1
|
Wang Y, Shi P, Liu G, Chen W, Wang YJ, Hu Y, Yang A, Wei T, Chen YC, Liang L, Liu Z, Liu YJ, Wu C. Espin enhances confined cell migration by promoting filopodia formation and contributes to cancer metastasis. EMBO Rep 2025; 26:2574-2596. [PMID: 40185977 PMCID: PMC12117036 DOI: 10.1038/s44319-025-00437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 02/22/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025] Open
Abstract
Genes regulating the finger-like cellular protrusions-filopodia have long been implicated in cancer metastasis. However, depleting the flat lamellipodia but retaining filopodia drastically hampers cell migration on spread surface, obscuring the role of filopodia in cell motility. It has been noticed recently that cells under confinement may employ distinct migratory machineries. However, the regulating factors have mainly been focused on cell blebbing, nuclear deformation and cell rear contractility, without much emphasis on cell protrusions and even less on filopodia. Here, by micropore-based screening, we identified espin as an active regulator for confined migration and that its overexpression was associated with metastasis. In comparison to fascin, espin showed stronger actin bundling in vitro and induced shorter and thicker filopodia in cells. Combining the imaging-compatible microchannels and DNA-based tension probes, we uncovered that espin overexpression induced excessive filopodia at the leading edge and along the sides, exerting force for confined migration. Our results demonstrate an important role for filopodia and the regulating protein-espin in confined cell migration and shed new light on cytoskeletal mechanisms underlying metastasis.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China
| | - Peng Shi
- Cancer Institute, Suzhou Medical College, Soochow University, 215000, Suzhou, Jiangsu, China.
| | - Geyao Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China
| | - Wei Chen
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei Province, China
| | - Ya-Jun Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Yiping Hu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China
| | - Ao Yang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Tonghua Wei
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China
| | - Yu-Chen Chen
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Ling Liang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Zheng Liu
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei Province, China.
| | - Yan-Jun Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
2
|
Wang J, Zhou C. Genome-Wide Characterization and Analysis of the FH Gene Family in Medicago truncatula Under Abiotic Stresses. Genes (Basel) 2025; 16:555. [PMID: 40428377 PMCID: PMC12111191 DOI: 10.3390/genes16050555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND The formin family proteins play an important role in guiding the assembly and nucleation of linear actin and can promote the formation of actin filaments independently of the Arp2/3 complex. As a key protein that regulates the cytoskeleton and cell morphological structure, the formin gene family has been widely studied in plants such as Arabidopsis thaliana and rice. METHODS In this study, we conducted comprehensive analyses, including phylogenetic tree construction, conserved motif identification, co-expression network analysis, and transcriptome data mining. RESULTS A total of 18 MtFH gene family members were identified, and the distribution of these genes on chromosomes was not uniform. The phylogenetic tree divided the FH proteins of the four species into two major subgroups (Clade I and Clade II). Notably, Medicago truncatula and soybean exhibited closer phylogenetic relationships. The analysis of cis-acting elements revealed the potential regulatory role of the MtFH gene in light response, hormone response, and stress response. GO enrichment analysis again demonstrated the importance of FH for reactions such as actin nucleation. Expression profiling revealed that MtFH genes displayed significant transcriptional responsiveness to cold, drought, and salt stress conditions. And there was a temporal complementary relationship between the expression of some genes under stress. The protein interaction network indicated an interaction relationship between MtFH protein and profilin, etc. In addition, 22 miRNAs were screened as potential regulators of the MtFH gene at the post-transcriptional level. CONCLUSIONS In general, this study provides a basis for deepening the understanding of the physiological function of the MtFH gene and provides a reference gene for stress resistance breeding in agricultural production.
Collapse
Affiliation(s)
| | - Chunyang Zhou
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun 130012, China;
| |
Collapse
|
3
|
Mahanta B, Courtemanche N. The mode of subunit addition regulates the processive elongation of actin filaments by formin. J Biol Chem 2025; 301:108071. [PMID: 39667500 PMCID: PMC11773026 DOI: 10.1016/j.jbc.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024] Open
Abstract
Formins play crucial roles in actin polymerization by nucleating filaments and regulating their elongation. Formins bind the barbed ends of filaments via their dimeric FH2 domains, which step processively onto incoming actin subunits during elongation. Actin monomers can bind formin-bound barbed ends directly or undergo diffusion-mediated delivery through interactions with formin FH1 domains and profilin. Despite its fundamental importance, a clear mechanism governing processive FH2 stepping has remained elusive. In this study, we systematically characterized the polymerization behavior of the Saccharomyces cerevisiae formin Bni1p using in vitro reconstitution assays and stochastic simulations. We found that Bni1p assembles populations of filaments with lengths that depend nonlinearly on the rate of elongation. This processive behavior is dictated by a variable probability of dissociation that depends on the reaction conditions. Bni1p dissociates from barbed ends with a basal off-rate, which enables prolonged filament assembly over the course of a long lifetime at the barbed end. A bias toward FH1-mediated delivery as the dominant mechanism for polymerization curtails elongation by shortening the lifetime of the formin at the filament end. This facilitates the assembly of populations of filaments with similar average lengths, even when polymerization proceeds at different rates. Our results suggest a central role for formin FH1 domains in regulating processivity. The specific effects of FH1 domains on processivity are variable and likely tailored to the physiological function of each formin.
Collapse
Affiliation(s)
- Biswaprakash Mahanta
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Naomi Courtemanche
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
4
|
Dhar A, Bagyashree VT, Biswas S, Kumari J, Sridhara A, Jeevan SB, Shekhar S, Palani S. Functional redundancy and formin-independent localization of tropomyosin isoforms in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.587703. [PMID: 38617342 PMCID: PMC11014519 DOI: 10.1101/2024.04.04.587703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Tropomyosin is an actin binding protein which protects actin filaments from cofilin-mediated disassembly. Distinct tropomyosin isoforms have long been hypothesized to differentially sort to subcellular actin networks and impart distinct functionalities. Nevertheless, a mechanistic understanding of the interplay between Tpm isoforms and their functional contributions to actin dynamics has been lacking. In this study, we present and charcaterize mNeonGreen-Tpm fusion proteins that exhibit good functionality in cells as a sole copy, surpassing limitations of existing probes and enabling real-time dynamic tracking of Tpm-actin filaments in vivo. Using these functional Tpm fusion proteins, we find that S. cerevisiae Tpm isoforms, Tpm1 and Tpm2, colocalize on actin cables and indiscriminately bind to actin filaments nucleated by either formin isoform-Bnr1 and Bni1 in vivo, in contrast to the long-held paradigm of Tpm-formin pairing. We show that cellular Tpm levels regulate endocytosis by affecting balance between linear and branched actin networks in yeast cells. Finally, we discover that Tpm2 can protect and organize functional actin cables in absence of Tpm1. Overall, our work supports a concentration-dependent and formin isoform independent model of Tpm isoform binding to F-actin and demonstrates for the first time, the functional redundancy of the paralog Tpm2 in actin cable maintenance in S. cerevisiae.
Collapse
Affiliation(s)
- Anubhav Dhar
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- equal contribution
| | - VT Bagyashree
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- equal contribution
| | - Sudipta Biswas
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Jayanti Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Amruta Sridhara
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Subodh B Jeevan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Saravanan Palani
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
5
|
Qiu C, Zhang L, Yong C, Hu R, Sun Y, Wang B, Fang L, Zhu GJ, Lu Q, Wang J, Ma X, Zhang L, Wan G. Stub1 promotes degradation of the activated Diaph3: A negative feedback regulatory mechanism of the actin nucleator. J Biol Chem 2024; 300:107813. [PMID: 39322015 PMCID: PMC11736009 DOI: 10.1016/j.jbc.2024.107813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
The formin protein Diaph3 is an actin nucleator that regulates numerous cytoskeleton-dependent cellular processes through the activation of actin polymerization. Expression and activity of Diaph3 is tightly regulated: lack of Diaph3 results in developmental defects and embryonic lethality in mice, while overexpression of Diaph3 causes auditory neuropathy. It is known that Diaph3 homophilic interactions include the intramolecular interaction of its Dia-inhibitory domain (DID)-diaphanous autoregulatory domain (DAD) domains and the intermolecular interactions of DD-DD domains or FH2-FH2 domains. However, the physiological significance of these interactions in Diaph3 protein stability and activity is not fully understood. In this study, we show that FH2-FH2 interaction promotes Diaph3 activity, while DID-DAD and DD-DD interactions inhibit Diaph3 activity through distinct mechanisms. DID-DAD interaction is responsible for the autoinhibition of Diaph3 protein, which is disrupted by binding of Rho GTPases. Interestingly, we find that DID-DAD interaction stabilizes the expression of each DID or DAD domain against proteasomal-mediated degradation. Disruption of DID-DAD interaction by RhoA binding or M1041A mutation causes increased Diaph3 activity and accelerated degradation of the activated Diaph3 protein. Further, the activated Diaph3 is ubiquitinated at K1142/1143/1144 lysine residues by the E3 ligase Stub1. Expression of Stub1 is causally related to the stability and activity of Diaph3. Knockdown of Stub1 in mouse cochlea results in hair cell stereocilia defects, neuronal degeneration, and hearing loss, resembling the phenotypes of mice overexpressing Diaph3. Thus, our study reports a novel regulatory mechanism of Diaph3 protein expression and activity whereby the active but not inactive Diaph3 is readily degraded to prevent excessive actin polymerization.
Collapse
Affiliation(s)
- Cui Qiu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Linqing Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Chenxuan Yong
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Ruixing Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yuecen Sun
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Busong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Medical School, Nanjing University, Nanjing, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Medical School, Nanjing University, Nanjing, China
| | - Guang-Jie Zhu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China; Research Institute of Otolaryngology, Nanjing, China
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Junguo Wang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China; Research Institute of Otolaryngology, Nanjing, China.
| | - Xiaofeng Ma
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China; Research Institute of Otolaryngology, Nanjing, China.
| | - Luping Zhang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital, Nantong University, Nantong, China.
