1
|
Levy T, Holder JL, Horrigan JP, Snape MF, McMorn A, Layton C, Silver H, Friedman K, Grosman H, Underwood S, Halpern D, Zweifach J, Siper PM, Kolevzon A. An open-label study evaluating the safety and efficacy of AMO-01 for the treatment of seizures in Phelan-McDermid syndrome. HGG ADVANCES 2025; 6:100393. [PMID: 39690738 PMCID: PMC11772936 DOI: 10.1016/j.xhgg.2024.100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024] Open
Abstract
Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder caused by haploinsufficiency of the SHANK3 gene. Approximately 25% of individuals with PMS have epilepsy. Treatment of epilepsy in PMS may require multiple anticonvulsants, and in a minority of cases, seizures remain poorly controlled. Converging lines of evidence in different experimental models indicate that the Ras-ERK pathway is implicated in the pathophysiology of seizure generation and neurobehavioral symptoms in PMS. The goal of this study was to evaluate the safety, tolerability, and efficacy in treating seizures in adults and adolescents with PMS using AMO-01, a Ras-ERK pathway inhibitor. A single 6-hour intravenous infusion of AMO-01 at 120 mg/m2 was administered to six participants using an open-label design. Safety was assessed during the infusion and for 4 weeks post-infusion. Caregivers completed seizure diaries and recorded individual seizures during a baseline period and for 4 weeks following the infusion. Exploratory clinical and biomarker assessments were completed throughout the study. AMO-01 was well tolerated, with no serious adverse events (AEs) reported. All AEs were mild or moderate in severity. Seizures were reduced by at least 25% compared to baseline at each follow-up (weeks 1, 2, and 4). Exploratory clinical measures did not change significantly from baseline, but visual evoked potentials (VEPs) and phosphorylated ERK blood levels revealed trending changes in a subset of participants. These results provide preliminary support for the safety of AMO-01 and its efficacy in reducing seizures in adults with PMS. Future placebo-controlled studies with larger sample sizes and repeated dosing are warranted.
Collapse
Affiliation(s)
- Tess Levy
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - J Lloyd Holder
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Joseph P Horrigan
- AMO Pharma, Godalming, UK; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
| | | | | | - Christina Layton
- Department of Psychology, University of Rochester, Rochester, NY 14627, USA
| | - Hailey Silver
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kate Friedman
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hannah Grosman
- Department of Psychology, Drexel University, Philadelphia, PA 19104, USA
| | - Slayton Underwood
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Danielle Halpern
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessica Zweifach
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paige M Siper
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
2
|
Sun P, Yang L, Yu K, Wang J, Chao J. Scaffold Proteins in Fibrotic Diseases of Visceral Organs. Biomolecules 2025; 15:420. [PMID: 40149956 PMCID: PMC11940551 DOI: 10.3390/biom15030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Fibrosis, characterized by excessive extracellular matrix (ECM) deposition, disrupts tissue architecture and impairs organ function, ultimately leading to severe health consequences and even failure of vital organs such as the lung, heart, liver, and kidney. Despite significant advances in understanding the molecular mechanisms underlying fibrosis, effective therapeutic options remain limited. Emerging evidence highlights scaffold proteins as critical regulators in the progression of fibrosis. These multifunctional proteins serve as molecular platforms that organize and coordinate key signaling pathways-including those governing ECM remodeling, cytoskeletal organization, and cell migration-thereby integrating both profibrotic and antifibrotic signals. Their pivotal role in linking mechanotransduction, inflammatory, and developmental signals offers a unique therapeutic window, as targeted interventions (e.g., small-molecule inhibitors, peptides, biologics, and gene therapy) are emerging to modulate these pathways. This review synthesizes recent findings on scaffold protein functions across multiple organs and discusses novel therapeutic strategies to manage and potentially reverse fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
3
|
Villari G, Gioelli N, Gino M, Zhang H, Hodge K, Cordero F, Zanivan S, Zhu J, Serini G. Luminescent sensing of conformational integrin activation in living cells. Cell Rep 2025; 44:115319. [PMID: 39964812 PMCID: PMC11861568 DOI: 10.1016/j.celrep.2025.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/29/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
Integrins are major receptors for secreted extracellular matrix, playing crucial roles in physiological and pathological contexts, such as angiogenesis and cancer. Regulation of the transition between inactive and active conformation is key for integrins to fulfill their functions, and pharmacological control of those dynamics may have therapeutic applications. We create and validate a prototypic luminescent β1 integrin activation sensor (β1IAS) by introducing a split luciferase into an activation reporting site between the βI and the hybrid domains. As a recombinant protein in both solution and living cells, β1IAS accurately reports β1 integrin activation in response to (bio)chemical and physical stimuli. A short interfering RNA (siRNA) high-throughput screening on live β1IAS knockin endothelial cells unveils hitherto unknown regulators of β1 integrin activation, such as β1 integrin inhibitors E3 ligase Pja2 and vascular endothelial growth factor B (VEGF-B). This split-luciferase-based strategy provides an in situ label-free measurement of integrin activation and may be applicable to other β integrins and receptors.
Collapse
Affiliation(s)
- Giulia Villari
- Department of Oncology, University of Torino School of Medicine, Candiolo, TO, Italy; Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, TO, Italy
| | - Noemi Gioelli
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, TO, Italy
| | - Marta Gino
- Department of Oncology, University of Torino School of Medicine, Candiolo, TO, Italy; Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, TO, Italy
| | - Heng Zhang
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Kelly Hodge
- Cancer Research UK Scotland Institute, Glasgow, UK
| | | | - Sara Zanivan
- Cancer Research UK Scotland Institute, Glasgow, UK; School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jieqing Zhu
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, Candiolo, TO, Italy; Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, TO, Italy.
| |
Collapse
|
4
|
Liao Z, Shattil SJ. Talin, a Rap1 effector for integrin activation at the plasma membrane, also promotes Rap1 activity by disrupting sequestration of Rap1 by SHANK3. J Cell Sci 2025; 138:JCS263595. [PMID: 39853211 PMCID: PMC11928058 DOI: 10.1242/jcs.263595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Talin regulates the adhesion and migration of cells in part by promoting the affinity of integrins for extracellular matrix proteins, a process that in cells such as endothelial cells and platelets requires the direct interaction of talin with both the small GTPase Rap1 bound to GTP (Rap1-GTP) and the integrin β3 cytoplasmic tail. To study this process in more detail, we employed an optogenetic approach in living, immortalized endothelial cells to be able to regulate the interaction of talin with the plasma membrane. Previous studies identified talin as the Rap1-GTP effector for β3 integrin activation. Surprisingly, optogenetic recruitment of talin-1 (TLN1; herein referred to as talin) to the plasma membrane also led to the localized activation of Rap1 itself, apparently by talin competing for Rap1-GTP with SHANK3, a protein known to sequester Rap1-GTP and to block integrin activation. Rap1 activation by talin was localized to the cell periphery in suspension cells and within lamellipodia and pseudopodia in cells adherent to fibronectin. Thus, membrane-associated talin can play a dual role in regulating integrin function in endothelial cells: first, by releasing Rap1-GTP from its sequestration by SHANK3, and second, by serving as the relevant Rap1 effector for integrin activation.
Collapse
Affiliation(s)
- Zhongji Liao
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sanford J. Shattil
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Lilja J, Kaivola J, Conway JRW, Vuorio J, Parkkola H, Roivas P, Dibus M, Chastney MR, Varila T, Jacquemet G, Peuhu E, Wang E, Pentikäinen U, Martinez D Posada I, Hamidi H, Najumudeen AK, Sansom OJ, Barsukov IL, Abankwa D, Vattulainen I, Salmi M, Ivaska J. SHANK3 depletion leads to ERK signalling overdose and cell death in KRAS-mutant cancers. Nat Commun 2024; 15:8002. [PMID: 39266533 PMCID: PMC11393128 DOI: 10.1038/s41467-024-52326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
The KRAS oncogene drives many common and highly fatal malignancies. These include pancreatic, lung, and colorectal cancer, where various activating KRAS mutations have made the development of KRAS inhibitors difficult. Here we identify the scaffold protein SH3 and multiple ankyrin repeat domain 3 (SHANK3) as a RAS interactor that binds active KRAS, including mutant forms, competes with RAF and limits oncogenic KRAS downstream signalling, maintaining mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) activity at an optimal level. SHANK3 depletion breaches this threshold, triggering MAPK/ERK signalling hyperactivation and MAPK/ERK-dependent cell death in KRAS-mutant cancers. Targeting this vulnerability through RNA interference or nanobody-mediated disruption of the SHANK3-KRAS interaction constrains tumour growth in vivo in female mice. Thus, inhibition of SHANK3-KRAS interaction represents an alternative strategy for selective killing of KRAS-mutant cancer cells through excessive signalling.
Collapse
Affiliation(s)
- Johanna Lilja
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - James R W Conway
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Joni Vuorio
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Hanna Parkkola
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Pekka Roivas
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
- Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland
| | - Michal Dibus
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Megan R Chastney
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Taru Varila
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520, Turku, Finland
- Turku Bioimaging, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, FI-20520, Turku, Finland
| | - Emilia Peuhu
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
- Institute of Biomedicine, Cancer Research Laboratory FICAN West, University of Turku, FI-20520, Turku, Finland
| | - Emily Wang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ulla Pentikäinen
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
- Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland
| | | | - Hellyeh Hamidi
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Arafath K Najumudeen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Owen J Sansom
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Igor L Barsukov
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Daniel Abankwa
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
- Department of Life Sciences and Medicine, University of Luxembourg, 4365, Esch- sur-Alzette, Luxembourg
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Marko Salmi
- Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland
- MediCity Research Laboratory, University of Turku, FI-20520, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20520, Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, FI-20520, Turku, Finland.
- Department of Life Technologies, University of Turku, Turku, Finland.
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014, Helsinki, Finland.
- Western Finnish Cancer Center, University of Turku, Turku, FI-20520, Finland.
| |
Collapse
|
6
|
Okuzono S, Fujii F, Setoyama D, Taira R, Shinmyo Y, Kato H, Masuda K, Yonemoto K, Akamine S, Matsushita Y, Motomura Y, Sakurai T, Kawasaki H, Han K, Kato TA, Torisu H, Kang D, Nakabeppu Y, Ohga S, Sakai Y. An N-terminal and ankyrin repeat domain interactome of Shank3 identifies the protein complex with the splicing regulator Nono in mice. Genes Cells 2024; 29:746-756. [PMID: 38964745 PMCID: PMC11447829 DOI: 10.1111/gtc.13142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
An autism-associated gene Shank3 encodes multiple splicing isoforms, Shank3a-f. We have recently reported that Shank3a/b-knockout mice were more susceptible to kainic acid-induced seizures than wild-type mice at 4 weeks of age. Little is known, however, about how the N-terminal and ankyrin repeat domains (NT-Ank) of Shank3a/b regulate multiple molecular signals in the developing brain. To explore the functional roles of Shank3a/b, we performed a mass spectrometry-based proteomic search for proteins interacting with GFP-tagged NT-Ank. In this study, NT-Ank was predicted to form a variety of complexes with a total of 348 proteins, in which RNA-binding (n = 102), spliceosome (n = 22), and ribosome-associated molecules (n = 9) were significantly enriched. Among them, an X-linked intellectual disability-associated protein, Nono, was identified as a NT-Ank-binding protein. Coimmunoprecipitation assays validated the interaction of Shank3 with Nono in the mouse brain. In agreement with these data, the thalamus of Shank3a/b-knockout mice aberrantly expressed splicing isoforms of autism-associated genes, Nrxn1 and Eif4G1, before and after seizures with kainic acid treatment. These data indicate that Shank3 interacts with multiple RNA-binding proteins in the postnatal brain, thereby regulating the homeostatic expression of splicing isoforms for autism-associated genes after birth.
Collapse
Affiliation(s)
- Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Akamine
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Matsushita
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Torisu
- Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Huang Y, Zhang H, Lin Z, Wei Y, Xi W. RevGraphVAMP: A protein molecular simulation analysis model combining graph convolutional neural networks and physical constraints. Methods 2024; 229:163-174. [PMID: 38972499 DOI: 10.1016/j.ymeth.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024] Open
Abstract
Molecular dynamics simulation is a crucial research domain within the life sciences, focusing on comprehending the mechanisms of biomolecular interactions at atomic scales. Protein simulation, as a critical subfield, often utilizes MD for implementation, with trajectory data play a pivotal role in drug discovery. The advancement of high-performance computing and deep learning technology becomes popular and critical to predict protein properties from vast trajectory data, posing challenges regarding data features extraction from the complicated simulation data and dimensionality reduction. Simultaneously, it is essential to provide a meaningful explanation of the biological mechanism behind dimensionality. To tackle this challenge, we propose a new unsupervised model named RevGraphVAMP to intelligently analyze the simulation trajectory. This model is based on the variational approach for Markov processes (VAMP) and integrates graph convolutional neural networks and physical constraint optimization to enhance the learning performance. Additionally, we introduce attention mechanism to assess the importance of key interaction region, facilitating the interpretation of molecular mechanism. In comparison to other VAMPNets models, our model showcases competitive performance, improved accuracy in state transition prediction, as demonstrated through its application to two public datasets and the Shank3-Rap1 complex, which is associated with autism spectrum disorder. Moreover, it enhanced dimensionality reduction discrimination across different substates and provides interpretable results for protein structural characterization.
