1
|
Frittelli A, Botticella E, Palombieri S, Metelli G, Masci S, Silvestri M, Lafiandra D, Sestili F. Improving the agronomic performance of high-amylose durum wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112459. [PMID: 40064352 DOI: 10.1016/j.plantsci.2025.112459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/31/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
High-amylose wheat has garnered significant attention from the food industry for its potential to produce low-glycaemic food products. It is well-established that there is a direct correlation between the amylose content in flour and the amount of resistant starch (RS) in foods. Recently, some research initiatives have successfully produced high-amylose durum wheat by targeting key enzymes in the amylopectin biosynthesis pathway, though this has resulted in a reduction in seed weight. This study aimed to develop durum wheat genotypes with enhanced nutritional and agronomic traits by pyramiding mutations in the SSIIa genes and the GW2-A1 null allele. A cross between Svevo SSIIa- and Kronos GW2-A1- was performed, and marker-assisted selection (MAS) strategies were employed to identify ten sister lines (GW2-A1-/SSIIa-). Biochemical analyses revealed that the GW2-A1-/SSIIa- genotypes exhibited significantly higher amylose and resistant starch (5-10-fold) levels compared to Svevo and GW2-A1- controls. Phenotypic analyses highlighted that GW2-A1-/SSIIa- lines showed a 50 % increase in hundred-grain weight (HGW) and improved grain size parameters compared to Svevo SSIIa-, though these values remained lower than Svevo and Kronos GW2-A1-. Yield per plot increased by 67 % compared to Svevo SSIIa- but was 30-40 % lower than Svevo and Kronos GW2-A1-. Gene expression analysis revealed upregulation of key starch biosynthesis genes (Susy2, UGPase) in GW2-A1-/SSIIa- lines, suggesting compensatory mechanisms for reduced starch content. Downregulation of TPS7 indicated potential limitations in trehalose-6-phosphate biosynthesis, which may influence starch accumulation. This study demonstrates that combining SSIIa and GW2-A1 null mutations can mitigate yield losses associated with high-amylose genotypes while maintaining elevated levels of resistant starch and dietary fiber.
Collapse
Affiliation(s)
- Arianna Frittelli
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Ermelinda Botticella
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Lecce, Italy
| | - Samuela Palombieri
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Giulio Metelli
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Stefania Masci
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | | | - Domenico Lafiandra
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Francesco Sestili
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy.
| |
Collapse
|
2
|
Tan Y, Liu J, Yong D, Hu J, Seeberger PH, Fu J, Yin J. Tandem activated caged galactoside prodrugs: advancing beyond single galactosidase dependence. Chem Sci 2025; 16:7173-7190. [PMID: 40134665 PMCID: PMC11932646 DOI: 10.1039/d5sc00722d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
β-Galactoside prodrugs, activated by β-galactosidase (β-gal) highly expressed in some cancer cells, have been explored as anticancer agents for three decades. However, the distribution of β-gal lacks sufficient specificity to ensure precise drug release at cancer sites. By utilizing the highly stringent substrate specificity of β-gal, we chose the naturally occurring hydroxyl group of galactose as a prodrug modification site and developed a new class of tandem activated caged galactoside (TACG) prodrugs that require an additional trigger for more controlled on-demand drug release. We demonstrated that attaching various masking groups to the 6-hydroxyl group of galactose renders the galactosides resistant to β-gal hydrolysis. Focusing on the photosensitive mask 4,5-dimethoxy-2-nitrobenzyl (DMNB), we synthesized O6-DMNB modified galactosides of combretastatin A4 and 8-hydroxyquinoline, showcasing their UV/β-gal-dependent anticancer activities. We further established synthetic routes for O2-, O3-, and O4-DMNB modified TACGs. Comparative intracellular studies highlighted the O2-DMNB modified TACG as the most effective positional isomer, offering superior light-dependent selectivity. This insight led to the discovery of the O2-DMNB modified galactoside of combretastatin A4 as a potent UV-dependent microtubule assembly inhibitor. Our work provides a straightforward, effective, and universally applicable strategy for constructing dual-stimulus responsive galactoside prodrugs, extendable to various glycoside prodrugs, advancing carbohydrate-based drug discovery.
Collapse
Affiliation(s)
- Yunying Tan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
| | - Jie Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
| | - Dianya Yong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University Wuxi 214122 PR China
| | - Peter H Seeberger
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces Potsdam 14476 Germany
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
- Innovation Center for Vaccine Engineering, Jiangnan University Wuxi 214122 PR China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
- Innovation Center for Vaccine Engineering, Jiangnan University Wuxi 214122 PR China
| |
Collapse
|
3
|
Griffiths CA, Xue X, Miret JA, Salvagiotti F, Acevedo-Siaca LG, Gimeno J, Reynolds MP, Hassall KL, Halsey K, Puranik S, Oszvald M, Kurup S, Davis BG, Paul MJ. Membrane-permeable trehalose 6-phosphate precursor spray increases wheat yields in field trials. Nat Biotechnol 2025:10.1038/s41587-025-02611-1. [PMID: 40301657 DOI: 10.1038/s41587-025-02611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/21/2025] [Indexed: 05/01/2025]
Abstract
Trehalose 6-phosphate (T6P) is an endogenous sugar signal in plants that promotes growth, yet it cannot be introduced directly into crops or fully genetically controlled. Here we show that wheat yields were improved using a timed microdose of a plant-permeable, sunlight-activated T6P signaling precursor, DMNB-T6P, under a variety of agricultural conditions. Under both well-watered and water-stressed conditions over 4 years, DMNB-T6P stimulated yield of three elite varieties. Yield increases were an order of magnitude larger than average annual genetic gains of breeding programs and occurred without additional water or fertilizer. Mechanistic analyses reveal that these benefits arise from increased CO2 fixation and linear electron flow ('source') as well as from increased starchy endosperm volume, enhanced grain sieve tube development and upregulation of genes for starch, amino acid and protein synthesis ('sink'). These data demonstrate a step-change, scalable technology with net benefit to the environment that could provide sustainable yield improvements of diverse staple cereal crops.
Collapse
Affiliation(s)
| | - Xiaochao Xue
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Fernando Salvagiotti
- Crops, Soil and Water Management Group, Agronomy Department, EEA Oliveros INTA, Santa Fe, Argentina
- National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Liana G Acevedo-Siaca
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT), Texcoco, Mexico
- Horticulture and Product Physiology, Wageningen University, Wageningen, The Netherlands
| | - Jacinta Gimeno
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT), Texcoco, Mexico
| | - Matthew P Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT), Texcoco, Mexico
| | - Kirsty L Hassall
- Rothamsted Research, Harpenden, UK
- Department of Statistics, University of Warwick, Coventry, UK
| | | | | | | | | | - Benjamin G Davis
- Department of Chemistry, University of Oxford, Oxford, UK.
- Department of Pharmacology, University of Oxford, Oxford, UK.
- Rosalind Franklin Institute, Harwell, UK.
| | | |
Collapse
|
4
|
Application of a sunlight-switched sugar signal increases wheat yield in the field. Nat Biotechnol 2025:10.1038/s41587-025-02667-z. [PMID: 40301659 DOI: 10.1038/s41587-025-02667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
|
5
|
Li R, Qin M, Yan J, Jia T, Sun X, Pan J, Li W, Liu Z, El-Sheikh MA, Ahmad P, Liu P. Hormesis effect of cadmium on pakchoi growth: Unraveling the ROS-mediated IAA-sugar metabolism from multi-omics perspective. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137265. [PMID: 39827793 DOI: 10.1016/j.jhazmat.2025.137265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Previous research on cadmium (Cd) focused on toxicity, neglecting hormesis and its mechanisms. In this study, pakchoi seedlings exposed to varying soil Cd concentrations (CK, 5, 10, 20, 40 mg/kg) showed an inverted U-shaped growth trend (hormesis characteristics): As Cd concentration increases, biomass exhibited hormesis character (Cd5) and then disappear (Cd40). ROS levels rose in both Cd treatments, with Cd5 being intermediate between CK and Cd40. But Cd5 preserved cellular structure, unlike damaged Cd40, hinting ROS in Cd5 acted as signaling regulators. To clarify ROS controlled subsequent metabolic processes, a multi-omics study was conducted. The results revealed 143 DEGs and 793 DEMs across all Cd treatment. KEGG indicated among all Cd treatments, the functional differences encompass: "plant hormone signal transduction" and "starch and sucrose metabolism". Through further analysis, we found that under the influence of ROS, the expression of IAA synthesis and signaling-related genes was significantly up-regulated, especially under Cd5 treatment. This further facilitated the accumulation of reducing sugars, which provided more energy for plant growth. Our research results demonstrated the signaling pathway involving ROS-IAA-Sugar metabolism, thereby providing a novel theoretical basis for cultivating more heavy metal hyperaccumulator crops and achieving phytoremediation of contaminated soils.
Collapse
Affiliation(s)
- Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Tao Jia
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiaodong Sun
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jiawen Pan
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Wenwen Li
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhiguo Liu
- College of Horticulture, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, Jammu and Kashmir 192301, India
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
6
|
Eh TJ, Jiang Y, Jiang M, Li J, Lei P, Ji X, Kim HI, Zhao X, Meng F. The role of trehalose metabolism in plant stress tolerance. J Adv Res 2024:S2090-1232(24)00603-9. [PMID: 39708962 DOI: 10.1016/j.jare.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Trehalose is a nonreducing disaccharide containing two glucose molecules linked through an α,α-1,1-glycosidic bond. This unique chemical structure causes trehalose levels to fluctuate significantly in plants under stress, where it functions as an osmoprotectant, enhancing plant resistance to stress. Previous studies have confirmed that the trehalose synthesis pathway is widely conserved across most plants. However, the protective role of trehalose is limited only to organelles or tissues where the concentration is sufficiently high. AIM OF REVIEW In this review, we summarize previous reports on improving plant stress tolerance (drought, cold, heat, salt, pathogen, etc.) by applying trehalose-6-phosphate (T6P) or trehalose and manipulating the expression of trehalose metabolism-related genes. The molecular mechanisms underlying T6P, trehalose, and their related genes that regulate plant stress resistance are reviewed. More progressive studies on the spatiotemporal control of trehalose metabolism will provide a novel tool that allows for the simultaneous enhancement of crop yield and stress tolerance. KEY SCIENTIFIC CONCEPTS OF REVIEW We introduce the history of trehalose and discuss the possibility of trehalose and its metabolity-related genes binding to T6P to participate in stress response through unknown signaling pathways. In addition, the effects of trehalose metabolism regulation on plant growth and stress resistance were reviewed, and the molecular mechanism was fully discussed. In particular, we came up with new insights that the molecular mechanism of trehalose metabolism to enhance plant stress resistance in the future and we propose the need to use biotechnology methods to cultivate crops with stress resistance and high yield potential.
