1
|
Rezhdo A, Hershman RL, Williams SJ, Van Deventer JA. Design, Construction, and Validation of a Yeast-Displayed Chemically Expanded Antibody Library. ACS Synth Biol 2025; 14:1021-1040. [PMID: 40099723 DOI: 10.1021/acssynbio.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
In vitro display technologies, exemplified by phage and yeast display, have emerged as powerful platforms for antibody discovery and engineering. However, the identification of antibodies that disrupt target functions beyond binding remains a challenge. In particular, there are very few strategies that support identification and engineering of either protein-based irreversible binders or inhibitory enzyme binders. Expanding the range of chemistries in antibody libraries has the potential to lead to efficient discovery of function-disrupting antibodies. In this work, we describe a yeast display-based platform for the discovery of chemically diversified antibodies. We constructed a billion-member antibody library, called the "Clickable CDR-H3 Library", that supports the presentation of a range of chemistries within antibody variable domains via noncanonical amino acid (ncAA) incorporation and subsequent bioorthogonal click chemistry conjugations. Use of a polyspecific orthogonal translation system enables introduction of chemical groups with various properties, including photoreactive, proximity-reactive, and click chemistry-enabled functional groups for library screening. We established conjugation conditions that facilitate modification of the full library, demonstrating the feasibility of sorting the full billion-member library in "protein-small molecule hybrid" format in future work. Here, we conducted initial library screens after introducing O-(2-bromoethyl)tyrosine (OBeY), a weakly electrophilic ncAA capable of undergoing proximity-induced crosslinking to a target. Enrichments against donkey IgG and protein tyrosine phosphatase 1B (PTP1B) each led to the identification of several OBeY-substituted clones that bind to the targets of interest. Flow cytometry analysis on the yeast surface confirmed higher retention of binding for OBeY-substituted clones compared to clones substituted with ncAAs lacking electrophilic side chains after denaturation. However, subsequent crosslinking experiments in solution with ncAA-substituted clones yielded inconclusive results, suggesting that weakly reactive OBeY side chain is not sufficient to drive robust crosslinking in the clones isolated here. Nonetheless, this work establishes a multimodal, chemically expanded antibody library and demonstrates the feasibility of conducting discovery campaigns in chemically expanded format. This versatile platform offers new opportunities for identifying and characterizing antibodies with properties beyond what is accessible with the canonical amino acids, potentially enabling discovery of new classes of reagents, diagnostics, and even therapeutic leads.
Collapse
Affiliation(s)
- Arlinda Rezhdo
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Rebecca L Hershman
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Sean J Williams
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - James A Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
2
|
Ilyas S, Manan A, Lee D. Deep Learning-Based Comparative Prediction and Functional Analysis of Intrinsically Disordered Regions in SARS-CoV-2. Int J Mol Sci 2025; 26:3411. [PMID: 40244295 PMCID: PMC11989790 DOI: 10.3390/ijms26073411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
This study explores the role of intrinsically disordered regions (IDRs) in the SARS-CoV-2 proteome and their potential as targets for small-molecule drug discovery. Experimentally validated intrinsic disordered regions from the literature were utilized to assess the prediction of intrinsic disorder across a selection of SARS-CoV-2 proteins. The disorder propensities of proteins using four deep learning-based disorder prediction models: ADOPT, PONDR®VLXT, PONDR®VSL2, and flDPnn, were analyzed. ADOPT, VSL2, and VLXT identified a flexible linker (129-147), while VSL2 and VLXT predicted disorder in the Cu(II) binding region (163-167) of NSP1. ADOPT did not predict disordered regions in NSP11; however, VSL2 and VLXT identified disorder in the experimentally validated regions. The IDR in ORF3a is crucial for protein localization and immune modulation, affecting inflammatory pathways. VSL2 predicted significant disorder in the N-terminal domain (18-23), which aligns with experimental data (1-41), overlapping with the TRAF-binding motif, while ADOPT indicated high disorder in the C-terminal domain (255-275), consistent with VSL2 and flDPnn. All tools identified disorder in the N-terminal (1-68), central linker (181-248), and C-terminal (370-419) regions of the nucleocapsid (N) protein, suggesting flexibility and accuracy. The S2 subunit of the spike protein displayed more predicted disorder than the S1 subunit across ADOPT, VSL2, and flDPnn. These IDRs are essential for viral functions, like protein localization, immune modulation, receptor binding, and membrane fusion. This study highlights the importance of IDR in modulating key inflammatory pathways, suggesting that they could serve as promising targets for small-molecule drug development to combat COVID-19.
Collapse
Affiliation(s)
- Sidra Ilyas
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea;
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
3
|
Fajardo-Hernández CA, Zavala-Sierra ÁG, Merlin-Lucas VI, Morales-Jiménez JI, Rivera-Chávez J. Roseoglobuloside A, a Novel Nonanolide, and Identification of Specialized Metabolites as hPTP1B1 - 400 Inhibitors from Mangrove-Dwelling Aspergillus spp. PLANTA MEDICA 2025; 91:197-207. [PMID: 39870085 DOI: 10.1055/a-2515-9491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
An approach combining enzymatic inhibition and untargeted metabolomics through molecular networking was employed to search for human recombinant full-length protein tyrosine phosphatase 1B (hPTP1 B1 - 400) inhibitors from a collection of 66 mangrove-associated fungal taxa. This strategy prioritized two Aspergillus strains (IQ-1612, section Circumdati, and IQ-1620, section Nigri) for further studies. Chemical investigation of strain IQ-1612 resulted in the isolation of a new nonanolide derivative, roseoglobuloside A (1: ), along with two known metabolites (2: and 3: ), whereas strain IQ-1620 led to the isolation of four known naphtho-γ-pyrones and one known diketopiperazine (4: -8: ). Of all isolates, compounds 2, 3: , and 7: showed a marked inhibitory effect on hPTP1B1 - 400 with an IC50 value < 20 µM, while 6: showed moderate inhibition with IC50 of 65 µM. Compounds 1: and 8: were inactive at a concentration of 100 µM, whereas 4: and 5: demonstrated significant inhibition at 20 µM. The structure of 1: was established by comprehensive spectroscopic analysis, and its relative and absolute configuration was assigned based on NOE correlations and by comparison of calculated and experimental ECD curves. Molecular docking indicated that these molecules primarily bind to two different allosteric sites, thereby inducing conformational changes that impact enzymatic activity.
Collapse
Affiliation(s)
- Carlos A Fajardo-Hernández
- Instituto de Química, Departamento de Productos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ángeles G Zavala-Sierra
- Instituto de Química, Departamento de Productos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Verenice I Merlin-Lucas
- Instituto de Química, Departamento de Productos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús I Morales-Jiménez
- Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - José Rivera-Chávez
- Instituto de Química, Departamento de Productos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Song X, Wang L, Liu Y, Xu K, Cai P, Liu J, Liu Q, Fan D. Discovery of novel oleanolic acid glycoside derivatives targeting PTP1B/PI3K/AKT signaling pathway for the treatment of breast cancer. Bioorg Chem 2025; 157:108296. [PMID: 40007349 DOI: 10.1016/j.bioorg.2025.108296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) has been identified as a key drug target for anti-tumor drug development. Oleanolic acid (OA) has been proved to be an inhibitor of PTP1B, but its poor water solubility, low bioavailability and poor activity in vivo limit its clinical efficacy. In this study, a total of 47 new OA derivatives including heteroatom derivatives, ester derivatives, amino substitution derivatives and Schiff base derivatives were designed and synthesized. Among them, OA-Br-1 had stronger inhibition and selectivity on PTP1B than OA, with IC50 value of 7.08 ± 5.05 μM for PTP1B and 222.28 ± 0.11 μM for TCPTP. In addition, OA-Br-1 significantly inhibited the proliferation and induced apoptosis of breast cancer cells, and in vivo nude mice experiments also showed that OA-Br-1 could inhibit the growth of breast tumors. Then network pharmacology was used to predict the targets of OA-Br-1, and the PPI network map between compound - breast cancer - target was constructed. The results showed that the probability value of PTPN1 ranked first among all predicted targets, which was consistent with the results of enzyme activity experiments in vitro. The enrichment results of KEGG pathway and GO functional annotation analysis showed that the effect of OA-Br-1 on breast cancer was significantly correlated with the PI3K/AKT pathway. Subsequent Western Blot results also proved that OA-Br-1 could significantly inhibit the expression of PTP1B, p-PI3K and p-AKT, indicating that OA-Br-1 played an anti-breast cancer role through the PTP1B/PI3K/AKT signaling pathway. Collectively, these findings identify OA-Br-1 as a promising PTP1B inhibitor for breast cancer treatment.
