1
|
Hetta HF, Ahmed R, Ramadan YN, Fathy H, Khorshid M, Mabrouk MM, Hashem M. Gut virome: New key players in the pathogenesis of inflammatory bowel disease. World J Methodol 2025; 15:92592. [DOI: 10.5662/wjm.v15.i2.92592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 11/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory illness of the intestine. While the mechanism underlying the pathogenesis of IBD is not fully understood, it is believed that a complex combination of host immunological response, environmental exposure, particularly the gut microbiota, and genetic susceptibility represents the major determinants. The gut virome is a group of viruses found in great frequency in the gastrointestinal tract of humans. The gut virome varies greatly among individuals and is influenced by factors including lifestyle, diet, health and disease conditions, geography, and urbanization. The majority of research has focused on the significance of gut bacteria in the progression of IBD, although viral populations represent an important component of the microbiome. We conducted this review to highlight the viral communities in the gut and their expected roles in the etiopathogenesis of IBD regarding published research to date.
Collapse
Affiliation(s)
- Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Division of Microbiology, Immunology and Biotechnology, Faculty of pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Yasmin N Ramadan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Hayam Fathy
- Department of Internal Medicine, Division Hepatogastroenterology, Assiut University, Assiut 71515, Egypt
| | - Mohammed Khorshid
- Department of Clinical Research, Egyptian Developers of Gastroenterology and Endoscopy Foundation, Cairo 11936, Egypt
| | - Mohamed M Mabrouk
- Department of Internal Medicine, Faculty of Medicine. Tanta University, Tanta 31527, Egypt
| | - Mai Hashem
- Department of Tropical Medicine, Gastroenterology and Hepatology, Assiut University Hospital, Assiut 71515, Egypt
| |
Collapse
|
2
|
Li H, Zhao S, Gao MK, Zhou Y, Xu B, Yang LY, Yang XR, Su JQ. Experimental evidence for viral impact on microbial community, nitrification, and denitrification in an agriculture soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137532. [PMID: 39933460 DOI: 10.1016/j.jhazmat.2025.137532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Viruses are ubiquitous, and their potential impacts on biogeochemical cycles in soil have largely been inferred from correlation evidence and virome studies. Manure has been demonstrated to affect nitrogen cycle by altering soil nutrients and microbial communities. However, the direct impacts of viruses derived from manure on microbial community, nitrification, and denitrification remained exclusive. In this study, concentrated viral extracts obtained from manure were added into an agricultural soil in varying dosages: a one-time addition of 10-fold viruses or a weekly addition of 1-fold viruses for ten weeks. The results showed that both viral extracts and manure significantly changed the microbial community compositions and structures. The effect of manure on microbial diversity was concentration-dependent, differing from the viral impact on microbial diversity in soil. Deterministic processes predominated in the assembly of microbial communities in both viral and manure treatments, with an increased contribution of deterministic processes observed after these treatments. Additionally, a high concentration (10-fold) of viruses enhanced N2O production and reduction in soil. In the control treatment, N2O production was driven by bacterial denitrification, fungal denitrification, and chemo-denitrification. However, bacteria became the dominant driver of N2O production in both virus and manure treatments. Overall, experimental evidence for viral impacts on the composition and assembly of microbial community, as well as on nitrification and denitrification processes, was provided through a 70-day microcosm experiment. These findings highlight the importance of viruses in regulating the distribution and functioning of microbes in terrestrial ecosystems.
Collapse
Affiliation(s)
- Hu Li
- State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sha Zhao
- State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350001, China
| | - Meng-Ke Gao
- State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350001, China
| | - Yanyan Zhou
- State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Xu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350001, China
| | - Le-Yang Yang
- State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Ru Yang
- State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Qiang Su
- State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Zhang H, Ruan Y, Kuzyakov Y, Sun H, Huang Q, Guo S, Shen Q, Ling N. Viruses Facilitate Energy Acquisition Potential by Their Bacterial Hosts in Rhizosphere of Grafted Plants. PLANT, CELL & ENVIRONMENT 2025; 48:4599-4610. [PMID: 40038896 DOI: 10.1111/pce.15458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/03/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
Viruses alter the ecological and evolutionary trajectories of bacterial host communities. Plant grafting is a technique that integrates two species or varietiies and have consequences on the rhizosphere functioning. The grafting effects on the taxonomic and functional assembly of viruses and their bacterial host in the plant rhizosphere remain largely elusive. Using shotgun metagenome sequencing, we recover a total of 1441 viral operational taxonomic units from the rhizosphere of grafted and ungrafted plants after 8-year continuous monoculture. In the grafted and ungrafted rhizosphere, the Myoviridae, Zobellviridae and Kyanoviridae emerged as the predominant viral families, collectively representing around 40% of the viral community in each respective environment. Grafting enriched the members in viral family Kyanoviridae, Tectiviridae, Peduoviridae and Suoliviridae, and auxiliary metabolic genes related to pyruvate metabolism and energy acquisition (e.g., gloB, DNMT1 and dcyD). The virus-bacterial interactions increased the rapid growth potential of bacteria, which explains the strong increase in abundance of specific bacterial hosts (i.e., Chitinophagaceae, Cyclobacteriaceae and Spirosomaceae) in the grafted-plant rhizosphere. Overall, these results deepen our understanding of microbial community assembly and ecological services from the perspective of virus-host interactions.
Collapse
Affiliation(s)
- He Zhang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yang Ruan
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Göttingen, Germany
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Hong Sun
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qiwei Huang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ning Ling
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Yan P, Zhu J, Ji Q, Hou G, Liang G, Liu X, Liu R. Significant impact of bleaching treatment on phage-host interaction dynamics in a full-scale wastewater treatment plant. Sci Rep 2025; 15:19165. [PMID: 40450127 DOI: 10.1038/s41598-025-04743-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025] Open
Abstract
The temporal dynamics of phage-host interactions within full-scale biological wastewater treatment (BWT) plants remain inadequately characterized. Here, we provide an in-depth investigation of viral and bacterial dynamics over a nine-year period in an activated sludge BWT plant, where bleach addition was applied to control sludge foaming. By conducting bioinformatic analyses on 98 metagenomic time-series samples, we reconstructed 3,486 bacterial genomes and 2,435 complete or near-complete viral genomes, which were classified into 361 bacterial and 889 viral clusters, respectively. Our results demonstrate that the primary bleaching event induced significant shifts in both bacterial and viral communities, as well as in virus-host interactions, as evidenced by alterations in bacteria-virus interaction networks and virus-to-host ratio dynamics. Following bleaching, the bacteria-virus network became less interconnected but more compartmentalized. Viral communities mirrored bacterial dynamics, indicating a strong coupling in phage-host interactions. Among the identified virus-host pairs, many exhibited a decelerating rise in viral abundance relative to host abundance, with virus-to-host ratios generally displaying a negative correlation with host abundance. This trend was particularly pronounced in virus-host pairs where viruses harbored integrase genes, indicative of temperate dynamics resembling a "Piggyback-the-Winner" model. Notably, the bleaching intervention appeared to induce a transition from lysogeny to lysis in viruses associated with some foaming-related bacterial species, suggesting a potential virus-involved indirect mechanism by which bleaching mitigates sludge foaming.
Collapse
Affiliation(s)
- Peihan Yan
- College of Resources and Environment, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing, 101408, China
| | - Junge Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qianwei Ji
- College of Resources and Environment, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing, 101408, China
| | - Gaolin Hou
- College of Resources and Environment, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing, 101408, China
| | - Guoqiang Liang
- College of Resources and Environment, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing, 101408, China
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing, 101408, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing, 101408, China.
| |
Collapse
|
5
|
Lopez JA, McKeithen-Mead S, Shi H, Nguyen TH, Huang KC, Good BH. Abundance measurements reveal the balance between lysis and lysogeny in the human gut microbiome. Curr Biol 2025; 35:2282-2294.e11. [PMID: 40300605 DOI: 10.1016/j.cub.2025.03.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/27/2025] [Accepted: 03/27/2025] [Indexed: 05/01/2025]
Abstract
The human gut contains diverse communities of bacteriophage, whose interactions with the broader microbiome and potential roles in human health are only beginning to be uncovered. Here, we combine multiple types of data to quantitatively estimate gut phage population dynamics and lifestyle characteristics in human subjects. Unifying results from previous studies, we show that an average human gut contains a low ratio of phage particles to bacterial cells (∼1:100) but a much larger ratio of phage genomes to bacterial genomes (∼4:1), implying that most gut phage are effectively temperate (e.g., integrated prophage and phage-plasmids). By integrating imaging and sequencing data with a generalized model of temperate phage dynamics, we estimate that phage induction and lysis occur at a low average rate (∼0.001-0.01 per bacterium per day), imposing only a modest fitness burden on their bacterial hosts. Consistent with these estimates, we find that the phage composition of a diverse synthetic community in gnotobiotic mice can be quantitatively predicted from bacterial abundances alone while still exhibiting phage diversity comparable to native human microbiomes. These results provide a foundation for interpreting existing and future studies on links between the gut virome and human health.
Collapse
Affiliation(s)
- Jamie Alcira Lopez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Saria McKeithen-Mead
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Handuo Shi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Taylor H Nguyen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Huisman JS, Bernhard A, Igler C. Should I stay or should I go: transmission trade-offs in phages and plasmids. Trends Microbiol 2025; 33:484-495. [PMID: 39979200 DOI: 10.1016/j.tim.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/22/2025]
Abstract
Mobile genetic elements (MGEs), like temperate bacteriophages and conjugative plasmids, are major vectors of virulence and antibiotic resistance in bacterial populations. For reproductive success, MGEs must balance horizontal and vertical transmission. Yet, the cost of horizontal transmission (metabolic burden or host death) puts these transmission modes at odds. Using virulence-transmission trade-off (VTT) theory, we identify three groups of environmental variables affecting the balance between horizontal and vertical transmission: host density, host physiology, and competitors. We find that general theoretical predictions of the optimal response to environmental cues align with experimental evidence on the regulation of transmission by phages and plasmids. We further highlight gaps between theory and experiments, differences between phages and plasmids, and suggest areas for future research.
Collapse
Affiliation(s)
- Jana S Huisman
- Physics of Living Systems, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Andrina Bernhard
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Claudia Igler
- Division of Evolution, Infection, and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Goel T, Beckett SJ, Weitz JS. Eco-evolutionary dynamics of temperate phages in periodic environments. Virus Evol 2025; 11:veaf019. [PMID: 40421433 PMCID: PMC12105577 DOI: 10.1093/ve/veaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/31/2025] [Accepted: 03/21/2025] [Indexed: 05/28/2025] Open
Abstract
Bacteriophages (viruses that exclusively infect bacteria) exhibit a continuum of infection mechanisms, including lysis and lysogeny in interactions with bacterial hosts. Recent work has demonstrated the short-term advantages of lysogeny over lysis in conditions of low host availability. Hence, temperate phage which can switch between lytic and lysogenic strategies-both stochastically and responsively-are hypothesized to have an evolutionary advantage in a broad range of conditions. However, the long-term advantages of lysogeny are not well understood, particularly when environmental conditions vary over time. To examine generalized drivers of viral strategies over the short- and long-term, we explore the eco-evolutionary dynamics of temperate viruses in periodic environments with varying levels of host availability and viral mortality. We use a nonlinear system of ordinary differential equations to simulate periodically-forced dynamics that separate a 'within-growth' phase and a 'between-growth' phase, in which a (potentially unequal) fraction of virus particles and lysogens survive. Using this ecological model and invasion analysis, we show and quantify how conflicts can arise between strategies in the short term that may favour lysis and strategies in the long term that may favour lysogeny. In doing so, we identify a wide range of conditions in which temperate strategies can outperform obligately lytic or lysogenic strategies. Finally, we demonstrate that temperate strategies can mitigate against the potential local extinction of viruses in stochastically fluctuating environments, providing further evidence of the eco-evolutionary benefits of being temperate.