Collapse
Affiliation(s)
- Tong-Ju Eh
- College of Forestry and Grassland Science, Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agriculture University, Changchun 130118, China; College of Life Science, Northeast Forestry University, Harbin 150040, China; School of Life Sciences, Kim Il Sung University, Pyongyang 999093, Republic of Korea
| | - Yaxuan Jiang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Mingquan Jiang
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130022, China
| | - Jianxin Li
- College of Forestry and Grassland Science, Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agriculture University, Changchun 130118, China
| | - Pei Lei
- College of Forestry and Grassland Science, Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agriculture University, Changchun 130118, China
| | - Ximei Ji
- College of Forestry and Grassland Science, Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agriculture University, Changchun 130118, China
| | - Hyon-Il Kim
- College of Life Science, Northeast Forestry University, Harbin 150040, China; School of Life Sciences, Kim Il Sung University, Pyongyang 999093, Republic of Korea
| | - Xiyang Zhao
- College of Forestry and Grassland Science, Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agriculture University, Changchun 130118, China.
| | - Fanjuan Meng
- College of Forestry and Grassland Science, Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agriculture University, Changchun 130118, China.
| |
Collapse
|
7
|
Yin Q, Fu W, Hu X, Xu Z, Li Z, Shao X. Application of TNB in dual photo-controlled release of phenamacril, imidacloprid, and imidacloprid synergist. Photochem Photobiol 2024; 100:1813-1826. [PMID: 38445797 DOI: 10.1111/php.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
Pesticides can improve crops' yield and quality, but unreasonable applications of pesticides lead to waste of pesticides which are further accumulated in the environment and threaten human health. Developing the release of controlled drugs can improve the utilization rate of pesticides. Among these methods, light-controlled release is a new technology of controlled release, which can realize spatiotemporal delivery of drugs by light. Four compounds, named Imidacloprid-Thioacetal o-nitrobenzyl-Phenamacril (IMI-TNB-PHE), Imidacloprid-Thioacetal o-nitrobenzyl- Imidacloprid (IMI-TNB-IMI), Phenamacril-Thioacetal o-nitrobenzyl-Phenamacril (PHE-TNB-PHE), and Imidacloprid-Thioacetal o-nitrobenzyl-Imidacloprid Synergist (IMI-TNB-IMISYN), were designed and synthesized by connecting thioacetal o-nitrobenzyl (TNB) with pesticides TNB displaying simple and efficient optical properties in this work. Dual photo-controlled release of pesticides including two molecules of IMI or PHE, both IMI and PHE, as well as IMI and IMISYN were, respectively, studied in this paper. Insecticidal/fungicidal activities of the photosensitive pesticides showed 2-4 times increments if they were exposed to light. In addition, a synergistic effect was observed after the light-controlled release of IMI-TNB-IMISYN, which was consistent with the effect of IMISYN. The results demonstrated whether dual photo-controlled release of the same or different pesticide molecules could be achieved with a TNB linker with spatiotemporal precision. We envisioned that TNB will be an innovative photosensitive protective group for light-dependent application of agrochemicals in the future.
Collapse
Affiliation(s)
- Qi Yin
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xinyue Hu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Chen XM, Wang ZW, Liang XG, Li FY, Li BB, Wu G, Yi F, Setter TL, Shen S, Zhou SL. Incomplete filling in the basal region of maize endosperm: timing of development of starch synthesis and cell vitality. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1142-1158. [PMID: 39348485 DOI: 10.1111/tpj.17043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 10/02/2024]
Abstract
Starch synthesis in maize endosperm adheres to the basipetal sequence from the apex downwards. However, the mechanism underlying nonuniformity among regions of the endosperm in starch accumulation and its significance is poorly understood. Here, we examined the spatiotemporal transcriptomes and starch accumulation dynamics in apical (AE), middle (ME), and basal (BE) regions of endosperm throughout the filling stage. Results demonstrated that the BE had lower levels of gene transcripts and enzymes facilitating starch synthesis, corresponding to incomplete starch storage at maturity, compared with AE and ME. Contrarily, the BE showed abundant gene expression for genetic processing and slow progress in physiological development (quantified by an index calculated from the expression values of development progress marker genes), revealing a sustained cell vitality of the BE. Further analysis demonstrated a significant parabolic correlation between starch synthesis and physiological development. An in-depth examination showed that the BE had more active signaling pathways of IAA and ABA than the AE throughout the filling stage, while ethylene showed the opposite pattern. Besides, SNF1-related protein kinase1 (SnRK1) activity, a regulator for starch synthesis modulated by trehalose-6-phosphate (T6P) signaling, was kept at a lower level in the BE than the AE and ME, corresponding to the distinct gene expression in the T6P pathway in starch synthesis regulation. Collectively, the findings support an improved understanding of the timing of starch synthesis and cell vitality in regions of the endosperm during development, and potential regulation from hormone signaling and T6P/SnRK1 signaling.
Collapse
Affiliation(s)
- Xian-Min Chen
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhi-Wei Wang
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiao-Gui Liang
- Ministry of Education Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Agronomy College, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Feng-Yuan Li
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Bin-Bin Li
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Gong Wu
- Agronomy College, Anhui Agricultural University, Hefei, 230036, China
| | - Fei Yi
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Tim L Setter
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Si Shen
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, 061802, China
| | - Shun-Li Zhou
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, 061802, China
| |
Collapse
|
9
|
Zhou R, Wang S, Li J, Yang M, Liu C, Qi Z, Xu C, Wu X, Chen Q, Zhao Y. Transcriptional and Metabolomic Analyses Reveal That GmESR1 Increases Soybean Seed Protein Content Through the Phenylpropanoid Biosynthesis Pathway. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39483062 DOI: 10.1111/pce.15250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Soybeans are an economically vital food crop, which is employed as a key source of oil and plant protein globally. This study identified an EREBP-type transcription factor, GmESR1 (Enhance of Shot Regeneration). GmESR1 overexpression has been observed to significantly increase seed protein content. Furthermore, the molecular mechanism by which GmESR1 affects protein accumulation through transcriptome and metabolomics was also identified. The transcriptomic and metabolomic analyses identified 95 differentially expressed genes and 83 differentially abundant metabolites during the seed mid-maturity stage. Co-analysis strategies revealed that GmESR1 overexpression inhibited the biosynthesis of lignin, cellulose, hemicellulose, and pectin via the phenylpropane biosynthetic pathway, thereby redistributing biomass within cells. The key genes and metabolites impacted by this biochemical process included Gm4CL-like, GmCCR, Syringin, and Coniferin. Moreover, it was also found that GmESR1 binds to (AATATTATCATTAAGTACGGAC) during seed development and inhibits the transcription of GmCCR. GmESR1 overexpression also enhanced sucrose transporter gene expression during seed development and increased the sucrose transport rate. These results offer new insight into the molecular mechanisms whereby GmESR1 increases protein levels within soybean seeds, guiding future molecular-assisted breeding efforts aimed at establishing high-protein soybean varieties.
Collapse
Affiliation(s)
- Runnan Zhou
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Sihui Wang
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Jianwei Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Mingliang Yang
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Chunyan Liu
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Zhaoming Qi
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Chang Xu
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Xiaoxia Wu
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Qingshan Chen
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Ying Zhao
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| |
Collapse
|
10
|
Zhang Y, Cao Y, Wu X, Chen Z, Chen B, Wang A, Guo Y, Chen W, Xue R, Liu Z, Li Y, Li T, Cheng R, Zhou N, Li J, Liu Y, Zhao X, Luo H, Xu M, Li H, Geng Y. Thermal proteome profiling reveals fructose-1,6-bisphosphate as a phosphate donor to activate phosphoglycerate mutase 1. Nat Commun 2024; 15:8936. [PMID: 39414782 PMCID: PMC11484934 DOI: 10.1038/s41467-024-53238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Deep understanding of sugar metabolite-protein interactions should provide implications on sugar metabolic reprogramming in human physiopathology. Although tremendous efforts have been made for determining individual event, global profiling of such interactome remains challenging. Here we describe thermal proteome profiling of glycolytic metabolite fructose-1,6-bisphosphate (FBP)-interacting proteins. Our results reveal a chemical signaling role of FBP which acts as a phosphate donor to activate phosphoglycerate mutase 1 (PGAM1) and contribute an intrapathway feedback for glycolysis and cell proliferation. At molecular level, FBP donates either C1-O-phosphate or C6-O-phosphate to the catalytic histidine of PGAM1 to form 3-phosphate histidine (3-pHis) modification. Importantly, structure-activity relationship studies facilitate the discovery of PGAM1 orthostatic inhibitors which can potentially restrain cancer cell proliferation. Collectively we have profiled a spectrum of FBP interactome, and discovered a unique covalent signaling function of FBP that supports Warburg effect via histidine phosphorylation which inspires the development of pharmacological tools targeting sugar metabolism.
Collapse
Affiliation(s)
- Yanling Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yafei Cao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xia Wu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenghui Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bowen Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anhui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanshen Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ruolan Xue
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zihua Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuanpei Li
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Tian Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruiqin Cheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Yuan Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaohui Zhao
- Jinhua Institute and College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huixin Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Peking University, Beijing, China
| | - Houhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Yiqun Geng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Morales-Herrera S, Paul MJ, Van Dijck P, Beeckman T. SnRK1/TOR/T6P: three musketeers guarding energy for root growth. TRENDS IN PLANT SCIENCE 2024; 29:1066-1076. [PMID: 38580543 DOI: 10.1016/j.tplants.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Sugars derived from photosynthesis, specifically sucrose, are the primary source of plant energy. Sucrose is produced in leaves and transported to the roots through the phloem, serving as a vital energy source. Environmental conditions can result in higher or lower photosynthesis, promoting anabolism or catabolism, respectively, thereby influencing the sucrose budget available for roots. Plants can adjust their root system to optimize the search for soil resources and to ensure the plant's adaptability to diverse environmental conditions. Recently, emerging research indicates that SNF1-RELATED PROTEIN KINASE 1 (SnRK1), trehalose 6-phosphate (T6P), and TARGET OF RAPAMYCIN (TOR) collectively serve as fundamental regulators of root development, together forming a signaling module to interpret the nutritional status of the plant and translate this to growth adjustments in the below ground parts.