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Medical School, Nanjing University, Nanjing, China; Research Institute of Otolaryngology, Nanjing, China.
| |
Collapse
|
6
|
Wirshing ACE, Goode BL. Improved tools for live imaging of F-actin structures in yeast. Mol Biol Cell 2024; 35:mr7. [PMID: 39024291 PMCID: PMC11449393 DOI: 10.1091/mbc.e24-05-0212-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
For over 20 years, the most effective probe for live imaging of yeast actin cables has been Abp140-GFP. Here, we report that endogenously-tagged Abp140-GFP poorly decorates actin patches and cables in the bud compartment of yeast cells, while robustly decorating these structures in the mother cell. Using mutagenesis, we found that asymmetric decoration by Abp140 requires F-actin binding. By expressing integrated Bni1-Bnr1 and Bnr1-Bni1 chimeras, we demonstrate that asymmetric cable decoration by Abp140 also does not depend on which formin assembles the cables in each compartment. In contrast, the short actin-binding fragment of Abp140 (known as "Lifeact"), fused to 1x or 3xmNeonGreen and expressed from the endogenous ABP140 promoter, uniformly decorates patches and cables in both compartments. Further, this probe dramatically improves live imaging detection of cables (and patches) without altering their in vivo dynamics or cell growth. Improved detection allows us to visualize cables growing inward from the cell cortex and dynamically interacting with the vacuole. This probe also robustly decorates the cytokinetic actomyosin ring. Because Lifeact-3xmNeon expressed at relatively low levels provides intense labeling of cellular F-actin structures, this tool may improve live imaging in other organisms where higher levels of Lifeact expression are detrimental.
Collapse
Affiliation(s)
- Alison C. E. Wirshing
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| | - Bruce L. Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| |
Collapse
|
7
|
McInally SG, Reading AJB, Rosario A, Jelenkovic PR, Goode BL, Kondev J. Length control emerges from cytoskeletal network geometry. Proc Natl Acad Sci U S A 2024; 121:e2401816121. [PMID: 39106306 PMCID: PMC11331072 DOI: 10.1073/pnas.2401816121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/21/2024] [Indexed: 08/09/2024] Open
Abstract
Many cytoskeletal networks consist of individual filaments that are organized into elaborate higher-order structures. While it is appreciated that the size and architecture of these networks are critical for their biological functions, much of the work investigating control over their assembly has focused on mechanisms that regulate the turnover of individual filaments through size-dependent feedback. Here, we propose a very different, feedback-independent mechanism to explain how yeast cells control the length of their actin cables. Our findings, supported by quantitative cell imaging and mathematical modeling, indicate that actin cable length control is an emergent property that arises from the cross-linked and bundled organization of the filaments within the cable. Using this model, we further dissect the mechanisms that allow cables to grow longer in larger cells and propose that cell length-dependent tuning of formin activity allows cells to scale cable length with cell length. This mechanism is a significant departure from prior models of cytoskeletal filament length control and presents a different paradigm to consider how cells control the size, shape, and dynamics of higher-order cytoskeletal structures.
Collapse
Affiliation(s)
- Shane G. McInally
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA01609
| | | | - Aldric Rosario
- Department of Physics, Brandeis University, Waltham, MA02454
| | | | - Bruce L. Goode
- Department of Biology, Brandeis University, Waltham, MA02454
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA02454
| |
Collapse
|
8
|
Magliozzi JO, Rands TJ, Shrestha S, Simke WC, Hase NE, Juanes MA, Kelley JB, Goode BL. The roles of yeast formins and their regulators Bud6 and Bil2 in the pheromone response. Mol Biol Cell 2024; 35:ar85. [PMID: 38656798 PMCID: PMC11238086 DOI: 10.1091/mbc.e23-11-0459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
In response to pheromone Saccharomyces cerevisiae extend a mating projection. This process depends on the formation of polarized actin cables which direct secretion to the mating tip and translocate the nucleus for karyogamy. Here, we demonstrate that proper mating projection formation requires the formin Bni1, as well as the actin nucleation promoting activities of Bud6, but not the formin Bnr1. Further, Bni1 is required for pheromone gradient tracking. Our work also reveals unexpected new functions for Bil2 in the pheromone response. Previously we identified Bil2 as a direct inhibitor of Bnr1 during vegetative cell growth. Here, we show that Bil2 has Bnr1-independent functions in spatially focusing Bni1-GFP at mating projection tips, and in vitro Bil2 and its binding partner Bud6 organize Bni1 into clusters that nucleate actin assembly. bil2∆ cells also display entangled Bni1-generated actin cable arrays and defects in secretory vesicle transport and nuclear positioning. At low pheromone concentrations, bil2∆ cells are delayed in establishing a polarity axis, and at high concentrations they prematurely form a second and a third mating projection. Together, these results suggest that Bil2 promotes the proper formation and timing of mating projections by organizing Bni1 and maintaining a persistent axis of polarized growth.
Collapse
Affiliation(s)
| | - Thomas J. Rands
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Sudati Shrestha
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469
| | - William C Simke
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469
| | - Niklas E. Hase
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469
| | - M. Angeles Juanes
- Department of Biology, Brandeis University, Waltham, MA 02454
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Joshua B. Kelley
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469
| | - Bruce L. Goode
- Department of Biology, Brandeis University, Waltham, MA 02454
| |
Collapse
|
9
|
Oosterheert W, Boiero Sanders M, Funk J, Prumbaum D, Raunser S, Bieling P. Molecular mechanism of actin filament elongation by formins. Science 2024; 384:eadn9560. [PMID: 38603491 DOI: 10.1126/science.adn9560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/05/2024] [Indexed: 04/13/2024]
Abstract
Formins control the assembly of actin filaments (F-actin) that drive cell morphogenesis and motility in eukaryotes. However, their molecular interaction with F-actin and their mechanism of action remain unclear. In this work, we present high-resolution cryo-electron microscopy structures of F-actin barbed ends bound by three distinct formins, revealing a common asymmetric formin conformation imposed by the filament. Formation of new intersubunit contacts during actin polymerization sterically displaces formin and triggers its translocation. This "undock-and-lock" mechanism explains how actin-filament growth is coordinated with formin movement. Filament elongation speeds are controlled by the positioning and stability of actin-formin interfaces, which distinguish fast and slow formins. Furthermore, we provide a structure of the actin-formin-profilin ring complex, which resolves how profilin is rapidly released from the barbed end during filament elongation.
Collapse
Affiliation(s)
- Wout Oosterheert
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Micaela Boiero Sanders
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Johanna Funk
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Peter Bieling
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
10
|
Wu Y, Ren X, Shi P, Wu C. Regulation of mitochondrial structure by the actin cytoskeleton. Cytoskeleton (Hoboken) 2024; 81:206-214. [PMID: 37929797 DOI: 10.1002/cm.21804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Mitochondria are the powerhouse of the cell and play important roles in multiple cellular processes including cell metabolism, proliferation, and programmed cell death. Mitochondria are double-membrane organelles with the inner membrane folding inward to form cristae. Mitochondria networks undergo dynamic fission and fusion. Deregulation of mitochondrial structure has been linked to perturbed mitochondrial membrane potential and disrupted metabolism, as evidenced in tumorigenesis, neurodegenerative diseases, etc. Actin and its motors-myosins have long been known to generate mechanical forces and participate in short-distance cargo transport. Accumulating knowledge from biochemistry and live cell/electron microscope imaging has demonstrated the role of actin filaments in pre-constricting the mitochondria during fission. Recent studies have suggested the involvement of myosins in cristae maintenance and mitochondria quality control. Here, we review current findings and discuss future directions in the emerging fields of cytoskeletal regulation in cristae formation, mitochondrial dynamics, intracellular transport, and mitocytosis, with focus on the actin cytoskeleton and its motor proteins.
Collapse
Affiliation(s)
- Yihe Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoyu Ren
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Peng Shi
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
| |
Collapse
|
11
|
McInally SG, Reading AJ, Rosario A, Jelenkovic PR, Goode BL, Kondev J. Length control emerges from cytoskeletal network geometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569063. [PMID: 38076874 PMCID: PMC10705815 DOI: 10.1101/2023.11.28.569063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Many cytoskeletal networks consist of individual filaments that are organized into elaborate higher order structures. While it is appreciated that the size and architecture of these networks are critical for their biological functions, much of the work investigating control over their assembly has focused on mechanisms that regulate the turnover of individual filaments through size-dependent feedback. Here, we propose a very different, feedback-independent mechanism to explain how yeast cells control the length of their actin cables. Our findings, supported by quantitative cell imaging and mathematical modeling, indicate that actin cable length control is an emergent property that arises from the cross-linked and bundled organization of the filaments within the cable. Using this model, we further dissect the mechanisms that allow cables to grow longer in larger cells, and propose that cell length-dependent tuning of formin activity allows cells to scale cable length with cell length. This mechanism is a significant departure from prior models of cytoskeletal filament length control and presents a new paradigm to consider how cells control the size, shape, and dynamics of higher order cytoskeletal structures.
Collapse
Affiliation(s)
- Shane G. McInally
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | | | - Aldric Rosario
- Department of Physics, Brandeis University, Waltham, MA, 02454, USA
| | | | - Bruce L. Goode
- Department of Biology, Brandeis University, Waltham, MA, 02454, USA
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA, 02454, USA
| |
Collapse
|
12
|
Woodard TK, Rioux DJ, Prosser DC. Actin- and microtubule-based motors contribute to clathrin-independent endocytosis in yeast. Mol Biol Cell 2023; 34:ar117. [PMID: 37647159 PMCID: PMC10846617 DOI: 10.1091/mbc.e23-05-0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
Most eukaryotic cells utilize clathrin-mediated endocytosis as well as multiple clathrin-independent pathways to internalize proteins and membranes. Although clathrin-mediated endocytosis has been studied extensively and many machinery proteins have been identified, clathrin-independent pathways remain poorly characterized by comparison. We previously identified the first known yeast clathrin-independent endocytic pathway, which relies on the actin-modulating GTPase Rho1, the formin Bni1 and unbranched actin filaments, but does not require the clathrin coat or core clathrin machinery proteins. In this study, we sought to better understand clathrin-independent endocytosis in yeast by exploring the role of myosins as actin-based motors, because actin is required for endocytosis in yeast. We find that Myo2, which transports secretory vesicles, organelles and microtubules along actin cables to sites of polarized growth, participates in clathrin-independent endocytosis. Unexpectedly, the ability of Myo2 to transport microtubule plus ends to the cell cortex appears to be required for its role in clathrin-independent endocytosis. In addition, dynein, dynactin, and proteins involved in cortical microtubule capture are also required. Thus, our results suggest that interplay between actin and microtubules contributes to clathrin-independent internalization in yeast.