Collapse
Affiliation(s)
- Tapan Goel
- Department of Biology, University of Maryland, College Park, MD 20742, USA
- Previous address: School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Stephen J Beckett
- Department of Biology, University of Maryland, College Park, MD 20742, USA
- University of Maryland Institute for Health Computing, North Bethesda, MD 20852, USA
- Previous address: School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Joshua S Weitz
- Department of Biology, University of Maryland, College Park, MD 20742, USA
- University of Maryland Institute for Health Computing, North Bethesda, MD 20852, USA
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Previous address: School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institut de Biologie, École Normale Supérieure, 75005 Paris, France
| |
Collapse
|
8
|
Varona NS, Wallace BA, Bosco-Santos A, Mullinax J, Stiffler AK, O'Beirne MD, Ford J, Fulton JM, Werne JP, Gilhooly WP, Silveira CB. Viral activity in lake analogs of anoxic early Earth oceans. MICROBIOME 2025; 13:104. [PMID: 40287716 PMCID: PMC12032784 DOI: 10.1186/s40168-025-02085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/09/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Meromictic lakes, with their stratified water columns, are modern analogs for ancient euxinic (anoxic and sulfidic) oceans, where anaerobic sulfur-oxidizing purple and green sulfur bacteria (PSB and GSB) dominated as primary producers. Recent studies suggest a potential role of viruses in the metabolisms and biosignatures of these bacteria, but conclusive evidence of viral replication and activity in such lakes is still lacking. RESULTS Here, we investigate viral activity in the upper mixed layer (mixolimnion), the anoxic bottom (monimolimnion), and the microbial plate (a dense layer of phototrophic sulfur bacteria forming at the boundary between the oxygenated mixolimnion and the anoxic monimolimnion) of three meromictic lakes: Poison and Lime Blue Lakes (WA, USA) and Mahoney Lake (BC, CA). Geochemical profiles of two lakes, Mahoney and Poison, which are dominated by PSB, show a sharp chemocline, whereas Lime Blue displays a less steep chemical gradient and hosts a mixture of PSB and GSB. Viral gene transcription and epifluorescence microscopy revealed depth-dependent patterns in viral activity. The two strongly stratified, PSB-dominated lakes showed a significant decrease in the virus-to-microbe ratio (VMR) in their microbial plates, suggesting reduced viral particle production via lysis. Metatranscriptome data corroborated this trend by showing lower levels of viral gene expression in these microbial plates, higher expression of CRISPR defense and lysogeny-related genes, and relatively high expression of photosynthesis-related viral genes. Conversely, the third lake, which harbors a mix of PSB and GSB, exhibited low microbial density, high VMR, and high viral transcriptional activity. Viral transcription levels significantly correlated with VMR in the microbial plates and bottom layers, but this relationship was absent in low-density, oxic surface samples. CONCLUSIONS Here, two independent lines of evidence, abundances and gene expression, show reduced viral lytic production in microbial plates dominated by PSB in stratified lakes. This suggests that viral lysis may contribute less to bacterial community structuring in these high-density microbial plates. Rather, other viral-mediated mechanisms, such as lysogeny and the expression of auxiliary metabolic genes, may represent a more significant viral influence on bacterial physiology and geochemistry. These patterns in virus-bacteria interactions may be consequential for the interpretations of biosignatures left by these bacterial groups in the geologic record. Video Abstract.
Collapse
Affiliation(s)
- Natascha S Varona
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
| | - Bailey A Wallace
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Alice Bosco-Santos
- Institute of Earth Surface Dynamics, University of Lausanne, Vaud, Switzerland
| | - Julianna Mullinax
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | | | - Molly D O'Beirne
- Department of Geology & Environmental Science, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Josh Ford
- Geosciences Department, Baylor University, One Bear Place #97354, Waco, TX, 76798-7354, USA
| | - James M Fulton
- Geosciences Department, Baylor University, One Bear Place #97354, Waco, TX, 76798-7354, USA
| | - Josef P Werne
- Department of Geology & Environmental Science, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - William P Gilhooly
- Department of Earth & Environmental Sciences, Indiana University Indianapolis, Indianapolis, IN, 46202, USA
| | - Cynthia B Silveira
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, 33149, USA.
| |
Collapse
|
9
|
Yao J, Zeng Y, Hong X, Wang M, Zhang Q, Chen Y, Gou M, Xia ZY, Tang YQ. Phages-bacteria interactions underlying the dynamics of polyhydroxyalkanoate-producing mixed microbial cultures via meta-omics study. mSystems 2025; 10:e0020025. [PMID: 40152616 PMCID: PMC12013262 DOI: 10.1128/msystems.00200-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
The dynamics of the structure of polyhydroxyalkanoate-producing mixed microbial cultures (PHA-MMCs) during enrichment and maintenance is an unsolved problem. The effect of phages has been proposed as a cause of dynamic changes in community structure, but evidence is lacking. To address this question, five PHA-MMCs were enriched, and biological samples were sampled temporally to study the interactions between phage and bacterial members by combining metagenomics and metatranscriptomics. A total of 963 metagenome-assembled genomes (MAGs) and 4,294 phage operational taxonomic units (pOTUs) were assembled from bulk metagenomic data. The dynamic changes in the structure of phage and bacterial communities were remarkably consistent. Structural equation modeling analysis showed that phages could infect and lyse dominant species to vacate ecological niches for other species, resulting in a community succession state in which dominant species alternated. Seven key auxiliary metabolic genes (AMGs), phaC, fadJ, acs, ackA, phbB, acdAB, and fadD, potentially contributing to PHA synthesis were identified from phage sequences. Importantly, these AMGs were transcribed, indicating that they were in an active expression state. The meta-analysis provides the first catalog of phages in PHA-MMCs and the AMGs they carry, as well as how they affect the dynamic changes in bacterial communities. This study provides a reference for subsequent studies on understanding and regulating the microbial community structure of open microbial systems.IMPORTANCEThe synthesis of biodegradable plastic PHA from organic waste through mixed microbial cultures (PHA-MMCs), at extremely low cost, has the potential for expanded production. However, the dynamics of dominant species in PHA-MMCs are poorly understood. Our results demonstrate for the first time the impact of phages on the structure of bacterial communities in the PHA-MMCs. There are complex interactions between the PHA producers (e.g., Azomonas, Paracoccus, and Thauera) and phages (e.g., Casadabanvirus and unclassified Hendrixvirinae). Phage communities can regulate the activity and structure of bacterial communities. In addition, the AMGs related to PHA synthesis may hitchhike during phage-host infection cycles, enabling their dissemination across bacterial communities, and phages may act as a critical genetic reservoir for bacterial members, facilitating access to PHA synthesis-related functional traits. This study highlights the impact of phages on bacterial community structure, suggesting that phages have the potential to be used as a tool for better controlling the microbial community structure of PHA-MMCs.
Collapse
Affiliation(s)
- Jian Yao
- College of Architecture and Environment, Sichuan University, , Chengdu, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, Sichuan, China
| | - Yan Zeng
- College of Architecture and Environment, Sichuan University, , Chengdu, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, Sichuan, China
| | - Xia Hong
- Sinopec Shanghai Engineering Co. Ltd., Shanghai, China
| | - Meng Wang
- Sinopec (Dalian) Research Institute of Petroleum and Petrochemicals Co. Ltd., Dalian, Liaoning, China
| | - Quan Zhang
- Sinopec (Dalian) Research Institute of Petroleum and Petrochemicals Co. Ltd., Dalian, Liaoning, China
| | - Yating Chen
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, Sichuan, China
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, , Chengdu, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, Sichuan, China
- Engineering Research Centre of Alternative Energy Materials and Devices, Ministry of Education, Chengdu, Sichuan, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, , Chengdu, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, Sichuan, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, , Chengdu, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Vasuja P, Kunal. Virovory: control of viral pathogenesis by the protists and the way forward. Crit Rev Microbiol 2025:1-9. [PMID: 40255028 DOI: 10.1080/1040841x.2025.2493908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 04/22/2025]
Abstract
The interactions between viruses and protists have been crucially impacting the ecosystem. In recent studies, it has been found that the protists are not only able to consume, ingest or inactivate a variety of viruses, resulting in a reduction of the viral load, but instead, they can treat viruses as the exclusive source of nutrients, exhibiting "Virovory" (virus-only diet). These small protists can act as virosomes (organisms harnessing nutrients from the viruses) and utilize the viruses as the only source of nourishment, implying the protist to multiply and grow. The viral reduction was previously thought to be only because of the action of abiotic factors (temperature, ultraviolet light, chemicals, membrane adsorption, etc.). However, virovory suggests that organic material flow in microbial communities, the impact of viruses on the food web and, the role of protists in regulating viral populations are crucial factors in ecosystem dynamics. In this review, ingestion, digestion, and inactivation of a variety of viruses by protists are discussed. Several questions can be answered by further research on understanding the mechanisms behind the inactivation of viruses, the impact of reduced viral load on other microbial populations, and the large-scale employability of these little protists in removing pathogenic viruses from the environment.
Collapse
Affiliation(s)
- Pooja Vasuja
- Department of Life Sciences, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary (SGT) University, Gurugram, Haryana, India
| | - Kunal
- Department of Life Sciences, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary (SGT) University, Gurugram, Haryana, India
| |
Collapse
|
11
|
Hu C, Lu JN, Chen Z, Tian L, Yin Y, Jiang G, Fei YH, Tang YT, Wang S, Jin C, Qiu R, Chao Y. Viral diversity and auxiliary metabolic genes in rare earth element mine drainage in South China. WATER RESEARCH 2025; 281:123666. [PMID: 40273602 DOI: 10.1016/j.watres.2025.123666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/25/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
In extreme environments, viruses play a crucial role in regulating the structure and metabolic activities of microbial communities, thereby impacting the overall biogeochemical cycles. Previous research found that rare earth element acid mine drainage (REE-AMD) harbors a wide array of microbial species. However, our understanding of the viruses that infect these microorganisms remains limited. In this study, we utilized metagenomic analysis to explore the viral diversity, interactions between viruses and their hosts, as well as the viruses encoded auxiliary metabolic genes (AMGs) within REE-AMD. The results demonstrated that viral communities showed increased diversity with REEs pollution. Furthermore, AMGs exhibited habitat and host specificity. Viruses in water samples contaminated with REEs tended to encode AMGs related to cellular metabolic processes and stress responses to protect their hosts. In contrast, viruses in sediment samples were more likely to encode AMGs associated with nutrient competition, thereby expanding the ecological niches of hosts and viruses. Viruses would carry more AMGs from the dominant prokaryotes. Additionally, under REEs stress, viruses encode a greater number of carbon- and sulfur-related AMGs, influencing the carbon and sulfur cycles of microorganisms in REE-AMD. Overall, our study provides a first systematic characterization of the viral community in REE-AMD, which is crucial for understanding the intricate interactions among viruses, their hosts, and the surrounding environment.
Collapse
Affiliation(s)
- Chang Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jia-Nan Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ziwu Chen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Li Tian
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yalin Yin
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Gengbo Jiang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ying-Heng Fei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Chao Jin
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
12
|
Park JW, Yun YE, Cho JA, Yoon SI, In SA, Park EJ, Kim MS. Characterization of the phyllosphere virome of fresh vegetables and potential transfer to the human gut. Nat Commun 2025; 16:3427. [PMID: 40210629 PMCID: PMC11986028 DOI: 10.1038/s41467-025-58856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Fresh vegetables harbor diverse microorganisms on leaf surfaces, yet their viral communities remain unexplored. We investigate the diversity and ecology of phyllosphere viromes of six leafy green vegetables using virus-like particle (VLP) enrichment and shotgun metagenome sequencing. On average, 9.2 × 107 viruses are present per gram of leaf tissue. The majority (93.1 ± 6.2%) of these viruses are taxonomically unclassified. Virome compositions are distinct among vegetable types and exhibit temporal variations. Virulent phages with replication-enhancing auxiliary metabolic genes (AMGs) are more dominant than temperate phages with host fitness-benefiting AMGs. Analysis of 1498 human fecal VLP metagenomes reveals that approximately 10% of vegetable viruses are present in the human gut virome, including viruses commonly observed in multiple studies. These gut-associated vegetable viruses are enriched with short-term vegetable intake, and depleted in individuals with metabolic and immunologic disorders. Overall, this study elucidates the ecological contribution of the fresh vegetable virome to human gut virome diversity.