Collapse
Affiliation(s)
- Stefania Morales-Herrera
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium; Laboratory of Molecular Cell Biology, KU Leuven, Kasteelpark Arenberg, Leuven, Belgium
| | - Matthew J Paul
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, UK
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, KU Leuven, Kasteelpark Arenberg, Leuven, Belgium; KU Leuven Plant Institute (LPI), Leuven, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
12
|
Avidan O, Martins MCM, Feil R, Lohse M, Giorgi FM, Schlereth A, Lunn JE, Stitt M. Direct and indirect responses of the Arabidopsis transcriptome to an induced increase in trehalose 6-phosphate. PLANT PHYSIOLOGY 2024; 196:409-431. [PMID: 38593032 PMCID: PMC11376379 DOI: 10.1093/plphys/kiae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Trehalose 6-phosphate (Tre6P) is an essential signal metabolite that regulates the level of sucrose, linking growth and development to the metabolic status. We hypothesized that Tre6P plays a role in mediating the regulation of gene expression by sucrose. To test this, we performed transcriptomic profiling on Arabidopsis (Arabidopsis thaliana) plants that expressed a bacterial TREHALOSE 6-PHOSPHATE SYNTHASE (TPS) under the control of an ethanol-inducible promoter. Induction led to a 4-fold rise in Tre6P levels, a concomitant decrease in sucrose, significant changes (FDR ≤ 0.05) of over 13,000 transcripts, and 2-fold or larger changes of over 5,000 transcripts. Comparison with nine published responses to sugar availability allowed some of these changes to be linked to the rise in Tre6P, while others were probably due to lower sucrose or other indirect effects. Changes linked to Tre6P included repression of photosynthesis-related gene expression and induction of many growth-related processes including ribosome biogenesis. About 500 starvation-related genes are known to be induced by SUCROSE-NON-FERMENTING-1-RELATED KINASE 1 (SnRK1). They were largely repressed by Tre6P in a manner consistent with SnRK1 inhibition by Tre6P. SnRK1 also represses many genes that are involved in biosynthesis and growth. These responded to Tre6P in a more complex manner, pointing toward Tre6P interacting with other C-signaling pathways. Additionally, elevated Tre6P modified the expression of genes encoding regulatory subunits of the SnRK1 complex and TPS class II and FCS-LIKE ZINC FINGER proteins that are thought to modulate SnRK1 function and genes involved in circadian, TARGET OF RAPAMYCIN, light, abscisic acid, and other hormone signaling.
Collapse
Affiliation(s)
- Omri Avidan
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Marina C M Martins
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Marc Lohse
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Federico M Giorgi
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Armin Schlereth
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
13
|
Shi R, Liu W, Liu J, Zeb A, Wang Q, Wang J, Li J, Yu M, Ali N, An J. Earthworms improve the rhizosphere micro-environment to mitigate the toxicity of microplastics to tomato (Solanum lycopersicum). JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134578. [PMID: 38743971 DOI: 10.1016/j.jhazmat.2024.134578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Microplastics (MPs) are widespread in agricultural soil, potentially threatening soil environmental quality and plant growth. However, toxicological research on MPs has mainly been limited to individual components (such as plants, microbes, and animals), without considering their interactions. Here, we examined earthworm-mediated effects on tomato growth and the rhizosphere micro-environment under MPs contamination. Earthworms (Eisenia fetida) mitigated the growth-inhibiting effect of MPs on tomato plant. Particularly, when exposed to environmentally relevant concentrations (ERC, 0.02% w/w) of MPs, the addition of earthworms significantly (p < 0.05) increased shoot and root dry weight by 12-13% and 13-14%, respectively. MPs significantly reduced (p < 0.05) soil ammonium (NH4+-N) (0.55-0.69 mg/kg), nitrate nitrogen (NO3--N) (7.02-8.65 mg/kg) contents, and N cycle related enzyme activities (33.47-42.39 μg/h/g) by 37.7-50.9%, 22.6-37.2%, and 34.2-48.0%, respectively, while earthworms significantly enhanced (p < 0.05) inorganic N mineralization and bioavailability. Furthermore, earthworms increased bacterial network complexity, thereby enhancing the robustness of the bacterial system to resist soil MPs stress. Meanwhile, partial least squares modelling showed that earthworms significantly influenced (p < 0.01) soil nutrients, which in turn significantly affected (p < 0.01) plant growth. Therefore, the comprehensive consideration of soil ecological composition is important for assessing MPs ecological risk.
Collapse
Affiliation(s)
- Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jing An
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
14
|
Kaur N, Halford NG. How to switch on a master switch. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2773-2775. [PMID: 38764322 PMCID: PMC11103107 DOI: 10.1093/jxb/erae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
This article comments on:
Hu Y, Lin Y, Bai J, Xu X, Wang Z, Ding C, Ding Y, Chen L. 2024. AMPK activator 991 specifically activates SnRK1 and thereby affects seed germination in rice. Journal of Experimental Botany 75, 2917–2932.
Collapse
Affiliation(s)
- Navneet Kaur
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | | |
Collapse
|
15
|
Hu Y, Lin Y, Bai J, Xu X, Wang Z, Ding C, Ding Y, Chen L. AMPK activator 991 specifically activates SnRK1 and thereby affects seed germination in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2917-2932. [PMID: 38465908 DOI: 10.1093/jxb/erae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
Sucrose non-fermenting-1-related protein kinase 1 (SnRK1) and AMP-activated protein kinase (AMPK) are highly conserved. Compound 991 is an AMPK activator in mammals. However, whether 991 also activates SnRK1 remains unknown. The addition of 991 significantly increased SnRK1 activity in desalted extracts from germinating rice seeds in vitro. To determine whether 991 has biological activity, rice seeds were treated with different concentrations of 991. Germination was promoted at low concentrations but inhibited at high concentrations. The effects of 991 on germination were similar to those of OsSnRK1a overexpression. To explore whether 991 affects germination by specifically affecting SnRK1, germination of an snrk1a mutant and the wild type under 1 μM 991 treatment was compared. The snrk1a mutant was insensitive to 991. Phosphoproteomic analysis showed that the differential phosphopeptides induced by 991 and OsSnRK1a overexpression largely overlapped. Furthermore, SnRK1 might regulate rice germination in a dosage-dependent manner by regulating the phosphorylation of three phosphosites, namely S285-PIP2;4, S1013-SOS1, and S110-ABI5. These results indicate that 991 is a specific SnRK1 activator in rice. The promotion and inhibition of germination by 991 also occurred in wheat seeds. Thus, 991 is useful for exploring SnRK1 function and the chemical regulation of growth and development in crops.
Collapse
Affiliation(s)
- Yuxiang Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yan Lin
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Jiaqi Bai
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Xuemei Xu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Ziteng Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Lin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| |
Collapse
|
16
|
Zhang F, Rosental L, Ji B, Brotman Y, Dai M. Metabolite-mediated adaptation of crops to drought and the acquisition of tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:626-644. [PMID: 38241088 DOI: 10.1111/tpj.16634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Drought is one of the major and growing threats to agriculture productivity and food security. Metabolites are involved in the regulation of plant responses to various environmental stresses, including drought stress. The complex drought tolerance can be ascribed to several simple metabolic traits. These traits could then be used for detecting the genetic architecture of drought tolerance. Plant metabolomes show dynamic differences when drought occurs during different developmental stages or upon different levels of drought stress. Here, we reviewed the major and most recent findings regarding the metabolite-mediated plant drought response. Recent progress in the development of drought-tolerant agents is also discussed. We provide an updated schematic overview of metabolome-driven solutions for increasing crop drought tolerance and thereby addressing an impending agricultural challenge.
Collapse
Affiliation(s)
- Fei Zhang
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Leah Rosental
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel
| | - Boming Ji
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel
| | - Mingqiu Dai
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
17
|
Yuan P, Zhou G, Yu M, Hammond JP, Liu H, Hong D, Cai H, Ding G, Wang S, Xu F, Wang C, Shi L. Trehalose-6-phosphate synthase 8 increases photosynthesis and seed yield in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:437-456. [PMID: 38198218 DOI: 10.1111/tpj.16617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Trehalose-6-phosphate (T6P) functions as a vital proxy for assessing carbohydrate status in plants. While class II T6P synthases (TPS) do not exhibit TPS activity, they are believed to play pivotal regulatory roles in trehalose metabolism. However, their precise functions in carbon metabolism and crop yield have remained largely unknown. Here, BnaC02.TPS8, a class II TPS gene, is shown to be specifically expressed in mature leaves and the developing pod walls of Brassica napus. Overexpression of BnaC02.TPS8 increased photosynthesis and the accumulation of sugars, starch, and biomass compared to wild type. Metabolomic analysis of BnaC02.TPS8 overexpressing lines and CRISPR/Cas9 mutants indicated that BnaC02.TPS8 enhanced the partitioning of photoassimilate into starch and sucrose, as opposed to glycolytic intermediates and organic acids, which might be associated with TPS activity. Furthermore, the overexpression of BnaC02.TPS8 not only increased seed yield but also enhanced seed oil accumulation and improved the oil fatty acid composition in B. napus under both high nitrogen (N) and low N conditions in the field. These results highlight the role of class II TPS in impacting photosynthesis and seed yield of B. napus, and BnaC02.TPS8 emerges as a promising target for improving B. napus seed yield.
Collapse
Affiliation(s)
- Pan Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guilong Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072, China
| | - Mingzhu Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - John P Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, UK
| | - Haijiang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Research Center of Rapeseed Engineering and Technology, National Rapeseed Genetic Improvement Center (Wuhan Branch), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hongmei Cai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chuang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
18
|
Sun X, Zhao JZ, Wu CS, Zhang KW, Cheng L. Flavin mononucleotide regulated photochemical isomerization and degradation of zeatin. Org Biomol Chem 2024; 22:2021-2026. [PMID: 38372990 DOI: 10.1039/d4ob00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
cis-Zeatin (cZ), a cytokinin often overlooked compared to trans-zeatin (tZ), can now be controlled in live cells and plants through a new biocompatible reaction. Using flavin photosensitizers, cZ can be isomerized to tZ or degraded, depending on the presence of a reducing reagent. This breakthrough offers a novel approach for regulating plant growth through chemical molecules.
Collapse
Affiliation(s)
- Xin Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang-Zhe Zhao
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| | - Chuan-Shuo Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke-Wei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Miret JA, Griffiths CA, Paul MJ. Sucrose homeostasis: Mechanisms and opportunity in crop yield improvement. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154188. [PMID: 38295650 DOI: 10.1016/j.jplph.2024.154188] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/10/2024]
Abstract
Sugar homeostasis is a critical feature of biological systems. In humans, raised and dysregulated blood sugar is a serious health issue. In plants, directed changes in sucrose homeostasis and allocation represent opportunities in crop improvement. Plant tissue sucrose varies more than blood glucose and is found at higher concentrations (cytosol and phloem ca. 100 mM v 3.9-6.9 mM for blood glucose). Tissue sucrose varies with developmental stage and environment, but cytosol and phloem exhibit tight sucrose control. Sucrose homeostasis is a consequence of the integration of photosynthesis, synthesis of storage end-products such as starch, transport of sucrose to sinks and sink metabolism. Trehalose 6-phosphate (T6P)-SnRK1 and TOR play central, still emerging roles in regulating and coordinating these processes. Overall, tissue sucrose levels are more strongly related to growth than to photosynthesis. As a key sucrose signal, T6P regulates sucrose levels, transport and metabolic pathways to coordinate source and sink at a whole plant level. Emerging evidence shows that T6P interacts with meristems. With careful targeting, T6P manipulation through exploiting natural variation, chemical intervention and genetic modification is delivering benefits for crop yields. Regulation of cereal grain set, filling and retention may be the most strategically important aspect of sucrose allocation and homeostasis for food security.