Collapse
Affiliation(s)
| | - Daniel J. Rioux
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
- Life Sciences, Virginia Commonwealth University, Richmond, VA 23284
| | - Derek C. Prosser
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| |
Collapse
|
13
|
Yepuri G, Ramirez LM, Theophall GG, Reverdatto SV, Quadri N, Hasan SN, Bu L, Thiagarajan D, Wilson R, Díez RL, Gugger PF, Mangar K, Narula N, Katz SD, Zhou B, Li H, Stotland AB, Gottlieb RA, Schmidt AM, Shekhtman A, Ramasamy R. DIAPH1-MFN2 interaction regulates mitochondria-SR/ER contact and modulates ischemic/hypoxic stress. Nat Commun 2023; 14:6900. [PMID: 37903764 PMCID: PMC10616211 DOI: 10.1038/s41467-023-42521-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/13/2023] [Indexed: 11/01/2023] Open
Abstract
Inter-organelle contact and communication between mitochondria and sarco/endoplasmic reticulum (SR/ER) maintain cellular homeostasis and are profoundly disturbed during tissue ischemia. We tested the hypothesis that the formin Diaphanous-1 (DIAPH1), which regulates actin dynamics, signal transduction and metabolic functions, contributes to these processes. We demonstrate that DIAPH1 interacts directly with Mitofusin-2 (MFN2) to shorten mitochondria-SR/ER distance, thereby enhancing mitochondria-ER contact in cells including cardiomyocytes, endothelial cells and macrophages. Solution structure studies affirm the interaction between the Diaphanous Inhibitory Domain and the cytosolic GTPase domain of MFN2. In male rodent and human cardiomyocytes, DIAPH1-MFN2 interaction regulates mitochondrial turnover, mitophagy, and oxidative stress. Introduction of synthetic linker construct, which shorten the mitochondria-SR/ER distance, mitigated the molecular and functional benefits of DIAPH1 silencing in ischemia. This work establishes fundamental roles for DIAPH1-MFN2 interaction in the regulation of mitochondria-SR/ER contact networks. We propose that targeting pathways that regulate DIAPH1-MFN2 interactions may facilitate recovery from tissue ischemia.
Collapse
Affiliation(s)
- Gautham Yepuri
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York, 10016, USA
| | - Lisa M Ramirez
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, 12222, USA
| | - Gregory G Theophall
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, 12222, USA
| | - Sergei V Reverdatto
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, 12222, USA
| | - Nosirudeen Quadri
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York, 10016, USA
| | - Syed Nurul Hasan
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York, 10016, USA
| | - Lei Bu
- Department of Medicine, Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Devi Thiagarajan
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York, 10016, USA
| | - Robin Wilson
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York, 10016, USA
| | - Raquel López Díez
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York, 10016, USA
| | - Paul F Gugger
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York, 10016, USA
| | - Kaamashri Mangar
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York, 10016, USA
| | - Navneet Narula
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Stuart D Katz
- Department of Medicine, Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Boyan Zhou
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Huilin Li
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Aleksandr B Stotland
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Roberta A Gottlieb
- Department of Biomedical Sciences, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York, 10016, USA
| | - Alexander Shekhtman
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, 12222, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York, 10016, USA.
| |
Collapse
|
14
|
González B, Aldea M, Cullen PJ. Chaperone-Dependent Degradation of Cdc42 Promotes Cell Polarity and Shields the Protein from Aggregation. Mol Cell Biol 2023; 43:200-222. [PMID: 37114947 PMCID: PMC10184603 DOI: 10.1080/10985549.2023.2198171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
Rho GTPases are global regulators of cell polarity and signaling. By exploring the turnover regulation of the yeast Rho GTPase Cdc42p, we identified new regulatory features surrounding the stability of the protein. We specifically show that Cdc42p is degraded at 37 °C by chaperones through lysine residues located in the C-terminus of the protein. Cdc42p turnover at 37 °C occurred by the 26S proteasome in an ESCRT-dependent manner in the lysosome/vacuole. By analyzing versions of Cdc42p that were defective for turnover, we show that turnover at 37 °C promoted cell polarity but was defective for sensitivity to mating pheromone, presumably mediated through a Cdc42p-dependent MAP kinase pathway. We also identified one residue (K16) in the P-loop of the protein that was critical for Cdc42p stability. Accumulation of Cdc42pK16R in some contexts led to the formation of protein aggregates, which were enriched in aging mother cells and cells undergoing proteostatic stress. Our study uncovers new aspects of protein turnover regulation of a Rho-type GTPase that may extend to other systems. Moreover, residues identified here that mediate Cdc42p turnover correlate with several human diseases, which may suggest that turnover regulation of Cdc42p is important to aspects of human health.
Collapse
Affiliation(s)
- Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona, Spain
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| |
Collapse
|
15
|
Zeng G, Neo SP, Pang LM, Gao J, Chong SC, Gunaratne J, Wang Y. Comprehensive Interactome Analysis for the Sole Adenylyl Cyclase Cyr1 of Candida albicans. Microbiol Spectr 2022; 10:e0393422. [PMID: 36314909 PMCID: PMC9769623 DOI: 10.1128/spectrum.03934-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Cyr1, the sole adenylyl cyclase of the fungal pathogen Candida albicans, is a central component of the cAMP/protein kinase A signaling pathway that controls the yeast-to-hypha transition. Cyr1 is a multivalent sensor and integrator of various external and internal signals. To better understand how these signals are relayed to Cyr1 to regulate its activity, we sought to establish the interactome of Cyr1 by using stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics to identify the proteins that coimmunoprecipitated with Cyr1. The method identified 36 proteins as candidates for authentic Cyr1-interacting partners, together with two known Cyr1-binding proteins, Cap1 and Act1. Fourteen identified proteins belonged to three functional groups, including actin regulation, cell wall components, and mitochondrial activities, that are known to play important roles in cell morphogenesis. To validate the proteomics data, we used biochemical and genetic methods to characterize two cell wall-related proteins, Mp65 and Sln1. First, coimmunoprecipitation confirmed their physical association with Cyr1. Second, deleting either MP65 or SLN1 resulted in severe defects in filamentation on serum plates. This study establishes the first Cyr1 interactome and uncovers a potential role for cell wall proteins in directly regulating Cyr1 activity to determine growth forms in C. albicans. IMPORTANCE A critical virulence trait of the human fungal pathogen Candida albicans is its ability to undergo the yeast-to-hypha transition in response to diverse environmental and cellular stimuli. Previous studies suggested that the sole adenylyl cyclase of C. albicans, Cyr1, is a multivalent signal sensor and integrator synthesizing cAMP to activate the downstream hypha-promoting events through the cAMP/protein kinase A pathway. To fully understand how Cyr1 senses and processes multiple stimuli to generate appropriate signal outputs, it was necessary to identify and characterize Cyr1-interacting partners. This study employed SILAC-based quantitative proteomic approaches and identified 36 Cyr1-associated proteins, many having functions associated with hyphal morphogenesis. Coimmunoprecipitation verified two cell surface proteins, Mp65 and Sln1. Furthermore, genetic and phenotypic analyses demonstrated the cAMP-dependent roles of these two proteins in determining hyphal growth. Our study establishes the first Cyr1 interactome and uncovers new Cyr1 regulators that mediate cell surface signals to influence the growth mode of C. albicans.
Collapse
Affiliation(s)
| | - Suat Peng Neo
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Singapore
| | | | | | | | - Jayantha Gunaratne
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yue Wang
- Infectious Diseases Labs, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
16
|
Das R, Bhattacharjee S, Letcher JM, Harris JM, Nanda S, Foldi I, Lottes EN, Bobo HM, Grantier BD, Mihály J, Ascoli GA, Cox DN. Formin 3 directs dendritic architecture via microtubule regulation and is required for somatosensory nociceptive behavior. Development 2021; 148:dev187609. [PMID: 34322714 PMCID: PMC8380456 DOI: 10.1242/dev.187609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/12/2021] [Indexed: 01/26/2023]
Abstract
Dendrite shape impacts functional connectivity and is mediated by organization and dynamics of cytoskeletal fibers. Identifying the molecular factors that regulate dendritic cytoskeletal architecture is therefore important in understanding the mechanistic links between cytoskeletal organization and neuronal function. We identified Formin 3 (Form3) as an essential regulator of cytoskeletal architecture in nociceptive sensory neurons in Drosophila larvae. Time course analyses reveal that Form3 is cell-autonomously required to promote dendritic arbor complexity. We show that form3 is required for the maintenance of a population of stable dendritic microtubules (MTs), and mutants exhibit defects in the localization of dendritic mitochondria, satellite Golgi, and the TRPA channel Painless. Form3 directly interacts with MTs via FH1-FH2 domains. Mutations in human inverted formin 2 (INF2; ortholog of form3) have been causally linked to Charcot-Marie-Tooth (CMT) disease. CMT sensory neuropathies lead to impaired peripheral sensitivity. Defects in form3 function in nociceptive neurons result in severe impairment of noxious heat-evoked behaviors. Expression of the INF2 FH1-FH2 domains partially recovers form3 defects in MTs and nocifensive behavior, suggesting conserved functions, thereby providing putative mechanistic insights into potential etiologies of CMT sensory neuropathies.
Collapse
Affiliation(s)
- Ravi Das
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | | | - Jamin M. Letcher
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Jenna M. Harris
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Sumit Nanda
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Istvan Foldi
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Erin N. Lottes
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Hansley M. Bobo
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | | | - József Mihály
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Giorgio A. Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
17
|
Liang J, Fu X, Hao C, Bian Z, Liu H, Xu JR, Wang G. FgBUD14 is important for ascosporogenesis and involves both stage-specific alternative splicing and RNA editing during sexual reproduction. Environ Microbiol 2021; 23:5052-5068. [PMID: 33645871 DOI: 10.1111/1462-2920.15446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
In wheat head blight fungus Fusarium graminearum, A-to-I RNA editing occurs specifically during sexual reproduction. Among the genes with premature stop codons (PSCs) that require RNA editing to encode full-length proteins, FgBUD14 also had alternative splicing events in perithecia. In this study, we characterized the functions of FgBUD14 and its post-transcriptional modifications during sexual reproduction. The Fgbud14 deletion mutant was slightly reduced in growth, conidiation and virulence. Although deletion of FgBUD14 had no effect on perithecium morphology, the Fgbud14 mutant was defective in crozier formation and ascus development. The FgBud14-GFP localized to the apex of ascogenous hyphae and croziers, which may be related to its functions during early sexual development. During vegetative growth and asexual reproduction, FgBud14-GFP localized to hyphal tips and both ends of conidia. Furthermore, mutations blocking the splicing of intron 2 that has the PSC site had no effect on the function of FgBUD14 during sexual reproduction but caused a similar defect in growth with Fgbud14 mutant. Expression of the non-editable FgBUD14Intron2-TAA mutant allele also failed to complement the Fgbud14 mutant. Taken together, FgBUD14 plays important roles in ascus development, and both alternative splicing and RNA editing occur specifically to its transcripts during sexual reproduction in F. graminearum.