Collapse
Affiliation(s)
- Ying Huang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huiling Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenli Lin
- Department of Ophthalmology, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Yanjie Wei
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen 518107, China.
| | - Wenhui Xi
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen 518107, China.
| |
Collapse
|
8
|
Dong L, Li L, Chen H, Cao Y, Lei H. Mechanochemistry: Fundamental Principles and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403949. [PMID: 39206931 DOI: 10.1002/advs.202403949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Mechanochemistry is an emerging research field at the interface of physics, mechanics, materials science, and chemistry. Complementary to traditional activation methods in chemistry, such as heat, electricity, and light, mechanochemistry focuses on the activation of chemical reactions by directly or indirectly applying mechanical forces. It has evolved as a powerful tool for controlling chemical reactions in solid state systems, sensing and responding to stresses in polymer materials, regulating interfacial adhesions, and stimulating biological processes. By combining theoretical approaches, simulations and experimental techniques, researchers have gained intricate insights into the mechanisms underlying mechanochemistry. In this review, the physical chemistry principles underpinning mechanochemistry are elucidated and a comprehensive overview of recent significant achievements in the discovery of mechanically responsive chemical processes is provided, with a particular emphasis on their applications in materials science. Additionally, The perspectives and insights into potential future directions for this exciting research field are offered.
Collapse
Affiliation(s)
- Liang Dong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Luofei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Huiyan Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Institute of Advanced Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
9
|
Hassani Nia F, Woike D, Bento I, Niebling S, Tibbe D, Schulz K, Hirnet D, Skiba M, Hönck HH, Veith K, Günther C, Scholz T, Bierhals T, Driemeyer J, Bend R, Failla AV, Lohr C, Alai MG, Kreienkamp HJ. Structural deficits in key domains of Shank2 lead to alterations in postsynaptic nanoclusters and to a neurodevelopmental disorder in humans. Mol Psychiatry 2024; 29:1683-1697. [PMID: 36450866 PMCID: PMC11371640 DOI: 10.1038/s41380-022-01882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022]
Abstract
Postsynaptic scaffold proteins such as Shank, PSD-95, Homer and SAPAP/GKAP family members establish the postsynaptic density of glutamatergic synapses through a dense network of molecular interactions. Mutations in SHANK genes are associated with neurodevelopmental disorders including autism and intellectual disability. However, no SHANK missense mutations have been described which interfere with the key functions of Shank proteins believed to be central for synapse formation, such as GKAP binding via the PDZ domain, or Zn2+-dependent multimerization of the SAM domain. We identify two individuals with a neurodevelopmental disorder carrying de novo missense mutations in SHANK2. The p.G643R variant distorts the binding pocket for GKAP in the Shank2 PDZ domain and prevents interaction with Thr(-2) in the canonical PDZ ligand motif of GKAP. The p.L1800W variant severely delays the kinetics of Zn2+-dependent polymerization of the Shank2-SAM domain. Structural analysis shows that Trp1800 dislodges one histidine crucial for Zn2+ binding. The resulting conformational changes block the stacking of helical polymers of SAM domains into sheets through side-by-side contacts, which is a hallmark of Shank proteins, thereby disrupting the highly cooperative assembly process induced by Zn2+. Both variants reduce the postsynaptic targeting of Shank2 in primary cultured neurons and alter glutamatergic synaptic transmission. Super-resolution microscopy shows that both mutants interfere with the formation of postsynaptic nanoclusters. Our data indicate that both the PDZ- and the SAM-mediated interactions of Shank2 contribute to the compaction of postsynaptic protein complexes into nanoclusters, and that deficiencies in this process interfere with normal brain development in humans.
Collapse
Affiliation(s)
- Fatemeh Hassani Nia
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Daniel Woike
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | | | - Stephan Niebling
- EMBL Hamburg, c/o DESY, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Debora Tibbe
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Kristina Schulz
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniela Hirnet
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Matilda Skiba
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Hans-Hinrich Hönck
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | | | | | - Tasja Scholz
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Tatjana Bierhals
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Joenna Driemeyer
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Renee Bend
- Prevention Genetics, Marshfield, WI, USA
| | - Antonio Virgilio Failla
- UKE microscopic imaging facility (umif), University Medical Center Eppendorf, Hamburg, Germany
| | - Christian Lohr
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Maria Garcia Alai
- EMBL Hamburg, c/o DESY, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| |
Collapse
|
10
|
Robinson K, Delhaye M, Craig AM. Mapping proteomic composition of excitatory postsynaptic sites in the cerebellar cortex. Front Mol Neurosci 2024; 17:1381534. [PMID: 38783902 PMCID: PMC11111907 DOI: 10.3389/fnmol.2024.1381534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Functions of the cerebellar cortex, from motor learning to emotion and cognition, depend on the appropriate molecular composition at diverse synapse types. Glutamate receptor distributions have been partially mapped using immunogold electron microscopy. However, information is lacking on the distribution of many other components, such as Shank2, a postsynaptic scaffolding protein whose cerebellar dysfunction is associated with autism spectrum disorders. Here, we used an adapted Magnified Analysis of the Proteome, an expansion microscopy approach, to map multiple glutamate receptors, scaffolding and signaling proteins at single synapse resolution in the cerebellar cortex. Multiple distinct synapse-selective distribution patterns were observed. For example, AMPA receptors were most concentrated at synapses on molecular layer interneurons and at climbing fiber synapses, Shank1 was most concentrated at parallel fiber synapses on Purkinje cells, and Shank2 at both climbing fiber and parallel fiber synapses on Purkinje cells but little on molecular layer interneurons. Our results are consistent with gene expression data but also reveal input-selective targeting within Purkinje cells. In specialized glomerular structures of the granule cell layer, AMPA receptors as well as most other synaptic components preferentially targeted to synapses. However, NMDA receptors and the synaptic GTPase activating protein SynGAP preferentially targeted to extrasynaptic sites. Thus, glomeruli may be considered integrative signaling units through which mossy fibers differentially activate synaptic AMPA and extrasynaptic NMDA receptor complexes. Furthermore, we observed NMDA receptors and SynGAP at adherens junctions, suggesting a role in structural plasticity of glomeruli. Altogether, these data contribute to mapping the cerebellar 'synaptome'.
Collapse
Affiliation(s)
| | | | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Kumari R, Ven K, Chastney M, Kokate SB, Peränen J, Aaron J, Kogan K, Almeida-Souza L, Kremneva E, Poincloux R, Chew TL, Gunning PW, Ivaska J, Lappalainen P. Focal adhesions contain three specialized actin nanoscale layers. Nat Commun 2024; 15:2547. [PMID: 38514695 PMCID: PMC10957975 DOI: 10.1038/s41467-024-46868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Focal adhesions (FAs) connect inner workings of cell to the extracellular matrix to control cell adhesion, migration and mechanosensing. Previous studies demonstrated that FAs contain three vertical layers, which connect extracellular matrix to the cytoskeleton. By using super-resolution iPALM microscopy, we identify two additional nanoscale layers within FAs, specified by actin filaments bound to tropomyosin isoforms Tpm1.6 and Tpm3.2. The Tpm1.6-actin filaments, beneath the previously identified α-actinin cross-linked actin filaments, appear critical for adhesion maturation and controlled cell motility, whereas the adjacent Tpm3.2-actin filament layer beneath seems to facilitate adhesion disassembly. Mechanistically, Tpm3.2 stabilizes ACF-7/MACF1 and KANK-family proteins at adhesions, and hence targets microtubule plus-ends to FAs to catalyse their disassembly. Tpm3.2 depletion leads to disorganized microtubule network, abnormally stable FAs, and defects in tail retraction during migration. Thus, FAs are composed of distinct actin filament layers, and each may have specific roles in coupling adhesions to the cytoskeleton, or in controlling adhesion dynamics.
Collapse
Affiliation(s)
- Reena Kumari
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Katharina Ven
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Megan Chastney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Shrikant B Kokate
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Johan Peränen
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Konstantin Kogan
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Leonardo Almeida-Souza
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Elena Kremneva
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Teng-Leong Chew
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Peter W Gunning
- School of Biomedical Sciences, UNSW Sydney, Wallace Wurth Building, Sydney, NSW 2052, Australia
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
- Department of Life Technologies, University of Turku, FI-20520, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014, Helsinki, Finland
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
12
|
Ioannidis V, Pandey R, Bauer HF, Schön M, Bockmann J, Boeckers TM, Lutz AK. Disrupted extracellular matrix and cell cycle genes in autism-associated Shank3 deficiency are targeted by lithium. Mol Psychiatry 2024; 29:704-717. [PMID: 38123724 PMCID: PMC11153165 DOI: 10.1038/s41380-023-02362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
The Shank3 gene encodes the major postsynaptic scaffolding protein SHANK3. Its mutation causes a syndromic form of autism spectrum disorder (ASD): Phelan-McDermid Syndrome (PMDS). It is characterized by global developmental delay, intellectual disorders (ID), ASD behavior, affective symptoms, as well as extra-cerebral symptoms. Although Shank3 deficiency causes a variety of molecular alterations, they do not suffice to explain all clinical aspects of this heterogenic syndrome. Since global gene expression alterations in Shank3 deficiency remain inadequately studied, we explored the transcriptome in vitro in primary hippocampal cells from Shank3∆11(-/-) mice, under control and lithium (Li) treatment conditions, and confirmed the findings in vivo. The Shank3∆11(-/-) genotype affected the overall transcriptome. Remarkably, extracellular matrix (ECM) and cell cycle transcriptional programs were disrupted. Accordingly, in the hippocampi of adolescent Shank3∆11(-/-) mice we found proteins of the collagen family and core cell cycle proteins downregulated. In vitro Li treatment of Shank3∆11(-/-) cells had a rescue-like effect on the ECM and cell cycle gene sets. Reversed ECM gene sets were part of a network, regulated by common transcription factors (TF) such as cAMP responsive element binding protein 1 (CREB1) and β-Catenin (CTNNB1), which are known downstream effectors of synaptic activity and targets of Li. These TFs were less abundant and/or hypo-phosphorylated in hippocampi of Shank3∆11(-/-) mice and could be rescued with Li in vitro and in vivo. Our investigations suggest the ECM compartment and cell cycle genes as new players in the pathophysiology of Shank3 deficiency, and imply involvement of transcriptional regulators, which can be modulated by Li. This work supports Li as potential drug in the management of PMDS symptoms, where a Phase III study is ongoing.
Collapse
Affiliation(s)
- Valentin Ioannidis
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | - Rakshita Pandey
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany
| | - Helen Friedericke Bauer
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | - Jürgen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081, Ulm, Germany
| | - Anne-Kathrin Lutz
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
13
|
Cherra SJ, Lamb R. Interactions between Ras and Rap signaling pathways during neurodevelopment in health and disease. Front Mol Neurosci 2024; 17:1352731. [PMID: 38463630 PMCID: PMC10920261 DOI: 10.3389/fnmol.2024.1352731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
The Ras family of small GTPases coordinates tissue development by modulating cell proliferation, cell-cell adhesion, and cellular morphology. Perturbations of any of these key steps alter nervous system development and are associated with neurological disorders. While the underlying causes are not known, genetic mutations in Ras and Rap GTPase signaling pathways have been identified in numerous neurodevelopmental disorders, including autism spectrum, neurofibromatosis, intellectual disability, epilepsy, and schizophrenia. Despite diverse clinical presentations, intersections between these two signaling pathways may provide a better understanding of how deviations in neurodevelopment give rise to neurological disorders. In this review, we focus on presynaptic and postsynaptic functions of Ras and Rap GTPases. We highlight various roles of these small GTPases during synapse formation and plasticity. Based on genomic analyses, we discuss how disease-related mutations in Ras and Rap signaling proteins may underlie human disorders. Finally, we discuss how recent observations have identified molecular interactions between these pathways and how these findings may provide insights into the mechanisms that underlie neurodevelopmental disorders.
