1
|
Zhang Y, Ju F, Yan L, Shen X, Guo S, Yu M, Cao Y, Wang W. Elevated Porcupine Disrupts Lipid Metabolism and Promotes Inflammatory Response in MASLD. Liver Int 2025; 45:e16130. [PMID: 39403838 DOI: 10.1111/liv.16130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 03/11/2025]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) presents a high incidence globally and is a major cause of cirrhosis and hepatocellular carcinoma, lacking of efficient interventions. Patients with MASLD exhibit exceeded serum levels of palmitic acid (PA). However, the association between PA and MASLD remains obscure. METHODS Gene expression omnibus dataset analysis, western blotting, mRNA-sequencing, RT-qPCR, a click chemistry-immunoprecipitation-immunofluorescence system, ELISA, lipid extraction and UHPLC-MS/MS analysis, CyTOF mass cytometry, gene knockdown via lentivirus-mediated shRNA, and high-fat methionine and choline-deficient diet-fed WT and db/db mice models were used to reveal the expression and functions of Porcupine in MASLD development both in vitro and in vivo. RESULTS Our findings show that PA, as a crucial substrate for protein palmitoylation, induced the expression of palmitoyltransferase Porcupine in a time-dependent manner. This induction was closely associated with dysregulated lipid metabolism and stimulated inflammatory response observed in vitro. Porcupine protein levels were significantly increased in liver tissues from both MASLD mice models, which was predominantly localised in lipid droplet-rich hepatocytes. Pharmacological inhibition of Porcupine by Wnt974 markedly ameliorated the aberrant lipid accumulation and inflammatory response in mouse livers. Furthermore, increased Porcupine positively correlated with CD36 at protein levels, and its inhibition or knockdown decreased CD36 protein levels via mechanisms irrelevant to transcriptional regulation, but primarily dependent on protein palmitoylation. CONCLUSIONS The current study reveals that PA-induced Porcupine disrupts lipid metabolism and promotes inflammatory response during MASLD development, which can be ameliorated by the Porcupine inhibitor Wnt974. Therefore, Porcupine may be a potential pharmacological target for the treatment of MASLD.
Collapse
Affiliation(s)
- Yalin Zhang
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fengyu Ju
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Li Yan
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xin Shen
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shiqing Guo
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Muchen Yu
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yujia Cao
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Wenhui Wang
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Wei Y, Zhu C, He X, Chu M. Hypothalamus Transcriptome Reveals Key lncRNAs and mRNAs Associated with Fecundity in Goats. Animals (Basel) 2025; 15:754. [PMID: 40076037 PMCID: PMC11898595 DOI: 10.3390/ani15050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
The hypothalamus (hyp) serves as the regulatory hub of the neuroendocrine system, synthesizing and secreting reproductive hormones that modulate estrus, follicular maturation, and embryonic development in goats. This study employed RNA-seq analysis to examine gene expression in the hypothalamic tissue of Yunshang black goats during the luteal phase in goats with high fecundity (LP_HY), during the luteal phase in goats with low fecundity (LP_LY), during the follicular phase in goats with high fecundity (FP_HY), and during the follicular phase in goats with low fecundity (FP_LY). Differential long non-coding RNAs (DE lncRNAs) and differential mRNAs (DE mRNAs) were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and the construction of co-expression networks associated with reproduction. As a result, DE lncRNAs (390, 375, 405, and 394) and DE mRNAs (1836, 2047, 2003, and 1963) were identified in the four comparisons, namely FP_LY vs. FP_HY, LP_HY vs. FP_HY, LP_LY vs. FP_LY, and LP_LY vs. LP_HY, respectively. Functional annotations indicated significant enrichment of numerous DE lncRNAs and DE mRNAs in reproduction-related pathways such as the gonadotropin-releasing hormone pathway, the prolactin signaling pathway, the estrogen signaling pathway, the Wnt signaling pathway, oocyte meiosis, and progesterone-mediated oocyte maturation. The co-expression network of lncRNAs and target genes identified the interrelationships between reproduction-related genes such as IGF1, PORCN, PLCB2, MAPK8, PRLR, and CPEB2 with our newly discovered lncRNAs. This study expands the understanding of lncRNAs and mRNAs in goat hypothalamic tissue and provides new insights into molecular mechanisms related to goat reproduction.
Collapse
Affiliation(s)
- Yingshi Wei
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Caiye Zhu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xiaoyun He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| |
Collapse
|
3
|
Chen Y, Xiao M, Mo Y, Ma J, Han Y, Li Q, Zeng Q, Boohaker RJ, Fried J, Li Y, Wang H, Xu B. Nuclear porcupine mediates XRCC6/Ku70 S-palmitoylation in the DNA damage response. Exp Hematol Oncol 2024; 13:109. [PMID: 39497152 PMCID: PMC11536954 DOI: 10.1186/s40164-024-00572-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/08/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND The activation of the DNA damage response (DDR) heavily relies on post-translational modifications (PTMs) of proteins, which play a crucial role in the prevention of genetic instability and tumorigenesis. Among these PTMs, palmitoylation is a highly conserved process that is dysregulated in numerous cancer types. However, its direct involvement in the DDR and the underlying mechanisms remain unclear. METHODS CRISPR-Cas9 technology was used to generate the PORCN KO and PORCN NLS KO cell lines. The effects of PORCN NLS in the DDR were verified by colony formation assays, MTT assays, the DR/EJ5 homologous recombination/non-homologous end-joining reporter system, xenograft tumor growth and immunofluorescence. Mechanisms were explored by mass spectrometry, acyl-biotin exchange (ABE) palmitoylation assay, Click-iT assay, cell subcellular fractionation assay, Western blot analysis, and in vivo and in vitro co-immunoprecipitation. RESULTS In this study, we introduce evidence that Porcupine (PORCN) is an integral component of and plays a critical role in the DDR. PORCN deficiency hampers nonhomologous end joining (NHEJ) and highly sensitizes cells to ionizing radiation (IR) both in vitro and in vivo. We also provide evidence that PORCN possesses a nuclear fraction (nPORCN) with S-acyltransferase activity, unlike its membrane-bound O-acyltransferase in the endoplasmic reticulum. Furthermore, we show that nPORCN is necessary for the successful activation of NHEJ. Using mass spectrometry, we reveal the existence of an nPORCN complex and show that nPORCN mediates the S-palmitoylation of XRCC6/Ku70 at five specific cysteine sites in response to IR. Mutation of these sites causes a substantial increase in radiosensitivity and delays NHEJ. Additionally, we present evidence that nPORCN-dependent Ku70 palmitoylation is required for DNA-PKcs/Ku70/Ku80 complex formation. CONCLUSION Our findings underscore the crucial role of nPORCN-dependent Ku70 S-palmitoylation in the DDR.
Collapse
Affiliation(s)
- Yang Chen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Mingming Xiao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yaqi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China
| | - Jinlu Ma
- Department of Radiation Oncology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yamei Han
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Qing Li
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China
| | - Qinghua Zeng
- Department of Oncology, Southern Research Institute, Birmingham, AL, 35205, USA
- Cell Biology Program, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Rebecca J Boohaker
- Department of Oncology, Southern Research Institute, Birmingham, AL, 35205, USA
- Cell Biology Program, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Joshua Fried
- Department of Oncology, Southern Research Institute, Birmingham, AL, 35205, USA
- Cell Biology Program, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Yonghe Li
- Department of Oncology, Southern Research Institute, Birmingham, AL, 35205, USA
- Cell Biology Program, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Han Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China
| | - Bo Xu
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China.
| |
Collapse
|
4
|
Zhang T, Wang Z, Muaibati M, Huang F, Li K, Abasi A, Tong Q, Wang D, Jin L, Huang X, Zhuang L. Natural small molecule compounds targeting Wnt signaling pathway inhibit HPV infection. Microb Pathog 2024; 196:106960. [PMID: 39313132 DOI: 10.1016/j.micpath.2024.106960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND High-risk human papillomavirus (HPV) infection is a major risk factor of HPV-related tumors, especially cervical cancer. To date, there is no specific drug for the treatment of HPV infection. PURPOSE To explore the role of canonical Wnt signaling pathway in HPV16 infection and to screen inhibitors against HPV16 infection from natural small molecule compounds targeting the canonicalWnt pathway. METHODS Wnt pathway inhibitor IWP-2 and FH535 were used to inhibit Wnt/β-catenin signaling pathway. HPV16-GFP pseudovirus infectivity were analyzed by fluorescence microscopy and fluorescence activated cell sorting. A small molecule screening of a total of CFDA-approved 29 natural compounds targeting the Wnt pathway was performed. RESULTS Wnt signaling pathway inhibitor suppressed HPV16-GFP pseudovirus infection in HaCat cells. Natural small molecule compounds screening identified 6-Gingerol, gossypol, tanshinone II2A, and EGCG as inhibitors of HPV16-GFP pseudovirus infection. CONCLUSION Wnt signaling pathway is involved in the process of HPV infection of host cells. 6-Gingerol, gossypol, tanshinone II2A, and EGCG inhibited HPV16-GFP pseudovirus infection and suppressed Wnt/β-catenin pathway in HaCat cells.
Collapse
Affiliation(s)
- Tao Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, China
| | - Ze Wang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Munawaer Muaibati
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Fanwei Huang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Kexin Li
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Abuduyilimu Abasi
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Qing Tong
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Dan Wang
- Department of Ophthalmology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Xiaoyuan Huang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Liang Zhuang
- Department of Oncology, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China.
| |
Collapse
|
5
|
Shao Y, Hu J, Li H, Lu K. Regulation of autophagy by protein lipidation. ADVANCED BIOTECHNOLOGY 2024; 2:33. [PMID: 39883197 PMCID: PMC11709147 DOI: 10.1007/s44307-024-00040-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 01/31/2025]
Abstract
Autophagy is a conserved catabolic recycling pathway that can eliminate cytosolic materials to maintain homeostasis and organelle functions. Many studies over the past few decades have demonstrated that abnormal autophagy is associated with a variety of diseases. Protein lipidation plays an important role in the regulation of autophagy by affecting protein trafficking, localization, stability, interactions and signal transduction. Here, we review recent advances in the understanding of the role of lipidation in autophagy, including S-palmitoylation, N-myristoylation, S-prenylation, glycosylphosphatidylinositol (GPI) anchor modification and cholesterylation. We comprehensively review the enzymes and catalytic mechanisms of lipidation and discuss the relationship between lipidation and autophagy, aiming to deepen the understanding of lipidation and promote the discovery of drug targets for the treatment of autophagy-related diseases.
