1
|
Wang S, Zhang Y, Hu W, Zan G, He Y, Xing M, Zhao H. Lycopene alleviates splenic injury in grass carp (Ctenopharyngodon idella) caused by endoplasmic reticulum stress-autophagy axis induced by sulfamethoxazole through regulating AKT/AMPK pathway. Comp Biochem Physiol C Toxicol Pharmacol 2025; 296:110239. [PMID: 40436289 DOI: 10.1016/j.cbpc.2025.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/13/2025] [Accepted: 05/24/2025] [Indexed: 06/01/2025]
Abstract
Sulfamethozole (SMZ), an antibiotic widely used in aquaculture, is bioaccumulating and resistant to degradation, posing ecological risks. Although environmentally relevant SMZ concentrations (0.3 μg/L) are known to impair piscine immune function, the molecular mechanisms driving its toxicity remain elusive. Lycopene (LYC) is a potent bioactive compound that alleviates SMZ-induced toxicity by regulating the endoplasmic reticulum (ER) stress autophagy axis. This experiment chooses 120 grass carps, divided into 4 groups: control group (CON), SMZ exposure group (0.3 μg/L), the LYC supplement group (10 mg/kg) and SMZ + LYC combined treatment group. The toxicity of SMZ (0.3 μg/L) to grass carp and the mitigation effect of LYC (10 mg/kg) to SMZ were studied through a 30-day experiment. Histopathological alterations were evaluated via hematoxylin-eosin (H&E) staining, ultrastructural changes were visualized by transmission electron microscopy (TEM), and key biomarkers of ER stress, autophagy, and AKT/AMPK signaling were quantified through qRT-PCR and Western blotting. Results demonstrated that SMZ exposure induced disorganization of white pulp, cellular vacuolation, and activation of melanomacrophage centers (MMCs), accompanied by significant upregulation of ER stress markers (IRE1, PERK, ATF6, GRP78, eif2α) and autophagy-related genes (LC3, P62, Beclin1, ATG5). TEM revealed nuclear pyknosis, mitochondrial swelling, and increased autophagosomes in SMZ-treated splenocytes. LYC intervention markedly attenuated these pathological injuries and suppressed ER stress and excessive autophagy by modulating the AKT/AMPK pathway. Molecular docking analysis confirmed binding affinity between LYC and AKT/AMPK proteins, with a binding energy of -8.8 kcal/mol. Our findings establish a mechanistic foundation for developing LYC-enriched functional feeds to counteract antibiotic-associated ecological risks in sustainable aquaculture.
Collapse
Affiliation(s)
- Shuni Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Yingxue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Wangjuan Hu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Gaorong Zan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yaxuan He
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
2
|
Hu C, Chen L, Ding Y, Ye M, Tang Q. Metabolic changes in neuroendocrine neoplasms. Cell Mol Life Sci 2025; 82:205. [PMID: 40377669 PMCID: PMC12084448 DOI: 10.1007/s00018-025-05656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/05/2025] [Accepted: 03/11/2025] [Indexed: 05/18/2025]
Abstract
Neuroendocrine neoplasms (NENs) are a group of highly heterogeneous neoplasms originating from neuroendocrine cells with a gradually increased incidence. Metabolic change is one of the recognized markers of tumor progression, which has been extensively and systematically studied in other malignant tumors. However, metabolic change in NENs has been relatively poorly studied, and systematic reviews are lacking. We reviewed the relationship between metabolic changes and NENs from the aspects of glucose metabolism, lipid metabolism, metabolic syndrome, amino acid metabolism and metabolomics, and discussed the potential therapeutic strategies of metabolic changes for NENs.
Collapse
Affiliation(s)
- Chunhua Hu
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Digestive Disease Research and Clinical Translation Center, Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Neuroendocrine Tumor Diagnosis and Treatment Center, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Lingyi Chen
- Neuroendocrine Tumor Diagnosis and Treatment Center, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yi Ding
- Neuroendocrine Tumor Diagnosis and Treatment Center, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Mujie Ye
- Neuroendocrine Tumor Diagnosis and Treatment Center, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Qiyun Tang
- Neuroendocrine Tumor Diagnosis and Treatment Center, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Qin X, Wu H, Pan J, Kang K, Shi Y, Bu S. Immune-metabolic crosstalk in HNSCC: mechanisms and therapeutic opportunities. Front Oncol 2025; 15:1553284. [PMID: 40444100 PMCID: PMC12119567 DOI: 10.3389/fonc.2025.1553284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/21/2025] [Indexed: 06/02/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignancy, characterized by metabolic reprogramming. This reprogramming creates an acidic and hypoxic environment within tumor cells to adapt to metabolic changes. Experimental data indicate that in HNSCC, the metabolic reprogramming of tumor cells regulates immune cells via metabolites or signaling pathways, thereby promoting cancer progression or immune evasion. This article reviews the metabolic reprogramming in HNSCC, including glucose, fatty acids, amino acids, and nucleotide metabolism. These metabolic pathways play crucial roles in the proliferation, differentiation, and effector functions of immune cells, and influence immunosuppressive checkpoints. Additionally, this review explores the potential relationships between metabolic reprogramming, tumor immunity, and related treatments. Thus, targeting metabolic reprogramming and interactions between immune cells may help overcome therapeutic resistance in HNSCC patients.
Collapse
Affiliation(s)
| | | | | | | | - Yujie Shi
- Department of Stomatology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shoushan Bu
- Department of Stomatology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Wei J, Cui B, Zhao Z, Qian X, Hu C, Zhang J. Study on the mechanism of solasonine inhibiting the proliferation of oral squamous cell carcinoma based on lipidomics. Eur J Pharmacol 2025; 995:177395. [PMID: 39984013 DOI: 10.1016/j.ejphar.2025.177395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/25/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Solasonine (SS) has been shown to inhibit the proliferation of various malignant tumors, though its effects on lipid metabolism in tumor cells are less understood. This study investigated SS's anti-tumor mechanism in oral squamous cell carcinoma (OSCC) using lipidomics, cell, and animal models. SS inhibited the growth of CAL27 and WSU-HN30 cells and reduced tumor volume in mice. Lipidomic analysis revealed an increase in diglyceride (DG) and a decrease in triglyceride (TG) levels, alongside a reduction in diacylglycerol acyltransferase 1 (DGAT1), key to TG synthesis. SS also induced reactive oxygen species (ROS) production and mitochondrial damage. Molecular docking confirmed SS's interaction with DGAT1, suggesting it prevents DG to TG conversion, inhibiting OSCC proliferation.
Collapse
Affiliation(s)
- Jie Wei
- Department of Stomatology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Bo Cui
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhenduo Zhao
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Xiaojing Qian
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Cheng Hu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiaqi Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
5
|
Song K, Ming J, Tao B, Zhao F, Huang S, Wu W, Jiang C, Li X. Emerging glucose oxidase-delivering nanomedicines for enhanced tumor therapy. J Control Release 2025; 381:113580. [PMID: 40024341 DOI: 10.1016/j.jconrel.2025.02.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Abnormalities in glucose metabolism have been shown to characterize malignant tumors. Glucose depletion by glucose oxidase (GOD) has shown great potential in tumor therapy by causing tumor starvation. Since 2017, nanomedicines have been designed and utilized to deliver GOD for more precise and effective glucose modulation, which can overcome intrinsic limitations of different cancer therapeutic modalities by remodeling the tumor microenvironment to enhance antitumor therapy. To date, the topic of GOD-delivering nanomedicines for enhancing tumor therapy has not been comprehensively summarized. Herein, this review aims to provide an overview and discuss in detail recent advances in GOD delivery and directly involved starvation therapy strategies, GOD-sensitized various tumor therapy strategies, and GOD-mediated multimodal antitumor strategies. Finally, the challenges and outlooks for the future progress of the emerging tumor therapeutic nanomedicines are discussed. This review provides intuitive and specific insights to a broad audience in the fields of nanomedicines, biomaterials, and cancer therapy.
Collapse
Affiliation(s)
- Kaiyue Song
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiang Ming
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Feng Zhao
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China.
| | - Wencheng Wu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200092, China.
| | - Xianglong Li
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
6
|
Fan TWM, Higashi RM, Lane AN. Metabolic Reprogramming in Human Cancer Patients and Patient-Derived Models. Cold Spring Harb Perspect Med 2025; 15:a041552. [PMID: 39009444 PMCID: PMC12047743 DOI: 10.1101/cshperspect.a041552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Stable isotope-resolved metabolomics delineates reprogrammed intersecting metabolic networks in human cancers. Knowledge gained from in vivo patient studies provides the "benchmark" for cancer models to recapitulate. It is particularly difficult to model patients' tumor microenvironment (TME) with its complex cell-cell/cell-matrix interactions, which shapes metabolic reprogramming crucial to cancer development/drug resistance. Patient-derived organotypic tissue cultures (PD-OTCs) represent a unique model that retains an individual patient's TME. PD-OTCs of non-small-cell lung cancer better recapitulated the in vivo metabolic reprogramming of patient tumors than the patient-derived tumor xenograft (PDTX), while enabling interrogation of immunometabolic response to modulators and TME-dependent resistance development. Patient-derived organoids (PDOs) are also good models for reconstituting TME-dependent metabolic reprogramming and for evaluating therapeutic responses. Single-cell based 'omics on combinations of PD-OTC and PDO models will afford an unprecedented understanding on TME dependence of human cancer metabolic reprogramming, which should translate into the identification of novel metabolic targets for regulating TME interactions and drug resistance.
Collapse
Affiliation(s)
- Teresa W-M Fan
- Center for Environmental and Systems Biochemistry; Markey Cancer Center; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry; Markey Cancer Center; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry; Markey Cancer Center; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| |
Collapse
|
7
|
Jin S, Zhang Y, Fu H, Zhang W, Qiao H, Xiong Y, Jiang S. Transcriptome Profiling Analysis Reveals Changes in the Antioxidant Defense System, Morphology, and Gene Expression in the Gills of Macrobrachium nipponense Caused by Alkalinity Exposure. Int J Mol Sci 2025; 26:4321. [PMID: 40362560 PMCID: PMC12072836 DOI: 10.3390/ijms26094321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
The median lethal concentration value of alkalinity tolerance for Macrobrachium nipponense over 96 h is only 14.42 mmol/L with a safety value of 4.71 mmol/L, which is insufficient to perform the aquaculture program in a water environment with high alkalinity. Thus, the present study aims to explore the effects of alkalinity exposure on the gills of M. nipponense through identifying the changes in antioxidant enzymes, morphology, and gene expressions after 1 day, 4 days, and 7 days of exposure under an alkalinity of 10 mmol/L. The activities of MDA, GSH-PX, CAT, T-AOC, and Ca2+Mg2+-ATPase are significantly stimulated by 62.6%, 6.57%, 32.1%, 33.3%, and 14.9%, compared to those from Day 0 (control group), indicating that these antioxidant enzymes play essential roles in the protection of prawns from the damage of reactive oxygen species caused by alkalinity exposure. In addition, alkalinity exposure results in an increase in the hemolymph vessels, affecting the normal respiratory function of the gills. Transcriptome profiling analysis reveals that short-term alkali exposure (4 days) does not result in significant changes in gene expression in the present study. Furthermore, metabolic pathways, biosynthesis of amino acids, amino sugar and nucleotide sugar metabolism, lysosomes, glycolysis/gluconeogenesis, and phagosomes represent the main enriched metabolic pathways of differentially expressed genes (DEGs) between Day 4 and Day 7. Biosynthesis of amino acids, lysosomes, and phagosomes are immune-related metabolic pathways, while amino sugar and nucleotide sugar metabolism and glycolysis/gluconeogenesis are energy metabolism-related metabolic pathways, indicating that the processes of immune response and energy metabolism play essential roles in the response to alkalinity exposure in M. nipponense. Thus, the DEGs from these metabolic pathways are considered as candidate genes involved in the regulation of alkaline acclimation in M. nipponense. The present study provides valuable evidence for analysis of the adaptive mechanism when exposed to alkalinity, contributing to the survival rate and aquaculture of this species under water environments with high alkalinity.
Collapse
Affiliation(s)
- Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (W.Z.)
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Yuefan Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (W.Z.)
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (W.Z.)
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (W.Z.)
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (W.Z.)
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (W.Z.)
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
8
|
Li Y, Liu P, Liu S, Zhu J, Han Y, Jiang Z, Tang D, Meng Z, Li S, Zhang M, Fan Y, Fan F, Zhang P, Liu H. Halofuginone targets Serine/Glycine synthesis to reverse epidermal growth factor receptor Tyrosine Kinase inhibitor resistance in lung adenocarcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156788. [PMID: 40354707 DOI: 10.1016/j.phymed.2025.156788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 04/10/2025] [Accepted: 04/18/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND An emerging issue is that patients are prone to become resistance to epidermal growth factor tyrosine kinase inhibitors (EGFR-TKIs) which are the first- line treatment for EGFR-mutated non-small cell lung cancer (NSCLC) after approximately 10 months of drug administration. Interestingly, metabolic dysregulation occurs simultaneously with acquired EGFR-TKI resistance in certain NSCLC cell lines. PURPOSE We aimed to investigate whether a natural product, halofuginone (HF), could overcome NSCLC resistance to EGFR-TKIs by influencing metabolism. RESULTS In our study, the combination of HF and EGFR-TKI exhibited synergistic cytotoxicity compared to EGFR-TKI monotherapy. The underlying mechanism is that HF promotes the degradation of SP1 protein and decreases the expression of phosphatidylserine transcarbamoylase 1 (PSAT1), which leads to defects in the de novo synthesis of Serine/Glycine and cell death. CONCLUSIONS HF is a promising natural product for overcoming NSCLC resistance to third-generation epidermal growth factor receptors-TKIs.