Collapse
Affiliation(s)
- Ji-Woo Park
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Yeo-Eun Yun
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Ah Cho
- Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| | - Su-In Yoon
- Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| | - Su-A In
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Jin Park
- Department of Food Bioengineering, Jeju National University, Jeju, Republic of Korea.
| | - Min-Soo Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
13
|
Martin RM, Denison ER, Pound HL, Barnes EA, Chaffin JD, Wilhelm SW. Mitomycin C eliminates cyanobacterial transcription without detectable prophage induction in a Microcystis-dominated harmful algal bloom in Lake Erie. Microbiol Spectr 2025; 13:e0287224. [PMID: 40202308 PMCID: PMC12054034 DOI: 10.1128/spectrum.02872-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Although evidence indicates that viruses are important in the ecology of Microcystis spp., many questions remain. For example, how does Microcystis exist at high, bloom-associated cell concentrations in the presence of viruses that infect it? The phenomenon of lysogeny and associated homoimmunity offer possible explanations for this question. Virtually nothing is known about lysogeny in Microcystis, but a metatranscriptomic study suggests that widespread, transient lysogeny is active during blooms. These observations lead us to posit that lysogeny is important in modulating Microcystis blooms. Using a classic mitomycin C-based induction study, we tested for lysogeny in a Microcystis-dominated community in Lake Erie in 2019. Treated communities were incubated with 1 mg L-1 mitomycin C for 48 h alongside unamended controls. We compared direct counts of virus-like particles (VLPs) and examined community transcription for active infection by cyanophage. Mitomycin C treatment did not increase VLP count. Mitomycin C effectively eliminated transcription in the cyanobacterial community, while we detected no evidence of induction. Metatranscriptomic analysis demonstrated that the standard protocol of 1 mg L-1 was highly toxic to the cyanobacterial population, which likely inhibited induction of any prophage present. Follow-up lab studies indicated that 0.1 mg L-1 may be more appropriate for use in freshwater cyanobacterial studies. These findings will guide future efforts to detect lysogeny in Microcystis blooms.IMPORTANCEHarmful algal blooms dominated by Microcystis spp. occur throughout the world's freshwater ecosystems, leading to detrimental effects on ecosystem services that are well documented. After decades of research, the scientific community continues to struggle to understand the ecology of Microcystis blooms. The phenomenon of lysogeny offers an attractive potential explanation for several ecological questions surrounding blooms. However, almost nothing is known about lysogeny in Microcystis. We attempted to investigate lysogeny in a Microcystis bloom in Lake Erie and found that the standard protocols used to study lysogeny in aquatic communities are inappropriate for use in Microcystis studies, and perhaps freshwater cyanobacterial studies more broadly. This work can be used to design better methods to study the viral ecology of Microcystis blooms.
Collapse
Affiliation(s)
- Robbie M. Martin
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Elizabeth R. Denison
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Helena L. Pound
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Ellen A. Barnes
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Justin D. Chaffin
- F.T. Stone Laboratory, Ohio Sea Grant, and The Ohio State University, Put-in-Bay, Ohio, USA
| | - Steven W. Wilhelm
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
14
|
Tripathi I, Barber-Choi N, Woodward L, Falta N, Shahwan N, Yang N, Knowles B. Distinguishing Lytic and Temperate Infection Dynamics in the Environment. Viruses 2025; 17:513. [PMID: 40284956 PMCID: PMC12031542 DOI: 10.3390/v17040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/21/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Viral infection and lysis drive bacterial diversity and abundances, ultimately regulating global biogeochemical cycles. Infection can follow lytic or temperate routes, with lytic dynamics suppressing bacterial population growth and temperate infection enhancing it. Given that bacterial over-proliferation is a pervasive threat to ecosystems, determining which infection dynamic dominates a given ecosystem is a central question in viral ecology. However, the fields that describe and test the rules of viral infection-theoretical ecology and environmental microbiology, respectively-remain disconnected. To address this, we simulated common empirical approaches to analyze and distinguish between the predictions of three theoretical models mechanistically representing lytic to temperate infection dynamics. By doing so, we found that the models have remarkably similar predictions despite their mechanistic differences, as shown by PCA and correlation analyses. Essentially, the models are only discernable under simulated nutrient addition, where lytic models become less stable with no increase in host densities while the temperate model remains stable and has elevated host abundances. Highlighting this difference between the models, we present a dichotomous key illustrating how researchers can determine whether lytic or temperate infection dynamics dominate their ecosystem of interest using common metrics and empirical approaches.
Collapse
Affiliation(s)
- Isha Tripathi
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Naomi Barber-Choi
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Lauren Woodward
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Natalie Falta
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Natalia Shahwan
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Nickie Yang
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Ben Knowles
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Song Y, Yang G, Wang P, Luo X, Jiao JY, Zheng Z, Kang L, Zhang D, Li Z, Zhou W, Liu X, Han L, Li WJ, Yang Y. Virus-host interactions and their effects on the prokaryotic community in thermokarst lakes. Sci Bull (Beijing) 2025:S2095-9273(25)00313-5. [PMID: 40199684 DOI: 10.1016/j.scib.2025.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025]
Affiliation(s)
- Yutong Song
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibiao Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiaoqing Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhihu Zheng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyao Kang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Ziliang Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuning Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lili Han
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco‑Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Redgwell TA, Thorsen J, Petit MA, Deng L, Vestergaard G, Russel J, Chawes B, Bønnelykke K, Bisgaard H, Nielsen DS, Sørensen S, Stokholm J, Shah SA. Prophages in the infant gut are pervasively induced and may modulate the functionality of their hosts. NPJ Biofilms Microbiomes 2025; 11:46. [PMID: 40108202 PMCID: PMC11923282 DOI: 10.1038/s41522-025-00674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
Gut microbiome (GM) composition and function is pivotal for human health and disease, of which the virome's importance is increasingly recognised. However, prophages and their induction patterns in the infant gut remain understudied. Here, we identified 10645 putative prophages in 662 metagenomes from 1-year-old children in the COPSAC2010 mother-child cohort and investigated their potential functions. No core provirome was found as the most prevalent vOTU was identified in only ~70% of the samples. The most dominant cluster of vOTUs in the cohort was related to Bacteroides phage Hanky p00', and it carried both diversity generating retroelements and genes involved in capsular polysaccharide synthesis. Paired analysis of viromes and metagenomes from the same samples revealed that most prophages within the infant gut were induced and that induction was unaffected by a range of environmental perturbers. In summary, prophages are major components of the infant gut that may have far reaching influences on the microbiome and its host.
Collapse
Affiliation(s)
- Tamsin A Redgwell
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie-Agnès Petit
- Micalis institute, INRAE, Agroparistech, Université Paris-Saclay, Jouy en Josas, France
| | - Ling Deng
- Section of Food Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Gisle Vestergaard
- Technical University of Denmark, Section of Bioinformatics, Department of Health Technology, 2800 Kgs, Lyngby, Denmark
| | - Jakob Russel
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
| | - Dennis S Nielsen
- Section of Food Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Søren Sørensen
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
- Section of Food Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark.
| |
Collapse
|
17
|
Wu S, Zhang W, Wang D, Balcazar JL, Wang G, Ye M, Chao H, Sun M, Hu F. Bacteriophage-Bacteria Interactions Promote Ecological Multifunctionality in Compost-Applied Soils. Environ Microbiol 2025; 27:e70074. [PMID: 40109201 DOI: 10.1111/1462-2920.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/01/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Bacteriophages (phages) influence biogeochemical cycling in soil ecosystems by mediating bacterial metabolism. However, the participation of phages in soil's overall ecological functions (multifunctionality) remains unclear. Hence, this study investigated the potential for phages and bacterial communities to shape the multifunctionality of compost-applied soils. The findings revealed that cow compost and vermicompost applications enhanced the soil's multifunctionality; consequently, the highest multifunctionality was observed in the soil with vermicompost application (p < 0.05). The composition and diversity of bacteria and phages, as well as the abundance of functional genes of bacteria and phages related to carbon, nitrogen, phosphorus and sulphur metabolism, were dramatically altered following the application of both compost types. Moreover, the impact of phage diversity on soil multifunctionality is crucial for multi-threshold calculations. Structural equation modelling indicated that the effects of bacterial diversity on soil multifunctionality following compost application were paramount, with a path coefficient of 0.88 (p < 0.01). The rise in phage diversity and the enrichment of functional genes indirectly led to a dramatic increase in the soil's ecological multifunctionality by affecting the host bacteria's metabolic processes. These results offer a novel avenue to improve soil's functions and environmental services by transforming the phage community composition and functions of soils.
Collapse
Affiliation(s)
- Shimao Wu
- Soil Ecology Lab, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Wen Zhang
- Soil Ecology Lab, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Danrui Wang
- Soil Ecology Lab, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Jose Luis Balcazar
- Catalan Institute for Water Research (ICRA), Girona, Spain
- University of Girona, Girona, Spain
| | - Guanghao Wang
- Soil Ecology Lab, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Mao Ye
- University of Girona, Girona, Spain
- National Engineering Research Center for Soil Nutrient Management and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Huizhen Chao
- Soil Ecology Lab, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Mingming Sun
- Soil Ecology Lab, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Feng Hu
- Soil Ecology Lab, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Cheng Z, He Y, Wang N, Wu L, Xu J, Shi J. Uncovering soil amendment-induced genomic and functional divergence in soybean rhizosphere microbiomes during cadmium-contaminated soil remediation: Novel insights from field multi-omics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125787. [PMID: 39909332 DOI: 10.1016/j.envpol.2025.125787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Soil amendments exhibit great potential in reducing cadmium (Cd) bioavailability and its accumulation in crop grains, but their practical implications on microbial characteristics (genomic traits and ecological functions) remain unclear. The objective of this study was to combine metagenomics and metatranscriptomics to track the dynamics of bacterial and viral communities in the soybean rhizosphere during the remediation of Cd-contaminated soil using a commercial Mg-Ca-Si conditioner (CMC), applied at low and high (975 kg ha-1 and 1950 kg ha-1) rates under field conditions. Application of CMC increased the average size and decreased the guanine-cytosine (GC) content of microbial genomes, which were strongly shaped by soil pH and available Cd (ACd). Gene and transcript abundances analysis indicated that CMC promoted the enrichment of Alphaproteobacterial metagenome-assembled genomes (MAGs) carrying czcC gene encoding Cd efflux and dsbB gene encoding disulfide bond oxidoreductase. These genes are closely related to Cd resistance and exhibited notable (p < 0.05) increased expression in CMC-treated soils. Additionally, low and high CMC addition significantly increased viral alpha diversity by 5.7% and 9.6%, and viral activity by 3.3% and 7.8%, respectively, in comparison to the control. Temperate viruses were predicted as the major group (64%) and actively linked to the dominant host, and CMC amendment increased host metabolism and adaptability by enhancing (p < 0.05) the abundance and transcriptional activity of virus-encoded auxiliary metabolic genes (AMGs) involved in heavy metal resistance (ABC transport), sulfur cycling (cysH), and host metabolism (galE and queD) through "piggyback-the-winner" strategy. Structural equation modeling further revealed that CMC application influences Cd accumulation in soybean grains through its direct and indirect effects on soil properties and rhizosphere microbiomes, and highlighted the potential role of rhizosphere viruses in agricultural soil remediation.