Collapse
Affiliation(s)
- Xiaoping Song
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China
| | - Lina Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China
| | - Yao Liu
- Technological Institute of Materials & Energy Science (TIMES), Key Laboratory of Liquid Crystal Polymers based Flexible Display Technology in National Petroleum and Chemical Industry, Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, PR China
| | - Kefan Xu
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China
| | - Panpan Cai
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China
| | - Jinqiu Liu
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China
| | - Qingchao Liu
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China; Biotech. & Biomed. Research Institute, Northwest University, 229 Taibai North Road, Xi'an, 710069, PR China.
| | - Daidi Fan
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China; Biotech. & Biomed. Research Institute, Northwest University, 229 Taibai North Road, Xi'an, 710069, PR China.
| |
Collapse
|
5
|
Fani G, Coppi E, Errico S, Cherchi F, Gennari M, Barbut D, Vendruscolo M, Zasloff M, Pugliese AM, Chiti F. Natural aminosterols inhibit NMDA receptors with low nanomolar potency. FEBS J 2025. [PMID: 40123295 DOI: 10.1111/febs.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 03/25/2025]
Abstract
Abnormal functions of N-methyl-D-aspartate receptors (NMDARs) are associated with many brain disorders, making them primary targets for drug discovery. We show that natural aminosterols inhibit the NMDAR-mediated increase of intracellular calcium ions in cultured primary neurons and neuroblastoma cells. Structural comparison with known NMDAR-negative allosteric modulators, such as pregnanolone-sulfate-2 (PAS), raises the hypothesis that aminosterols have the same mechanism of action. Fluorescence resonance energy transfer (FRET) measurements using labeled NMDAR and the labeled aminosterol trodusquemine (TRO) indicate close spatial proximity, likely arising from binding. Other indirect yet plausible mechanisms for NMDAR inhibition by TRO were excluded. Electrophysiological patch clamp measurements on primary neurons indicate that pre-incubated TRO inhibits NMDA-induced ion currents with a IC50 of 5 nm. Inhibition is observed only after cell membrane pre-adsorption, indicating accessibility to NMDAR from the cell membrane and binding to the transmembrane domains (TMDs) and TMD-ligand-binding domain (LBD) linkers, similarly to PAS. The TRO IC50 is 5000-fold higher than that of PAS and 20-16 000 times higher than those of other inhibitors binding to TMD/TMD-LBD regions, identifying aminosterols as promising and potent NMDAR modulators.
Collapse
Affiliation(s)
- Giulia Fani
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Italy
| | - Silvia Errico
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Italy
| | - Martina Gennari
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| | - Denise Barbut
- Enterin Research Institute Inc., Philadelphia, PA, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Michael Zasloff
- Enterin Research Institute Inc., Philadelphia, PA, USA
- MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, USA
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| |
Collapse
|
6
|
Sawali MA, Zahid MA, Abdelsalam SS, Al-Zoubi RM, Shkoor M, Agouni A. The role of PTP1B in cardiometabolic disorders and endothelial dysfunction. J Drug Target 2025:1-16. [PMID: 39996501 DOI: 10.1080/1061186x.2025.2473024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/15/2025] [Accepted: 02/23/2025] [Indexed: 02/26/2025]
Abstract
Cardiovascular diseases (CVD) are a global health concern that accounts for a large share of annual mortality. Endothelial dysfunction is the main underlying factor that eventually leads to cardiovascular events. Recent studies have underscored the critical function of Protein Tyrosine Phosphatase 1B (PTP1B) in the onset of endothelial dysfunction, chiefly through its involvement in metabolic diseases such as diabetes, obesity, and leptin resistance. PTP1B attenuates insulin and leptin signalling by dephosphorylating their respective receptors at key tyrosine residues, resulting in resistance-both of which are significant mechanisms underpinning the development of endothelial dysfunction. PTP1B also contributes to the disruption of the endoplasmic reticulum, causing endoplasmic reticulum stress, another molecular driver of endothelial dysfunction. Efforts to inhibit PTP1B activity hold the promise of advancing the prevention and management of CVD and metabolic disorders, as these conditions share common risk factors and underlying cellular mechanisms. Numerous small molecules have been reported as PTP1B inhibitors; however, their progression to advanced clinical trials has been hindered by major challenges such as low selectivity and undesirable side effects. This review provides an in-depth analysis of PTP1B's involvement in metabolic diseases and its interaction with CVD and examines the strategies and challenges related to inhibiting this enzyme.
Collapse
Affiliation(s)
- Mona A Sawali
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Muhammad Ammar Zahid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Shahenda Salah Abdelsalam
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Raed M Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Department of Chemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohanad Shkoor
- Department of Chemistry, College of Arts and Science, Qatar University, Doha, Qatar
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
7
|
Perdikari A, Woods VA, Ebrahim A, Lawler K, Bounds R, Singh NI, Mehlman T(S, Riley BT, Sharma S, Morris JW, Keogh JM, Henning E, Smith M, Farooqi IS, Keedy DA. Structures of human PTP1B variants reveal allosteric sites to target for weight loss therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.05.603709. [PMID: 39149290 PMCID: PMC11326154 DOI: 10.1101/2024.08.05.603709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Protein Tyrosine Phosphatase 1B (PTP1B) is a negative regulator of leptin signaling whose disruption protects against diet-induced obesity in mice. We investigated whether structural characterization of human PTP1B variant proteins might reveal allosteric sites to target for weight loss therapy. To do so, we selected 12 rare variants for functional characterization from exomes from 997 people with persistent thinness and 200,000 people from UK Biobank. Seven of 12 variants impaired PTP1B function by increasing leptin-stimulated STAT3 phosphorylation in human cells. Focusing on the variants in and near the ordered catalytic domain, we ascribed structural mechanism to their functional effects using in vitro enzyme activity assays, room-temperature X-ray crystallography, and local hydrogen-deuterium exchange mass spectrometry (HDX-MS). By combining these complementary structural biology experiments for multiple variants, we characterize an inherent allosteric network in PTP1B that differs from previously reported allosteric inhibitor-driven mechanisms mediated by catalytic loop motions. The most functionally impactful variant sites map to highly ligandable surface sites, suggesting untapped opportunities for allosteric drug design. Overall, these studies can inform the targeted design of allosteric PTP1B inhibitors for the treatment of obesity.
Collapse
Affiliation(s)
- Aliki Perdikari
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science & Addenbrooke’s Hospital; Cambridge, CB2 0QQ, UK
| | - Virgil A. Woods
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
- PhD Program in Biochemistry, CUNY Graduate Center; New York, NY 10016, USA
| | - Ali Ebrahim
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
| | - Katherine Lawler
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science & Addenbrooke’s Hospital; Cambridge, CB2 0QQ, UK
| | - Rebecca Bounds
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science & Addenbrooke’s Hospital; Cambridge, CB2 0QQ, UK
| | - Nathanael I. Singh
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
| | - Tamar (Skaist) Mehlman
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
- PhD Program in Biochemistry, CUNY Graduate Center; New York, NY 10016, USA
| | - Blake T. Riley
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
| | - Shivani Sharma
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
- PhD Program in Biology, CUNY Graduate Center; New York, NY 10016, USA
| | - Jackson W. Morris
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
| | - Julia M. Keogh
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science & Addenbrooke’s Hospital; Cambridge, CB2 0QQ, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science & Addenbrooke’s Hospital; Cambridge, CB2 0QQ, UK
| | - Miriam Smith
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science & Addenbrooke’s Hospital; Cambridge, CB2 0QQ, UK
| | - I. Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science & Addenbrooke’s Hospital; Cambridge, CB2 0QQ, UK
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
- Department of Chemistry and Biochemistry, City College of New York; New York, NY 10031, USA
- PhD Programs in Biochemistry, Biology, and Chemistry, CUNY Graduate Center; New York, NY 10016, USA
| |
Collapse
|
8
|
Fang X, Mo C, Zheng L, Gao F, Xue F, Zheng X. Transfusion-Related Acute Lung Injury: from Mechanistic Insights to Therapeutic Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413364. [PMID: 39836498 PMCID: PMC11923913 DOI: 10.1002/advs.202413364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/08/2024] [Indexed: 01/23/2025]
Abstract
Transfusion-related acute lung injury (TRALI) is a potentially lethal complication of blood transfusions, characterized by the rapid onset of pulmonary edema and hypoxemia within six hours post-transfusion. As one of the primary causes of transfusion-related mortality, TRALI carries a significant mortality rate of 6-12%. However, effective treatment strategies for TRALI are currently lacking, underscoring the urgent need for a comprehensive and in-depth understanding of its pathogenesis. This comprehensive review provides an updated and detailed analysis of the current landscape of TRALI, including its clinical presentation, pathogenetic hypotheses, animal models, cellular mechanisms, signaling pathways, and potential therapeutic targets. By highlighting the critical roles of these pathways and therapies, this review offers valuable insights to inform the development of preventative and therapeutic strategies and to guide future research efforts aimed at addressing this life-threatening condition.