Collapse
Affiliation(s)
- Jie Liang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianhui Fu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaofeng Hao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhuyun Bian
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Huiquan Liu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Guanghui Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
18
|
Okada H, MacTaggart B, Ohya Y, Bi E. The kinetic landscape and interplay of protein networks in cytokinesis. iScience 2021; 24:101917. [PMID: 33392480 PMCID: PMC7773586 DOI: 10.1016/j.isci.2020.101917] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/08/2022] Open
Abstract
Cytokinesis is executed by protein networks organized into functional modules. Individual proteins within each module have been characterized to various degrees. However, the collective behavior and interplay of the modules remain poorly understood. In this study, we conducted quantitative time-lapse imaging to analyze the accumulation kinetics of more than 20 proteins from different modules of cytokinesis in budding yeast. This analysis has led to a comprehensive picture of the kinetic landscape of cytokinesis, from actomyosin ring (AMR) assembly to cell separation. It revealed that the AMR undergoes biphasic constriction and that the switch between the constriction phases is likely triggered by AMR maturation and primary septum formation. This analysis also provided further insights into the functions of actin filaments and the transglutaminase-like protein Cyk3 in cytokinesis and, in addition, defined Kre6 as the likely enzyme that catalyzes β-1,6-glucan synthesis to drive cell wall maturation during cell growth and division. Cytokinesis is executed by protein modules each with a unique kinetic signature Actomyosin ring constricts in a biphasic manner that is elaborately regulated The transglutaminase-like domain in Cyk3 plays a dual role in cytokinesis Kre6 catalyzes β-1,6-glucan synthesis at the cell surface during growth and division
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Brittany MacTaggart
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| |
Collapse
|
19
|
The actin polymerization factor Diaphanous and the actin severing protein Flightless I collaborate to regulate sarcomere size. Dev Biol 2021; 469:12-25. [PMID: 32980309 DOI: 10.1016/j.ydbio.2020.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/22/2022]
Abstract
The sarcomere is the basic contractile unit of muscle, composed of repeated sets of actin thin filaments and myosin thick filaments. During muscle development, sarcomeres grow in size to accommodate the growth and function of muscle fibers. Failure in regulating sarcomere size results in muscle dysfunction; yet, it is unclear how the size and uniformity of sarcomeres are controlled. Here we show that the formin Diaphanous is critical for the growth and maintenance of sarcomere size: Dia sets sarcomere length and width through regulation of the number and length of the actin thin filaments in the Drosophila flight muscle. To regulate thin filament length and sarcomere size, Dia interacts with the Gelsolin superfamily member Flightless I (FliI). We suggest that these actin regulators, by controlling actin dynamics and turnover, generate uniformly sized sarcomeres tuned for the muscle contractions required for flight.
Collapse
|
20
|
Roles of the PH, coiled-coil and SAM domains of the yeast polarity protein Boi2 in polarity-site localization and function in polarized growth. Curr Genet 2020; 66:1101-1115. [PMID: 32656574 DOI: 10.1007/s00294-020-01093-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
Boi1 and Boi2 are paralogous proteins essential for bud formation in budding yeast. So far, the domains that target Boi1/Boi2 to the polarity sites and function in bud formation are not well understood. Here, we report that a coiled-coil domain of Boi2 cooperates with the adjacent PH domain to confer Boi2's bud-cortex localization and major function in cell growth. The PH domain portion of the PH-CC bi-domain interacts with the Rho GTPases Cdc42 and Rho3 and both interactions are independent of the GTP/GDP-bound state of each GTPase. Interestingly, high-copy RHO3 and BOI2 but not CDC42 suppressed the growth defect of RGA1-C538 overexpression and the sec15-1 mutant and this BOI2 function depends on RHO3, suggesting that Boi2 may function in the Rho3 pathway. The SAM domain of Boi2 plays an essential role in high-copy suppression of the two mutants as well as in the early bud-neck localization of Boi2. The SAM domain and the CC domain also interact homotypically. They are likely involved in the formation of Boi2-containing protein complex. Our results provide new insights in the localization and function of Boi2 and highlight the importance of the PH-CC bi-domain and the SAM domain in Boi2's localization and function.
Collapse
|
21
|
Actin polymerization downstream of integrins: signaling pathways and mechanotransduction. Biochem J 2020; 477:1-21. [PMID: 31913455 DOI: 10.1042/bcj20170719] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/17/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
A cell constantly adapts to its environment. Cell decisions to survive, to proliferate or to migrate are dictated not only by soluble growth factors, but also through the direct interaction of the cell with the surrounding extracellular matrix (ECM). Integrins and their connections to the actin cytoskeleton are crucial for monitoring cell attachment and the physical properties of the substratum. Cell adhesion dynamics are modulated in complex ways by the polymerization of branched and linear actin arrays, which in turn reinforce ECM-cytoskeleton connection. This review describes the major actin regulators, Ena/VASP proteins, formins and Arp2/3 complexes, in the context of signaling pathways downstream of integrins. We focus on the specific signaling pathways that transduce the rigidity of the substrate and which control durotaxis, i.e. directed migration of cells towards increased ECM rigidity. By doing so, we highlight several recent findings on mechanotransduction and put them into a broad integrative perspective that is the result of decades of intense research on the actin cytoskeleton and its regulation.
Collapse
|
22
|
Garabedian MV, Wirshing A, Vakhrusheva A, Turegun B, Sokolova OS, Goode BL. A septin-Hof1 scaffold at the yeast bud neck binds and organizes actin cables. Mol Biol Cell 2020; 31:1988-2001. [PMID: 32579428 PMCID: PMC7543067 DOI: 10.1091/mbc.e19-12-0693] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cellular actin arrays are often highly organized, with characteristic patterns critical to their in vivo functions, yet the mechanisms for establishing these higher order geometries remain poorly understood. In Saccharomyces cerevisiae, formin-polymerized actin cables are spatially organized and aligned along the mother–bud axis to facilitate polarized vesicle traffic. Here, we show that the bud neck–associated F-BAR protein Hof1, independent of its functions in regulating the formin Bnr1, binds to actin filaments and organizes actin cables in vivo. Hof1 bundles actin filaments and links them to septins in vitro. F-actin binding is mediated by the “linker” domain of Hof1, and its deletion leads to cable organization defects in vivo. Using superresolution imaging, we show that Hof1 and septins are patterned at the bud neck into evenly spaced axial pillars (∼200 nm apart), from which actin cables emerge and grow into the mother cell. These results suggest that Hof1, while bound to septins at the bud neck, not only regulates Bnr1 activity, but also binds to actin cables and aligns them along the mother–bud axis. More broadly, these findings provide a strong example of how an actin regulatory protein can be spatially patterned at the cell cortex to govern actin network geometry.
Collapse
Affiliation(s)
- Mikael V Garabedian
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, 02454
| | - Alison Wirshing
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, 02454
| | - Anna Vakhrusheva
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Bengi Turegun
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, 02454
| | - Olga S Sokolova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, 02454
| |
Collapse
|
23
|
Zhou X, Zheng L, Guan L, Ye J, Virag A, Harris SD, Lu L. The Scaffold Proteins Paxillin B and α-Actinin Regulate Septation in Aspergillus nidulans via Control of Actin Ring Contraction. Genetics 2020; 215:449-461. [PMID: 32317285 PMCID: PMC7268981 DOI: 10.1534/genetics.120.303234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/12/2020] [Indexed: 11/29/2022] Open
Abstract
Cytokinesis, as the final step of cell division, plays an important role in fungal growth and proliferation. In the filamentous fungus Aspergillus nidulans, defective cytokinesis is able to induce abnormal multinuclear or nonnucleated cells and then result in reduced hyphal growth and abolished sporulation. Previous studies have reported that a conserved contractile actin ring (CAR) protein complex and the septation initiation network (SIN) signaling kinase cascade are required for cytokinesis and septation; however, little is known about the role(s) of scaffold proteins involved in these two important cellular processes. In this study, we show that a septum-localized scaffold protein paxillin B (PaxB) is essential for cytokinesis/septation in A. nidulans The septation defects observed in a paxB deletion strain resemble those caused by the absence of another identified scaffold protein, α-actinin (AcnA). Deletion of α-actinin (AcnA) leads to undetectable PaxB at the septation site, whereas deletion of paxB does not affect the localization of α-actinin at septa. However, deletion of either α-actinin (acnA) or paxB causes the actin ring to disappear at septation sites during cytokinesis. Notably, overexpression of α-actinin acnA partially rescues the septum defects of the paxB mutant but not vice versa, suggesting AcnA may play a dominant role over that of PaxB for cytokinesis and septation. In addition, PaxB and α-actinin affect the septal dynamic localization of MobA, a conserved component of the SIN pathway, suggesting they may affect the SIN protein complex function at septa. Protein pull-down assays combined with liquid chromatography-mass spectrometry identification indicate that α-actinin AcnA and PaxB likely do not directly interact, but presumably belong to an actin cytoskeleton protein network that is required for the assembly and contraction of the CAR. Taken together, findings in this study provide novel insights into the roles of conserved scaffold proteins during fungal septation in A. nidulans.
Collapse
Affiliation(s)
- Xiaogang Zhou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 210023, China
| | - Likun Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 210023, China
| | - Luyu Guan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 210023, China
| | - Jing Ye
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 210023, China
| | | | - Steven D Harris
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 210023, China
| |
Collapse
|
24
|
Yeast as a Model to Understand Actin-Mediated Cellular Functions in Mammals-Illustrated with Four Actin Cytoskeleton Proteins. Cells 2020; 9:cells9030672. [PMID: 32164332 PMCID: PMC7140605 DOI: 10.3390/cells9030672] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has an actin cytoskeleton that comprises a set of protein components analogous to those found in the actin cytoskeletons of higher eukaryotes. Furthermore, the actin cytoskeletons of S. cerevisiae and of higher eukaryotes have some similar physiological roles. The genetic tractability of budding yeast and the availability of a stable haploid cell type facilitates the application of molecular genetic approaches to assign functions to the various actin cytoskeleton components. This has provided information that is in general complementary to that provided by studies of the equivalent proteins of higher eukaryotes and hence has enabled a more complete view of the role of these proteins. Several human functional homologues of yeast actin effectors are implicated in diseases. A better understanding of the molecular mechanisms underpinning the functions of these proteins is critical to develop improved therapeutic strategies. In this article we chose as examples four evolutionarily conserved proteins that associate with the actin cytoskeleton: (1) yeast Hof1p/mammalian PSTPIP1, (2) yeast Rvs167p/mammalian BIN1, (3) yeast eEF1A/eEF1A1 and eEF1A2 and (4) yeast Yih1p/mammalian IMPACT. We compare the knowledge on the functions of these actin cytoskeleton-associated proteins that has arisen from studies of their homologues in yeast with information that has been obtained from in vivo studies using live animals or in vitro studies using cultured animal cell lines.
