute lymphoblastic leukemia (B-ALL) is associated with various specific cytogenetic and molecular markers that have significant influence on treatment and prognosis. A subset of children has a much higher risk of developing B-ALL due to constitutional genetic alterations such as trisomy 21 (Down's syndrome). In these patients, B-ALL is often associated with specific genomic profiles leading to leukemic transformation. In rare cases, constitutional structural chromosomal abnormalities involving chromosome 21, such as the der(15;21) Robertsonian translocation and a ring 21 chromosome, have been associated with intrachromosomal amplification of chromosome 21 (iAMP21) B-ALL. Here, we report the development of B-ALL in a child with Down's syndrome who carries a constitutional isodicentric chromosome 21 [idic(21)], described previously by Putra et al., 2017. This idic(21) appeared to be unstable during mitosis, leading to somatic rearrangements consistent with iAMP21 amplification, resulting in the development of leukemia. In this case, a single constitutional structural chromosome 21 rearrangement resulted in a B-ALL with Down syndrome-associated genomic lesions as well as genomic lesions not common to the Down syndrome subtype of B-ALL. Our findings highlight the need for counseling of individuals with constitutional structural chromosome 21 rearrangements regarding their risks of developing a B-ALL.
Collapse
Affiliation(s)
- Angela M Verdoni
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Megan L Zilla
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Grant Bullock
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Terri L Guinipero
- Department of Hematology, Oncology, BMT, Division of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Julia Meade
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Svetlana A Yatsenko
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
49
|
Cosenza MR, Rodriguez-Martin B, Korbel JO. Structural Variation in Cancer: Role, Prevalence, and Mechanisms. Annu Rev Genomics Hum Genet 2022; 23:123-152. [DOI: 10.1146/annurev-genom-120121-101149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Somatic rearrangements resulting in genomic structural variation drive malignant phenotypes by altering the expression or function of cancer genes. Pan-cancer studies have revealed that structural variants (SVs) are the predominant class of driver mutation in most cancer types, but because they are difficult to discover, they remain understudied when compared with point mutations. This review provides an overview of the current knowledge of somatic SVs, discussing their primary roles, prevalence in different contexts, and mutational mechanisms. SVs arise throughout the life history of cancer, and 55% of driver mutations uncovered by the Pan-Cancer Analysis of Whole Genomes project represent SVs. Leveraging the convergence of cell biology and genomics, we propose a mechanistic classification of somatic SVs, from simple to highly complex DNA rearrangement classes. The actions of DNA repair and DNA replication processes together with mitotic errors result in a rich spectrum of SV formation processes, with cascading effects mediating extensive structural diversity after an initiating DNA lesion has formed. Thanks to new sequencing technologies, including the sequencing of single-cell genomes, open questions about the molecular triggers and the biomolecules involved in SV formation as well as their mutational rates can now be addressed. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | | | - Jan O. Korbel
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
50
|
Rack K, Bie J, Ameye G, Gielen O, Demeyer S, Cools J, Keersmaecker K, Vermeesch JR, Maertens J, Segers H, Michaux L, Dewaele B. Optimizing the diagnostic workflow for acute lymphoblastic leukemia by optical genome mapping. Am J Hematol 2022; 97:548-561. [PMID: 35119131 PMCID: PMC9314940 DOI: 10.1002/ajh.26487] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a malignancy that can be subdivided into distinct entities based on clinical, immunophenotypic and genomic features, including mutations, structural variants (SVs), and copy number alterations (CNA). Chromosome banding analysis (CBA) and Fluorescent In‐Situ Hybridization (FISH) together with Multiple Ligation‐dependent Probe Amplification (MLPA), array and PCR‐based methods form the backbone of routine diagnostics. This approach is labor‐intensive, time‐consuming and costly. New molecular technologies now exist that can detect SVs and CNAs in one test. Here we apply one such technology, optical genome mapping (OGM), to the diagnostic work‐up of 41 ALL cases. Compared to our standard testing pathway, OGM identified all recurrent CNAs and SVs as well as additional recurrent SVs and the resulting fusion genes. Based on the genomic profile obtained by OGM, 32 patients could be assigned to one of the major cytogenetic risk groups compared to 23 with the standard approach. The latter identified 24/34 recurrent chromosomal abnormalities, while OGM identified 33/34, misinterpreting only 1 case with low hypodiploidy. The results of MLPA were concordant in 100% of cases. Overall, there was excellent concordance between the results. OGM increased the detection rate and cytogenetic resolution, and abrogated the need for cascade testing, resulting in reduced turnaround times. OGM also provided opportunities for better patient stratification and accurate treatment options. However, for comprehensive cytogenomic testing, OGM still needs to be complemented with CBA or SNP‐array to detect ploidy changes and with BCR::ABL1 FISH to assign patients as soon as possible to targeted therapy.
Collapse
Affiliation(s)
- Katrina Rack
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics University Hospitals Leuven Leuven Belgium
| | - Jolien Bie
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics University Hospitals Leuven Leuven Belgium
- Laboratory for the Molecular Biology of Leukemia KU Leuven Leuven Belgium
| | - Geneviève Ameye
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics University Hospitals Leuven Leuven Belgium
| | - Olga Gielen
- Laboratory for the Molecular Biology of Leukemia KU Leuven Leuven Belgium
- Centre for Cancer Biology Flemish Institute for Biotechnology (VIB) Leuven Belgium
| | - Sofie Demeyer
- Laboratory for the Molecular Biology of Leukemia KU Leuven Leuven Belgium
- Centre for Cancer Biology Flemish Institute for Biotechnology (VIB) Leuven Belgium
| | - Jan Cools
- Laboratory for the Molecular Biology of Leukemia KU Leuven Leuven Belgium
- Centre for Cancer Biology Flemish Institute for Biotechnology (VIB) Leuven Belgium
- Leuvens Kanker Instituut (LKI) KU Leuven – University Hospitals Leuven Leuven Belgium
| | - Kim Keersmaecker
- Leuvens Kanker Instituut (LKI) KU Leuven – University Hospitals Leuven Leuven Belgium
- Department of Oncology KU Leuven Leuven Belgium
| | - Joris R. Vermeesch
- Department of Human Genetics KU Leuven Leuven Belgium
- Centre for Human Genetics University Hospitals Leuven Leuven Belgium
| | - Johan Maertens
- Department of Hematology University Hospitals Leuven Leuven Belgium
| | - Heidi Segers
- Leuvens Kanker Instituut (LKI) KU Leuven – University Hospitals Leuven Leuven Belgium
- Department of Pediatric Oncology‐Hematology University Hospitals Leuven Leuven Belgium
| | - Lucienne Michaux
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics University Hospitals Leuven Leuven Belgium
| | - Barbara Dewaele
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics University Hospitals Leuven Leuven Belgium
| |
Collapse
|