1
|
Yvan-Charvet L, Barouillet T, Borowczyk C. Haematometabolism rewiring in atherosclerotic cardiovascular disease. Nat Rev Cardiol 2025; 22:414-430. [PMID: 39743562 DOI: 10.1038/s41569-024-01108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 01/04/2025]
Abstract
Atherosclerotic cardiovascular diseases are the most frequent cause of death worldwide. The clinical complications of atherosclerosis are closely linked to the haematopoietic and immune systems, which maintain homeostatic functions and vital processes in the body. The nodes linking metabolism and inflammation are receiving increasing attention because they are inextricably linked to inflammatory manifestations of non-communicable diseases, including atherosclerosis. Although metabolism and inflammation are essential to survival and involve all tissues, we still know little about how these processes influence each other. In an effort to understand these mechanisms, in this Review we explore whether and how potent cardiovascular risk factors and metabolic modifiers of atherosclerosis influence the molecular and cellular machinery of 'haematometabolism' (metabolic-dependent haematopoietic stem cell skewing) and 'efferotabolism' (metabolic-dependent efferocyte reprogramming). These changes might ultimately propagate a quantitative and qualitative drift of the macrophage supply chain and affect the clinical manifestations of atherosclerosis. Refining our understanding of the different metabolic requirements of these processes could open the possibility of developing therapeutics targeting haematometabolism that, in conjunction with improved dietary habits, help rebalance and promote efficient haematopoiesis and efferocytosis and decrease the risk of atherosclerosis complications.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France.
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France.
| | - Thibault Barouillet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France
| | - Coraline Borowczyk
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France.
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France.
| |
Collapse
|
2
|
Shu M, Zhang J, Huang H, Chen Y, Shi Y, Zeng H, Shao L. Advances in the Regulation of Hematopoietic Homeostasis by Programmed Cell Death Under Radiation Conditions. Stem Cell Rev Rep 2025; 21:935-952. [PMID: 40056317 DOI: 10.1007/s12015-025-10863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
The application of nuclear energy and the frequent occurrence of nuclear contamination have made radiation safety a major challenge to global public health. As a radiation-sensitive target organ, bone marrow is susceptible to both acute and chronic damage effects of ionizing radiation on the hematopoietic system. Researchers have demonstrated that radiation disrupts hematopoietic homeostasis through direct damage to hematopoietic stem cells, which inhibits hematopoietic regeneration indirectly through damage to hematopoietic progenitor cells and their downstream cell populations. However, the multi-target regulatory mechanism of radiation perturbation of hematopoietic homeostasis remains to be systematically elucidated. Recent studies have revealed that, in addition to the classical apoptotic pathway, non-apoptotic programmed cell death modes (e.g. pyroptosis, necroptosis, and ferroptosis) may be involved in the regulation of radiation-induced hematopoietic injury. A systematic review of the roles of the aforementioned programmed death pathways was presented in radiation-damaged hematopoietic cells, with a view to providing a scientific basis for targeted intervention in radiation-induced myelosuppression.
Collapse
Affiliation(s)
- Manling Shu
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, P.R. China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China
| | - Jinfu Zhang
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, P.R. China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China
| | - Haocong Huang
- Department of Medicine, Jinggangshan University, Ji'an, 343000, P.R. China
| | - Yuxin Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China
| | - Yubing Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China.
- Basic Medical Experiment Center, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China.
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Lijian Shao
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, P.R. China.
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China.
| |
Collapse
|
3
|
Peng B, Wang Y, Zhang H. Mitonuclear Communication in Stem Cell Function. Cell Prolif 2025; 58:e13796. [PMID: 39726221 PMCID: PMC12099226 DOI: 10.1111/cpr.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Mitochondria perform multiple functions within the cell, including the production of ATP and a great deal of metabolic intermediates, while also contributing to the cellular stress response. The majority of mitochondrial proteins are encoded by nuclear genomes, highlighting the importance of mitonuclear communication for sustaining mitochondrial homeostasis and functional. As a crucial part of the intracellular signalling network, mitochondria can impact stem cell fate determinations. Considering the essential function of stem cells in tissue maintenance, regeneration and aging, it is important to understand how mitochondria influence stem cell fate. This review explores the significant roles of mitonuclear communication and mitochondrial proteostasis, highlighting their influence on stem cells. We also examine how mitonuclear interactions contribute to cellular homeostasis, stem cell therapies, and the potential for extending lifespan.
Collapse
Affiliation(s)
- Baozhou Peng
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- The Department of Histology and Embryology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yaning Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- The Department of Histology and Embryology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Hongbo Zhang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- The Department of Histology and Embryology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
4
|
Liao W, Zai X, Zhang J, Xu J. Hematopoietic stem cell state and fate in trained immunity. Cell Commun Signal 2025; 23:182. [PMID: 40229653 PMCID: PMC11995595 DOI: 10.1186/s12964-025-02192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/06/2025] [Indexed: 04/16/2025] Open
Abstract
Trained immunity serves as a de facto memory for innate immune responses, resulting in long-term functional reprogramming of innate immune cells. It enhances resistance to pathogens and augments immunosurveillance under physiological conditions. Given that innate immune cells typically have a short lifespan and do not divide, persistent innate immune memory may be mediated by epigenetic and metabolic changes in long-lived hematopoietic stem cells (HSCs) in the bone marrow. HSCs fine-tune their state and fate in various training conditions, thereby generating functionally adapted progeny cells that orchestrate innate immune plasticity. Notably, both beneficial and maladaptive trained immunity processes can comprehensively influence HSC state and fate, leading to divergent hematopoiesis and immune outcomes. However, the underlying mechanisms are still not fully understood. In this review, we summarize recent advances regarding HSC state and fate in the context of trained immunity. By elucidating the stem cell-intrinsic and extrinsic regulatory network, we aim to refine current models of innate immune memory and provide actionable insights for developing targeted therapies against infectious diseases and chronic inflammation. Furthermore, we propose a conceptual framework for engineering precision-trained immunity through HSC-targeted interventions.
Collapse
Affiliation(s)
- Weinian Liao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaodong Zai
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jun Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Junjie Xu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
5
|
Aoyama Y, Yamazaki H, Nishimura K, Nomura M, Shigehiro T, Suzuki T, Zang W, Tatara Y, Ito H, Hayashi Y, Koike Y, Fukumoto M, Tanaka A, Zhang Y, Saika W, Hasegawa C, Kasai S, Kong Y, Minakuchi Y, Itoh K, Yamamoto M, Toyokuni S, Toyoda A, Ikawa T, Takaori-Kondo A, Inoue D. Selenoprotein-mediated redox regulation shapes the cell fate of HSCs and mature lineages. Blood 2025; 145:1149-1163. [PMID: 39775457 PMCID: PMC11923430 DOI: 10.1182/blood.2024025402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
ABSTRACT The maintenance of cellular redox balance is crucial for cell survival and homeostasis and is disrupted with aging. Selenoproteins, comprising essential antioxidant enzymes, raise intriguing questions about their involvement in hematopoietic aging and potential reversibility. Motivated by our observation of messenger RNA downregulation of key antioxidant selenoproteins in aged human hematopoietic stem cells (HSCs) and previous findings of increased lipid peroxidation in aged hematopoiesis, we used selenocysteine transfer RNA (tRNASec) gene (Trsp) knockout (KO) mouse model to simulate disrupted selenoprotein synthesis. This revealed insights into the protective roles of selenoproteins in preserving HSC stemness and B-lineage maturation, despite negligible effects on myeloid cells. Notably, Trsp KO exhibited B lymphocytopenia and reduced HSCs' self-renewal capacity, recapitulating certain aspects of aged phenotypes, along with the upregulation of aging-related genes in both HSCs and pre-B cells. Although Trsp KO activated an antioxidant response transcription factor NRF2, we delineated a lineage-dependent phenotype driven by lipid peroxidation, which was exacerbated with aging yet ameliorated by ferroptosis inhibitors such as vitamin E. Interestingly, the myeloid genes were ectopically expressed in pre-B cells of Trsp KO mice, and KO pro-B/pre-B cells displayed differentiation potential toward functional CD11b+ fraction in the transplant model, suggesting that disrupted selenoprotein synthesis induces the potential of B-to-myeloid switch. Given the similarities between the KO model and aged wild-type mice, including ferroptosis vulnerability, impaired HSC self-renewal and B-lineage maturation, and characteristic lineage switch, our findings underscore the critical role of selenoprotein-mediated redox regulation in maintaining balanced hematopoiesis and suggest the preventive potential of selenoproteins against aging-related alterations.
Collapse
Affiliation(s)
- Yumi Aoyama
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Yamazaki
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Masaki Nomura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Genome Analysis Unit, Quality Section, Facility for iPS Cell Therapy, CiRA Foundation, Kyoto, Japan
| | - Tsukasa Shigehiro
- Division of Immunology and Allergy, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Takafumi Suzuki
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Weijia Zang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yota Tatara
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiromi Ito
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Yasutaka Hayashi
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Computational and Systems Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yui Koike
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Miki Fukumoto
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Atsushi Tanaka
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Kyoto-Katsura Hospital, Kyoto, Japan
| | - Yifan Zhang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wataru Saika
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Shiga University of Medical Science, Otsu, Japan
| | - Chihiro Hasegawa
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shuya Kasai
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yohei Minakuchi
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Ken Itoh
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Tomokatsu Ikawa
- Division of Immunology and Allergy, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
6
|
Li X, Wang J, Hu L, Cheng T. How age affects human hematopoietic stem and progenitor cells and the strategies to mitigate aging. Exp Hematol 2025; 143:104711. [PMID: 39788412 DOI: 10.1016/j.exphem.2025.104711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Hematopoietic stem cells (HSCs) are central to blood formation and play a pivotal role in hematopoietic and systemic aging. With aging, HSCs undergo significant functional changes, such as an increased stem cell pool, declined homing and reconstitution capacity, and skewed differentiation toward myeloid and megakaryocyte/platelet progenitors. These phenotypic alterations are likely due to the expansion of certain clones, known as clonal hematopoiesis (CH), which leads to disrupted hematopoietic homeostasis, including anemia, impaired immunity, higher risks of hematological malignancies, and even associations with cardiovascular disease, highlighting the broader impact of HSC aging on overall health. HSC aging is driven by a range of mechanisms involving both intrinsic and extrinsic factors, such as DNA damage accumulation, epigenetic remodeling, inflammaging and metabolic regulation. In this review, we summarize the updated understanding of age-related changes in hematopoietic stem and progenitor cells (HSPCs) and the mechanisms underlying the aging process in mammalian models, especially in human study. Additionally, we provide insights into potential therapeutic strategies to counteract aging process and enhance HSC regenerative capacity, which will support therapeutic interventions and promote healthy aging.