Collapse
Affiliation(s)
- Yuqian Shao
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junchao Hu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huihui Li
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Marensi V, Yap MC, Ji Y, Lin C, Berthiaume LG, Leslie EM. Glutathione transferase P1 is modified by palmitate. PLoS One 2024; 19:e0308500. [PMID: 39269939 PMCID: PMC11398671 DOI: 10.1371/journal.pone.0308500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/24/2024] [Indexed: 09/15/2024] Open
Abstract
Glutathione transferase P1 (GSTP1) is a multi-functional protein that protects cells from electrophiles by catalyzing their conjugation with glutathione, and contributes to the regulation of cell proliferation, apoptosis, and signalling. GSTP1, usually described as a cytosolic enzyme, can localize to other cell compartments and we have reported its strong association with the plasma membrane. In the current study, the hypothesis that GSTP1 is palmitoylated and this modification facilitates its dynamic localization and function was investigated. Palmitoylation is the reversible post-translational addition of a 16-C saturated fatty acid to proteins, most commonly on Cys residues through a thioester bond. GSTP1 in MCF7 cells was modified by palmitate, however, GSTP1 Cys to Ser mutants (individual and Cys-less) retained palmitoylation. Treatment of palmitoylated GSTP1 with 0.1 N NaOH, which cleaves ester bonds, did not remove palmitate. Purified GSTP1 was spontaneously palmitoylated in vitro and peptide sequencing revealed that Cys48 and Cys102 undergo S-palmitoylation, while Lys103 undergoes the rare N-palmitoylation. N-palmitoylation occurs via a stable NaOH-resistant amide bond. Analysis of subcellular fractions of MCF7-GSTP1 cells and a modified proximity ligation assay revealed that palmitoylated GSTP1 was present not only in the membrane fraction but also in the cytosol. GSTP1 isolated from E. coli, and MCF7 cells (grown under fatty acid free or regular conditions), associated with plasma membrane-enriched fractions and this association was not altered by palmitoyl CoA. Overall, GSTP1 is modified by palmitate, at multiple sites, including at least one non-Cys residue. These modifications could contribute to regulating the diverse functions of GSTP1.
Collapse
Affiliation(s)
- Vanessa Marensi
- Department of Physiology and Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Megan C. Yap
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yuhuan Ji
- Center for Biomedical Mass Spectrometry, Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States of America
| | - Cheng Lin
- Center for Biomedical Mass Spectrometry, Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States of America
| | - Luc G. Berthiaume
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Elaine M. Leslie
- Department of Physiology and Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Schofield LC, Dialpuri JS, Murshudov GN, Agirre J. Post-translational modifications in the Protein Data Bank. Acta Crystallogr D Struct Biol 2024; 80:647-660. [PMID: 39207896 PMCID: PMC11394121 DOI: 10.1107/s2059798324007794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Proteins frequently undergo covalent modification at the post-translational level, which involves the covalent attachment of chemical groups onto amino acids. This can entail the singular or multiple addition of small groups, such as phosphorylation; long-chain modifications, such as glycosylation; small proteins, such as ubiquitination; as well as the interconversion of chemical groups, such as the formation of pyroglutamic acid. These post-translational modifications (PTMs) are essential for the normal functioning of cells, as they can alter the physicochemical properties of amino acids and therefore influence enzymatic activity, protein localization, protein-protein interactions and protein stability. Despite their inherent importance, accurately depicting PTMs in experimental studies of protein structures often poses a challenge. This review highlights the role of PTMs in protein structures, as well as the prevalence of PTMs in the Protein Data Bank, directing the reader to accurately built examples suitable for use as a modelling reference.
Collapse
Affiliation(s)
- Lucy C Schofield
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Jordan S Dialpuri
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Garib N Murshudov
- MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| |
Collapse
|
8
|
Constantin M, Chifiriuc MC, Bleotu C, Vrancianu CO, Cristian RE, Bertesteanu SV, Grigore R, Bertesteanu G. Molecular pathways and targeted therapies in head and neck cancers pathogenesis. Front Oncol 2024; 14:1373821. [PMID: 38952548 PMCID: PMC11215092 DOI: 10.3389/fonc.2024.1373821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024] Open
Abstract
The substantial heterogeneity exhibited by head and neck cancer (HNC), encompassing diverse cellular origins, anatomical locations, and etiological contributors, combined with the prevalent late-stage diagnosis, poses significant challenges for clinical management. Genomic sequencing endeavors have revealed extensive alterations in key signaling pathways that regulate cellular proliferation and survival. Initiatives to engineer therapies targeting these dysregulated pathways are underway, with several candidate molecules progressing to clinical evaluation phases, including FDA approval for agents like the EGFR-targeting monoclonal antibody cetuximab for K-RAS wild-type, EGFR-mutant HNSCC treatment. Non-coding RNAs (ncRNAs), owing to their enhanced stability in biological fluids and their important roles in intracellular and intercellular signaling within HNC contexts, are now recognized as potent biomarkers for disease management, catalyzing further refined diagnostic and therapeutic strategies, edging closer to the personalized medicine desideratum. Enhanced comprehension of the genomic and immunological landscapes characteristic of HNC is anticipated to facilitate a more rigorous assessment of targeted therapies benefits and limitations, optimize their clinical deployment, and foster innovative advancements in treatment approaches. This review presents an update on the molecular mechanisms and mutational spectrum of HNC driving the oncogenesis of head and neck malignancies and explores their implications for advancing diagnostic methodologies and precision therapeutics.
Collapse
Affiliation(s)
- Marian Constantin
- Department of Microbiology, Institute of Biology of Romanian Academy, Bucharest, Romania
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| | - Coralia Bleotu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Cellular and Molecular Pathology Department, Ştefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Serban Vifor Bertesteanu
- ENT, Head& Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Coltea Clinical Hospital, Bucharest, Romania
| | - Raluca Grigore
- ENT, Head& Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Coltea Clinical Hospital, Bucharest, Romania
| | - Gloria Bertesteanu
- ENT, Head& Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Coltea Clinical Hospital, Bucharest, Romania
| |
Collapse
|
9
|
Wang B, Zhou R, Wu J, Kim H, Kim K. Inhibition of δ-catenin palmitoylation slows the progression of prostate cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119741. [PMID: 38697304 DOI: 10.1016/j.bbamcr.2024.119741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/04/2024]
Abstract
Prostate cancer (PCa) is the second leading cause of death in males. It has been reported that δ-catenin expression is upregulated during the late stage of prostate cancer. Palmitoylation promotes protein transport to the cytomembrane and regulates protein localization and function. However, the effect of δ-catenin palmitoylation on the regulation of cancer remains unknown. In this study, we utilized prostate cancer cells overexpressing mutant δ-catenin (J6A cells) to induce a depalmitoylation phenotype and investigate its effect on prostate cancer. Our results indicated that depalmitoylation of δ-catenin not only reduced its membrane expression but also promoted its degradation in the cytoplasm, resulting in a decrease in the effect of EGFR and E-cadherin signaling. Consequently, depalmitoylation of δ-catenin reduced the proliferation and metastasis of prostate cancer cells. Our findings provide novel insights into potential therapeutic strategies for controlling the progression of prostate cancer through palmitoylation-based targeting of δ-catenin.
Collapse
Affiliation(s)
- Beini Wang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Rui Zhou
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Jin Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea.
| | - Kwonseop Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
10
|
Wang S, Xing X, Ma J, Zheng S, Song Q, Zhang P. Deacylases-structure, function, and relationship to diseases. FEBS Lett 2024; 598:959-977. [PMID: 38644468 DOI: 10.1002/1873-3468.14885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/28/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Reversible S-acylation plays a pivotal role in various biological processes, modulating protein functions such as subcellular localization, protein stability/activity, and protein-protein interactions. These modifications are mediated by acyltransferases and deacylases, among which the most abundant modification is S-palmitoylation. Growing evidence has shown that this rivalrous pair of modifications, occurring in a reversible cycle, is essential for various biological functions. Aberrations in this process have been associated with various diseases, including cancer, neurological disorders, and immune diseases. This underscores the importance of studying enzymes involved in acylation and deacylation to gain further insights into disease pathogenesis and provide novel strategies for disease treatment. In this Review, we summarize our current understanding of the structure and physiological function of deacylases, highlighting their pivotal roles in pathology. Our aim is to provide insights for further clinical applications.
Collapse
Affiliation(s)
- Shuxian Wang
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Xiaoke Xing
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Jialin Ma
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, China
| |
Collapse
|
11
|
Chai F, Li P, Liu X, Zhou Z, Ren H. Targeting the PD-L1 cytoplasmic domain and its regulatory pathways to enhance cancer immunotherapy. J Mol Cell Biol 2024; 15:mjad070. [PMID: 37993416 PMCID: PMC11193063 DOI: 10.1093/jmcb/mjad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/09/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023] Open
Abstract
As a significant member of the immune checkpoint, programmed cell death 1 ligand 1 (PD-L1) plays a critical role in cancer immune escape and has become an important target for cancer immunotherapy. Clinically approved drugs mainly target the extracellular domain of PD-L1. Recently, the small cytoplasmic domain of PD-L1 has been reported to regulate PD-L1 stability and function through multiple pathways. Therefore, the intracellular domain of PD-L1 and its regulatory pathways could be promising targets for cancer therapy, expanding available strategies for combined immunotherapy. Here, we summarize the emerging roles of the PD-L1 cytoplasmic domain and its regulatory pathways. The conserved motifs, homodimerization, and posttranslational modifications of the PD-L1 cytoplasmic domain have been reported to regulate the membrane anchoring, degradation, nuclear translocation, and glycosylation of PD-L1. This summary provides a comprehensive understanding of the functions of the PD-L1 cytoplasmic domain and evaluates the broad prospects for targeted therapy.