Collapse
Affiliation(s)
- Yongping Li
- School of Pharmacy, Bengbu Medical University, Bengbu, 233000, China
| | - Peipei Liu
- School of Pharmacy, Bengbu Medical University, Bengbu, 233000, China
| | - Shiyao Liu
- School of Pharmacy, Bengbu Medical University, Bengbu, 233000, China
| | - Juan Zhu
- School of Pharmacy, Bengbu Medical University, Bengbu, 233000, China
| | - Yuehua Han
- School of Pharmacy, Bengbu Medical University, Bengbu, 233000, China
| | - Zuojie Jiang
- School of Pharmacy, Bengbu Medical University, Bengbu, 233000, China
| | - Dawei Tang
- School of Pharmacy, Bengbu Medical University, Bengbu, 233000, China
| | - Zixuan Meng
- School of Pharmacy, Bengbu Medical University, Bengbu, 233000, China
| | - Shanshan Li
- School of Pharmacy, Bengbu Medical University, Bengbu, 233000, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, Bengbu, 233000, China
| | - Mengxiao Zhang
- School of Pharmacy, Bengbu Medical University, Bengbu, 233000, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, Bengbu, 233000, China
| | - Yunlei Fan
- School of Pharmacy, Bengbu Medical University, Bengbu, 233000, China
| | - Fangtian Fan
- School of Pharmacy, Bengbu Medical University, Bengbu, 233000, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, Bengbu, 233000, China
| | - Pei Zhang
- School of Pharmacy, Bengbu Medical University, Bengbu, 233000, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, Bengbu, 233000, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical University, Bengbu, 233000, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, Bengbu, 233000, China.
| |
Collapse
|
9
|
Pallavi R, Soni BL, Jha GK, Sanyal S, Fatima A, Kaliki S. Tumor heterogeneity in retinoblastoma: a literature review. Cancer Metastasis Rev 2025; 44:46. [PMID: 40259075 PMCID: PMC12011974 DOI: 10.1007/s10555-025-10263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/06/2025] [Indexed: 04/23/2025]
Abstract
Tumor heterogeneity, characterized by the presence of diverse cell populations within a tumor, is a key feature of the complex nature of cancer. This diversity arises from the emergence of cells with varying genomic, epigenetic, transcriptomic, and phenotypic profiles over the course of the disease. Host factors and the tumor microenvironment play crucial roles in driving both inter-patient and intra-patient heterogeneity. These diverse cell populations can exhibit different behaviors, such as varying rates of proliferation, responses to treatment, and potential for metastasis. Both inter-patient heterogeneity and intra-patient heterogeneity pose significant challenges to cancer therapeutics and management. In retinoblastoma, while heterogeneity at the clinical presentation level has been recognized for some time, recent attention has shifted towards understanding the underlying cellular heterogeneity. This review primarily focuses on retinoblastoma heterogeneity and its implications for therapeutic strategies and disease management, emphasizing the need for further research and exploration in this complex and challenging area.
Collapse
Affiliation(s)
- Rani Pallavi
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Bihari Lal Soni
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Gaurab Kumar Jha
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Shalini Sanyal
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Azima Fatima
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
10
|
Tian HP, Xiao ZX, Su BW, Li YX, Peng H, Meng CY. Impact of SLC16A8 on tumor microenvironment and angiogenesis in colorectal cancer: New therapeutic target insights. World J Gastrointest Oncol 2025; 17:99188. [PMID: 40235880 PMCID: PMC11995316 DOI: 10.4251/wjgo.v17.i4.99188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/08/2024] [Accepted: 01/15/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND SLC16A8, a lactate efflux transporter, is upregulated in various cancers, but its effects on tumor microenvironments remain understudied. This research explores its role in colorectal cancer (CRC) and the impact on the associated microenvironment consisting of vascular endothelial cells. AIM To explore the role in CRC and the impact on the associated microenvironment consisting of vascular endothelial cells. METHODS Hypoxic conditions prompted examination of SLC16A8 expression, glycolysis, lactate efflux, and Warburg effect correlations in CRC cell lines. Co-culture with HUVEC allowed for endothelial-mesenchymal transition (EndMT) characterization, revealing lactate efflux's influence. Knockdown of SLC16A8 in CRC cells enabled relevant phenotype tests and tumorigenesis experiments, investigating tumor growth, blood vessel distribution, and signaling pathway alterations. RESULTS SLC16A8 expression was significantly upregulated in CRC tissues compared to adjacent normal tissues and correlated with disease progression (P < 0.05). Under hypoxic conditions, HIF-1α induced SLC16A8 expression, leading to enhanced metabolic reprogramming and increased lactate production. siRNA-mediated SLC16A8 knockdown effectively reversed hypoxia-induced changes, including reduced glucose consumption and lactate production. Co-culture experiments revealed that SLC16A8 knockdown significantly inhibited hypoxia-induced EndMT in HUVEC cells. In vivo studies demonstrated that SLC16A8 knockdown suppressed tumor growth, reduced Ki67 expression, and decreased HIF-1α levels. Furthermore, SLC16A8 silencing led to decreased expression of key metabolic enzymes PKM2 and LDHA, indicating its role in glycolytic regulation. CONCLUSION Our findings reveal that SLC16A8 functions as a critical mediator of hypoxia-induced metabolic reprogramming in CRC progression.
Collapse
Affiliation(s)
- Hong-Peng Tian
- Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Zhong-Xiang Xiao
- Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Bo-Wen Su
- Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yi-Xuan Li
- Department of Premarital and Prenatal Examination, Nanchong Shunqing District Maternal and Child Health Hospital, Nanchong 637000, Sichuan Province, China
| | - Hong Peng
- Department of Anorectal Surgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Chang-Yuan Meng
- Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
11
|
Ye W, Zhang X, Tang Z, Hu Y, Zheng Y, Yuan Y. Comprehensive analysis of glycometabolism-related genes reveals PLOD2 as a prognostic biomarker and therapeutic target in gastric cancer. BMC Gastroenterol 2025; 25:256. [PMID: 40229676 PMCID: PMC11998276 DOI: 10.1186/s12876-025-03878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the leading causes of cancer-related mortality worldwide, with limited therapeutic options and a poor prognosis, particularly in advanced stages. Glycometabolism, a hallmark of cancer, plays a critical role in tumor progression, immune evasion, and response to therapy. However, the specific roles of glycometabolism-related genes and their prognostic and therapeutic implications in GC remain inadequately understood. METHODS Transcriptomic and clinical data from GC patients were retrieved from TCGA and GEO databases. Glycometabolism-related genes were identified and analyzed using machine learning algorithms to construct a prognostic model. Functional assays, immune profiling, and pathway enrichment analyses were performed to explore the roles of these genes in tumor progression, immune-modulatory effects, and drug resistance. PLOD2, the gene with the highest prognostic significance, was further investigated to uncover its underlying regulatory mechanisms, roles in immune modulation, and contribution to therapeutic resistance. RESULTS A glycometabolism-related prognostic model consisting of four genes (PLOD2, CHSY3, SLC2A3 and SLC5A1) was developed and validated, effectively stratifying GC patients into high- and low-risk subgroups with distinct survival outcomes. Among these, PLOD2 emerged as the most significant gene, exhibiting strong associations with tumor progression and poor survival. Functional analyses revealed that PLOD2 promotes glycolysis and tumor progression through activation of the PI3K/AKT/mTOR pathway. Immune profiling revealed that PLOD2 overexpression is associated with an immunosuppressive tumor microenvironment, characterized by increased M2 macrophage infiltration and reduced immune activity. Moreover, treatment with rapamycin, an mTOR inhibitor, significantly suppressed PLOD2-mediated proliferation and anchorage-independent growth in GC cells, highlighting the central role of the PI3K/AKT/mTOR pathway in PLOD2-driven oncogenic behaviors. CONCLUSIONS This study identifies PLOD2 as a key prognostic biomarker and therapeutic target in gastric cancer. As a central component in a glycometabolism-related model, PLOD2 promotes glycolysis, tumor progression, and immune evasion via the PI3K/AKT/mTOR pathway. The model effectively stratifies patient risk, offering both prognostic utility and therapeutic insight. Targeting PLOD2-mediated pathways may represent a promising strategy for precision therapy and improved clinical outcomes in gastric cancer.
Collapse
Affiliation(s)
- Wanchun Ye
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Xiaolei Zhang
- Department of Clinical Laboratory, Jinan Fourth People's Hospital, Jinan, China
| | - Zhongjie Tang
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Yufeng Hu
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Yuanliang Zheng
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Yuping Yuan
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China.
| |
Collapse
|
12
|
Zhao LL, Liu YJ, Guo QJ, Yan N, Yang J, Han JQ, Xie XH, Luo YS. TPM4 influences the initiation and progression of gastric cancer by modulating ferroptosis via SCD1. Clin Exp Med 2025; 25:115. [PMID: 40214825 PMCID: PMC11991984 DOI: 10.1007/s10238-025-01629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
Gastric cancer (GC) is a deadly disease with poor prognosis and few treatment options. Tropomyosin 4 (TPM4) is an actin-binding protein that stabilizes the cytoskeleton of cells and has an unclear role in GC. This study aimed to elucidate the role and underlying mechanisms of TPM4 in GC pathogenesis. The expression and diagnostic and prognostic value of TPM4 in GC were analyzed using bioinformatics. A nomogram based on TPM4 expression was created and validated with an external cohort. TPM4-knockdown GC cells and xenograft models in nude mice were used to study the function of TPM4 in vitro and in vivo. Proteomic and rescue experiments confirmed the regulatory effect of TPM4 on stearoyl-CoA desaturase 1 (SCD1) in GC. Immunohistochemistry verified the expression and correlation of the TPM4 and SCD1 proteins in GC tissues. Our study identified TPM4 as an oncogene in GC, suggesting its potential diagnostic and prognostic value. The TPM4-based nomogram showed potential prognostic value for clinical use. TPM4 knockdown inhibited GC cell proliferation, induced ferroptosis, and slowed tumor growth in vivo, which is achieved by inhibiting SCD1 expression. Immunohistochemical analysis of GC tissues revealed elevated expression levels of both TPM4 and SCD1 proteins, with a positive correlation observed between their expression. TPM4 is a promising target for new diagnostic, prognostic, and therapeutic strategies for GC. Downregulation of TPM4 inhibits GC cell growth and induces ferroptosis by suppressing SCD1 expression.
Collapse
Affiliation(s)
- Ling-Lin Zhao
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China
- Qinghai Provincial People's Hospital, Xining, 810000, China
| | - Yu-Jun Liu
- Department of Oncology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Qi-Jing Guo
- Department of Oncology, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Nan Yan
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China
| | - Jie Yang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China
| | - Jing-Qi Han
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Xiao-Hong Xie
- Qinghai Provincial People's Hospital, Xining, 810000, China
| | - Yu-Shuang Luo
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China.
- Department of Oncology, Affiliated Hospital of Qinghai University, Xining, 810001, China.
| |
Collapse
|
13
|
Shao Y, Chen C, Yu X, Yan J, Guo J, Ye G. Comprehensive analysis of scRNA-seq and bulk RNA-seq data via machine learning and bioinformatics reveals the role of lysine metabolism-related genes in gastric carcinogenesis. BMC Cancer 2025; 25:644. [PMID: 40205350 PMCID: PMC11984278 DOI: 10.1186/s12885-025-14051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is a highly aggressive and heterogeneous cancer with extremely complex biological characteristics. Lysine and its metabolism are closely related to human cancer, but little is known about how lysine metabolism-related genes contribute to gastric carcinogenesis. METHODS The roles of lysine metabolism-related genes in GC were investigated by in-depth analysis of single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (RNA-seq) data via machine learning and multiple bioinformatics methods and confirmed by multiple cell and molecular biology methods. RESULTS By systematically analyzing the heterogeneity of GC cells and interactions among cell subtypes, two key genes, solute carrier family 7 member 7 (SLC7A7) and vimentin (VIM), were innovatively identified as lysine metabolism-related genes involved in gastric carcinogenesis. The potential functional mechanisms involved immune infiltration, signaling pathway regulation, drug sensitivity, molecular regulatory networks, tumor regulatory genes, and metabolic pathways. A reliable prognostic risk nomogram was established for GC prognosis prediction. Moreover, the expression of the lysine metabolism-related genes SLC7A7 and VIM and their effect on cellular phenotypes in gastric carcinogenesis were verified in clinical samples and in vitro experiments, including cell proliferation, migration, invasion and cell cycle assays. CONCLUSIONS We explored the role of lysine metabolism-related genes and prognostic models in GC with multiple datasets, providing novel metabolic targets.