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOEState Key Laboratory of BiotherapyWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Ling Zheng
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Fei Gao
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Fu‐Shan Xue
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Xiaochun Zheng
- Department of AnesthesiologyFujian Provincial HospitalShengli Clinical Medical College of Fujian Medical University & Fujian Emergency Medical CenterFujian Provincial Key Laboratory of Emergency MedicineFujian Provincial Key Laboratory of Critical MedicineFujian Provincial Co‐constructed Laboratory of “Belt and Road,”FuzhouFujianChina
| |
Collapse
|
9
|
Kumar P, Saumya KU, Bhardwaj T, Giri R. Met58 and di-acidic motif located at C-terminal region of SARS-CoV-2 ORF6 plays a crucial role in its structural conformations. Biophys Chem 2025; 318:107384. [PMID: 39724814 DOI: 10.1016/j.bpc.2024.107384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Despite being mostly neglected in structural biology, the C-terminal Regions (CTRs) are studied to be multifunctional in humans as well as in viruses. Previously, SARS-CoV-2 Spike and NSP1 proteins' CTRs are observed to be disordered, and experimental evidence showed a gain of structure properties in different physiological environments. In this line, we have investigated the structural dynamics of CTR (residues 38-61) of SARS-CoV-2 ORF6 protein, disrupting bidirectional transport between the nucleus and cytoplasm. ORF6-CTR is disordered in nature but doesn't gain any structure in most conditions. As per studies, residue such as Methionine at 58th position in ORF6 is critical for interaction with Rae1-Nup98. Therefore, along with M58, we have identified a few other mutations from the literature and performed extensive structure modelling and dynamics studies using computational simulations. The exciting revelations in CTR models provide evidence of its structural flexibility and possible capabilities to perform multifunctionality inside the host.
Collapse
Affiliation(s)
- Prateek Kumar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh, India
| | - Kumar Udit Saumya
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh, India
| | - Taniya Bhardwaj
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh, India
| | - Rajanish Giri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh, India.
| |
Collapse
|
10
|
Huang Q, Hu L, Chen H, Yang B, Sun X, Wang M. A Medicinal Chemistry Perspective on Protein Tyrosine Phosphatase Nonreceptor Type 2 in Tumor Immunology. J Med Chem 2025; 68:3995-4021. [PMID: 39936476 DOI: 10.1021/acs.jmedchem.4c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
PTPN2 (protein tyrosine phosphatase nonreceptor type 2) is an important member of the protein tyrosine phosphatase (PTP) family. It plays a crucial role in dephosphorylating tyrosine-phosphorylated proteins and modulating critical signaling pathways associated with T-cell receptors, IL-2, IFNγ, and various cytokines. In recent years, the PTPN2's biological role has been clarified, particularly since its association with tumor immunology was gradually revealed in 2017, making it a star target for cancer immunotherapy. The dual inhibitor AC484, which targets both PTPN2 and PTP1B, is currently undergoing phase I clinical trials. This advancement has attracted great interest from researchers to develop new drugs based on its unique structure. This review outlines the structural modification processes of PTPN2-targeted agents, focusing primarily on inhibitors and degraders. Finally, this review endeavors to provide a comprehensive perspective on the evolving field of PTPN2-targeted drug discovery for tumor immunotherapy, offering valuable insights for future drug development.
Collapse
Affiliation(s)
- Qi Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Linghao Hu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Haowen Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 Guangdong China
| | - Bingjie Yang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Sun
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- The Institutes of Integrative Medicine of Fudan University, 12 Wulumuqi Zhong Road, Shanghai 200040, China
| | - Mingliang Wang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 Guangdong China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Gunizi OC, Elpek GO. Protein tyrosine phosphatase nonreceptor 2: A New biomarker for digestive tract cancers. World J Gastrointest Oncol 2025; 17:100546. [PMID: 39958541 PMCID: PMC11756013 DOI: 10.4251/wjgo.v17.i2.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/02/2024] [Accepted: 11/20/2024] [Indexed: 01/18/2025] Open
Abstract
In this editorial, the roles of protein tyrosine phosphatase nonreceptor 2 (PTPN2) in oncogenic transformation and tumor behavior and its potential as a therapeutic target in the context of gastrointestinal (GI) cancers are presented with respect to the article by Li et al published in ninth issue of the World Journal of Gastrointestinal Oncology. PTPN2 is a member of the protein tyrosine phosphatase family of signaling proteins that play crucial roles in the regulation of inflammation and immunity. Accordingly, early findings highlighted the contribution of PTPN2 to the pathogenesis of inflammatory and autoimmune disorders related to its dysfunction. On the other hand, recent studies have indicated that PTPN2 has many different roles in different cancer types, which is associated with the complexity of its regulatory network. PTPN2 dephosphorylates and inactivates EGFR, SRC family kinases, JAK1 and JAK3, and STAT1, STAT3, and STAT5 in cell type- and context-dependent manners, which indicates that PTPN2 can perform either prooncogenic or anti-oncogenic functions depending on the tumor subtype. While PTPN2 has been suggested as a potential therapeutic target in cancer treatment, to the best of ourknowledge, no clear treatment protocol has referred to PTPN2. Although there are only few studies that investigated PTPN2 expression in the GI system cancers, which is a potential limitation, the association of this protein with tumor behavior and the influence of PTPN2 on many therapy-related signaling pathways emphasize that PTPN2 could serve as a new molecular biomarker to predict tumor behavior and as a target for therapeutic intervention against GI cancers. In conclusion, more studies should be performed to better understand the prognostic and therapeutic potential of PTPN2 in GI tumors, especially in tumors resistant to therapy.
Collapse
Affiliation(s)
- Ozlem Ceren Gunizi
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Türkiye
| | - Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Türkiye
| |
Collapse
|
12
|
Bennett AM, Tiganis T. Protein Tyrosine Phosphatases in Metabolism: A New Frontier for Therapeutics. Annu Rev Physiol 2025; 87:301-324. [PMID: 39531392 DOI: 10.1146/annurev-physiol-022724-105540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The increased prevalence of chronic metabolic disorders, including obesity and type 2 diabetes and their associated comorbidities, are among the world's greatest health and economic challenges. Metabolic homeostasis involves a complex interplay between hormones that act on different tissues to elicit changes in the storage and utilization of energy. Such processes are mediated by tyrosine phosphorylation-dependent signaling, which is coordinated by the opposing actions of protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Perturbations in the functions of PTPs can be instrumental in the pathophysiology of metabolic diseases. The goal of this review is to highlight key advances in our understanding of how PTPs control body weight and glucose metabolism, as well as their contributions to obesity and type 2 diabetes. The emerging appreciation of the integrated functions of PTPs in metabolism, coupled with significant advances in pharmaceutical strategies aimed at targeting this class of enzymes, marks the advent of a new frontier in combating metabolic disorders.
Collapse
Affiliation(s)
- Anton M Bennett
- Yale Center for Molecular and Systems Metabolism, New Haven, Connecticut, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia;
| |
Collapse
|
13
|
Gao C, Hu W, Xu F, Lin Y, Chen J, Shi D, Xing P, Zhu J, Li X. Allosteric inhibition of PTP1B by bromocatechol-chalcone derivatives. Eur J Med Chem 2025; 282:117053. [PMID: 39561499 DOI: 10.1016/j.ejmech.2024.117053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Development of allosteric inhibitors may be a viable strategy to discover hypoglycemic drugs targeting PTP1B. Allosteric inhibitors occupying the BB site that is a hydrophobic pocket restrict the WPD loop in an open conformation, preventing the physiological dephosphorylation reaction. Toward the BB site, sixty bromocatechol-chalcone derivatives were designed and synthesized as allosteric inhibitors of PTP1B against diabetes mellitus. The most potent compound LXQ-87 (C8) inhibited PTP1B noncompetitively with an IC50 value of 1.061 ± 0.202 μM. Oral administration of LXQ-87 reduces the fasting blood glucose level and improves glucose tolerance and dyslipidemia in BKS db/db mice suffering from T2DM. LXQ-87 alleviates insulin resistance and promotes cellular glucose uptake by directly binding to intracellular PTP1B.
Collapse
Affiliation(s)
- Chenxia Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China
| | - Wenpeng Hu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China
| | - Feng Xu
- The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, PR China
| | - Yuxi Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China
| | - Jiashu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, PR China
| | - Pan Xing
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China
| | - Jiqiang Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China; Shandong Linghai Biotechnology Co., Ltd, Jinan, 250299, Shandong, PR China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, PR China.
| |
Collapse
|
14
|
Chartier CA, Woods VA, Xu Y, van Vlimmeren AE, Johns AC, Jovanovic M, McDermott AE, Keedy DA, Shah NH. Allosteric regulation of the tyrosine phosphatase PTP1B by a protein-protein interaction. Protein Sci 2025; 34:e70016. [PMID: 39723820 DOI: 10.1002/pro.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
The rapid identification of protein-protein interactions has been significantly enabled by mass spectrometry (MS) proteomics-based methods, including affinity purification-MS, crosslinking-MS, and proximity-labeling proteomics. While these methods can reveal networks of interacting proteins, they cannot reveal how specific protein-protein interactions alter protein function or cell signaling. For instance, when two proteins interact, there can be emergent signaling processes driven purely by the individual activities of those proteins being co-localized. Alternatively, protein-protein interactions can allosterically regulate function, enhancing or suppressing activity in response to binding. In this work, we investigate the interaction between the tyrosine phosphatase PTP1B and the adaptor protein Grb2, which have been annotated as binding partners in a number of proteomics studies. This interaction has been postulated to co-localize PTP1B with its substrate IRS-1 by forming a ternary complex, thereby enhancing the dephosphorylation of IRS-1 to suppress insulin signaling. Here, we report that Grb2 binding to PTP1B also allosterically enhances PTP1B catalytic activity. We show that this interaction is dependent on the proline-rich region of PTP1B, which interacts with the C-terminal SH3 domain of Grb2. Using NMR spectroscopy and hydrogen-deuterium exchange mass spectrometry (HDX-MS) we show that Grb2 binding alters PTP1B structure and/or dynamics. Finally, we use MS proteomics to identify other interactors of the PTP1B proline-rich region that may also regulate PTP1B function similarly to Grb2. This work presents one of the first examples of a protein allosterically regulating the enzymatic activity of PTP1B and lays the foundation for discovering new mechanisms of PTP1B regulation in cell signaling.