Collapse
Affiliation(s)
- Zhongyi Cheng
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou, 310058, China; Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, Écully, 69134, France
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou, 310058, China
| | - Nanxi Wang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Laosheng Wu
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiachun Shi
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Godsil M, Ritz NL, Venkatesh S, Meeske AJ. Gut phages and their interactions with bacterial and mammalian hosts. J Bacteriol 2025; 207:e0042824. [PMID: 39846747 PMCID: PMC11844821 DOI: 10.1128/jb.00428-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
The mammalian gut microbiome is a dense and diverse community of microorganisms that reside in the distal gastrointestinal tract. In recent decades, the bacterial members of the gut microbiome have been the subject of intense research. Less well studied is the large community of bacteriophages that reside in the gut, which number in the billions of viral particles per gram of feces, and consist of considerable unknown viral "dark matter." This community of gut-residing bacteriophages, called the gut "phageome," plays a central role in the gut microbiome through predation and transformation of native gut bacteria, and through interactions with their mammalian hosts. In this review, we will summarize what is known about the composition and origins of the gut phageome, as well as its role in microbiome homeostasis and host health. Furthermore, we will outline the interactions of gut phages with their bacterial and mammalian hosts, and plot a course for the mechanistic study of these systems.
Collapse
Affiliation(s)
- Marshall Godsil
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | | | | | - Alexander J. Meeske
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Foucault P, Halary S, Duval C, Goto M, Marie B, Hamlaoui S, Jardillier L, Lamy D, Lance E, Raimbault E, Allouti F, Troussellier M, Bernard C, Leloup J, Duperron S. A summer in the greater Paris: trophic status of peri-urban lakes shapes prokaryotic community structure and functional potential. ENVIRONMENTAL MICROBIOME 2025; 20:24. [PMID: 39962619 PMCID: PMC11834611 DOI: 10.1186/s40793-025-00681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
With more than 12 million inhabitants, the Greater Paris offers a "natural laboratory" to explore the effects of eutrophication on freshwater lake's microbiomes within a relative restricted area (~ 70 km radius). Here, a 4-months survey was carried out during summertime to monitor planktonic microbial communities of nine lakes located around Paris (Île-de-France, France) of comparable morphologies, yet distinct trophic statuses from mesotrophic to hypereutrophic. By thus minimizing the confounding factors, we investigated how trophic status could influence prokaryotic community structures (16S rRNA gene sequencing) and functions (shotgun metagenomics). These freshwater lakes harbored highly distinct and diverse prokaryotic communities, and their trophic status appears as the main driver explaining both differences in community structure and functional potential. Although their gene pool was quite stable and shared among lakes, taxonomical and functional changes were correlated. According to trophic status, differences in phosphorus metabolism-related genes were highlighted among the relevant functions involved in the biogeochemical cycles. Overall, hypereutrophic lakes microbiomes displayed the highest contrast and heterogeneity over time, suggesting a specific microbial regime shift compared to eutrophic and mesotrophic lakes.
Collapse
Affiliation(s)
- Pierre Foucault
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
- Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), Sorbonne Université, UMR 7618 CNRS-INRA-IRD-Univ. Paris Cité-UPEC, Paris, France
| | - Sébastien Halary
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
| | - Charlotte Duval
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
| | - Midoli Goto
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
- Marine Biodiversity, Exploitation & Conservation (MARBEC), Univ. Montpellier-CNRS- Ifremer-IRD, Montpellier, France
| | - Benjamin Marie
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
| | - Sahima Hamlaoui
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
| | - Ludwig Jardillier
- Université Paris-Saclay, UMR 8079 Univ. Paris-Saclay-CNRS-AgroParisTech, Unité d'Écologie Systématique et Évolution (ESE), Gif-sur-Yvette, France
| | - Dominique Lamy
- Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), Sorbonne Université, UMR 7618 CNRS-INRA-IRD-Univ. Paris Cité-UPEC, Paris, France
| | - Emilie Lance
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
- Université de Reims, UMR-I 02, Stress environnementaux et biosurveillance des milieux aquatiques (SEBIO), Reims, France
| | - Emmanuelle Raimbault
- Institut de Physique du Globe de Paris, UMR 7154, Univ. Paris Cité-CNRS, Paris, France
| | - Fayçal Allouti
- Muséum National d'Histoire Naturelle, UAR 7200 MNHN, Acquisition et Analyses de Données pour l'Histoire naturelle (2AD), Paris, France
| | - Marc Troussellier
- Marine Biodiversity, Exploitation & Conservation (MARBEC), Univ. Montpellier-CNRS- Ifremer-IRD, Montpellier, France
| | - Cécile Bernard
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
| | - Julie Leloup
- Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), Sorbonne Université, UMR 7618 CNRS-INRA-IRD-Univ. Paris Cité-UPEC, Paris, France.
| | - Sébastien Duperron
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France.
| |
Collapse
|
21
|
Huang X, Chase EE, Zepernick BN, Martin RM, Krausfeldt LE, Pound HL, Wu H, Zheng Z, Wilhelm SW. Lysogen formation governs colonies while lytic infection is more prevalent in single cells of the bloom-forming cyanobacterium, Microcystis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637950. [PMID: 39990356 PMCID: PMC11844469 DOI: 10.1101/2025.02.12.637950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
While the bloom-forming cyanobacterium Microcystis can exist as free-living single cells or within dense mucilaginous colonies, the drivers and consequences of colony formation remain unclear. Here, we integrated metatranscriptomic datasets from two Microcystis bloom events in Lake Taihu, China, to analyze and validate the functional differences between colonial and single-cell Microcystis . Our results confirmed colony expression profiles were disproportionately enriched in Microcystis transcripts (and functions) compared to other prokaryotic taxa. Concomitantly, viral infection strategies diverged by Microcystis community morphology: colony-associated cells expressed lysogeny-associated genes, while single cells exhibited increased signatures of lytic infection. These data are consistent with the hypothesis that Microcystis colonies foster conditions favorable to lysogen formation-likely due to local high cell densities and the resulting advantage of superinfection immunity-whereas solitary cells experience stronger lytic pressure. On a broader scale, our findings refine the understanding of bloom dynamics by identifying how community morphological states coincide with distinct host-virus interactions. Cumulatively, this work underscores the importance of colony formation in shaping Microcystis ecology and highlights the need for mechanistic studies that disentangle the interplay between phage infection modes, colony formation, and microbial community structure.
Collapse
|
22
|
Mpakosi A, Sokou R, Theodoraki M, Iacovidou N, Cholevas V, Tsantes AG, Liakou AI, Drogari-Apiranthitou M, Kaliouli-Antonopoulou C. The Role of Infant and Early Childhood Gut Virome in Immunity and the Triggering of Autoimmunity-A Narrative Review. Diagnostics (Basel) 2025; 15:413. [PMID: 40002565 PMCID: PMC11854275 DOI: 10.3390/diagnostics15040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background: The bacterial gut microbiome has been the subject of many studies that have provided valuable scientific conclusions. However, many different populations of microorganisms that interact with each other to maintain homeostasis coexist inside the gut. The gut virome, especially, appears to play a key role in this interactive microenvironment. Intestinal viral communities, including bacteriophages, appear to influence health and disease, although their role has not yet been fully elucidated. In addition, bacteriophages or viruses that infect bacteria regulate bacterial growth, thus shaping the composition of the gut microbiome and affecting the immune system. Infant Gut Virome: The shaping of the gut microbiome during the first years of life has a significant role in the maturation of the infant's immune system. In contrast, early dysbiosis has been associated with chronic, including metabolic and autoimmune, disorders later in life. Purpose: Although viruses have been shown to be potential triggers of autoimmune diseases, there is a gap in the literature regarding the infant gut virome in autoimmunity development. Despite the lack of evidence, this review attempts to summarize and clarify what is known so far about this timely and important topic in the hope that its findings will contribute to future research.
Collapse
Affiliation(s)
- Alexandra Mpakosi
- Department of Microbiology, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece
| | - Rozeta Sokou
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Martha Theodoraki
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
| | - Nicoletta Iacovidou
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | | | - Andreas G. Tsantes
- Department of Microbiology, Saint Savvas Oncology Hospital, 11522 Athens, Greece;
| | - Aikaterini I. Liakou
- 1st Department of Dermatology-Venereology, “Andreas Sygros” Hospital, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece;
| | - Maria Drogari-Apiranthitou
- Infectious Diseases Research Laboratory, 4th Department of Internal Medicine, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece;
| | | |
Collapse
|
23
|
Coolahan M, Whalen KE. A review of quorum-sensing and its role in mediating interkingdom interactions in the ocean. Commun Biol 2025; 8:179. [PMID: 39905218 PMCID: PMC11794697 DOI: 10.1038/s42003-025-07608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025] Open
Abstract
Quorum sensing, first described in marine systems five decades ago, is a well-characterized chemical communication system used to coordinate bacterial gene expression and behavior; however, the impact of quorum sensing on interkingdom interactions has been vastly understudied. In this review, we examine how these molecules mediate communication between bacteria and marine eukaryotes; influencing processes such as development, disease pathogenesis, and microbiome regulation within marine ecosystems. We describe the varied mechanisms eukaryotes have evolved to interfere with bacterial quorum sensing signaling, the crucial role these signals play in host-virus interactions, and how their exchange may be governed by outer membrane vesicles, prevalent in marine systems. Here, we present a dynamic portrayal of the impact of quorum sensing signals beyond bacterial communication, laying the groundwork for future investigations on their roles in shaping marine ecosystem structure and function.
Collapse
Affiliation(s)
- Megan Coolahan
- Department of Biology, Haverford College, Haverford, PA, USA
| | | |
Collapse
|
24
|
Almosuli M, Kirtava A, Chkhotua A, Tsveniashvili L, Chanishvili N, Irfan SS, Ng E, McIntyre H, Hockenberry AJ, Araujo RP, Zhou W, Vuong N, Birkaya B, Liotta L, Luchini A. Urinary bacteriophage cooperation with bacterial pathogens during human urinary tract infections supports lysogenic phage therapy. Commun Biol 2025; 8:175. [PMID: 39905205 PMCID: PMC11794546 DOI: 10.1038/s42003-025-07598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
Despite much promise in overcoming drug-resistant infections, clinical studies of bacteriophage antibacterial therapy have failed to show durable effectiveness. Although lysogeny plays an important role in bacterial physiology, its significance in diverse microbiomes remains unclear. Here, we tested the following hypotheses: 1) urinary microbiome phage populations switch to a higher relative proportion of temperate phages, and 2) the activity of the phage recombination machinery (integration/excision/transposition) is higher during human urinary tract infections (UTIs) than in non-infected urinary tracts. Using human urine, model organisms, mass spectrometry, gene expression analysis, and the phage phenotype prediction model BACPHLIP, the results corroborated our hypotheses at the functional protein and gene levels. From a human health perspective, these data suggest that temperate phages may facilitate bacterial infections rather than function as protective agents. These findings support the use of lysogenic phages as therapeutic Trojan Horses.
Collapse
Affiliation(s)
| | - Anna Kirtava
- IConsilium Second Medical Opinion, New York City, New York, NY, USA
| | | | | | - Nina Chanishvili
- Eliava Institute of Bacteriophage, Microbiology & Virology, Tblisi, Georgia
| | | | - Emily Ng
- George Mason University, Manassas, VA, USA
| | | | | | | | | | - Ngoc Vuong
- George Mason University, Manassas, VA, USA
| | | | | | | |
Collapse
|
25
|
Liu Z, Jiang C, Yin Z, Ibrahim IA, Zhang T, Wen J, Zhou L, Jiang G, Li L, Yang Z, Huang Y, Yang Z, Gu Y, Meng D, Yin H. Ecological features of microbial community linked to stochastic and deterministic assembly processes in acid mine drainage. Appl Environ Microbiol 2025; 91:e0102824. [PMID: 39679708 PMCID: PMC11784436 DOI: 10.1128/aem.01028-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/09/2024] [Indexed: 12/17/2024] Open
Abstract
Ecological processes greatly shape microbial community assembly, but the driving factors remain unclear. Here, we compiled a metagenomic data set of microbial communities from global acid mine drainage (AMD) and explored the ecological features of microbial community linked to stochastic and deterministic processes from the perspective of species niche position, interaction patterns, gene functions, and viral infection. Our results showed that dispersal limitation (DL) (48.5%~93.5%) dominated the assembly of phylogenetic bin in AMD microbial community, followed by homogeneous selection (HoS) (3.1%~39.2%), heterogeneous selection (HeS) (1.4%~22.2%), and drift (DR) (0.2%~2.7%). The dominant process of dispersal limitation was significantly influenced by niche position in temperature (r = -0.518, P = 0.007) and dissolved oxygen (r = 0.471, P = 0.015). Network stability had a significantly negative correlation with the relative importance of dispersal limitation, while it had a positive correlation with selection processes, implying changes in network properties could be mediated by ecological processes. Furthermore, we found that ecological processes were mostly related to the gene functions of energy production and conversion (C), and amino acid transport and metabolism (E). Meanwhile, our results showed that the number of proviruses and viral genes involved in arsenic (As) resistance is negatively associated with the relative importance of ecological drift in phylogenetic bin assembly, implying viral infection might weaken ecological drift. Taken together, these results highlight that ecological processes are associated with ecological features at multiple levels, providing a novel insight into microbial community assembly in extremely acidic environments. IMPORTANCE Unraveling the forces driving community assemblage is a core issue in microbial ecology, but how ecological constraints impose stochasticity and determinism remains unknown. This study presents a comprehensive investigation to uncover the association of ecological processes with species niche position, interaction patterns, microbial metabolisms, and viral infections, which provides novel insights into community assembly in extreme environments.