Collapse
Affiliation(s)
- Yongfu Shao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Chujia Chen
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xuan Yu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jianing Yan
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
| | - Junming Guo
- Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Guoliang Ye
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, 315020, China.
- Institute of Digestive Disease of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
14
|
Azizi L, Hausman H, Meyer AK, Wong M, Pajonk F. The Mevalonate Pathway in the Radiation Response of Cancer. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00278-0. [PMID: 40194746 DOI: 10.1016/j.ijrobp.2025.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
The mevalonate (MVA) pathway plays a critical role in cholesterol biosynthesis, protein prenylation, and metabolic reprogramming, all of which contribute to cancer progression and therapy resistance. Targeting the MVA pathway with statins and other inhibitors has shown promise in preclinical studies; however, clinical outcomes remain controversial, raising concerns about translating these findings into effective treatments. Additionally, the interaction between the MVA pathway and radiation therapy (RT) is not yet fully understood, as RT upregulates the pathway, which can enhance tumor cell survival. This review summarizes the current literature on MVA pathway inhibition in cancer therapy, focusing on its potential to enhance the efficacy of RT. A better understanding of the pathway's role in radiation responses will be essential to translate combination therapies that target this pathway.
Collapse
Affiliation(s)
- Linda Azizi
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California.
| | - Hannah Hausman
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Alexandra K Meyer
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Matthew Wong
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California; Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California; Jonsson Comprehensive Cancer Center at University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
15
|
Shende S, Rathored J, Budhbaware T. Role of metabolic transformation in cancer immunotherapy resistance: molecular mechanisms and therapeutic implications. Discov Oncol 2025; 16:453. [PMID: 40175681 PMCID: PMC11965038 DOI: 10.1007/s12672-025-02238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Immunotherapy in the treatment of cancer, with immune inhibitors helps in many cancer types. Many patients still encounter resistance to these treatments, though. This resistance is mediated by metabolic changes in the tumour microenvironment and cancer cells. The development of novel treatments to overcome resistance and boost immunotherapy's effectiveness depends on these metabolic changes. OBJECTIVE This review concentrates on the molecular mechanisms through which metabolic transformation contributes to cancer immunotherapy resistance. Additionally, research therapeutic approaches that target metabolic pathways to enhance immunotherapy for resistance. METHODS We used databases available on PubMed, Scopus, and Web of Science to perform a thorough review of peer-reviewed literature. focusing on the tumor microenvironment, immunotherapy resistance mechanisms, and cancer metabolism. The study of metabolic pathways covers oxidative phosphorylation, glycolysis, lipid metabolism, and amino acid metabolism. RESULTS An immunosuppressive tumour microenvironment is produced by metabolic changes in cancer cells, such as dysregulated lipid metabolism, enhanced glutaminolysis, and increased glycolysis (Warburg effect). Myeloid-derived suppressor cells and regulatory T cells are promoted, immune responses are suppressed, and T cell activity is impaired when lactate and other metabolites build up. changes in the metabolism of amino acids in the pathways for arginine and tryptophan, which are nutrients crucial for immune function. By enhancing their function in the tumour microenvironment, these metabolic alterations aid in resistance to immune checkpoint inhibitors. CONCLUSION Metabolic change plays a key role in cancer immunotherapy resistance. Gaining knowledge of metabolic processes can help develop efficient treatments that improve immunotherapy's effectiveness. In order to determine the best targets for therapeutic intervention, future studies should concentrate on patient-specific metabolic profiling.
Collapse
Affiliation(s)
- Sandesh Shende
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India
| | - Jaishriram Rathored
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India.
| | - Tanushree Budhbaware
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India
| |
Collapse
|
16
|
Tomar MS, Mohit, Kumar A, Shrivastava A. Circadian immunometabolism: A future insight for targeted therapy in cancer. Sleep Med Rev 2025; 80:102031. [PMID: 39603026 DOI: 10.1016/j.smrv.2024.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Circadian rhythms send messages to regulate the sleep-wake cycle in living beings, which, regulate various biological activities. It is well known that altered sleep-wake cycles affect host metabolism and significantly deregulate the host immunity. The dysregulation of circadian-related genes is critical for various malignancies. One of the hallmarks of cancer is altered metabolism, the effects of which spill into surrounding microenvironments. Here, we review the emerging literature linking the circadian immunometabolic axis to cancer. Small metabolites are the products of various metabolic pathways, that are usually perturbed in cancer. Genes that regulate circadian rhythms also regulate host metabolism and control metabolite content in the tumor microenvironment. Immune cell infiltration into the tumor site is critical to perform anticancer functions, and altered metabolite content affects their trafficking to the tumor site. A compromised immune response in the tumor microenvironment aids cancer cell proliferation and immune evasion, resulting in metastases. The role of circadian rhythms in these processes is largely overlooked and demands renewed attention in the search for targets against cancer growth and spread. The precision medicine approach requires targeting the circadian immune metabolism in cancer.
Collapse
Affiliation(s)
- Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Mohit
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India; Department of Prosthodontics, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India.
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India.
| |
Collapse
|
17
|
Wu T, Wu X. Construction and evaluation of a prognostic model based on the expression of the metabolism-related signatures in patients with osteosarcoma. BMC Musculoskelet Disord 2025; 26:303. [PMID: 40148931 PMCID: PMC11948978 DOI: 10.1186/s12891-025-08439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The aim of this study was to screen three major substance metabolism-related genes and establish a prognostic model for osteosarcoma. METHODS RNA-seq expression data for osteosarcoma were downloaded from The Cancer Genome Atlas (TCGA) and GEO databases. Differentially expressed (DE) RNAs were selected, followed by the selection of metabolic-related DE mRNAs. Using Cox regression analysis, prognostic DE RNAs were identified to construct a prognostic model. Subsequently, independent prognostic clinical factors were screened, and the functions of the long non-coding RNAs (lncRNAs) were analyzed. Finally, the expression of signature genes was further tested in osteosarcoma cells using quantitative reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. RESULTS A total of 432 DE RNAs, comprising 79 DE lncRNAs and 353 DE mRNAs were obtained, and then 107 metabolic-related DE mRNAs. Afterwards signature genes (LINC00545, LINC01537, FOXC2-AS1, CYP27B1, PFKFB4, PHKG1, PHYKPL, PXMP2, and XYLB) served as optimal combinations, and a prognostic score model was successfully proposed. Three verification datasets (GSE16091, GSE21257, and GSE39055) showed that the model had high specificity and sensitivity. In addition, two independent prognostic clinical factors (age and tumor metastasis) were identified. Finally, the concordance rate between the in silico analysis, qRT-PCR, and western blotting analysis was 88.89% (8/9), suggesting the robustness of our analysis. CONCLUSIONS The prognostic model based on the nine signature genes accurately predicted the prognosis of patients with osteosarcoma; CYP27B1, PFKFB4, PHKG1, PHYKPL, PXMP2, and XYLB may serve as metabolism-related biomarkers in osteosarcoma.
Collapse
Affiliation(s)
- Tieli Wu
- Hainan Vocational University of Science and Technology, Hainan Province, Haikou, 570000, China
| | - Xingyi Wu
- Department of Internal Medicine, Qiqihar First Factory Hospital, 27 Xinming Street, Qiqihar, 161000, Heilongjiang Province, China.
| |
Collapse
|
18
|
Zarrella S, Miranda MR, Covelli V, Restivo I, Novi S, Pepe G, Tesoriere L, Rodriquez M, Bertamino A, Campiglia P, Tecce MF, Vestuto V. Endoplasmic Reticulum Stress and Its Role in Metabolic Reprogramming of Cancer. Metabolites 2025; 15:221. [PMID: 40278350 PMCID: PMC12029571 DOI: 10.3390/metabo15040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: Endoplasmic reticulum (ER) stress occurs when ER homeostasis is disrupted, leading to the accumulation of misfolded or unfolded proteins. This condition activates the unfolded protein response (UPR), which aims to restore balance or trigger cell death if homeostasis cannot be achieved. In cancer, ER stress plays a key role due to the heightened metabolic demands of tumor cells. This review explores how metabolomics can provide insights into ER stress-related metabolic alterations and their implications for cancer therapy. Methods: A comprehensive literature review was conducted to analyze recent findings on ER stress, metabolomics, and cancer metabolism. Studies examining metabolic profiling of cancer cells under ER stress conditions were selected, with a focus on identifying potential biomarkers and therapeutic targets. Results: Metabolomic studies highlight significant shifts in lipid metabolism, protein synthesis, and oxidative stress management in response to ER stress. These metabolic alterations are crucial for tumor adaptation and survival. Additionally, targeting ER stress-related metabolic pathways has shown potential in preclinical models, suggesting new therapeutic strategies. Conclusions: Understanding the metabolic impact of ER stress in cancer provides valuable opportunities for drug development. Metabolomics-based approaches may help identify novel biomarkers and therapeutic targets, enhancing the effectiveness of antitumor therapies.
Collapse
Affiliation(s)
- Salvatore Zarrella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Verdiana Covelli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (V.C.); (M.R.)
| | - Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (L.T.)
| | - Sara Novi
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (L.T.)
| | - Manuela Rodriquez
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (V.C.); (M.R.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| |
Collapse
|
19
|
Liu Y, Zhang Y, Xiang Q, Wu S, Zhang M, Zhou H, Xiao B, Li L. Comprehensive characterization of fatty acid oxidation in triple-negative breast cancer: Focus on biological roles and drug modulation. Eur J Pharmacol 2025; 991:177343. [PMID: 39900330 DOI: 10.1016/j.ejphar.2025.177343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/11/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Triple-negative breast cancer (TNBC) presents an unmet medical challenge due to poor outcomes and limited treatment options. Metabolic signals are coupled to oncogenesis. Fatty acid oxidation (FAO) plays a crucial role in cancer initiation, progression, metastasis, and therapy resistance, but its precise functions and underlying molecular mechanisms in TNBC remain unclear. Here, we conducted a comprehensive study to investigate the biological roles and drug modulation of FAO in TNBC using data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Genomics of Drug Sensitivity in Cancer (GDSC), and Connectivity Map (CMap) databases. We found that altered FAO activity was not related to patient age, clinical stage, tumor mutational burden, microsatellite instability, or homologous recombination deficiency. Nevertheless, upregulated FAO activity correlated with poor prognosis, increased stemness, accelerated cell cycle progression, altered mutation rates of several top 20 most frequently mutated genes, as well as higher activity of pathways involving oncogenic signaling, cellular metabolism, protein turnover, and so forth. Elevated FAO activity also appeared to foster an immunosuppressive microenvironment, influence microbial composition, and confer resistance to chemotherapies. What's more, we identified several compounds that may regulate FAO activity, including the HDAC inhibitor chidamide, which induced FAO activation in TNBC cells. Co-treatment with an FAO inhibitor etomoxir enhanced the combined effects of chidamide with established chemotherapy drugs, as well as their efficacy as single agents in TNBC cells. In conclusion, FAO likely exerts pleiotropic biological effects in TNBC and modulating FAO may offer a promising strategy to improve therapeutic outcomes in TNBC patients.
Collapse
Affiliation(s)
- Yunduo Liu
- School of Public Health, Dali University, Dali, Yunnan, 671003, China; Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Yanxia Zhang
- Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China; School of Medicine, The South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Qin Xiang
- Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Mei Zhang
- Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Haochen Zhou
- Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Bin Xiao
- Department of Laboratory Medicine, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China.
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
| |
Collapse
|
20
|
Cabezón-Gutiérrez L, Palka-Kotlowska M, Custodio-Cabello S, Chacón-Ovejero B, Pacheco-Barcia V. Metabolic mechanisms of immunotherapy resistance. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002297. [PMID: 40092297 PMCID: PMC11907103 DOI: 10.37349/etat.2025.1002297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/22/2025] [Indexed: 03/19/2025] Open
Abstract
Immunotherapy has revolutionized cancer treatment, yet its efficacy is frequently compromised by metabolic mechanisms that drive resistance. Understanding how tumor metabolism shapes the immune microenvironment is essential for developing effective therapeutic strategies. This review examines key metabolic pathways influencing immunotherapy resistance, including glucose, lipid, and amino acid metabolism. We discuss their impact on immune cell function and tumor progression, highlighting emerging therapeutic strategies to counteract these effects. Tumor cells undergo metabolic reprogramming to sustain proliferation, altering the availability of essential nutrients and generating toxic byproducts that impair cytotoxic T lymphocytes (CTLs) and natural killer (NK) cell activity. The accumulation of lactate, deregulated lipid metabolism, and amino acid depletion contribute to an immunosuppressive tumor microenvironment (TME). Targeting metabolic pathways, such as inhibiting glycolysis, modulating lipid metabolism, and restoring amino acid balance, has shown promise in enhancing immunotherapy response. Addressing metabolic barriers is crucial to overcoming immunotherapy resistance. Integrating metabolic-targeted therapies with immune checkpoint inhibitors may improve clinical outcomes. Future research should focus on personalized strategies to optimize metabolic interventions and enhance antitumor immunity.