Collapse
Affiliation(s)
- Javier A Miret
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Cara A Griffiths
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Matthew J Paul
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
| |
Collapse
|
20
|
Yu H, Teng Z, Liu B, Lv J, Chen Y, Qin Z, Peng Y, Meng S, He Y, Duan M, Zhang J, Ye N. Transcription factor OsMYB30 increases trehalose content to inhibit α-amylase and seed germination at low temperature. PLANT PHYSIOLOGY 2024; 194:1815-1833. [PMID: 38057158 DOI: 10.1093/plphys/kiad650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023]
Abstract
Low-temperature germination (LTG) is an important agronomic trait for direct-seeding cultivation of rice (Oryza sativa). Both OsMYB30 and OsTPP1 regulate the cold stress response in rice, but the function of OsMYB30 and OsTPP1 in regulating LTG and the underlying molecular mechanism remains unknown. Employing transcriptomics and functional studies revealed a sugar signaling pathway that regulates seed germination in response to low temperature (LT). Expression of OsMYB30 and OsTPP1 was induced by LT during seed germination, and overexpressing either OsMYB30 or OsTPP1 delayed seed germination and increased sensitivity to LT during seed germination. Transcriptomics and qPCR revealed that expression of OsTPP1 was upregulated in OsMYB30-overexpressing lines but downregulated in OsMYB30-knockout lines. In vitro and in vivo experiments revealed that OsMYB30 bound to the promoter of OsTPP1 and regulated the abundance of OsTPP1 transcripts. Overaccumulation of trehalose (Tre) was found in both OsMYB30- and OsTPP1-overexpressing lines, resulting in inhibition of α-amylase 1a (OsAMY1a) gene during seed germination. Both LT and exogenous Tre treatments suppressed the expression of OsAMY1a, and the osamy1a mutant was not sensitive to exogenous Tre during seed germination. Overall, we concluded that OsMYB30 expression was induced by LT to activate the expression of OsTPP1 and increase Tre content, which thus inhibited α-amylase activity and seed germination. This study identified a phytohormone-independent pathway that integrates environmental cues with internal factors to control seed germination.
Collapse
Affiliation(s)
- Huihui Yu
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhenning Teng
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Bohan Liu
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Jiahan Lv
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yinke Chen
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhonge Qin
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yan Peng
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shuan Meng
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yuchi He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430000, China
| | - Meijuan Duan
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Nenghui Ye
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
21
|
Steven RT, Burton A, Taylor AJ, Robinson KN, Dexter A, Nikula CJ, Bunch J. Evaluation of Inlet Temperature with Three Sprayer Designs for Desorption Electrospray Ionization Mass Spectrometry Tissue Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:224-233. [PMID: 38181191 DOI: 10.1021/jasms.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Mass spectrometry imaging (MSI) allows for the spatially resolved detection of endogenous and exogenous molecules and atoms in biological samples, typically prepared as thin tissue sections. Desorption electrospray ionization (DESI) is one of the most commonly utilized MSI modalities in preclinical research. DESI ion source technology is still rapidly evolving, with new sprayer designs and heated inlet capillaries having recently been incorporated in commercially available systems. In this study, three iterations of DESI sprayer designs are evaluated: (1) the first, and until recently only, commercially available Waters sprayer; (2) a developmental desorption electro-flow focusing ionization (DEFFI)-type sprayer; and (3) a prototype of the newly released Waters commercial sprayer. A heated inlet capillary is also employed, allowing for controlled inlet temperatures up to 500 °C. These three sprayers are evaluated by comparative tissue imaging analyses of murine testes across this temperature range. Single ion intensity versus temperature trends are evaluated as exemplar cases for putatively identified species of interest, such as lactate and glutamine. A range of trends are observed, where intensities follow either increasing, decreasing, bell-shaped, or other trends with temperature. Data for all sprayers show approximately similar trends for the ions studied, with the commercial prototype sprayer (sprayer version 3) matching or outperforming the other sprayers for the ions investigated. Finally, the mass spectra acquired using sprayer version 3 are evaluated by uniform manifold approximation and projection (UMAP) and k-means clustering. This approach is shown to provide valuable insight that is complementary to the presented univariate evaluation for reviewing the parameter space in this study. Full spectral temperature optimization data are provided as supporting data to enable other researchers to design experiments that are optimal for specific ions.
Collapse
Affiliation(s)
- Rory T Steven
- National Physical Laboratory Teddington TW11 0LW, U.K
| | - Amy Burton
- National Physical Laboratory Teddington TW11 0LW, U.K
| | - Adam J Taylor
- National Physical Laboratory Teddington TW11 0LW, U.K
| | | | - Alex Dexter
- National Physical Laboratory Teddington TW11 0LW, U.K
| | | | - Josephine Bunch
- National Physical Laboratory Teddington TW11 0LW, U.K
- Imperial College London, Department of Metabolism, Digestion and Reproduction, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
22
|
Fan S, Wang Z, Xiao Y, Liang J, Zhao S, Liu Y, Peng F, Guo J. Genome-Wide Identification of Trehalose-6-phosphate Synthase (TPS) Gene Family Reveals the Potential Role in Carbohydrate Metabolism in Peach. Genes (Basel) 2023; 15:39. [PMID: 38254929 PMCID: PMC10815152 DOI: 10.3390/genes15010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Trehalose-6-phosphate synthase (TPS) is essential for plant growth and development, linking trehalose-6-phosphate (T6P) to carbon metabolism. However, little is known about the TPS gene family in peaches and their potential roles in regulating carbohydrates in peach fruit. In this study, nine TPS genes were identified in the peach genome and named according to the homologous genes in Arabidopsis. Phylogenetic analysis showed that three subfamilies were identified, including TPSI, TPSII-1, and TPSII-2, which were also consistent with gene structure analysis. Considerable cis-elements were enriched in the promoters, including plant hormone-related elements. Tissue-specific analysis showed that these TPS genes were mainly expressed in leaves, stems, and fruit, showing different expression patterns for each gene. In addition, during fruit development, the content of trehalose-6-phosphate (T6P) was positively correlated with the expression of PpTPS7a and negatively with sucrose non-fermenting-1-related kinase 1 (SnRK1) activity. Transient overexpression and silencing of PpTPS7a in peach fruit validated its function in regulating T6P content and SnRK1 activity.
Collapse
Affiliation(s)
- Shihao Fan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
| | - Zhe Wang
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China; (Z.W.); (Y.X.); (J.L.); (S.Z.); (Y.L.)
| | - Yuansong Xiao
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China; (Z.W.); (Y.X.); (J.L.); (S.Z.); (Y.L.)
| | - Jiahui Liang
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China; (Z.W.); (Y.X.); (J.L.); (S.Z.); (Y.L.)
| | - Shilong Zhao
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China; (Z.W.); (Y.X.); (J.L.); (S.Z.); (Y.L.)
| | - Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China; (Z.W.); (Y.X.); (J.L.); (S.Z.); (Y.L.)
| | - Futian Peng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
| | - Jian Guo
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
| |
Collapse
|
23
|
Göbel M, Fichtner F. Functions of sucrose and trehalose 6-phosphate in controlling plant development. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154140. [PMID: 38007969 DOI: 10.1016/j.jplph.2023.154140] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
Plants exhibit enormous plasticity in regulating their architecture to be able to adapt to a constantly changing environment and carry out vital functions such as photosynthesis, anchoring, and nutrient uptake. Phytohormones play a role in regulating these responses, but sugar signalling mechanisms are also crucial. Sucrose is not only an important source of carbon and energy fuelling plant growth, but it also functions as a signalling molecule that influences various developmental processes. Trehalose 6-phosphate (Tre6P), a sucrose-specific signalling metabolite, is emerging as an important regulator in plant metabolism and development. Key players involved in sucrose and Tre6P signalling pathways, including MAX2, SnRK1, bZIP11, and TOR, have been implicated in processes such as flowering, branching, and root growth. We will summarize our current knowledge of how these pathways shape shoot and root architecture and highlight how sucrose and Tre6P signalling are integrated with known signalling networks in shaping plant growth.
Collapse
Affiliation(s)
- Moritz Göbel
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Plant Biochemistry, Germany; Cluster of Excellences on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Germany
| | - Franziska Fichtner
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Plant Biochemistry, Germany; Cluster of Excellences on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Germany.
| |
Collapse
|
24
|
Li J, Liang P, Gao L, Lu H, Dong Y, Zhang J. o-Nitrobenzyl-Based Caged exo-16,17-Dihydro-gibberellin A5-13-acetate for Photocontrolled Release of Plant Growth Regulators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16533-16541. [PMID: 37878916 DOI: 10.1021/acs.jafc.3c05259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Caged plant growth regulators (caged PGRs) that release bioactive molecules under irradiation are critical in enhancing the efficacy and mitigating the negative environmental effects of PGRs. The synthetically derived plant growth inhibitor exo-16,17-dihydro-gibberellin A5-13-acetate (DHGA5) regulates the development and stress resilience of plants. We report here the conception of novel caged DHGA5 derivatives wherein the photoremovable protecting groups (PRPGs) serve not only to enable light-controlled release but also to protect the carboxyl group during chemical synthesis. Three o-nitrobenzyl-based caged DHGA5 derivatives with different substituents on the nitrobenzyl moiety were obtained and evaluated for their properties in vitro and in vivo. The photolysis half-life values of caged DHGA5 derivatives 7a, 7b, and 7c under a UV lamp were 15.6 h, 1.2 h, and 28.2 h, respectively. Experiments in vivo showed that 0.2 mM of the caged compounds significantly inhibited the growth of the model plant Arabidopsis thaliana and important crop rice in a precise photoactivated form.
Collapse
Affiliation(s)
- Jingmin Li
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Peibo Liang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Linying Gao
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Huizhe Lu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Yanhong Dong
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jianjun Zhang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
Kerbler SML, Armijos-Jaramillo V, Lunn JE, Vicente R. The trehalose 6-phosphate phosphatase family in plants. PHYSIOLOGIA PLANTARUM 2023; 175:e14096. [PMID: 38148193 DOI: 10.1111/ppl.14096] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 12/28/2023]
Abstract
Trehalose 6-phosphate (Tre6P), the intermediate of trehalose biosynthesis, is an essential signalling metabolite linking plant growth and development to carbon metabolism. While recent work has focused predominantly on the enzymes that produce Tre6P, little is known about the proteins that catalyse its degradation, the trehalose 6-phosphate phosphatases (TPPs). Often occurring in large protein families, TPPs exhibit cell-, tissue- and developmental stage-specific expression patterns, suggesting important regulatory functions in controlling local levels of Tre6P and trehalose as well as Tre6P signalling. Furthermore, growing evidence through gene expression studies and transgenic approaches shows that TPPs play an important role in integrating environmental signals with plant metabolism. This review highlights the large diversity of TPP isoforms in model and crop plants and identifies how modulating Tre6P metabolism in certain cell types, tissues, and at different developmental stages may promote stress tolerance, resilience and increased crop yield.