Collapse
Affiliation(s)
| | - Virgil A Woods
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
- PhD Program in Biochemistry, CUNY Graduate Center, New York, New York, USA
| | - Yunyao Xu
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Anne E van Vlimmeren
- Department of Chemistry, Columbia University, New York, New York, USA
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Andrew C Johns
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Ann E McDermott
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Daniel A Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
- Department of Chemistry and Biochemistry, City College of New York, New York, New York, USA
- PhD Programs in Biochemistry, Biology, & Chemistry, CUNY Graduate Center, New York, New York, USA
| | - Neel H Shah
- Department of Chemistry, Columbia University, New York, New York, USA
| |
Collapse
|
15
|
Barbut D, Perni M, Zasloff M. Anti-aging properties of the aminosterols of the dogfish shark. NPJ AGING 2024; 10:62. [PMID: 39702521 DOI: 10.1038/s41514-024-00188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
The development of anti-aging drugs is challenged by both the apparent complexity of the physiological mechanisms involved in aging and the likelihood that many of these mechanisms remain unknown. As a consequence, the development of anti-aging compounds based on the rational targeting of specific pathways has fallen short of the goal. To date, the most impressive compound is rapamycin, a natural bacterial product initially identified as an antifungal, and only subsequently discovered to have anti-aging properties. In this review, we focus on two aminosterols from the dogfish shark, Squalus acanthias, that we discovered initially as broad-spectrum anti-microbial agents. This review is the first to gather together published studies conducted both in vitro and in numerous vertebrate species to demonstrate that these compounds target aging pathways at the cellular level and provide benefits in multiple aging-associated conditions in relevant animal models and in humans. The dogfish aminosterols should be recognized as potential anti-aging drugs.
Collapse
Affiliation(s)
- Denise Barbut
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA
| | - Michele Perni
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA
| | - Michael Zasloff
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA.
- MedStar Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, 20010, USA.
| |
Collapse
|
16
|
Menon S, Adhikari S, Mondal J. An integrated machine learning approach delineates an entropic expansion mechanism for the binding of a small molecule to α-synuclein. eLife 2024; 13:RP97709. [PMID: 39693390 DOI: 10.7554/elife.97709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
The mis-folding and aggregation of intrinsically disordered proteins (IDPs) such as α-synuclein (αS) underlie the pathogenesis of various neurodegenerative disorders. However, targeting αS with small molecules faces challenges due to the lack of defined ligand-binding pockets in its disordered structure. Here, we implement a deep artificial neural network-based machine learning approach, which is able to statistically distinguish the fuzzy ensemble of conformational substates of αS in neat water from those in aqueous fasudil (small molecule of interest) solution. In particular, the presence of fasudil in the solvent either modulates pre-existing states of αS or gives rise to new conformational states of αS, akin to an ensemble-expansion mechanism. The ensembles display strong conformation-dependence in residue-wise interaction with the small molecule. A thermodynamic analysis indicates that small-molecule modulates the structural repertoire of αS by tuning protein backbone entropy, however entropy of the water remains unperturbed. Together, this study sheds light on the intricate interplay between small molecules and IDPs, offering insights into entropic modulation and ensemble expansion as key biophysical mechanisms driving potential therapeutics.
Collapse
Affiliation(s)
- Sneha Menon
- Tata Institute of Fundamental Research, Hyderabad, India
| | | | | |
Collapse
|
17
|
Saeed A, Klureza MA, Hekstra DR. Mapping Protein Conformational Landscapes from Crystallographic Drug Fragment Screens. J Chem Inf Model 2024; 64:8937-8951. [PMID: 39530154 PMCID: PMC11633654 DOI: 10.1021/acs.jcim.4c01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Proteins are dynamic macromolecules. Knowledge of a protein's thermally accessible conformations is critical to determining important transitions and designing therapeutics. Accessible conformations are highly constrained by a protein's structure such that concerted structural changes due to external perturbations likely track intrinsic conformational transitions. These transitions can be thought of as paths through a conformational landscape. Crystallographic drug fragment screens are high-throughput perturbation experiments, in which thousands of crystals of a drug target are soaked with small-molecule drug precursors (fragments) and examined for fragment binding, mapping potential drug binding sites on the target protein. Here, we describe an open-source Python package, COnformational LAndscape Visualization (COLAV), to infer conformational landscapes from such large-scale crystallographic perturbation studies. We apply COLAV to drug fragment screens of two medically important systems: protein tyrosine phosphatase 1B (PTP1B), which regulates insulin signaling, and the SARS CoV-2 Main Protease (MPro). With enough fragment-bound structures, we find that such drug screens enable detailed mapping of proteins' conformational landscapes.
Collapse
Affiliation(s)
- Ammaar
A. Saeed
- Department
of Molecular & Cellular Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Margaret A. Klureza
- Department
of Chemistry & Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Doeke R. Hekstra
- Department
of Molecular & Cellular Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- School
of Engineering & Applied Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
18
|
Del Carmen Navarrete‐Mondragón R, Cortés‐Benítez F, Elena Mendieta‐Wejebe J, González‐Andrade M, Pérez‐Villanueva J. Virtual and in Vitro Screening Employing a Repurposing Approach Reveal 13-cis-Retinoic Acid is a PTP1B Inhibitor. ChemMedChem 2024; 19:e202400452. [PMID: 39113101 PMCID: PMC11617665 DOI: 10.1002/cmdc.202400452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 10/09/2024]
Abstract
Current treatments for type 2 diabetes (T2D) mainly rely on exercise, dietary control, and anti-diabetic drugs to enhance insulin secretion and improve insulin sensitivity. However, there is a need for more therapeutic options, as approved drugs targeting different pharmacological objectives are still unavailable. One potential target that has attracted attention is the protein tyrosine phosphatase 1B (PTP1B), which negatively regulates the insulin signaling pathway. In this work, a comprehensive computational screening was carried out using cheminformatics and molecular docking on PTP1B, employing a rigorous repurposing approach. The screening involved approved drugs and compounds under research as anti-diabetics that bind to targets such as peroxisome proliferator-activated receptor gamma (PPAR-γ) and α-glucosidase. Several computational hits were then meticulously tested in vitro against PTP1B, with 13-cis-retinoic acid (3a) showing an IC50 of 0.044 mM and competitive inhibition. Molecular dynamics studies further confirmed that 3a can bind to the catalytic binding site of PTP1B. Finally, 3a is the first time it has been reported as an inhibitor of PTP1B, making it a potentially valuable candidate for further studies in D2T treatment.
Collapse
Affiliation(s)
| | - Francisco Cortés‐Benítez
- Departamento de Sistemas BiológicosDivisión de Ciencias Biológicas y de la SaludUniversidad Autónoma Metropolitana-Xochimilco [1Ciudad de México04960México
| | - Jessica Elena Mendieta‐Wejebe
- Laboratorio de Biofísica y BiocatálisisSección de Estudios de Posgrado e InvestigaciónEscuela Superior de MedicinaInstituto Politécnico NacionalPlan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Miguel HidalgoCiudad de México11340México
| | - Martin González‐Andrade
- Departamento de BioquímicaFacultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de México04510México
| | - Jaime Pérez‐Villanueva
- Departamento de Sistemas BiológicosDivisión de Ciencias Biológicas y de la SaludUniversidad Autónoma Metropolitana-Xochimilco [1Ciudad de México04960México
| |
Collapse
|
19
|
Barbut D, Kinney WA, Chen HH, Stewart AFR, Hecksher-Sørensen J, Zhang C, Fleming A, Zemel M, Zasloff M. A novel, centrally acting mammalian aminosterol, ENT-03, induces weight loss in obese and lean rodents. Diabetes Obes Metab 2024; 26:5701-5712. [PMID: 39307948 DOI: 10.1111/dom.15940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/10/2024] [Accepted: 08/22/2024] [Indexed: 11/05/2024]
Abstract
ENT-03, a spermine bile acid we recently discovered in the brain of newborn mice acts centrally to regulate energy and metabolism. Obese, diabetic (ob/ob) mice treated with five doses of ENT-03 over 2 weeks, demonstrated a rapid decrease in blood glucose levels into the range seen in non-obese animals, prior to any significant weight loss. Weight fell substantially thereafter as food intake decreased, and serum biochemical parameters normalized compared with both vehicle and pair-fed controls. To determine whether ENT-03 could be acting centrally, we injected a single dose of ENT-03 intracerebroventricularly to Sprague-Dawley rats. Weight fell significantly and remained below vehicle injected controls for an extended period. By autoradiography, ENT-03 localized to the arcuate nucleus of the hypothalamus, the choroid plexus and cerebrospinal fluid. Significant cFos activation occurred in multiple anatomical regions within the hypothalamus and brainstem involved in appetite suppression, food-entrained circadian rhythmicity, autonomic function, and growth. These data support a role for ENT-03 in the treatment of type 2 diabetes and obesity. Phase 1 studies in subjects with obesity and diabetes are currently in progress.