Collapse
Affiliation(s)
- Salvatore J. Cherra
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | | |
Collapse
|
14
|
Woike D, Tibbe D, Hassani Nia F, Martens V, Wang E, Barsukov I, Kreienkamp HJ. The Shank/ProSAP N-Terminal (SPN) Domain of Shank3 Regulates Targeting to Postsynaptic Sites and Postsynaptic Signaling. Mol Neurobiol 2024; 61:693-706. [PMID: 37656313 PMCID: PMC10861631 DOI: 10.1007/s12035-023-03611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Members of the Shank family of postsynaptic scaffold proteins (Shank1-3) link neurotransmitter receptors to the actin cytoskeleton in dendritic spines through establishing numerous interactions within the postsynaptic density (PSD) of excitatory synapses. Large Shank isoforms carry at their N-termini a highly conserved domain termed the Shank/ProSAP N-terminal (SPN) domain, followed by a set of Ankyrin repeats. Both domains are involved in an intramolecular interaction which is believed to regulate accessibility for additional interaction partners, such as Ras family G-proteins, αCaMKII, and cytoskeletal proteins. Here, we analyze the functional relevance of the SPN-Ank module; we show that binding of active Ras or Rap1a to the SPN domain can differentially regulate the localization of Shank3 in dendrites. In Shank1 and Shank3, the linker between the SPN and Ank domains binds to inactive αCaMKII. Due to this interaction, both Shank1 and Shank3 exert a negative effect on αCaMKII activity at postsynaptic sites in mice in vivo. The relevance of the SPN-Ank intramolecular interaction was further analyzed in primary cultured neurons; here, we observed that in the context of full-length Shank3, a closed conformation of the SPN-Ank tandem is necessary for proper clustering of Shank3 on the head of dendritic spines. Shank3 variants carrying Ank repeats which are not associated with the SPN domain lead to the atypical formation of postsynaptic clusters on dendritic shafts, at the expense of clusters in spine-like protrusions. Our data show that the SPN-Ank tandem motif contributes to the regulation of postsynaptic signaling and is also necessary for proper targeting of Shank3 to postsynaptic sites. Our data also suggest how missense variants found in autistic patients which alter SPN and Ank domains affect the synaptic function of Shank3.
Collapse
Affiliation(s)
- Daniel Woike
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Debora Tibbe
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Fatemeh Hassani Nia
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Victoria Martens
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Emily Wang
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Igor Barsukov
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
15
|
Sewduth RN, Carai P, Ivanisevic T, Zhang M, Jang H, Lechat B, Van Haver D, Impens F, Nussinov R, Jones E, Sablina A. Spatial Mechano-Signaling Regulation of GTPases through Non-Degradative Ubiquitination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303367. [PMID: 37946677 PMCID: PMC10754123 DOI: 10.1002/advs.202303367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/14/2023] [Indexed: 11/12/2023]
Abstract
Blood flow produces shear stress exerted on the endothelial layer of the vessels. Spatial characterization of the endothelial proteome is required to uncover the mechanisms of endothelial activation by shear stress, as blood flow varies in the vasculature. An integrative ubiquitinome and proteome analysis of shear-stressed endothelial cells demonstrated that the non-degradative ubiquitination of several GTPases is regulated by mechano-signaling. Spatial analysis reveals increased ubiquitination of the small GTPase RAP1 in the descending aorta, a region exposed to laminar shear stress. The ubiquitin ligase WWP2 is identified as a novel regulator of RAP1 ubiquitination during shear stress response. Non-degradative ubiquitination fine-tunes the function of GTPases by modifying their interacting network. Specifically, WWP2-mediated RAP1 ubiquitination at lysine 31 switches the balance from the RAP1/ Talin 1 (TLN1) toward RAP1/ Afadin (AFDN) or RAP1/ RAS Interacting Protein 1 (RASIP1) complex formation, which is essential to suppress shear stress-induced reactive oxygen species (ROS) production and maintain endothelial barrier integrity. Increased ROS production in endothelial cells in the descending aorta of endothelial-specific Wwp2-knockout mice leads to increased levels of oxidized lipids and inflammation. These results highlight the importance of the spatially regulated non-degradative ubiquitination of GTPases in endothelial mechano-activation.
Collapse
Affiliation(s)
- Raj N. Sewduth
- VIB‐KU Leuven Center for Cancer BiologyVIBLeuven3000Belgium
- Department of OncologyKU LeuvenHerestraat 49Leuven3000Belgium
| | - Paolo Carai
- Department of Cardiovascular SciencesCentre for Molecular and Vascular BiologyKU LeuvenHerestraat 49Leuven3000Belgium
| | - Tonci Ivanisevic
- VIB‐KU Leuven Center for Cancer BiologyVIBLeuven3000Belgium
- Department of OncologyKU LeuvenHerestraat 49Leuven3000Belgium
| | - Mingzhen Zhang
- Computational Structural Biology SectionFrederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolismNational Cancer InstituteFrederickMD21702USA
| | - Hyunbum Jang
- Computational Structural Biology SectionFrederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolismNational Cancer InstituteFrederickMD21702USA
| | - Benoit Lechat
- VIB‐KU Leuven Center for Cancer BiologyVIBLeuven3000Belgium
- Department of OncologyKU LeuvenHerestraat 49Leuven3000Belgium
| | - Delphi Van Haver
- VIB‐UGent Center for Medical BiotechnologyTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
- Department of Biomolecular MedicineGhent UniversityTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
- VIB Proteomics CoreTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
| | - Francis Impens
- VIB‐UGent Center for Medical BiotechnologyTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
- Department of Biomolecular MedicineGhent UniversityTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
- VIB Proteomics CoreTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
| | - Ruth Nussinov
- Computational Structural Biology SectionFrederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolismNational Cancer InstituteFrederickMD21702USA
- Department of Human Molecular Genetics and BiochemistrySackler School of MedicineTel Aviv UniversityTel Aviv69978Israel
| | - Elizabeth Jones
- Department of Cardiovascular SciencesCentre for Molecular and Vascular BiologyKU LeuvenHerestraat 49Leuven3000Belgium
- Department of CardiologyCARIM School for Cardiovascular DiseasesMaastricht UniversityUniversiteitssingel 50Maastricht6229 ERThe Netherlands
| | - Anna Sablina
- VIB‐KU Leuven Center for Cancer BiologyVIBLeuven3000Belgium
- Department of OncologyKU LeuvenHerestraat 49Leuven3000Belgium
| |
Collapse
|
16
|
Yoon HG, Cheong JH, Ryu JI, Won YD, Min KW, Han MH. The genes significantly associated with an improved prognosis and long-term survival of glioblastoma. PLoS One 2023; 18:e0295061. [PMID: 38019838 PMCID: PMC10686432 DOI: 10.1371/journal.pone.0295061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Glioblastoma multiforme (GBM) is the most devastating brain tumor with less than 5% of patients surviving 5 years following diagnosis. Many studies have focused on the genetics of GBM with the aim of improving the prognosis of GBM patients. We investigated specific genes whose expressions are significantly related to both the length of the overall survival and the progression-free survival in patients with GBM. METHODS We obtained data for 12,042 gene mRNA expressions in 525 GBM tissues from the Cancer Genome Atlas (TCGA) database. Among those genes, we identified independent genes significantly associated with the prognosis of GBM. Receiver operating characteristic (ROC) curve analysis was performed to determine the genes significant for predicting the long-term survival of patients with GBM. Bioinformatics analysis was also performed for the significant genes. RESULTS We identified 33 independent genes whose expressions were significantly associated with the prognosis of 525 patients with GBM. Among them, the expressions of five genes were independently associated with an improved prognosis of GBM, and the expressions of 28 genes were independently related to a poorer prognosis of GBM. The expressions of the ADAM22, ATP5C1, RAC3, SHANK1, AEBP1, C1RL, CHL1, CHST2, EFEMP2, and PGCP genes were either positively or negatively related to the long-term survival of GBM patients. CONCLUSIONS Using a large-scale and open database, we found genes significantly associated with both the prognosis and long-term survival of patients with GBM. We believe that our findings may contribute to improving the understanding of the mechanisms underlying GBM.
Collapse
Affiliation(s)
- Hong Gyu Yoon
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Hwan Cheong
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Je Il Ryu
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Yu Deok Won
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Kyueng-Whan Min
- Department of Pathology Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Gyeonggi-do, Republic of Korea
| | - Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| |
Collapse
|
17
|
Tang X, Feng C, Zhao Y, Zhang H, Gao Y, Cao X, Hong Q, Lin J, Zhuang H, Feng Y, Wang H, Shen L. A study of genetic heterogeneity in autism spectrum disorders based on plasma proteomic and metabolomic analysis: multiomics study of autism heterogeneity. MedComm (Beijing) 2023; 4:e380. [PMID: 37752942 PMCID: PMC10518435 DOI: 10.1002/mco2.380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Genetic heterogeneity poses a challenge to research and clinical translation of autism spectrum disorder (ASD). In this study, we conducted a plasma proteomic and metabolomic study of children with ASD with and without risk genes (de novo mutation) and controls to explore the impact of genetic heterogeneity on the search for biomarkers for ASD. In terms of the proteomic and metabolomic profiles, the groups of children with ASD carrying and those not carrying de novo mutation tended to cluster and overlap, and integrating them yielded differentially expressed proteins and differential metabolites that effectively distinguished ASD from controls. The mechanisms associated with them focus on several common and previously reported mechanisms. Proteomics results highlight the role of complement, inflammation and immunity, and cell adhesion. The main pathways of metabolic perturbations include amino acid, vitamin, glycerophospholipid, tryptophan, and glutamates metabolic pathways and solute carriers-related pathways. Integrating the two omics analyses revealed that L-glutamic acid and malate dehydrogenase may play key roles in the pathogenesis of ASD. These results suggest that children with ASD may have important underlying common mechanisms. They are not only potential therapeutic targets for ASD but also important contributors to the study of biomarkers for the disease.
Collapse
Affiliation(s)
- Xiaoxiao Tang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Yuxi Zhao
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Huajie Zhang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Yan Gao
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Xueshan Cao
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Qi Hong
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Jing Lin
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Hongbin Zhuang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Yuying Feng
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Hanghang Wang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Liming Shen
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenP. R. China
- Shenzhen Key Laboratory of Marine Biotechnology and EcologyShenzhenP. R. China
| |
Collapse
|
18
|
Bjornson KJ, Vanderplow AM, Yang Y, Anderson DR, Kermath BA, Cahill ME. Stress-mediated dysregulation of the Rap1 small GTPase impairs hippocampal structure and function. iScience 2023; 26:107566. [PMID: 37664580 PMCID: PMC10470260 DOI: 10.1016/j.isci.2023.107566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/15/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
The effects of repeated stress on cognitive impairment are thought to be mediated, at least in part, by reductions in the stability of dendritic spines in brain regions critical for proper learning and memory, including the hippocampus. Small GTPases are particularly potent regulators of dendritic spine formation, stability, and morphology in hippocampal neurons. Through the use of small GTPase protein profiling in mice, we identify increased levels of synaptic Rap1 in the hippocampal CA3 region in response to escalating, intermittent stress. We then demonstrate that increased Rap1 in the CA3 is sufficient in and of itself to produce stress-relevant dendritic spine and cognitive phenotypes. Further, using super-resolution imaging, we investigate how the pattern of Rap1 trafficking to synapses likely underlies its effects on the stability of select dendritic spine subtypes. These findings illuminate the involvement of aberrant Rap1 regulation in the hippocampus in contributing to the psychobiological effects of stress.
Collapse
Affiliation(s)
- Kathryn J. Bjornson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amanda M. Vanderplow
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yezi Yang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Danielle R. Anderson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bailey A. Kermath
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael E. Cahill
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
19
|
Park K, Jayadev R, Payne SG, Kenny-Ganzert IW, Chi Q, Costa DS, Ramos-Lewis W, Thendral SB, Sherwood DR. Reciprocal discoidin domain receptor signaling strengthens integrin adhesion to connect adjacent tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532639. [PMID: 36993349 PMCID: PMC10055161 DOI: 10.1101/2023.03.14.532639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Separate tissues connect through adjoining basement membranes to carry out molecular barrier, exchange, and organ support functions. Cell adhesion at these connections must be robust and balanced to withstand independent tissue movement. Yet, how cells achieve synchronized adhesion to connect tissues is unknown. Here, we have investigated this question using the C. elegans utse-seam tissue connection that supports the uterus during egg-laying. Through genetics, quantitative fluorescence, and cell specific molecular disruption, we show that type IV collagen, which fastens the linkage, also activates the collagen receptor discoidin domain receptor 2 (DDR-2) in both the utse and seam. RNAi depletion, genome editing, and photobleaching experiments revealed that DDR-2 signals through LET-60/Ras to coordinately strengthen an integrin adhesion in the utse and seam that stabilizes their connection. These results uncover a synchronizing mechanism for robust adhesion during tissue connection, where collagen both affixes the linkage and signals to both tissues to bolster their adhesion.
Collapse
Affiliation(s)
- Kieop Park
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Ranjay Jayadev
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Sara G. Payne
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27708, USA
| | | | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Daniel S. Costa
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | | | | | - David R. Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
- Correspondence:
| |
Collapse
|
20
|
Okuzono S, Fujii F, Matsushita Y, Setoyama D, Shinmyo Y, Taira R, Yonemoto K, Akamine S, Motomura Y, Sanefuji M, Sakurai T, Kawasaki H, Han K, Kato TA, Torisu H, Kang D, Nakabeppu Y, Sakai Y, Ohga S. Shank3a/b isoforms regulate the susceptibility to seizures and thalamocortical development in the early postnatal period of mice. Neurosci Res 2023:S0168-0102(23)00051-2. [PMID: 36871873 DOI: 10.1016/j.neures.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Epileptic seizures are distinct but frequent comorbidities in children with autism spectrum disorder (ASD). The hyperexcitability of cortical and subcortical neurons appears to be involved in both phenotypes. However, little information is available concerning which genes are involved and how they regulate the excitability of the thalamocortical network. In this study, we investigate whether an ASD-associated gene, SH3 and multiple ankyrin repeat domains 3 (Shank3), plays a unique role in the postnatal development of thalamocortical neurons. We herein report that Shank3a/b, the splicing isoforms of mouse Shank3, were uniquely expressed in the thalamic nuclei, peaking from two to four weeks after birth. Shank3a/b-knockout mice showed lower parvalbumin signals in the thalamic nuclei. Consistently, Shank3a/b-knockout mice were more susceptible to generalized seizures than wild-type mice after kainic acid treatments. Together, these data indicate that NT-Ank domain of Shank3a/b regulates molecular pathways that protect thalamocortical neurons from hyperexcitability during the early postnatal period of mice.