Collapse
Affiliation(s)
- Fangni Chai
- Division of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Pan Li
- Division of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xin Liu
- Division of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhihui Zhou
- Division of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Haiyan Ren
- Division of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
- Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
12
|
Zhuang Z, Gu J, Li BO, Yang L. Inhibition of gasdermin D palmitoylation by disulfiram is crucial for the treatment of myocardial infarction. Transl Res 2024; 264:66-75. [PMID: 37769810 DOI: 10.1016/j.trsl.2023.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/07/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
To investigate the role of S-palmitoylation in pyroptosis following acute myocardial infarction (AMI). Myocardial ischemic injury is mainly related to the death of terminally differentiated cardiomyocytes. Pyroptosis is a new form of programmed cell death and recently is identified a potential mechanism of cardiomyocyte loss. However, the role of S-palmitoylation in pyroptosis following MI remains elusive. AMI was mimicked by permanent left anterior descending artery ligation. The palmitoylated proteins labeled by Click-iT palmitic acid were precipitated using streptavidin magnetic bead conjugate. The short-term palmitic acid dietary intake by modified western diet with palm oil for 7 days is compared with modified western diet with olive oil. Palmitoylation is increased in myocardial infarction and anoxic cardiomyocytes. Pyroptosis, but not apoptosis and necrosis, is more relevant with palmitoylation in the process of myocardial ischemia injury. The gasdermin D (GSDMD) Cys192 palmitoylation promotes its cytomembrane localization by ZDHHC14. GSDMD Cys192 palmitoylation aggravates in vitro cardiomyocyte pyroptosis. The short-term palmitic acid dietary intake or ML348 deteriorates myocardial pyroptosis, infarct size and cardiac function in AMI mice by GSDMD palmitoylation. Disulfiram antagonizes Cys192 palmitoylation of GSDMD-N-terminal and reduces myocardial pyroptosis and injury in AMI mice. We identifies ZHDDC14 induced palmitoylation as a crucial node for modulating GSDMD-N-terminal cytomembrane localization and establishes Disulfiram targeting GSDMD Cys192 palmitoylation as a potential clinical intervention for myocardial pyroptosis.
Collapse
Affiliation(s)
- Zehao Zhuang
- Department of Ultrasound, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China; Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jianing Gu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - B O Li
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Ling Yang
- Department of Ultrasound, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
13
|
Sinha S. Machine learning ranking of plausible (un)explored synergistic gene combinations using sensitivity indices of time series measurements of Wnt signaling pathway. Integr Biol (Camb) 2024; 16:zyae020. [PMID: 39606798 DOI: 10.1093/intbio/zyae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/25/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Combinations of genes or proteins work in synergy at different times and durations in a signaling pathway. However, which combinations are prevalent at a particular time point or duration is mostly not known. Sensitivity analysis plays a major role in computing the strength of the influence of involved factors in any phenomena under investigation. When applied to expression profiles of various intra/extracellular factors that work in a signaling pathway, the variance- and density-based analysis yields a range of sensitivity indices for individual and various combinations of factors. These combinations denote the higher order interactions among the involved factors, which might be of interest. In this work, after estimating the individual effects of factors for a higher order combination, the individual indices are considered as discriminative features. Exploiting the analogy of prioritizing webpages using ranking algorithms, for a particular order, a full set of combinations of genes can be prioritized based on these features using a powerful support vector ranking algorithm. Recording the changing rankings of the combinations over time points and durations reveals which higher order combinations influence the pathway and when and where an intervention might be necessary to affect the pathway. Integration, innovation, and insight Combinations of genes or proteins work in synergy at different times and durations in a signaling pathway. However, which combinations are prevalent at a particular time point or duration is mostly not known. This work develops a search engine that reveals ground-breaking results in the form of higher order (un)explored/(un)tested combinations (as biological hypotheses), based on sensitivity indices. These indices capture the strength of influence of factors (here genes/proteins) that affect a signaling pathway. Recording the changing rankings of these combinations over time points and durations reveals how higher order combinations behave within the pathway. Significance The manuscript develops a search engine that reveals ground-breaking results in the form of higher order (un)explored/(un)tested combinations of genes/proteins (as biological hypotheses), based on sensitivity indices that capture the strength of influence of factors (here genes/proteins) that affect the Wnt signaling pathway. The pipeline uses kernel-based sensitivity indices to capture the influence of the factors in a pathway and employs powerful support vector ranking algorithm. Because of the above point, biologists/oncologists will be able to narrow down their search to particular combinations that are ranked and, if a synergistic functioning is confirmed, will be able to study the mechanism between the components of a combination, in the Wnt pathway. The search engine design is not only limited to one dataset and a range of combinations of genes/proteins. The framework can be applied/modified to all problems where one is interested in searching for particular combinations of factors involved in a particular phenomena. Recording the changing rankings of the combinations over time points and durations reveals how higher order interactions behave within the pathway and when and where an intervention might be necessary to influence the pathway, for therapeutic purpose. It reveals the various unexplored FZD-WNT combinations that have been untested till now in the Wnt pathway.
Collapse
Affiliation(s)
- Shriprakash Sinha
- Independent Researcher, 104 Madhurisha Heights Phase 1, Risali 490006, Chhattisgarh, India
| |
Collapse
|
14
|
Fu Y, Qian H, Yang Y, Li J, Xie G. Enhanced imaging of protein-specific palmitoylation with HCR-based cis-membrane multi-FRET. Talanta 2024; 266:124972. [PMID: 37487269 DOI: 10.1016/j.talanta.2023.124972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Palmitoylation plays an important role in modulating protein trafficking, stability, and activity. The major predicament in protein palmitoylation study is the lack of specific and sensitive tools to visualize protein-specific palmitoylation. Although FRET approach was explored by metabolically labeled palmitic acid and antibody recognized target protein. The trans-membrane strategy suffers from low FRET efficiency due to the donor and acceptor located at different sides of membrane. Herein, we proposed a cis-membrane multi-fluorescence resonance energy transfer (multi-FRET) for amplified visualization of specific palmitoylated proteins through metabolic labeling and targeted recognition. The azido-palmitic acid (azido-PA) was metabolically incorporated into cellular palmitoylated proteins, followed by reacting with dibenzylcylooctyne-modified Cy5 (DBCO-Cy5) through copper-free click chemistry. The protein probe was attached to targeted protein by specific peptide recognition, which initiates a hybridization chain reaction (HCR) amplification process. The cis-membrane labeling method enables effective intramolecular donor-acceptor distance and allow to increase FRET efficiency. Simultaneously, HCR amplification triggered multi-FRET phenomenon with significantly improved FRET efficiency. With the superiority, this strategy has achieved the enhanced FRET imaging of palmitoylated PD-L1 and visualizing the palmitoylation changes of on PD-L1 under drug treatment. Furthermore, the established method successfully amplified visualization of PD-L1 palmitoylation in vivo and mice tumor slice. We envision the approach would provide a useful platform to investigate the effects of palmitoylation on the protein structure and function.
Collapse
Affiliation(s)
- Yixin Fu
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China; Department of Blood Transfusion, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Husun Qian
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yujun Yang
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Junjie Li
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Guoming Xie
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
15
|
Ye W, Wang J, Huang J, He X, Ma Z, Li X, Huang X, Li F, Huang S, Pan J, Jin J, Ling Q, Wang Y, Yu Y, Sun J, Jin J. ACSL5, a prognostic factor in acute myeloid leukemia, modulates the activity of Wnt/β-catenin signaling by palmitoylation modification. Front Med 2023; 17:685-698. [PMID: 37131085 DOI: 10.1007/s11684-022-0942-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 06/06/2022] [Indexed: 05/04/2023]
Abstract
Acyl-CoA synthetase long chain family member 5 (ACSL5), is a member of the acyl-CoA synthetases (ACSs) family that activates long chain fatty acids by catalyzing the synthesis of fatty acyl-CoAs. The dysregulation of ACSL5 has been reported in some cancers, such as glioma and colon cancers. However, little is known about the role of ACSL5 in acute myeloid leukemia (AML). We found that the expression of ACSL5 was higher in bone marrow cells from AML patients compared with that from healthy donors. ACSL5 level could serve as an independent prognostic predictor of the overall survival of AML patients. In AML cells, the ACSL5 knockdown inhibited cell growth both in vitro and in vivo. Mechanistically, the knockdown of ACSL5 suppressed the activation of the Wnt/β-catenin pathway by suppressing the palmitoylation modification of Wnt3a. Additionally, triacsin c, a pan-ACS family inhibitor, inhibited cell growth and robustly induced cell apoptosis when combined with ABT-199, the FDA approved BCL-2 inhibitor for AML therapy. Our results indicate that ACSL5 is a potential prognosis marker for AML and a promising pharmacological target for the treatment of molecularly stratified AML.
Collapse
Affiliation(s)
- Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310003, China
- Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Hangzhou, 310009, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310003, China
- Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Hangzhou, 310009, China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310003, China
- Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Hangzhou, 310009, China
| | - Xiao He
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, H2L 4M1, Canada
| | - Zhixin Ma
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310003, China
- Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Hangzhou, 310009, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310003, China
- Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Hangzhou, 310009, China
| | - Fenglin Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310003, China
- Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Hangzhou, 310009, China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310003, China
- Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Hangzhou, 310009, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310003, China
- Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Hangzhou, 310009, China
| | - Jingrui Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310003, China
- Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Hangzhou, 310009, China
| | - Qing Ling
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310003, China
- Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Hangzhou, 310009, China
| | - Yungui Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310003, China
- Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Hangzhou, 310009, China
| | - Yongping Yu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jie Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310003, China.
- Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Hangzhou, 310009, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310003, China.