Collapse
Affiliation(s)
- Sandra Mae-Lin Kerbler
- Leibniz-Institute für Gemüse- und Zierpflanzenbau, Groβbeeren, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Vinicio Armijos-Jaramillo
- Grupo de Bio-Quimioinformática, Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Rubén Vicente
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
26
|
Alomari DZ, Schierenbeck M, Alqudah AM, Alqahtani MD, Wagner S, Rolletschek H, Borisjuk L, Röder MS. Wheat Grains as a Sustainable Source of Protein for Health. Nutrients 2023; 15:4398. [PMID: 37892473 PMCID: PMC10609835 DOI: 10.3390/nu15204398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Protein deficiency is recognized among the major global health issues with an underestimation of its importance. Genetic biofortification is a cost-effective and sustainable strategy to overcome global protein malnutrition. This study was designed to focus on protein-dense grains of wheat (Triticum aestivum L.) and identify the genes governing grain protein content (GPC) that improve end-use quality and in turn human health. Genome-wide association was applied using the 90k iSELECT Infinium and 35k Affymetrix arrays with GPC quantified by using a proteomic-based technique in 369 wheat genotypes over three field-year trials. The results showed significant natural variation among bread wheat genotypes that led to detecting 54 significant quantitative trait nucleotides (QTNs) surpassing the false discovery rate (FDR) threshold. These QTNs showed contrasting effects on GPC ranging from -0.50 to +0.54% that can be used for protein content improvement. Further bioinformatics analyses reported that these QTNs are genomically linked with 35 candidate genes showing high expression during grain development. The putative candidate genes have functions in the binding, remobilization, or transport of protein. For instance, the promising QTN AX-94727470 on chromosome 6B increases GPC by +0.47% and is physically located inside the gene TraesCS6B02G384500 annotated as Trehalose 6-phosphate phosphatase (T6P), which can be employed to improve grain protein quality. Our findings are valuable for the enhancement of protein content and end-use quality in one of the major daily food resources that ultimately improve human nutrition.
Collapse
Affiliation(s)
- Dalia Z. Alomari
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Matías Schierenbeck
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
- CONICET CCT La Plata, La Plata 1900, Buenos Aires, Argentina
| | - Ahmad M. Alqudah
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mashael Daghash Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Steffen Wagner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
| | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
| |
Collapse
|
27
|
Morales-Herrera S, Jourquin J, Coppé F, Lopez-Galvis L, De Smet T, Safi A, Njo M, Griffiths CA, Sidda JD, Mccullagh JSO, Xue X, Davis BG, Van der Eycken J, Paul MJ, Van Dijck P, Beeckman T. Trehalose-6-phosphate signaling regulates lateral root formation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2023; 120:e2302996120. [PMID: 37748053 PMCID: PMC10556606 DOI: 10.1073/pnas.2302996120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/08/2023] [Indexed: 09/27/2023] Open
Abstract
Plant roots explore the soil for water and nutrients, thereby determining plant fitness and agricultural yield, as well as determining ground substructure, water levels, and global carbon sequestration. The colonization of the soil requires investment of carbon and energy, but how sugar and energy signaling are integrated with root branching is unknown. Here, we show through combined genetic and chemical modulation of signaling pathways that the sugar small-molecule signal, trehalose-6-phosphate (T6P) regulates root branching through master kinases SNF1-related kinase-1 (SnRK1) and Target of Rapamycin (TOR) and with the involvement of the plant hormone auxin. Increase of T6P levels both via genetic targeting in lateral root (LR) founder cells and through light-activated release of the presignaling T6P-precursor reveals that T6P increases root branching through coordinated inhibition of SnRK1 and activation of TOR. Auxin, the master regulator of LR formation, impacts this T6P function by transcriptionally down-regulating the T6P-degrader trehalose phosphate phosphatase B in LR cells. Our results reveal a regulatory energy-balance network for LR formation that links the 'sugar signal' T6P to both SnRK1 and TOR downstream of auxin.
Collapse
Affiliation(s)
- Stefania Morales-Herrera
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
- Laboratory of Molecular Cell Biology, Katholieke Universiteit Leuven, LeuvenB3001, Belgium
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven Center for Microbiology, LeuvenB3001, Belgium
| | - Joris Jourquin
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
| | - Frederic Coppé
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
| | - Lorena Lopez-Galvis
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
- Laboratory of Molecular Cell Biology, Katholieke Universiteit Leuven, LeuvenB3001, Belgium
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven Center for Microbiology, LeuvenB3001, Belgium
| | - Tom De Smet
- Department of Organic and Macromolecular Chemistry, Laboratory for Organic and Bio-Organic Synthesis, Ghent University, GhentB-9000, Belgium
| | - Alaeddine Safi
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
| | - Maria Njo
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
| | - Cara A. Griffiths
- Department of Sustainable Soils and Crops, Rothamsted Research, HarpendenAL5 2JQ, United Kingdom
| | - John D. Sidda
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - James S. O. Mccullagh
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Xiaochao Xue
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Benjamin G. Davis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, OxfordOX1 3TA, United Kingdom
- Next Generation Chemistry, The Rosalind Franklin Institute, DidcotOX1 3TA, United Kingdom
- Department of Pharmacology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Johan Van der Eycken
- Department of Organic and Macromolecular Chemistry, Laboratory for Organic and Bio-Organic Synthesis, Ghent University, GhentB-9000, Belgium
| | - Matthew J. Paul
- Department of Sustainable Soils and Crops, Rothamsted Research, HarpendenAL5 2JQ, United Kingdom
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Katholieke Universiteit Leuven, LeuvenB3001, Belgium
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven Center for Microbiology, LeuvenB3001, Belgium
- Katholieke Universiteit Leuven Plant Institute, Katholieke Universiteit Leuven, LeuvenB3001, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
| |
Collapse
|
28
|
Zhang Z, Zhong Z, Xiong Y. Sailing in complex nutrient signaling networks: Where I am, where to go, and how to go? MOLECULAR PLANT 2023; 16:1635-1660. [PMID: 37740490 DOI: 10.1016/j.molp.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
To ensure survival and promote growth, sessile plants have developed intricate internal signaling networks tailored in diverse cells and organs with both shared and specialized functions that respond to various internal and external cues. A fascinating question arises: how can a plant cell or organ diagnose the spatial and temporal information it is experiencing to know "where I am," and then is able to make the accurate specific responses to decide "where to go" and "how to go," despite the absence of neuronal systems found in mammals. Drawing inspiration from recent comprehensive investigations into diverse nutrient signaling pathways in plants, this review focuses on the interactive nutrient signaling networks mediated by various nutrient sensors and transducers. We assess and illustrate examples of how cells and organs exhibit specific responses to changing spatial and temporal information within these interactive plant nutrient networks. In addition, we elucidate the underlying mechanisms by which plants employ posttranslational modification codes to integrate different upstream nutrient signals, thereby conferring response specificities to the signaling hub proteins. Furthermore, we discuss recent breakthrough studies that demonstrate the potential of modulating nutrient sensing and signaling as promising strategies to enhance crop yield, even with reduced fertilizer application.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaochen Zhong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Xiong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
29
|
Hu Y, Lin Y, Xia Y, Xu X, Wang Z, Cui X, Han L, Li J, Zhang R, Ding Y, Chen L. Overexpression of OsSnRK1a through a green tissue-specific promoter improves rice yield by accelerating sheath-to-panicle transport of nonstructural carbohydrates and increasing leaf photosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108048. [PMID: 37757719 DOI: 10.1016/j.plaphy.2023.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
The redistribution of nonstructural carbohydrates (NSCs) in rice (Oryza sativa) sheaths contributes greatly to grain filling. Sucrose nonfermenting-1-related protein kinase 1 (SnRK1) regulates sheath-to-panicle transport of NSCs during rice grain filling; however, it is unknown whether elevated activity of SnRK1 in sheaths improves NSC transport and grain filling. Expression of OsSnRK1a is mainly responsible for regulating SnRK1 activity in rice sheaths. Analysis of transgenic rice plants containing the OsSnRK1a promoter::GUS construct indicated that OsSnRK1a is widely expressed in rice. Notably, OsSnRK1a is highly expressed in mesophyll cells of sheaths. Therefore, a green tissue promoter specifically expressed in sheaths and leaf parenchyma cells and phloem tissue was used to over-express OsSnRK1a in japonica rice. The transgenic lines exhibited increased SnRK1a expression and SnRK1 activity in sheaths. The NSC and starch in the transgenic lines and WT all showed accumulation before heading and during the early-filling stage, and declining at the peak filling stage. But the starch and NSC content in transgenic lines was lower than that of WT. Moreover, the transgenic lines showed lower sucrose contents and higher sucrose efflux rates. The accelerated sheath NSC transport improved grain filling, and stimulated panicle development in transgenic lines. SnRK1a expression and SnRK1 activity were also increased in the leaves of transgenic lines, which improved leaf photosynthetic activity and contributed to optimal grain filling and panicle development. These results verify the promotion of high SnRK1 activity in sheath NSC transport, and also provide a new approach to improving sheath NSC transport and rice yield.
Collapse
Affiliation(s)
- Yuxiang Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yan Lin
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yongqing Xia
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Xuemei Xu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Ziteng Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Xiran Cui
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Lin Han
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jiaoyang Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Rongtao Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China; Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Lin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China; Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China.
| |
Collapse
|
30
|
Liang XG, Gao Z, Fu XX, Chen XM, Shen S, Zhou SL. Coordination of carbon assimilation, allocation, and utilization for systemic improvement of cereal yield. FRONTIERS IN PLANT SCIENCE 2023; 14:1206829. [PMID: 37731984 PMCID: PMC10508850 DOI: 10.3389/fpls.2023.1206829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023]
Abstract
The growth of yield outputs is dwindling after the first green revolution, which cannot meet the demand for the projected population increase by the mid-century, especially with the constant threat from extreme climates. Cereal yield requires carbon (C) assimilation in the source for subsequent allocation and utilization in the sink. However, whether the source or sink limits yield improvement, a crucial question for strategic orientation in future breeding and cultivation, is still under debate. To narrow the knowledge gap and capture the progress, we focus on maize, rice, and wheat by briefly reviewing recent advances in yield improvement by modulation of i) leaf photosynthesis; ii) primary C allocation, phloem loading, and unloading; iii) C utilization and grain storage; and iv) systemic sugar signals (e.g., trehalose 6-phosphate). We highlight strategies for optimizing C allocation and utilization to coordinate the source-sink relationships and promote yields. Finally, based on the understanding of these physiological mechanisms, we envisage a future scenery of "smart crop" consisting of flexible coordination of plant C economy, with the goal of yield improvement and resilience in the field population of cereals crops.