Collapse
Affiliation(s)
- Xueling Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Jianwei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Linping Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| |
Collapse
|
7
|
Shi Q, Song Y, Cao J, Na J, Yang Z, Chen X, Wang Z, Fan Y, Zheng L. Inhibition of Mitochondrial Fission Reverses Simulated Microgravity-Induced Osteoblast Dysfunction by Enhancing Mechanotransduction and Epigenetic Modification. RESEARCH (WASHINGTON, D.C.) 2025; 8:0602. [PMID: 39906534 PMCID: PMC11791006 DOI: 10.34133/research.0602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 02/06/2025]
Abstract
Simulated microgravity (SMG) poses substantial challenges to astronaut health, particularly impacting osteoblast function and leading to disuse osteoporosis. This study investigates the adverse effects of SMG on osteoblasts, focusing on changes in mitochondrial dynamics and their consequent effects on cellular energy metabolism and mechanotransduction pathways. We discovered that SMG markedly reduced the expression of osteoblast differentiation markers and promoted mitochondrial fission, as indicated by an increase in punctate mitochondria, a decrease in mitochondrial length, and a reduction in cristae density. These mitochondrial alterations are linked to elevated reactive oxygen species levels, a decrease in ΔΨm, and a metabolic shift from oxidative phosphorylation to glycolysis, resulting in decreased adenosine triphosphate production, which are all indicative of mitochondrial dysfunction. Our results showed that treatment with mitochondrial division inhibitor-1 (mdivi-1), a mitochondrial fission inhibitor, effectively inhibited these SMG-induced effects, thereby maintaining mitochondrial structure and function and promoting osteoblast differentiation. Furthermore, SMG disrupted critical mechanotransduction processes, by affecting paxillin expression, the RhoA-ROCK-Myosin II pathway, and actin dynamics, which subsequently altered nuclear morphology and disrupted Yes-associated protein signaling. Notably, treatment with mdivi-1 prevented these disruptions in mechanotransduction pathways. Moreover, our study showed that SMG-induced chromatin remodeling and histone methylation, which are epigenetic barriers to osteogenic differentiation, can be reversed by targeting mitochondrial fission, further highlighting the significance of mitochondrial dynamics in osteoblast function in an SMG environment. Therefore, targeting mitochondrial fission emerges as a promising therapeutic strategy to alleviate osteoblast dysfunction under SMG conditions, providing novel approaches to maintain bone health during prolonged space missions and safeguard the astronaut well-being.
Collapse
Affiliation(s)
| | | | - Jingqi Cao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing 100083, China
| | - Jing Na
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing 100083, China
| | - Zhijie Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing 100083, China
| | - Xinyuan Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing 100083, China
| | - Ziyi Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing 100083, China
| | - Lisha Zheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing 100083, China
| |
Collapse
|
8
|
Luo LZ, Kim JH, Herrera I, Wu S, Wu X, Park SS, Cho J, Cope L, Xian L, West BE, Calderon-Espinosa J, Kim J, Thompson Z, Maloo I, Larman T, Reddy KL, Feng Y, Fearon ER, Sears CL, Resar L. HMGA1 acts as an epigenetic gatekeeper of ASCL2 and Wnt signaling during colon tumorigenesis. J Clin Invest 2025; 135:e184442. [PMID: 39895630 PMCID: PMC11785931 DOI: 10.1172/jci184442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/27/2024] [Indexed: 02/04/2025] Open
Abstract
Mutated tumor cells undergo changes in chromatin accessibility and gene expression, resulting in aberrant proliferation and differentiation, although how this occurs is unclear. HMGA1 chromatin regulators are abundant in stem cells and oncogenic in diverse tissues; however, their role in colon tumorigenesis is only beginning to emerge. Here, we uncover a previously unknown epigenetic program whereby HMGA1 amplifies Wnt signaling during colon tumorigenesis driven by inflammatory microbiota and/or Adenomatous polyposis coli (Apc) inactivation. Mechanistically, HMGA1 "opens" chromatin to upregulate the stem cell regulator, Ascl2, and downstream Wnt effectors, promoting stem and Paneth-like cell states while depleting differentiated enterocytes. Loss of just one Hmga1 allele within colon epithelium restrains tumorigenesis and Wnt signaling driven by mutant Apc and inflammatory microbiota. However, HMGA1 deficiency has minimal effects in colon epithelium under homeostatic conditions. In human colon cancer cells, HMGA1 directly induces ASCL2 by recruiting activating histone marks. Silencing HMGA1 disrupts oncogenic properties, whereas reexpression of ASCL2 partially rescues these phenotypes. Further, HMGA1 and ASCL2 are coexpressed and upregulated in human colorectal cancer. Together, our results establish HMGA1 as an epigenetic gatekeeper of Wnt signals and cell state under conditions of APC inactivation, illuminating HMGA1 as a potential therapeutic target in colon cancer.
Collapse
Affiliation(s)
- Li Z. Luo
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jung-Hyun Kim
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Research Institute, National Cancer Center, Goyang-si, Gyeonggido, Republic of Korea
| | - Iliana Herrera
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shaoguang Wu
- Division of Infectious Diseases, Department of Medicine
| | - Xinqun Wu
- Division of Infectious Diseases, Department of Medicine
| | - Seong-Sik Park
- Research Institute, National Cancer Center, Goyang-si, Gyeonggido, Republic of Korea
| | - Juyoung Cho
- Research Institute, National Cancer Center, Goyang-si, Gyeonggido, Republic of Korea
| | - Leslie Cope
- Sidney Kimmel Comprehensive Cancer Center, Division of Biostatistics
| | - Lingling Xian
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bailey E. West
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Pathobiology Graduate Program, Department of Pathology, and
| | - Julian Calderon-Espinosa
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Human Genetics Graduate Program, Department of Genetics and Molecular Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph Kim
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zanshé Thompson
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Isha Maloo
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Biochemistry and Molecular Biology Program, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Karen L. Reddy
- Department of Biological Chemistry, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ying Feng
- Department of Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric R. Fearon
- Department of Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cynthia L. Sears
- Division of Infectious Diseases, Department of Medicine
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and
- Molecular Immunology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Linda Resar
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Division of Biostatistics
- Pathobiology Graduate Program, Department of Pathology, and
- Human Genetics Graduate Program, Department of Genetics and Molecular Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Biochemistry and Molecular Biology Program, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Pathology and
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and
| |
Collapse
|
9
|
Kemna K, van der Burg M, Lankester A, Giera M. Hematopoietic stem cell metabolism within the bone marrow niche - insights and opportunities. Bioessays 2025; 47:e2400154. [PMID: 39506498 PMCID: PMC11755706 DOI: 10.1002/bies.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Hematopoiesis unfolds within the bone marrow niche where hematopoietic stem cells (HSCs) play a central role in continually replenishing blood cells. The hypoxic bone marrow environment imparts peculiar metabolic characteristics to hematopoietic processes. Here, we discuss the internal metabolism of HSCs and describe external influences exerted on HSC metabolism by the bone marrow niche environment. Importantly, we suggest that the metabolic environment and metabolic cues are intertwined with HSC cell fate, and are crucial for hematopoietic processes. Metabolic dysregulation within the bone marrow niche during acute stress, inflammation, and chronic inflammatory conditions can lead to reduced HSC vitality. Additionally, we raise questions regarding metabolic stresses imposed on HSCs during implementation of stem cell protocols such as allo-SCT and gene therapy, and the potential ramifications. Enhancing our comprehension of metabolic influences on HSCs will expand our understanding of pathophysiology in the bone marrow and improve the application of stem cell therapies.
Collapse
Affiliation(s)
- Koen Kemna
- Department of Pediatrics, Laboratory for Pediatric ImmunologyWillem‐Alexander Children's Hospital, Leiden University Medical CenterLeidenThe Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric ImmunologyWillem‐Alexander Children's Hospital, Leiden University Medical CenterLeidenThe Netherlands
| | - Arjan Lankester
- Department of Pediatrics, Laboratory for Pediatric ImmunologyWillem‐Alexander Children's Hospital, Leiden University Medical CenterLeidenThe Netherlands
| | - Martin Giera
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
10
|
Chen H, Liu C, Cui S, Xia Y, Zhang K, Cheng H, Peng J, Yu X, Li L, Yu H, Zhang J, Zheng JS, Zhang B. Intermittent fasting triggers interorgan communication to suppress hair follicle regeneration. Cell 2025; 188:157-174.e22. [PMID: 39674178 DOI: 10.1016/j.cell.2024.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/29/2024] [Accepted: 11/06/2024] [Indexed: 12/16/2024]
Abstract
Intermittent fasting has gained global popularity for its potential health benefits, although its impact on somatic stem cells and tissue biology remains elusive. Here, we report that commonly used intermittent fasting regimens inhibit hair follicle regeneration by selectively inducing apoptosis in activated hair follicle stem cells (HFSCs). This effect is independent of calorie reduction, circadian rhythm alterations, or the mTORC1 cellular nutrient-sensing mechanism. Instead, fasting activates crosstalk between adrenal glands and dermal adipocytes in the skin, triggering the rapid release of free fatty acids into the niche, which in turn disrupts the normal metabolism of HFSCs and elevates their cellular reactive oxygen species levels, causing oxidative damage and apoptosis. A randomized clinical trial (NCT05800730) indicates that intermittent fasting inhibits human hair growth. Our study uncovers an inhibitory effect of intermittent fasting on tissue regeneration and identifies interorgan communication that eliminates activated HFSCs and halts tissue regeneration during periods of unstable nutrient supply.
Collapse
Affiliation(s)
- Han Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Chao Liu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Shiyao Cui
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Yingqian Xia
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310000, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Ke Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Hanxiao Cheng
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Jingyu Peng
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Xiaoling Yu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Luyang Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Hualin Yu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Ju-Sheng Zheng
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China; School of Medicine, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Bing Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310000, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
11
|
Liu Z, Wu J, Luo Z, Hou Y, Xuan L, Xiao C, Chang J, Zhang D, Zheng G, Guo J, Tang G, Yu X. 3D Biofabrication of Microporous Hydrogels for Tissue Engineering. Adv Healthc Mater 2025; 14:e2403583. [PMID: 39641221 DOI: 10.1002/adhm.202403583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/17/2024] [Indexed: 12/07/2024]
Abstract
Microporous hydrogels have been utilized in an unprecedented manner in the last few decades, combining materials science, biology, and medicine. Their microporous structure makes them suitable for wide applications, especially as cell carriers in tissue engineering and regenerative medicine. Microporous hydrogel scaffolds provide spatial and platform support for cell growth and proliferation, which can promote cell growth, migration, and differentiation, influencing tissue repair and regeneration. This review gives an overview of recent developments in the fabrication techniques and applications of microporous hydrogels. The fabrication of microporous hydrogels can be classified into two distinct categories: fabrication of non-injectable microporous hydrogels including freeze-drying microporous method, two-phase sacrificial strategy, 3D biofabrication technology, etc., and fabrication of injectable microporous hydrogels mainly including microgel assembly. Then, the biomedical applications of microporous hydrogels in cell carriers for tissue engineering, including but not limited to bone regeneration, nerve regeneration, vascular regeneration, and muscle regeneration are emphasized. Additionally, the ongoing and foreseeable applications and current limitations of microporous hydrogels in biomedical engineering are illustrated. Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microporous hydrogels in tissue engineering.