- Key Laboratory of Hematopoietic Malignancies, Diagnosis and Treatment, Hangzhou, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Ding J, Lee SJ, Vlahos L, Yuki K, Rada CC, van Unen V, Vuppalapaty M, Chen H, Sura A, McCormick AK, Tomaske M, Alwahabi S, Nguyen H, Nowatzke W, Kim L, Kelly L, Vollrath D, Califano A, Yeh WC, Li Y, Kuo CJ. Therapeutic blood-brain barrier modulation and stroke treatment by a bioengineered FZD 4-selective WNT surrogate in mice. Nat Commun 2023; 14:2947. [PMID: 37268690 PMCID: PMC10238527 DOI: 10.1038/s41467-023-37689-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/27/2023] [Indexed: 06/04/2023] Open
Abstract
Derangements of the blood-brain barrier (BBB) or blood-retinal barrier (BRB) occur in disorders ranging from stroke, cancer, diabetic retinopathy, and Alzheimer's disease. The Norrin/FZD4/TSPAN12 pathway activates WNT/β-catenin signaling, which is essential for BBB and BRB function. However, systemic pharmacologic FZD4 stimulation is hindered by obligate palmitoylation and insolubility of native WNTs and suboptimal properties of the FZD4-selective ligand Norrin. Here, we develop L6-F4-2, a non-lipidated, FZD4-specific surrogate which significantly improves subpicomolar affinity versus native Norrin. In Norrin knockout (NdpKO) mice, L6-F4-2 not only potently reverses neonatal retinal angiogenesis deficits, but also restores BRB and BBB function. In adult C57Bl/6J mice, post-stroke systemic delivery of L6-F4-2 strongly reduces BBB permeability, infarction, and edema, while improving neurologic score and capillary pericyte coverage. Our findings reveal systemic efficacy of a bioengineered FZD4-selective WNT surrogate during ischemic BBB dysfunction, with potential applicability to adult CNS disorders characterized by an aberrant blood-brain barrier.
Collapse
Affiliation(s)
- Jie Ding
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sung-Jin Lee
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Lukas Vlahos
- Department of Systems Biology, Columbia University, Columbia, NY, 10032, USA
| | - Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Cara C Rada
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Vincent van Unen
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Hui Chen
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Asmiti Sura
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Aaron K McCormick
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Madeline Tomaske
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Samira Alwahabi
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Huy Nguyen
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - William Nowatzke
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Lily Kim
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lisa Kelly
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Douglas Vollrath
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, Columbia, NY, 10032, USA
| | - Wen-Chen Yeh
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Yang Li
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
17
|
Gurriaran-Rodriguez U, Datzkiw D, Radusky LG, Esper M, Xiao F, Ming H, Fisher S, Rojas MA, De Repentigny Y, Kothary R, Rojas AL, Serrano L, Hierro A, Rudnicki MA. Wnt binding to Coatomer proteins directs secretion on exosomes independently of palmitoylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542914. [PMID: 37398399 PMCID: PMC10312507 DOI: 10.1101/2023.05.30.542914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Wnt proteins are secreted hydrophobic glycoproteins that act over long distances through poorly understood mechanisms. We discovered that Wnt7a is secreted on extracellular vesicles (EVs) following muscle injury. Structural analysis identified the motif responsible for Wnt7a secretion on EVs that we term the Exosome Binding Peptide (EBP). Addition of the EBP to an unrelated protein directed secretion on EVs. Disruption of palmitoylation, knockdown of WLS, or deletion of the N-terminal signal peptide did not affect Wnt7a secretion on purified EVs. Bio-ID analysis identified Coatomer proteins as candidates responsible for loading Wnt7a onto EVs. The crystal structure of EBP bound to the COPB2 coatomer subunit, the binding thermodynamics, and mutagenesis experiments, together demonstrate that a dilysine motif in the EBP mediates binding to COPB2. Other Wnts contain functionally analogous structural motifs. Mutation of the EBP results in a significant impairment in the ability of Wnt7a to stimulate regeneration, indicating that secretion of Wnt7a on exosomes is critical for normal regeneration in vivo . Our studies have defined the structural mechanism that mediates binding of Wnt7a to exosomes and elucidated the singularity of long-range Wnt signalling.
Collapse
|
18
|
Banerjee M, Devi Rajeswari V. Inhibition of WNT signaling by conjugated microRNA nano-carriers: A new therapeutic approach for treating triple-negative breast cancer a perspective review. Crit Rev Oncol Hematol 2023; 182:103901. [PMID: 36584723 DOI: 10.1016/j.critrevonc.2022.103901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Triple-Negative Breast Cancer is the most aggressive form and accounts the 15%-25% of all breast cancer. Receptors are absent in triple-negative breast cancer, which makes them unresponsive to the current hormonal therapies. The patients with TNBC are left with the option of cytotoxic chemotherapy. The Wnt pathways are connected to cancer, and when activated, they result in mammary hyperplasia and tumors. The tumor suppressor microRNAs can block tumor cell proliferation, invasion, and migration, lead to cancer cell death, and are also known to down-regulate the WNT signaling. Nanoparticles with microRNA have been seen to be more effective when compared with their single release. In this review, we have tried to understand how Wnt signaling plays a crucial role in TNBC, EMT, metastasis, anti-drug resistance, and regulation of Wnt by microRNA. The role of nano-carriers in delivering micro-RNA. The clinical biomarkers, including the present state-of-the-art, involve novel pathways of Wnt.
Collapse
Affiliation(s)
- Manosi Banerjee
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
19
|
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
20
|
Wnt signaling and the regulation of pluripotency. Curr Top Dev Biol 2023; 153:95-119. [PMID: 36967203 DOI: 10.1016/bs.ctdb.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The role of Wnt signaling in stem cells has been mired in seemingly contradictory findings. On one hand, Wnt has been heralded as a self-renewal factor. On the other hand, Wnt's association with differentiation and lineage commitment is indisputable. This apparent contradiction is particularly evident in pluripotent stem cells, where Wnt promotes self-renewal as well as differentiation. To resolve this discrepancy one must delve into fundamental principles of pluripotency and gain an appreciation for the concept of pluripotency states, which exist in a continuum with intermediate metastable states, some of which have been stabilized in vitro. Wnt signaling is a critical regulator of transitions between pluripotent states. Here, we will discuss Wnt's roles in maintaining pluripotency, promoting differentiation, as well as stimulating reprogramming of somatic cells to an induced pluripotent state.
Collapse
|
21
|
Tao S, Zhang Y, Wang Q, Qiao C, Deng W, Liang S, Wei J, Wei W, Yu H, Li X, Li M, Guo W, Ma X, Zhao L, Li T. Identifying transdiagnostic biological subtypes across schizophrenia, bipolar disorder, and major depressive disorder based on lipidomics profiles. Front Cell Dev Biol 2022; 10:969575. [PMID: 36133917 PMCID: PMC9483200 DOI: 10.3389/fcell.2022.969575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Emerging evidence has demonstrated overlapping biological abnormalities underlying schizophrenia (SCZ), bipolar disorder (BP), and major depressive disorder (MDD); these overlapping abnormalities help explain the high heterogeneity and the similarity of patients within and among diagnostic categories. This study aimed to identify transdiagnostic subtypes of these psychiatric disorders based on lipidomics abnormalities. We performed discriminant analysis to identify lipids that classified patients (N = 349, 112 with SCZ, 132 with BP, and 105 with MDD) and healthy controls (N = 198). Ten lipids that mainly regulate energy metabolism, inflammation, oxidative stress, and fatty acylation of proteins were identified. We found two subtypes (named Cluster 1 and Cluster 2 subtypes) across patients with SCZ, BP, and MDD by consensus clustering analysis based on the above 10 lipids. The distribution of clinical diagnosis, functional impairment measured by Global Assessment of Functioning (GAF) scales, and brain white matter abnormalities measured by fractional anisotropy (FA) and radial diffusivity (RD) differed in the two subtypes. Patients within the Cluster 2 subtype were mainly SCZ and BP patients and featured significantly elevated RD along the genu of corpus callosum (GCC) region and lower GAF scores than patients within the Cluster 1 subtype. The SCZ and BP patients within the Cluster 2 subtype shared similar biological patterns; that is, these patients had comparable brain white matter abnormalities and functional impairment, which is consistent with previous studies. Our findings indicate that peripheral lipid abnormalities might help identify homogeneous transdiagnostic subtypes across psychiatric disorders.
Collapse
Affiliation(s)
- Shiwan Tao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yamin Zhang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chunxia Qiao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sugai Liang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinxue Wei
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Wei
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hua Yu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaojing Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingli Li
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wanjun Guo
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
- *Correspondence: Tao Li,
| |
Collapse
|
22
|
Raeisi M, Saberivand M, Velaei K, Aghaei N, Rahimi-Farsi N, Kharrati-Shishavan H, Hassanzadeh D, Mehdizadeh A. Porcn as a novel therapeutic target in cancer therapy: A review. Cell Biol Int 2022; 46:1979-1991. [PMID: 35971741 DOI: 10.1002/cbin.11882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/06/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022]
Abstract
Wingless-related integration site (Wnt) signaling is one of the main oncogenic pathways in different malignancies. Therefore, targeting this pathway has been considered an exciting strategy in cancer treatment. Porcn is among the central enzymes in this pathway that has recently been considered for cancer-targeted therapy. As a membrane-bound O-acyltransferase, Porcn plays a critical role in wnt ligand palmitoylation and its subsequent secretion. In addition to Porcn's role in stem cell signaling and differentiation, recent findings have shown its role in developing and progressing colorectal, pancreatic, liver, head, and neck cancers. Developed small molecule inhibitors have also opened a promising window toward cancer treatment strategies. In this review, the structure and biological role of Porcn in different cancer-related signaling pathways and inhibitors used for inhibiting this enzyme are discussed.
Collapse
Affiliation(s)
- Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saberivand
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Aghaei
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Imam Sajjad Hospital, Tabriz, Iran
| | | | | | - Davoud Hassanzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Protein Lipidation Types: Current Strategies for Enrichment and Characterization. Int J Mol Sci 2022; 23:ijms23042365. [PMID: 35216483 PMCID: PMC8880637 DOI: 10.3390/ijms23042365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/04/2022] Open
Abstract
Post-translational modifications regulate diverse activities of a colossal number of proteins. For example, various types of lipids can be covalently linked to proteins enzymatically or non-enzymatically. Protein lipidation is perhaps not as extensively studied as protein phosphorylation, ubiquitination, or glycosylation although it is no less significant than these modifications. Evidence suggests that proteins can be attached by at least seven types of lipids, including fatty acids, lipoic acids, isoprenoids, sterols, phospholipids, glycosylphosphatidylinositol anchors, and lipid-derived electrophiles. In this review, we summarize types of protein lipidation and methods used for their detection, with an emphasis on the conjugation of proteins with polyunsaturated fatty acids (PUFAs). We discuss possible reasons for the scarcity of reports on PUFA-modified proteins, limitations in current methodology, and potential approaches in detecting PUFA modifications.