Collapse
Affiliation(s)
- Luis Cabezón-Gutiérrez
- Medical Oncology, Hospital Universitario De Torrejón, 28850 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Magda Palka-Kotlowska
- Medical Oncology, Hospital Universitario De Torrejón, 28850 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Sara Custodio-Cabello
- Medical Oncology, Hospital Universitario De Torrejón, 28850 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Beatriz Chacón-Ovejero
- Department of Pharmacy and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Vilma Pacheco-Barcia
- Medical Oncology, Hospital Universitario De Torrejón, 28850 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| |
Collapse
|
21
|
Su X, Li R, Zhang Z, Lu L, Wang S, Liu T. Mechanism of Marsdenia tenacissima in treating breast cancer by targeting the MAPK signaling pathway: Utilising metabolomics, network pharmacology, and In vivo experiments for verification. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119477. [PMID: 39938764 DOI: 10.1016/j.jep.2025.119477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/25/2024] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Marsdenia tenacissima dried stems have been used to treat asthma, trachitis, rheumatism, and carbuncles. M. Tenacissima extract is now available in China under the brand name "Xiao Ai Ping" and is commonly used in conjunction with chemotherapy to treat a number of diseases, including liver cancer, gastric cancer, colon cancer, and non-small cell lung cancer. PURPOSE OF THE STUDY The research focused on the potential mechanisms contributing to the in vivo therapeutic effects on breast cancer using the ethyl acetate portion of M. tenacissima extract (EMTE), demonstrating significant promise in treating lung cancer in our initial experiments. MATERIALS AND METHODS We examined the impact of EMTE on the growth of breast cancer through experiments on homoplastic breast cancer mice. Moreover, we utilized UPLC-Q-TOF/MS analysis to identify the components of EMTE and anticipate its potential therapeutic targets. Through network pharmacology, we predicted the potential targets and pathways affected by EMTE in relation to breast cancer. Additionally, we analysed the metabolic changes induced by EMTE during its anti-breast cancer effects. RESULTS The MAPK pathway was identified as the most likely route by which EMTE could influence breast cancer through network pharmacological enrichment of pathways. Research on animals showed that EMTE could successfully inhibit the development of breast tumours in the homoplastic breast cancer mouse model. We observed that EMTE treatment affected the metabolism of breast cancer mice, particularly in the biosynthesis of phenylalanine, tyrosine, tryptophan, linoleic acid metabolism, and pyrimidine metabolism. These metabolic alterations may have contributed to the effects of glycolysis, tumour immune evasion, and pyrimidine de novo synthesis. CONCLUSION Based on the results of network pharmacological and metabolomic analysis, we postulate that the inhibition of the MAPK/ERK pathway may have played a role in promoting apoptosis in breast cancer cells and confirmed relevant protein expression of the MAPK/ERK signaling pathway with Western blotting in tumour tissue of homoplastic breast cancer mice.
Collapse
Affiliation(s)
- Xinxin Su
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Runtian Li
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Zhiguang Zhang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Lin Lu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Siqi Wang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Tongxiang Liu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| |
Collapse
|
22
|
Wan Y, Li G, Cui G, Duan S, Chang S. Reprogramming of Thyroid Cancer Metabolism: from Mechanism to Therapeutic Strategy. Mol Cancer 2025; 24:74. [PMID: 40069775 PMCID: PMC11895238 DOI: 10.1186/s12943-025-02263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/06/2025] [Indexed: 03/15/2025] Open
Abstract
Thyroid cancer as one of the most prevalent malignancies of endocrine system, has raised public concern and more research on its mechanism and treatment. And metabolism-based therapies have advanced rapidly, for the exclusive metabolic profiling of thyroid cancer. In thyroid cancer cells, plenty of metabolic pathways are reprogrammed to accommodate tumor microenvironment. In this review, we initiatively summarize recent progress in the full-scale thyroid cancer metabolic rewiring and the interconnection of various metabolites. We also discuss the efficacy and prospect of metabolic targeted detection as well as therapy. Comprehending metabolic mechanism and characteristics of thyroid cancer roundly will be highly beneficial to managing individual patients.
Collapse
Affiliation(s)
- Yuxuan Wan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Guoqing Li
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Gaoyuan Cui
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Saili Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Thyroid Disease in Hunan Province, Changsha, 410008, Hunan, People's Republic of China.
- Hunan Provincial Engineering Research Center for Thyroid and Related Diseases Treatment Technology, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
23
|
Panja P, Manne U, Awasthi V, Bhattacharya R, Mukherjee P. Interrogation of the tumor microenvironment by nanoparticles. Cancer Lett 2025; 612:217454. [PMID: 39805387 DOI: 10.1016/j.canlet.2025.217454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
The tumor microenvironment (TME) plays a pivotal role in cancer progression by fostering intricate multicellular crosstalk among cancer cells, stromal cells, and immune cells. This review explores the emerging paradigm of utilizing nanoparticles to disrupt this crosstalk within the TME as a therapeutic strategy. Nanoparticles are engineered with precise physicochemical properties to target specific cell types and deliver therapeutic payloads, thereby inhibiting critical signaling pathways involved in tumor growth, invasion, and metastasis. The mechanisms involved include modulation of the immune response, interference with growth factor signaling, and induction of programmed cell death in cancer cells. Challenges such as biocompatibility, efficient delivery, and potential development of resistance are discussed alongside promising advancements in nanoparticle design. Moving forward, integration of nanoparticle-based therapies with existing treatment modalities holds great potential for enhancing therapeutic efficacy and personalized medicine in cancer therapy.
Collapse
Affiliation(s)
- Prasanta Panja
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Suite 309, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
24
|
Xia J, Liu W, Ni Y, Shahzad A, Cui K, Xu Z, Zhang J, Wei Z, Teng Z, Yang Z, Zhang Q. Advances in the impact of ASS1 dysregulation on metabolic reprogramming of tumor cells. Cell Signal 2025; 127:111593. [PMID: 39778698 DOI: 10.1016/j.cellsig.2025.111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
ASS1(argininosuccinate synthase 1) is a rate-limiting enzyme in the urea cycle, catalyzing the synthesis of argininosuccinate from citrulline and aspartate to ultimately produce arginine and support cellular metabolism. Increasing evidence suggests that ASS1 is commonly dysregulated in the tumor microenvironment, promoting tumor cell metastasis and infiltration. With a deeper understanding of tumor metabolic reprogramming in recent years, the impact of ASS1 dysregulation on abnormal tumor metabolism has attracted growing interest among researchers. In tumors with lacked or downregulated expression of ASS1, tumor cells become 'addicted' to exogenous arginine. Several strategies for arginine deprivation have been developed and entered clinical trials for treating such tumors. Therefore, we focus on elucidating the commonalities and characteristics of ASS1 dysregulation in tumors, as well as its implications for diagnosis, treatment, and prognosis. The mechanisms by which ASS1 gene dysregulation leads to metabolic abnormalities in tumor cells vary across different types of tumors. Extensive experimental studies have demonstrated that overexpression or low expression of ASS1 exhibits varying effects-either inhibitory or stimulatory proliferation-on tumor cells across different types. Restoring its expression can inhibit proliferation in some tumors lacking or downregulating ASS1 but can promote metastasis and infiltration in others (e.g., resistance to arginine deprivation therapy). Additionally, the expression level of ASS1 dynamically changes during tumorigenesis and progression. Finally, this review discusses the diagnostic, therapeutic, and prognostic value of ASS1 in future clinical practice.
Collapse
Affiliation(s)
- Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Yueli Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China; Qujing Medical College, Qujing 655011, Yunnan Province, China
| | - Jinshan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Zhenyan Wei
- Yunnan Center for Disease Control and Prevention, Kunming 650022, China
| | - Zhuoran Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China.
| | - Zhe Yang
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming 650032, PR China.
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China.
| |
Collapse
|
25
|
Kim JS, Choi WM, Kim HI, Chung SW, Choi J, Lee D, Kim KM. Synergistic effects of L-arginine and argininosuccinate synthetase 1 in inducing apoptosis in hepatocellular carcinoma. JOURNAL OF LIVER CANCER 2025; 25:79-90. [PMID: 39806913 PMCID: PMC12010820 DOI: 10.17998/jlc.2024.12.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUNDS/AIMS Hepatocellular carcinoma (HCC) is a malignant cancer with an increasing incidence worldwide. Although numerous efforts have been made to identify effective therapies for HCC, current strategies have limitations. We present a new approach for targeting L-arginine and argininosuccinate synthetase 1 (ASS1). METHODS ASS1 expression in HCC cell lines and primary hepatocytes was detected using polymerase chain reaction and western blotting. Proliferation, migration, signaling pathways, and nitric oxide production in HCC cell lines were measured using MTS, colony formation, wound healing, Western blot, and Griess assays. RESULTS ASS1 expression varied among the HCC cell lines, and cisplatin cytotoxicity was ASS1-dependent. L-arginine alone induced apoptosis in HCC cell lines, regardless of ASS1 expression; however, its effect was enhanced in ASS1-expressing HCC cell lines. Cisplatin cytotoxicity also increased, suggesting that L-arginine acts as a sensitizer to cisplatin in HCC cell lines. ASS1 and L-arginine produced nitric oxide and inhibited key proliferation- and survival-related signaling pathways such as PI3K/Akt and MAPK. Additionally, ASS1 and L-arginine reduced the expression of PKM1 and PKM2 in the glycolysis pathway. CONCLUSIONS Our study revealed that ASS1 and L-arginine exhibited anticancer effects in HCC and sensitized cisplatin-resistant HCC cells to chemotherapy. The combination of ASS1 and L-arginine significantly enhanced the anticancer effects, even in HCC cell lines with low or absent ASS1 expression. These findings highlight the critical roles of arginine and ASS1 in HCC and suggest that increasing arginine availability could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Jin Sun Kim
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Won-Mook Choi
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ha-Il Kim
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Won Chung
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jonggi Choi
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Danbi Lee
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kang Mo Kim
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Wang Z, Xu J, Zhang N, Wang P, Zhao H, Zhou Y, Sun C. Imazethapyr-Induced Inhibition of Arabidopsis Root Growth Associated with Disrupting Auxin Signal to Alter Cell Wall Remodeling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4913-4922. [PMID: 39962894 DOI: 10.1021/acs.jafc.4c10795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Imazethapyr, a widely used herbicide, exhibits a long persistence in soils and can cause injury to rotational crops. Here, we discovered that imazethapyr inhibits primary root elongation in Arabidopsis by inhibiting cell division and expansion rather than damaging the organization of root meristem. Integration of transcriptomic and metabolomic analysis revealed that imazethapyr downregulated multiple genes related to cell wall loosening and modification, leading to increased cell wall thickness and inhibited cellular expansion in Arabidopsis roots. Furthermore, imazethapyr upregulated auxin biosynthesis and transport, resulting in enhanced auxin accumulation at root tips. Elevated auxin concentrations triggered apoplast alkalization and the inactivation of wall-loosening enzymes, further suppressing root growth. This research provides new insights into the molecular mechanism underlying imazethapyr phytotoxicity and offers potential strategies for developing crops that are better adapted to soils contaminated with imidazolinone herbicides.
Collapse
Affiliation(s)
- Zhen Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiarui Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nan Zhang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peifan Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongcheng Zhao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiqun Zhou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
27
|
García García A, Ferrer Aporta M, Vallejo Palma G, Giráldez Trujillo A, Castillo-González R, Calzón Lozano D, Mora Perdiguero A, Muñoz Velasco R, Colina Castro M, de Simone Benito E, Torres-Ruiz R, Rodriguez-Perales S, Dehairs J, Swinnen JV, Garcia-Cañaveras JC, Lahoz A, Montalvo Quirós S, Del Pozo-Rojas C, Luque Rioja C, Monroy F, Herráez-Aguilar D, Alonso Riaño M, Rodríguez Peralto JL, Sánchez-Arévalo Lobo VJ. Targeting ELOVL6 to disrupt c-MYC driven lipid metabolism in pancreatic cancer enhances chemosensitivity. Nat Commun 2025; 16:1694. [PMID: 39956817 PMCID: PMC11830767 DOI: 10.1038/s41467-025-56894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/05/2025] [Indexed: 02/18/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer with a 12% survival rate, highlighting the need for novel therapies. c-MYC overexpression, driven by upstream mutations and amplifications, reprograms tumor metabolism and promotes proliferation, migration and metastasis. This study identifies ELOVL6, a fatty acid elongase regulated by c-MYC, as a potential therapeutic target. Using PDAC mouse models and cell lines, we show that c-MYC directly upregulates ELOVL6 during tumor progression. Genetic or chemical inhibition of ELOVL6 reduces proliferation and migration by altering fatty acid composition, affecting membrane rigidity, permeability and pinocytosis. These changes increase Abraxane uptake and show a synergistic effect when combined with ELOVL6 inhibition in vitro. In vivo, ELOVL6 interference significantly suppresses tumor growth and improves Abraxane response, prolonging survival. These findings position ELOVL6 as a promising target for improving PDAC treatment outcomes.