Collapse
Affiliation(s)
- Denise Barbut
- Enterin, Inc., Philadelphia, Pennsylvania, USA
- Enterin Research Institute, Philadelphia, Pennsylvania, USA
| | - William A Kinney
- Enterin, Inc., Philadelphia, Pennsylvania, USA
- Enterin Research Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | - Michael Zasloff
- Enterin, Inc., Philadelphia, Pennsylvania, USA
- Enterin Research Institute, Philadelphia, Pennsylvania, USA
- MedStar Georgetown Transplant Institute, Washington, District of Columbia, USA
| |
Collapse
|
20
|
Chartier CA, Woods VA, Xu Y, van Vlimmeren AE, Johns AC, Jovanovic M, McDermott AE, Keedy DA, Shah NH. Allosteric regulation of the tyrosine phosphatase PTP1B by a protein-protein interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603632. [PMID: 39071364 PMCID: PMC11275736 DOI: 10.1101/2024.07.16.603632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The rapid identification of protein-protein interactions has been significantly enabled by mass spectrometry (MS) proteomics-based methods, including affinity purification-MS, crosslinking-MS, and proximity-labeling proteomics. While these methods can reveal networks of interacting proteins, they cannot reveal how specific protein-protein interactions alter protein function or cell signaling. For instance, when two proteins interact, there can be emergent signaling processes driven purely by the individual activities of those proteins being co-localized. Alternatively, protein-protein interactions can allosterically regulate function, enhancing or suppressing activity in response to binding. In this work, we investigate the interaction between the tyrosine phosphatase PTP1B and the adaptor protein Grb2, which have been annotated as binding partners in a number of proteomics studies. This interaction has been postulated to co-localize PTP1B with its substrate IRS-1 by forming a ternary complex, thereby enhancing the dephosphorylation of IRS-1 to suppress insulin signaling. Here, we report that Grb2 binding to PTP1B also allosterically enhances PTP1B catalytic activity. We show that this interaction is dependent on the proline-rich region of PTP1B, which interacts with the C-terminal SH3 domain of Grb2. Using NMR spectroscopy and hydrogen-deuterium exchange mass spectrometry (HDX-MS) we show that Grb2 binding alters PTP1B structure and/or dynamics. Finally, we use MS proteomics to identify other interactors of the PTP1B proline-rich region that may also regulate PTP1B function similarly to Grb2. This work presents one of the first examples of a protein allosterically regulating the enzymatic activity of PTP1B and lays the foundation for discovering new mechanisms of PTP1B regulation in cell signaling.
Collapse
Affiliation(s)
| | - Virgil A. Woods
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- PhD Program in Biochemistry, CUNY Graduate Center, New York, NY 10016
| | - Yunyao Xu
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Anne E. van Vlimmeren
- Department of Chemistry, Columbia University, New York, NY 10027
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Andrew C. Johns
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Ann E. McDermott
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031
- PhD Programs in Biochemistry, Biology, & Chemistry, CUNY Graduate Center, New York, NY 10016
| | - Neel H. Shah
- Department of Chemistry, Columbia University, New York, NY 10027
| |
Collapse
|
21
|
Skeens E, Maschietto F, Manjula R, Shillingford S, Lolis EJ, Batista VS, Bennett AM, Lisi GP. Dynamic and structural insights into allosteric regulation on MKP5 a dual-specificity phosphatase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611520. [PMID: 39282375 PMCID: PMC11398491 DOI: 10.1101/2024.09.05.611520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Dual-specificity mitogen-activated protein kinase (MAPK) phosphatases (MKPs) directly dephosphorylate and inactivate the MAPKs. Although the catalytic mechanism of dephosphorylation of the MAPKs by the MKPs is established, a complete molecular picture of the regulatory interplay between the MAPKs and MKPs still remains to be fully explored. Here, we sought to define the molecular mechanism of MKP5 regulation through an allosteric site within its catalytic domain. We demonstrate using crystallographic and NMR spectroscopy approaches that residue Y435 is required to maintain the structural integrity of the allosteric pocket. Along with molecular dynamics simulations, these data provide insight into how changes in the allosteric pocket propagate conformational flexibility in the surrounding loops to reorganize catalytically crucial residues in the active site. Furthermore, Y435 contributes to the interaction with p38 MAPK and JNK, thereby promoting dephosphorylation. Collectively, these results highlight the role of Y435 in the allosteric site as a novel mode of MKP5 regulation by p38 MAPK and JNK.
Collapse
Affiliation(s)
- Erin Skeens
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | | | - Ramu Manjula
- Department of Pharmacology, Yale School of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shanelle Shillingford
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Department of Pharmacology, Yale School of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Elias J. Lolis
- Department of Pharmacology, Yale School of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Anton M. Bennett
- Department of Pharmacology, Yale School of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
| | - George P. Lisi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
22
|
Cobley JN. Exploring the unmapped cysteine redox proteoform landscape. Am J Physiol Cell Physiol 2024; 327:C844-C866. [PMID: 39099422 DOI: 10.1152/ajpcell.00152.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Cysteine redox proteoforms define the diverse molecular states that proteins with cysteine residues can adopt. A protein with one cysteine residue must adopt one of two binary proteoforms: reduced or oxidized. Their numbers scale: a protein with 10 cysteine residues must assume one of 1,024 proteoforms. Although they play pivotal biological roles, the vast cysteine redox proteoform landscape comprising vast numbers of theoretical proteoforms remains largely uncharted. Progress is hampered by a general underappreciation of cysteine redox proteoforms, their intricate complexity, and the formidable challenges that they pose to existing methods. The present review advances cysteine redox proteoform theory, scrutinizes methodological barriers, and elaborates innovative technologies for detecting unique residue-defined cysteine redox proteoforms. For example, chemistry-enabled hybrid approaches combining the strengths of top-down mass spectrometry (TD-MS) and bottom-up mass spectrometry (BU-MS) for systematically cataloguing cysteine redox proteoforms are delineated. These methods provide the technological means to map uncharted redox terrain. To unravel hidden redox regulatory mechanisms, discover new biomarkers, and pinpoint therapeutic targets by mining the theoretical cysteine redox proteoform space, a community-wide initiative termed the "Human Cysteine Redox Proteoform Project" is proposed. Exploring the cysteine redox proteoform landscape could transform current understanding of redox biology.
Collapse
Affiliation(s)
- James N Cobley
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
23
|
Sun Y, Dinenno FA, Tang P, Kontaridis MI. Protein tyrosine phosphatase 1B in metabolic and cardiovascular diseases: from mechanisms to therapeutics. Front Cardiovasc Med 2024; 11:1445739. [PMID: 39238503 PMCID: PMC11374623 DOI: 10.3389/fcvm.2024.1445739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Protein Tyrosine Phosphatase 1B (PTP1B) has emerged as a significant regulator of metabolic and cardiovascular disease. It is a non-transmembrane protein tyrosine phosphatase that negatively regulates multiple signaling pathways integral to the regulation of growth, survival, and differentiation of cells, including leptin and insulin signaling, which are critical for development of obesity, insulin resistance, type 2 diabetes, and cardiovascular disease. Given PTP1B's central role in glucose homeostasis, energy balance, and vascular function, targeted inhibition of PTP1B represents a promising strategy for treating these diseases. However, challenges, such as off-target effects, necessitate a focus on tissue-specific approaches, to maximize therapeutic benefits while minimizing adverse outcomes. In this review, we discuss molecular mechanisms by which PTP1B influences metabolic and cardiovascular functions, summarize the latest research on tissue-specific roles of PTP1B, and discuss the potential for PTP1B inhibitors as future therapeutic agents.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Frank A Dinenno
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Peiyang Tang
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Maria I Kontaridis
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Zhan J, Liu Z, Gao H. Theoretical study on the design of allosteric inhibitors of diabetes associated protein PTP1B. Front Pharmacol 2024; 15:1423029. [PMID: 39239651 PMCID: PMC11374740 DOI: 10.3389/fphar.2024.1423029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
The protein tyrosine phosphatase 1B (PTP1B) is a critical therapeutic target for type 2 diabetes mellitus (T2DM). Many PTP1B inhibitors have been reported, however, most of them lack high specificity and have adverse effects. Designing effective PTP1B inhibitors requires understanding the molecular mechanism of action between inhibitors and PTP1B. To this end, molecular dynamics (MD) simulations and molecular mechanics Poisson Boltzmann Surface Area (MM-PB/SA) methods were used to observe the binding patterns of compounds with similar pentacyclic triterpene parent ring structures but different inhibition abilities. Through structure and energy analysis, we found that the positions of cavities and substituents significantly affect combining capacity. Besides, we constructed a series of potential inhibitor molecules using LUDI and rational drug design methods. The ADMET module of Discovery Studio 2020 was used to predict the properties of these inhibitor molecules. Lastly, we obtained compounds with low toxicity and significant inhibitory activity. The study will contribute to the treatment of T2DM.