Collapse
Affiliation(s)
- Xiao-Gui Liang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education and Jiangxi Province/The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhen Gao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiao-Xiang Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education and Jiangxi Province/The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
| | - Xian-Min Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Dai X, Li Z, Shao X. Photocontrolled Release of Carbendazim from Photocaged Molecule. Photochem Photobiol 2023; 99:1310-1317. [PMID: 36627227 DOI: 10.1111/php.13779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Carbendazim (MBC) is a high-efficient and broad-spectrum fungicide, but excessive residues caused by its improper use have caused health toxicity and environmental pollution. It is an irresistible trend to find green, safe, accurate and controllable release technology of MBC. To achieve the purpose of safe and efficient use of MBC, photolabile protecting group was used to realize the controllable release. This study aimed to covalently link MBC and 6-nitropiperonyl alcohol (NP) to synthesize photocaged molecule NP-MBC. The photodegradation test showed that NP-MBC could effectively release MBC under ultraviolet light. The antifungal activity of NP-MBC showed significant difference against Rhizoctonia solani, Sclerotinia sclerotiorum and Fusarium graminearum before and after irradiation, and the effects on mycelial morphology are different. The hyphae morphology of R. solani and F. graminearum changed significantly, and mycelia were severely damaged. The hyphae surface of former was swollen and broken, and the latter was collapsed and shriveled after NP-MBC light treatment. NP-MBC could realize the light-controlled release of MBC, and the antifungal activity before and after irradiation was significantly different, which provides an effective way to release MBC.
Collapse
Affiliation(s)
- Xiaoyi Dai
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
32
|
Avidan O, Moraes TA, Mengin V, Feil R, Rolland F, Stitt M, Lunn JE. In vivo protein kinase activity of SnRK1 fluctuates in Arabidopsis rosettes during light-dark cycles. PLANT PHYSIOLOGY 2023; 192:387-408. [PMID: 36725081 PMCID: PMC10152665 DOI: 10.1093/plphys/kiad066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 05/03/2023]
Abstract
Sucrose-nonfermenting 1 (SNF1)-related kinase 1 (SnRK1) is a central hub in carbon and energy signaling in plants, and is orthologous with SNF1 in yeast and the AMP-activated protein kinase (AMPK) in animals. Previous studies of SnRK1 relied on in vitro activity assays or monitoring of putative marker gene expression. Neither approach gives unambiguous information about in vivo SnRK1 activity. We have monitored in vivo SnRK1 activity using Arabidopsis (Arabidopsis thaliana) reporter lines that express a chimeric polypeptide with an SNF1/SnRK1/AMPK-specific phosphorylation site. We investigated responses during an equinoctial diel cycle and after perturbing this cycle. As expected, in vivo SnRK1 activity rose toward the end of the night and rose even further when the night was extended. Unexpectedly, although sugars rose after dawn, SnRK1 activity did not decline until about 12 h into the light period. The sucrose signal metabolite, trehalose 6-phosphate (Tre6P), has been shown to inhibit SnRK1 in vitro. We introduced the SnRK1 reporter into lines that harbored an inducible trehalose-6-phosphate synthase construct. Elevated Tre6P decreased in vivo SnRK1 activity in the light period, but not at the end of the night. Reporter polypeptide phosphorylation was sometimes negatively correlated with Tre6P, but a stronger and more widespread negative correlation was observed with glucose-6-phosphate. We propose that SnRK1 operates within a network that controls carbon utilization and maintains diel sugar homeostasis, that SnRK1 activity is regulated in a context-dependent manner by Tre6P, probably interacting with further inputs including hexose phosphates and the circadian clock, and that SnRK1 signaling is modulated by factors that act downstream of SnRK1.
Collapse
Affiliation(s)
- Omri Avidan
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Thiago A Moraes
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Virginie Mengin
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Regina Feil
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, KU Leuven, B-3001 Leuven, Belgium
- KU Leuven Plant Institute (LPI), B-3001 Leuven, Belgium
| | - Mark Stitt
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
33
|
Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. Abiotic Stress in Crop Production. Int J Mol Sci 2023; 24:ijms24076603. [PMID: 37047573 PMCID: PMC10095105 DOI: 10.3390/ijms24076603] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The vast majority of agricultural land undergoes abiotic stress that can significantly reduce agricultural yields. Understanding the mechanisms of plant defenses against stresses and putting this knowledge into practice is, therefore, an integral part of sustainable agriculture. In this review, we focus on current findings in plant resistance to four cardinal abiotic stressors—drought, heat, salinity, and low temperatures. Apart from the description of the newly discovered mechanisms of signaling and resistance to abiotic stress, this review also focuses on the importance of primary and secondary metabolites, including carbohydrates, amino acids, phenolics, and phytohormones. A meta-analysis of transcriptomic studies concerning the model plant Arabidopsis demonstrates the long-observed phenomenon that abiotic stressors induce different signals and effects at the level of gene expression, but genes whose regulation is similar under most stressors can still be traced. The analysis further reveals the transcriptional modulation of Golgi-targeted proteins in response to heat stress. Our analysis also highlights several genes that are similarly regulated under all stress conditions. These genes support the central role of phytohormones in the abiotic stress response, and the importance of some of these in plant resistance has not yet been studied. Finally, this review provides information about the response to abiotic stress in major European crop plants—wheat, sugar beet, maize, potatoes, barley, sunflowers, grapes, rapeseed, tomatoes, and apples.
Collapse
Affiliation(s)
- Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
34
|
Rojas BE, Tonetti T, Figueroa CM. Trehalose 6-phosphate metabolism in C 4 species. CURRENT OPINION IN PLANT BIOLOGY 2023; 72:102347. [PMID: 36806837 DOI: 10.1016/j.pbi.2023.102347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Trehalose 6-phosphate (Tre6P), the intermediate of trehalose biosynthesis, is an essential signal metabolite in plants, linking growth and development to carbon status. Our current understanding of Tre6P metabolism and signaling pathways in plants is based almost entirely on studies performed with Arabidopsis thaliana, a model plant that performs C3 photosynthesis. Conversely, our knowledge on the molecular mechanisms involved in Tre6P regulation of carbon partitioning and metabolism in C4 plants is scarce. This topic is especially relevant due to the agronomic importance of crops performing C4 photosynthesis, such as maize, sorghum and sugarcane. In this review, we focused our attention on recent developments related to Tre6P metabolism in C4 species and raised some open questions that should be addressed in the near future to improve the yield of economically important crops.
Collapse
Affiliation(s)
- Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Tomás Tonetti
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina.
| |
Collapse
|
35
|
Li J, Mintgen MAC, D'Haeyer S, Helfer A, Nelissen H, Inzé D, Dhondt S. PhenoWell®-A novel screening system for soil-grown plants. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:55-69. [PMID: 37288161 PMCID: PMC10243540 DOI: 10.1002/pei3.10098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/09/2023]
Abstract
As agricultural production is reaching its limits regarding outputs and land use, the need to further improve crop yield is greater than ever. The limited translatability from in vitro lab results into more natural growth conditions in soil remains problematic. Although considerable progress has been made in developing soil-growth assays to tackle this bottleneck, the majority of these assays use pots or whole trays, making them not only space- and resource-intensive, but also hampering the individual treatment of plants. Therefore, we developed a flexible and compact screening system named PhenoWell® in which individual seedlings are grown in wells filled with soil allowing single-plant treatments. The system makes use of an automated image-analysis pipeline that extracts multiple growth parameters from individual seedlings over time, including projected rosette area, relative growth rate, compactness, and stockiness. Macronutrient, hormone, salt, osmotic, and drought stress treatments were tested in the PhenoWell® system. The system is also optimized for maize with results that are consistent with Arabidopsis while different in amplitude. We conclude that the PhenoWell® system enables a high-throughput, precise, and uniform application of a small amount of solution to individually soil-grown plants, which increases the replicability and reduces variability and compound usage.
Collapse
Affiliation(s)
- Ji Li
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems BiologyVIBGhentBelgium
| | - Michael A. C. Mintgen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems BiologyVIBGhentBelgium
| | - Sam D'Haeyer
- Discovery SciencesVIBGhentBelgium
- Screening CoreVIBGhentBelgium
| | | | - Hilde Nelissen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems BiologyVIBGhentBelgium
| | - Dirk Inzé
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems BiologyVIBGhentBelgium
| | - Stijn Dhondt
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems BiologyVIBGhentBelgium
| |
Collapse
|
36
|
Abstract
Wheat grain development is an important biological process to determine grain yield and quality, which is controlled by the interplay of genetic, epigenetic, and environmental factors. Wheat grain development has been extensively characterized at the phenotypic and genetic levels. The advent of innovative molecular technologies allows us to characterize genes, proteins, and regulatory factors involved in wheat grain development, which have enhanced our understanding of the wheat seed development process. However, wheat is an allohexaploid with a large genome size, the molecular mechanisms underlying the wheat grain development have not been well understood as those in diploids. Understanding grain development, and how it is regulated, is of fundamental importance for improving grain yield and quality through conventional breeding or genetic engineering. Herein, we review the current discoveries on the molecular mechanisms underlying wheat grain development. Notably, only a handful of genes that control wheat grain development have, thus far, been well characterized, their interplay underlying the grain development remains elusive. The synergistic network-integrated genomics and epigenetics underlying wheat grain development and how the subgenome divergence dynamically and precisely regulates wheat grain development are unknown.
Collapse
Affiliation(s)
- Yiling Wang
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, Canada
| |
Collapse
|
37
|
Yang Z, Qin F. The battle of crops against drought: Genetic dissection and improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:496-525. [PMID: 36639908 DOI: 10.1111/jipb.13451] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
With ongoing global climate change, water scarcity-induced drought stress remains a major threat to agricultural productivity. Plants undergo a series of physiological and morphological changes to cope with drought stress, including stomatal closure to reduce transpiration and changes in root architecture to optimize water uptake. Combined phenotypic and multi-omics studies have recently identified a number of drought-related genetic resources in different crop species. The functional dissection of these genes using molecular techniques has enriched our understanding of drought responses in crops and has provided genetic targets for enhancing resistance to drought. Here, we review recent advances in the cloning and functional analysis of drought resistance genes and the development of technologies to mitigate the threat of drought to crop production.