Collapse
Affiliation(s)
- Ziyang Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Zeyu Luo
- Department of Orthopedics, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Yingying Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Changyi Xiao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Jishuo Chang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Dongyang Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Guodong Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Jie Guo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xiyong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
12
|
Joly A, Schott A, Phadke I, Gonzalez-Menendez P, Kinet S, Taylor N. Beyond ATP: Metabolite Networks as Regulators of Physiological and Pathological Erythroid Differentiation. Physiology (Bethesda) 2025; 40:0. [PMID: 39226028 DOI: 10.1152/physiol.00035.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Hematopoietic stem cells (HSCs) possess the capacity for self-renewal and the sustained production of all mature blood cell lineages. It has been well established that a metabolic rewiring controls the switch of HSCs from a self-renewal state to a more differentiated state, but it is only recently that we have appreciated the importance of metabolic pathways in regulating the commitment of progenitors to distinct hematopoietic lineages. In the context of erythroid differentiation, an extensive network of metabolites, including amino acids, sugars, nucleotides, fatty acids, vitamins, and iron, is required for red blood cell (RBC) maturation. In this review, we highlight the multifaceted roles via which metabolites regulate physiological erythropoiesis as well as the effects of metabolic perturbations on erythroid lineage commitment and differentiation. Of note, the erythroid differentiation process is associated with an exceptional breadth of solute carrier (SLC) metabolite transporter upregulation. Finally, we discuss how recent research, revealing the critical impact of metabolic reprogramming in diseases of disordered and ineffective erythropoiesis, has created opportunities for the development of novel metabolic-centered therapeutic strategies.
Collapse
Affiliation(s)
- Axel Joly
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Arthur Schott
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Ira Phadke
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Pediatric Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Pedro Gonzalez-Menendez
- Departamento de Morfologia y Biologia Celular, Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Sandrina Kinet
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Naomi Taylor
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Pediatric Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
13
|
McGraw KL, Larson DR. Implications for metabolic disturbances in myelodysplastic syndromes. Semin Hematol 2024; 61:470-478. [PMID: 39603905 PMCID: PMC11646176 DOI: 10.1053/j.seminhematol.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The Myelodysplastic Syndromes (MDS) are heterogeneous stem cell malignancies clinically characterized by bone marrow dysplasia, peripheral blood cytopenias, and a high risk for transformation to acute myeloid leukemia. In early stages of disease, differentiation defects and maturation blocks result in deficient hematopoiesis. In higher risk disease, unrestricted proliferation of immature blast cells leads to leukemogenesis. Disease pathogenesis can be attributed to many factors including chronic inflammation that is driven in part by commonly found somatic gene mutations (SGM) fostering expansion of malignant clones while suppressing normal hematopoiesis. Cellular metabolism that both directly and indirectly regulates hematopoietic stem cell (HSC) fate, is intimately connected to the immune system, is altered by MDS somatic gene mutations and is likely is a major contributor to disease pathophysiology. Despite this likely role in pathobiology, there is an underwhelming depth of literature on the subject and the precise metabolic dysregulations in these myeloid malignancies have yet to be fully delineated. In this review, we will provide a general overview of several major metabolic processes and how each directs HSC fate, provide a summary of metabolic studies in MDS, discuss how common SGM and inflammation influence metabolic pathways to drive bone marrow failure, and end with a discussion of standards of care and how these should be carefully considered in the context of metabolic dysregulation.
Collapse
Affiliation(s)
- Kathy L McGraw
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Immune Deficiencies-Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, 20872.
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Immune Deficiencies-Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, 20872
| |
Collapse
|
14
|
Rodriguez-Sevilla JJ, Colla S. Inflammation in myelodysplastic syndrome pathogenesis. Semin Hematol 2024; 61:385-396. [PMID: 39424469 DOI: 10.1053/j.seminhematol.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/21/2024]
Abstract
Inflammation is a key driver of the progression of preleukemic myeloid conditions, such as clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of undetermined significance (CCUS), to myelodysplastic syndromes (MDS). Inflammation is a critical mediator in the complex interplay of the genetic, epigenetic, and microenvironmental factors contributing to clonal evolution. Under inflammatory conditions, somatic mutations in TET2, DNMT3A, and ASXL1, the most frequently mutated genes in CHIP and CCUS, induce a competitive advantage to hematopoietic stem and progenitor cells, which leads to their clonal expansion in the bone marrow. Chronic inflammation also drives metabolic reprogramming and immune system deregulation, further promoting the expansion of malignant clones. This review underscores the urgent need to fully elucidate the role of inflammation in MDS initiation and highlights the potential of the therapeutical targeting of inflammatory pathways as an early intervention in MDS.
Collapse
Affiliation(s)
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
15
|
Ryan S, Crowe L, Almeida Cruz SN, Galbraith MD, O'Brien C, Hammer JA, Bergin R, Kellett SK, Markey GE, Benson TM, Fagan O, Espinosa JM, Conlon N, Donohoe CL, McKiernan S, Hogan AE, McNamee EN, Furuta GT, Menard-Katcher C, Masterson JC. Metabolic dysfunction mediated by HIF-1α contributes to epithelial differentiation defects in eosinophilic esophagitis. J Allergy Clin Immunol 2024; 154:1472-1488. [PMID: 39209164 DOI: 10.1016/j.jaci.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Investigating the contributory role that epithelial cell metabolism plays in allergic inflammation is a key factor to understanding what influences dysfunction and the pathogenesis of the allergic disease eosinophilic esophagitis (EoE). We previously highlighted that the absence of hypoxia signaling through hypoxia-inducible factor (HIF)-1α in EoE contributes to esophageal epithelial dysfunction. However, metabolic regulation by HIF-1α has not been explored in esophageal allergy. OBJECTIVES We sought to define the role of HIF-1α-mediated metabolic dysfunction in esophageal epithelial differentiation processes and barrier function in EoE. METHODS In RNA sequencing of EoE patient biopsy samples, we observed the expression pattern of key genes involved in mitochondrial metabolism/oxidative phosphorylation (OXPHOS) and glycolysis. Seahorse bioenergetics analysis was performed on EPC2-hTERT cells to decipher the metabolic processes involved in epithelial differentiation processes. In addition, air-liquid interface cultures were used to delineate metabolic dependency mechanisms required for epithelial differentiation. RESULTS Transcriptomic analysis identified an increase in genes associated with OXPHOS in patients with EoE. Epithelial origin of this signature was confirmed by complex V immunofluorescence of patient biopsy samples. Bioenergetic analysis in vitro revealed that differentiated epithelium was less reliant on OXPHOS compared with undifferentiated epithelium. Increased OXPHOS potential and reduced glycolytic capacity was mirrored in HIF1A-knockdown EPC2-hTERT cells that exhibited a significant absence of terminal markers of epithelial differentiation, including involucrin. Pharmacologic glucose transport inhibition phenocopied this, while rescue of the HIF-1α-deficient phenotype using the pan-prolyl hydroxylase inhibitor dimethyloxalylglycine resulted in restored expression of epithelial differentiation markers. CONCLUSIONS An OXPHOS-dominated metabolic pattern in EoE patients, brought about largely by the absence of HIF-1α-mediated glycolysis, is linked with the deficit in esophageal epithelial differentiation.
Collapse
Affiliation(s)
- Sinéad Ryan
- Allergy, Inflammation, and Remodeling Research Laboratory, Department of Biology, National University of Ireland, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Louise Crowe
- Allergy, Inflammation, and Remodeling Research Laboratory, Department of Biology, National University of Ireland, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Sofía N Almeida Cruz
- Allergy, Inflammation, and Remodeling Research Laboratory, Department of Biology, National University of Ireland, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Matthew D Galbraith
- Linda Crinc Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colo; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Carol O'Brien
- Allergy, Inflammation, and Remodeling Research Laboratory, Department of Biology, National University of Ireland, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Juliet A Hammer
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colo
| | - Ronan Bergin
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Shauna K Kellett
- Allergy, Inflammation, and Remodeling Research Laboratory, Department of Biology, National University of Ireland, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Gary E Markey
- Allergy, Inflammation, and Remodeling Research Laboratory, Department of Biology, National University of Ireland, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Taylor M Benson
- Allergy, Inflammation, and Remodeling Research Laboratory, Department of Biology, National University of Ireland, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Olga Fagan
- Department of Gastroenterology, St James's Hospital, Dublin, Ireland
| | - Joaquin M Espinosa
- Linda Crinc Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Niall Conlon
- Department of Allergy and Immunology, St James's Hospital, Dublin, Ireland
| | - Claire L Donohoe
- National Centre for Oesophageal and Gastric Cancer, Trinity St James's Cancer Institute, St James's Hospital, Trinity College, Dublin, Ireland
| | - Susan McKiernan
- Department of Gastroenterology, St James's Hospital, Dublin, Ireland
| | - Andrew E Hogan
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland; Department of Biology, Obesity Immunology Research Group, Maynooth University, Maynooth, Ireland
| | - Eóin N McNamee
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland; Department of Biology, Mucosal Immunology Research Laboratory, National University of Ireland, Maynooth, Ireland
| | - Glenn T Furuta
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colo
| | - Calies Menard-Katcher
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colo
| | - Joanne C Masterson
- Allergy, Inflammation, and Remodeling Research Laboratory, Department of Biology, National University of Ireland, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland; Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colo.
| |
Collapse
|
16
|
Wei T, Ma D, Liu L, Huang Y, Zhang X, Xu M, Wei Y, Wei J, Deng X. Lactate promotes bone healing by regulating the osteogenesis of bone marrow mesenchymal stem cells through activating Olfr1440. Transl Res 2024; 273:78-89. [PMID: 39038535 DOI: 10.1016/j.trsl.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Bone malunion or nonunion leads to functional and esthetic problems and is a major healthcare burden. Activation of bone marrow mesenchymal stem cells (BMSCs) and subsequent induction of osteogenic differentiation by local metabolites are crucial steps for bone healing, which has not yet been completely investigated. Here, we found that lactate levels are rapidly increased at the local injury site during the early phase of bone defect healing, which facilitates the healing process by enhancing BMSCs regenerative capacity. Mechanistically, lactate serves as a ligand for the Olfr1440 olfactory receptor, to trigger an intracellular calcium influx that in turn activates osteogenic phenotype transition of BMSCs. Conversely, ablation of Olfr1440 delays skeletal repair and remodelling, as evidenced by thinner cortical bone and less woven bone formation in vivo. Administration of lactate in the defect area enhanced bone regeneration. These findings thus revealed the key roles of lactate in the osteogenic differentiation of BMSCs, which deepened our understanding of the bone healing process, as well as provided cues for a potential therapeutic option that might greatly improve bone defect treatment.