Collapse
Affiliation(s)
- Ana García García
- Grupo de Oncología Molecular, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain
| | - María Ferrer Aporta
- Grupo de Oncología Molecular, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Germán Vallejo Palma
- Grupo de Oncología Cutánea. Servicio de Anatomía Patológica, Hospital Universitario 12 de Octubre. Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avenida de Cordoba s/n, 28041, Madrid, Spain
| | - Antonio Giráldez Trujillo
- Grupo de Oncología Cutánea. Servicio de Anatomía Patológica, Hospital Universitario 12 de Octubre. Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avenida de Cordoba s/n, 28041, Madrid, Spain
| | - Raquel Castillo-González
- Grupo de Oncología Cutánea. Servicio de Anatomía Patológica, Hospital Universitario 12 de Octubre. Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avenida de Cordoba s/n, 28041, Madrid, Spain
- Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - David Calzón Lozano
- Grupo de Oncología Molecular, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Alberto Mora Perdiguero
- Grupo de Oncología Molecular, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Raúl Muñoz Velasco
- Grupo de Oncología Molecular, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Miguel Colina Castro
- Grupo de Oncología Molecular, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Elena de Simone Benito
- Grupo de Oncología Molecular, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, 28003, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, 3000, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, 3000, Leuven, Belgium
| | - Juan Carlos Garcia-Cañaveras
- Biomarkers and Precision Medicine Unit, Health Research Institute La Fe, Av. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Agustín Lahoz
- Biomarkers and Precision Medicine Unit, Health Research Institute La Fe, Av. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Sandra Montalvo Quirós
- Biofísica Computacional y Análisis de Datos Biológicos, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Carlos Del Pozo-Rojas
- Biofísica Computacional y Análisis de Datos Biológicos, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Clara Luque Rioja
- Department of Physical Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
- Translational Biophysics, Institute for Biomedical Research Hospital 12 de Octubre, Avenida de Cordoba s/n, 28041, Madrid, Spain
| | - Francisco Monroy
- Department of Physical Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
- Translational Biophysics, Institute for Biomedical Research Hospital 12 de Octubre, Avenida de Cordoba s/n, 28041, Madrid, Spain
| | - Diego Herráez-Aguilar
- Biofísica Computacional y Análisis de Datos Biológicos, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Marina Alonso Riaño
- Grupo de Oncología Cutánea. Servicio de Anatomía Patológica, Hospital Universitario 12 de Octubre. Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avenida de Cordoba s/n, 28041, Madrid, Spain
| | - José Luis Rodríguez Peralto
- Grupo de Oncología Cutánea. Servicio de Anatomía Patológica, Hospital Universitario 12 de Octubre. Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avenida de Cordoba s/n, 28041, Madrid, Spain
| | - Víctor Javier Sánchez-Arévalo Lobo
- Grupo de Oncología Molecular, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain.
- Grupo de Oncología Cutánea. Servicio de Anatomía Patológica, Hospital Universitario 12 de Octubre. Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avenida de Cordoba s/n, 28041, Madrid, Spain.
| |
Collapse
|
28
|
Zhang Z, Wu H, Li M, Zhou F, Huang Y. From natural herbal wisdom to nano innovation: Revolutionizing tumor treatment through intervening in metabolic reprogramming. Biochim Biophys Acta Rev Cancer 2025; 1880:189263. [PMID: 39800231 DOI: 10.1016/j.bbcan.2025.189263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
In recent years, with the deepening understanding of the biological mechanisms underlying tumorigenesis, metabolic reprogramming has emerged as a pivotal process in cancer initiation, progression, and treatment resistance, gradually paving the way for new avenues in precision oncology. Natural herbal ingredients, characterized by their multi-target engagement, low toxicity, and wide-ranging biological activities, exhibit unique advantages in anti-cancer therapy. Nonetheless, the clinical application of these components has been constrained by issues such as poor solubility, low bioavailability, and inadequate stability when administered through traditional delivery methods. The advent of multifunctional nanoformulations has offered solutions to these challenges, substantially advancing the utilization of natural herbal components in precision therapy targeting tumor metabolic reprogramming. This article provides a comprehensive review of the multidimensional features of cancer metabolic reprogramming and its intricate regulatory network, highlighting the latest advancements in metabolic regulation, targeted delivery, and precision therapy achieved through natural herbs and their multifunctional nanomedicines. It also offers insights into future directions in this field. We are justified in believing that continued breakthroughs in this area will usher in safer and more effective treatment options for cancer patients, heralding a new chapter in cancer therapy.
Collapse
Affiliation(s)
- Zhengguang Zhang
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China; School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| | - Haitao Wu
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
| | - Min Li
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| | - Fuqiong Zhou
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| | - Yan Huang
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| |
Collapse
|
29
|
Basu S, Nadhan R, Dhanasekaran DN. Long Non-Coding RNAs in Ovarian Cancer: Mechanistic Insights and Clinical Applications. Cancers (Basel) 2025; 17:472. [PMID: 39941838 PMCID: PMC11815776 DOI: 10.3390/cancers17030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Ovarian cancer is a leading cause of gynecological cancer mortality worldwide, often diagnosed at advanced stages due to vague symptoms and the lack of effective early detection methods. Long non-coding RNAs (lncRNAs) have emerged as key regulators in cancer biology, influencing cellular processes such as proliferation, apoptosis, and chemoresistance. This review explores the multifaceted roles of lncRNAs in ovarian cancer pathogenesis and their potential as biomarkers and therapeutic targets. Methods: A comprehensive literature review was conducted to analyze the structural and functional characteristics of lncRNAs and their contributions to ovarian cancer biology. This includes their regulatory mechanisms, interactions with signaling pathways, and implications for therapeutic resistance. Advanced bioinformatics and omics approaches were also evaluated for their potential in lncRNA research. Results: The review highlights the dual role of lncRNAs as oncogenes and tumor suppressors, modulating processes such as cell proliferation, invasion, and angiogenesis. Specific lncRNAs, such as HOTAIR and GAS5, demonstrate significant potential as diagnostic biomarkers and therapeutic targets. Emerging technologies, such as single-cell sequencing, provide valuable insights into the tumor microenvironment and the heterogeneity of lncRNA expression. Conclusions: LncRNAs hold transformative potential in advancing ovarian cancer diagnosis, prognosis, and treatment. Targeting lncRNAs or their associated pathways offers promising strategies to overcome therapy resistance and enhance personalized medicine. Continued research integrating omics and bioinformatics will be essential to unlock the full clinical potential of lncRNAs in ovarian cancer management.
Collapse
Affiliation(s)
- Sneha Basu
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
30
|
Ren J, Amoozgar Z, Uccello TP, Lei PJ, Zhao Y, Ho WW, Huang P, Kardian A, Mack SC, Duda DG, Xu L, Jain RK. Targeting EPHB2/ABL1 restores antitumor immunity in preclinical models of ependymoma. Proc Natl Acad Sci U S A 2025; 122:e2319474122. [PMID: 39841145 PMCID: PMC11789170 DOI: 10.1073/pnas.2319474122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Ependymoma (EPN) is a common form of brain tumor in children, often resistant to available cytotoxic therapies. Molecular profiling studies have led to a better understanding of EPN subtypes and revealed a critical role of oncogenes ZFTA-RELA fusion and EPHB2 in supratentorial ependymoma (ST-EPN). However, the immune system's role in tumor progression and response to therapy remains poorly understood. New treatments for various molecular subtypes of EPN are desperately needed. Using ST-EPN-ZFTA subtype-specific syngeneic mouse models, we found an increased frequency of M2-like tumor-associated macrophages (TAMs), which proportionally increased with tumor size during tumor progression. Transcriptomic profiling of ST-EPN-ZFTA and analysis of a human EPN dataset revealed multiple protein kinases as potential druggable targets. By matching transcriptomic signatures with the target spectrum of FDA-approved drugs, we found that the multikinase inhibitor dasatinib potently inhibited the growth of EPN both in vitro and in vivo, mainly through blocking EPHB2 and ABL1. Treatment with dasatinib reprogrammed the EPN immune microenvironment by polarizing TAMs toward an M1-like phenotype and increasing CD8 T cell activation. Furthermore, dasatinib treatment induced complete regression of established EPN tumors in 78% of the animals and protected survivors against tumor recurrence. Depletion of CD8 cells compromised the durability of EPN responses and reduced overall survival. These data indicate that dasatinib has the potential to be an effective therapy for ST-EPN-ZFTA molecular subgroup of EPN and support further investigation of dasatinib in clinical trials.
Collapse
Affiliation(s)
- Jun Ren
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Zohreh Amoozgar
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Taylor P. Uccello
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Pin-Ji Lei
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Yuhui Zhao
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - William W. Ho
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Peigen Huang
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Alisha Kardian
- Center of Excellence in Neuro-Oncology Sciences, St Jude Children’s Research Hospital, Memphis, TN38105
- Neurobiology and Brain Tumor Program, St Jude Children’s Research Hospital, Memphis, TN38105
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, TN38105
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX77030
| | - Stephen C. Mack
- Center of Excellence in Neuro-Oncology Sciences, St Jude Children’s Research Hospital, Memphis, TN38105
- Neurobiology and Brain Tumor Program, St Jude Children’s Research Hospital, Memphis, TN38105
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, TN38105
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX77030
| | - Dan G. Duda
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Lei Xu
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Rakesh K. Jain
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| |
Collapse
|
31
|
Kumar S, Kumar BH, Nayak R, Pandey S, Kumar N, Pai KSR. Computational screening and molecular dynamics of natural compounds targeting the SH2 domain of STAT3: a multitarget approach using network pharmacology. Mol Divers 2025:10.1007/s11030-024-11075-5. [PMID: 39786519 DOI: 10.1007/s11030-024-11075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025]
Abstract
SH2 (Src Homology 2) domains play a crucial role in phosphotyrosine-mediated signaling and have emerged as promising drug targets, particularly in cancer therapy. STAT3 (Signal Transducer and Activator of Transcription 3), which contains an SH2 domain, plays a pivotal role in cancer progression and immune evasion because it facilitates the dimerization of STAT3, which is essential for their activation and subsequent nuclear translocation. SH2 domain-mediated STAT3 inhibition disrupts this binding, reduces phosphorylation of STAT3, and impairs dimerization. This study employed an in silico approach to screen potential natural compounds that could target the SH2 domain of STAT3 and inhibit its function. The phytomolecules (182455) were retrieved from the ZINC 15 database and were docked using various modes like HTVS, SP, and XP. The phytomolecules exhibiting higher binding affinity were selected. MM-GBSA was performed to determine binding free energy, and the QikProp tool was utilized to assess the pharmacokinetic properties of potential hit compounds, narrowing down the list of candidates. Molecular dynamics simulations, thermal MM-GBSA, and WaterMap analysis were performed on compounds that exhibited favorable binding affinities and pharmacokinetic characteristics. Based on docking scores and binding interactions, ZINC255200449, ZINC299817570, ZINC31167114, and ZINC67910988 were identified as potential STAT3 inhibitors. ZINC67910988 demonstrated superior stability in molecular dynamics simulation and WaterMap analysis. Furthermore, DFT was performed to determine energetic and electronic properties, and HOMO and LUMO sites were predicted for electronic structure calculation. Additionally, network pharmacology was performed to map the compounds' interactions within biological networks, highlighting their multitarget potential. Compound-target networks elucidate the relationships between compounds and multiple targets, along with their associated pathways and help to minimize off-target effects. The identified lead compound showed strong potential as a STAT3 inhibitor, warranting further validation through in vitro and in vivo studies.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - B Harish Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Raksha Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Samyak Pandey
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar, 844102, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.
| |
Collapse
|
32
|
Wang Y, Zhang J, Wu X, Huang L, Xiao W, Guo C. The Potential of PARP Inhibitors as Antitumor Drugs and the Perspective of Molecular Design. J Med Chem 2025; 68:18-48. [PMID: 39723587 DOI: 10.1021/acs.jmedchem.4c02642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
PARP (poly-ADP ribose polymerase) has received widespread attention in cancer treatment. Research has shown that PARP plays a crucial role in DNA damage repair and has become a popular target for drug design. Based on the mechanism of "synthetic lethality", multiple PARPis (PARP inhibitors) have been launched for the treatment of BRCA deficient tumors. For example, the approved PARPis have shown significant potential in cancer treatment, particularly in breast cancer and cancers associated with BRCA1/BRCA2 deficiencies. However, the clinical efficacy and safety of PARP inhibitors in different cancers remain issues that cannot be overlooked. The design of PARPis aims to eliminate their resistance and broaden their application scope. Designing selective PARP-1 inhibitors is also a potential strategy. PROTACs (Proteolysis Targeting Chimeras) to degrade PARP have become a potential novel cancer treatment strategy.
Collapse
Affiliation(s)
- Yinghan Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jingtao Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Longjiang Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenjing Xiao
- Department of Radiation Therapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
33
|
Liu Y, Li C, Deng W. Uncovering the Heterogeneity of Signaling Pathways in Skin Cutaneous Melanoma: Insights into Prognostic Values and Immune Interactions. Clin Cosmet Investig Dermatol 2025; 18:47-59. [PMID: 39802668 PMCID: PMC11725243 DOI: 10.2147/ccid.s500654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Background Signaling pathways play crucial roles in tumor cells. However, functional heterogeneity of signaling pathways in skin cutaneous melanoma (SKCM) has not been established. Methods Based on a recent computational pipeline, pathway activities between SKCM and normal samples were identified. Results The results showed that high activities in 12 pathways were associated with poor prognoses, while high activities in 17 pathways were associated with favorable prognoses. Interestingly, elevated metabolic pathway activity was unfavorable, whereas elevated immune activity was favorable for SKCM. Unfavorably elevated metabolic pathways strongly correlated with Wnt/beta-catenin signaling. Conversely, favorable pathways, such as glycosaminoglycan biosynthesis and keratan sulfate, were strongly correlated with anti-tumor pathways. Moreover, the activities of favorable pathways were strongly positively correlated with infiltrating CD8+ T cells, macrophages M1, immune score, and stromal score, all of which were favorable for SKCM. Conclusion Taken together, our study provides insights into the characteristics of several pathways in SKCM.