Collapse
Affiliation(s)
- Zhenghua Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | - Zhuzhong Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | | | - Teng Zhang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jing Wen
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Lei Zhou
- Hebei Key Laboratory of Highly Efficient Exploitation and Utilization of Radioactive Mineral Resources, Ganchan, China
| | - Guoping Jiang
- Hebei Key Laboratory of Highly Efficient Exploitation and Utilization of Radioactive Mineral Resources, Ganchan, China
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhendong Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ye Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | - Zhaoyue Yang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yabing Gu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
26
|
Tokodi N, Łobodzińska A, Klimczak B, Antosiak A, Młynarska S, Šulčius S, Avrani S, Yoshida T, Dziga D. Proliferative and viability effects of two cyanophages on freshwater bloom-forming species Microcystis aeruginosa and Raphidiopsis raciborskii vary between strains. Sci Rep 2025; 15:3152. [PMID: 39856188 PMCID: PMC11761051 DOI: 10.1038/s41598-025-87626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
Viruses that infect cyanobacteria are an integral part of aquatic food webs, influencing nutrient cycling and ecosystem health. However, the significance of virus host range, replication efficiency, and host compatibility on cyanobacterial dynamics, growth, and toxicity remains poorly understood. In this study, we examined the effects of cyanophage additions on the dynamics and activity of optimal, sub-optimal, and non-permissive cyanobacterial hosts in cultures of Microcystis aeruginosa and Raphidiopsis raciborskii. Our findings reveal that cross-infectivity can substantially reduce the proliferative success of the cyanophage under conditions of high-density of sub-optimal hosts which suggests phage dispersal limitation as a result of shared infections, in turn impairing their top-down control over the host community. Furthermore, we found that cyanophage addition triggers host strain-specific responses in photosynthetic performance, population size and toxin production, even among non-permissive hosts. These non-lytic effects suggest indirect impacts on co-existing cyanobacteria, increasing the overall complexity and variance in many ecologically relevant cyanobacterial traits. The high variability in responses observed with a limited subset of cyanophage-cyanobacteria combinations not only highlights the intricate role of viral infections in microbial ecosystems but also underscores the significant challenges in predicting the composition, toxicity, and dynamics of cyanobacterial blooms.
Collapse
Affiliation(s)
- Nada Tokodi
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Antonia Łobodzińska
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland
| | - Barbara Klimczak
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, 30-348, Poland
| | - Adam Antosiak
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, 30-348, Poland
| | - Sara Młynarska
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland
| | - Sigitas Šulčius
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos str. 2, Vilnius, 08412, Lithuania
| | - Sarit Avrani
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- School of Environmental Science, University of Shiga Prefecture, Hikone, Japan
| | - Dariusz Dziga
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland.
| |
Collapse
|
27
|
Hu C, Chen X, Wei W, Wallace D, Liu J, Zhang Y, Zhang L, Xu D, Batt J, Xiao X, Shi Q, Zheng Q, Ma R, Luo T, Jiao N, Zhang R. To kill or to piggyback: Switching of viral lysis-lysogeny strategies depending on host dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178233. [PMID: 39721538 DOI: 10.1016/j.scitotenv.2024.178233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Viruses wield significant influence over microbial communities and ecosystem function in marine environments. However, the selection of viral life strategies and their impacts on microbial communities remains enigmatic. In this study, we utilized a large-scale macrocosm, established using water samples from a marine coastal region, to enable community-level investigation. Through a prolonged incubation experiment, we aimed to clarify the ramifications of lytic and lysogenic viral activities on microbial community dynamics. We observed a continuous succession in bacterial abundance, growth rate, and community diversity, tightly linked with time series switching between viral lysis and lysogeny. Elevated lytic viral production notably fostered greater bacterial diversity, whereas increased lysogenic viral production corresponded to bacterial communities characterized by heightened abundance and growth rate but reduced diversity. Moreover, discernible shifts in bacterial community compositions, associated with different abundant bacterial taxa, were synchronized with pronounced transitions between viral lysis and lysogeny. Notably, the switch from lysogeny to lysis facilitated the proliferation of initially rare bacterial populations. Our findings suggest that the Kill-the-Winner and Piggyback-the-Winner hypotheses, both elucidating dynamic patterns in virus-host interactions, can synergistically demonstrate the pivotal role of viruses in regulating microbial communities via the lysis-lysogeny switch in marine environments.
Collapse
Affiliation(s)
- Chen Hu
- Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - Xiaowei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - Wei Wei
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Douglas Wallace
- Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China; Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jihua Liu
- Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - Lianbao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - John Batt
- Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China; Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xilin Xiao
- Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - Qiang Shi
- Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China; Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - Ruijie Ma
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen 518055, PR China
| | - Tingwei Luo
- Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China.
| | - Rui Zhang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen 518055, PR China.
| |
Collapse
|
28
|
Ishizaka A, Tamura A, Koga M, Mizutani T, Yamayoshi S, Iwatsuki-Horimoto K, Yasuhara A, Yamamoto S, Nagai H, Adachi E, Suzuki Y, Kawaoka Y, Yotsuyanagi H. Dysbiosis of gut microbiota in COVID-19 is associated with intestinal DNA phage dynamics of lysogenic and lytic infection. Microbiol Spectr 2025; 13:e0099824. [PMID: 39656008 PMCID: PMC11705802 DOI: 10.1128/spectrum.00998-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025] Open
Abstract
This study compared intestinal DNA phage dynamics and gut microbiota changes observed at the onset of coronavirus disease 2019 (COVID-19). The study participants included 19 healthy individuals and 19 patients with severe acute respiratory syndrome coronavirus 2 infection. Significant differences were observed in the diversity of the intestinal DNA virome after the onset of COVID-19 compared with that in healthy individuals. Classification by their tail morphology resulted in the order Caudovirales, a double-stranded DNA phage, accounting for >95% of all participants. In classifying phages based on host bacteria, a decreased number of phages infecting mainly the Clostridia class was observed immediately after the onset of COVID-19 and recovered over time. After the onset of COVID-19, two distinct movement patterns of intestinal phages and their host bacteria were observed: phage- and bacteria-predominant. The abundance of obligate anaerobes, such as Clostridium_sense_strict_1, Fusicatenibacter, and Romboutsia, and the phages hosting these bacteria decreased immediately after the onset of COVID-19, and faster phage recovery was observed compared with bacterial recovery. In contrast, the genus Staphylococcus, a facultative anaerobic bacterium, increased immediately after the onset of COVID-19, whereas the phages infecting Staphylococcus decreased. Furthermore, immediately after the onset of COVID-19, the percentage of lytic phages increased, whereas that of temperate phages decreased. These observations suggest that the gut microbiota dysbiosis observed immediately after the onset of COVID-19 may be linked to phage dynamics that control gut microbiota and may also affect the recovery from dysbiosis.IMPORTANCEBacteriophages infect and replicate with bacteria and archaea and are closely associated with intestinal bacteria. The symbiotic relationship between gut microbiota and bacteriophages is of interest, but it is challenging to study their dynamics in the human body over time. SARS-CoV-2 infection has been reported to alter the gut microbiota, which is involved in gut immune regulation and pathophysiology, although changes in the intestinal phages of patients with SARS-CoV-2 and their dynamic relationship with the gut microbiota remain unclear. SARS-CoV-2 infection, which follows a transient pathological course from disease onset to cure, may provide a reliable model to investigate these interactions in the gut environment. Therefore, this study aimed to elucidate the correlation between gut microbiota and intestinal DNA virome dynamics in COVID-19 pathogenesis. This study found that the dysbiosis observed in SARS-CoV-2 infection involves a growth strategy that depends on the phage or bacterial dominance.
Collapse
Affiliation(s)
- Aya Ishizaka
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Azumi Tamura
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Taketoshi Mizutani
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, the University of Tokyo, Tokyo, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, the University of Tokyo, Tokyo, Japan
| | - Atsuhiro Yasuhara
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Shinya Yamamoto
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Hiroyuki Nagai
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Chiba, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, the University of Tokyo, Tokyo, Japan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Zhang N, Zhu D, Yao Z, Zhu DZ. Virus-prokaryote interactions assist pollutant removal in constructed wetlands. BIORESOURCE TECHNOLOGY 2025; 416:131791. [PMID: 39528031 DOI: 10.1016/j.biortech.2024.131791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
As a vital part of microbial communities, viruses in constructed wetlands (CWs) remain poorly explored, yet they could significantly affect pollutant removal. Here, two pilot-scale CWs were built to investigate the viral community under different hydraulic loading rates (HLRs) using in-depth metagenomic analysis. Gene-sharing networks suggested that the CWs were pools of unexplored viruses. A higher abundance of prokaryotic functional genes related to sulfur cycling and denitrification was observed in the higher HLR condition, which was associated with greater removal of total nitrogen and nitrate nitrogen compared to the lower HLR condition. Viruses also affect nitrogen pollutant removal by potentially infecting functional prokaryotes, such as denitrification bacteria and ammonia-oxidizing bacteria, and by providing auxiliary metabolic genes involved in sulfur and nitrogen cycling. These findings reveal the significance of viruses in pollutant removal in CWs and enhance the understanding of the relationship between engineering design parameters and performance from microbial perspectives.
Collapse
Affiliation(s)
- Nan Zhang
- School of Civil & Environmental Engineering and GeographyScience, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Zhiyuan Yao
- School of Civil & Environmental Engineering and GeographyScience, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China.
| | - David Z Zhu
- School of Civil & Environmental Engineering and GeographyScience, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
30
|
Martiniuc C, Taveira I, Abreu F, Cabral AS, Paranhos R, Seldin L, Jurelevicius D. Insights into the dynamics and evolution of Rummeliibacillus stabekisii prophages in extreme environments: from Antarctic soil to spacecraft floors. Extremophiles 2024; 29:10. [PMID: 39708135 DOI: 10.1007/s00792-024-01377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Since prophages can play a multifaceted role in bacterial evolution, this study aims to characterize the virome of Rummeliibacillus stabekisii, a bacterium isolated from different environments, including Antarctic soil and NASA spacecraft floors. From the analyses, it was found that the Antarctic strain, PP9, had the largest number of prophages, including intact ones, indicating potential benefits for survival in adverse conditions. In contrast, other strains harbored predominantly degenerate prophages, suggesting a dynamic process of gene gain and loss during evolution. Furthermore, strain PP9 exhibited polylysogeny, a strategy capable of increasing its competitive advantage by providing a broader spectrum of defensive mechanisms. In addition, evidence demonstrates that prophage regions in PP9 act as hotspots for recombination events, favoring the insertion of different phages and possible antimicrobial resistance genes. Finally, lytic cycle induction experiments revealed at least two intact prophages active in PP9. In this way, understanding the interaction between viruses and bacteria can provide valuable information about microbial evolution and adaptation in extreme environments, such as Antarctica.