Collapse
Affiliation(s)
- Tai Wei
- First Clinical Division, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No.37A, Xishiku Avenue, Xicheng District, Beijing, 100034, PR China
| | - Danning Ma
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials; No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Lulu Liu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials; No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Ying Huang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials; No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials; No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Mingming Xu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials; No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials; No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Jinqi Wei
- First Clinical Division, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No.37A, Xishiku Avenue, Xicheng District, Beijing, 100034, PR China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials; No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
| |
Collapse
|
17
|
Man CH, Li C, Xu X, Zhao M. Metabolic regulation in normal and leukemic stem cells. Trends Pharmacol Sci 2024; 45:919-930. [PMID: 39306527 DOI: 10.1016/j.tips.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024]
Abstract
Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) are crucial for ensuring hematopoietic homeostasis and driving leukemia progression, respectively. Recent research has revealed that metabolic adaptations significantly regulate the function and survival of these stem cells. In this review, we provide an overview of how metabolic pathways regulate oxidative and proteostatic stresses in HSCs during homeostasis and aging. Furthermore, we highlight targetable metabolic pathways and explore their interactions with epigenetics and the microenvironment in addressing the chemoresistance and immune evasion capacities of LSCs. The metabolic differences between HSCs and LSCs have profound implications for therapeutic strategies.
Collapse
Affiliation(s)
- Cheuk-Him Man
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Changzheng Li
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xi Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510030, China
| | - Meng Zhao
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
18
|
Zhang Y, Liu L, Yue L, Huang Y, Wang B, Liu P. Uncovering key mechanisms and intervention therapies in aging skin. Cytokine Growth Factor Rev 2024; 79:66-80. [PMID: 39198086 DOI: 10.1016/j.cytogfr.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Advancements in understanding skin aging mechanisms, which encompass both external and internal aging processes, have spurred the development of innovative treatments primarily aimed at improving cosmetic appearance. These findings offer the potential for the development of novel therapeutic strategies aimed at achieving long-term, non-therapy-dependent clinical benefits, including the reversal of aging and the mitigation of associated health conditions. Realizing this goal requires further research to establish the safety and efficacy of targeting aging-related skin changes, such as pigmentation, wrinkling, and collagen loss. Systematic investigation is needed to identify the most effective interventions and determine optimal anti-aging treatment strategies. These reviews highlight the features and possible mechanisms of skin aging, as well as the latest progress and future direction of skin aging research, to provide a theoretical basis for new practical anti-skin aging strategies.
Collapse
Affiliation(s)
- Yuqin Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, PR China
| | - Lin Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, PR China
| | - Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yongzhuo Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| | - Bing Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, PR China.
| | - Peifeng Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, PR China.
| |
Collapse
|
19
|
Rojas-Ríos P, Chartier A, Enjolras C, Cremaschi J, Garret C, Boughlita A, Ramat A, Simonelig M. piRNAs are regulators of metabolic reprogramming in stem cells. Nat Commun 2024; 15:8405. [PMID: 39333531 PMCID: PMC11437085 DOI: 10.1038/s41467-024-52709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Stem cells preferentially use glycolysis instead of oxidative phosphorylation and this metabolic rewiring plays an instructive role in their fate; however, the underlying molecular mechanisms remain largely unexplored. PIWI-interacting RNAs (piRNAs) and PIWI proteins have essential functions in a range of adult stem cells across species. Here, we show that piRNAs and the PIWI protein Aubergine (Aub) are instrumental in activating glycolysis in Drosophila female germline stem cells (GSCs). Higher glycolysis is required for GSC self-renewal and aub loss-of-function induces a metabolic switch in GSCs leading to their differentiation. Aub directly binds glycolytic mRNAs and Enolase mRNA regulation by Aub depends on its 5'UTR. Furthermore, mutations of a piRNA target site in Enolase 5'UTR lead to GSC loss. These data reveal an Aub/piRNA function in translational activation of glycolytic mRNAs in GSCs, and pinpoint a mechanism of regulation of metabolic reprogramming in stem cells based on small RNAs.
Collapse
Affiliation(s)
- Patricia Rojas-Ríos
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Aymeric Chartier
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Camille Enjolras
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Julie Cremaschi
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Céline Garret
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Adel Boughlita
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Anne Ramat
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Martine Simonelig
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
20
|
Tian Z, Zhang Y, Xu J, Yang Q, Hu D, Feng J, Gai C. Primary cilia in Parkinson's disease: summative roles in signaling pathways, genes, defective mitochondrial function, and substantia nigra dopaminergic neurons. Front Aging Neurosci 2024; 16:1451655. [PMID: 39364348 PMCID: PMC11447156 DOI: 10.3389/fnagi.2024.1451655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Primary cilia (PC) are microtubules-based, independent antennal-like sensory organelles, that are seen in most vertebrate cells of different types, including astrocytes and neurons. They send signals to cells to control many physiological and cellular processes by detecting changes in the extracellular environment. Parkinson's disease (PD), a neurodegenerative disease that progresses over time, is primarily caused by a gradual degradation of the dopaminergic pathway in the striatum nigra, which results in a large loss of neurons in the substantia nigra compact (SNpc) and a depletion of dopamine (DA). PD samples have abnormalities in the structure and function of PC. The alterations contribute to the cause, development, and recovery of PD via influencing signaling pathways (SHH, Wnt, Notch-1, α-syn, and TGFβ), genes (MYH10 and LRRK2), defective mitochondrial function, and substantia nigra dopaminergic neurons. Thus, restoring the normal structure and physiological function of PC and neurons in the brain are effective treatment for PD. This review summarizes the function of PC in neurodegenerative diseases and explores the pathological mechanisms caused by PC alterations in PD, in order to provide references and ideas for future research.
Collapse
Affiliation(s)
- Zijiao Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixin Zhang
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qianwen Yang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Die Hu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Feng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Xiong M, Xiu Y, Long J, Zhao X, Wang Q, Yang H, Yu H, Bian L, Ju Y, Yin H, Hou Q, Liang F, Liu N, Chen F, Fan R, Sun Y, Zeng Y. Proteomics reveals dynamic metabolic changes in human hematopoietic stem progenitor cells from fetal to adulthood. Stem Cell Res Ther 2024; 15:303. [PMID: 39278906 PMCID: PMC11403967 DOI: 10.1186/s13287-024-03930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Hematopoietic stem progenitor cells (HSPCs) undergo phenotypical and functional changes during their emergence and development. Although the molecular programs governing the development of human hematopoietic stem cells (HSCs) have been investigated broadly, the relationships between dynamic metabolic alterations and their functions remain poorly characterized. METHODS In this study, we comprehensively described the proteomics of HSPCs in the human fetal liver (FL), umbilical cord blood (UCB), and adult bone marrow (aBM). The metabolic state of human HSPCs was assessed via a Seahorse assay, RT‒PCR, and flow cytometry-based metabolic-related analysis. To investigate whether perturbing glutathione metabolism affects reactive oxygen species (ROS) production, the metabolic state, and the expansion of human HSPCs, HSPCs were treated with buthionine sulfoximine (BSO), an inhibitor of glutathione synthetase, and N-acetyl-L-cysteine (NAC). RESULTS We investigated the metabolomic landscape of human HSPCs from the fetal, perinatal, and adult developmental stages by in-depth quantitative proteomics and predicted a metabolic switch from the oxidative state to the glycolytic state during human HSPC development. Seahorse assays, mitochondrial activity, ROS level, glucose uptake, and protein synthesis rate analysis supported our findings. In addition, immune-related pathways and antigen presentation were upregulated in UCB or aBM HSPCs, indicating their functional maturation upon development. Glutathione-related metabolic perturbations resulted in distinct responses in human HSPCs and progenitors. Furthermore, the molecular and immunophenotypic differences between human HSPCs at different developmental stages were revealed at the protein level for the first time. CONCLUSION The metabolic landscape of human HSPCs at three developmental stages (FL, UCB, and aBM), combined with proteomics and functional validations, substantially extends our understanding of HSC metabolic regulation. These findings provide valuable resources for understanding human HSC function and development during fetal and adult life.
Collapse
Affiliation(s)
- Mingfang Xiong
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
- Medical School of the Chinese PLA General Hospital, Beijing, 100039, China
| | - Yanyu Xiu
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Juan Long
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Xiao Zhao
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Qianqian Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Haoyu Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hang Yu
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
- Medical School of the Chinese PLA General Hospital, Beijing, 100039, China
| | - Lihong Bian
- Department of Gynecology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Yan Ju
- Department of Gynecology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Hongyu Yin
- Department of Gynecology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Qingxiang Hou
- Department of Obstetrics and Gynecology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Fei Liang
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Nan Liu
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Fudong Chen
- Medical School of the Chinese PLA General Hospital, Beijing, 100039, China
| | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yuying Sun
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
| | - Yang Zeng
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
- Medical School of the Chinese PLA General Hospital, Beijing, 100039, China.
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China.
| |
Collapse
|
22
|
Ugale A, Shunmugam D, Pimpale LG, Rebhan E, Baccarini M. Signaling proteins in HSC fate determination are unequally segregated during asymmetric cell division. J Cell Biol 2024; 223:e202310137. [PMID: 38874393 PMCID: PMC11178505 DOI: 10.1083/jcb.202310137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/21/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Hematopoietic stem cells (HSCs) continuously replenish mature blood cells with limited lifespans. To maintain the HSC compartment while ensuring output of differentiated cells, HSCs undergo asymmetric cell division (ACD), generating two daughter cells with different fates: one will proliferate and give rise to the differentiated cells' progeny, and one will return to quiescence to maintain the HSC compartment. A balance between MEK/ERK and mTORC1 pathways is needed to ensure HSC homeostasis. Here, we show that activation of these pathways is spatially segregated in premitotic HSCs and unequally inherited during ACD. A combination of genetic and chemical perturbations shows that an ERK-dependent mechanism determines the balance between pathways affecting polarity, proliferation, and metabolism, and thus determines the frequency of asymmetrically dividing HSCs. Our data identify druggable targets that modulate HSC fate determination at the level of asymmetric division.