Collapse
|
24
|
Abstract
The Wnt pathway is central to a host of developmental and disease-related processes. The remarkable conservation of this intercellular signaling cascade throughout metazoan lineages indicates that it coevolved with multicellularity to regulate the generation and spatial arrangement of distinct cell types. By regulating cell fate specification, mitotic activity, and cell polarity, Wnt signaling orchestrates development and tissue homeostasis, and its dysregulation is implicated in developmental defects, cancer, and degenerative disorders. We review advances in our understanding of this key pathway, from Wnt protein production and secretion to relay of the signal in the cytoplasm of the receiving cell. We discuss the evolutionary history of this pathway as well as endogenous and synthetic modulators of its activity. Finally, we highlight remaining gaps in our knowledge of Wnt signal transduction and avenues for future research. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ellen Youngsoo Rim
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| | - Hans Clevers
- Hubrecht Institute and Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| |
Collapse
|
25
|
Suraritdechachai S, Lakkanasirorat B, Uttamapinant C. Molecular probes for cellular imaging of post-translational proteoforms. RSC Chem Biol 2022; 3:201-219. [PMID: 35360891 PMCID: PMC8826509 DOI: 10.1039/d1cb00190f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022] Open
Abstract
Specific post-translational modification (PTM) states of a protein affect its property and function; understanding their dynamics in cells would provide deep insight into diverse signaling pathways and biological processes. However, it is not trivial to visualize post-translational modifications in a protein- and site-specific manner, especially in a living-cell context. Herein, we review recent advances in the development of molecular imaging tools to detect diverse classes of post-translational proteoforms in individual cells, and their applications in studying precise roles of PTMs in regulating the function of cellular proteins.
Collapse
Affiliation(s)
- Surased Suraritdechachai
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Benya Lakkanasirorat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| |
Collapse
|
26
|
Li X, Shen L, Xu Z, Liu W, Li A, Xu J. Protein Palmitoylation Modification During Viral Infection and Detection Methods of Palmitoylated Proteins. Front Cell Infect Microbiol 2022; 12:821596. [PMID: 35155279 PMCID: PMC8829041 DOI: 10.3389/fcimb.2022.821596] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 01/31/2023] Open
Abstract
Protein palmitoylation—a lipid modification in which one or more cysteine thiols on a substrate protein are modified to form a thioester with a palmitoyl group—is a significant post-translational biological process. This process regulates the trafficking, subcellular localization, and stability of different proteins in cells. Since palmitoylation participates in various biological processes, it is related to the occurrence and development of multiple diseases. It has been well evidenced that the proteins whose functions are palmitoylation-dependent or directly involved in key proteins’ palmitoylation/depalmitoylation cycle may be a potential source of novel therapeutic drugs for the related diseases. Many researchers have reported palmitoylation of proteins, which are crucial for host-virus interactions during viral infection. Quite a few explorations have focused on figuring out whether targeting the acylation of viral or host proteins might be a strategy to combat viral diseases. All these remarkable achievements in protein palmitoylation have been made to technological advances. This paper gives an overview of protein palmitoylation modification during viral infection and the methods for palmitoylated protein detection. Future challenges and potential developments are proposed.
Collapse
Affiliation(s)
- Xiaoling Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Lingyi Shen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhao Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Aihua Li
- Clinical Lab, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jun Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Jun Xu, ;
| |
Collapse
|
27
|
Moriel-Carretero M. The Many Faces of Lipids in Genome Stability (and How to Unmask Them). Int J Mol Sci 2021; 22:12930. [PMID: 34884734 PMCID: PMC8657548 DOI: 10.3390/ijms222312930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Deep efforts have been devoted to studying the fundamental mechanisms ruling genome integrity preservation. A strong focus relies on our comprehension of nucleic acid and protein interactions. Comparatively, our exploration of whether lipids contribute to genome homeostasis and, if they do, how, is severely underdeveloped. This disequilibrium may be understood in historical terms, but also relates to the difficulty of applying classical lipid-related techniques to a territory such as a nucleus. The limited research in this domain translates into scarce and rarely gathered information, which with time further discourages new initiatives. In this review, the ways lipids have been demonstrated to, or very likely do, impact nuclear transactions, in general, and genome homeostasis, in particular, are explored. Moreover, a succinct yet exhaustive battery of available techniques is proposed to tackle the study of this topic while keeping in mind the feasibility and habits of "nucleus-centered" researchers.
Collapse
Affiliation(s)
- María Moriel-Carretero
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, CEDEX 5, 34293 Montpellier, France
| |
Collapse
|
28
|
Qu M, Zhou X, Wang X, Li H. Lipid-induced S-palmitoylation as a Vital Regulator of Cell Signaling and Disease Development. Int J Biol Sci 2021; 17:4223-4237. [PMID: 34803494 PMCID: PMC8579454 DOI: 10.7150/ijbs.64046] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
Lipid metabolites are emerging as pivotal regulators of protein function and cell signaling. The availability of intracellular fatty acid is tightly regulated by glycolipid metabolism and may affect human body through many biological mechanisms. Recent studies have demonstrated palmitate, either from exogenous fatty acid uptake or de novo fatty acid synthesis, may serve as the substrate for protein palmitoylation and regulate protein function via palmitoylation. Palmitoylation, the most-studied protein lipidation, encompasses the reversible covalent attachment of palmitate moieties to protein cysteine residues. It controls various cellular physiological processes and alters protein stability, conformation, localization, membrane association and interaction with other effectors. Dysregulation of palmitoylation has been implicated in a plethora of diseases, such as metabolic syndrome, cancers, neurological disorders and infections. Accordingly, it could be one of the molecular mechanisms underlying the impact of palmitate metabolite on cellular homeostasis and human diseases. Herein, we explore the relationship between lipid metabolites and the regulation of protein function through palmitoylation. We review the current progress made on the putative role of palmitate in altering the palmitoylation of key proteins and thus contributing to the pathogenesis of various diseases, among which we focus on metabolic disorders, cancers, inflammation and infections, neurodegenerative diseases. We also highlight the opportunities and new therapeutics to target palmitoylation in disease development.
Collapse
Affiliation(s)
- Mengyuan Qu
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Zhou
- National Clinical Research Center for Infectious Disease; Department of liver Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Xiaotong Wang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honggang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
| |
Collapse
|
29
|
Gao X, Mazière AD, Beard R, Klumperman J, Hannoush RN. Fatty acylation enhances the cellular internalization and cytosolic distribution of a cystine-knot peptide. iScience 2021; 24:103220. [PMID: 34712919 PMCID: PMC8529511 DOI: 10.1016/j.isci.2021.103220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/14/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
Delivering peptides into cells could open up possibilities for targeting intracellular proteins. Although fatty acylation of peptide therapeutics improves their systemic half-life, it remains unclear how it influences their cellular uptake. Here, we demonstrate that a fatty acylated peptide exhibits enhanced cellular internalization and cytosolic distribution compared to the un-acylated version. By using a cystine-knot peptide as a model system, we report an efficient strategy for site-specific conjugation of fatty acids. Peptides modified with fatty acids of different chain lengths entered cells through clathrin-mediated and macropinocytosis pathways. The cellular uptake was mediated by the length of the hydrocarbon chain, with myristic acid conjugates displaying the highest distribution across the cytoplasm including the cytosol, and endomembranes of the ER, Golgi and mitochondria. Our studies demonstrate how fatty acylation improves the cellular uptake of peptides, and lay the groundwork for future development of bioactive peptides with enhanced intracellular distribution. A synthetic strategy comprises site-specific conjugation of fatty acids to peptides Fatty acylation of a peptide enhances its cellular uptake and cytosolic distribution Myristoylated peptides display a high cytoplasmic distribution Fatty acylated peptides are internalized via multiple endocytic routes
Collapse
Affiliation(s)
- Xinxin Gao
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Ann De Mazière
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rhiannon Beard
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Judith Klumperman
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| |
Collapse
|
30
|
Liu H, Chen Y, Wang J, Yang Y, Ju H. Tug-of-war: molecular dynamometers against living cells for analyzing sub-piconewton interaction of a specific protein with the cell membrane. Chem Sci 2021; 12:14389-14395. [PMID: 34880990 PMCID: PMC8580102 DOI: 10.1039/d1sc03059k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022] Open
Abstract
Protein–membrane interactions play important roles in signal transductions and functional regulation of membrane proteins. Here, we design a molecular dynamometer (MDM) for analyzing protein–membrane interaction on living cells. The MDM is constructed by assembling an artificial lipid bilayer and alkylated Cy3-DNA azide (azide-Cy3-Cx) on a silica bubble. After a functional aptamer is covalently anchored onto the corresponding target protein on a living cell through UV irradiation, azide-Cy3-Cx is conjugated with the aptamer through a click reaction to produce a “tug-of-war” between the MDM and the cell due to the buoyancy of the silica bubble. This induces the detachment of the protein from the cell membrane or the alkane terminal from the MDM enabling sub-piconewton embedding force measurement by changing the alkane chain length and simple fluorescence analysis. The successful analysis of embedding force variation of a protein on the cell membrane upon post-translational modifications demonstrates the practicability and expansibility of this method for mechanics-related research in biological systems. A molecular dynamometer is designed to analyze the variation of sub-piconewton interaction between a specific protein and the membrane on living cells.![]()
Collapse
Affiliation(s)
- Huipu Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jiawei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
31
|
Torres VI, Barrera DP, Varas-Godoy M, Arancibia D, Inestrosa NC. Selective Surface and Intraluminal Localization of Wnt Ligands on Small Extracellular Vesicles Released by HT-22 Hippocampal Neurons. Front Cell Dev Biol 2021; 9:735888. [PMID: 34722516 PMCID: PMC8548728 DOI: 10.3389/fcell.2021.735888] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
The Wnt signaling pathway induces various responses underlying the development and maturation of the nervous system. Wnt ligands are highly hydrophobic proteins that limit their diffusion through an aqueous extracellular medium to a target cell. Nevertheless, their attachment to small extracellular vesicles-like exosomes is one of the described mechanisms that allow their transport under this condition. Some Wnt ligands in these vehicles are expected to be dependent on post-translational modifications such as acylation. The mechanisms determining Wnt loading in exosomes and delivery to the target cells are largely unknown. Here, we took advantage of a cell model that secret a highly enriched population of small extracellular vesicles (sEVs), hippocampal HT-22 neurons. First, to establish the cell model, we characterized the morphological and biochemical properties of an enriched fraction of sEVs obtained from hippocampal HT-22 neurons that express NCAM-L1, a specific exosomal neuronal marker. Transmission electron microscopy showed a highly enriched fraction of exosome-like vesicles. Next, the exosomal presence of Wnt3a, Wnt5a, and Wnt7a was confirmed by western blot analysis and electron microscopy combined with immunogold. Also, we studied whether palmitoylation is a necessary post-translational modification for the transport Wnt in these vesicles. We found that proteinase-K treatment of exosomes selectively decreased their Wnt5a and Wnt7a content, suggesting that their expression is delimited to the exterior membrane surface. In contrast, Wnt3a remained attached, suggesting that it is localized within the exosome lumen. On the other hand, Wnt-C59, a specific inhibitor of porcupine O-acyltransferase (PORCN), decreased the association of Wnt with exosomes, suggesting that Wnt ligand acylation is necessary for them to be secreted by exosomes. These findings may help to understand the action of the Wnt ligands in the target cell, which could be defined during the packaging of the ligands in the secretory cell sEVs.