Collapse
Affiliation(s)
- Jiuyu Zhan
- School of Life Science, Ludong University, Yantai, Shandong, China
| | - Zhenyang Liu
- School of Life Science, Ludong University, Yantai, Shandong, China
| | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong, China
| |
Collapse
|
25
|
Coronell-Tovar A, Pardo JP, Rodríguez-Romero A, Sosa-Peinado A, Vásquez-Bochm L, Cano-Sánchez P, Álvarez-Añorve LI, González-Andrade M. Protein tyrosine phosphatase 1B (PTP1B) function, structure, and inhibition strategies to develop antidiabetic drugs. FEBS Lett 2024; 598:1811-1838. [PMID: 38724486 DOI: 10.1002/1873-3468.14901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 08/13/2024]
Abstract
Tyrosine protein phosphatase non-receptor type 1 (PTP1B; also known as protein tyrosine phosphatase 1B) is a member of the protein tyrosine phosphatase (PTP) family and is a soluble enzyme that plays an essential role in different physiological processes, including the regulation of metabolism, specifically in insulin and leptin sensitivity. PTP1B is crucial in the pathogenesis of type 2 diabetes mellitus and obesity. These biological functions have made PTP1B validated as an antidiabetic and anti-obesity, and potentially anticancer, molecular target. Four main approaches aim to inhibit PTP1B: orthosteric, allosteric, bidentate inhibition, and PTPN1 gene silencing. Developing a potent and selective PTP1B inhibitor is still challenging due to the enzyme's ubiquitous expression, subcellular location, and structural properties. This article reviews the main advances in the study of PTP1B since it was first isolated in 1988, as well as recent contextual information related to the PTP family to which this protein belongs. Furthermore, we offer an overview of the role of PTP1B in diabetes and obesity, and the challenges to developing selective, effective, potent, bioavailable, and cell-permeable compounds that can inhibit the enzyme.
Collapse
Affiliation(s)
- Andrea Coronell-Tovar
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Juan P Pardo
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Alejandro Sosa-Peinado
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luz Vásquez-Bochm
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Laura Iliana Álvarez-Añorve
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Martin González-Andrade
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
26
|
Wang A, Zhang Y, Lv X, Liang G. Therapeutic potential of targeting protein tyrosine phosphatases in liver diseases. Acta Pharm Sin B 2024; 14:3295-3311. [PMID: 39220870 PMCID: PMC11365412 DOI: 10.1016/j.apsb.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms' homeostasis and function. This physiological process is regulated by two enzyme families, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). As an important regulator of protein function, PTPs are indispensable for maintaining cell intrinsic physiology in different systems, as well as liver physiological and pathological processes. Dysregulation of PTPs has been implicated in multiple liver-related diseases, including chronic liver diseases (CLDs), hepatocellular carcinoma (HCC), and liver injury, and several PTPs are being studied as drug therapeutic targets. Therefore, given the regulatory role of PTPs in diverse liver diseases, a collated review of their function and mechanism is necessary. Moreover, based on the current research status of targeted therapy, we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases. As an emerging breakthrough direction in the treatment of liver diseases, this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment. Overall, this review aims to support the development of novel PTP-based treatment pathways for liver diseases.
Collapse
Affiliation(s)
- Ao Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Yi Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xinting Lv
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
27
|
Mendoza-Jasso ME, Pérez-Villanueva J, Alvarado-Rodríguez JG, González-Andrade M, Cortés-Benítez F. 3-Benzylaminomethyl Lithocholic Acid Derivatives Exhibited Potent and Selective Uncompetitive Inhibitory Activity Against Protein Tyrosine Phosphatase 1B (PTP1B). ACS OMEGA 2024; 9:33224-33238. [PMID: 39100322 PMCID: PMC11292843 DOI: 10.1021/acsomega.4c04948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a promising drug target for treating type 2 diabetes (T2DM) and obesity. As a result, developing new therapies that target PTP1B is an attractive strategy for treating these diseases. Herein, we detail the synthesis of 15 lithocholic acid (LA) derivatives, each containing different benzylaminomethyl groups attached to the C3 position of the steroid skeleton. The derivatives were assessed against two forms of PTP1B enzyme (hPTP1B1-400 and hPTP1B1-285), and the most potent compounds were then tested against T-cell protein tyrosine phosphatase (TCPTP) to determine their selectivity. The results showed that compounds 6m and 6n were more potent than the reference compounds (ursolic acid, chlorogenic acid, suramin, and TCS401). Additionally, both compounds exhibited greater potency over hPTP1B1-400. Furthermore, enzyme kinetic studies on hPTP1B1-400 revealed that these two lithocholic acid derivatives have an uncompetitive inhibition against hPTP1B1-400 with K i values of 2.5 and 3.4 μM, respectively. Interestingly, these compounds were around 75-fold more selective for PTP1B over TCPTP. Finally, docking studies and molecular dynamics simulations (MDS) were conducted to determine how these compounds interact with PTP1B. The docking studies revealed hydrophobic and H-bond interactions with amino acid residues in the unstructured region. MDS showed that these interactions persisted throughout the 200 ns simulation, indicating the crucial role of the unstructured zone in the biological activity and inhibition of PTP1B.
Collapse
Affiliation(s)
- María-Eugenia Mendoza-Jasso
- Doctorado
en Ciencias Farmacéuticas, División de Ciencias Biológicas
y de la Salud, Universidad Autónoma
Metropolitana − Unidad Xochimilco, Ciudad de México 04960, Mexico
- Laboratorio
de Síntesis y Aislamiento de Sustancias Bioactivas, Departamento
de Sistemas Biológicos, División de Ciencias Biológicas
y de la Salud, Universidad Autónoma
Metropolitana − Unidad Xochimilco, Ciudad de México 04960, Mexico
- Laboratorio
de Biosensores y Modelaje Molecular, Departamento de Bioquímica,
Facultad de Medicina, Universidad Nacional
Autónoma de México, Ciudad de México 04510, Mexico
| | - Jaime Pérez-Villanueva
- Laboratorio
de Síntesis y Aislamiento de Sustancias Bioactivas, Departamento
de Sistemas Biológicos, División de Ciencias Biológicas
y de la Salud, Universidad Autónoma
Metropolitana − Unidad Xochimilco, Ciudad de México 04960, Mexico
| | | | - Martin González-Andrade
- Laboratorio
de Biosensores y Modelaje Molecular, Departamento de Bioquímica,
Facultad de Medicina, Universidad Nacional
Autónoma de México, Ciudad de México 04510, Mexico
| | - Francisco Cortés-Benítez
- Laboratorio
de Síntesis y Aislamiento de Sustancias Bioactivas, Departamento
de Sistemas Biológicos, División de Ciencias Biológicas
y de la Salud, Universidad Autónoma
Metropolitana − Unidad Xochimilco, Ciudad de México 04960, Mexico
| |
Collapse
|
28
|
Saeed AA, Klureza MA, Hekstra DR. Mapping protein conformational landscapes from crystallographic drug fragment screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605395. [PMID: 39131376 PMCID: PMC11312500 DOI: 10.1101/2024.07.29.605395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Proteins are dynamic macromolecules. Knowledge of a protein's thermally accessible conformations is critical to determining important transitions and designing therapeutics. Accessible conformations are highly constrained by a protein's structure such that concerted structural changes due to external perturbations likely track intrinsic conformational transitions. These transitions can be thought of as paths through a conformational landscape. Crystallographic drug fragment screens are high-throughput perturbation experiments, in which thousands of crystals of a drug target are soaked with small-molecule drug precursors (fragments) and examined for fragment binding, mapping potential drug binding sites on the target protein. Here, we describe an open-source Python package, COLAV (COnformational LAndscape Visualization), to infer conformational landscapes from such large-scale crystallographic perturbation studies. We apply COLAV to drug fragment screens of two medically important systems: protein tyrosine phosphatase 1B (PTP-1B), which regulates insulin signaling, and the SARS CoV-2 Main Protease (MPro). With enough fragment-bound structures, we find that such drug screens also enable detailed mapping of proteins' conformational landscapes.