Collapse
Affiliation(s)
- Amol Ugale
- Department of Microbiology, Max Perutz Labs Vienna, University of Vienna, Immunobiology and Genetics, Vienna, Austria
| | - Dhanlakshmi Shunmugam
- Department of Microbiology, Max Perutz Labs Vienna, University of Vienna, Immunobiology and Genetics, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna , Vienna, Austria
| | | | - Elisabeth Rebhan
- Department of Microbiology, Max Perutz Labs Vienna, University of Vienna, Immunobiology and Genetics, Vienna, Austria
| | - Manuela Baccarini
- Department of Microbiology, Max Perutz Labs Vienna, University of Vienna, Immunobiology and Genetics, Vienna, Austria
| |
Collapse
|
23
|
Watanuki S, Kobayashi H, Sugiura Y, Yamamoto M, Karigane D, Shiroshita K, Sorimachi Y, Morikawa T, Fujita S, Shide K, Haraguchi M, Tamaki S, Mikawa T, Kondoh H, Nakano H, Sumiyama K, Nagamatsu G, Goda N, Okamoto S, Nakamura-Ishizu A, Shimoda K, Suematsu M, Suda T, Takubo K. SDHAF1 confers metabolic resilience to aging hematopoietic stem cells by promoting mitochondrial ATP production. Cell Stem Cell 2024; 31:1145-1161.e15. [PMID: 38772377 DOI: 10.1016/j.stem.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/20/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Aging generally predisposes stem cells to functional decline, impairing tissue homeostasis. Here, we report that hematopoietic stem cells (HSCs) acquire metabolic resilience that promotes cell survival. High-resolution real-time ATP analysis with glucose tracing and metabolic flux analysis revealed that old HSCs reprogram their metabolism to activate the pentose phosphate pathway (PPP), becoming more resistant to oxidative stress and less dependent on glycolytic ATP production at steady state. As a result, old HSCs can survive without glycolysis, adapting to the physiological cytokine environment in bone marrow. Mechanistically, old HSCs enhance mitochondrial complex II metabolism during stress to promote ATP production. Furthermore, increased succinate dehydrogenase assembly factor 1 (SDHAF1) in old HSCs, induced by physiological low-concentration thrombopoietin (TPO) exposure, enables rapid mitochondrial ATP production upon metabolic stress, thereby improving survival. This study provides insight into the acquisition of resilience through metabolic reprogramming in old HSCs and its molecular basis to ameliorate age-related hematopoietic abnormalities.
Collapse
Affiliation(s)
- Shintaro Watanuki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Cell Fate Biology and Stem Cell Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan
| | - Daiki Karigane
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kohei Shiroshita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuriko Sorimachi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo 162-8480, Japan
| | - Takayuki Morikawa
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shinya Fujita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kotaro Shide
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Miho Haraguchi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shinpei Tamaki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Takumi Mikawa
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Kondoh
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan
| | - Kenta Sumiyama
- Laboratory of Animal Genetics and Breeding, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan; RIKEN Center for Biosystems Dynamics Research, Laboratory for Mouse Genetic Engineering, Osaka 565-0871, Japan
| | - Go Nagamatsu
- Center for Advanced Assisted Reproductive Technologies, University of Yamanashi, Kofu 400-8501, Japan
| | - Nobuhito Goda
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo 162-8480, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ayako Nakamura-Ishizu
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; Live Imaging Center, Central Institute for Experimental Medicine and Life Science, Kawasaki 210-0821, Japan
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Cell Fate Biology and Stem Cell Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| |
Collapse
|
24
|
Mathisen AF, Legøy TA, Larsen U, Unger L, Abadpour S, Paulo JA, Scholz H, Ghila L, Chera S. The age-dependent regulation of pancreatic islet landscape is fueled by a HNF1a-immune signaling loop. Mech Ageing Dev 2024; 220:111951. [PMID: 38825059 DOI: 10.1016/j.mad.2024.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Animal longevity is a function of global vital organ functionality and, consequently, a complex polygenic trait. Yet, monogenic regulators controlling overall or organ-specific ageing exist, owing their conservation to their function in growth and development. Here, by using pathway analysis combined with wet-biology methods on several dynamic timelines, we identified Hnf1a as a novel master regulator of the maturation and ageing in the adult pancreatic islet during the first year of life. Conditional transgenic mice bearing suboptimal levels of this transcription factor in the pancreatic islets displayed age-dependent changes, with a profile echoing precocious maturation. Additionally, the comparative pathway analysis revealed a link between Hnf1a age-dependent regulation and immune signaling, which was confirmed in the ageing timeline of an overly immunodeficient mouse model. Last, the global proteome analysis of human islets spanning three decades of life largely backed the age-specific regulation observed in mice. Collectively, our results suggest a novel role of Hnf1a as a monogenic regulator of the maturation and ageing process in the pancreatic islet via a direct or indirect regulatory loop with immune signaling.
Collapse
Affiliation(s)
- Andreas Frøslev Mathisen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thomas Aga Legøy
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ulrik Larsen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lucas Unger
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Shadab Abadpour
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Norway; Institute for Surgical Research, Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hanne Scholz
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Norway; Institute for Surgical Research, Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Luiza Ghila
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
25
|
Morganti C, Bonora M, Ito K. Metabolism and HSC fate: what NADPH is made for. Trends Cell Biol 2024:S0962-8924(24)00141-7. [PMID: 39054107 PMCID: PMC11757803 DOI: 10.1016/j.tcb.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Mitochondrial metabolism plays a central role in the regulation of hematopoietic stem cell (HSC) biology. Mitochondrial fatty acid oxidation (FAO) is pivotal in controlling HSC self-renewal and differentiation. Herein, we discuss recent evidence suggesting that NADPH generated in the mitochondria can influence the fate of HSCs. Although NADPH has multiple functions, HSCs show high levels of NADPH that are preferentially used for cholesterol biosynthesis. Endogenous cholesterol supports the biogenesis of extracellular vesicles (EVs), which are essential for maintaining HSC properties. We also highlight the significance of EVs in hematopoiesis through autocrine signaling. Elucidating the mitochondrial NADPH-cholesterol axis as part of the metabolic requirements of healthy HSCs will facilitate the development of new therapies for hematological disorders.
Collapse
Affiliation(s)
- Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA.
| | - Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA.
| |
Collapse
|
26
|
Dellorusso PV, Proven MA, Calero-Nieto FJ, Wang X, Mitchell CA, Hartmann F, Amouzgar M, Favaro P, DeVilbiss A, Swann JW, Ho TT, Zhao Z, Bendall SC, Morrison S, Göttgens B, Passegué E. Autophagy counters inflammation-driven glycolytic impairment in aging hematopoietic stem cells. Cell Stem Cell 2024; 31:1020-1037.e9. [PMID: 38754428 PMCID: PMC11350610 DOI: 10.1016/j.stem.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/14/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Autophagy is central to the benefits of longevity signaling programs and to hematopoietic stem cell (HSC) response to nutrient stress. With age, a subset of HSCs increases autophagy flux and preserves regenerative capacity, but the signals triggering autophagy and maintaining the functionality of autophagy-activated old HSCs (oHSCs) remain unknown. Here, we demonstrate that autophagy is an adaptive cytoprotective response to chronic inflammation in the aging murine bone marrow (BM) niche. We find that inflammation impairs glucose uptake and suppresses glycolysis in oHSCs through Socs3-mediated inhibition of AKT/FoxO-dependent signaling, with inflammation-mediated autophagy engagement preserving functional quiescence by enabling metabolic adaptation to glycolytic impairment. Moreover, we show that transient autophagy induction via a short-term fasting/refeeding paradigm normalizes glycolytic flux and significantly boosts oHSC regenerative potential. Our results identify inflammation-driven glucose hypometabolism as a key driver of HSC dysfunction with age and establish autophagy as a targetable node to reset oHSC regenerative capacity.
Collapse
Affiliation(s)
- Paul V Dellorusso
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University, New York, NY 10032, USA
| | - Melissa A Proven
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University, New York, NY 10032, USA
| | - Fernando J Calero-Nieto
- Welcome and MRC Cambridge Stem Cell Institute, Department of Haematology, Cambridge University, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Xiaonan Wang
- Welcome and MRC Cambridge Stem Cell Institute, Department of Haematology, Cambridge University, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Carl A Mitchell
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University, New York, NY 10032, USA
| | - Felix Hartmann
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Meelad Amouzgar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Patricia Favaro
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew DeVilbiss
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James W Swann
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University, New York, NY 10032, USA
| | - Theodore T Ho
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zhiyu Zhao
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean Morrison
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Berthold Göttgens
- Welcome and MRC Cambridge Stem Cell Institute, Department of Haematology, Cambridge University, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
27
|
Zhu S, Pan W. Microbial metabolite steers intestinal stem cell fate under stress. Cell Stem Cell 2024; 31:591-592. [PMID: 38701755 DOI: 10.1016/j.stem.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
Recently in Cell Metabolism, Wei et al.1 unveiled a brain-to-gut pathway that conveys psychological stress to intestinal epithelial cells, leading to their dysfunction. This gut-brain axis involves a microbial metabolite, indole-3-acetate (IAA), as a niche signal that hampers mitochondrial respiration to skew intestinal stem cell (ISC) fate.
Collapse
Affiliation(s)
- Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Wen Pan
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
28
|
Zhuang Y, Jiang S, Deng X, Lao A, Hua X, Xie Y, Jiang L, Wang X, Lin K. Energy metabolism as therapeutic target for aged wound repair by engineered extracellular vesicle. SCIENCE ADVANCES 2024; 10:eadl0372. [PMID: 38608014 PMCID: PMC11014449 DOI: 10.1126/sciadv.adl0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/08/2024] [Indexed: 04/14/2024]
Abstract
Aging skin, vulnerable to age-related defects, is poor in wound repair. Metabolic regulation in accumulated senescent cells (SnCs) with aging is essential for tissue homeostasis, and adequate ATP is important in cell activation for aged tissue repair. Strategies for ATP metabolism intervention hold prospects for therapeutic advances. Here, we found energy metabolic changes in aging skin from patients and mice. Our data show that metformin engineered EV (Met-EV) can enhance aged mouse skin repair, as well as ameliorate cellular senescence and restore cell dysfunctions. Notably, ATP metabolism was remodeled as reduced glycolysis and enhanced OXPHOS after Met-EV treatment. We show Met-EV rescue senescence-induced mitochondria dysfunctions and mitophagy suppressions, indicating the role of Met-EV in remodeling mitochondrial functions via mitophagy for adequate ATP production in aged tissue repair. Our results reveal the mechanism for SnCs rejuvenation by EV and suggest the disturbed energy metabolism, essential in age-related defects, to be a potential therapeutic target for facilitating aged tissue repair.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shengjie Jiang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiaoling Deng
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - An Lao
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiaolin Hua
- Obstetrics Department, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yun Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyong Jiang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xudong Wang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
29
|
Liu Y, Wang L, Ai J, Li K. Mitochondria in Mesenchymal Stem Cells: Key to Fate Determination and Therapeutic Potential. Stem Cell Rev Rep 2024; 20:617-636. [PMID: 38265576 DOI: 10.1007/s12015-024-10681-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Mesenchymal stem cells (MSCs) have become popular tool cells in the field of transformation and regenerative medicine due to their function of cell rescue and cell replacement. The dynamically changing mitochondria serve as an energy metabolism factory and signal transduction platform, adapting to different cell states and maintaining normal cell activities. Therefore, a clear understanding of the regulatory mechanism of mitochondria in MSCs is profit for more efficient clinical transformation of stem cells. This review highlights the cutting-edge knowledge regarding mitochondrial biology from the following aspects: mitochondrial morphological dynamics, energy metabolism and signal transduction. The manuscript mainly focuses on mitochondrial mechanistic insights in the whole life course of MSCs, as well as the potential roles played by mitochondria in MSCs treatment of transplantation, for seeking pivotal targets of stem cell fate regulation and stem cell therapy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihui Ai
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kezhen Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
30
|
Shirkoohi FJ, Ghollasi M, Halabian R, Eftekhari E, Ghiasi M. Oxaloacetate as new inducer for osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Mol Biol Rep 2024; 51:451. [PMID: 38536507 DOI: 10.1007/s11033-024-09389-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Mitochondrial organelles play a crucial role in cellular metabolism so different cell types exhibit diverse metabolic and energy demands. Therefore, alternations in the intracellular distribution, quantity, function, and structure of mitochondria are required for stem cell differentiation. Finding an effective inducer capable of modulating mitochondrial activity is critical for the differentiation of specific stem cells into osteo-like cells for addressing issues related to osteogenic disorders. This study aimed to investigate the effect of oxaloacetate (OAA) on the osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs) in vitro. METHODS AND RESULTS First, the most favorable OAA concentration was measured through MTT assay and subsequently confirmed using acridine orange staining. Human ADSCs were cultured in osteogenic medium supplemented with OAA and analyzed on days 7 and 14 of differentiation. Various assays including alkaline phosphatase assay (ALP), cellular calcium content assay, mineralized matrix staining with alizarin red, catalase (CAT) and superoxide dismutase (SOD) activity, and real-time RT-PCR analysis of three bone-specific markers (ALP, osteocalcin, and collagen type I) were conducted to characterize the differentiated cells. Following viability assessment, OAA at a concentration of 1 µM was considered the optimal dosage for further studies. The results of osteogenic differentiation assays showed that OAA at a concentration of 1 × 10- 6 M significantly increased ALP enzyme activity, mineralization, CAT and SOD activity and the expression of bone-specific genes in differentiated cells compared to control groups in vitro. CONCLUSIONS In conclusion, the fundings from this study suggest that OAA possesses favorable properties that make it a potential candidate for application in medical bone regeneration.