Collapse
Affiliation(s)
- Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuki Matsushita
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Satoshi Akamine
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masafumi Sanefuji
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Torisu
- Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
21
|
Ko JMY, Guo C, Liu C, Ning L, Dai W, Tao L, Lo AWI, Wong CWY, Wong IYH, Chan FSY, Wong CLY, Chan KK, Law TT, Lee NPY, Liu Z, Jiang H, Li Z, Law S, Lung ML. Clonal relationship and alcohol consumption-associated mutational signature in synchronous hypopharyngeal tumours and oesophageal squamous cell carcinoma. Br J Cancer 2022; 127:2166-2174. [PMID: 36261585 PMCID: PMC9726980 DOI: 10.1038/s41416-022-01995-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The patients with dual oesophageal squamous cell carcinoma (ESCC) and hypopharyngeal cancer (HPC) have poor prognosis; their underlying genetic pathogenesis is unclear. We hypothesise that development of synchronous ESCC/HPC depends on multicentricity or independent origin, rather than multifocality due to local or lateral spreading. METHOD Multiple region whole-exome sequencing (M-WES) and clonality analysis were used to assess clonal relationship and spatial inter- or intra-tumour heterogeneity (ITH) in 62 tumour regions from eight dual ESCC/HPC and ten ESCC patients. RESULTS All synchronous ESCC/HPC patients had COSMIC 16 mutation signatures, compared to only 40% ESCC in the current study (p = 0.013) and public data set (n = 165, p = 0.003). This alcohol consumption-related mutation signature 16, commonly involved in multiple alcohol-related cancers, was significantly associated with drinking and alcohol metabolism-related ADH1B rs1229984. The mutational landscape and copy number profiles were completely distinct between the two primary tumours; clonality analysis further suggested the two primary tumours shared no or only one clone accompanying independent subclone evolution. M-WES strategy demonstrated higher sensitivity and accuracy for detection of mutational prevalence and the late branch mutations among different regions in the ESCC tumours, compared to traditional sequencing analysis based on single biopsy strategy. Patients with high ITH assessed by cancer cell fraction analysis after M-WES were significantly associated with both relapse and survival. CONCLUSIONS Our hypothesis-generating M-WES ITH assessment data have implications for prognostication. Collectively, our findings support multicentric independent clonal evolution, the field cancerisation theory, and suggest novel insights implicating an aetiologic role of alcohol metabolism in dual ESCC/HPC carcinogenesis.
Collapse
Affiliation(s)
- Josephine Mun-Yee Ko
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Chen Guo
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Conghui Liu
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Lvwen Ning
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Wei Dai
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Lihua Tao
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Anthony Wing-Ip Lo
- grid.415550.00000 0004 1764 4144Division of Anatomical Pathology, Queen Mary Hospital, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Carissa Wing-Yan Wong
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Ian Yu-Hong Wong
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Fion Siu-Yin Chan
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Claudia Lai-Yin Wong
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Kwan Kit Chan
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Tsz Ting Law
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Nikki Pui-Yue Lee
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Zhichao Liu
- grid.16821.3c0000 0004 0368 8293Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Haoyao Jiang
- grid.16821.3c0000 0004 0368 8293Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Zhigang Li
- grid.16821.3c0000 0004 0368 8293Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Simon Law
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Maria Li Lung
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| |
Collapse
|
22
|
DiRusso CJ, Dashtiahangar M, Gilmore TD. Scaffold proteins as dynamic integrators of biological processes. J Biol Chem 2022; 298:102628. [PMID: 36273588 PMCID: PMC9672449 DOI: 10.1016/j.jbc.2022.102628] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/15/2022] Open
Abstract
Scaffold proteins act as molecular hubs for the docking of multiple proteins to organize efficient functional units for signaling cascades. Over 300 human proteins have been characterized as scaffolds, acting in a variety of signaling pathways. While the term scaffold implies a static, supportive platform, it is now clear that scaffolds are not simply inert docking stations but can undergo conformational changes that affect their dependent signaling pathways. In this review, we catalog scaffold proteins that have been shown to undergo actionable conformational changes, with a focus on the role that conformational change plays in the activity of the classic yeast scaffold STE5, as well as three human scaffold proteins (KSR, NEMO, SHANK3) that are integral to well-known signaling pathways (RAS, NF-κB, postsynaptic density). We also discuss scaffold protein conformational changes vis-à-vis liquid-liquid phase separation. Changes in scaffold structure have also been implicated in human disease, and we discuss how aberrant conformational changes may be involved in disease-related dysregulation of scaffold and signaling functions. Finally, we discuss how understanding these conformational dynamics will provide insight into the flexibility of signaling cascades and may enhance our ability to treat scaffold-associated diseases.
Collapse
|
23
|
SHANK family on stem cell fate and development. Cell Death Dis 2022; 13:880. [PMID: 36257935 PMCID: PMC9579136 DOI: 10.1038/s41419-022-05325-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022]
Abstract
SH3 and multiple ankyrin repeat domains protein (SHANK) 1, SHANK2, and SHANK3 encode a family of postsynaptic scaffolding proteins present at glutamatergic synapses and play a crucial role in synaptogenesis. In the past years, studies have provided a preliminary appreciation and understanding of the influence of the SHANK family in controlling stem cell fate. Here, we review the modulation of SHANK gene expression and their related signaling pathways, allowing for an in-depth understanding of the role of SHANK in stem cells. Besides, their role in governing stem cell self-renewal, proliferation, differentiation, apoptosis, and metabolism are explored in neural stem cells (NSCs), stem cells from apical papilla (SCAPs), and induced pluripotent stem cells (iPSCs). Moreover, iPSCs and embryonic stem cells (ESCs) have been utilized as model systems for analyzing their functions in terms of neuronal development. SHANK-mediated stem cell fate determination is an intricate and multifactorial process. This study aims to achieve a better understanding of the role of SHANK in these processes and their clinical applications, thereby advancing the field of stem cell therapy. This review unravels the regulatory role of the SHANK family in the fate of stem cells.
Collapse
|
24
|
Chang CF, Huang SP, Hsueh YM, Geng JH, Huang CY, Bao BY. Genetic Analysis Implicates Dysregulation of SHANK2 in Renal Cell Carcinoma Progression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12471. [PMID: 36231770 PMCID: PMC9566262 DOI: 10.3390/ijerph191912471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
SH3 and multiple ankyrin repeat domains (SHANK) is a family of scaffold proteins that were first identified to be involved in balancing synaptic transmission via regulation of intracellular signalling crosstalk and have been linked to various cancers. However, the role of the SHANK genes in renal cell carcinoma (RCC) remains to be elucidated. In this study, we aimed to evaluate whether genetic variants in SHANK family genes affect the risk of RCC and survival of patients. A genetic association study was conducted using logistic regression and Cox regression analyses, followed by the correction for a false discovery rate (FDR), in 630 patients with RCC and controls. A pooled analysis was further performed to summarise the clinical relevance of SHANK gene expression in RCC. After adjustment for known risk factors and the FDR, the SHANK2 rs10792565 T allele was found to be associated with an increased risk of RCC (adjusted odds ratio = 1.79, 95% confidence interval = 1.32-2.44, p = 1.96 × 10-4, q = 0.030), whereas no significant association was found with RCC survival. A pooled analysis of 19 independent studies, comprising 1509 RCC and 414 adjacent normal tissues, showed that the expression of SHANK2 was significantly lower in RCC than in normal tissues (p < 0.001). Furthermore, low expression of SHANK2 was correlated with an advanced stage and poor prognosis for patients with clear cell and papillary RCC. This study suggests that SHANK2 rs10792565 is associated with an increased risk of RCC and that SHANK2 may play a role in RCC progression.
Collapse
Affiliation(s)
- Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung 406, Taiwan
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Mei Hsueh
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jiun-Hung Geng
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung 406, Taiwan
- Sex Hormone Research Center, China Medical University Hospital, Taichung 404, Taiwan
- Department of Nursing, Asia University, Taichung 413, Taiwan
| |
Collapse
|
25
|
Krishnan D, Menon RN, Gopala S. SHARPIN: Role in Finding NEMO and in Amyloid-Beta Clearance and Degradation (ABCD) Pathway in Alzheimer's Disease? Cell Mol Neurobiol 2022; 42:1267-1281. [PMID: 33400084 PMCID: PMC11421708 DOI: 10.1007/s10571-020-01023-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
SHANK- associated RH domain-interacting protein (SHARPIN) is a multifunctional protein associated with numerous physiological functions and many diseases. The primary role of the protein as a LUBAC-dependent component in regulating the activation of the transcription factor NF-κB accounts to its role in inflammation and antiapoptosis. Hence, an alteration of SHARPIN expression or genetic mutations or polymorphisms leads to the alteration of the above-mentioned primary physiological functions contributing to inflammation-associated diseases and cancer, respectively. However, there are complications of targeting SHARPIN as a therapeutic approach, which arises from the wide-range of LUBAC-independent functions and yet unknown roles of SHARPIN including neuronal functions. The identification of SHARPIN as a postsynaptic protein and the emerging studies indicating its role in several neurodegenerative diseases including Alzheimer's disease suggests a strong role of SHARPIN in neuronal functioning. This review summarizes the functional roles of SHARPIN in normal physiology and disease pathogenesis and strongly suggests a need for concentrating more studies on identifying the unknown neuronal functions of SHARPIN and hence its role in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dhanya Krishnan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Ramsekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India.
| |
Collapse
|
26
|
Yu B, Wang F, Wang Y. Advances in the Structural and Physiological Functions of SHARPIN. Front Immunol 2022; 13:858505. [PMID: 35547743 PMCID: PMC9084887 DOI: 10.3389/fimmu.2022.858505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
SHARPIN was initially found as a SHANK-associated protein. SHARPIN can be used as an important component to form the linear ubiquitin chain assembly complex (LUBAC) with HOIL-1L, HOIP to produce a linear ubiquitin chain connected N-terminal Met1, playing a critical role in various cellular processes including NF-κB signaling, inflammation, embryogenesis and apoptosis. SHARPIN alone can also participate in many critical physiological activities and cause various disorders such as chronic dermatitis, tumor, and Alzheimer’s disease. Mice with spontaneous autosomal recessive mutations in the SHARPIN protein mainly exhibit chronic dermatitis and immunodeficiency with elevated IgM. Additionally, SHARPIN alone also plays a key role in various cellular events, such as B cells activation and platelet aggregation. Structural studies of the SHARPIN or LUBAC have been reported continuously, advancing our understanding of it at the molecular level. However, the full-length structure of the SHARPIN or LUBAC was lagging, and the molecular mechanism underlying these physiological processes is also unclear. Herein, we summarized the currently resolved structure of SHARPIN as well as the emerging physiological role of SHARPIN alone or in LUBAC. Further structural and functional study of SHARPIN will provide insight into the role and underlying mechanism of SHARPIN in disease, as well as its potential application in therapeutic.
Collapse
Affiliation(s)
- Beiming Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
27
|
Günes Günsel G, Conlon TM, Jeridi A, Kim R, Ertüz Z, Lang NJ, Ansari M, Novikova M, Jiang D, Strunz M, Gaianova M, Hollauer C, Gabriel C, Angelidis I, Doll S, Pestoni JC, Edelmann SL, Kohlhepp MS, Guillot A, Bassler K, Van Eeckhoutte HP, Kayalar Ö, Konyalilar N, Kanashova T, Rodius S, Ballester-López C, Genes Robles CM, Smirnova N, Rehberg M, Agarwal C, Krikki I, Piavaux B, Verleden SE, Vanaudenaerde B, Königshoff M, Dittmar G, Bracke KR, Schultze JL, Watz H, Eickelberg O, Stoeger T, Burgstaller G, Tacke F, Heissmeyer V, Rinkevich Y, Bayram H, Schiller HB, Conrad M, Schneider R, Yildirim AÖ. The arginine methyltransferase PRMT7 promotes extravasation of monocytes resulting in tissue injury in COPD. Nat Commun 2022; 13:1303. [PMID: 35288557 PMCID: PMC8921220 DOI: 10.1038/s41467-022-28809-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
Extravasation of monocytes into tissue and to the site of injury is a fundamental immunological process, which requires rapid responses via post translational modifications (PTM) of proteins. Protein arginine methyltransferase 7 (PRMT7) is an epigenetic factor that has the capacity to mono-methylate histones on arginine residues. Here we show that in chronic obstructive pulmonary disease (COPD) patients, PRMT7 expression is elevated in the lung tissue and localized to the macrophages. In mouse models of COPD, lung fibrosis and skin injury, reduced expression of PRMT7 associates with decreased recruitment of monocytes to the site of injury and hence less severe symptoms. Mechanistically, activation of NF-κB/RelA in monocytes induces PRMT7 transcription and consequential mono-methylation of histones at the regulatory elements of RAP1A, which leads to increased transcription of this gene that is responsible for adhesion and migration of monocytes. Persistent monocyte-derived macrophage accumulation leads to ALOX5 over-expression and accumulation of its metabolite LTB4, which triggers expression of ACSL4 a ferroptosis promoting gene in lung epithelial cells. Conclusively, inhibition of arginine mono-methylation might offer targeted intervention in monocyte-driven inflammatory conditions that lead to extensive tissue damage if left untreated.