Collapse
Affiliation(s)
- Viviana I Torres
- Departamento Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Daniela P Barrera
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel Varas-Godoy
- Cancer Cell Biology Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Duxan Arancibia
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
32
|
Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C, Ye L. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther 2021; 6:307. [PMID: 34456337 PMCID: PMC8403677 DOI: 10.1038/s41392-021-00701-5] [Citation(s) in RCA: 378] [Impact Index Per Article: 94.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/19/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Wnt/β-catenin signaling has been broadly implicated in human cancers and experimental cancer models of animals. Aberrant activation of Wnt/β-catenin signaling is tightly linked with the increment of prevalence, advancement of malignant progression, development of poor prognostics, and even ascendence of the cancer-associated mortality. Early experimental investigations have proposed the theoretical potential that efficient repression of this signaling might provide promising therapeutic choices in managing various types of cancers. Up to date, many therapies targeting Wnt/β-catenin signaling in cancers have been developed, which is assumed to endow clinicians with new opportunities of developing more satisfactory and precise remedies for cancer patients with aberrant Wnt/β-catenin signaling. However, current facts indicate that the clinical translations of Wnt/β-catenin signaling-dependent targeted therapies have faced un-neglectable crises and challenges. Therefore, in this study, we systematically reviewed the most updated knowledge of Wnt/β-catenin signaling in cancers and relatively targeted therapies to generate a clearer and more accurate awareness of both the developmental stage and underlying limitations of Wnt/β-catenin-targeted therapies in cancers. Insights of this study will help readers better understand the roles of Wnt/β-catenin signaling in cancers and provide insights to acknowledge the current opportunities and challenges of targeting this signaling in cancers.
Collapse
Affiliation(s)
- Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Changhao Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanqin Zuo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Yitian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
33
|
Galli LM, Anderson MO, Gabriel Fraley J, Sanchez L, Bueno R, Hernandez DN, Maddox EU, Lingappa VR, Burrus LW. Determination of the membrane topology of PORCN, an O-acyl transferase that modifies Wnt signalling proteins. Open Biol 2021; 11:200400. [PMID: 34186010 PMCID: PMC8241489 DOI: 10.1098/rsob.200400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Wnt gradients elicit distinct cellular responses, such as proliferation, specification, differentiation and survival in a dose-dependent manner. Porcupine (PORCN), a membrane-bound O-acyl transferase (MBOAT) that resides in the endoplasmic reticulum, catalyses the addition of monounsaturated palmitate to Wnt proteins and is required for Wnt gradient formation and signalling. In humans, PORCN mutations are causal for focal dermal hypoplasia (FDH), an X-linked dominant syndrome characterized by defects in mesodermal and endodermal tissues. PORCN is also an emerging target for cancer therapeutics. Despite the importance of this enzyme, its structure remains poorly understood. Recently, the crystal structure of DltB, an MBOAT family member from bacteria, was solved. In this report, we use experimental data along with homology modelling to DltB to determine the membrane topology of PORCN. Our studies reveal that PORCN has 11 membrane domains, comprising nine transmembrane spanning domains and two reentrant domains. The N-terminus is oriented towards the lumen while the C-terminus is oriented towards the cytosol. Like DltB, PORCN has a funnel-like structure that is encapsulated by multiple membrane-spanning helices. This new model for PORCN topology allows us to map residues that are important for biological activity (and implicated in FDH) onto its three-dimensional structure.
Collapse
Affiliation(s)
- Lisa M Galli
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - J Gabriel Fraley
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Luis Sanchez
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Raymund Bueno
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - David N Hernandez
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Eva U Maddox
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | | | - Laura W Burrus
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| |
Collapse
|
34
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
35
|
Dhasmana D, Veerapathiran S, Azbazdar Y, Nelanuthala AVS, Teh C, Ozhan G, Wohland T. Wnt3 Is Lipidated at Conserved Cysteine and Serine Residues in Zebrafish Neural Tissue. Front Cell Dev Biol 2021; 9:671218. [PMID: 34124053 PMCID: PMC8189181 DOI: 10.3389/fcell.2021.671218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
Wnt proteins are a family of hydrophobic cysteine-rich secreted glycoproteins that regulate a gamut of physiological processes involved in embryonic development and tissue homeostasis. Wnt ligands are post-translationally lipidated in the endoplasmic reticulum (ER), a step essential for its membrane targeting, association with lipid domains, secretion and interaction with receptors. However, at which residue(s) Wnts are lipidated remains an open question. Initially it was proposed that Wnts are lipid-modified at their conserved cysteine and serine residues (C77 and S209 in mWnt3a), and mutations in either residue impedes its secretion and activity. Conversely, some studies suggested that serine is the only lipidated residue in Wnts, and substitution of serine with alanine leads to retention of Wnts in the ER. In this work, we investigate whether in zebrafish neural tissues Wnt3 is lipidated at one or both conserved residues. To this end, we substitute the homologous cysteine and serine residues of zebrafish Wnt3 with alanine (C80A and S212A) and investigate their influence on Wnt3 membrane organization, secretion, interaction and signaling activity. Collectively, our results indicate that Wnt3 is lipid modified at its C80 and S212 residues. Further, we find that lipid addition at either C80 or S212 is sufficient for its secretion and membrane organization, while the lipid modification at S212 is indispensable for receptor interaction and signaling.
Collapse
Affiliation(s)
- Divya Dhasmana
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Sapthaswaran Veerapathiran
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Turkey
| | | | - Cathleen Teh
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Turkey
| | - Thorsten Wohland
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
36
|
Hanly JJ, Robertson ECN, Corning OBWH, Martin A. Porcupine/Wntless-dependent trafficking of the conserved WntA ligand in butterflies. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:470-481. [PMID: 34010515 DOI: 10.1002/jez.b.23046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/11/2022]
Abstract
Wnt ligands are key signaling molecules in animals, but little is known about the evolutionary dynamics and mode of action of the WntA orthologs, which are not present in the vertebrates or in Drosophila. Here we show that the WntA subfamily evolved at the base of the Bilateria + Cnidaria clade, and conserved the thumb region and Ser209 acylation site present in most other Wnts, suggesting WntA requires the core Wnt secretory pathway. WntA proteins are distinguishable from other Wnts by a synapomorphic Iso/Val/Ala216 amino-acid residue that replaces the otherwise ubiquitous Thr216 position. WntA embryonic expression is conserved between beetles and butterflies, suggesting functionality, but the WntA gene was lost three times within arthropods, in podoplean copepods, in the cyclorrhaphan fly radiation, and in ensiferan crickets and katydids. Finally, CRISPR mosaic knockouts (KOs) of porcupine and wntless phenocopied the pattern-specific effects of WntA KOs in the wings of Vanessa cardui butterflies. These results highlight the molecular conservation of the WntA protein across invertebrates, and imply it functions as a typical Wnt ligand that is acylated and secreted through the Porcupine/Wntless secretory pathway.
Collapse
Affiliation(s)
- Joseph J Hanly
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Erica C N Robertson
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Olaf B W H Corning
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
37
|
Mohamed R, Kennedy C, Willmore WG. Responses of Porcupine and Wntless proteins to oxidative, hypoxic and endoplasmic reticulum stresses. Cell Signal 2021; 85:110047. [PMID: 34015469 DOI: 10.1016/j.cellsig.2021.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/04/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
The WNT (Wingless and Int-1) proteins play a role in stem cell development and cell differentiation. Mutations in the WNT proteins lead to the development of various tumours, including gastric tumours. Porcupine (PORCN) is a palmitoyltransferase and Wntless (WLS) is a dedicated WNT transport protein that modify and fold the WNT proteins respectively and are involved in their proper secretion and binding to the frizzled (FZD) receptor and the lipoprotein receptor-related protein 5 or 6 (LRP5/6). We investigated how modifications of PORCN and WLS result in changes in WNT expression and secretion from cells under stress conditions that occur in the tumour microenvironment (hypoxia, oxidative stress, endoplasmic reticulum (ER) stress). In the present study, we found the mRNA expression of both PORCN and WLS were significantly increased with treatments inducing oxidative stress (antimycin A) and proteasome inhibition (MG-132), in human colon cancer (HCT116) and human intestinal epithelial cell-6 (HIEC-6) cells. Treatment with ER stressors thapsigargin, tunicamycin, and dithiolthreitol significantly increased PORCN gene expression, while treatment with thapsigargin and dithiolthreitol increased WLS gene expression. The expression of PORCN and WLS proteins increased with hypoxia and ER stressor treatments in both HCT116 and HIEC-6 cells. All stressors used in this study increased beta-catenin (β-catenin) expression in HCT116 cells. Our results suggest that these stressors alter PORCN, WLS and β-catenin expression and function which may, in turn, alter WNT secretion. Silencing the expression of PORCN and WLS with siRNA expression reduced the expression of WLS and WNT3A in HCT116 cells. The possibility exists that PORCN specifically may be involved in a novel signaling pathway, independent of its palmitoleation of the WNT proteins and its role in their secretion, that is rate-limiting for cancer cell growth and tumorigenesis, within the tumour microenvironment.