Collapse
Affiliation(s)
- Fatemeh Jamali Shirkoohi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, P. O. Box 31979-37551, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, P. O. Box 31979-37551, Tehran, Iran.
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elahe Eftekhari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Clémot M, D’Alterio C, Kwang AC, Jones DL. mTORC1 is required for differentiation of germline stem cells in the Drosophila melanogaster testis. PLoS One 2024; 19:e0300337. [PMID: 38512882 PMCID: PMC10956854 DOI: 10.1371/journal.pone.0300337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Metabolism participates in the control of stem cell function and subsequent maintenance of tissue homeostasis. How this is achieved in the context of adult stem cell niches in coordination with other local and intrinsic signaling cues is not completely understood. The Target of Rapamycin (TOR) pathway is a master regulator of metabolism and plays essential roles in stem cell maintenance and differentiation. In the Drosophila male germline, mTORC1 is active in germline stem cells (GSCs) and early germ cells. Targeted RNAi-mediated downregulation of mTor in early germ cells causes a block and/or a delay in differentiation, resulting in an accumulation of germ cells with GSC-like features. These early germ cells also contain unusually large and dysfunctional autolysosomes. In addition, downregulation of mTor in adult male GSCs and early germ cells causes non-autonomous activation of mTORC1 in neighboring cyst cells, which correlates with a disruption in the coordination of germline and somatic differentiation. Our study identifies a previously uncharacterized role of the TOR pathway in regulating male germline differentiation.
Collapse
Affiliation(s)
- Marie Clémot
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Cecilia D’Alterio
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Alexa C. Kwang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - D. Leanne Jones
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States of America
- Departments of Anatomy, Division of Geriatrics, University of California, San Francisco, San Francisco, CA, United States of America
- Departments of Medicine, Division of Geriatrics, University of California, San Francisco, San Francisco, CA, United States of America
- Eli and Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
32
|
Swann JW, Olson OC, Passegué E. Made to order: emergency myelopoiesis and demand-adapted innate immune cell production. Nat Rev Immunol 2024:10.1038/s41577-024-00998-7. [PMID: 38467802 DOI: 10.1038/s41577-024-00998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/13/2024]
Abstract
Definitive haematopoiesis is the process by which haematopoietic stem cells, located in the bone marrow, generate all haematopoietic cell lineages in healthy adults. Although highly regulated to maintain a stable output of blood cells in health, the haematopoietic system is capable of extensive remodelling in response to external challenges, prioritizing the production of certain cell types at the expense of others. In this Review, we consider how acute insults, such as infections and cytotoxic drug-induced myeloablation, cause molecular, cellular and metabolic changes in haematopoietic stem and progenitor cells at multiple levels of the haematopoietic hierarchy to drive accelerated production of the mature myeloid cells needed to resolve the initiating insult. Moreover, we discuss how dysregulation or subversion of these emergency myelopoiesis mechanisms contributes to the progression of chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- James W Swann
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Oakley C Olson
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY, USA.
| |
Collapse
|
33
|
Bonora M, Morganti C, van Gastel N, Ito K, Calura E, Zanolla I, Ferroni L, Zhang Y, Jung Y, Sales G, Martini P, Nakamura T, Lasorsa FM, Finkel T, Lin CP, Zavan B, Pinton P, Georgakoudi I, Romualdi C, Scadden DT, Ito K. A mitochondrial NADPH-cholesterol axis regulates extracellular vesicle biogenesis to support hematopoietic stem cell fate. Cell Stem Cell 2024; 31:359-377.e10. [PMID: 38458178 PMCID: PMC10957094 DOI: 10.1016/j.stem.2024.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 11/16/2023] [Accepted: 02/08/2024] [Indexed: 03/10/2024]
Abstract
Mitochondrial fatty acid oxidation (FAO) is essential for hematopoietic stem cell (HSC) self-renewal; however, the mechanism by which mitochondrial metabolism controls HSC fate remains unknown. Here, we show that within the hematopoietic lineage, HSCs have the largest mitochondrial NADPH pools, which are required for proper HSC cell fate and homeostasis. Bioinformatic analysis of the HSC transcriptome, biochemical assays, and genetic inactivation of FAO all indicate that FAO-generated NADPH fuels cholesterol synthesis in HSCs. Interference with FAO disturbs the segregation of mitochondrial NADPH toward corresponding daughter cells upon single HSC division. Importantly, we have found that the FAO-NADPH-cholesterol axis drives extracellular vesicle (EV) biogenesis and release in HSCs, while inhibition of EV signaling impairs HSC self-renewal. These data reveal the existence of a mitochondrial NADPH-cholesterol axis for EV biogenesis that is required for hematopoietic homeostasis and highlight the non-stochastic nature of HSC fate determination.
Collapse
Affiliation(s)
- Massimo Bonora
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA
| | - Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA
| | - Nick van Gastel
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA
| | - Enrica Calura
- Department of Biology, University of Padova, 35121 Padua, Italy
| | - Ilaria Zanolla
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy
| | - Yang Zhang
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Yookyung Jung
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gabriele Sales
- Department of Biology, University of Padova, 35121 Padua, Italy
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Takahisa Nakamura
- Divisions of Endocrinology and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Francesco Massimo Lasorsa
- Department of Biosciences Biotechnologies and Environment University of Bari and Institute of Biomembranes Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70125 Bari, Italy
| | - Toren Finkel
- Aging Institute and Department of Medicine, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Barbara Zavan
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Chiara Romualdi
- Department of Biology, University of Padova, 35121 Padua, Italy
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
34
|
Wei W, Liu Y, Hou Y, Cao S, Chen Z, Zhang Y, Cai X, Yan Q, Li Z, Yuan Y, Wang G, Zheng X, Hao H. Psychological stress-induced microbial metabolite indole-3-acetate disrupts intestinal cell lineage commitment. Cell Metab 2024; 36:466-483.e7. [PMID: 38266651 DOI: 10.1016/j.cmet.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/12/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
The brain and gut are intricately connected and respond to various stimuli. Stress-induced brain-gut communication is implicated in the pathogenesis and relapse of gut disorders. The mechanism that relays psychological stress to the intestinal epithelium, resulting in maladaptation, remains poorly understood. Here, we describe a stress-responsive brain-to-gut metabolic axis that impairs intestinal stem cell (ISC) lineage commitment. Psychological stress-triggered sympathetic output enriches gut commensal Lactobacillus murinus, increasing the production of indole-3-acetate (IAA), which contributes to a transferrable loss of intestinal secretory cells. Bacterial IAA disrupts ISC mitochondrial bioenergetics and thereby prevents secretory lineage commitment in a cell-intrinsic manner. Oral α-ketoglutarate supplementation bolsters ISC differentiation and confers resilience to stress-triggered intestinal epithelial injury. We confirm that fecal IAA is higher in patients with mental distress and is correlated with gut dysfunction. These findings uncover a microbe-mediated brain-gut pathway that could be therapeutically targeted for stress-driven gut-brain comorbidities.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yali Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yuanlong Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen 518005, China
| | - Shuqi Cao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhuo Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Youying Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoying Cai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qingyuan Yan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ziguang Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
35
|
Sireesha K, Samundeshwari EL, Surekha K, Chandrasekhar C, Sarma PVGK. In vitro generation of epidermal keratinocytes from human CD34-positive hematopoietic stem cells. In Vitro Cell Dev Biol Anim 2024; 60:236-248. [PMID: 38502372 DOI: 10.1007/s11626-024-00862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
The epidermis is largely composed of keratinocytes (KCs), and the proliferation and differentiation of KCs from the stratum basale to the stratum corneum is the cellular hierarchy present in the epidermis. In this study, we explore the differentiation abilities of human hematopoietic stem cells (HSCs) into KCs. Cultured HSCs positive for CD34, CD45, and CD133 with prominent telomerase activity were induced with keratinocyte differentiation medium (KDM), which is composed of bovine pituitary extract (BPE), epidermal growth factor (EGF), insulin, hydrocortisone, epinephrine, transferrin, calcium chloride (CaCl2), bone morphogenetic protein 4 (BMP4), and retinoic acid (RA). Differentiation was monitored through the expression of cytokeratin markers K5 (keratin 5), K14 (keratin 14), K10 (keratin 10), K1 (keratin 1), transglutaminase 1 (TGM1), involucrin (IVL), and filaggrin (FLG) on day 0 (D0), day 6 (D6), day 11 (D11), day 18 (D18), day 24 (D24), and day 30 (D30) using immunocytochemistry, fluorescence microscopy, flow cytometry, qPCR, and Western blotting. The results revealed the expression of K5 and K14 genes in D6 cells (early keratinocytes), K10 and K1 genes in D11-D18 cells (mature keratinocytes) with active telomerase enzyme, and FLG, IVL, and TGM1 in D18-D24 cells (terminal keratinocytes), and by D30, the KCs were completely enucleated similar to cornified matrix. This method of differentiation of HSCs to KCs explains the cellular order exists in the normal epidermis and opens the possibility of exploring the use of human HSCs in the epidermal differentiation.