Collapse
Affiliation(s)
- Gizem Günes Günsel
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Thomas M Conlon
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Aicha Jeridi
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Rinho Kim
- Institute of Functional Epigenetics, Helmholtz Munich, 85764, Munich, Germany
| | - Zeynep Ertüz
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Niklas J Lang
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Meshal Ansari
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
- Institute of Computational Biology, Helmholtz Munich, 85764, Munich, Germany
| | - Mariia Novikova
- Institute of Metabolism and Cell Death, Helmholtz Munich, 85764, Munich, Germany
- Pirogov Russian National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, Moscow, 117997, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Ostrovityanova1 bldg 10, 117997, Moscow, Russia
| | - Dongsheng Jiang
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Maximilian Strunz
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Mariia Gaianova
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Christine Hollauer
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Christina Gabriel
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Ilias Angelidis
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Sebastian Doll
- Institute of Computational Biology, Helmholtz Munich, 85764, Munich, Germany
| | - Jeanine C Pestoni
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Stephanie L Edelmann
- Research Unit Molecular Immune Regulation, Helmholtz Munich, 81377, Munich, Germany
| | - Marlene Sophia Kohlhepp
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), 13353, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), 13353, Berlin, Germany
| | - Kevin Bassler
- Department for Genomics & Immunoregulation, LIMES-Institute, University of Bonn, 53115, Bonn, Germany
- aimed analytics, 53121, Bonn, Germany
| | - Hannelore P Van Eeckhoutte
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University, University Hospital Ghent, 9000, Ghent, Belgium
| | - Özgecan Kayalar
- Koç University Research Center for Translational Medicine (KUTTAM), 34010, Istanbul, Turkey
| | - Nur Konyalilar
- Koç University Research Center for Translational Medicine (KUTTAM), 34010, Istanbul, Turkey
| | - Tamara Kanashova
- Max-Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Sophie Rodius
- Proteomics of cellular signalling, Luxembourg Institute of Health, 1272, Strassen, Luxembourg
| | - Carolina Ballester-López
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | | | - Natalia Smirnova
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, 80045, USA
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Charu Agarwal
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Ioanna Krikki
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Benoit Piavaux
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242, Vestec, Czech Republic
| | - Stijn E Verleden
- Division of Pneumology, KU Leuven, 3000, Leuven, Belgium
- Antwerp Surgical Training, Anatomy and Research Centre, University of Antwerp, 2650, Edegem, Belgium
| | | | - Melanie Königshoff
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Gunnar Dittmar
- Proteomics of cellular signalling, Luxembourg Institute of Health, 1272, Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365, Esch-sur-Alzette, Luxembourg
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University, University Hospital Ghent, 9000, Ghent, Belgium
| | - Joachim L Schultze
- Department for Genomics & Immunoregulation, LIMES-Institute, University of Bonn, 53115, Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., PRECISE Platform for Single Cell Genomics and Epigenomics at DZNE and the University of Bonn, 53115, Bonn, Germany
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927, Grosshansdorf, Germany
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Gerald Burgstaller
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), 13353, Berlin, Germany
| | - Vigo Heissmeyer
- Research Unit Molecular Immune Regulation, Helmholtz Munich, 81377, Munich, Germany
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, 82152, Planegg-Martinsried, Germany
| | - Yuval Rinkevich
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Hasan Bayram
- Koç University Research Center for Translational Medicine (KUTTAM), 34010, Istanbul, Turkey
| | - Herbert B Schiller
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Munich, 85764, Munich, Germany
- Pirogov Russian National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, Moscow, 117997, Russia
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Munich, 85764, Munich, Germany
| | - Ali Önder Yildirim
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany.
- Koç University Research Center for Translational Medicine (KUTTAM), 34010, Istanbul, Turkey.
| |
Collapse
|
28
|
Gao L, Zhao J, Ardiel EL, Hall Q, Nurrish S, Kaplan JM. Shank promotes action potential repolarization by recruiting BK channels to calcium microdomains. eLife 2022; 11:75140. [PMID: 35266450 PMCID: PMC8937234 DOI: 10.7554/elife.75140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations altering the scaffolding protein Shank are linked to several psychiatric disorders, and to synaptic and behavioral defects in mice. Among its many binding partners, Shank directly binds CaV1 voltage activated calcium channels. Here we show that the C. elegans SHN-1/Shank promotes CaV1 coupling to calcium activated potassium channels. Mutations inactivating SHN-1, and those preventing SHN-1 binding to EGL-19/CaV1 all increase action potential durations in body muscles. Action potential repolarization is mediated by two classes of potassium channels: SHK-1/KCNA and SLO-1 and SLO-2 BK channels. BK channels are calcium-dependent, and their activation requires tight coupling to EGL-19/CaV1 channels. SHN-1's effects on AP duration are mediated by changes in BK channels. In shn-1 mutants, SLO-2 currents and channel clustering are significantly decreased in both body muscles and neurons. Finally, increased and decreased shn-1 gene copy number produce similar changes in AP width and SLO-2 current. Collectively, these results suggest that an important function of Shank is to promote microdomain coupling of BK with CaV1.
Collapse
Affiliation(s)
- Luna Gao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Jian Zhao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Evan L Ardiel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Qi Hall
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Stephen Nurrish
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| |
Collapse
|
29
|
Roblek M, Bicher J, van Gogh M, György A, Seeböck R, Szulc B, Damme M, Olczak M, Borsig L, Siekhaus DE. The Solute Carrier MFSD1 Decreases the Activation Status of β1 Integrin and Thus Tumor Metastasis. Front Oncol 2022; 12:777634. [PMID: 35211397 PMCID: PMC8861502 DOI: 10.3389/fonc.2022.777634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Solute carriers are increasingly recognized as participating in a plethora of pathologies, including cancer. We describe here the involvement of the orphan solute carrier Major Facilitator Superfamily Domain-containing protein 1 (MFSD1) in the regulation of tumor cell migration. Loss of MFSD1 enabled higher levels of metastasis in experimental and spontaneous metastasis mouse models. We identified an increased migratory potential in MFSD1−/− tumor cells which was mediated by increased focal adhesion turnover, reduced stability of mature inactive β1 integrin, and the resulting increased integrin activation index. We show that MFSD1 promoted recycling to the cell surface of endocytosed inactive β1 integrin and thereby protected β1 integrin from proteolytic degradation; this led to dampening of the integrin activation index. Furthermore, downregulation of MFSD1 expression was observed during the early steps of tumorigenesis, and higher MFSD1 expression levels correlate with a better cancer patient prognosis. In sum, we describe a requirement for endolysosomal MFSD1 in efficient β1 integrin recycling to suppress tumor cell dissemination.
Collapse
Affiliation(s)
- Marko Roblek
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Julia Bicher
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Merel van Gogh
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Attila György
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Rita Seeböck
- Institute of Clinical Pathology, University Hospital St. Polten, St. Polten, Austria
| | - Bozena Szulc
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Markus Damme
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Mariusz Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Lubor Borsig
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Daria E Siekhaus
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
30
|
Woike D, Wang E, Tibbe D, Hassani Nia F, Failla AV, Kibæk M, Overgård TM, Larsen MJ, Fagerberg CR, Barsukov I, Kreienkamp HJ. Mutations affecting the N-terminal domains of SHANK3 point to different pathomechanisms in neurodevelopmental disorders. Sci Rep 2022; 12:902. [PMID: 35042901 PMCID: PMC8766471 DOI: 10.1038/s41598-021-04723-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/22/2021] [Indexed: 11/09/2022] Open
Abstract
Shank proteins are major scaffolds of the postsynaptic density of excitatory synapses. Mutations in SHANK genes are associated with autism and intellectual disability. The effects of missense mutations on Shank3 function, and therefore the pathomechanisms are unclear. Several missense mutations in SHANK3 affect the N-terminal region, consisting of the Shank/ProSAP N-terminal (SPN) domain and a set of Ankyrin (Ank) repeats. Here we identify a novel SHANK3 missense mutation (p.L270M) in the Ankyrin repeats in patients with an ADHD-like phenotype. We functionally analysed this and a series of other mutations, using biochemical and biophysical techniques. We observe two major effects: (1) a loss of binding to δ-catenin (e.g. in the p.L270M variant), and (2) interference with the intramolecular interaction between N-terminal SPN domain and the Ank repeats. This also interferes with binding to the α-subunit of the calcium-/calmodulin dependent kinase II (αCaMKII), and appears to be associated with a more severe neurodevelopmental pathology.
Collapse
Affiliation(s)
- Daniel Woike
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Emily Wang
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Debora Tibbe
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Fatemeh Hassani Nia
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Antonio Virgilio Failla
- UKE Microscopic Imaging Facility (UMIF), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Maria Kibæk
- H C Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | | | - Martin J Larsen
- H C Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Christina R Fagerberg
- H C Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Igor Barsukov
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| |
Collapse
|
31
|
Paprocka J, Ziętkiewicz S, Kosińska J, Kaczorowska E, Płoski R. Case Report: Lennox-Gastaut Epileptic Encephalopathy Responsive to Cannabidiol Treatment Associated With a Novel de novo Mosaic SHANK1 Variant. Front Genet 2021; 12:735292. [PMID: 34912368 PMCID: PMC8667173 DOI: 10.3389/fgene.2021.735292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
The SH3 and multiple ankyrin repeat domains (SHANKs) are a family of scaffolding proteins located in excitatory synapses required for their development and function. Molecular defects of SHANK3 are a well-known cause of several neurodevelopmental entities, in particular autism spectrum disorders and epilepsy, whereas relatively little is known about disease associations of SHANK1. Here, we propose a novel de novo mosaic p.(Gly126Arg) SHANK1 variant as the monogenic cause of disease in a patient who presented, from the age of 2 years, moderate intellectual disability, autism, and refractory epilepsy of the Lennox-Gastaut type. The epilepsy responded remarkably well to cannabidiol add-on therapy. In silico analyses including homology modeling and molecular dynamics simulations indicated the deleterious effect of SHANK1 p.(Gly126Arg) on the protein structure and the related function associated with protein-protein interactions. In particular, the variant was predicted to disrupt a hitherto unknown conserved region of SHANK1 protein with high homology to a recently recognized functionally relevant domain in SHANK3 implicated in ligand binding, including the "non-canonical" binding of Rap1.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurologsluy, Faculty of Medical Science in Katowice, Medical University of Silesia, Katowice, Poland
| | - Szymon Ziętkiewicz
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdańsk, Poland
| | - Joanna Kosińska
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Kaczorowska
- Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
32
|
Salomaa SI, Miihkinen M, Kremneva E, Paatero I, Lilja J, Jacquemet G, Vuorio J, Antenucci L, Kogan K, Hassani Nia F, Hollos P, Isomursu A, Vattulainen I, Coffey ET, Kreienkamp HJ, Lappalainen P, Ivaska J. SHANK3 conformation regulates direct actin binding and crosstalk with Rap1 signaling. Curr Biol 2021; 31:4956-4970.e9. [PMID: 34610274 DOI: 10.1016/j.cub.2021.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/09/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022]
Abstract
Actin-rich cellular protrusions direct versatile biological processes from cancer cell invasion to dendritic spine development. The stability, morphology, and specific biological functions of these protrusions are regulated by crosstalk between three main signaling axes: integrins, actin regulators, and small guanosine triphosphatases (GTPases). SHANK3 is a multifunctional scaffold protein, interacting with several actin-binding proteins and a well-established autism risk gene. Recently, SHANK3 was demonstrated to sequester integrin-activating small GTPases Rap1 and R-Ras to inhibit integrin activity via its Shank/ProSAP N-terminal (SPN) domain. Here, we demonstrate that, in addition to scaffolding actin regulators and actin-binding proteins, SHANK3 interacts directly with actin through its SPN domain. Molecular simulations and targeted mutagenesis of the SPN-ankyrin repeat region (ARR) interface reveal that actin binding is inhibited by an intramolecular closed conformation of SHANK3, where the adjacent ARR domain covers the actin-binding interface of the SPN domain. Actin and Rap1 compete with each other for binding to SHANK3, and mutation of SHANK3, resulting in reduced actin binding, augments inhibition of Rap1-mediated integrin activity. This dynamic crosstalk has functional implications for cell morphology and integrin activity in cancer cells. In addition, SHANK3-actin interaction regulates dendritic spine morphology in neurons and autism-linked phenotypes in vivo.