Collapse
Affiliation(s)
- Caroline Martiniuc
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil
| | - Igor Taveira
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil
| | - Fernanda Abreu
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil
| | - Anderson S Cabral
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Rodolfo Paranhos
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Lucy Seldin
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil
| | - Diogo Jurelevicius
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil.
| |
Collapse
|
31
|
Zhang Z, Tong M, Ding W, Liu S, Jong MC, Radwan AA, Cai Z, Zhou J. Changes in the diversity and functionality of viruses that can bleach healthy coral. mSphere 2024; 9:e0081624. [PMID: 39589125 DOI: 10.1128/msphere.00816-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024] Open
Abstract
Coral microbiomes play a crucial role in maintaining the health and functionality of holobionts. Disruption in the equilibrium of holobionts, including bacteria, fungi, and archaea, can result in the bleaching of coral. However, little is known about the viruses that can infect holobionts in coral, especially bacteriophages. Here, we employed a combination of amplicon and metagenomic analyses on Acropora muricata and Galaxea astreata to investigate the diversity and functionality of viruses in healthy and bleached corals. Analysis showed that the alpha diversity of holobionts (bacteria, eukaryotes, zooxanthellae, and lysogenic and lytic viruses) was higher in bleached corals than that in healthy corals. Meanwhile, bleached corals exhibited a relatively higher abundance of specific viral classes, including Revtraviricetes, Arfiviricetes, Faserviricetes, Caudoviricetes, Herviviricetes, and Tectiliviricetes; moreover, we found that the expression levels of functional genes involved in carbon and sulfur metabolism were enriched. An increase in Vibrio abundance has been reported as a notable factor in coral bleaching; our analysis also revealed an increased abundance of Vibrio in bleached coral. Finally, bleached corals contained a higher abundance of Vibrio phages and encoded more virulence factor genes to increase the competitiveness of Vibrio after coral bleaching. In conclusion, we attempted to understand the causes of coral bleaching from the perspective of phage-bacteria-coral tripartite interaction. IMPORTANCE Viruses, especially bacteriophages, outnumber other microorganisms by approximately 10-fold and represent the most abundant members of coral holobionts. Corals represent a model system for the study of symbiosis, the influence of viruses on organisms inhabiting healthy coral reef, the role of rapid horizontal gene transfer, and the expression of auxiliary metabolic genes. However, the least studied component of coral holobiont are viruses. Therefore, there is a critical need to investigate the viral community of viruses, and their functionality, in healthy and bleached coral. Here, we compared the composition and functionality of viruses in healthy and bleached corals and found that viruses may participate in the induction of coral bleaching by enhancing the expression of virulence genes and other auxiliary metabolic functions.
Collapse
Affiliation(s)
- Zhengyi Zhang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province, China
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province, China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, China
| | - Wei Ding
- Shenzhen Zhihai Ocean Biotechnology Co., Ltd., Shenzhen, Guangdong Province, China
| | - Shuikai Liu
- Shenzhen Zhihai Ocean Biotechnology Co., Ltd., Shenzhen, Guangdong Province, China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Ahmed A Radwan
- Genetics and Cytology Department, National Research Centre (NRC), Cairo, Egypt
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province, China
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province, China
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province, China
| |
Collapse
|
32
|
Lopez JA, McKeithen-Mead S, Shi H, Nguyen TH, Huang KC, Good BH. Abundance measurements reveal the balance between lysis and lysogeny in the human gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.614587. [PMID: 39386523 PMCID: PMC11463441 DOI: 10.1101/2024.09.27.614587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The human gut contains diverse communities of bacteriophage, whose interactions with the broader microbiome and potential roles in human health are only beginning to be uncovered. Here, we combine multiple types of data to quantitatively estimate gut phage population dynamics and lifestyle characteristics in human subjects. Unifying results from previous studies, we show that an average human gut contains a low ratio of phage particles to bacterial cells (~1:100), but a much larger ratio of phage genomes to bacterial genomes (~4:1), implying that most gut phage are effectively temperate (e.g., integrated prophage, phage-plasmids, etc.). By integrating imaging and sequencing data with a generalized model of temperate phage dynamics, we estimate that phage induction and lysis occurs at a low average rate (~0.001-0.01 per bacterium per day), imposing only a modest fitness burden on their bacterial hosts. Consistent with these estimates, we find that the phage composition of a diverse synthetic community in gnotobiotic mice can be quantitatively predicted from bacterial abundances alone, while still exhibiting phage diversity comparable to native human microbiomes. These results provide a foundation for interpreting existing and future studies on links between the gut virome and human health.
Collapse
Affiliation(s)
- Jamie A. Lopez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Saria McKeithen-Mead
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Handuo Shi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Taylor H. Nguyen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Benjamin H. Good
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
33
|
Fulke AB, Eranezhath S, Raut S, Jadhav HS. Recent toolset of metagenomics for taxonomical and functional annotation of marine associated viruses: A review. REGIONAL STUDIES IN MARINE SCIENCE 2024; 77:103728. [DOI: 10.1016/j.rsma.2024.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
34
|
Sun X, Zhang X, Zhang X. Revitalized abyssal ancient viruses trigger viral pandemic in terrestrial soil. ENVIRONMENT INTERNATIONAL 2024; 194:109183. [PMID: 39671824 DOI: 10.1016/j.envint.2024.109183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Viruses are the most abundant biological entities on the earth. Some ancient viruses can revive from permafrost along with melting to infect the current hosts. The "zombie viruses" trapped in the ancient deep-sea sediments become the public health concern due to the environmental changes and human activities in deep oceans. However, the biosecurity risk of benthic viruses has not been explored. Here, two viruses purified from the ancient deep-sea sediments were infectious to the bacteria of terrestrial soil. Furthermore, the benthic viruses were purified from each of 106 deep-sea sediments with 1,900-17,300 years old and then the biothreats of deep-sea viruses to terrestrial soil were evaluated on a global scale. The results revealed that the viruses purified from each of 9 sediments could disturb the native bacterial communities in soil and destroy the soil functions. These viruses with the capacity to invade soil were widely distributed in the abyssal sea. Therefore, our findings highlighted the revitalized risks of deep-sea ancient viruses to terrestrial soil ecosystems for the first time. The biosecurity of deep-sea viruses to terrestrial soil should be assessed before performing deep-sea mining and scientific activities.
Collapse
Affiliation(s)
- Xumei Sun
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, People's Republic of China; School of Marine Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Xinyi Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
35
|
Zhang L, Hu F, Zhao Z, Li X, Zhong M, He J, Yao F, Zhang X, Mao Y, Wei H, He J, Yang H. Dimer-monomer transition defines a hyper-thermostable peptidoglycan hydrolase mined from bacterial proteome by lysin-derived antimicrobial peptide-primed screening. eLife 2024; 13:RP98266. [PMID: 39589395 PMCID: PMC11594527 DOI: 10.7554/elife.98266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
Phage-derived peptidoglycan hydrolases (i.e. lysins) are considered promising alternatives to conventional antibiotics due to their direct peptidoglycan degradation activity and low risk of resistance development. The discovery of these enzymes is often hampered by the limited availability of phage genomes. Herein, we report a new strategy to mine active peptidoglycan hydrolases from bacterial proteomes by lysin-derived antimicrobial peptide-primed screening. As a proof-of-concept, five peptidoglycan hydrolases from the Acinetobacter baumannii proteome (PHAb7-PHAb11) were identified using PlyF307 lysin-derived peptide as a template. Among them, PHAb10 and PHAb11 showed potent bactericidal activity against multiple pathogens even after treatment at 100°C for 1 hr, while the other three were thermosensitive. We solved the crystal structures of PHAb8, PHAb10, and PHAb11 and unveiled that hyper-thermostable PHAb10 underwent a unique folding-refolding thermodynamic scheme mediated by a dimer-monomer transition, while thermosensitive PHAb8 formed a monomer. Two mouse models of bacterial infection further demonstrated the safety and efficacy of PHAb10. In conclusion, our antimicrobial peptide-primed strategy provides new clues for the discovery of promising antimicrobial drugs.
Collapse
Affiliation(s)
- Li Zhang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- College of Veterinary Medicine, Henan University of Animal Husbandry and EconomyZhengzhouChina
| | - Fen Hu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Department of Etiology, School of Basic Medical Sciences, Fujian Medical UniversityFuzhouChina
| | - Zirong Zhao
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Xinfeng Li
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
| | - Mingyue Zhong
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
| | - Jiajun He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Fangfang Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School of Stomatology, Wuhan UniversityWuhanChina
| | - Xiaomei Zhang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Yuxuan Mao
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Hongping Wei
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Hang Yang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
- Hubei Jiangxia LaboratoryWuhanChina
| |
Collapse
|
36
|
Martin RM, Denison ER, Pound HL, Barnes EA, Chaffin JD, Wilhelm SW. Mitomycin C eliminates cyanobacterial transcription without detectable lysogen induction in a Microcystis-dominated bloom in Lake Erie. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622312. [PMID: 39574682 PMCID: PMC11580894 DOI: 10.1101/2024.11.06.622312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Although evidence indicates that viruses are important in the ecology of Microcystis spp., many questions remain. For example, how does Microcystis exist at high, bloom-associated cell concentrations in the presence of viruses that infect it? The phenomenon of lysogeny and associated homoimmunity offer possible explanations to this question. Virtually nothing is known about lysogeny in Microcystis, but a metatranscriptomic study suggests that widespread, transient lysogeny is active during blooms. These observations lead us to posit that lysogeny is important in modulating Microcystis blooms. Using a classic mitomycin C-based induction study, we tested for lysogeny in a Microcystis-dominated community in Lake Erie in 2019. Treated communities were incubated with 1 mg L-1 mitomycin C for 48 h alongside unamended controls. We compared direct counts of virus-like-particles (VLPs) and examined community transcription for active infection by cyanophage. Mitomycin C treatment did not increase VLP count. Mitomycin C effectively eliminated transcription in the cyanobacterial community, while we detected no evidence of induction. Metatranscriptomic analysis demonstrated that the standard protocol of 1 mg L-1 was highly-toxic to the cyanobacterial population, which likely inhibited induction of any prophage present. Follow-up lab studies indicated that 0.1 mg L-1 may be more appropriate for use in freshwater cyanobacterial studies. These findings will guide future efforts to detect lysogeny in Microcystis blooms.