Collapse
Affiliation(s)
- Rowida Mohamed
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Catherine Kennedy
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - William G Willmore
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada; Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada; Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
38
|
Small Molecule Dysregulation of TEAD Lipidation Induces a Dominant-Negative Inhibition of Hippo Pathway Signaling. Cell Rep 2021; 31:107809. [PMID: 32579935 DOI: 10.1016/j.celrep.2020.107809] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/14/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022] Open
Abstract
The transcriptional enhanced associate domain (TEAD) family of transcription factors serves as the receptors for the downstream effectors of the Hippo pathway, YAP and TAZ, to upregulate the expression of multiple genes involved in cellular proliferation and survival. Recent work identified TEAD S-palmitoylation as critical for protein stability and activity as the lipid tail extends into a hydrophobic core of the protein. Here, we report the identification and characterization of a potent small molecule that binds the TEAD lipid pocket (LP) and disrupts TEAD S-palmitoylation. Using a variety of biochemical, structural, and cellular methods, we uncover that TEAD S-palmitoylation functions as a TEAD homeostatic protein level checkpoint and that dysregulation of this lipidation affects TEAD transcriptional activity in a dominant-negative manner. Furthermore, we demonstrate that targeting the TEAD LP is a promising therapeutic strategy for modulating the Hippo pathway, showing tumor stasis in a mouse xenograft model.
Collapse
|
39
|
Castilla-Vallmanya L, Gürsoy S, Giray-Bozkaya Ö, Prat-Planas A, Bullich G, Matalonga L, Centeno-Pla M, Rabionet R, Grinberg D, Balcells S, Urreizti R. De Novo PORCN and ZIC2 Mutations in a Highly Consanguineous Family. Int J Mol Sci 2021; 22:ijms22041549. [PMID: 33557041 PMCID: PMC7913830 DOI: 10.3390/ijms22041549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023] Open
Abstract
We present a Turkish family with two cousins (OC15 and OC15b) affected with syndromic developmental delay, microcephaly, and trigonocephaly but with some phenotypic traits distinct between them. OC15 showed asymmetrical skeletal defects and syndactyly, while OC15b presented with a more severe microcephaly and semilobal holoprosencephaly. All four progenitors were related and OC15 parents were consanguineous. Whole Exome Sequencing (WES) analysis was performed on patient OC15 as a singleton and on the OC15b trio. Selected variants were validated by Sanger sequencing. We did not identify any shared variant that could be associated with the disease. Instead, each patient presented a de novo heterozygous variant in a different gene. OC15 carried a nonsense mutation (p.Arg95*) in PORCN, which is a gene responsible for Goltz-Gorlin syndrome, while OC15b carried an indel mutation in ZIC2 leading to the substitution of three residues by a proline (p.His404_Ser406delinsPro). Autosomal dominant mutations in ZIC2 have been associated with holoprosencephaly 5. Both variants are absent in the general population and are predicted to be pathogenic. These two de novo heterozygous variants identified in the two patients seem to explain the major phenotypic alterations of each particular case, instead of a homozygous variant that would be expected by the underlying consanguinity.
Collapse
Affiliation(s)
- Laura Castilla-Vallmanya
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Semra Gürsoy
- Department of Pediatric Genetics, Dr. Behcet Uz Children’s Hospital, Izmir 35210, Turkey;
| | - Özlem Giray-Bozkaya
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey;
| | - Aina Prat-Planas
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Gemma Bullich
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (G.B.); (L.M.)
| | - Leslie Matalonga
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (G.B.); (L.M.)
| | - Mónica Centeno-Pla
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Raquel Rabionet
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Daniel Grinberg
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Susanna Balcells
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Roser Urreizti
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
- Correspondence:
| |
Collapse
|
40
|
Azbazdar Y, Karabicici M, Erdal E, Ozhan G. Regulation of Wnt Signaling Pathways at the Plasma Membrane and Their Misregulation in Cancer. Front Cell Dev Biol 2021; 9:631623. [PMID: 33585487 PMCID: PMC7873896 DOI: 10.3389/fcell.2021.631623] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Wnt signaling is one of the key signaling pathways that govern numerous physiological activities such as growth, differentiation and migration during development and homeostasis. As pathway misregulation has been extensively linked to pathological processes including malignant tumors, a thorough understanding of pathway regulation is essential for development of effective therapeutic approaches. A prominent feature of cancer cells is that they significantly differ from healthy cells with respect to their plasma membrane composition and lipid organization. Here, we review the key role of membrane composition and lipid order in activation of Wnt signaling pathway by tightly regulating formation and interactions of the Wnt-receptor complex. We also discuss in detail how plasma membrane components, in particular the ligands, (co)receptors and extracellular or membrane-bound modulators, of Wnt pathways are affected in lung, colorectal, liver and breast cancers that have been associated with abnormal activation of Wnt signaling. Wnt-receptor complex components and their modulators are frequently misexpressed in these cancers and this appears to correlate with metastasis and cancer progression. Thus, composition and organization of the plasma membrane can be exploited to develop new anticancer drugs that are targeted in a highly specific manner to the Wnt-receptor complex, rendering a more effective therapeutic outcome possible.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Mustafa Karabicici
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Esra Erdal
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
41
|
Li B, Niswander LA. TMEM132A, a Novel Wnt Signaling Pathway Regulator Through Wntless (WLS) Interaction. Front Cell Dev Biol 2020; 8:599890. [PMID: 33324648 PMCID: PMC7726220 DOI: 10.3389/fcell.2020.599890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/04/2020] [Indexed: 11/24/2022] Open
Abstract
Wnt signaling pathway plays indispensable roles in embryonic development and adult tissue homeostasis. However, the regulatory mechanisms involved in Wnt ligand trafficking within and secretion from the signal sending cells is still relatively uncharacterized. Here, we discover a novel regulator of Wnt signaling pathway called transmembrane protein 132A (TMEM132A). Our evidence shows a physical and functional interaction of TMEM132A with the Wnt ligand transporting protein Wntless (WLS). We show that TMEM132A stabilizes Wnt ligand, enhances WLS–Wnt ligand interaction, and activates the Wnt signaling pathway. Our results shed new light on the cellular mechanism underlying the fundamental aspect of WNT secretion from Wnt signal sending cells.
Collapse
Affiliation(s)
- Binbin Li
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Lee A Niswander
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
42
|
Han C, Yu G, Mao Y, Song S, Li L, Zhou L, Wang Z, Liu Y, Li M, Xu B. LPCAT1 enhances castration resistant prostate cancer progression via increased mRNA synthesis and PAF production. PLoS One 2020; 15:e0240801. [PMID: 33137125 PMCID: PMC7605678 DOI: 10.1371/journal.pone.0240801] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Abstract
Our previously study shown that Lysophosphatidylcholine Acyltransferase1 (LPCAT1) is overexpressed in castration resistant prostate cancer (CRPC) relative to primary prostate cancer (PCa), and androgen controls its expression via the Wnt signaling pathway. While highly expressed in CRPC, the role of LPCAT1 remains unclear. In vitro cell experiments referred to cell transfection, mutagenesis, proliferation, migration, invasion, cell cycle progression and apoptosis, Western blotting, Pulse-chase RNA labeling. BALB/c nude mice were used for in vivo experiments. We found that LPCAT1 overexpression enhanced the proliferation, migration, and invasion of CRPC cells both in vitro and in vivo. Silencing of LPCAT1 reduced the proliferation and the invasive capabilities of CRPC cells. Providing exogenous PAF to LPCAT1 knockdown cells increased their invasive capabilities; however platelet activating factor acetylhydrolase (PAF-AH) and the PAFR antagonist ABT-491 both reversed this phenotype; proliferation of CRPC cells was not affected in either model. LPCAT1 was found to mediate CRPC growth via nuclear re-localization and Histone H4 palmitoylation in an androgen-dependent fashion, increasing mRNA synthesis rates. We also found that LPCAT1 overexpression led to CRPC cell resistance to treatment with paclitaxel. LPCAT1 overexpression in CRPC cells drives tumor progression via increased mRNA synthesis and PAF production. Our results highlight LPCAT1 as a viable therapeutic target in the context of CRPC.