Collapse
Affiliation(s)
- Yufang Liu
- Department of Dermatology and Venereology, Fuyang People’s Hospital, Fuyang, Anhui, 236000, People’s Republic of China
| | - Chunyan Li
- Department of Dermatology and Venereology, Dermatology Hospital of Southern Medical University, Department of Dermatology, Guangzhou, People’s Republic of China
| | - Weiwei Deng
- Department of Dermatology and Venereology, Dermatology Hospital of Southern Medical University, Department of Dermatology, Guangzhou, People’s Republic of China
| |
Collapse
|
34
|
Sun L, Lu T, Jiang L, Yao H, Xu Q, Sun J, Yang X, He S, Zhu X. ALDOA contributes to colorectal tumorigenesis and metastasis by targeting YAP. Cell Death Discov 2025; 10:489. [PMID: 39755705 DOI: 10.1038/s41420-024-02249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 01/06/2025] Open
Abstract
Metabolic reprogramming is considered one of the hallmarks of cancer in which cancer cells reprogram some of their metabolic cascades, mostly driven by the specific chemical microenvironment in cancer tissues. The altered metabolic pathways are increasingly being considered as potential targets for cancer therapy. In this view, Aldolase A (ALDOA), a key glycolytic enzyme, has been validated as a candidate oncogene in several cancers. The current study aimed to investigate the role of ALDOA in the initiation and development of colorectal cancer (CRC). In this study, we observed an elevated expression of ALDOA in human CRC tissues and a positive correlation of elevated ALDOA expression with tumor size, invasion depth, LNM, and TNM stage. Kaplan-Meier analysis revealed that elevated ALDOA levels correlated with a poor prognosis in CRC patients with stage I-III, whereas the prognosis tends to be favorable in patients with advanced CRC. In addition, loss of function and gain of function experiments showed that ALDOA promoted CRC cell proliferation and migration in vitro and in vivo. Mechanistically, high ALDOA expression inhibited AMP-activated protein kinase (AMPK) phosphorylation possibly through regulating cellular glycolysis or the formation of v-ATPase-regulator-AXIN/LKB1 complex, which led to Yes-associated protein (YAP) unphosphorylation and enhanced the proliferative and migratory potential of CRC cells. Finally, the positive correlation between ALDOA and YAP signaling was also confirmed in clinical CRC tissues and the public data. Herein, ALDOA was identified to be a new metabolic regulator of YAP that suppresses the activation of AMPK signaling. This could suggest a novel avenue for treating CRC by inhibiting both ALDOA and YAP signaling.
Collapse
Affiliation(s)
- Liang Sun
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ting Lu
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Linhua Jiang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huihui Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qixuan Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Sun
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoqin Yang
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
35
|
Gao X, Lin Y, Zhang J, Jiang X, Wu R, Zhong D. Causal Effects of Valine on Ovarian Cancer: A Bidirectional Mendelian Randomization Analysis. Nutr Cancer 2025; 77:405-413. [PMID: 39745021 DOI: 10.1080/01635581.2024.2445870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/21/2025]
Abstract
BACKGROUND Ovarian cancer is a lethal female cancer with a rising incidence that is often diagnosed late due to a lack of symptoms, affecting survival and quality of life. Studies suggest that dietary factors, especially the levels of branched-chain amino acids such as valine, may influence its development. While valine is essential for metabolism, its specific role in ovarian cancer remains unclear, necessitating further research. METHODS This study aimed to elucidate the causal relationship between valine and OC through a bidirectional Mendelian randomization (MR) approach. Data were sourced from the IEU OpenGWAS project, encompassing genome-wide association statistics for valine (N = 115,048) and OC (Ncase = 1,218, Ncontrol = 198,523) among European participants. Independent genetic variants associated with each phenotype at genome-wide significance were employed as instrumental variables (IVs). The primary analysis utilized the inverse variance weighted (IVW) method for two-sample MR analysis. MR‒Egger regression was applied to adjust for potential pleiotropy, whereas the weighted median method provided robust causal estimates under the assumption of valid IVs. Sensitivity analyses, including leave-one-out (LOO) analysis, heterogeneity tests, and horizontal pleiotropy assessments, were conducted to ensure the robustness of the findings. RESULTS The results revealed a significant causal relationship between valine and OC, identifying valine as a risk factor for OC (p = 0.043, 95% CI = 1.00008-1.00491, OR = 1.00249) in the forward MR analysis. Sensitivity analyses confirmed the absence of heterogeneity (Q_p value >0.05) and horizontal pleiotropy (p > 0.05), and LOO analysis validated the stability of the results. Conversely, reverse MR analysis revealed no causal effect of OC on valine levels (p = 0.875, 95% CI = 0.34125-2.51495, OR = 1.08528). CONCLUSIONS These findings reveal a causal link between high valine levels and an increased OC risk. This research highlights the monitoring of valine levels as a preventive strategy and the significance of valine metabolism in OC. Future studies are needed to investigate the mechanisms and interventions for reducing risk, offering insights for clinical practice and public health initiatives in OC prevention.
Collapse
Affiliation(s)
- Xinyan Gao
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yanling Lin
- Department of Obstetrics and Gynecology, Fujian Provincial Hospital, Clinical Medical School of Fujian Medical University, Fuzhou, Fujian, China
| | - Jun Zhang
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaoxiang Jiang
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Riping Wu
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Dongta Zhong
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
36
|
Sokei J, Kanefsky J, Sykes SM. Reprogramming of Fatty Acid Metabolism in Acute Leukemia. J Cell Physiol 2025; 240:e70000. [PMID: 39835485 DOI: 10.1002/jcp.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Fatty acids are essential biomolecules that support several cellular processes, such as membrane structures, energy storage and production, as well as signal transduction. Accordingly, changes in fatty acid metabolism can have a significant impact on cell behavior, such as growth, survival, proliferation, differentiation, and motility. Therefore, it is not surprising that many aspects of fatty acid metabolism are frequently dysregulated in human cancer, including in highly aggressive blood cancers such as acute leukemia. The aims of this review are to summarize the aspects of fatty acid metabolism that are specifically coopted in acute leukemia as well as current preclinical strategies for targeting fatty acid metabolism in these cancers.
Collapse
Affiliation(s)
- Judith Sokei
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University in Saint Louis, St. Louis, Missouri, USA
| | - Joice Kanefsky
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University Health System, Philadelphia, Pennsylvania, USA
| | - Stephen M Sykes
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University in Saint Louis, St. Louis, Missouri, USA
| |
Collapse
|
37
|
Tian F, Lv L, Liu Z, Guan S, Jiang F, Wang Q, Kalvakolanu DV, Jiang S, Sun W. Low Expression of GRIM-19 Correlates with Poor Prognosis in Patients with Upper Urinary Tract Urothelial Carcinoma. Curr Cancer Drug Targets 2025; 25:401-411. [PMID: 38847244 DOI: 10.2174/0115680096299093240516163839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2025]
Abstract
PURPOSE This study aimed to clarify the expression of a gene associated with Retinoid- Interferon-Induced Mortality-19 (GRIM-19) in Upper Urinary Tract Urothelial Carcinoma (UUTUC) and its prognostic significance for UUTUC patients. MATERIALS AND METHODS Immunohistochemical (IHC) staining was used to determine the GRIM-19 expression in 70 paired samples. Progression-Free Survival (PFS) and Cancer-Specific Survival (CSS) were assessed using the Kaplan-Meier method. The independent prognostic factors for PFS and CSS were analyzed by multivariable Cox regression models. RESULTS IHC staining showed that GRIM-19 expression was significantly decreased in UUTUC, and its cellular location changed from being both cytoplasmic and nuclear to only cytoplasmic. Kaplan- Meier analysis revealed that the patients with tumors expressing low GRIM-19 had a significantly higher risk for tumor progression (P = 0.002) and cancer-specific mortality (P < 0.001) compared to those with high GRIM-19 levels. The Cox regression showed that both GRIM-19 expression (P = 0.025) and lymph node metastasis (LN) (P = 0.007) were independent predictors of progression in the muscle-invasive (MIC) subgroup. GRIM-19 expressions (entire cohort: P = 0.011; MIC subgroup: P = 0.025), LN (entire cohort: P = 0.019; MIC subgroup: P = 0.007), and progression (entire cohort: P < 0.001; MIC subgroup: P < 0.001) were independent predictors of cancer-specific survival. CONCLUSION Low expression of GRIM-19 in patients with UUTUC had significantly shorter PFS or CSS compared to those with high GRIM-19-expressing tumors. High GRIM-19 expression was also strongly associated with longer PFS in MIC patients. It indicates that GRIM-19 might serve as a promising prognostic biomarker for UUTUC patients.
Collapse
Affiliation(s)
- Feng Tian
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Long Lv
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Zonglin Liu
- Department of Urology, Anshan Tumor Hospital, Anshan, 114000, Liaoning, China
| | - Sheng Guan
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Fengze Jiang
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Qi Wang
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Dhan V Kalvakolanu
- Department of Microbiology and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD21201, USA
| | - Sixiong Jiang
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Weibing Sun
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| |
Collapse
|
38
|
Din ZU, Cui B, Wang C, Zhang X, Mehmood A, Peng F, Liu Q. Crosstalk between lipid metabolism and EMT: emerging mechanisms and cancer therapy. Mol Cell Biochem 2025; 480:103-118. [PMID: 38622439 DOI: 10.1007/s11010-024-04995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Lipids are the key component of all membranes composed of a variety of molecules that transduce intracellular signaling and provide energy to the cells in the absence of nutrients. Alteration in lipid metabolism is a major factor for cancer heterogeneity and a newly identified cancer hallmark. Reprogramming of lipid metabolism affects the diverse cancer phenotypes, especially epithelial-mesenchymal transition (EMT). EMT activation is considered to be an essential step for tumor metastasis, which exhibits a crucial role in the biological processes including development, wound healing, and stem cell maintenance, and has been widely reported to contribute pathologically to cancer progression. Altered lipid metabolism triggers EMT and activates multiple EMT-associated oncogenic pathways. Although the role of lipid metabolism-induced EMT in tumorigenesis is an attractive field of research, there are still significant gaps in understanding the underlying mechanisms and the precise contributions of this interplay. Further study is needed to clarify the specific molecular mechanisms driving the crosstalk between lipid metabolism and EMT, as well as to determine the potential therapeutic implications. The increased dependency of tumor cells on lipid metabolism represents a novel therapeutic target, and targeting altered lipid metabolism holds promise as a strategy to suppress EMT and ultimately inhibit metastasis.
Collapse
Affiliation(s)
- Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, China
| | - Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China.
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
39
|
Wei J, Lei G, Chen Q, Huang W, Ning H, Yang M, Dong J, Hu L, Peng S, Gong H, Yuan M, Yuan P. Casticin inhibits proliferation of Non-small cell lung cancer cells through regulating reprogramming of glucose metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156278. [PMID: 39647464 DOI: 10.1016/j.phymed.2024.156278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, with poor prognosis due to its rapid progression and resistance to existing therapies. Metabolic reprogramming, particularly alterations in glucose metabolism, is a key mechanism underlying tumor growth and progression, providing potential targets for novel therapeutic strategies. Casticin (CAS), a bioactive flavonoid, has shown anticancer effects in various cancers, but its specific role in NSCLC metabolism remains unclear. PURPOSE This study aims to investigate the effects of casticin on the proliferation and glucose metabolism of NSCLC cells, and to explore its underlying mechanisms. STUDY DESIGN AND METHODS We used both in vitro and in vivo models. (18)F-FDG PET/MR imaging was employed to assess the impact of casticin on glucose metabolism in A549 xenograft mice. NSCLC cell lines (A549 and H157) were treated with casticin to evaluate its effects on cell viability, glycolysis, oxidative phosphorylation, and fatty acid oxidation. Key metabolic enzyme expressions were analyzed using molecular detection techniques, and in vivo validation was performed using a subcutaneous xenograft mouse model. RESULTS Casticin significantly inhibited glucose metabolism and cell proliferation in a dose-dependent manner, while promoting oxidative phosphorylation without affecting lipid metabolism. The drug suppressed glycolysis by downregulating the expression of key glycolytic enzymes (GLUT1, HK2, GPI, ALDOA, ENO2, PKM2, and MCT4) through the regulation of HIF-1α. Overexpression of HIF-1α in both in vitro and in vivo models reversed the inhibitory effects of casticin, indicating that HIF-1α plays a central role in its mechanism of action. CONCLUSION Casticin inhibits NSCLC cell proliferation by suppressing glycolytic reprogramming via HIF-1α regulation. These findings highlight the potential of casticin as an anticancer therapeutic, particularly in targeting glucose metabolism in NSCLC.