Collapse
Affiliation(s)
- Robbie M. Martin
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Elizabeth R. Denison
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Helena L. Pound
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Ellen A. Barnes
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Justin D. Chaffin
- F.T. Stone Laboratory, Ohio Sea Grant, and The Ohio State University, Put-In-Bay, OH, USA
| | - Steven W. Wilhelm
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA
| |
Collapse
|
37
|
Wang L, Lin D, Xiao KQ, Ma LJ, Fu YM, Huo YX, Liu Y, Ye M, Sun MM, Zhu D, Rillig MC, Zhu YG. Soil viral-host interactions regulate microplastic-dependent carbon storage. Proc Natl Acad Sci U S A 2024; 121:e2413245121. [PMID: 39467127 PMCID: PMC11551317 DOI: 10.1073/pnas.2413245121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/13/2024] [Indexed: 10/30/2024] Open
Abstract
Microplastic is globally regarded as an important factor impacting biogeochemical cycles, yet our understanding of such influences is limited by the uncertainties of intricate microbial processes. By multiomics analysis, coupled with soil chemodiversity characterization and microbial carbon use efficiency (CUE), we investigated how microbial responses to microplastics impacted soil carbon cycling in a long-term field experiment. We showed that biodegradable microplastics promoted soil organic carbon accrual by an average of 2.47%, while nondegradable microplastics inhibited it by 17.4%, as a consequence of the virus-bacteria coadaptations to the microplastics disturbance. In the relevant functional pathways, nondegradable microplastics significantly (P < 0.05) enhanced the abundance and transcriptional activity related to complex carbohydrate metabolism, whereas biodegradable microplastics significantly (P < 0.05) promoted functions involved in amino acid metabolism and glycolysis. Accordingly, viral lysis enhanced in nondegradable microplastics treatments to introduce more complex organic compounds to soil dissolved organic matters, thus benefiting the oligotrophs with high carbon metabolic capabilities in exploitation competition. In contrast, biodegradable microplastics enriched viral auxiliary metabolic genes of carbon metabolism through "piggyback-the-winner" strategy, conferring to dominant copiotrophs, enhanced substrate utilization capabilities. These virus-host interactions were also demonstrated in the corresponding soil plastisphere, which would alter microbial resource allocation and metabolism via CUE, affecting carbon storage consequently. Overall, our results underscore the importance of viral-host interactions in understanding the microplastics-dependent carbon storage in the soil ecosystem.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences Haixi Industrial Technology Innovation Center in Beilun, Ningbo315830, China
| | - Da Lin
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100049, China
| | - Ke-Qing Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100049, China
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Li-Juan Ma
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
- School of Life Sciences, Hebei University, Baoding071002, China
| | - Yan-Mei Fu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun130102, China
| | - Yu-Xin Huo
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100049, China
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Yanjie Liu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun130102, China
| | - Mao Ye
- National Engineering Research Center for Soil Nutrient Management and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
| | - Ming-Ming Sun
- Soil Ecology Lab, Nanjing Agricultural University, Nanjing210095, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences Haixi Industrial Technology Innovation Center in Beilun, Ningbo315830, China
| | - Matthias C. Rillig
- Institute of Biology, Freie Universität Berlin, Berlin14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin14195, Germany
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences Haixi Industrial Technology Innovation Center in Beilun, Ningbo315830, China
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| |
Collapse
|
38
|
Deng Y, Jiang S, Duan H, Shao H, Duan Y. Bacteriophages and their potential for treatment of metabolic diseases. J Diabetes 2024; 16:e70024. [PMID: 39582431 PMCID: PMC11586638 DOI: 10.1111/1753-0407.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
Recent advances highlight the role of gut virome, particularly phageome, in metabolic disorders such as obesity, type 2 diabetes mellitus, metabolic dysfunction-associated fatty liver disease, and cardiovascular diseases, including hypertension, stroke, coronary heart disease, and hyperlipidemia. While alterations in gut bacteria are well-documented, emerging evidence suggests that changes in gut viruses also contribute to these disorders. Bacteriophages, the most abundant gut viruses, influence bacterial populations through their lytic and lysogenic cycles, potentially modulating the gut ecosystem and metabolic pathways. Phage therapy, previously overshadowed by antibiotics, is experiencing renewed interest due to rising antibiotic resistance. It offers a novel approach to precisely edit the gut microbiota, with promising applications in metabolic diseases. In this review, we summarize recent discoveries about gut virome in metabolic disease patients, review preclinical and clinical studies of phage therapy on metabolic diseases as well as the breakthroughs and currently faced problems and concerns.
Collapse
Affiliation(s)
- Youpeng Deng
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Shouwei Jiang
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Hanyu Duan
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Haonan Shao
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yi Duan
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
39
|
Yuan L, Yu P, Huang X, Zhao Z, Chen L, Ju F. Seasonal succession, host associations, and biochemical roles of aquatic viruses in a eutrophic lake plagued by cyanobacterial blooms. ENVIRONMENT INTERNATIONAL 2024; 193:109125. [PMID: 39547087 DOI: 10.1016/j.envint.2024.109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Viruses are implicated to play key roles as biogeochemical mediators and ecological drivers in freshwater ecosystems. However, the dynamics of viruses and host associations throughout the seasons and during blooming periods in eutrophic freshwater ecosystems remain poorly understood. From the water microbiomes of planktonic biomass from Lake Taihu, a large eutrophic freshwater lake in China that experiences annual Microcystis-dominated harmful algal blooms (HABs), we recovered 41,997 unique viral clusters spanning a wide taxonomic range, including 15,139 Caudovirales clusters targeting bacteria and 1,044 NCLDV clusters targeting eukaryotes. The viral community exhibited clear seasonal succession, driven primarily by microbial communities (particularly Cyanobacteria and Planctomycetes) and environmental factors (mainly nutrients and temperature). Host prediction revealed that viral infection had a more distinct impact on bacteria-driven nitrogen pathways than on phosphate cycling. HAB-induced variations in microbial composition and environmental conditions affected viral strategies including viral lifestyles, host range, and virus-encoded auxiliary metabolic genes (vAMGs) distributions. Viruses infecting Proteobacteria and Actinobacteria showed an enhanced lysogenic lifestyle and a narrower host range during HAB peak in summer, while viruses infecting Bacteroidota adopted an opposite strategy. Notably, vAMGs were most abundant before the HAB outbreak in spring, compensating for bacterial metabolic processes of their hosts such as carbohydrates metabolism, photosynthesis, and phosphate regulation. The findings highlight the intricate relationships between viruses, host microbes, and the bloom-associated environment, underscoring the important biochemical roles viruses play in eutrophic freshwater ecosystems.
Collapse
Affiliation(s)
- Ling Yuan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Huang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Ze Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Linxing Chen
- Department of Earth and Planetary Sciences, University of California, Berkeley 94720, CA, USA
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China; Center for Infectious Disease Research, Westlake University, Hangzhou 310024, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang Province, China; Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
40
|
Zhang Q, Ji XM, Wang X, Wang W, Xu X, Zhang Q, Xing D, Ren N, Lee DJ, Chen C. Differentiation of the Anammox core microbiome: Unraveling the evolutionary impetus of scalable gene flow. WATER RESEARCH 2024; 268:122580. [PMID: 39383807 DOI: 10.1016/j.watres.2024.122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Anaerobic ammonium oxidation bacteria (AAOB), distinguished by their unique autotrophic nitrogen metabolism, hold pivotal positions in the global nitrogen cycle and environmental biotechnologies. However, the ecophysiology and evolution of AAOB remain poorly understood, attributed to the absence of monocultures. Hence, a comprehensive elucidation of the AAOB-dominated core microbiome, anammox core, is imperative to further completing the theory of engineered nitrogen removal and ecological roles of anammox. Performing taxonomic and phylogenetic analyses on collected genome repertoires, we show here that Candidatus Brocadia and Candidatus Kuenenia possesses a more compact core than Candidatus Jettenia, which partly explains why the latter has a less common ecological presence. Evidence of gene flow is particularly striking in functions related to biosynthesis and oxygen detoxification, underscoring the evolutionary forces driving lineage and core differentiation. Furthermore, CRISPR spacer traceback of the AAOB metagenome-assembled genomes (MAGs) reveals a series of genetic traces for the concealed phages. By reconceptualizing the functional divergence of AAOB with the historical role of phages, we ultimately propose a coevolutionary framework to understand the evolutionary trajectory of anammox microecology. The discoveries provided in this study offer new insights into understanding the evolution of AAOB and the ecology of anammox.
Collapse
Affiliation(s)
- Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiao-Ming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xueting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; College of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
41
|
Ji M, Zhou J, Li Y, Ma K, Song W, Li Y, Zhou J, Tu Q. Biodiversity of mudflat intertidal viromes along the Chinese coasts. Nat Commun 2024; 15:8611. [PMID: 39367024 PMCID: PMC11452619 DOI: 10.1038/s41467-024-52996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Viruses constitute the most diverse and abundant biological entities on Earth. However, our understanding of this tiniest life form in complex ecosystems remains limited. Here, we recover 20,102 viral OTUs from twelve intertidal zones along the Chinese coasts. Our analysis demonstrates high viral diversity and functional potential in intertidal zones, encoding important functional genes that can be potentially transferred to microbial hosts and mediate elemental biogeochemical cycles, especially carbon, phosphate and sulfur. Virus-host abundance dynamics vary among different microbial lineages. Viral community composition is closely associated with environmental conditions, including dissolved organic matter. Concordant biogeographic patterns are observed for viruses and microbes. Viral communities are generally habitat specific with low overlaps between intertidal and other habitats. Environmental factors and geographic distance dominate the compositional variation of intertidal viromes. Overall, these findings expand our understanding of intertidal viromes within an ecological framework, providing insights into the virus-host coevolutionary arms race.
Collapse
Affiliation(s)
- Mengzhi Ji
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Jiayin Zhou
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Yan Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Kai Ma
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Wen Song
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Yueyue Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China.
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission Technology, Shandong University, Qingdao, China.
| |
Collapse
|
42
|
Castledine M, Buckling A. Critically evaluating the relative importance of phage in shaping microbial community composition. Trends Microbiol 2024; 32:957-969. [PMID: 38604881 DOI: 10.1016/j.tim.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
The ubiquity of bacteriophages (phages) and the major evolutionary and ecological impacts they can have on their microbial hosts has resulted in phages often cited as key drivers shaping microbial community composition (the relative abundances of species). However, the evidence for the importance of phages is mixed. Here, we critically review the theory and data exploring the role of phages in communities, identifying the conditions when phages are likely to be important drivers of community composition. At ecological scales, we conclude that phages are often followers rather than drivers of microbial population and community dynamics. While phages can affect strain diversity within species, there is yet to be strong evidence suggesting that fluctuations in species' strains affects community composition.
Collapse
Affiliation(s)
- Meaghan Castledine
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
43
|
Koonin EV, Fischer MG, Kuhn JH, Krupovic M. The polinton-like supergroup of viruses: evolution, molecular biology, and taxonomy. Microbiol Mol Biol Rev 2024; 88:e0008623. [PMID: 39023254 PMCID: PMC11426020 DOI: 10.1128/mmbr.00086-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
SUMMARYPolintons are 15-20 kb-long self-synthesizing transposons that are widespread in eukaryotic, and in particular protist, genomes. Apart from a transposase and a protein-primed DNA polymerase, polintons encode homologs of major and minor jelly-roll capsid proteins, DNA-packaging ATPases, and proteases involved in capsid maturation of diverse eukaryotic viruses of kingdom Bamfordvirae. Given the conservation of these structural and morphogenetic proteins among polintons, these elements are predicted to alternate between transposon and viral lifestyles and, although virions have thus far not been detected, are classified as viruses (class Polintoviricetes) in the phylum Preplasmiviricota. Related to polintoviricetes are vertebrate adenovirids; unclassified polinton-like viruses (PLVs) identified in various environments or integrated into diverse protist genomes; virophages (Maveriviricetes), which are part of tripartite hyperparasitic systems including protist hosts and giant viruses; and capsid-less derivatives, such as cytoplasmic linear DNA plasmids of fungi and transpovirons. Phylogenomic analysis indicates that the polinton-like supergroup of viruses bridges bacterial tectivirids (preplasmiviricot class Tectiliviricetes) to the phylum Nucleocytoviricota that includes large and giant eukaryotic DNA viruses. Comparative structural analysis of proteins encoded by polinton-like viruses led to the discovery of previously undetected functional domains, such as terminal proteins and distinct proteases implicated in DNA polymerase processing, and clarified the evolutionary relationships within Polintoviricetes. Here, we leverage these insights into the evolution of the polinton-like supergroup to develop an amended megataxonomy that groups Polintoviricetes, PLVs (new class 'Aquintoviricetes'), and virophages (renamed class 'Virophaviricetes') together with Adenoviridae (new class 'Pharingeaviricetes') in a preplasmiviricot subphylum 'Polisuviricotina' sister to a subphylum including Tectiliviricetes ('Prepoliviricotina').
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthias G. Fischer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| |
Collapse
|
44
|
Zhou Z, Keiblinger KM, Huang Y, Bhople P, Shi X, Yang S, Yu F, Liu D. Virome and metagenomic sequencing reveal the impact of microbial inoculants on suppressions of antibiotic resistome and viruses during co-composting. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135355. [PMID: 39068883 DOI: 10.1016/j.jhazmat.2024.135355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/01/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Co-composting with exogenous microbial inoculant, presents an effective approach for the harmless utilization of livestock manure and agroforestry wastes. However, the impact of inoculant application on the variations of viral and antibiotic resistance genes (ARGs) remains poorly understood, particularly under varying manure quantity (low 10 % vs. high 20 % w/w). Thus, employing virome and metagenomic sequencing, we examined the influence of Streptomyces-Bacillus Inoculants (SBI) on viral communities, phytopathogen, ARGs, mobile genetic elements, and their interrelations. Our results indicate that SBI shifted dominant bacterial species from Phenylobacterium to thermotropic Bordetella, and the quantity of manure mediates the effect of SBI on whole bacterial community. Major ARGs and genetic elements experienced substantial changes with SBI addition. There was a higher ARGs elimination rate in the composts with low (∼76 %) than those with high manure (∼70 %) application. Virus emerged as a critical factor influencing ARG dynamics. We observed a significant variation in virus community, transitioning from Gemycircularvirus- (∼95 %) to Chlamydiamicrovirus-dominance. RDA analysis revealed that Gemycircularvirus was the most influential taxon in shaping ARGs, with its abundance decreased approximately 80 % after composting. Collectively, these findings underscore the role of microbial inoculants in modulating virus communities and ARGs during biowaste co-composting.