Collapse
Affiliation(s)
- Siiri I Salomaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Mitro Miihkinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Elena Kremneva
- HiLIFE Institute of Biotechnology, University of Helsinki, Viikinkaari 5B, PO Box 56, 00014 Helsinki, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Johanna Lilja
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Joni Vuorio
- Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, Helsinki, Finland
| | - Lina Antenucci
- HiLIFE Institute of Biotechnology, University of Helsinki, Viikinkaari 5B, PO Box 56, 00014 Helsinki, Finland
| | - Konstantin Kogan
- HiLIFE Institute of Biotechnology, University of Helsinki, Viikinkaari 5B, PO Box 56, 00014 Helsinki, Finland
| | - Fatemeh Hassani Nia
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Patrik Hollos
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Aleksi Isomursu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, Helsinki, Finland
| | - Eleanor T Coffey
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, Viikinkaari 5B, PO Box 56, 00014 Helsinki, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland; Department of Life Technologies, University of Turku, Tykistökatu 6, Turku 20520, Finland.
| |
Collapse
|
33
|
Camillo C, Facchinello N, Villari G, Mana G, Gioelli N, Sandri C, Astone M, Tortarolo D, Clapero F, Gays D, Oberkersch RE, Arese M, Tamagnone L, Valdembri D, Santoro MM, Serini G. LPHN2 inhibits vascular permeability by differential control of endothelial cell adhesion. J Cell Biol 2021; 220:212665. [PMID: 34581723 PMCID: PMC8480966 DOI: 10.1083/jcb.202006033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 03/22/2021] [Accepted: 09/02/2021] [Indexed: 01/20/2023] Open
Abstract
Dynamic modulation of endothelial cell-to-cell and cell–to–extracellular matrix (ECM) adhesion is essential for blood vessel patterning and functioning. Yet the molecular mechanisms involved in this process have not been completely deciphered. We identify the adhesion G protein–coupled receptor (ADGR) Latrophilin 2 (LPHN2) as a novel determinant of endothelial cell (EC) adhesion and barrier function. In cultured ECs, endogenous LPHN2 localizes at ECM contacts, signals through cAMP/Rap1, and inhibits focal adhesion (FA) formation and nuclear localization of YAP/TAZ transcriptional regulators, while promoting tight junction (TJ) assembly. ECs also express an endogenous LPHN2 ligand, fibronectin leucine-rich transmembrane 2 (FLRT2), that prevents ECM-elicited EC behaviors in an LPHN2-dependent manner. Vascular ECs of lphn2a knock-out zebrafish embryos become abnormally stretched, display a hyperactive YAP/TAZ pathway, and lack proper intercellular TJs. Consistently, blood vessels are hyperpermeable, and intravascularly injected cancer cells extravasate more easily in lphn2a null animals. Thus, LPHN2 ligands, such as FLRT2, may be therapeutically exploited to interfere with cancer metastatic dissemination.
Collapse
Affiliation(s)
- Chiara Camillo
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Nicola Facchinello
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Giulia Villari
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Giulia Mana
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Noemi Gioelli
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Chiara Sandri
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Matteo Astone
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Dora Tortarolo
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Fabiana Clapero
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Dafne Gays
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Roxana E Oberkersch
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Marco Arese
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Luca Tamagnone
- Institute of Histology and Embryology, School of Medicine, Catholic University of the Sacred Heart, Rome, Italy.,"Agostino Gemelli" University Polyclinic Foundation, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Donatella Valdembri
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Massimo M Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Guido Serini
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| |
Collapse
|
34
|
Tsai YC, Chen SL, Peng SL, Tsai YL, Chang ZM, Chang VHS, Ch’ang HJ. Upregulating sirtuin 6 ameliorates glycolysis, EMT and distant metastasis of pancreatic adenocarcinoma with krüppel-like factor 10 deficiency. Exp Mol Med 2021; 53:1623-1635. [PMID: 34702956 PMCID: PMC8569177 DOI: 10.1038/s12276-021-00687-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022] Open
Abstract
Krüppel-like factor 10 (KLF10) is a tumor suppressor in multiple cancers. In a murine model of spontaneous pancreatic adenocarcinoma (PDAC), additional KLF10 depletion accelerated distant metastasis. However, Klf10 knockout mice, which suffer from metabolic disorders, do not develop malignancy. The mechanisms of KLF10 in PDAC progression deserve further exploration. KLF10-depleted and KLF10-overexpressing PDAC cells were established to measure epithelial-mesenchymal transition (EMT), glycolysis, and migration ability. A murine model was established to evaluate the benefit of genetic or pharmacological manipulation in KLF10-depleted PDAC cells (PDACshKLF10). Correlations of KLF10 deficiency with rapid metastasis, elevated EMT, and glycolysis were demonstrated in resected PDAC tissues, in vitro assays, and murine models. We identified sirtuin 6 (SIRT6) as an essential mediator of KLF10 that modulates EMT and glucose homeostasis. Overexpressing SIRT6 reversed the migratory and glycolytic phenotypes of PDACshKLF10 cells. Linoleic acid, a polyunsaturated essential fatty acid, upregulated SIRT6 and prolonged the survival of mice injected with PDACshKLF10. Modulating HIF1α and NFκB revealed that EMT and glycolysis in PDAC cells were coordinately regulated upstream by KLF10/SIRT6 signaling. Our study demonstrated a novel KLF10/SIRT6 pathway that modulated EMT and glycolysis coordinately via NFκB and HIF1α. Activation of KLF10/SIRT6 signaling ameliorated the distant progression of PDAC.Clinical Trial Registration: ClinicalTrials.gov. identifier: NCT01666184.
Collapse
Affiliation(s)
- Yi-Chih Tsai
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Su-Liang Chen
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Shu-Ling Peng
- grid.412040.30000 0004 0639 0054Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ya-Li Tsai
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Zuong-Ming Chang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Vincent Hung-Shu Chang
- grid.412896.00000 0000 9337 0481Program for Translation Biology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ju Ch’ang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan ,grid.412896.00000 0000 9337 0481Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan ,grid.64523.360000 0004 0532 3255Department of Oncology, School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
35
|
Myosin-X and talin modulate integrin activity at filopodia tips. Cell Rep 2021; 36:109716. [PMID: 34525374 PMCID: PMC8456781 DOI: 10.1016/j.celrep.2021.109716] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 11/20/2022] Open
Abstract
Filopodia assemble unique integrin-adhesion complexes to sense the extracellular matrix. However, the mechanisms of integrin regulation in filopodia are poorly defined. Here, we report that active integrins accumulate at the tip of myosin-X (MYO10)-positive filopodia, while inactive integrins are uniformly distributed. We identify talin and MYO10 as the principal integrin activators in filopodia. In addition, deletion of MYO10's FERM domain, or mutation of its β1-integrin-binding residues, reveals MYO10 as facilitating integrin activation, but not transport, in filopodia. However, MYO10's isolated FERM domain alone cannot activate integrins, potentially because of binding to both integrin tails. Finally, because a chimera construct generated by swapping MYO10-FERM by talin-FERM enables integrin activation in filopodia, our data indicate that an integrin-binding FERM domain coupled to a myosin motor is a core requirement for integrin activation in filopodia. Therefore, we propose a two-step integrin activation model in filopodia: receptor tethering by MYO10 followed by talin-mediated integrin activation.
Collapse
|
36
|
Screening Candidate Genes Regulating Placental Development from Trophoblast Transcriptome at Early Pregnancy in Dazu Black Goats ( Capra hircus). Animals (Basel) 2021; 11:ani11072132. [PMID: 34359260 PMCID: PMC8300351 DOI: 10.3390/ani11072132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The trophoblast is an original placental tissue whose normal proliferation, differentiation, migration, adhesion, and angiopoiesis are essential for placenta formation and fetal survival during early pregnancy. However, the key genes and molecular mechanisms involved in placenta development in goats are unknown. Herein, the morphology and histological structures of trophoblast tissues from day 20 to 30 of pregnancy were determined. RNA-sequencing was used to screen potential functional genes in common highly expressed and differentially expressed genes. RAP1 signaling pathway was used as the contact center and coordinated with other pathways to regulate placenta development. This study could provide insights into the molecular mechanisms underlying ruminant placentation. Abstract This study explored the trophoblast transcriptome to understand potential functional genes involved in early placental development in goats and their enriched signaling pathways. Trophoblast samples were collected from nine Dazu Black goats on days 20, 25, and 30 of pregnancy (D20, D25, and D30). As the pregnancy progressed, the morphology and histological structures showed significant growth, adhesion, and angiogenesis. A total of 23,253 commonly expressed genes (CEGs) and 4439 differently expressed genes (DEGs) were detected by RNA sequencing. The common highly expressed genes (ChEGs) (the top 100 CEGs) with the highest FPKM percentage (29.9%) of all CEGs were annotated to the ribosome pathway and maintain pregnancy. DEGs were abundant in D30 vs. D20 (3715 DEGs). Besides, the DEGs were associated with the inhibition of oxidative phosphorylation and activation of PI3K-Akt, focal adhesion, ECM–receptor interaction, Rap1, and CAM signaling pathways. The RAP1 may be a central pathway since it coordinates with others to regulate the cell proliferation, invasion, migration, and fusion of trophoblasts. qRT-PCR and Western blot analysis confirmed the transcriptional expression in IGF1, VEGFC, RAPGEF3, PIK3CA, AKT3, ITGB3, ITGA11, SPP1, NOS1, and ATP6V0B genes and protein levels in VEGF, RAPGEF3, and Akt. This is the first study of transcriptome profiling in goat placenta and provides diverse genetic resources for further research on placenta development.
Collapse
|
37
|
The Rap1 small GTPase is a critical mediator of the effects of stress on prefrontal cortical dysfunction. Mol Psychiatry 2021; 26:3223-3239. [PMID: 32651478 DOI: 10.1038/s41380-020-0835-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
Abstract
The neural molecular and biochemical response to stress is a distinct physiological process, and multiple lines of evidence indicate that the prefrontal cortex (PFC) is particularly sensitive to, and afflicted by, exposure to stress. Largely through this PFC dysfunction, stress has a characterized role in facilitating cognitive impairment, which is often dissociable from its effects on non-cognitive behaviors. The Rap1 small GTPase pathway has emerged as a commonly disrupted intracellular target in neuropsychiatric conditions, whether it be via alterations in Rap1 expression or through alterations in the expression of direct and specific upstream Rap1 activators and inhibitors. Here we demonstrate that escalating, intermittent stress increases Rap1 in mouse PFC synapses, results in cognitive impairments, and reduces the preponderance of mature dendritic spines in PFC neurons. Using viral-mediated gene transfer, we reveal that the hyper-induction of Rap1 in the PFC is sufficient to drive stress-relevant cognitive and synaptic phenotypes. These findings point to Rap1 as a critical mediator of stress-driven neuronal and behavioral pathology and highlight a previously unrecognized involvement for Rap1 in novelty-driven PFC engagement.
Collapse
|
38
|
Bucher M, Niebling S, Han Y, Molodenskiy D, Hassani Nia F, Kreienkamp HJ, Svergun D, Kim E, Kostyukova AS, Kreutz MR, Mikhaylova M. Autism-associated SHANK3 missense point mutations impact conformational fluctuations and protein turnover at synapses. eLife 2021; 10:66165. [PMID: 33945465 PMCID: PMC8169116 DOI: 10.7554/elife.66165] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/01/2021] [Indexed: 12/18/2022] Open
Abstract
Members of the SH3- and ankyrin repeat (SHANK) protein family are considered as master scaffolds of the postsynaptic density of glutamatergic synapses. Several missense mutations within the canonical SHANK3 isoform have been proposed as causative for the development of autism spectrum disorders (ASDs). However, there is a surprising paucity of data linking missense mutation-induced changes in protein structure and dynamics to the occurrence of ASD-related synaptic phenotypes. In this proof-of-principle study, we focus on two ASD-associated point mutations, both located within the same domain of SHANK3 and demonstrate that both mutant proteins indeed show distinct changes in secondary and tertiary structure as well as higher conformational fluctuations. Local and distal structural disturbances result in altered synaptic targeting and changes of protein turnover at synaptic sites in rat primary hippocampal neurons.