Collapse
|
25
|
Kumari R, Jiu Y, Carman PJ, Tojkander S, Kogan K, Varjosalo M, Gunning PW, Dominguez R, Lappalainen P. Tropomodulins Control the Balance between Protrusive and Contractile Structures by Stabilizing Actin-Tropomyosin Filaments. Curr Biol 2020; 30:767-778.e5. [PMID: 32037094 DOI: 10.1016/j.cub.2019.12.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/06/2019] [Accepted: 12/16/2019] [Indexed: 02/08/2023]
Abstract
Eukaryotic cells have diverse protrusive and contractile actin filament structures, which compete with one another for a limited pool of actin monomers. Numerous actin-binding proteins regulate the dynamics of actin structures, including tropomodulins (Tmods), which cap the pointed end of actin filaments. In striated muscles, Tmods prevent actin filaments from overgrowing, whereas in non-muscle cells, their function has remained elusive. Here, we identify two Tmod isoforms, Tmod1 and Tmod3, as key components of contractile stress fibers in non-muscle cells. Individually, Tmod1 and Tmod3 can compensate for one another, but their simultaneous depletion results in disassembly of actin-tropomyosin filaments, loss of force-generating stress fibers, and severe defects in cell morphology. Knockout-rescue experiments reveal that Tmod's interaction with tropomyosin is essential for its role in the stabilization of actin-tropomyosin filaments in cells. Thus, in contrast to their role in muscle myofibrils, in non-muscle cells, Tmods bind actin-tropomyosin filaments to protect them from depolymerizing, not elongating. Furthermore, loss of Tmods shifts the balance from linear actin-tropomyosin filaments to Arp2/3 complex-nucleated branched networks, and this phenotype can be partially rescued by inhibiting the Arp2/3 complex. Collectively, the data reveal that Tmods are essential for the maintenance of contractile actomyosin bundles and that Tmod-dependent capping of actin-tropomyosin filaments is critical for the regulation of actin homeostasis in non-muscle cells.
Collapse
Affiliation(s)
- Reena Kumari
- HiLIFE Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Yaming Jiu
- HiLIFE Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland; CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Life Science Research Building 320, Yueyang Road, Xuhui District, 200031 Shanghai, China; University of Chinese Academy of Sciences, Yuquan Road No.19(A), Shijingshan District, 100049 Beijing, China
| | - Peter J Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 728 Clinical Research Bldg, 415 Curie Boulevard, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sari Tojkander
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöberginkatu 2, 00014 Helsinki, Finland
| | - Konstantin Kogan
- HiLIFE Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Markku Varjosalo
- HiLIFE Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Peter W Gunning
- School of Medical Sciences, UNSW, Sydney, Wallace Wurth Building, Sydney, NSW 2052, Australia
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 728 Clinical Research Bldg, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland.
| |
Collapse
|
26
|
Pollard LW, Garabedian MV, Alioto SL, Shekhar S, Goode BL. Genetically inspired in vitro reconstitution of Saccharomyces cerevisiae actin cables from seven purified proteins. Mol Biol Cell 2020; 31:335-347. [PMID: 31913750 PMCID: PMC7183793 DOI: 10.1091/mbc.e19-10-0576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A major goal of synthetic biology is to define the minimal cellular machinery required to assemble a biological structure in its simplest form. Here, we focused on Saccharomyces cerevisiae actin cables, which provide polarized tracks for intracellular transport and maintain defined lengths while continuously undergoing rapid assembly and turnover. Guided by the genetic requirements for proper cable assembly and dynamics, we show that seven evolutionarily conserved S. cerevisiae proteins (actin, formin, profilin, tropomyosin, capping protein, cofilin, and AIP1) are sufficient to reconstitute the formation of cables that undergo polarized turnover and maintain steady-state lengths similar to actin cables in vivo. Further, the removal of individual proteins from this simple in vitro reconstitution system leads to cable defects that closely approximate in vivo cable phenotypes caused by disrupting the corresponding genes. Thus, a limited set of molecular components is capable of self-organizing into dynamic, micron-scale actin structures with features similar to cables in living cells.
Collapse
Affiliation(s)
| | | | | | | | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA 02454
| |
Collapse
|
27
|
Abstract
Actin polymerization is essential for cells to migrate, as well as for various cell biological processes such as cytokinesis and vesicle traffic. This brief review describes the mechanisms underlying its different roles and recent advances in our understanding. Actin usually requires "nuclei"-preformed actin filaments-to start polymerizing, but, once initiated, polymerization continues constitutively. The field therefore has a strong focus on nucleators, in particular the Arp2/3 complex and formins. These have different functions, are controlled by contrasting mechanisms, and generate alternate geometries of actin networks. The Arp2/3 complex functions only when activated by nucleation-promoting factors such as WASP, Scar/WAVE, WASH, and WHAMM and when binding to a pre-existing filament. Formins can be individually active but are usually autoinhibited. Each is controlled by different mechanisms and is involved in different biological roles. We also describe the processes leading to actin disassembly and their regulation and conclude with four questions whose answers are important for understanding actin dynamics but are currently unanswered.
Collapse
Affiliation(s)
- Simona Buracco
- Institute of Cancer Sciences, University of Glasgow, Bearsden, G61 1BD, UK
| | - Sophie Claydon
- Institute of Cancer Sciences, University of Glasgow, Bearsden, G61 1BD, UK
| | - Robert Insall
- Institute of Cancer Sciences, University of Glasgow, Bearsden, G61 1BD, UK
| |
Collapse
|
28
|
Mechanism of synergistic actin filament pointed end depolymerization by cyclase-associated protein and cofilin. Nat Commun 2019; 10:5320. [PMID: 31757941 PMCID: PMC6876575 DOI: 10.1038/s41467-019-13213-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/25/2019] [Indexed: 12/02/2022] Open
Abstract
The ability of cells to generate forces through actin filament turnover was an early adaptation in evolution. While much is known about how actin filaments grow, mechanisms of their disassembly are incompletely understood. The best-characterized actin disassembly factors are the cofilin family proteins, which increase cytoskeletal dynamics by severing actin filaments. However, the mechanism by which severed actin filaments are recycled back to monomeric form has remained enigmatic. We report that cyclase-associated-protein (CAP) works in synergy with cofilin to accelerate actin filament depolymerization by nearly 100-fold. Structural work uncovers the molecular mechanism by which CAP interacts with actin filament pointed end to destabilize the interface between terminal actin subunits, and subsequently recycles the newly-depolymerized actin monomer for the next round of filament assembly. These findings establish CAP as a molecular machine promoting rapid actin filament depolymerization and monomer recycling, and explain why CAP is critical for actin-dependent processes in all eukaryotes. The cofilin family proteins are actin disassembly factors but the disassembly mechanism is poorly understood. Here authors show that cyclase-associated-protein (CAP) works in synergy with cofilin to accelerate actin filament depolymerization by nearly 100-fold and reveal how CAP destabilizes the interface between terminal actin subunits.
Collapse
|
29
|
Abstract
The polarisome comprises a network of proteins that organizes polar growth in yeast and filamentous fungi. The yeast formin Bni1 and the actin nucleation-promoting factor Bud6 are subunits of the polarisome that together catalyze the formation of actin cables below the tip of yeast cells. We identified YFR016c (Aip5) as an interaction partner of Bud6 and the polarisome scaffold Spa2. Yeast cells lacking Aip5 display a reduced number of actin cables. Aip5 binds with its N-terminal region to Spa2 and with its C-terminal region to Bud6. Both interactions collaborate to localize Aip5 at bud tip and neck, and are required to stimulate the formation of actin cables. Our experiments characterize Aip5 as a novel subunit of a complex that regulates the number of actin filaments at sites of polar growth.
Collapse
Affiliation(s)
- Oliver Glomb
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Lara Bareis
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| |
Collapse
|
30
|
Pollard TD. Cell Motility and Cytokinesis: From Mysteries to Molecular Mechanisms in Five Decades. Annu Rev Cell Dev Biol 2019; 35:1-28. [PMID: 31394047 DOI: 10.1146/annurev-cellbio-100818-125427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This is the story of someone who has been fortunate to work in a field of research where essentially nothing was known at the outset but that blossomed with the discovery of profound insights about two basic biological processes: cell motility and cytokinesis. The field started with no molecules, just a few people, and primitive methods. Over time, technological advances in biophysics, biochemistry, and microscopy allowed the combined efforts of scientists in hundreds of laboratories to explain mysterious processes with molecular mechanisms that can be embodied in mathematical equations and simulated by computers. The success of this field is a tribute to the power of the reductionist strategy for understanding biology.
Collapse
Affiliation(s)
- Thomas D Pollard
- Departments of Molecular, Cellular and Developmental Biology; Molecular Biophysics and Biochemistry; and Cell Biology, Yale University, New Haven, Connecticut 06520-8103, USA;
| |
Collapse
|
31
|
Pichaud F, Walther RF, Nunes de Almeida F. Regulation of Cdc42 and its effectors in epithelial morphogenesis. J Cell Sci 2019; 132:132/10/jcs217869. [PMID: 31113848 DOI: 10.1242/jcs.217869] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cdc42 - a member of the small Rho GTPase family - regulates cell polarity across organisms from yeast to humans. It is an essential regulator of polarized morphogenesis in epithelial cells, through coordination of apical membrane morphogenesis, lumen formation and junction maturation. In parallel, work in yeast and Caenorhabditis elegans has provided important clues as to how this molecular switch can generate and regulate polarity through localized activation or inhibition, and cytoskeleton regulation. Recent studies have revealed how important and complex these regulations can be during epithelial morphogenesis. This complexity is mirrored by the fact that Cdc42 can exert its function through many effector proteins. In epithelial cells, these include atypical PKC (aPKC, also known as PKC-3), the P21-activated kinase (PAK) family, myotonic dystrophy-related Cdc42 binding kinase beta (MRCKβ, also known as CDC42BPB) and neural Wiskott-Aldrich syndrome protein (N-WASp, also known as WASL). Here, we review how the spatial regulation of Cdc42 promotes polarity and polarized morphogenesis of the plasma membrane, with a focus on the epithelial cell type.