Collapse
Affiliation(s)
- Zhirui Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
38
|
Rosado-Souza L, Yokoyama R, Sonnewald U, Fernie AR. Understanding source-sink interactions: Progress in model plants and translational research to crops. MOLECULAR PLANT 2023; 16:96-121. [PMID: 36447435 DOI: 10.1016/j.molp.2022.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
Agriculture is facing a massive increase in demand per hectare as a result of an ever-expanding population and environmental deterioration. While we have learned much about how environmental conditions and diseases impact crop yield, until recently considerably less was known concerning endogenous factors, including within-plant nutrient allocation. In this review, we discuss studies of source-sink interactions covering both fundamental research in model systems under controlled growth conditions and how the findings are being translated to crop plants in the field. In this respect we detail efforts aimed at improving and/or combining C3, C4, and CAM modes of photosynthesis, altering the chloroplastic electron transport chain, modulating photorespiration, adopting bacterial/algal carbon-concentrating mechanisms, and enhancing nitrogen- and water-use efficiencies. Moreover, we discuss how modulating TCA cycle activities and primary metabolism can result in increased rates of photosynthesis and outline the opportunities that evaluating natural variation in photosynthesis may afford. Although source, transport, and sink functions are all covered in this review, we focus on discussing source functions because the majority of research has been conducted in this field. Nevertheless, considerable recent evidence, alongside the evidence from classical studies, demonstrates that both transport and sink functions are also incredibly important determinants of yield. We thus describe recent evidence supporting this notion and suggest that future strategies for yield improvement should focus on combining improvements in each of these steps to approach yield optimization.
Collapse
Affiliation(s)
- Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Ryo Yokoyama
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Uwe Sonnewald
- Department of Biochemistry, University of Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
39
|
Murchie EH, Reynolds M, Slafer GA, Foulkes MJ, Acevedo-Siaca L, McAusland L, Sharwood R, Griffiths S, Flavell RB, Gwyn J, Sawkins M, Carmo-Silva E. A 'wiring diagram' for source strength traits impacting wheat yield potential. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:72-90. [PMID: 36264277 PMCID: PMC9786870 DOI: 10.1093/jxb/erac415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/18/2022] [Indexed: 05/06/2023]
Abstract
Source traits are currently of great interest for the enhancement of yield potential; for example, much effort is being expended to find ways of modifying photosynthesis. However, photosynthesis is but one component of crop regulation, so sink activities and the coordination of diverse processes throughout the crop must be considered in an integrated, systems approach. A set of 'wiring diagrams' has been devised as a visual tool to integrate the interactions of component processes at different stages of wheat development. They enable the roles of chloroplast, leaf, and whole-canopy processes to be seen in the context of sink development and crop growth as a whole. In this review, we dissect source traits both anatomically (foliar and non-foliar) and temporally (pre- and post-anthesis), and consider the evidence for their regulation at local and whole-plant/crop levels. We consider how the formation of a canopy creates challenges (self-occlusion) and opportunities (dynamic photosynthesis) for components of photosynthesis. Lastly, we discuss the regulation of source activity by feedback regulation. The review is written in the framework of the wiring diagrams which, as integrated descriptors of traits underpinning grain yield, are designed to provide a potential workspace for breeders and other crop scientists that, along with high-throughput and precision phenotyping data, genetics, and bioinformatics, will help build future dynamic models of trait and gene interactions to achieve yield gains in wheat and other field crops.
Collapse
Affiliation(s)
- Erik H Murchie
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico-Veracruz, El Batan, Texcoco, Mexico
| | - Gustavo A Slafer
- Department of Crop and Forest Sciences, University of Lleida–AGROTECNIO-CERCA Center, Av. R. Roure 191, 25198 Lleida, Spain
- ICREA (Catalonian Institution for Research and Advanced Studies), Barcelona, Spain
| | - M John Foulkes
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Liana Acevedo-Siaca
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico-Veracruz, El Batan, Texcoco, Mexico
| | - Lorna McAusland
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Robert Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond NSW 2753, Australia
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Ln, Norwich NR4 7UH, UK
| | - Richard B Flavell
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Jeff Gwyn
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Mark Sawkins
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | | |
Collapse
|
40
|
Burgess AJ, Masclaux‐Daubresse C, Strittmatter G, Weber APM, Taylor SH, Harbinson J, Yin X, Long S, Paul MJ, Westhoff P, Loreto F, Ceriotti A, Saltenis VLR, Pribil M, Nacry P, Scharff LB, Jensen PE, Muller B, Cohan J, Foulkes J, Rogowsky P, Debaeke P, Meyer C, Nelissen H, Inzé D, Klein Lankhorst R, Parry MAJ, Murchie EH, Baekelandt A. Improving crop yield potential: Underlying biological processes and future prospects. Food Energy Secur 2022; 12:e435. [PMID: 37035025 PMCID: PMC10078444 DOI: 10.1002/fes3.435] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant-derived products. In the coming years, plant-based research will be among the major drivers ensuring food security and the expansion of the bio-based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.
Collapse
Affiliation(s)
- Alexandra J. Burgess
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | | | - Günter Strittmatter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Andreas P. M. Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | | | - Jeremy Harbinson
- Laboratory for Biophysics Wageningen University and Research Wageningen The Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences Wageningen University & Research Wageningen The Netherlands
| | - Stephen Long
- Lancaster Environment Centre Lancaster University Lancaster UK
- Plant Biology and Crop Sciences University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | | | - Peter Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy (CNR), Rome, Italy and University of Naples Federico II Napoli Italy
| | - Aldo Ceriotti
- Institute of Agricultural Biology and Biotechnology National Research Council (CNR) Milan Italy
| | - Vandasue L. R. Saltenis
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Philippe Nacry
- BPMP, Univ Montpellier, INRAE, CNRS Institut Agro Montpellier France
| | - Lars B. Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Poul Erik Jensen
- Department of Food Science University of Copenhagen Copenhagen Denmark
| | - Bertrand Muller
- Université de Montpellier ‐ LEPSE – INRAE Institut Agro Montpellier France
| | | | - John Foulkes
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Peter Rogowsky
- INRAE UMR Plant Reproduction and Development Lyon France
| | | | - Christian Meyer
- IJPB UMR1318 INRAE‐AgroParisTech‐Université Paris Saclay Versailles France
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | | - Erik H. Murchie
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| |
Collapse
|
41
|
Fu W, Hu X, Yuan Q, Xu Z, Cheng J, Li Z, Shao X. Design, synthesis and bioassay of the emerging photo-responsive fungicides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Zhou B, Fang Y, Xiao X, Yang J, Qi J, Qi Q, Fan Y, Tang C. Trehalose 6-Phosphate/SnRK1 Signaling Participates in Harvesting-Stimulated Rubber Production in the Hevea Tree. PLANTS (BASEL, SWITZERLAND) 2022; 11:2879. [PMID: 36365332 PMCID: PMC9655858 DOI: 10.3390/plants11212879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Trehalose 6-phosphate (T6P), the intermediate of trehalose biosynthesis and a signaling molecule, affects crop yield via targeting sucrose allocation and utilization. As there have been no reports of T6P signaling affecting secondary metabolism in a crop plant, the rubber tree Hevea brasiliensis serves as an ideal model in this regard. Sucrose metabolism critically influences the productivity of natural rubber, a secondary metabolite of industrial importance. Here, we report on the characterization of the T6P synthase (TPS) gene family and the T6P/SNF1-related protein kinase1 (T6P/SnRK1) signaling components in Hevea laticifers under tapping (rubber harvesting), an agronomic manipulation that itself stimulates rubber production. A total of fourteen TPS genes were identified, among which a class II TPS gene, HbTPS5, seemed to have evolved with a function specialized in laticifers. T6P and trehalose increased when the trees were tapped, this being consistent with the observed enhanced activities of TPS and T6P phosphatase (TPP) and expression of an active TPS-encoding gene, HbTPS1. On the other hand, SnRK1 activities decreased, suggesting the inhibition of elevated T6P on SnRK1. Expression profiles of the SnRK1 marker genes coincided with elevated T6P and depressed SnRK1. Interestingly, HbTPS5 expression decreased significantly with the onset of tapping, suggesting a regulatory function in the T6P pathway associated with latex production in laticifers. In brief, transcriptional, enzymatic, and metabolic evidence supports the participation of T6P/SnRK1 signaling in rubber formation, thus providing a possible avenue to increasing the yield of a valuable secondary metabolite by targeting T6P in specific cells.
Collapse
Affiliation(s)
- Binhui Zhou
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yongjun Fang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaohu Xiao
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jianghua Yang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jiyan Qi
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Haikou 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Qi Qi
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yujie Fan
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chaorong Tang
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Haikou 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
43
|
Zhu A, Li J, Fu W, Wang W, Tao L, Fu G, Chen T, Feng B. Abscisic Acid Improves Rice Thermo-Tolerance by Affecting Trehalose Metabolism. Int J Mol Sci 2022; 23:ijms231810615. [PMID: 36142525 PMCID: PMC9506140 DOI: 10.3390/ijms231810615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Heat stress that occurs during the flowering stage severely decreases the rice (Oryza sativa L.) seed-setting rate. This damage can be reversed by abscisic acid (ABA), through effects on reactive oxygen species, carbohydrate metabolism, and heat shock proteins, but the exact role of trehalose and ATP in this process remains unclear. Two rice genotypes, namely, Zhefu802 (heat-resistant plant, a recurrent parent) and its near-isogenic line (faded green leaf, Fgl, heat-sensitive plant), were subjected to 38 °C heat stress after being sprayed with ABA or its biosynthetic inhibitor, fluridone (Flu), at the flowering stage. The results showed that exogenous ABA significantly increased the seed-setting rate of rice under heat stress, by 14.31 and 22.40% in Zhefu802 and Fgl, respectively, when compared with the H2O treatment. Similarly, exogenous ABA increased trehalose content, key enzyme activities of trehalose metabolism, ATP content, and F1Fo-ATPase activity. Importantly, the opposite results were observed in plants treated with Flu. Therefore, ABA may improve rice thermo-tolerance by affecting trehalose metabolism and ATP consumption.
Collapse
Affiliation(s)
- Aike Zhu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Nanchong Academy of Agricultural Sciences, Nanchong 637000, China
| | - Juncai Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Agronomy College, Jilin Agricultural University, Changchun 130118, China
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Wenting Wang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Correspondence: (T.C.); (B.F.); Tel.: +86-571-63370264 (T.C.); +86-571-63370370 (B.F.); Fax: +86-571-63370358 (T.C. & B.F.)
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Correspondence: (T.C.); (B.F.); Tel.: +86-571-63370264 (T.C.); +86-571-63370370 (B.F.); Fax: +86-571-63370358 (T.C. & B.F.)
| |
Collapse
|
44
|
Stephen K, Beena R, Kiran AG, Shanija S, Saravanan R. Changes in physiological traits and expression of key genes involved in sugar signaling pathway in rice under high temperature stress. 3 Biotech 2022; 12:183. [PMID: 35875179 PMCID: PMC9300813 DOI: 10.1007/s13205-022-03242-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Abstract
Efficient assimilate partitioning between the source and sink organs to achieve increased grain weight is coordinated by the sugar signaling mechanism. The expression of the genes involved in sugar signaling mainly hexokinases 2 (OsHXK2), Sucrose-nonfermentation1-related protein kinase1 (OsSnRK1), trehalose-6-phosphate synthase 1 (OsTPS1) and target of rapamycin (OsTOR) under high temperature stress was examined in tolerant (NL-44) and susceptible (Vandana) varieties of rice. The photosynthetic rate, stomatal conductance, water-use efficiency, photochemical efficiency (Fv/Fm), quantum yield (ϕPSII), pollen viability, spikelet fertility and 1000 grain weight were significantly higher in NL-44 compared to Vandana under stress. The difference in the gene expression levels in the vegetative and grain-filling phases as well as between the tolerant and susceptible varieties, revealed unique pathways of sugar signaling under heat stress. In the vegetative phase, the expression of OsTOR seems to be the difference between NL-44 and Vandana for their differed heat stress tolerance whereas, in the grain-filling phase, the difference between the varieties lay in the regulation of OsHXK2. The comparative changes in the expression levels between the genes under the varying conditions indicate the sugar status in the source and sink organs that are available for translocation or remobilization.