Collapse
Affiliation(s)
- Michael Bucher
- AG Optobiology, Institute of Biology, Humboldt-University, Berlin, Germany.,DFG Emmy Noether Guest Group 'Neuronal Protein Transport', Institute for Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,RG Neuroplasticity, Leibniz-Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Stephan Niebling
- Molecular Biophysics and High-Throughput Crystallization, European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| | - Yuhao Han
- DFG Emmy Noether Guest Group 'Neuronal Protein Transport', Institute for Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,Structural Cell Biology of Viruses, Centre for Structural Systems Biology (CSSB) and Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Dmitry Molodenskiy
- European Molecular Biology Laboratory (EMBL) Hamburg Unit, DESY, Hamburg, Germany
| | - Fatemeh Hassani Nia
- Institute of Human Genetics, Center for Obstetrics and Pediatrics, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute of Human Genetics, Center for Obstetrics and Pediatrics, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Unit, DESY, Hamburg, Germany
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS) and Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Alla S Kostyukova
- DFG Emmy Noether Guest Group 'Neuronal Protein Transport', Institute for Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University (WSU), Pullman, United States
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz-Institute for Neurobiology (LIN), Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,German Center for Neurodegenerative Diseases, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Marina Mikhaylova
- AG Optobiology, Institute of Biology, Humboldt-University, Berlin, Germany.,DFG Emmy Noether Guest Group 'Neuronal Protein Transport', Institute for Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
39
|
Robert P, Biarnes-Pelicot M, Garcia-Seyda N, Hatoum P, Touchard D, Brustlein S, Nicolas P, Malissen B, Valignat MP, Theodoly O. Functional Mapping of Adhesiveness on Live Cells Reveals How Guidance Phenotypes Can Emerge From Complex Spatiotemporal Integrin Regulation. Front Bioeng Biotechnol 2021; 9:625366. [PMID: 33898401 PMCID: PMC8058417 DOI: 10.3389/fbioe.2021.625366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/05/2021] [Indexed: 01/13/2023] Open
Abstract
Immune cells have the ubiquitous capability to migrate disregarding the adhesion properties of the environment, which requires a versatile adaptation of their adhesiveness mediated by integrins, a family of specialized adhesion proteins. Each subtype of integrins has several ligands and several affinity states controlled by internal and external stimuli. However, probing cell adhesion properties on live cells without perturbing cell motility is highly challenging, especially in vivo. Here, we developed a novel in vitro method using micron-size beads pulled by flow to functionally probe the local surface adhesiveness of live and motile cells. This method allowed a functional mapping of the adhesiveness mediated by VLA-4 and LFA-1 integrins on the trailing and leading edges of live human T lymphocytes. We show that cell polarization processes enhance integrin-mediated adhesiveness toward cell rear for VLA-4 and cell front for LFA-1. Furthermore, an inhibiting crosstalk of LFA-1 toward VLA-4 and an activating crosstalk of VLA-4 toward LFA-1 were found to modulate cell adhesiveness with a long-distance effect across the cell. These combined signaling processes directly support the bistable model that explains the emergence of the versatile guidance of lymphocyte under flow. Molecularly, Sharpin, an LFA-1 inhibitor in lymphocyte uropod, was found involved in the LFA-1 deadhesion of lymphocytes; however, both Sharpin and Myosin inhibition had a rather modest impact on adhesiveness. Quantitative 3D immunostaining identified high-affinity LFA-1 and VLA-4 densities at around 50 and 100 molecules/μm2 in basal adherent zones, respectively. Interestingly, a latent adhesiveness of dorsal zones was not grasped by immunostaining but assessed by direct functional assays with beads. The combination of live functional assays, molecular imaging, and genome editing is instrumental to characterizing the spatiotemporal regulation of integrin-mediated adhesiveness at molecular and cell scales, which opens a new perspective to decipher sophisticated phenotypes of motility and guidance.
Collapse
Affiliation(s)
- Philippe Robert
- LAI, Aix-Marseille University, CNRS, INSERM U1067 Adhésion Cellulaires et lnflammation, Turing Center for Living Systems, Marseille, France
| | - Martine Biarnes-Pelicot
- LAI, Aix-Marseille University, CNRS, INSERM U1067 Adhésion Cellulaires et lnflammation, Turing Center for Living Systems, Marseille, France
| | - Nicolas Garcia-Seyda
- LAI, Aix-Marseille University, CNRS, INSERM U1067 Adhésion Cellulaires et lnflammation, Turing Center for Living Systems, Marseille, France
| | - Petra Hatoum
- LAI, Aix-Marseille University, CNRS, INSERM U1067 Adhésion Cellulaires et lnflammation, Turing Center for Living Systems, Marseille, France
| | - Dominique Touchard
- LAI, Aix-Marseille University, CNRS, INSERM U1067 Adhésion Cellulaires et lnflammation, Turing Center for Living Systems, Marseille, France
| | - Sophie Brustlein
- LAI, Aix-Marseille University, CNRS, INSERM U1067 Adhésion Cellulaires et lnflammation, Turing Center for Living Systems, Marseille, France
| | - Philippe Nicolas
- Aix-Marseille University, CNRS, INSERM U1104 Centre d'immunologie de Marseille-Luminy, Marseille, France
| | - Bernard Malissen
- Aix-Marseille University, CNRS, INSERM U1104 Centre d'immunologie de Marseille-Luminy, Marseille, France
| | - Marie-Pierre Valignat
- LAI, Aix-Marseille University, CNRS, INSERM U1067 Adhésion Cellulaires et lnflammation, Turing Center for Living Systems, Marseille, France
| | - Olivier Theodoly
- LAI, Aix-Marseille University, CNRS, INSERM U1067 Adhésion Cellulaires et lnflammation, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
40
|
Jin C, Kang H, Yoo T, Ryu JR, Yoo YE, Ma R, Zhang Y, Kang HR, Kim Y, Seong H, Bang G, Park S, Kwon SK, Sun W, Kim H, Kim JY, Kim E, Han K. The Neomycin Resistance Cassette in the Targeted Allele of Shank3B Knock-Out Mice Has Potential Off-Target Effects to Produce an Unusual Shank3 Isoform. Front Mol Neurosci 2021; 13:614435. [PMID: 33505245 PMCID: PMC7831789 DOI: 10.3389/fnmol.2020.614435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/02/2020] [Indexed: 01/20/2023] Open
Abstract
Variants of the SH3 and multiple ankyrin repeat domains 3 (SHANK3), which encodes postsynaptic scaffolds, are associated with brain disorders. The targeted alleles in a few Shank3 knock-out (KO) lines contain a neomycin resistance (Neo) cassette, which may perturb the normal expression of neighboring genes; however, this has not been investigated in detail. We previously reported an unexpected increase in the mRNA expression of Shank3 exons 1–12 in the brains of Shank3B KO mice generated by replacing Shank3 exons 13–16 with the Neo cassette. In this study, we confirmed that the increased Shank3 mRNA in Shank3B KO brains produced an unusual ∼60 kDa Shank3 isoform (Shank3-N), which did not properly localize to the synaptic compartment. Functionally, Shank3-N overexpression altered the dendritic spine morphology in cultured neurons. Importantly, Shank3-N expression in Shank3B KO mice was not a compensatory response to a reduction of full-length Shank3 because expression was still detected in the brain after normalizing the level of full-length Shank3. Moreover, in another Shank3 KO line (Shank3 gKO) with a similar Shank3 exonal deletion as that in Shank3B KO mice but without a Neo cassette, the mRNA expression levels of Shank3 exons 1–12 were lower than those of wild-type mice and Shank3-N was not detected in the brain. In addition, the expression levels of genes neighboring Shank3 on chromosome 15 were altered in the striatum of Shank3B KO but not Shank3 gKO mice. These results suggest that the Neo cassette has potential off-target effects in Shank3B KO mice.
Collapse
Affiliation(s)
- Chunmei Jin
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, South Korea
| | - Taesun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Jae Ryun Ryu
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Ye-Eun Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Ruiying Ma
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Yinhua Zhang
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Hyae Rim Kang
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Yoonhee Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea
| | - Hyunyoung Seong
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea.,College of Pharmacy, Korea University, Sejong, South Korea
| | - Sangwoo Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea
| | - Seok-Kyu Kwon
- Center for Functional Connectomics, Korea Institute of Science and Technology, Brain Science Institute, Seoul, South Korea
| | - Woong Sun
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea.,Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Hyunkyung Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, South Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kihoon Han
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
41
|
Li Z, Korhonen EA, Merlini A, Strauss J, Wihuri E, Nurmi H, Antila S, Paech J, Deutsch U, Engelhardt B, Chintharlapalli S, Koh GY, Flügel A, Alitalo K. Angiopoietin-2 blockade ameliorates autoimmune neuroinflammation by inhibiting leukocyte recruitment into the CNS. J Clin Invest 2020; 130:1977-1990. [PMID: 32149735 PMCID: PMC7108925 DOI: 10.1172/jci130308] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Angiopoietin-2 (Ang2), a ligand of the endothelial Tie2 tyrosine kinase, is involved in vascular inflammation and leakage in critically ill patients. However, the role of Ang2 in demyelinating central nervous system (CNS) autoimmune diseases is unknown. Here, we report that Ang2 is critically involved in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a rodent model of multiple sclerosis. Ang2 expression was induced in CNS autoimmunity, and transgenic mice overexpressing Ang2 specifically in endothelial cells (ECs) developed a significantly more severe EAE. In contrast, treatment with Ang2-blocking Abs ameliorated neuroinflammation and decreased spinal cord demyelination and leukocyte infiltration into the CNS. Similarly, Ang2-binding and Tie2-activating Ab attenuated the development of CNS autoimmune disease. Ang2 blockade inhibited expression of EC adhesion molecules, improved blood-brain barrier integrity, and decreased expression of genes involved in antigen presentation and proinflammatory responses of microglia and macrophages, which was accompanied by inhibition of α5β1 integrin activation in microglia. Taken together, our data suggest that Ang2 provides a target for increasing Tie2 activation in ECs and inhibiting proinflammatory polarization of CNS myeloid cells via α5β1 integrin in neuroinflammation. Thus, Ang2 targeting may serve as a therapeutic option for the treatment of CNS autoimmune disease.
Collapse
Affiliation(s)
- Zhilin Li
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Emilia A Korhonen
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Arianna Merlini
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Centre Göttingen, Göttingen, Germany
| | - Judith Strauss
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Centre Göttingen, Göttingen, Germany
| | - Eleonoora Wihuri
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Harri Nurmi
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Salli Antila
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jennifer Paech
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | | | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Centre Göttingen, Göttingen, Germany
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
42
|
Reichova A, Bacova Z, Bukatova S, Kokavcova M, Meliskova V, Frimmel K, Ostatnikova D, Bakos J. Abnormal neuronal morphology and altered synaptic proteins are restored by oxytocin in autism-related SHANK3 deficient model. Mol Cell Endocrinol 2020; 518:110924. [PMID: 32619581 DOI: 10.1016/j.mce.2020.110924] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/22/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Oxytocin has been suggested as a potential therapeutic agent in autism and other neuropsychiatric conditions. Although, the link between the deficit in "SH3 domain and ankyrin repeat containing protein 3" (SHANK3) and autism spectrum disorders is highly studied topic, developmental mechanisms are still poorly understood. In this study, we clearly confirm that SHANK3 deficiency is accompanied with abnormalities in neurite number and length, which are reversed by oxytocin treatment (1 μM, 48h) in primary hippocampal neurons. Transient silencing for the SHANK3 gene (siSHANK3) in neuron-like cell line (SH-SY5Y) revealed a significant decrease in the expression levels of Neurexins 1α, 1β, 2α and 2β. Oxytocin treatment compensated reduced levels of Synapsin I, PSD95 and Neuroligin 3 in siSHANK3 cells suggesting a marked potential of oxytocin to ameliorate defects present in conditions of SHANK3 deficiency. Further analysis of hippocampal tissue revealed that oxytocin application (0.1 μg/μl, s.c. at P2 and P3 day) affects levels of synaptic proteins and GTPases in both WT and SHANK3 deficient mice on day P5. Oxytocin stimulated the mRNA expression of RhoB and Rac1 in both WT and SHANK3 deficient mice. Our data suggest that autism relevant synaptic pathologies could be reversed by oxytocin treatment.
Collapse
Affiliation(s)
- Alexandra Reichova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Stanislava Bukatova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Kokavcova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Veronika Meliskova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Karel Frimmel
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Daniela Ostatnikova
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
43
|
Pisanic TR, Wang Y, Sun H, Considine M, Li L, Wang TH, Wang TL, Shih IM. Methylomic Landscapes of Ovarian Cancer Precursor Lesions. Clin Cancer Res 2020; 26:6310-6320. [PMID: 32817081 PMCID: PMC7710556 DOI: 10.1158/1078-0432.ccr-20-0270] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/11/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE The current paradigm in the development of high-grade serous ovarian carcinoma (HGSC) proposes that the majority of HGSCs arise from precursor serous tubal intraepithelial carcinoma (STIC) lesions of the fallopian tube. Here we survey genome-wide methylation in HGSC precursor lesions to identify genomic regions that exhibit high-specificity differential hypermethylation for potential use as biomarkers for detecting STIC and HGSC at stages when curative intervention likely remains feasible. EXPERIMENTAL DESIGN We first identified quality control criteria for performing reliable methylomic analysis of DNA-limited tubal precursor lesions with the Illumina Infinium MethylationEPIC array. We then used this platform to compare genome-wide methylation among 12 STICs with paired adjacent-normal epithelia, one p53 signature lesion and two samples of concurrent HGSC. The resulting methylomic data were analyzed by unsupervised hierarchical clustering and multidimensional analysis. Regions of high-confidence STIC-specific differential hypermethylation were identified using selective bioinformatic criteria and compared with published MethylationEPIC data from 23 HGSC tumors and 11 healthy fallopian tube mucosae. RESULTS Unsupervised analysis showed that STICs largely clustered with HGSCs, but were clearly distinct from adjacent-normal fallopian tube epithelia. Forty-two genomic regions exhibited high-confidence STIC-specific differential hypermethylation, of which 17 (40.5%) directly overlapped with HGSC-specific differentially methylated regions. Methylation at these shared loci was able to completely distinguish STIC and HGSC samples from normal and adjacent-normal specimens. CONCLUSIONS Our results suggest that most STICs are epigenetically similar to HGSCs and share regions of differential hypermethylation that warrant further evaluation for potential use as biomarkers for early detection of ovarian HGSC.See related commentary by Ishak and De Carvalho, p. 6083.