Collapse
Affiliation(s)
- Kodavala Sireesha
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences and University, Tirupati, 517507, Andhra Pradesh, India
| | | | - Kattaru Surekha
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences and University, Tirupati, 517507, Andhra Pradesh, India
| | - Chodimella Chandrasekhar
- Department of Hematology, Sri Venkateswara Institute of Medical Sciences, Tirupati, 517507, Andhra Pradesh, India
| | | |
Collapse
|
36
|
Singh D. Exploiting nuclear-mitochondrial cross-talk in theranostics: Enhancing drug delivery and diagnostic precision. Mitochondrion 2024; 75:101839. [PMID: 38158150 DOI: 10.1016/j.mito.2023.101839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The dynamic interplay between nuclear and mitochondrial processes plays a pivotal role in cellular homeostasis and disease progression. Exploiting this nuclear-mitochondrial cross-talk has emerged as a promising avenue in the field of theranostics, offering enhanced drug delivery and diagnostic precision for a wide range of medical conditions, particularly cancer. This abstract provides a brief overview of the key concepts and recent advancements in this rapidly evolving field. Recent research has elucidated the significance of mitochondrial dysfunction in various diseases, including cancer. Mitochondria, often referred to as the "powerhouses" of the cell, not only regulate energy production but also contribute to critical processes such as apoptosis, ROS generation, and metabolic signaling. Dysregulation of these mitochondrial functions is frequently associated with disease pathogenesis. In theranostics, the targeted modulation of mitochondrial function holds great promise. Mitochondria-targeted drug delivery systems have been designed to selectively deliver therapeutic agents to these organelles, thereby mitigating mitochondrial dysfunction while minimizing off-target effects. This precise drug delivery enhances the therapeutic efficacy of anticancer drugs and reduces the risk of drug resistance. Moreover, the diagnostic potential of nuclear-mitochondrial cross-talk is being harnessed to develop novel biomarkers and imaging techniques. Mitochondrial DNA mutations and alterations in mitochondrial metabolism serve as valuable indicators of disease progression and drug responsiveness. Non-invasive imaging modalities, such as positron emission tomography (PET) and magnetic resonance imaging (MRI), have been employed to visualize mitochondrial activity and assess therapeutic outcomes.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali 140413, India.
| |
Collapse
|
37
|
Burton MA, Antoun E, Garratt ES, Westbury L, Dennison EM, Harvey NC, Cooper C, Patel HP, Godfrey KM, Lillycrop KA. The serum small non-coding RNA (SncRNA) landscape as a molecular biomarker of age associated muscle dysregulation and insulin resistance in older adults. FASEB J 2024; 38:e23423. [PMID: 38294260 PMCID: PMC10952661 DOI: 10.1096/fj.202301089rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024]
Abstract
Small noncoding RNAs (sncRNAs) are implicated in age-associated pathologies, including sarcopenia and insulin resistance (IR). As potential circulating biomarkers, most studies have focussed on microRNAs (miRNAs), one class of sncRNA. This study characterized the wider circulating sncRNA transcriptome of older individuals and associations with sarcopenia and IR. sncRNA expression including miRNAs, transfer RNAs (tRNAs), tRNA-associated fragments (tRFs), and piwi-interacting RNAs (piRNAs) was measured in serum from 21 healthy and 21 sarcopenic Hertfordshire Sarcopenia Study extension women matched for age (mean 78.9 years) and HOMA2-IR. Associations with age, sarcopenia and HOMA2-IR were examined and predicted gene targets and biological pathways characterized. Of the total sncRNA among healthy controls, piRNAs were most abundant (85.3%), followed by tRNAs (4.1%), miRNAs (2.7%), and tRFs (0.5%). Age was associated (FDR < 0.05) with 2 miRNAs, 58 tRNAs, and 14 tRFs, with chromatin organization, WNT signaling, and response to stress enriched among gene targets. Sarcopenia was nominally associated (p < .05) with 12 tRNAs, 3 tRFs, and 6 piRNAs, with target genes linked to cell proliferation and differentiation such as Notch Receptor 1 (NOTCH1), DISC1 scaffold protein (DISC1), and GLI family zinc finger-2 (GLI2). HOMA2-IR was nominally associated (p<0.05) with 6 miRNAs, 9 tRNAs, 1 tRF, and 19 piRNAs, linked with lysine degradation, circadian rhythm, and fatty acid biosynthesis pathways. These findings identify changes in circulating sncRNA expression in human serum associated with chronological age, sarcopenia, and IR. These may have clinical utility as circulating biomarkers of ageing and age-associated pathologies and provide novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mark A. Burton
- Human Development and Health Academic Unit, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Elie Antoun
- Human Development and Health Academic Unit, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Emma S. Garratt
- Human Development and Health Academic Unit, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Leo Westbury
- MRC Lifecourse Epidemiology CentreUniversity of SouthamptonSouthamptonUK
| | - Elaine M. Dennison
- MRC Lifecourse Epidemiology CentreUniversity of SouthamptonSouthamptonUK
- Victoria University of WellingtonWellingtonNew Zealand
| | - Nicholas C. Harvey
- NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUK
- MRC Lifecourse Epidemiology CentreUniversity of SouthamptonSouthamptonUK
| | - Cyrus Cooper
- NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUK
- MRC Lifecourse Epidemiology CentreUniversity of SouthamptonSouthamptonUK
| | - Harnish P. Patel
- NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUK
- MRC Lifecourse Epidemiology CentreUniversity of SouthamptonSouthamptonUK
- Academic Geriatric Medicine, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Keith M. Godfrey
- Human Development and Health Academic Unit, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUK
- MRC Lifecourse Epidemiology CentreUniversity of SouthamptonSouthamptonUK
| | - Karen A. Lillycrop
- Human Development and Health Academic Unit, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUK
- Biological SciencesUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
38
|
Jia J, Tao W, Chen T, Zhong Q, Sun J, Xu Y, Sui X, Chen C, Zhang Z. SIRT6 Improves Hippocampal Neurogenesis Following Prolonged Sleep Deprivation Through Modulating Energy Metabolism in Developing rats. Mol Neurobiol 2024; 61:883-899. [PMID: 37668962 DOI: 10.1007/s12035-023-03585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
OBJECTIVE Prolonged sleep deprivation is known to have detrimental effects on the hippocampus during development or in adulthood. Furthermore, it is well-established that sleep deprivation disrupts energy metabolism broadly. SIRT6 is a critical regulator of energy metabolism in both central and peripheral tissues. This study aims to investigate the role of SIRT6 in modulating hippocampal neurogenesis following sleep deprivation during development, and elucidate the underlying mechanism. METHODS Male Sprague-Dawley rats, aged three weeks, were subjected to 2 weeks of sleep deprivation using the modified multiple platform method. Metabolomic profiling was carried out using the liquid chromatography-electrospray ionization-tandem mass spectrometry (LC‒ESI‒MS/MS). To investigate the role of SIRT6 in energy metabolism, the rats were administered with either the SIRT6-specific inhibitor, OSS128167, or SIRT6-overexpressing adeno-associated virus (AAV). Hippocampal neurogenesis was assessed by immunostaining with markers for neural stem cells (SOX2), immature neurons [doublecortin (DCX)] and newborn cells (BrdU). Sparse labeling of adult neurons was used to determine the density of dendritic spines in the dentate gyrus (DG). The Y-maze and novel object recognition (NOR) tests were performed to evaluate the spatial and recognition memory. SIRT6 expression was examined using immunofluorescence and western blotting (WB). The inhibition of SIRT6 was confirmed by assessing the acetylation of histone 3 lysine 9 (aceH3K9), a well-known substrate of SIRT6, through WB. RESULTS Sleep deprivation for a period of two weeks leads to inhibited hippocampal neurogenesis, reduced density of dendritic spines in the DG, and impaired memory, accompanied by decreased SIRT6 expression and disrupted energy metabolism. Similar to sleep deprivation, administration of OSS128167 significantly decreased energy metabolism, leading to reduced neurogenesis and memory dysfunction. Notably, the abnormal hippocampal energy metabolism, neurogenetic pathological changes and memory dysfunction caused by sleep deprivation were alleviated by SIRT6 overexpression in the DG. CONCLUSION Our results suggest that SIRT6 plays a critical role in maintaining energy metabolism homeostasis in the hippocampus after sleep deprivation, promoting hippocampal neurogenesis and enhancing memory during development.
Collapse
Affiliation(s)
- Junke Jia
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China
| | - Wanjiang Tao
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China
| | - Ting Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China
| | - Qi Zhong
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China
| | - Jiahui Sun
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China
| | - Yutong Xu
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China
| | - Xiaokai Sui
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China
| | - Chang Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China.
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
39
|
Wu D, Khan FA, Zhang K, Pandupuspitasari NS, Negara W, Guan K, Sun F, Huang C. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem Biol Interact 2024; 387:110773. [PMID: 37977248 DOI: 10.1016/j.cbi.2023.110773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
40
|
Bacigalupa ZA, Landis MD, Rathmell JC. Nutrient inputs and social metabolic control of T cell fate. Cell Metab 2024; 36:10-20. [PMID: 38118440 PMCID: PMC10872404 DOI: 10.1016/j.cmet.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
Cells in multicellular organisms experience diverse neighbors, signals, and evolving physical environments that drive functional and metabolic demands. To maintain proper development and homeostasis while avoiding inappropriate cell proliferation or death, individual cells interact with their neighbors via "social" cues to share and partition available nutrients. Metabolic signals also contribute to cell fate by providing biochemical links between cell-extrinsic signals and available resources. In addition to metabolic checkpoints that sense nutrients and directly supply molecular intermediates for biosynthetic pathways, many metabolites directly signal or provide the basis for post-translational modifications of target proteins and chromatin. In this review, we survey the landscape of T cell nutrient sensing and metabolic signaling that supports proper immunity while avoiding immunodeficiency or autoimmunity. The integration of cell-extrinsic microenvironmental cues with cell-intrinsic metabolic signaling provides a social metabolic control model to integrate cell signaling, metabolism, and fate.