Collapse
Affiliation(s)
- K. Stephen
- Department of Plant Physiology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - R. Beena
- Department of Plant Physiology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - A. G. Kiran
- Department of Plant Biotechnology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - S. Shanija
- Department of Plant Physiology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - R. Saravanan
- ICAR-CTCRI, Thiruvananthapuram, Kerala 695017 India
| |
Collapse
|
45
|
Kondor CA, Gorantla JN, Leonard GD, Fehl C. Synthesis and mammalian cell compatibility of light-released glycan precursors for controlled metabolic engineering. Bioorg Med Chem 2022; 70:116918. [PMID: 35810714 DOI: 10.1016/j.bmc.2022.116918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022]
Abstract
Sugar additions to biomolecules, or glycans, are some of the most abundant biomolecule modifications in biology because they enable cells to adapt to changing nutrient and stress conditions. An unmet challenge for the field of glycobiology is the study of glycan biosynthetic pathways with chemical control, especially in live cell settings. The objective of this study was to create biocompatible glycan precursors with controlled release properties. Here, we report eleven "caged" sugar probes that release glycan biosynthetic precursor molecules upon light exposure. The specific sugar pathways we target with our probes regulate the addition of the N-acetyl sugars GlcNAc, GalNAc, and sialic acid onto biomolecules in cells, each of which has the potential to alter glycan processes involved in cell morphology, signaling, and behavior. We hypothesized that our glycan precursor probes would remain biologically inert until light-initiated decaging conditions were met, avoiding biological activities including metabolism and cytotoxicity. The photocaged analogs of GlcNAc, GalNAc, and ManNAc (sialic acid precursor) sugars, which we call "photo-sugars," were released within minutes of light exposure at their optimal wavelengths. During the course of the study, we characterized the cell compatibility of these sugars under their respective decaging conditions, and found highly cell compatible GlcNAc, GalNAc, and ManNAc photocaged precursors. Release of GlcNAc-1-phosphate precursors led to altered ATP levels in cells, demonstrating preliminary metabolic engineering. We envision these probes as useful additions to the chemical glycobiology field that will enable spatiotemporal control over glycosylation pathways in living mammalian cells.
Collapse
Affiliation(s)
- Courtney A Kondor
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA
| | - Jaggaiah N Gorantla
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA
| | - Garry D Leonard
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA.
| |
Collapse
|
46
|
Systemic Signaling: A Role in Propelling Crop Yield. PLANTS 2022; 11:plants11111400. [PMID: 35684173 PMCID: PMC9182853 DOI: 10.3390/plants11111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
Food security has become a topic of great concern in many countries. Global food security depends heavily on agriculture that has access to proper resources and best practices to generate higher crop yields. Crops, as with other plants, have a variety of strategies to adapt their growth to external environments and internal needs. In plants, the distal organs are interconnected through the vascular system and intricate hierarchical signaling networks, to communicate and enhance survival within fluctuating environments. Photosynthesis and carbon allocation are fundamental to crop production and agricultural outputs. Despite tremendous progress achieved by analyzing local responses to environmental cues, and bioengineering of critical enzymatic processes, little is known about the regulatory mechanisms underlying carbon assimilation, allocation, and utilization. This review provides insights into vascular-based systemic regulation of photosynthesis and resource allocation, thereby opening the way for the engineering of source and sink activities to optimize the yield performance of major crops.
Collapse
|
47
|
Ajith A, Milnes PJ, Johnson GN, Lockyer NP. Mass Spectrometry Imaging for Spatial Chemical Profiling of Vegetative Parts of Plants. PLANTS 2022; 11:plants11091234. [PMID: 35567235 PMCID: PMC9102225 DOI: 10.3390/plants11091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022]
Abstract
The detection of chemical species and understanding their respective localisations in tissues have important implications in plant science. The conventional methods for imaging spatial localisation of chemical species are often restricted by the number of species that can be identified and is mostly done in a targeted manner. Mass spectrometry imaging combines the ability of traditional mass spectrometry to detect numerous chemical species in a sample with their spatial localisation information by analysing the specimen in a 2D manner. This article details the popular mass spectrometry imaging methodologies which are widely pursued along with their respective sample preparation and the data analysis methods that are commonly used. We also review the advancements through the years in the usage of the technique for the spatial profiling of endogenous metabolites, detection of xenobiotic agrochemicals and disease detection in plants. As an actively pursued area of research, we also address the hurdles in the analysis of plant tissues, the future scopes and an integrated approach to analyse samples combining different mass spectrometry imaging methods to obtain the most information from a sample of interest.
Collapse
Affiliation(s)
- Akhila Ajith
- Department of Chemistry, Photon Science Institute, University of Manchester, Manchester M13 9PL, UK;
| | - Phillip J. Milnes
- Syngenta, Jeolott’s Hill International Research Centre, Bracknell RG42 6EY, UK;
| | - Giles N. Johnson
- Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PY, UK;
| | - Nicholas P. Lockyer
- Department of Chemistry, Photon Science Institute, University of Manchester, Manchester M13 9PL, UK;
- Correspondence:
| |
Collapse
|
48
|
Paul MJ, Miret JA, Griffiths CA. Improving rice photosynthesis and yield through trehalose 6-phosphate signaling. MOLECULAR PLANT 2022; 15:586-588. [PMID: 35278690 DOI: 10.1016/j.molp.2022.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Matthew J Paul
- Plant Science, Rothamsted Research, AL5 2JQ Harpenden, Hertfordshire, UK.
| | - Javier A Miret
- Plant Science, Rothamsted Research, AL5 2JQ Harpenden, Hertfordshire, UK
| | - Cara A Griffiths
- Plant Science, Rothamsted Research, AL5 2JQ Harpenden, Hertfordshire, UK
| |
Collapse
|
49
|
Li Z, Wei X, Tong X, Zhao J, Liu X, Wang H, Tang L, Shu Y, Li G, Wang Y, Ying J, Jiao G, Hu H, Hu P, Zhang J. The OsNAC23-Tre6P-SnRK1a feed-forward loop regulates sugar homeostasis and grain yield in rice. MOLECULAR PLANT 2022; 15:706-722. [PMID: 35093592 DOI: 10.1016/j.molp.2022.01.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 05/14/2023]
Abstract
Tre6P (trehalose-6-phosphate) mediates sensing of carbon availability to maintain sugar homeostasis in plants, which underpins crop yield and resilience. However, how Tre6P responds to fluctuations in sugar levels and regulates the utilization of sugars for growth remains to be addressed. Here, we report that the sugar-inducible rice NAC transcription factor OsNAC23 directly represses the transcription of the Tre6P phosphatase gene TPP1 to simultaneously elevate Tre6P and repress trehalose levels, thus facilitating carbon partitioning from source to sink organs. Meanwhile, OsNAC23 and Tre6P suppress the transcription and enzyme activity of SnRK1a, a low-carbon sensor and antagonist of OsNAC23, to prevent the SnRK1a-mediated phosphorylation and degradation of OsNAC23. Thus, OsNAC23, Tre6P, and SnRK1a form a feed-forward loop to sense sugar and maintain sugar homeostasis by transporting sugars to sink organs. Importantly, plants over-expressing OsNAC23 exhibited an elevated photosynthetic rate, sugar transport, and sink organ size, which consistently increased rice yields by 13%-17% in three elite-variety backgrounds and two locations, suggesting that manipulation of OsNAC23 expression has great potential for rice improvement. Collectively, these findings enhance our understanding of Tre6P-mediated sugar signaling and homeostasis, and provide a new strategy for genetic improvement of rice and possibly also other crops.
Collapse
Affiliation(s)
- Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangjin Wei
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Juan Zhao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xixi Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Huimei Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Liqun Tang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yazhou Shu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Guanghao Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiezheng Ying
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Guiai Jiao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Honghong Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peisong Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
50
|
Li M, Zheng Y, Cui D, Du Y, Zhang D, Sun W, Du H, Zhang Z. GIF1 controls ear inflorescence architecture and floral development by regulating key genes in hormone biosynthesis and meristem determinacy in maize. BMC PLANT BIOLOGY 2022; 22:127. [PMID: 35303806 PMCID: PMC8932133 DOI: 10.1186/s12870-022-03517-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/07/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Inflorescence architecture and floral development in flowering plants are determined by genetic control of meristem identity, determinacy, and maintenance. The ear inflorescence meristem in maize (Zea mays) initiates short branch meristems called spikelet pair meristems, thus unlike the tassel inflorescence, the ears lack long branches. Maize growth-regulating factor (GRF)-interacting factor1 (GIF1) regulates branching and size of meristems in the tassel inflorescence by binding to Unbranched3. However, the regulatory pathway of gif1 in ear meristems is relatively unknown. RESULT In this study, we found that loss-of-function gif1 mutants had highly branched ears, and these extra branches repeatedly produce more branches and florets with unfused carpels and an indeterminate floral apex. In addition, GIF1 interacted in vivo with nine GRFs, subunits of the SWI/SNF chromatin-remodeling complex, and hormone biosynthesis-related proteins. Furthermore, key meristem-determinacy gene RAMOSA2 (RA2) and CLAVATA signaling-related gene CLV3/ENDOSPERM SURROUNDING REGION (ESR) 4a (CLE4a) were directly bound and regulated by GIF1 in the ear inflorescence. CONCLUSIONS Our findings suggest that GIF1 working together with GRFs recruits SWI/SNF chromatin-remodeling ATPases to influence DNA accessibility in the regions that contain genes involved in hormone biosynthesis, meristem identity and determinacy, thus driving the fate of axillary meristems and floral organ primordia in the ear-inflorescence of maize.
Collapse
Affiliation(s)
- Manfei Li
- College of Life Science, Yangtze University, Jingzhou, 434025, People's Republic of China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuanyuan Zheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Di Cui
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yanfang Du
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Dan Zhang
- College of Agronomy, Tarim University, Alar, Xinjiang, 843300, People's Republic of China
| | - Wei Sun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hewei Du
- College of Life Science, Yangtze University, Jingzhou, 434025, People's Republic of China.
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|