Collapse
Affiliation(s)
- Ammaar A. Saeed
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Margaret A. Klureza
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Doeke R. Hekstra
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138
- School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138
| |
Collapse
|
29
|
Zhou Y, Yao Z, Lin Y, Zhang H. From Tyrosine Kinases to Tyrosine Phosphatases: New Therapeutic Targets in Cancers and Beyond. Pharmaceutics 2024; 16:888. [PMID: 39065585 PMCID: PMC11279542 DOI: 10.3390/pharmaceutics16070888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) regulate the level of tyrosine phosphorylation in proteins. PTKs are key enzymes that catalyze the transfer of an ATP phosphoric acid to a tyrosine residue on target protein substrates. Protein tyrosine phosphatases (PTPs) are responsible for the dephosphorylation of tyrosine residues and play a role in countering PTK overactivity. As widespread oncogenes, PTKs were once considered to be promising targets for therapy. However, tyrosine kinase inhibitors (TKIs) now face a number of challenges, including drug resistance and toxic side effects. Treatment strategies now need to be developed from a new perspective. In this review, we assess the current state of TKIs and highlight the role of PTPs in cancer and other diseases. With the advances of allosteric inhibition and the development of multiple alternative proprietary drug strategies, the reputation of PTPs as "undruggable" targets has been overturned, and they are now considered viable therapeutic targets. We also discuss the strategies and prospects of PTP-targeted therapy, as well as its future development.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Yusheng Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Hao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
- Zhuhai Institute of Jinan University, Zhuhai 511436, China
| |
Collapse
|
30
|
Gong B, Johnston JD, Thiemicke A, de Marco A, Meyer T. Endoplasmic reticulum-plasma membrane contact gradients direct cell migration. Nature 2024; 631:415-423. [PMID: 38867038 PMCID: PMC11236710 DOI: 10.1038/s41586-024-07527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Directed cell migration is driven by the front-back polarization of intracellular signalling1-3. Receptor tyrosine kinases and other inputs activate local signals that trigger membrane protrusions at the front2,4-6. Equally important is a long-range inhibitory mechanism that suppresses signalling at the back to prevent the formation of multiple fronts7-9. However, the identity of this mechanism is unknown. Here we report that endoplasmic reticulum-plasma membrane (ER-PM) contact sites are polarized in single and collectively migrating cells. The increased density of these ER-PM contacts at the back provides the ER-resident PTP1B phosphatase more access to PM substrates, which confines receptor signalling to the front and directs cell migration. Polarization of the ER-PM contacts is due to microtubule-regulated polarization of the ER, with more RTN4-rich curved ER at the front and more CLIMP63-rich flattened ER at the back. The resulting ER curvature gradient leads to small and unstable ER-PM contacts only at the front. These contacts flow backwards and grow to large and stable contacts at the back to form the front-back ER-PM contact gradient. Together, our study suggests that the structural polarity mediated by ER-PM contact gradients polarizes cell signalling, directs cell migration and prolongs cell migration.
Collapse
Affiliation(s)
- Bo Gong
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| | - Jake D Johnston
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Alexander Thiemicke
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Alex de Marco
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Tobias Meyer
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
31
|
Kołodziej-Sobczak D, Sobczak Ł, Łączkowski KZ. Protein Tyrosine Phosphatase 1B (PTP1B): A Comprehensive Review of Its Role in Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:7033. [PMID: 39000142 PMCID: PMC11241624 DOI: 10.3390/ijms25137033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Overexpression of protein tyrosine phosphatase 1B (PTP1B) disrupts signaling pathways and results in numerous human diseases. In particular, its involvement has been well documented in the pathogenesis of metabolic disorders (diabetes mellitus type I and type II, fatty liver disease, and obesity); neurodegenerative diseases (Alzheimer's disease, Parkinson's disease); major depressive disorder; calcific aortic valve disease; as well as several cancer types. Given this multitude of therapeutic applications, shortly after identification of PTP1B and its role, the pursuit to introduce safe and selective enzyme inhibitors began. Regrettably, efforts undertaken so far have proved unsuccessful, since all proposed PTP1B inhibitors failed, or are yet to complete, clinical trials. Intending to aid introduction of the new generation of PTP1B inhibitors, this work collects and organizes the current state of the art. In particular, this review intends to elucidate intricate relations between numerous diseases associated with the overexpression of PTP1B, as we believe that it is of the utmost significance to establish and follow a brand-new holistic approach in the treatment of interconnected conditions. With this in mind, this comprehensive review aims to validate the PTP1B enzyme as a promising molecular target, and to reinforce future research in this direction.
Collapse
Affiliation(s)
- Dominika Kołodziej-Sobczak
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Łukasz Sobczak
- Hospital Pharmacy, Multidisciplinary Municipal Hospital in Bydgoszcz, Szpitalna 19, 85-826 Bydgoszcz, Poland
| | - Krzysztof Z. Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| |
Collapse
|
32
|
Dong J, Jassim BA, Milholland KL, Qu Z, Bai Y, Miao Y, Miao J, Ma Y, Lin J, Hall MC, Zhang ZY. Development of Novel Phosphonodifluoromethyl-Containing Phosphotyrosine Mimetics and a First-In-Class, Potent, Selective, and Bioavailable Inhibitor of Human CDC14 Phosphatases. J Med Chem 2024; 67:8817-8835. [PMID: 38768084 PMCID: PMC11764038 DOI: 10.1021/acs.jmedchem.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Together with protein tyrosine kinases, protein tyrosine phosphatases (PTPs) control protein tyrosine phosphorylation and regulate numerous cellular functions. Dysregulated PTP activity is associated with the onset of multiple human diseases. Nevertheless, understanding of the physiological function and disease biology of most PTPs remains limited, largely due to the lack of PTP-specific chemical probes. In this study, starting from a well-known nonhydrolyzable phosphotyrosine (pTyr) mimetic, phosphonodifluoromethyl phenylalanine (F2Pmp), we synthesized 7 novel phosphonodifluoromethyl-containing bicyclic/tricyclic aryl derivatives with improved cell permeability and potency toward various PTPs. Furthermore, with fragment- and structure-based design strategies, we advanced compound 9 to compound 15, a first-in-class, potent, selective, and bioavailable inhibitor of human CDC14A and B phosphatases. This study demonstrates the applicability of the fragment-based design strategy in creating potent, selective, and bioavailable PTP inhibitors and provides a valuable probe for interrogating the biological roles of hCDC14 phosphatases and assessing their potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jiajun Dong
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Brenson A. Jassim
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | - Zihan Qu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Yiming Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jinmin Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Yuan Ma
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jianping Lin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Mark C. Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
33
|
Zhuang C, Yang S, Gonzalez CG, Ainsworth RI, Li S, Kobayashi MT, Wierzbicki I, Rossitto LAM, Wen Y, Peti W, Stanford SM, Gonzalez DJ, Murali R, Santelli E, Bottini N. A novel gain-of-function phosphorylation site modulates PTPN22 inhibition of TCR signaling. J Biol Chem 2024; 300:107393. [PMID: 38777143 PMCID: PMC11237943 DOI: 10.1016/j.jbc.2024.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) is encoded by a major autoimmunity gene and is a known inhibitor of T cell receptor (TCR) signaling and drug target for cancer immunotherapy. However, little is known about PTPN22 posttranslational regulation. Here, we characterize a phosphorylation site at Ser325 situated C terminal to the catalytic domain of PTPN22 and its roles in altering protein function. In human T cells, Ser325 is phosphorylated by glycogen synthase kinase-3 (GSK3) following TCR stimulation, which promotes its TCR-inhibitory activity. Signaling through the major TCR-dependent pathway under PTPN22 control was enhanced by CRISPR/Cas9-mediated suppression of Ser325 phosphorylation and inhibited by mimicking it via glutamic acid substitution. Global phospho-mass spectrometry showed Ser325 phosphorylation state alters downstream transcriptional activity through enrichment of Swi3p, Rsc8p, and Moira domain binding proteins, and next-generation sequencing revealed it differentially regulates the expression of chemokines and T cell activation pathways. Moreover, in vitro kinetic data suggest the modulation of activity depends on a cellular context. Finally, we begin to address the structural and mechanistic basis for the influence of Ser325 phosphorylation on the protein's properties by deuterium exchange mass spectrometry and NMR spectroscopy. In conclusion, this study explores the function of a novel phosphorylation site of PTPN22 that is involved in complex regulation of TCR signaling and provides details that might inform the future development of allosteric modulators of PTPN22.