Collapse
Affiliation(s)
- Thomas R Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland.
| | - Yeh Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hanru Sun
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Michael Considine
- Department of Biostatistics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lihong Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tza-Huei Wang
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
44
|
Chen ST, Lai WJ, Zhang WJ, Chen QP, Zhou LB, So KF, Shi LL. Insulin-like growth factor 1 partially rescues early developmental defects caused by SHANK2 knockdown in human neurons. Neural Regen Res 2020; 15:2335-2343. [PMID: 32594058 PMCID: PMC7749486 DOI: 10.4103/1673-5374.285002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 02/22/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
SHANK2 is a scaffold protein that serves as a protein anchor at the postsynaptic density in neurons. Genetic variants of SHANK2 are strongly associated with synaptic dysfunction and the pathophysiology of autism spectrum disorder. Recent studies indicate that early neuronal developmental defects play a role in the pathogenesis of autism spectrum disorder, and that insulin-like growth factor 1 has a positive effect on neurite development. To investigate the effects of SHANK2 knockdown on early neuronal development, we generated a sparse culture system using human induced pluripotent stem cells, which then differentiated into neural progenitor cells after 3-14 days in culture, and which were dissociated into single neurons. Neurons in the experimental group were infected with shSHANK2 lentivirus carrying a red fluorescent protein reporter (shSHANK2 group). Control neurons were infected with scrambled shControl lentivirus carrying a red fluorescent protein reporter (shControl group). Neuronal somata and neurites were reconstructed based on the lentiviral red fluorescent protein signal. Developmental dendritic and motility changes in VGLUT1+ glutamatergic neurons and TH+ dopaminergic neurons were then evaluated in both groups. Compared with shControl VGLUT1+ neurons, the dendritic length and arborizations of shSHANK2 VGLUT1+ neurons were shorter and fewer, while cell soma speed was higher. Furthermore, dendritic length and arborization were significantly increased after insulin-like growth factor 1 treatment of shSHANK2 neurons, while cell soma speed remained unaffected. These results suggest that insulin-like growth factor 1 can rescue morphological defects, but not the change in neuronal motility. Collectively, our findings demonstrate that SHANK2 deficiency perturbs early neuronal development, and that IGF1 can partially rescue the neuronal defects caused by SHANK2 knockdown. All experimental procedures and protocols were approved by the Laboratory Animal Ethics Committee of Jinan University, China (approval No. 20170228010) on February 28, 2017.
Collapse
Affiliation(s)
- Shu-Ting Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Wan-Jing Lai
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Clinical Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Wei-Jia Zhang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Qing-Pei Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Li-Bing Zhou
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Ling-Ling Shi
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Department of Psychiatry, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
45
|
Xu X, Liu J, Wang Y, Wang Y, Gong X, Pan L. Mechanistic Insights into the Interactions of Ras Subfamily
GTPases
with the
SPN
Domain of Autism‐associated
SHANK3
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaolong Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jianping Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yingli Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yaru Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xinyu Gong
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
46
|
Ritter A, Safdar BK, Jasmer B, Kreis NN, Friemel A, Roth S, Solbach C, Louwen F, Yuan J. The Function of Oncogene B-Cell Lymphoma 6 in the Regulation of the Migration and Invasion of Trophoblastic Cells. Int J Mol Sci 2020; 21:ijms21218393. [PMID: 33182312 PMCID: PMC7664908 DOI: 10.3390/ijms21218393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Human placentation is a highly invasive process. Deficiency in the invasiveness of trophoblasts is associated with a spectrum of gestational diseases, such as preeclampsia (PE). The oncogene B-cell lymphoma 6 (BCL6) is involved in the migration and invasion of various malignant cells. Intriguingly, its expression is deregulated in preeclamptic placentas. We have reported that BCL6 is required for the proliferation, survival, fusion, and syncytialization of trophoblasts. In the present work, we show that the inhibition of BCL6, either by its gene silencing or by using specific small molecule inhibitors, impairs the migration and invasion of trophoblastic cells, by reducing cell adhesion and compromising the dynamics of the actin cytoskeleton. Moreover, the suppression of BCL6 weakens the signals of the phosphorylated focal adhesion kinase, Akt/protein kinase B, and extracellular regulated kinase 1/2, accompanied by more stationary, but less migratory, cells. Interestingly, transcriptomic analyses reveal that a small interfering RNA-induced reduction of BCL6 decreases the levels of numerous genes, such as p21 activated kinase 1, myosin light chain kinase, and gamma actin related to cell adhesion, actin dynamics, and cell migration. These data suggest BCL6 as a crucial player in the migration and invasion of trophoblasts in the early stages of placental development through the regulation of various genes associated with the migratory machinery.
Collapse
Affiliation(s)
- Andreas Ritter
- Correspondence: (A.R.); (J.Y.); Tel.: +49-69-6301-83297 (A.R.); +49-69-6301-5819 (J.Y.)
| | | | | | | | | | | | | | | | - Juping Yuan
- Correspondence: (A.R.); (J.Y.); Tel.: +49-69-6301-83297 (A.R.); +49-69-6301-5819 (J.Y.)
| |
Collapse
|
47
|
Hassani Nia F, Woike D, Martens V, Klüssendorf M, Hönck HH, Harder S, Kreienkamp HJ. Targeting of δ-catenin to postsynaptic sites through interaction with the Shank3 N-terminus. Mol Autism 2020; 11:85. [PMID: 33115499 PMCID: PMC7592556 DOI: 10.1186/s13229-020-00385-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders such as autism spectrum disorder (ASD) may be caused by alterations in genes encoding proteins that are involved in synapse formation and function. This includes scaffold proteins such as Shank3, and synaptic adhesion proteins such as Neurexins or Neuroligins. An important question is whether the products of individual risk genes cooperate functionally (exemplified in the interaction of Neurexin with Neuroligin isoforms). This might suggest a common pathway in pathogenesis. For the SHANK3 gene, heterozygous loss of function, as well as missense mutations have been observed in ASD cases. Several missense mutations affect the N-terminal part of Shank3 which contains the highly conserved Shank/ProSAP N-terminal (SPN) and Ankyrin repeat (Ank) domains. The role of these domains and the relevance of these mutations for synaptic function of Shank3 are widely unknown. METHODS We used purification from a synaptic protein fraction, as well as a variety of biochemical and cell biological approaches to identify proteins which associate with the Shank3 N-terminus at postsynaptic sites. RESULTS We report here that δ-catenin, which is encoded by CTNND2, an autism candidate gene, directly interacts with the Ank domain of Shank3 at postsynaptic sites through its Armadillo-repeat domain. The interaction is not affected by well-known posttranslational modifications of δ-catenin, i.e. by phosphorylation or palmitoylation. However, an ASD-associated mutation in the SPN domain of Shank3, L68P, significantly increases the interaction of Shank3 with δ-catenin. By analysis of postsynaptic fractions from mice, we show that the lack of SPN-Ank containing, large isoforms of Shank3 results in the loss of postsynaptic δ-catenin. Further, expression of Shank3 variants containing the N-terminal domains in primary cultured neurons significantly increased the presence of coexpressed δ-catenin at postsynaptic sites. LIMITATIONS Work in model organisms such as mice, and in primary cultured neurons may not reproduce faithfully the situation in human brain neurons. Work in primary cultured neurons was also hampered by lack of a specific antibody for endogenous δ-catenin. CONCLUSIONS Our data show that the interaction between Shank3 N-terminus and δ-catenin is required for the postsynaptic targeting of δ-catenin. Failure of proper targeting of δ-catenin to postsynaptic sites may contribute to the pathogenesis of autism spectrum disorder.
Collapse
Affiliation(s)
- Fatemeh Hassani Nia
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Daniel Woike
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Victoria Martens
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Malte Klüssendorf
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Institut für Osteologie Und Biomechanik, Zellbiologie seltener Erkrankungen, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Hinrich Hönck
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sönke Harder
- Massenspektrometrische Proteomanalytik, Institut für Klinische Chemie Und Laboratoriumsmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
48
|
Liu Y, Li L, Liu X, Wang Y, Liu L, Peng L, Liu J, Zhang L, Wang G, Li H, Liu DX, Huang B, Lu J, Zhang Y. Arginine methylation of SHANK2 by PRMT7 promotes human breast cancer metastasis through activating endosomal FAK signalling. eLife 2020; 9:57617. [PMID: 32844749 PMCID: PMC7494359 DOI: 10.7554/elife.57617] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Arginine methyltransferase PRMT7 is associated with human breast cancer metastasis. Endosomal FAK signalling is critical for cancer cell migration. Here we identified the pivotal roles of PRMT7 in promoting endosomal FAK signalling activation during breast cancer metastasis. PRMT7 exerted its functions through binding to scaffold protein SHANK2 and catalyzing di-methylation of SHANK2 at R240. SHANK2 R240 methylation exposed ANK domain by disrupting its SPN-ANK domain blockade, promoting in co-accumulation of dynamin2, talin, FAK, cortactin with SHANK2 on endosomes. In addition, SHANK2 R240 methylation activated endosomal FAK/cortactin signals in vitro and in vivo. Consistently, all the levels of PRMT7, methylated SHANK2, FAK Y397 phosphorylation and cortactin Y421 phosphorylation were correlated with aggressive clinical breast cancer tissues. These findings characterize the PRMT7-dependent SHANK2 methylation as a key player in mediating endosomal FAK signals activation, also point to the value of SHANK2 R240 methylation as a target for breast cancer metastasis.
Collapse
Affiliation(s)
- Yingqi Liu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Lingling Li
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiaoqing Liu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Lingxia Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lu Peng
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jiayuan Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lian Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Guannan Wang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Baiqu Huang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yu Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|
49
|
Zeng C, Xiong D, Zhang K, Yao J. Shank-associated RH domain interactor signaling in tumorigenesis. Oncol Lett 2020; 20:2579-2586. [PMID: 32782575 PMCID: PMC7400965 DOI: 10.3892/ol.2020.11850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Shank-associated RH domain interactor (SHARPIN) is a component of the linear ubiquitin chain activation complex, which is essential for p53 signaling and inflammation. Previous studies have demonstrated that SHARPIN functions in tumor cell survival, growth, invasion and tumorigenesis. These functions include the regulation of p53 proteins via poly-ubiquitination, interaction with a type II protein arginine methyltransferase 5 in melanoma cells, modulating ras-associated protein-1 through p38 and c-Jun N-terminal kinases/c-Jun signaling, and mediating phosphoinositide 3-kinase/AKT signaling via phosphatase and tensin homologue deleted on chromosome 10. Hence, SHARPIN not only participates in the inflammatory response but also serves a critical role in tumor cells. The present review summarizes the biological functions of the absence or presence of SHARPIN with regard to activating the canonical NF-κB signaling pathway and the effects on p53 and other signaling pathways for the modulation of tumorigenesis. Therefore, this review provides insight into the underlying role and mechanisms of SHARPIN in tumorigenesis, as well as its potential application in cancer therapy.
Collapse
Affiliation(s)
- Chong Zeng
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong 528308, P.R. China
| | - Dan Xiong
- Department of Hematology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong 528308, P.R. China
| | - Ketao Zhang
- Department of Hepatobiliary Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong 528308, P.R. China
| | - Jie Yao
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong 528308, P.R. China
| |
Collapse
|
50
|
Jaudon F, Thalhammer A, Cingolani LA. Integrin adhesion in brain assembly: From molecular structure to neuropsychiatric disorders. Eur J Neurosci 2020; 53:3831-3850. [PMID: 32531845 DOI: 10.1111/ejn.14859] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Integrins are extracellular matrix receptors that mediate biochemical and mechanical bi-directional signals between the extracellular and intracellular environment of a cell thanks to allosteric conformational changes. In the brain, they are found in both neurons and glial cells, where they play essential roles in several aspects of brain development and function, such as cell migration, axon guidance, synaptogenesis, synaptic plasticity and neuro-inflammation. Although there are many successful examples of how regulating integrin adhesion and signaling can be used for therapeutic purposes, for example for halting tumor progression, this is not the case for the brain, where the growing evidence of the importance of integrins for brain pathophysiology has not translated yet into medical applications. Here, we review recent literature showing how alterations in integrin structure, expression and signaling may be involved in the etiology of autism spectrum disorder, epilepsy, schizophrenia, addiction, depression and Alzheimer's disease. We focus on common mechanisms and recurrent signaling pathways, trying to bridge studies on the genetics and molecular structure of integrins with those on synaptic physiology and brain pathology. Further, we discuss integrin-targeting strategies and their potential benefits for therapeutic purposes in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Fanny Jaudon
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Agnes Thalhammer
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenzo A Cingolani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|