Collapse
Affiliation(s)
- Ziyan Zhou
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Katharina Maria Keiblinger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life-Sciences, Vienna 1190, Austria
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Parag Bhople
- Crops, Environment, and Land Use Department, Environment Research Centre, Teagasc, Johnstown Castle, Wexford Y35TC98, Ireland
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shimei Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
45
|
Robinson D, Morgan-Kiss RM, Wang Z, Takacs-Vesbach C. Antarctic lake viromes reveal potential virus associated influences on nutrient cycling in ice-covered lakes. Front Microbiol 2024; 15:1422941. [PMID: 39318431 PMCID: PMC11421388 DOI: 10.3389/fmicb.2024.1422941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/15/2024] [Indexed: 09/26/2024] Open
Abstract
The McMurdo Dry Valleys (MDVs) of Antarctica are a mosaic of extreme habitats which are dominated by microbial life. The MDVs include glacial melt holes, streams, lakes, and soils, which are interconnected through the transfer of energy and flux of inorganic and organic material via wind and hydrology. For the first time, we provide new data on the viral community structure and function in the MDVs through metagenomics of the planktonic and benthic mat communities of Lakes Bonney and Fryxell. Viral taxonomic diversity was compared across lakes and ecological function was investigated by characterizing auxiliary metabolic genes (AMGs) and predicting viral hosts. Our data suggest that viral communities differed between the lakes and among sites: these differences were connected to microbial host communities. AMGs were associated with the potential augmentation of multiple biogeochemical processes in host, most notably with phosphorus acquisition, organic nitrogen acquisition, sulfur oxidation, and photosynthesis. Viral genome abundances containing AMGs differed between the lakes and microbial mats, indicating site specialization. Using procrustes analysis, we also identified significant coupling between viral and bacterial communities (p = 0.001). Finally, host predictions indicate viral host preference among the assembled viromes. Collectively, our data show that: (i) viruses are uniquely distributed through the McMurdo Dry Valley lakes, (ii) their AMGs can contribute to overcoming host nutrient limitation and, (iii) viral and bacterial MDV communities are tightly coupled.
Collapse
Affiliation(s)
- David Robinson
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | | | - Zhong Wang
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | | |
Collapse
|
46
|
Martínez-Cano M, Dorantes-Acosta AE, Lara-González R, Salgado-Hernández E, Ortiz-Ceballos AI. Effect of Sargassum on the Behavior and Survival of the Earthworm Eisenia Fetida. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:36. [PMID: 39225850 DOI: 10.1007/s00128-024-03935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
The massive influx of Sargassum natans and S. fluitans to the shores of the Mexican Caribbean has raised concerns regarding their potential impact on soil quality and health in coastal and agroecosystems. The effects of Sargassum accumulation remain largely unexplored. This study aimed to assess the impact of Sargassum on soil ecosystems by examining the behavior and survival of the epigean earthworm Eisenia fetida. The earthworm was exposed to varying concentrations of Sargassum (0, 25, 50, 75, and 100%) in two toxicological tests. Results from the avoidance test demonstrated that E. fetida exhibited strong aversion (> 80%) to a diet containing 100% Sargassum. Conversely, the acute test revealed minimal mortality, but growth decreased with increasing Sargassum concentrations. These findings can serve as early warning bioindicators for assessing the environmental risk posed by Sargassum in soil ecosystems.
Collapse
Affiliation(s)
- Mayela Martínez-Cano
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Av. de las Culturas Veracruzanas 101. Col. E. Zapata. CP 91090, Xalapa, Veracruz, México
| | - Ana E Dorantes-Acosta
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Av. de las Culturas Veracruzanas 101. Col. E. Zapata. CP 91090, Xalapa, Veracruz, México
| | - Rogelio Lara-González
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Av. de las Culturas Veracruzanas 101. Col. E. Zapata. CP 91090, Xalapa, Veracruz, México
| | - Enrique Salgado-Hernández
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Av. de las Culturas Veracruzanas 101. Col. E. Zapata. CP 91090, Xalapa, Veracruz, México
| | - Angel I Ortiz-Ceballos
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Av. de las Culturas Veracruzanas 101. Col. E. Zapata. CP 91090, Xalapa, Veracruz, México.
| |
Collapse
|
47
|
Feng Y, Wei R, Chen Q, Shang T, Zhou N, Wang Z, Chen Y, Chen G, Zhang G, Dong K, Zhong Y, Zhao H, Hu F, Zheng H. Host specificity and cophylogeny in the "animal-gut bacteria-phage" tripartite system. NPJ Biofilms Microbiomes 2024; 10:72. [PMID: 39191812 DOI: 10.1038/s41522-024-00557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Cophylogeny has been identified between gut bacteria and their animal host and is highly relevant to host health, but little research has extended to gut bacteriophages. Here we use bee model to investigate host specificity and cophylogeny in the "animal-gut bacteria-phage" tripartite system. Through metagenomic sequencing upon different bee species, the gut phageome revealed a more variable composition than the gut bacteriome. Nevertheless, the bacteriome and the phageome showed a significant association of their dissimilarity matrices, indicating a reciprocal interaction between the two kinds of communities. Most of the gut phages were host generalist at the viral cluster level but host specialist at the viral OTU level. While the dominant gut bacteria Gilliamella and Snodgrassella exhibited matched phylogeny with bee hosts, most of their phages showed a diminished level of cophylogeny. The evolutionary rates of the bee, the gut bacteria and the gut phages showed a remarkably increasing trend, including synonymous and non-synonymous substitution and gene content variation. For all of the three codiversified tripartite members, however, their genes under positive selection and genes involving gain/loss during evolution simultaneously enriched the functions into metabolism of nutrients, therefore highlighting the tripartite coevolution that results in an enhanced ecological fitness for the whole holobiont.
Collapse
Affiliation(s)
- Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ruike Wei
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qiuli Chen
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tongyao Shang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Nihong Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zeyu Wang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - Gongwen Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Guozhi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Kun Dong
- Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yihai Zhong
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, Hainan, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
48
|
Sbardellati DL, Vannette RL. Targeted viromes and total metagenomes capture distinct components of bee gut phage communities. MICROBIOME 2024; 12:155. [PMID: 39175056 PMCID: PMC11342477 DOI: 10.1186/s40168-024-01875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Despite being among the most abundant biological entities on earth, bacteriophage (phage) remain an understudied component of host-associated systems. One limitation to studying host-associated phage is the lack of consensus on methods for sampling phage communities. Here, we compare paired total metagenomes and viral size fraction metagenomes (viromes) as methods for investigating the dsDNA viral communities associated with the GI tract of two bee species: the European honey bee Apis mellifera and the eastern bumble bee Bombus impatiens. RESULTS We find that viromes successfully enriched for phage, thereby increasing phage recovery, but only in honey bees. In contrast, for bumble bees, total metagenomes recovered greater phage diversity. Across both bee species, viromes better sampled low occupancy phage, while total metagenomes were biased towards sampling temperate phage. Additionally, many of the phage captured by total metagenomes were absent altogether from viromes. Comparing between bees, we show that phage communities in commercially reared bumble bees are significantly reduced in diversity compared to honey bees, likely reflecting differences in bacterial titer and diversity. In a broader context, these results highlight the complementary nature of total metagenomes and targeted viromes, especially when applied to host-associated environments. CONCLUSIONS Overall, we suggest that studies interested in assessing total communities of host-associated phage should consider using both approaches. However, given the constraints of virome sampling, total metagenomes may serve to sample phage communities with the understanding that they will preferentially sample dominant and temperate phage. Video Abstract.
Collapse
Affiliation(s)
| | - Rachel Lee Vannette
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| |
Collapse
|
49
|
Lai S, Wang H, Bork P, Chen WH, Zhao XM. Long-read sequencing reveals extensive gut phageome structural variations driven by genetic exchange with bacterial hosts. SCIENCE ADVANCES 2024; 10:eadn3316. [PMID: 39141729 PMCID: PMC11323893 DOI: 10.1126/sciadv.adn3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/10/2024] [Indexed: 08/16/2024]
Abstract
Genetic variations are instrumental for unraveling phage evolution and deciphering their functional implications. Here, we explore the underlying fine-scale genetic variations in the gut phageome, especially structural variations (SVs). By using virome-enriched long-read metagenomic sequencing across 91 individuals, we identified a total of 14,438 nonredundant phage SVs and revealed their prevalence within the human gut phageome. These SVs are mainly enriched in genes involved in recombination, DNA methylation, and antibiotic resistance. Notably, a substantial fraction of phage SV sequences share close homology with bacterial fragments, with most SVs enriched for horizontal gene transfer (HGT) mechanism. Further investigations showed that these SV sequences were genetic exchanged between specific phage-bacteria pairs, particularly between phages and their respective bacterial hosts. Temperate phages exhibit a higher frequency of genetic exchange with bacterial chromosomes and then virulent phages. Collectively, our findings provide insights into the genetic landscape of the human gut phageome.
Collapse
Affiliation(s)
- Senying Lai
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Huarui Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Wei-Hua Chen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Xing-Ming Zhao
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
50
|
An L, Liu X, Wang J, Xu J, Chen X, Liu X, Hu B, Nie Y, Wu XL. Global diversity and ecological functions of viruses inhabiting oil reservoirs. Nat Commun 2024; 15:6789. [PMID: 39117673 PMCID: PMC11310422 DOI: 10.1038/s41467-024-51101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Oil reservoirs, being one of the significant subsurface repositories of energy and carbon, host diverse microbial communities affecting energy production and carbon emissions. Viruses play crucial roles in the ecology of microbiomes, however, their distribution and ecological significance in oil reservoirs remain undetermined. Here, we assemble a catalogue encompassing viral and prokaryotic genomes sourced from oil reservoirs. The catalogue comprises 7229 prokaryotic genomes and 3,886 viral Operational Taxonomic Units (vOTUs) from 182 oil reservoir metagenomes. The results show that viruses are widely distributed in oil reservoirs, and 85% vOTUs in oil reservoir are detected in less than 10% of the samples, highlighting the heterogeneous nature of viral communities within oil reservoirs. Through combined microcosm enrichment experiments and bioinformatics analysis, we validate the ecological roles of viruses in regulating the community structure of sulfate reducing microorganisms, primarily through a virulent lifestyle. Taken together, this study uncovers a rich diversity of viruses and their ecological functions within oil reservoirs, offering a comprehensive understanding of the role of viral communities in the biogeochemical cycles of the deep biosphere.
Collapse
Affiliation(s)
- Liyun An
- College of architecture and environment, Sichuan University, Chengdu, 610065, China
| | - Xinwu Liu
- College of Engineering, Peking University, Beijing, 100871, China
| | - Jianwei Wang
- College of Engineering, Peking University, Beijing, 100871, China
| | - Jinbo Xu
- School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Xiaoli Chen
- College of Engineering, Peking University, Beijing, 100871, China
- Institute of Ocean Research, Peking University, Beijing, 100871, China
| | - Xiaonan Liu
- College of Engineering, Peking University, Beijing, 100871, China
| | - Bingxin Hu
- College of Engineering, Peking University, Beijing, 100871, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, 100871, China.
| | - Xiao-Lei Wu
- College of architecture and environment, Sichuan University, Chengdu, 610065, China.
- College of Engineering, Peking University, Beijing, 100871, China.
- School of Earth and Space Sciences, Peking University, Beijing, 100871, China.
- Institute of Ocean Research, Peking University, Beijing, 100871, China.
- Institute of Ecology, Peking University, Beijing, 100871, China.
| |
Collapse
|