Collapse
Affiliation(s)
- Chao Han
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanshen Mao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shangqing Song
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Long Li
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lin Zhou
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yushan Liu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail: (BX); (YL); (ML)
| | - Minglun Li
- Urologic and Hematologic Oncology, Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- * E-mail: (BX); (YL); (ML)
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail: (BX); (YL); (ML)
| |
Collapse
|
43
|
Yang X, Chatterjee V, Ma Y, Zheng E, Yuan SY. Protein Palmitoylation in Leukocyte Signaling and Function. Front Cell Dev Biol 2020; 8:600368. [PMID: 33195285 PMCID: PMC7655920 DOI: 10.3389/fcell.2020.600368] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Palmitoylation is a post-translational modification (PTM) based on thioester-linkage between palmitic acid and the cysteine residue of a protein. This covalent attachment of palmitate is reversibly and dynamically regulated by two opposing sets of enzymes: palmitoyl acyltransferases containing a zinc finger aspartate-histidine-histidine-cysteine motif (PAT-DHHCs) and thioesterases. The reversible nature of palmitoylation enables fine-tuned regulation of protein conformation, stability, and ability to interact with other proteins. More importantly, the proper function of many surface receptors and signaling proteins requires palmitoylation-meditated partitioning into lipid rafts. A growing number of leukocyte proteins have been reported to undergo palmitoylation, including cytokine/chemokine receptors, adhesion molecules, pattern recognition receptors, scavenger receptors, T cell co-receptors, transmembrane adaptor proteins, and signaling effectors including the Src family of protein kinases. This review provides the latest findings of palmitoylated proteins in leukocytes and focuses on the functional impact of palmitoylation in leukocyte function related to adhesion, transmigration, chemotaxis, phagocytosis, pathogen recognition, signaling activation, cytotoxicity, and cytokine production.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ethan Zheng
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
44
|
Hebert L, Hillman P, Baker C, Brown M, Ashley-Koch A, Hixson JE, Morrison AC, Northrup H, Au KS. Burden of rare deleterious variants in WNT signaling genes among 511 myelomeningocele patients. PLoS One 2020; 15:e0239083. [PMID: 32970752 PMCID: PMC7514064 DOI: 10.1371/journal.pone.0239083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022] Open
Abstract
Genes in the noncanonical WNT signaling pathway controlling planar cell polarity have been linked to the neural tube defect myelomeningocele. We hypothesized that some genes in the WNT signaling network have a higher mutational burden in myelomeningocele subjects than in reference subjects in gnomAD. Exome sequencing data from 511 myelomeningocele subjects was obtained in-house and data from 29,940 ethnically matched subjects was provided by version 2 of the publicly available Genome Aggregation Database. To compare mutational burden, we collapsed rare deleterious variants across each of 523 human WNT signaling genes in case and reference populations. Ten WNT signaling genes were disrupted with a higher mutational burden among Mexican American myelomeningocele subjects compared to reference subjects (Fishers exact test, P ≤ 0.05) and seven different genes were disrupted among individuals of European ancestry compared to reference subjects. Gene ontology enrichment analyses indicate that genes disrupted only in the Mexican American population play a role in planar cell polarity whereas genes identified in both populations are important for the regulation of canonical WNT signaling. In summary, evidence for WNT signaling genes that may contribute to myelomeningocele in humans is presented and discussed.
Collapse
Affiliation(s)
- Luke Hebert
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Paul Hillman
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Craig Baker
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Michael Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Allison Ashley-Koch
- Department of Medicine and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States of America
| | - James E. Hixson
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Hope Northrup
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Kit Sing Au
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
45
|
Yoshii A, Green WN. Editorial: Role of Protein Palmitoylation in Synaptic Plasticity and Neuronal Differentiation. Front Synaptic Neurosci 2020; 12:27. [PMID: 32754027 PMCID: PMC7381319 DOI: 10.3389/fnsyn.2020.00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
- Akira Yoshii
- Department of Anatomy and Cell Biology, Pediatrics, Neurology, University of Illinois at Chicago, Chicago, IL, United States
| | - William N Green
- Department of Neurobiology, University of Chicago, Chicago, IL, United States.,The Marine Biological Laboratory, Woods Hole, MA, United States
| |
Collapse
|
46
|
Flores J, White BM, Brea RJ, Baskin JM, Devaraj NK. Lipids: chemical tools for their synthesis, modification, and analysis. Chem Soc Rev 2020; 49:4602-4614. [PMID: 32691785 PMCID: PMC7380508 DOI: 10.1039/d0cs00154f] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipids remain one of the most enigmatic classes of biological molecules. Whereas lipids are well known to form basic units of membrane structure and energy storage, deciphering the exact roles and biological interactions of distinct lipid species has proven elusive. How these building blocks are synthesized, trafficked, and stored are also questions that require closer inspection. This tutorial review covers recent advances on the preparation, derivatization, and analysis of lipids. In particular, we describe several chemical approaches that form part of a powerful toolbox for controlling and characterizing lipid structure. We believe these tools will be helpful in numerous applications, including the study of lipid-protein interactions and the development of novel drug delivery systems.
Collapse
Affiliation(s)
- Judith Flores
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Brittany M White
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
47
|
Kalantary-Charvadeh A, Hosseini V, Mehdizadeh A, Darabi M. Application of porcupine inhibitors in stem cell fate determination. Chem Biol Drug Des 2020; 96:1052-1068. [PMID: 32419352 DOI: 10.1111/cbdd.13704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 02/06/2023]
Abstract
Porcupine (Porcn), a membrane-bound O-acyltransferase, is an endoplasmic reticulum-located protein that has catalytic activity. Porcn is involved in post-translational lipid modification of wingless-Int (Wnt) proteins and serves as an indispensable step in the Wnt proper secretion and signaling. Small-molecule inhibitors targeting Porcn catalytic function in vitro and in vivo are of great interest not only for treating cancer and fibrotic disorders but also in the field of regenerative medicine. Although a number of studies have been conducted, the exact role of Porcn in stem cell fate is not entirely clear. In some cases, Porcn inhibition declined differentiation rate, and in others, it induced stem cell differentiation toward specific lineages. In this review, we first elaborated the Porcn catalytic activity and its inhibitors. Then, we discussed about the recently reported results of Porcn inhibitors in stem cells self-renewal and differentiation.
Collapse
Affiliation(s)
- Ashkan Kalantary-Charvadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Hosseini
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Scott-Solomon E, Kuruvilla R. Prenylation of Axonally Translated Rac1 Controls NGF-Dependent Axon Growth. Dev Cell 2020; 53:691-705.e7. [PMID: 32533921 DOI: 10.1016/j.devcel.2020.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/13/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
Compartmentalized signaling is critical for cellular organization and specificity of functional outcomes in neurons. Here, we report that post-translational lipidation of newly synthesized proteins in axonal compartments allows for short-term and autonomous responses to extrinsic cues. Using conditional mutant mice, we found that protein prenylation is essential for sympathetic axon innervation of target organs. We identify a localized requirement for prenylation in sympathetic axons to promote axonal growth in response to the neurotrophin, nerve growth factor (NGF). NGF triggers prenylation of proteins including the Rac1 GTPase in axons, counter to the canonical view of prenylation as constitutive, and strikingly, in a manner dependent on axonal protein synthesis. Newly prenylated proteins localize to TrkA-harboring endosomes in axons and promote receptor trafficking necessary for axonal growth. Thus, coupling of prenylation to local protein synthesis presents a mechanism for spatially segregated cellular functions during neuronal development.
Collapse
Affiliation(s)
- Emily Scott-Solomon
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
49
|
Chen F, Bai M, Cao X, Zhao Y, Xue J, Zhao Y. Click-encoded rolling FISH for visualizing single-cell RNA polyadenylation and structures. Nucleic Acids Res 2020; 47:e145. [PMID: 31584096 PMCID: PMC6902020 DOI: 10.1093/nar/gkz852] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/19/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022] Open
Abstract
Spatially resolved visualization of RNA processing and structures is important for better studying single-cell RNA function and landscape. However, currently available RNA imaging methods are limited to sequence analysis, and not capable of identifying RNA processing events and structures. Here, we developed click-encoded rolling FISH (ClickerFISH) for visualizing RNA polyadenylation and structures in single cells. In ClickerFISH, RNA 3′ polyadenylation tails, single-stranded and duplex regions are chemically labeled with different clickable DNA barcodes. These barcodes then initiate DNA rolling amplification, generating repetitive templates for FISH to image their subcellular distributions. Combined with single-molecule FISH, the proposed strategy can also obtain quantitative information of RNA of interest. Finally, we found that RNA poly(A) tailing and higher-order structures are spatially organized in a cell type-specific style with cell-to-cell heterogeneity. We also explored their spatiotemporal patterns during cell cycle stages, and revealed the highly dynamic organization especially in S phase. This method will help clarify the spatiotemporal architecture of RNA polyadenylation and structures.
Collapse
Affiliation(s)
- Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Xiaowen Cao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Yue Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
50
|
Wesslowski J, Kozielewicz P, Wang X, Cui H, Schihada H, Kranz D, Karuna M P, Levkin P, Gross JC, Boutros M, Schulte G, Davidson G. eGFP-tagged Wnt-3a enables functional analysis of Wnt trafficking and signaling and kinetic assessment of Wnt binding to full-length Frizzled. J Biol Chem 2020; 295:8759-8774. [PMID: 32381507 PMCID: PMC7324525 DOI: 10.1074/jbc.ra120.012892] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
The Wingless/Int1 (Wnt) signaling system plays multiple, essential roles in embryonic development, tissue homeostasis, and human diseases. Although many of the underlying signaling mechanisms are becoming clearer, the binding mode, kinetics, and selectivity of 19 mammalian WNTs to their receptors of the class Frizzled (FZD1–10) remain obscure. Attempts to investigate Wnt-FZD interactions are hampered by the difficulties in working with Wnt proteins and their recalcitrance to epitope tagging. Here, we used a fluorescently tagged version of mouse Wnt-3a for studying Wnt-FZD interactions. We observed that the enhanced GFP (eGFP)-tagged Wnt-3a maintains properties akin to wild-type (WT) Wnt-3a in several biologically relevant contexts. The eGFP-tagged Wnt-3a was secreted in an evenness interrupted (EVI)/Wntless-dependent manner, activated Wnt/β-catenin signaling in 2D and 3D cell culture experiments, promoted axis duplication in Xenopus embryos, stimulated low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation in cells, and associated with exosomes. Further, we used conditioned medium containing eGFP-Wnt-3a to visualize its binding to FZD and to quantify Wnt-FZD interactions in real time in live cells, utilizing a recently established NanoBRET-based ligand binding assay. In summary, the development of a biologically active, fluorescent Wnt-3a reported here opens up the technical possibilities to unravel the intricate biology of Wnt signaling and Wnt-receptor selectivity.
Collapse
Affiliation(s)
- Janine Wesslowski
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Pawel Kozielewicz
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Xianxian Wang
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Haijun Cui
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Hannes Schihada
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Dominique Kranz
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Pradhipa Karuna M
- Hematology and Oncology/Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Pavel Levkin
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Julia Christina Gross
- Hematology and Oncology/Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Gunnar Schulte
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Gary Davidson
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|