Collapse
Affiliation(s)
- Jingyi Wei
- Department of nuclear medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China; Shaanxi University of Chinese Medicine, Shaanxi Xianyang 710046, PR China
| | - Guangyan Lei
- Department of thoracic surgery, Tumor Hospital of Shaanxi Province, Xi'an, Shaanxi 710061, PR China
| | - Qiang Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, PR China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, PR China
| | - Wen Huang
- Department of nuclear medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China; Medical School of Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Hui Ning
- Shaanxi University of Chinese Medicine, Shaanxi Xianyang 710046, PR China
| | - Meng Yang
- Shaanxi University of Chinese Medicine, Shaanxi Xianyang 710046, PR China
| | - Jiaqi Dong
- Shaanxi University of Chinese Medicine, Shaanxi Xianyang 710046, PR China
| | - Longquan Hu
- Department of nuclear medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China
| | - Shujia Peng
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China
| | - Hui Gong
- Department of nuclear medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China; Hospital of Unit 94162, Air Force of the CPLA, Xi'an, Shaanxi 710613, PR China
| | - Menghui Yuan
- Department of nuclear medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China.
| | - Peng Yuan
- Department of nuclear medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China.
| |
Collapse
|
40
|
Zhou L, Liu J, Yao P, Liu X, Chen F, Chen Y, Zhou L, Shen C, Zhou Y, Du X, Hu J. Spatial transcriptomics reveals unique metabolic profile and key oncogenic regulators of cervical squamous cell carcinoma. J Transl Med 2024; 22:1163. [PMID: 39741285 DOI: 10.1186/s12967-024-06011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND As a prevalent and deadly malignant tumor, the treatment outcomes for late-stage patients with cervical squamous cell carcinoma (CSCC) are often suboptimal. Previous studies have shown that tumor progression is closely related with tumor metabolism and microenvironment reshaping, with disruptions in energy metabolism playing a critical role in this process. To delve deeper into the understanding of CSCC development, our research focused on analyzing the tumor microenvironment and metabolic characteristics across different regions of tumor tissue. METHODS Utilizing spatial transcriptomics (ST) sequencing technology, we conducted a study on FFPE (formalin-fixed paraffin-embedded) tumor samples from CSCC patients. Coupled with single-cell RNA sequencing (scRNA-seq) data after deconvolution, we described spatial distribution maps of tumor leading edge and core regions in detail. Tumor tissues were classified into hypermetabolic and hypometabolic regions to analyze the metabolism profiles and tumor differentiation degree across different spatial areas. We also employed The Cancer Genome Atlas (TCGA) database to examine the analysis results of ST data. RESULTS Our findings indicated a more complex tumor microenvironment in hypermetabolic regions. Cell-cell communication analysis showed that various cells in tumor microenvironment were influenced by the signalling molecule APP released by cancer cells and higher expression of APP was observed in hypermetabolic regions. Furthermore, our results revealed the correlation between APP and the transcription factor TRPS1. Both APP and TRPS1 demonstrated significant effects on cancer cell proliferation, migration, and invasion, potentially contributing to tumor progression. CONCLUSIONS Utilizing ST, scRNA-seq, and TCGA database, we examined the spatial metabolic profiles of CSCC tissues, including metabolism distribution, metabolic variations, and the relationship between metabolism and tumor differentiation degree. Additionally, potential cancer-promoting factors were proposed, offering a valuable foundation for the development of more effective treatment strategies for CSCC.
Collapse
Affiliation(s)
- Limin Zhou
- Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430070, China
| | - Jiejie Liu
- State Key Laboratory of Virology, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Peipei Yao
- Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Xing Liu
- State Key Laboratory of Virology, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Fei Chen
- Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Yu Chen
- State Key Laboratory of Virology, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Li Zhou
- Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Chao Shen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province, 430072, China.
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK.
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| | - Xin Du
- Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430070, China.
| | - Junbo Hu
- Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
41
|
Zhu W, Fu M, Li Q, Chen X, Liu Y, Li X, Luo N, Tang W, Zhang Q, Yang F, Chen Z, Zhang Y, Peng B, Zhang Q, Zhang Y, Peng X, Hu G. Amino acid metabolism-related genes as potential biomarkers and the role of MATN3 in stomach adenocarcinoma: A bioinformatics, mendelian randomization and experimental validation study. Int Immunopharmacol 2024; 143:113253. [PMID: 39353384 DOI: 10.1016/j.intimp.2024.113253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is a major contributor to cancer-related mortality worldwide. Alterations in amino acid metabolism, which is integral to protein synthesis, have been observed across various tumor types. However, the prognostic significance of amino acid metabolism-related genes in STAD remains underexplored. METHODS Transcriptomic gene expression and clinical data for STAD patients were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Amino acid metabolism-related gene sets were sourced from the Gene Set Enrichment Analysis (GSEA) database. A prognostic model was built using LASSO Cox regression based on the TCGA cohort and validated with GEO datasets (GSE84433, GSE84437, GSE84426). Kaplan-Meier analysis compared overall survival (OS) between high- and low-risk groups, and ROC curves assessed model accuracy. A nomogram predicted 1-, 3-, and 5-year survival. Copy number variations (CNVs) in model genes were visualized using data from the Xena platform, and mutation profiles were analyzed with "maftools" to create a waterfall plot. KEGG and GO enrichment analyses were performed to explore biological mechanisms. Immune infiltration and related functions were evaluated via ssGSEA, and Spearman correlation analyzed associations between risk scores and immune components. The TIDE database predicted immunotherapy efficacy, while FDA-approved drug sensitivity was assessed through CellMiner database. The role of MATN3 in STAD was further examined in vitro and in vivo, including amino acid-targeted metabolomic sequencing to assess its impact on metabolism. Finally, Mendelian randomization (MR) analysis evaluated the causal relationship between the model genes and gastric cancer. RESULTS In this study, we developed a prognostic risk model for STAD based on three amino acid metabolism-related genes (SERPINE1, NRP1, MATN3) using LASSO regression analysis. CNV amplification was common in SERPINE1 and NRP1, while CNV deletion frequently occurred in MATN3. STAD patients were classified into high- and low-risk groups based on the median risk score, with the high-risk group showing worse prognosis. A nomogram incorporating the risk score and clinical factors was created to estimate 1-, 3-, and 5-year survival rates. Distinct mutation profiles were observed between risk groups, with KEGG pathway analysis showing immune-related pathways enriched in the high-risk group. High-risk scores were significantly associated with the C6 (TGF-β dominant) subtype, while low-risk scores correlated with the C4 (lymphocyte-depleted) subtype. Higher risk scores also indicated increased immune infiltration, enhanced immune functions, lower tumor purity, and poorer immunotherapy response. Model genes were linked to anticancer drug sensitivity. Manipulating MATN3 expression showed that it promoted STAD cell proliferation and migration in vitro and tumor growth in vivo. Metabolomic sequencing revealed that MATN3 knockdown elevated levels of 30 amino acid metabolites, including alpha-aminobutyric acid, glycine, and aspartic acid, while reducing (S)-β-Aminoisobutyric acid and argininosuccinic acid. MR analysis found a significant causal effect of NRP1 on gastric cancer, but no causal relationship for MATN3 or SERPINE1. CONCLUSION In conclusion, the amino acid metabolism-related prognostic model shows promise as a valuable biomarker for predicting the clinical prognosis, selecting immunotherapy and drug treatment for STAD patients. Furthermore, our study has shed light on the potential value of the MATN3 as a promising strategy for combating the progression of STAD.
Collapse
Affiliation(s)
- Wenjun Zhu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyu Li
- Department of Oncology, Hubei Cancer Hospital, Wuhan 430000, China
| | - Na Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenhua Tang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qing Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ziqi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiling Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bi Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiang Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanyuan Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaohong Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
42
|
Li W, Chen J, Guo Z. Targeting metabolic pathway enhance CAR-T potency for solid tumor. Int Immunopharmacol 2024; 143:113412. [PMID: 39454410 DOI: 10.1016/j.intimp.2024.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have great potential in cancer therapy, particularly in treating hematologic malignancies. However, their efficacy in solid tumors remains limited, with a significant proportion of patients failing to achieve long-term complete remission. One major challenge is the premature exhaustion of CAR-T cells, often due to insufficient metabolic energy. The survival, function and metabolic adaptation of CAR-T cells are key determinants of their therapeutic efficacy. We explore how targeting metabolic pathways in the tumor microenvironment can enhance CAR-T cell therapy by addressing metabolic competition and immunosuppression that impair CAR-T cell function. Tumors undergo metabolically reprogrammed to meet their rapid proliferation, thereby modulating metabolic pathways in immune cells to promote immunosuppression. The distinct metabolic requirements of tumors and T cells create a competitive environment, affecting the efficacy of CAR-T cell therapy. Recent research on glucose, lipid and amino acid metabolism, along with the interactions between tumor and immune cell metabolism, has revealed that targeting these metabolic processes can enhance antitumor immune responses. Combining metabolic interventions with existing antitumor therapies can fulfill the metabolic demands of immune cells, providing new ideas for tumor immunometabolic therapies. This review discusses the latest advances in the immunometabolic mechanisms underlying tumor immunosuppression, their implications for immunotherapy, and summarizes potential metabolic targets to improve the efficacy of CAR-T therapy.
Collapse
Affiliation(s)
- Wenying Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jiannan Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
43
|
Uijttewaal ECH, Lee J, Sell AC, Botay N, Vainorius G, Novatchkova M, Baar J, Yang J, Potzler T, van der Leij S, Lowden C, Sinner J, Elewaut A, Gavrilovic M, Obenauf A, Schramek D, Elling U. CRISPR-StAR enables high-resolution genetic screening in complex in vivo models. Nat Biotechnol 2024:10.1038/s41587-024-02512-9. [PMID: 39681701 DOI: 10.1038/s41587-024-02512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Pooled genetic screening with CRISPR-Cas9 has enabled genome-wide, high-resolution mapping of genes to phenotypes, but assessing the effect of a given genetic perturbation requires evaluation of each single guide RNA (sgRNA) in hundreds of cells to counter stochastic genetic drift and obtain robust results. However, resolution is limited in complex, heterogeneous models, such as organoids or tumors transplanted into mice, because achieving sufficient representation requires impractical scaling. This is due to bottleneck effects and biological heterogeneity of cell populations. Here we introduce CRISPR-StAR, a screening method that uses internal controls generated by activating sgRNAs in only half the progeny of each cell subsequent to re-expansion of the cell clone. Our method overcomes both intrinsic and extrinsic heterogeneity as well as genetic drift in bottlenecks by generating clonal, single-cell-derived intrinsic controls. We use CRISPR-StAR to identify in-vivo-specific genetic dependencies in a genome-wide screen in mouse melanoma. Benchmarking against conventional screening demonstrates the improved data quality provided by this technology.
Collapse
Affiliation(s)
- Esther C H Uijttewaal
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Joonsun Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Annika Charlotte Sell
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Naomi Botay
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Gintautas Vainorius
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, Vienna BioCenter (VBC), Vienna, Austria
| | - Juliane Baar
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Jiaye Yang
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Tobias Potzler
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Sophie van der Leij
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Christopher Lowden
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Julia Sinner
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Anais Elewaut
- Vienna BioCenter PhD Program, University of Vienna and Medical University of Vienna, Vienna, Austria
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, Vienna BioCenter (VBC), Vienna, Austria
| | - Milanka Gavrilovic
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Anna Obenauf
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, Vienna BioCenter (VBC), Vienna, Austria
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria.
- Viverita Discovery, Vienna, Austria.
| |
Collapse
|
44
|
Mukherjee S, Pereboeva L, Fil D, Saikia A, Lee J, Li J, Cotticelli MG, Soragni E, Wilson RB, Napierala M, Napierala JS. Design and validation of cell-based potency assays for frataxin supplementation treatments. Mol Ther Methods Clin Dev 2024; 32:101347. [PMID: 39823061 PMCID: PMC11735916 DOI: 10.1016/j.omtm.2024.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/24/2024] [Indexed: 01/19/2025]
Abstract
Friedreich's ataxia (FRDA) is a multisystem, autosomal recessive disorder caused by mutations in the frataxin (FXN) gene. As FRDA is considered an FXN deficiency disorder, numerous therapeutic approaches in development or clinical trials aim to supplement FXN or restore endogenous FXN expression. These include gene therapy, protein supplementation, genome editing or upregulation of FXN transcription. To evaluate efficacy of these therapies, potency assays capable of quantitative determination of FXN biological activity are needed. Herein, we evaluate the suitability of mouse embryonic fibroblasts derived from Fxn G127V knockin mice (MUT MEFs) as a candidate for cell-based potency assays. We demonstrate that these cells, when immortalized, continue to express minute amounts of Fxn and exhibit a broad range of phenotypes that result from severe Fxn deficiency. Exogenous FXN supplementation reverses these phenotypes. Thus, immortalized MUT MEFs are an excellent tool for developing potency assays to validate novel FRDA therapies. Care needs to be exercised while utilizing these cell lines, as extended passaging results in molecular changes that spontaneously reverse FRDA-like phenotypes without increasing Fxn expression. Based on transcriptome analyses, we identified the Warburg effect as the mechanism allowing cells expressing a minimal level of Fxn to thrive under standard cell culture conditions.