Collapse
Affiliation(s)
- Franck Pichaud
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK .,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Rhian F Walther
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
32
|
Kubo K, Okada H, Shimamoto T, Kimori Y, Mizunuma M, Bi E, Ohnuki S, Ohya Y. Implications of maintenance of mother-bud neck size in diverse vital processes of Saccharomyces cerevisiae. Curr Genet 2019; 65:253-267. [PMID: 30066140 DOI: 10.1007/s00294-018-0872-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 11/25/2022]
Abstract
The mother-bud neck is defined as the boundary between the mother cell and bud in budding microorganisms, wherein sequential morphological events occur throughout the cell cycle. This study was designed to quantitatively investigate the morphology of the mother-bud neck in budding yeast Saccharomyces cerevisiae. Observation of yeast cells with time-lapse microscopy revealed an increase of mother-bud neck size through the cell cycle. After screening of yeast non-essential gene-deletion mutants with the image processing software CalMorph, we comprehensively identified 274 mutants with broader necks during S/G2 phase. Among these yeasts, we extensively analyzed 19 representative deletion mutants with defects in genes annotated to six gene ontology terms (polarisome, actin reorganization, endosomal tethering complex, carboxy-terminal domain protein kinase complex, DNA replication, and maintenance of DNA trinucleotide repeats). The representative broad-necked mutants exhibited calcofluor white sensitivity, suggesting defects in their cell walls. Correlation analysis indicated that maintenance of mother-bud neck size is important for cellular processes such as cell growth, system robustness, and replicative lifespan. We conclude that neck-size maintenance in budding yeast is regulated by numerous genes and has several aspects that are physiologically significant.
Collapse
Affiliation(s)
- Karen Kubo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA
| | - Takuya Shimamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Yoshitaka Kimori
- Department of Imaging Science, Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
- Department of Management and Information Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, Gakuen, Fukui City, Fukui, 910-8505, Japan
| | - Masaki Mizunuma
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, 739-8530, Japan
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Chiba, 277-8565, Japan.
| |
Collapse
|
33
|
Omer S, Greenberg SR, Lee WL. Cortical dynein pulling mechanism is regulated by differentially targeted attachment molecule Num1. eLife 2018; 7:36745. [PMID: 30084355 PMCID: PMC6080947 DOI: 10.7554/elife.36745] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/05/2018] [Indexed: 12/17/2022] Open
Abstract
Cortical dynein generates pulling forces via microtubule (MT) end capture-shrinkage and lateral MT sliding mechanisms. In Saccharomyces cerevisiae, the dynein attachment molecule Num1 interacts with endoplasmic reticulum (ER) and mitochondria to facilitate spindle positioning across the mother-bud neck, but direct evidence for how these cortical contacts regulate dynein-dependent pulling forces is lacking. We show that loss of Scs2/Scs22, ER tethering proteins, resulted in defective Num1 distribution and loss of dynein-dependent MT sliding, the hallmark of dynein function. Cells lacking Scs2/Scs22 performed spindle positioning via MT end capture-shrinkage mechanism, requiring dynein anchorage to an ER- and mitochondria-independent population of Num1, dynein motor activity, and CAP-Gly domain of dynactin Nip100/p150Glued subunit. Additionally, a CAAX-targeted Num1 rescued loss of lateral patches and MT sliding in the absence of Scs2/Scs22. These results reveal distinct populations of Num1 and underline the importance of their spatial distribution as a critical factor for regulating dynein pulling force. Cells must divide so that organisms can grow, repair damaged tissues or reproduce. Before dividing, a cell creates two identical copies of its genetic information – one for each daughter. A molecular machine known as the mitotic spindle then moves each set of genetic material to where it will be needed when the daughter cells form. For the process to work properly, however, a motor protein known as dynein must correctly position the spindle by pulling it into place from the outskirts of the cell. When a baker’s yeast cell divides, it first forms a ‘bump’, which grows into a bud that will ultimately become another yeast. The spindle needs to be precisely placed at the midpoint between the original cell and the bud, so the genetic material can get into the future daughter cell. To do so, dynein travels to the bud, where a protein called Num1 helps it attach to the periphery and pull the filaments of the mitotic spindle (known as microtubules) to the correct position. Num1 also attaches to other cellular structures in the bud, including one known as the endoplasmic reticulum. It was unclear how this connection changes where dynein is located, and how it can pull on the spindle. To study this, Omer et al. labeled Num1, dynein and microtubules with fluorescent markers so they could be followed in living baker’s yeast using time-lapse microscopy. Mutant yeast strains were also used to disrupt how these proteins associate, which helps to tease out their roles. The experiments show that there are several populations of Num1 in the bud. One associates with the endoplasmic reticulum, and it helps dynein grab the side of a microtubule and make it slide into the bud. The other does not attach to the reticulum, but instead is located at the very tip of the bud. There, it makes dynein capture the end of the microtubule; this destabilizes the filament, which starts to shorten. As the microtubule shrinks, the spindle is pulled closer to the bud’s tip, which aligns it in the right position. The yeast cells thus need Num1 in both locations to fine-tune the pulling activity of dynein, and the spindle’s final positioning. In the human body, not all divisions create two identical cells; for example, the daughters of stem cells can have different fates. This is due to a precise asymmetric division which dynein partly controls. The results by Omer et al. could help to unravel this mechanism.
Collapse
Affiliation(s)
- Safia Omer
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, United States
| | - Samuel R Greenberg
- Department of Biological Sciences, Dartmouth College, Hanover, United States
| | - Wei-Lih Lee
- Department of Biological Sciences, Dartmouth College, Hanover, United States
| |
Collapse
|
34
|
Garabedian MV, Stanishneva-Konovalova T, Lou C, Rands TJ, Pollard LW, Sokolova OS, Goode BL. Integrated control of formin-mediated actin assembly by a stationary inhibitor and a mobile activator. J Cell Biol 2018; 217:3512-3530. [PMID: 30076201 PMCID: PMC6168263 DOI: 10.1083/jcb.201803164] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022] Open
Abstract
This study shows that in vivo actin nucleation by the yeast formin Bnr1 is controlled through the coordinated effects of two distinct regulators, a stationary inhibitor (the F-BAR protein Hof1) and a mobile activator (Bud6), establishing a positive feedback loop for precise spatial and temporal control of actin assembly. Formins are essential actin assembly factors whose activities are controlled by a diverse array of binding partners. Until now, most formin ligands have been studied on an individual basis, leaving open the question of how multiple inputs are integrated to regulate formins in vivo. Here, we show that the F-BAR domain of Saccharomyces cerevisiae Hof1 interacts with the FH2 domain of the formin Bnr1 and blocks actin nucleation. Electron microscopy of the Hof1–Bnr1 complex reveals a novel dumbbell-shaped structure, with the tips of the F-BAR holding two FH2 dimers apart. Deletion of Hof1’s F-BAR domain in vivo results in disorganized actin cables and secretory defects. The formin-binding protein Bud6 strongly alleviates Hof1 inhibition in vitro, and bud6Δ suppresses hof1Δ defects in vivo. Whereas Hof1 stably resides at the bud neck, we show that Bud6 is delivered to the neck on secretory vesicles. We propose that Hof1 and Bud6 functions are intertwined as a stationary inhibitor and a mobile activator, respectively.
Collapse
Affiliation(s)
- Mikael V Garabedian
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA
| | | | - Chenyu Lou
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA
| | - Thomas J Rands
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA
| | - Luther W Pollard
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA
| | - Olga S Sokolova
- Bioengineering Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA
| |
Collapse
|
35
|
Kotila T, Kogan K, Enkavi G, Guo S, Vattulainen I, Goode BL, Lappalainen P. Structural basis of actin monomer re-charging by cyclase-associated protein. Nat Commun 2018; 9:1892. [PMID: 29760438 PMCID: PMC5951797 DOI: 10.1038/s41467-018-04231-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/13/2018] [Indexed: 11/10/2022] Open
Abstract
Actin polymerization powers key cellular processes, including motility, morphogenesis, and endocytosis. The actin turnover cycle depends critically on "re-charging" of ADP-actin monomers with ATP, but whether this reaction requires dedicated proteins in cells, and the underlying mechanism, have remained elusive. Here we report that nucleotide exchange catalyzed by the ubiquitous cytoskeletal regulator cyclase-associated protein (CAP) is critical for actin-based processes in vivo. We determine the structure of the CAP-actin complex, which reveals that nucleotide exchange occurs in a compact, sandwich-like complex formed between the dimeric actin-binding domain of CAP and two ADP-actin monomers. In the crystal structure, the C-terminal tail of CAP associates with the nucleotide-sensing region of actin, and this interaction is required for rapid re-charging of actin by both yeast and mammalian CAPs. These data uncover the conserved structural basis and biological role of protein-catalyzed re-charging of actin monomers.
Collapse
Affiliation(s)
- Tommi Kotila
- Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Konstantin Kogan
- Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Giray Enkavi
- Department of Physics, University of Helsinki, 00014, Helsinki, Finland
| | - Siyang Guo
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, 00014, Helsinki, Finland
- Laboratory of Physics, Tampere University of Technology, 33101, Tampere, Finland
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
36
|
Woodman S, Trousdale C, Conover J, Kim K. Yeast membrane lipid imbalance leads to trafficking defects toward the Golgi. Cell Biol Int 2018; 42:890-902. [PMID: 29500884 DOI: 10.1002/cbin.10956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/24/2018] [Indexed: 12/19/2022]
Abstract
Protein recycling is an essential cellular process involving endocytosis, intracellular trafficking, and exocytosis. In mammalian systems membrane lipids, including cholesterol, sphingolipids, and phospholipids, play a pivotal role in protein recycling. To address this role in budding yeast, Saccharomyces cerevisiae, we utilized GFP-Snc1, a v-SNARE protein serving as a fluorescent marker for faithfully reporting the recycling pathway. Here we demonstrate results that display moderate to significant GFP-Snc1 recycling defects upon overexpression or inactivation of phospholipid, ergosterol, and sphingolipid biosynthesis enzymes, indicating that the homeostasis of membrane lipid levels is prerequisite for proper protein recycling. By using a truncated version of GFP-Snc1 that cannot be recycled from the plasma membrane, we determined that abnormalities in Snc1 localization in membrane lipid overexpression or underexpression mutants are not due to defects in the synthetic/secretory pathway, but rather in the intracellular trafficking pathway. We found that membrane lipid imbalance resulted in an accumulation of the late endosome marker Vps10-GFP, indicating trafficking from the endosomes to the Golgi may be being hindered, preventing recycling to the plasma membrane. To elucidate the possible mechanism for this trafficking hindrance, we stained the actin cytoskeleton, then quantified the percentage of cells with visible actin cables. Compared to wild-type cells, membrane lipid mutant cells exhibited lower levels of actin cables, indicating the actin cytoskeleton is disrupted upon membrane lipid imbalance. Taken together, our results show that impairment of proper recycling may be due to disruption of the actin cytoskeleton, which causes trafficking hindrance between the endosomes and Golgi.