Collapse
Affiliation(s)
- Zachary A Bacigalupa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Madelyn D Landis
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
41
|
Lv J, Zhang C, Liu X, Gu C, Liu Y, Gao Y, Huang Z, Jiang Q, Chen B, He D, Wang T, Xu Z, Su W. An aging-related immune landscape in the hematopoietic immune system. Immun Ageing 2024; 21:3. [PMID: 38169405 PMCID: PMC10759628 DOI: 10.1186/s12979-023-00403-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Aging is a holistic change that has a major impact on the immune system, and immunosenescence contributes to the overall progression of aging. The bone marrow is the most important hematopoietic immune organ, while the spleen, as the most important extramedullary hematopoietic immune organ, maintains homeostasis of the human hematopoietic immune system (HIS) in cooperation with the bone marrow. However, the overall changes in the HIS during aging have not been described. Here, we describe a hematopoietic immune map of the spleen and bone marrow of young and old mice using single-cell sequencing and flow cytometry techniques. RESULTS We observed extensive, complex changes in the HIS during aging. Compared with young mice, the immune cells of aged mice showed a marked tendency toward myeloid differentiation, with the neutrophil population accounting for a significant proportion of this response. In this change, hypoxia-inducible factor 1-alpha (Hif1α) was significantly overexpressed, and this enhanced the immune efficacy and inflammatory response of neutrophils. Our research revealed that during the aging process, hematopoietic stem cells undergo significant changes in function and composition, and their polymorphism and differentiation abilities are downregulated. Moreover, we found that the highly responsive CD62L + HSCs were obviously downregulated in aging, suggesting that they may play an important role in the aging process. CONCLUSIONS Overall, aging extensively alters the cellular composition and function of the HIS. These findings could potentially give high-dimensional insights and enable more accurate functional and developmental analyses as well as immune monitoring in HIS aging.
Collapse
Affiliation(s)
- Jianjie Lv
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Chun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Chenyang Gu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yidan Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yuehan Gao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Qi Jiang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Binyao Chen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Daquan He
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Tianfu Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
42
|
Zhang YW, Schönberger K, Cabezas‐Wallscheid N. Bidirectional interplay between metabolism and epigenetics in hematopoietic stem cells and leukemia. EMBO J 2023; 42:e112348. [PMID: 38010205 PMCID: PMC10711668 DOI: 10.15252/embj.2022112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 11/29/2023] Open
Abstract
During the last decades, remarkable progress has been made in further understanding the complex molecular regulatory networks that maintain hematopoietic stem cell (HSC) function. Cellular and organismal metabolisms have been shown to directly instruct epigenetic alterations, and thereby dictate stem cell fate, in the bone marrow. Epigenetic regulatory enzymes are dependent on the availability of metabolites to facilitate DNA- and histone-modifying reactions. The metabolic and epigenetic features of HSCs and their downstream progenitors can be significantly altered by environmental perturbations, dietary habits, and hematological diseases. Therefore, understanding metabolic and epigenetic mechanisms that regulate healthy HSCs can contribute to the discovery of novel metabolic therapeutic targets that specifically eliminate leukemia stem cells while sparing healthy HSCs. Here, we provide an in-depth review of the metabolic and epigenetic interplay regulating hematopoietic stem cell fate. We discuss the influence of metabolic stress stimuli, as well as alterations occurring during leukemic development. Additionally, we highlight recent therapeutic advancements toward eradicating acute myeloid leukemia cells by intervening in metabolic and epigenetic pathways.
Collapse
Affiliation(s)
- Yu Wei Zhang
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | | | | |
Collapse
|
43
|
Schönberger K, Cabezas-Wallscheid N. How nutrition regulates hematopoietic stem cell features. Exp Hematol 2023; 128:10-18. [PMID: 37816445 DOI: 10.1016/j.exphem.2023.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023]
Abstract
Our dietary choices significantly impact all the cells in our body. Increasing evidence suggests that diet-derived metabolites influence hematopoietic stem cell (HSC) metabolism and function, thereby actively modulating blood homeostasis. This is of particular relevance because regulating the metabolic activity of HSCs is crucial for maintaining stem cell fitness and mitigating the risk of hematologic disorders. In this review, we examine the current scientific knowledge of the impact of diet on stemness features, and we specifically highlight the established mechanisms by which dietary components modulate metabolic and transcriptional programs in adult HSCs. Gaining a deeper understanding of how nutrition influences our HSC compartment may pave the way for targeted dietary interventions with the potential to decelerate aging and improve the effectiveness of transplantation and cancer therapies.
Collapse
|
44
|
Chernyavskij DA, Galkin II, Pavlyuchenkova AN, Fedorov AV, Chelombitko MA. Role of Mitochondria in Intestinal Epithelial Barrier Dysfunction in Inflammatory Bowel Disease. Mol Biol 2023; 57:1024-1037. [DOI: 10.1134/s0026893323060043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 01/05/2025]
Abstract
Abstract
Inflammatory bowel disease (IBD) is widespread in industrial countries with every 20th citizen being affected. Dysregulation of the epithelial barrier function is considered to play a key role in IBD. Permeability of the intestinal epithelium depends mostly on its self-renewal potential and the condition of intercellular junctions. Mitochondria are involved in regulating various intracellular processes in addition to their energy function. Recent data implicate mitochondria in intestinal epithelial barrier regulation and IBD. Mitochondrial dysfunction is possibly one of the factors that underlie the structural abnormalities of tight junctions and the cytoskeleton in intestinal epithelial cells and decrease the self-renewal capacity of the epithelium. The barrier function of the intestinal epithelium is consequently distorted, and IBD develops. The mechanisms of these processes are still unclear and require further research.
Collapse
|
45
|
Karimnia N, Harris J, Heazlewood SY, Cao B, Nilsson SK. Metabolic regulation of aged hematopoietic stem cells: key players and mechanisms. Exp Hematol 2023; 128:2-9. [PMID: 37778498 DOI: 10.1016/j.exphem.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Nazanin Karimnia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - James Harris
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia; School of Clinical Sciences, Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Shen Y Heazlewood
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Benjamin Cao
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia.
| | - Susan K Nilsson
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia.
| |
Collapse
|
46
|
Li X, Jiang O, Wang S. Molecular mechanisms of cellular metabolic homeostasis in stem cells. Int J Oral Sci 2023; 15:52. [PMID: 38040705 PMCID: PMC10692173 DOI: 10.1038/s41368-023-00262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023] Open
Abstract
Many tissues and organ systems have intrinsic regeneration capabilities that are largely driven and maintained by tissue-resident stem cell populations. In recent years, growing evidence has demonstrated that cellular metabolic homeostasis plays a central role in mediating stem cell fate, tissue regeneration, and homeostasis. Thus, a thorough understanding of the mechanisms that regulate metabolic homeostasis in stem cells may contribute to our knowledge on how tissue homeostasis is maintained and provide novel insights for disease management. In this review, we summarize the known relationship between the regulation of metabolic homeostasis and molecular pathways in stem cells. We also discuss potential targets of metabolic homeostasis in disease therapy and describe the current limitations and future directions in the development of these novel therapeutic targets.
Collapse
Affiliation(s)
- Xiaoyu Li
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ou Jiang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
47
|
Kasbekar M, Mitchell CA, Proven MA, Passegué E. Hematopoietic stem cells through the ages: A lifetime of adaptation to organismal demands. Cell Stem Cell 2023; 30:1403-1420. [PMID: 37865087 PMCID: PMC10842631 DOI: 10.1016/j.stem.2023.09.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Hematopoietic stem cells (HSCs), which govern the production of all blood lineages, transition through a series of functional states characterized by expansion during fetal development, functional quiescence in adulthood, and decline upon aging. We describe central features of HSC regulation during ontogeny to contextualize how adaptive responses over the life of the organism ultimately form the basis for HSC functional degradation with age. We particularly focus on the role of cell cycle regulation, inflammatory response pathways, epigenetic changes, and metabolic regulation. We then explore how the knowledge of age-related changes in HSC regulation can inform strategies for the rejuvenation of old HSCs.
Collapse
Affiliation(s)
- Monica Kasbekar
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY 10032, USA; Division of Hematology and Medical Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Carl A Mitchell
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Melissa A Proven
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
48
|
Abstract
Metabolic switches are a crucial hallmark of cellular development and regeneration. In response to changes in their environment or physiological state, cells undergo coordinated metabolic switching that is necessary to execute biosynthetic demands of growth and repair. In this Review, we discuss how metabolic switches represent an evolutionarily conserved mechanism that orchestrates tissue development and regeneration, allowing cells to adapt rapidly to changing conditions during development and postnatally. We further explore the dynamic interplay between metabolism and how it is not only an output, but also a driver of cellular functions, such as cell proliferation and maturation. Finally, we underscore the epigenetic and cellular mechanisms by which metabolic switches mediate biosynthetic needs during development and regeneration, and how understanding these mechanisms is important for advancing our knowledge of tissue development and devising new strategies to promote tissue regeneration.
Collapse
Affiliation(s)
- Ahmed I. Mahmoud
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
49
|
Kong R, Li J, Liu F, Ma Y, Zhao H, Zhao H, Ma M, Li Z. A feedforward loop between JAK/STAT downstream target p115 and STAT in germline stem cells. Stem Cell Reports 2023; 18:1940-1953. [PMID: 37683644 PMCID: PMC10656303 DOI: 10.1016/j.stemcr.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
The maintenance of germline stem cells (GSCs) is essential for tissue homeostasis. JAK/STAT signaling maintains GSC fate in Drosophila testis. However, how JAK/STAT signaling maintains male GSC fate through its downstream targets remains poorly understood. Here, we identify p115, a tER/cis-Golgi golgin protein, as a putative downstream target of JAK/STAT signaling. p115 maintains GSC fate independent of GM130 and GRASP65. p115 localizes in cytosol, the ER and Golgi apparatus in germline cells and is required for the morphology of the ER and Golgi apparatus. Furthermore, depletion of p115 in GSCs results in aberrant spindle orientation. Mechanistically, p115 associates with and stabilizes STAT. Finally, ectopic expression of STAT completely restores GSC loss caused by p115 depletion. Collectively, JAK/STAT signaling and p115 form a feedforward loop to maintain male GSC fate. Our work provides new insights into the regulatory mechanism of how stem cell maintenance is properly controlled by JAK/STAT signaling.
Collapse
Affiliation(s)
- Ruiyan Kong
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Juan Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Fuli Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yankun Ma
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hang Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hanfei Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Meifang Ma
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhouhua Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
50
|
Allegra A, Caserta S, Mirabile G, Gangemi S. Aging and Age-Related Epigenetic Drift in the Pathogenesis of Leukemia and Lymphomas: New Therapeutic Targets. Cells 2023; 12:2392. [PMID: 37830606 PMCID: PMC10572300 DOI: 10.3390/cells12192392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
One of the traits of cancer cells is abnormal DNA methylation patterns. The idea that age-related epigenetic changes may partially explain the increased risk of cancer in the elderly is based on the observation that aging is also accompanied by comparable changes in epigenetic patterns. Lineage bias and decreased stem cell function are signs of hematopoietic stem cell compartment aging. Additionally, aging in the hematopoietic system and the stem cell niche have a role in hematopoietic stem cell phenotypes linked with age, such as leukemia and lymphoma. Understanding these changes will open up promising pathways for therapies against age-related disorders because epigenetic mechanisms are reversible. Additionally, the development of high-throughput epigenome mapping technologies will make it possible to identify the "epigenomic identity card" of every hematological disease as well as every patient, opening up the possibility of finding novel molecular biomarkers that can be used for diagnosis, prediction, and prognosis.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (G.M.)
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (G.M.)
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (G.M.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|