Collapse
Affiliation(s)
- Shibani Mukherjee
- Department of Neurology, O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Larisa Pereboeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Daniel Fil
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Achisha Saikia
- Department of Neurology, O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jixue Li
- Department of Neurology, O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - M. Grazia Cotticelli
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elisabetta Soragni
- Friedreich’s Ataxia Research Alliance, 533 W. Uwchlan Avenue, Downingtown, PA 19335, USA
| | - Robert B. Wilson
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Marek Napierala
- Department of Neurology, O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jill S. Napierala
- Department of Neurology, O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
45
|
Cecchetti S, Federici C, Canese R, Iorio E, Huber V, Pisanu ME, Chirico M, Iessi E, Camerini S, Casella M, Matteucci A, Macchia D, Spada M, Lugini L. NK cells-derived extracellular vesicles potency in the B cell lymphoma biotherapy. Front Immunol 2024; 15:1503857. [PMID: 39712029 PMCID: PMC11659271 DOI: 10.3389/fimmu.2024.1503857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Extracellular vesicles of Natural Killer cells (NKEV) exert an antitumor effect towards hematopoietic and solid tumors and have an immune modulating effect, suggesting a promising role in immune and biotherapy. In this study, a continuation of our former works, we demonstrated a network by mass spectrometry analysis between NKEV protein cargo and antitumor effects. Human healthy NKEV, both exosomes and microvesicles, have a significant and direct cytotoxic effect against human B cell lymphoma in in vitro and in vivo conditions. Methods We isolated extracellular vesicles from in vitro amplified healthy human NK cells and their treatment efficacy was monitored by cytometry analyses, in vivo MRI/MRS measurements, ex vivo MRS analyses and immunohistochemistry. Results We observed a remarkable NKEV cytotoxic effect, mainly by apoptosis, on B cell lymphoma in vitro when exosomes and microvesicles were administered simultaneously. In vivo results showed metabolic alterations in SCID mice xenografts after NKEV treatment, associated with a significant reduction of tumor growth (64%). In the in vivo 1H MR spectra we found a significant increase in the tumor lipid/lactate and in taurine signals, both considered as apotosis markers. Ex vivo lymphoma metabolomics revealed a significant increase in fatty acid (FA) pool and decrease in unsaturated and mono-unsaturated FA in treated groups, as compared to control one, thus suggesting an alteration of tumor homeostasis. Immunohistochemistry analyses confirmed the reduction of B-cell lymphoma proliferation rate, as well as the induction of apoptosis following the NKEV treatment. Conclusions This study underscore the importance of NKEV as a novel biological acellular tool for B-cell lymphoma treatment, probably having a greater effect on combined treatment regimens. These nanovesicles have an extraordinary potential in innovative cancer immunotherapy, representing a safe and efficient tool naturally circulating in healthy individuals and ready to maintain the immune homeostasis, and therefore a good organism healthy state.
Collapse
Affiliation(s)
- Serena Cecchetti
- Core Facilities, Confocal Microscopy Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Cristina Federici
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Canese
- Core Facilities, MRI and HR-NMR Units, Istituto Superiore di Sanità, Rome, Italy
| | - Egidio Iorio
- Core Facilities, MRI and HR-NMR Units, Istituto Superiore di Sanità, Rome, Italy
| | - Veronica Huber
- Unit of Immunotherapy of human tumors, Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Elena Pisanu
- Core Facilities, MRI and HR-NMR Units, Istituto Superiore di Sanità, Rome, Italy
| | - Mattea Chirico
- Core Facilities, MRI and HR-NMR Units, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Iessi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Camerini
- Core Facilities, Mass Spectrometry Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Marialuisa Casella
- Core Facilities, Mass Spectrometry Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Matteucci
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Macchia
- Centre for Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- Centre for Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Luana Lugini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
46
|
Luan H, Chen S, Lian J, Zhao B, Xu X, Chen Y, Yang Y, Jiang Z, Qi M, Liu J, Zhang W, Luan T, Hong X. Biofluorescence imaging-guided spatial metabolic tracing: In vivo tracking of metabolic activity in circulating tumor cell-mediated multi-organ metastases. Talanta 2024; 280:126696. [PMID: 39137660 DOI: 10.1016/j.talanta.2024.126696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Circulating tumor cells (CTC) are considered metastatic precursors that are shed from the primary or metastatic deposits and navigate the bloodstream before undergoing extravasation to establish distant metastases. Metabolic reprogramming appears to be a hallmark of metastatic progression, yet current methods for evaluating metabolic heterogeneity within organ-specific metastases in vivo are limited. To overcome this challenge, we present Biofluorescence Imaging-Guided Spatial Metabolic Tracing (BIGSMT), a novel approach integrating in vivo biofluorescence imaging, stable isotope tracing, stain-free laser capture microdissection, and liquid chromatography-mass spectrometry. This innovative technology obviates the need for staining or intricate sample preparation, mitigating metabolite loss, and substantially enhances detection sensitivity and accuracy through chemical derivatization of polar metabolites in central carbon pathways. Application of BIGSMT to a preclinical CTC-mediated metastasis mouse model revealed significant heterogeneity in the in vivo carbon flux from glucose into glycolysis and the tricarboxylic acid (TCA) cycle across distinct metastatic sites. Our analysis indicates that carbon predominantly enters the TCA cycle through the enzymatic reaction catalyzed by pyruvate dehydrogenase. Thus, our spatially resolved BIGSMT technology provides fresh insights into the metabolic heterogeneity and evolution during melanoma CTC-mediated metastatic progression and points to novel therapeutic opportunities.
Collapse
Affiliation(s)
- Hemi Luan
- Department of Biomedical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
| | - Shuailong Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jingru Lian
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Boxi Zhao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaolong Xu
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yafei Chen
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yufang Yang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhuofeng Jiang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Min Qi
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jialing Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenyong Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529020, China.
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
47
|
Shahzad A, Liu W, Sun Y, Liu X, Xia J, Cui K, Sai B, Zhu Y, Yang Z, Zhang Q. Flavonoids as modulators of metabolic reprogramming in renal cell carcinoma (Review). Oncol Rep 2024; 52:167. [PMID: 39422066 PMCID: PMC11526433 DOI: 10.3892/or.2024.8826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Renal cell carcinoma (RCC) is distinguished by its varied metabolic reprogramming driven by tumor suppressor gene dysregulation and oncogene activation. Tumors can adapt nutrient uptake and metabolism pathways to meet the altered biosynthetic, bioenergetic and redox demands of cancer cells, whereas conventional chemotherapeutics and molecular inhibitors predominantly target individual metabolic pathways without addressing this adaptability. Flavonoids, which are well‑known for their antioxidant and anti‑inflammatory properties, offer a unique approach by influencing multiple metabolic targets. The present comprehensive review reveals the intricate processes of RCC metabolic reprogramming, encompassing glycolysis, mitochondrial oxidative phosphorylation and fatty acid biosynthesis. The insights derived from the present review may contribute to the understanding of the specific anticancer mechanisms of flavonoids, potentially paving the way for the development of natural antitumor drugs focused on the metabolic reprogramming of RCC.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
48
|
Fan B, Zhang Y, Zhou L, Xie Z, Liu J, Zhang C, Dou C. LYRM2 Promotes the Growth and Metastasis of Hepatocellular Carcinoma via Enhancing HIF-1α-Dependent Glucose Metabolic Reprogramming. J Cell Mol Med 2024; 28:e70241. [PMID: 39661026 PMCID: PMC11633053 DOI: 10.1111/jcmm.70241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a foetal malignancy with dismal overall survival. The molecular mechanism underlying the progression of HCC remain largely unknown. LYR motif containing 2 (LYRM2) has been identified as an oncogene in colorectal cancer; however, its expression, functions and molecular mechanism in the context of HCC has not been investigated. Data derived from The Cancer Gemome Atlas, along with findings from our patients' cohort, indicate that LYRM2 expression is elevated in HCC tissues and correlates with adverse clinicopathological features and prognosis in HCC patients. Subsequent research into the biological functions of LYRM2 has revealed that it promotes the proliferation, migration, invasion and epithelial-mesenchymal transition of HCC cells, both in vitro and in vivo. Mechanistic insights have shown that LYRM2 interacts with HIF-1α, enhancing the protein stability of HIF-1α, which in turn increases cellular glycolysis and inhibits mitochondrial respiration. Moreover, the glucose metabolic reprogramming mediated by LYRM2 is implicated in its role in promoting HCC growth and metastasis. Collectively, this study identifies that LYRM2 as a novel oncogenic protein in HCC and elucidates its contribution to HCC progression through enhancing HIF-1α-dependent glucose metabolic reprogramming.
Collapse
Affiliation(s)
- Bingfu Fan
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Graduate School of Bengbu Medical CollegeBengbuChina
| | - Yueqin Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Lu Zhou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Zhongchun Xie
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Graduate School of Bengbu Medical CollegeBengbuChina
| | - Jie Liu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Chengwu Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Changwei Dou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| |
Collapse
|
49
|
Liu P, Luo Y, Wu H, Han Y, Wang S, Liu R, Wen S, Huang P. HKDC1 functions as a glucose sensor and promotes metabolic adaptation and cancer growth via interaction with PHB2. Cell Death Differ 2024; 31:1595-1610. [PMID: 39375512 PMCID: PMC11618360 DOI: 10.1038/s41418-024-01392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
Glucose sensing and metabolic adaptation to glucose availability in the tumor microenvironment are critical for cancer development. Here we show that HKDC1, a hexokinase highly expressed in cancer associated with poor prognosis, functions as a glucose sensor that alters its stability in response to environmental glucose. The glucose-sensing domain is located between amino acids 751-917, with Ser896 as a key residue that regulates HKDC1 stability by affecting Lys620 ubiquitination. This sensing mechanism enables cellular adaptation to glucose starvation by promoting mitochondrial fatty acid utilization. Furthermore, HKDC1 promotes tumor growth by sequestering prohibitin 2 (PHB2) to disable its suppressive effect on SP1, thus promoting the expression of pro-oncogenic molecules. Abrogation of HKDC1 by genetic knockout or by glucose depletion releases PHB2, leading to suppression of cancer cell proliferation and inhibition of tumor growth. Our study reveals a previously unrecognized role of HKDC1 in glucose sensing and metabolic adaptation, and identifies HKDC1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Panpan Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Yao Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hongyu Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yi Han
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shoujie Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Rui Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Metabolic Research Platform, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
50
|
Yang S, Lin M, Hao S, Ye H, Zhang X. Current hotspots and trends in cancer metabolic reprogramming: a scientometric analysis. Front Immunol 2024; 15:1497461. [PMID: 39588377 PMCID: PMC11586341 DOI: 10.3389/fimmu.2024.1497461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 11/27/2024] Open
Abstract
Background Metabolic reprogramming (MR) in cancer (CA) has been a focus of intense research in the recent two decades. This phenomenon has attracted great interest because it offers potential targets for cancer therapy. To capture the intellectual landscape of this field, we conducted a bibliometric analysis to assess the scientific output, major contributors, and trends in the MR/CA research. Methods We performed a systematic search using the Web of Science to retrieve articles published on MR of cancer from 2006 until 2023. The bibliometric tools such as Biblioshiny, VOSviewer, and Microsoft Excel were used to identify the most prolific authors, institutions, citation patterns, and keywords. We also used co-citation analysis to map the conceptual structure of the field and identify influential publications. Furthermore, we examined the literature by analyzing publication years, citations, and research impact factors. Results A total of 4,465 publications about MR/CA were retrieved. Publications on MR/CA increased rapidly from 2006 to 2023. Frontiers in Oncology published the most papers, while Cell Metabolism had the most citations. Highly cited papers were mainly published in Cancer Cell, Nature, Cell, Science and Cell Metabolism. China and the United States led the way in publications and contributed the most to MR/CA research. The University of Texas System, Chinese Academy of Sciences, and Fudan University were the most productive institutions. The profitable authors were Deberardinis Ralph J and Chiarugi Paola. The current topics included MR in tumorigenesis and progression of CA, MR of tumor cells and tumor microenvironment, the effect of MR on the CA treatment, the underlying mechanisms of MR (such as gene regulation, epigenetics, extracellular vesicles, and gut microbiota), and the modulation of MR. Some topics such as tumor microenvironment, lipid MR, circular RNA, long noncoding RNA, exosome, prognostic model, and immunotherapy may be the focus of MR/CA research in the next few years. Conclusion This study evaluated the global scientific output in the field of MR/CA research, analyzing its quantitative characteristics. It identified some significant and distinguished papers and compiled information regarding the current status and evolving trends of MR/CA research.
Collapse
Affiliation(s)
- Shanshan Yang
- Traditional Chinese Medicine and Integrative Medicine Department, Peking University First Hospital, Beijing, China
| | - Miaomiao Lin
- Traditional Chinese Medicine and Integrative Medicine Department, Peking University First Hospital, Beijing, China
| | - Shaodong Hao
- Spleen and Stomach Disease Department, Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Ye
- Traditional Chinese Medicine and Integrative Medicine Department, Peking University First Hospital, Beijing, China
| | - Xuezhi Zhang
- Traditional Chinese Medicine and Integrative Medicine Department, Peking University First Hospital, Beijing, China
| |
Collapse
|