Collapse
Affiliation(s)
- Sara Woodman
- Missouri State University, 901 S National Ave., Springfield, Missouri
| | - Christopher Trousdale
- Missouri State University, 901 S National Ave., Springfield, Missouri.,Washington University in St. Louis, 1 Brookings Dr., St. Louis, Missouri
| | - Justin Conover
- Missouri State University, 901 S National Ave., Springfield, Missouri.,Iowa State University, Ames, Iowa
| | - Kyoungtae Kim
- Missouri State University, 901 S National Ave., Springfield, Missouri.,Iowa State University, Ames, Iowa
| |
Collapse
|
37
|
Shin M, van Leeuwen J, Boone C, Bretscher A. Yeast Aim21/Tda2 both regulates free actin by reducing barbed end assembly and forms a complex with Cap1/Cap2 to balance actin assembly between patches and cables. Mol Biol Cell 2018; 29:923-936. [PMID: 29467252 PMCID: PMC5896931 DOI: 10.1091/mbc.e17-10-0592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Yeast Aim21 is recruited by the SH3-containing proteins Bbc1 and Abp1 to patches and, with Tda2, reduces barbed end assembly to balance the distribution of actin between patches and cables. Aim21/Tda2 also interacts with Cap1/Cap2, revealing a complex interplay between actin assembly regulators. How cells balance the incorporation of actin into diverse structures is poorly understood. In budding yeast, a single actin monomer pool is used to build both actin cables involved in polarized growth and actin cortical patches involved in endocytosis. Here we report how Aim21/Tda2 is recruited to the cortical region of actin patches, where it negatively regulates actin assembly to elevate the available actin monomer pool. Aim21 has four polyproline regions and is recruited by two SH3-containing patch proteins, Bbc1 and Abp1. The C-terminal region, which is required for its function, binds Tda2. Cell biological and biochemical data reveal that Aim21/Tda2 is a negative regulator of barbed end filamentous actin (F-actin) assembly, and this activity is necessary for efficient endocytosis and plays a pivotal role in balancing the distribution of actin between cables and patches. Aim21/Tda2 also forms a complex with the F-actin barbed end capping protein Cap1/Cap2, revealing an interplay between regulators and showing the complexity of regulation of barbed end assembly.
Collapse
Affiliation(s)
- Myungjoo Shin
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | | | - Charles Boone
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
38
|
Rajagopal V, Holmes WR, Lee PVS. Computational modeling of single-cell mechanics and cytoskeletal mechanobiology. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1407. [PMID: 29195023 PMCID: PMC5836888 DOI: 10.1002/wsbm.1407] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/19/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023]
Abstract
Cellular cytoskeletal mechanics plays a major role in many aspects of human health from organ development to wound healing, tissue homeostasis and cancer metastasis. We summarize the state-of-the-art techniques for mathematically modeling cellular stiffness and mechanics and the cytoskeletal components and factors that regulate them. We highlight key experiments that have assisted model parameterization and compare the advantages of different models that have been used to recapitulate these experiments. An overview of feed-forward mechanisms from signaling to cytoskeleton remodeling is provided, followed by a discussion of the rapidly growing niche of encapsulating feedback mechanisms from cytoskeletal and cell mechanics to signaling. We discuss broad areas of advancement that could accelerate research and understanding of cellular mechanobiology. A precise understanding of the molecular mechanisms that affect cell and tissue mechanics and function will underpin innovations in medical device technologies of the future. WIREs Syst Biol Med 2018, 10:e1407. doi: 10.1002/wsbm.1407 This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Vijay Rajagopal
- Cell Structure and Mechanobiology Group, Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| | - William R. Holmes
- Department of Physics and AstronomyVanderbilt UniversityNashvilleTNUSA
| | - Peter Vee Sin Lee
- Cell and Tissue Biomechanics Laboratory, Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
39
|
Xiang X. Nuclear movement in fungi. Semin Cell Dev Biol 2017; 82:3-16. [PMID: 29241689 DOI: 10.1016/j.semcdb.2017.10.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022]
Abstract
Nuclear movement within a cell occurs in a variety of eukaryotic organisms including yeasts and filamentous fungi. Fungal molecular genetic studies identified the minus-end-directed microtubule motor cytoplasmic dynein as a critical protein for nuclear movement or orientation of the mitotic spindle contained in the nucleus. Studies in the budding yeast first indicated that dynein anchored at the cortex via its anchoring protein Num1 exerts pulling force on an astral microtubule to orient the anaphase spindle across the mother-daughter axis before nuclear division. Prior to anaphase, myosin V interacts with the plus end of an astral microtubule via Kar9-Bim1/EB1 and pulls the plus end along the actin cables to move the nucleus/spindle close to the bud neck. In addition, pushing or pulling forces generated from cortex-linked polymerization or depolymerization of microtubules drive nuclear movements in yeasts and possibly also in filamentous fungi. In filamentous fungi, multiple nuclei within a hyphal segment undergo dynein-dependent back-and-forth movements and their positioning is also influenced by cytoplasmic streaming toward the hyphal tip. In addition, nuclear movement occurs at various stages of fungal development and fungal infection of plant tissues. This review discusses our current understanding on the mechanisms of nuclear movement in fungal organisms, the importance of nuclear positioning and the regulatory strategies that ensure the proper positioning of nucleus/spindle.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, USA.
| |
Collapse
|
40
|
Vitulo N, Vezzi A, Galla G, Citterio S, Marino G, Ruperti B, Zermiani M, Albertini E, Valle G, Barcaccia G. Characterization and Evolution of the Cell Cycle-Associated Mob Domain-Containing Proteins in Eukaryotes. Evol Bioinform Online 2017. [DOI: 10.1177/117693430700300007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The MOB family includes a group of cell cycle-associated proteins highly conserved throughout eukaryotes, whose founding members are implicated in mitotic exit and co-ordination of cell cycle progression with cell polarity and morphogenesis. Here we report the characterization and evolution of the MOB domain-containing proteins as inferred from the 43 eukaryotic genomes so far sequenced. We show that genes for Mob-like proteins are present in at least 41 of these genomes, confirming the universal distribution of this protein family and suggesting its prominent biological function. The phylogenetic analysis reveals five distinct MOB domain classes, showing a progressive expansion of this family from unicellular to multicellular organisms, reaching the highest number in mammals. Plant Mob genes appear to have evolved from a single ancestor, most likely after the loss of one or more genes during the early stage of Viridiplantae evolutionary history. Three of the Mob classes are widespread among most of the analyzed organisms. The possible biological and molecular function of Mob proteins and their role in conserved signaling pathways related to cell proliferation, cell death and cell polarity are also presented and critically discussed.
Collapse
Affiliation(s)
- Nicola Vitulo
- Dipartimento di Biologia, University of Padova, Viale G. Colombo 3, 35121, Padova
| | - Alessandro Vezzi
- Dipartimento di Biologia, University of Padova, Viale G. Colombo 3, 35121, Padova
| | - Giulio Galla
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, University of Padova - Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Sandra Citterio
- Dipartimento di Scienze dell'Ambiente e del Territorio, University of Milano - Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Giada Marino
- Dipartimento di Scienze dell'Ambiente e del Territorio, University of Milano - Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Benedetto Ruperti
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Via delle Scienze 208, 33100, Udine, Italy
| | - Monica Zermiani
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Via delle Scienze 208, 33100, Udine, Italy
| | - Emidio Albertini
- Dipartimento di Biologia Vegetale e Biotecnologie Agroambientali e Zootecniche, Borgo XX Giugno, 06121, Perugia, Italy
| | - Giorgio Valle
- Dipartimento di Biologia, University of Padova, Viale G. Colombo 3, 35121, Padova
| | - Gianni Barcaccia
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, University of Padova - Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| |
Collapse
|
41
|
Abstract
A conserved molecular machinery centered on the Cdc42 GTPase regulates cell polarity in diverse organisms. Here we review findings from budding and fission yeasts that reveal both a conserved core polarity circuit and several adaptations that each organism exploits to fulfill the needs of its lifestyle. The core circuit involves positive feedback by local activation of Cdc42 to generate a cluster of concentrated GTP-Cdc42 at the membrane. Species-specific pathways regulate the timing of polarization during the cell cycle, as well as the location and number of polarity sites.
Collapse
Affiliation(s)
- Jian-Geng Chiou
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710;
| | - Mohan K Balasubramanian
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710;
| |
Collapse
|
42
|
Lappalainen P. Actin-binding proteins: the long road to understanding the dynamic landscape of cellular actin networks. Mol Biol Cell 2017; 27:2519-22. [PMID: 27528696 PMCID: PMC4985253 DOI: 10.1091/mbc.e15-10-0728] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/14/2016] [Indexed: 11/17/2022] Open
Abstract
The actin cytoskeleton supports a vast number of cellular processes in nonmuscle cells. It is well established that the organization and dynamics of the actin cytoskeleton are controlled by a large array of actin-binding proteins. However, it was only 40 years ago that the first nonmuscle actin-binding protein, filamin, was identified and characterized. Filamin was shown to bind and cross-link actin filaments into higher-order structures and contribute to phagocytosis in macrophages. Subsequently many other nonmuscle actin-binding proteins were identified and characterized. These proteins regulate almost all steps of the actin filament assembly and disassembly cycles, as well as the arrangement of actin filaments into diverse three-dimensional structures. Although the individual biochemical activities of most actin-regulatory proteins are relatively well understood, knowledge of how these proteins function together in a common cytoplasm to control actin dynamics and architecture is only beginning to emerge. Furthermore, understanding how signaling pathways and mechanical cues control the activities of various actin-binding proteins in different cellular, developmental, and pathological processes will keep researchers busy for decades.
Collapse
Affiliation(s)
- Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
43
|
Overexpression of GhPFN2 enhances protection against Verticillium dahliae invasion in cotton. SCIENCE CHINA-LIFE SCIENCES 2017; 60:861-867. [PMID: 28741129 DOI: 10.1007/s11427-017-9067-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022]
Abstract
Growing evidence indicates that actin cytoskeleton is involved in plant innate immune responses, but the functional mechanism remains largely unknown. Here, we investigated the behavior of a cotton profilin gene (GhPFN2) in response to Verticillium dahliae invasion, and evaluated its contribution to plant defense against this soil-borne fungal pathogen. GhPFN2 expression was up-regulated when cotton root was inoculated with V. dahliae, and the actin architecture was reorganized in the infected root cells, with a clear increase in the density of filamentous actin and the extent of actin bundling. Compared to the wild type, GhPFN2-overexpressing cotton plants showed enhanced protection against V. dahliae infection and the actin cytoskeleton organization in root epidermal cells was clearly altered, which phenocopied that of the wild-type (WT) root cells challenged with V. dahliae. These results provide a solid line of evidence showing that actin cytoskeleton reorganization involving GhPFN2 is important for defense against V. dahliae infection.
Collapse
|
44
|
Sanger JW, Wang J, Fan Y, White J, Mi-Mi L, Dube DK, Sanger JM, Pruyne D. Assembly and Maintenance of Myofibrils in Striated Muscle. Handb Exp Pharmacol 2017; 235:39-75. [PMID: 27832381 DOI: 10.1007/164_2016_53] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this chapter, we present the current knowledge on de novo assembly, growth, and dynamics of striated myofibrils, the functional architectural elements developed in skeletal and cardiac muscle. The data were obtained in studies of myofibrils formed in cultures of mouse skeletal and quail myotubes, in the somites of living zebrafish embryos, and in mouse neonatal and quail embryonic cardiac cells. The comparative view obtained revealed that the assembly of striated myofibrils is a three-step process progressing from premyofibrils to nascent myofibrils to mature myofibrils. This process is specified by the addition of new structural proteins, the arrangement of myofibrillar components like actin and myosin filaments with their companions into so-called sarcomeres, and in their precise alignment. Accompanying the formation of mature myofibrils is a decrease in the dynamic behavior of the assembling proteins. Proteins are most dynamic in the premyofibrils during the early phase and least dynamic in mature myofibrils in the final stage of myofibrillogenesis. This is probably due to increased interactions between proteins during the maturation process. The dynamic properties of myofibrillar proteins provide a mechanism for the exchange of older proteins or a change in isoforms to take place without disassembling the structural integrity needed for myofibril function. An important aspect of myofibril assembly is the role of actin-nucleating proteins in the formation, maintenance, and sarcomeric arrangement of the myofibrillar actin filaments. This is a very active field of research. We also report on several actin mutations that result in human muscle diseases.
Collapse
Affiliation(s)
- Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA.
| | - Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA
| | - Jennifer White
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA
| | - Lei Mi-Mi
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA
| | - Dipak K Dube
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA
| | - David Pruyne
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA.
| |
Collapse
|
45
|
Abstract
Cytokinesis is essential for the survival of all organisms. It requires concerted functions of cell signaling, force production, exocytosis, and extracellular matrix remodeling. Due to the conservation in core components and mechanisms between fungal and animal cells, the budding yeast Saccharomyces cerevisiae has served as an attractive model for studying this fundamental process. In this review, we discuss the mechanics and regulation of distinct events of cytokinesis in budding yeast, including the assembly, constriction, and disassembly of the actomyosin ring, septum formation, abscission, and their spatiotemporal coordination. We also highlight the key concepts and questions that are common to animal and fungal cytokinesis.
Collapse
Affiliation(s)
- Yogini P Bhavsar-Jog
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Alioto SL, Garabedian MV, Bellavance DR, Goode BL. Tropomyosin and Profilin Cooperate to Promote Formin-Mediated Actin Nucleation and Drive Yeast Actin Cable Assembly. Curr Biol 2016; 26:3230-3237. [PMID: 27866892 DOI: 10.1016/j.cub.2016.09.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/01/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
Abstract
Tropomyosins comprise a large family of actin-binding proteins with critical roles in diverse actin-based processes [1], but our understanding of how they mechanistically contribute to actin filament dynamics has been limited. We addressed this question in S. cerevisiae, where tropomyosins (Tpm1 and Tpm2), profilin (Pfy1), and formins (Bni1 and Bnr1) are required for the assembly of an array of actin cables that facilitate polarized vesicle delivery and daughter cell growth. Formins drive cable formation by promoting actin nucleation and by accelerating actin filament elongation together with profilin [2]. In contrast, how tropomyosins contribute mechanistically to cable formation has been unclear, but genetic studies demonstrate that Tpm1 plays a more important role than Tpm2 [3, 4]. Here, we found that loss of TPM1 in strains lacking BNR1, but not BNI1, leads to severe defects in cable formation, polarized secretion, and cell growth, suggesting that TPM1 function is required for proper Bni1-mediated cable assembly. Furthermore, in vitro total internal reflection fluorescence (TIRF) microscopy demonstrated that Tpm1 strongly enhances Bni1-mediated, but not Bnr1-mediated, actin nucleation without affecting filament elongation rate, whereas Tpm2 has no effects on Bni1 or Bnr1. Tpm1 stimulation of Bni1-mediated nucleation also requires profilin and its interactions with both G-actin and formins. Together, these results demonstrate that yeast Tpm1 works in concert with profilin to promote formin-dependent nucleation of actin cables, thus expanding our understanding of how specific tropomyosin isoforms influence actin dynamics.
Collapse
Affiliation(s)
- Salvatore L Alioto
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Mikael V Garabedian
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Danielle R Bellavance
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
47
|
Shao W, Dong J. Polarity in plant asymmetric cell division: Division orientation and cell fate differentiation. Dev Biol 2016; 419:121-131. [PMID: 27475487 DOI: 10.1016/j.ydbio.2016.07.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/18/2016] [Accepted: 07/26/2016] [Indexed: 01/04/2023]
Abstract
Asymmetric cell division (ACD) is universally required for the development of multicellular organisms. Unlike animal cells, plant cells have a rigid cellulosic extracellular matrix, the cell wall, which provides physical support and forms communication routes. This fundamental difference leads to some unique mechanisms in plants for generating asymmetries during cell division. However, plants also utilize intrinsically polarized proteins to regulate asymmetric signaling and cell division, a strategy similar to the differentiation mechanism found in animals. Current progress suggests that common regulatory modes, i.e. protein spontaneous clustering and cytoskeleton reorganization, underlie protein polarization in both animal and plant cells. Despite these commonalities, it is important to note that intrinsic mechanisms in plants are heavily influenced by extrinsic cues. To control physical asymmetry in cell division, although our understanding is fragmentary thus far, plants might have evolved novel polarization strategies to orientate cell division plane. Recent studies also suggest that the phytohormone auxin, one of the most pivotal small molecules in plant development, regulates ACD in plants.
Collapse
Affiliation(s)
- Wanchen Shao
- Department of Plant Biology and Pathology, Rutgers the State University of New Jersey, NJ 08901, USA
| | - Juan Dong
- Department of Plant Biology and Pathology, Rutgers the State University of New Jersey, NJ 08901, USA; Waksman Institute of Microbiology, Rutgers the State University of New Jersey, NJ 08854, USA.
| |
Collapse
|
48
|
Control of Formin Distribution and Actin Cable Assembly by the E3 Ubiquitin Ligases Dma1 and Dma2. Genetics 2016; 204:205-20. [PMID: 27449057 DOI: 10.1534/genetics.116.189258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022] Open
Abstract
Formins are widespread actin-polymerizing proteins that play pivotal roles in a number of processes, such as cell polarity, morphogenesis, cytokinesis, and cell migration. In agreement with their crucial function, formins are prone to a variety of regulatory mechanisms that include autoinhibition, post-translational modifications, and interaction with formin modulators. Furthermore, activation and function of formins is intimately linked to their ability to interact with membranes. In the budding yeast Saccharomyces cerevisiae, the two formins Bni1 and Bnr1 play both separate and overlapping functions in the organization of the actin cytoskeleton. In addition, they are controlled by both common and different regulatory mechanisms. Here we show that proper localization of both formins requires the redundant E3 ubiquitin ligases Dma1 and Dma2, which were previously involved in spindle positioning and septin organization. In dma1 dma2 double mutants, formin distribution at polarity sites is impaired, thus causing defects in the organization of the actin cable network and hypersensitivity to the actin depolymerizer latrunculin B. Expression of a hyperactive variant of Bni1 (Bni1-V360D) rescues these defects and partially restores proper spindle positioning in the mutant, suggesting that the failure of dma1 dma2 mutant cells to position the spindle is partly due to faulty formin activity. Strikingly, Dma1/2 interact physically with both formins, while their ubiquitin-ligase activity is required for formin function and polarized localization. Thus, ubiquitylation of formin or a formin interactor(s) could promote formin binding to membrane and its ability to nucleate actin. Altogether, our data highlight a novel level of formin regulation that further expands our knowledge of the complex and multilayered controls of these key cytoskeleton organizers.
Collapse
|
49
|
Neuhaus A, Eggeling C, Erdmann R, Schliebs W. Why do peroxisomes associate with the cytoskeleton? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1019-26. [DOI: 10.1016/j.bbamcr.2015.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022]
|
50
|
Abstract
Cytokinesis is the final process in the cell cycle that physically divides one cell into two. In budding yeast, cytokinesis is driven by a contractile actomyosin ring (AMR) and the simultaneous formation of a primary septum, which serves as template for cell wall deposition. AMR assembly, constriction, primary septum formation and cell wall deposition are successive processes and tightly coupled to cell cycle progression to ensure the correct distribution of genetic material and cell organelles among the two rising cells prior to cell division. The role of the AMR in cytokinesis and the molecular mechanisms that drive AMR constriction and septation are the focus of current research. This review summarizes the recent progresses in our understanding of how budding yeast cells orchestrate the multitude of molecular mechanisms that control AMR driven cytokinesis in a spatio-temporal manner to achieve an error free cell division.
Collapse
|