Collapse
Affiliation(s)
- Chuling Zhuang
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA
| | - Shen Yang
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA; Department of Medicine, Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Carlos G Gonzalez
- Department of Pharmacology, University of California, San Diego, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Richard I Ainsworth
- Department of Medicine, Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sheng Li
- Department of Medicine, University of California, San Diego, California, USA
| | - Masumi Takayama Kobayashi
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut, USA
| | - Igor Wierzbicki
- Department of Pharmacology, University of California, San Diego, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Leigh-Ana M Rossitto
- Department of Pharmacology, University of California, San Diego, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Yutao Wen
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut, USA
| | - Stephanie M Stanford
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Eugenio Santelli
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA; Department of Medicine, Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nunzio Bottini
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA; Department of Medicine, Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
34
|
Delibegović M, Dall'Angelo S, Dekeryte R. Protein tyrosine phosphatase 1B in metabolic diseases and drug development. Nat Rev Endocrinol 2024; 20:366-378. [PMID: 38519567 DOI: 10.1038/s41574-024-00965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/25/2024]
Abstract
Protein tyrosine phosphatase 1B (PTP1B), a non-transmembrane phosphatase, has a major role in a variety of signalling pathways, including direct negative regulation of classic insulin and leptin signalling pathways, and is implicated in the pathogenesis of several cardiometabolic diseases and cancers. As such, PTP1B has been a therapeutic target for over two decades, with PTP1B inhibitors identified either from natural sources or developed throughout the years. Some of these inhibitors have reached phase I and/or II clinical trials in humans for the treatment of type 2 diabetes mellitus, obesity and/or metastatic breast cancer. In this Review, we summarize the cellular processes and regulation of PTP1B, discuss evidence from in vivo preclinical and human studies of the association between PTP1B and different disorders, and discuss outcomes of clinical trials. We outline challenges associated with the targeting of this phosphatase (which was, until the past few years, viewed as difficult to target), the current state of the field of PTP1B inhibitors (and dual phosphatase inhibitors) and future directions for manipulating the activity of this key metabolic enzyme.
Collapse
Affiliation(s)
- Mirela Delibegović
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Institute of Medical Sciences, Aberdeen, UK.
| | - Sergio Dall'Angelo
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Institute of Medical Sciences, Aberdeen, UK
| | - Ruta Dekeryte
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Institute of Medical Sciences, Aberdeen, UK
| |
Collapse
|
35
|
Woods VA, Abzalimov RR, Keedy DA. Native dynamics and allosteric responses in PTP1B probed by high-resolution HDX-MS. Protein Sci 2024; 33:e5024. [PMID: 38801229 PMCID: PMC11129624 DOI: 10.1002/pro.5024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/27/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a validated therapeutic target for obesity, diabetes, and certain types of cancer. In particular, allosteric inhibitors hold potential for therapeutic use, but an incomplete understanding of conformational dynamics and allostery in this protein has hindered their development. Here, we interrogate solution dynamics and allosteric responses in PTP1B using high-resolution hydrogen-deuterium exchange mass spectrometry (HDX-MS), an emerging and powerful biophysical technique. Using HDX-MS, we obtain a detailed map of backbone amide exchange that serves as a proxy for the solution dynamics of apo PTP1B, revealing several flexible loops interspersed among more constrained and rigid regions within the protein structure, as well as local regions that exchange faster than expected from their secondary structure and solvent accessibility. We demonstrate that our HDX rate data obtained in solution adds value to estimates of conformational heterogeneity derived from a pseudo-ensemble constructed from ~200 crystal structures of PTP1B. Furthermore, we report HDX-MS maps for PTP1B with active-site versus allosteric small-molecule inhibitors. These maps suggest distinct and widespread effects on protein dynamics relative to the apo form, including changes in locations distal (>35 Å) from the respective ligand binding sites. These results illuminate that allosteric inhibitors of PTP1B can induce unexpected changes in dynamics that extend beyond the previously understood allosteric network. Together, our data suggest a model of BB3 allostery in PTP1B that combines conformational restriction of active-site residues with compensatory liberation of distal residues that aid in entropic balancing. Overall, our work showcases the potential of HDX-MS for elucidating aspects of protein conformational dynamics and allosteric effects of small-molecule ligands and highlights the potential of integrating HDX-MS alongside other complementary methods, such as room-temperature X-ray crystallography, NMR spectroscopy, and molecular dynamics simulations, to guide the development of new therapeutics.
Collapse
Affiliation(s)
- Virgil A. Woods
- Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkNew YorkUSA
- PhD Program in BiochemistryCUNY Graduate CenterNew YorkNew YorkUSA
| | - Rinat R. Abzalimov
- Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkNew YorkUSA
| | - Daniel A. Keedy
- Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkNew YorkUSA
- Department of Chemistry and BiochemistryCity College of New YorkNew YorkNew YorkUSA
- PhD Programs in Biochemistry, Biology, & ChemistryCUNY Graduate CenterNew YorkNew YorkUSA
| |
Collapse
|
36
|
Rezhdo A, Hershman RL, Van Deventer JA. Design, Construction, and Validation of a Yeast-Displayed Chemically Expanded Antibody Library. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596443. [PMID: 38853888 PMCID: PMC11160716 DOI: 10.1101/2024.05.29.596443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In vitro display technologies, exemplified by phage and yeast display, have emerged as powerful platforms for antibody discovery and engineering. However, the identification of antibodies that disrupt target functions beyond binding remains a challenge. In particular, there are very few strategies that support identification and engineering of either protein-based irreversible binders or inhibitory enzyme binders. Expanding the range of chemistries in antibody libraries has the potential to lead to efficient discovery of function-disrupting antibodies. In this work, we describe a yeast display-based platform for the discovery of chemically diversified antibodies. We constructed a billion-member antibody library that supports the presentation of a range of chemistries within antibody variable domains via noncanonical amino acid (ncAA) incorporation and subsequent bioorthogonal click chemistry conjugations. Use of a polyspecific orthogonal translation system enables introduction of chemical groups with various properties, including photo-reactive, proximity-reactive, and click chemistry-enabled functional groups for library screening. We established conjugation conditions that facilitate modification of the full library, demonstrating the feasibility of sorting the full billion-member library in "protein-small molecule hybrid" format in future work. Here, we conducted initial library screens after introducing O-(2-bromoethyl)tyrosine (OBeY), a weakly electrophilic ncAA capable of undergoing proximity-induced crosslinking to a target. Enrichments against donkey IgG and protein tyrosine phosphatase 1B (PTP1B) each led to the identification of several OBeY-substituted clones that bind to the targets of interest. Flow cytometry analysis on the yeast surface confirmed higher retention of binding for OBeY-substituted clones compared to clones substituted with ncAAs lacking electrophilic side chains after denaturation. However, subsequent crosslinking experiments in solution with ncAA-substituted clones yielded inconclusive results, suggesting that weakly reactive OBeY side chain is not sufficient to drive robust crosslinking in the clones isolated here. Nonetheless, this work establishes a multi-modal, chemically expanded antibody library and demonstrates the feasibility of conducting discovery campaigns in chemically expanded format. This versatile platform offers new opportunities for identifying and characterizing antibodies with properties beyond what is accessible with the canonical amino acids, potentially enabling discovery of new classes of reagents, diagnostics, and even therapeutic leads.
Collapse
Affiliation(s)
- Arlinda Rezhdo
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
| | - Rebecca L. Hershman
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
37
|
Yang Z, Ying Y, Cheng S, Wu J, Zhang Z, Hu P, Xiong J, Li H, Zeng Q, Cai Z, Feng Y, Fang Y. Discovery of Selective Proteolysis-Targeting Chimera Degraders Targeting PTP1B as Long-Term Hypoglycemic Agents. J Med Chem 2024; 67:7569-7584. [PMID: 38690687 DOI: 10.1021/acs.jmedchem.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
PTP1B, a promising target for insulin sensitizers in type 2 diabetes treatment, can be effectively degraded using proteolysis-targeting chimera (PROTAC). This approach offers potential for long-acting antidiabetic agents. We report potent bifunctional PROTACs targeting PTP1B through the E3 ubiquitin ligase cereblon. Western blot analysis showed significant PTP1B degradation by PROTACs at concentrations from 5 nM to 5 μM after 48 h. Evaluation of five highly potent PROTACs revealed compound 75 with a longer PEG linker (23 atoms), displaying remarkable degradation activity after 48 and 72 h, with DC50 values of 250 nM and 50 nM, respectively. Compound 75 induced selective degradation of PTP1B, requiring engagement with both the target protein and CRBN E3 ligase, in a ubiquitination and proteasome-dependent manner. It significantly reduced blood glucose AUC0-2h to 29% in an oral glucose tolerance test and activated the IRS-1/PI3K/Akt signaling pathway in HepG2 cells, showing promise for long-term antidiabetic therapy.
Collapse
Affiliation(s)
- Zunhua Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yuqi Ying
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shaobing Cheng
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Jiamin Wu
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Ziwei Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pei Hu
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330103, China
| | - Jian Xiong
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huilan Li
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Qing Zeng
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zhifang Cai
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yulin Feng
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Yuanying Fang
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| |
Collapse
|
38
|
Perez-Quintero LA, Abidin BM, Tremblay ML. Immunotherapeutic implications of negative regulation by protein tyrosine phosphatases in T cells: the emerging cases of PTP1B and TCPTP. Front Med (Lausanne) 2024; 11:1364778. [PMID: 38707187 PMCID: PMC11066278 DOI: 10.3389/fmed.2024.1364778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
In the context of inflammation, T cell activation occurs by the concerted signals of the T cell receptor (TCR), co-stimulatory receptors ligation, and a pro-inflammatory cytokine microenvironment. Fine-tuning these signals is crucial to maintain T cell homeostasis and prevent self-reactivity while offering protection against infectious diseases and cancer. Recent developments in understanding the complex crosstalk between the molecular events controlling T cell activation and the balancing regulatory cues offer novel approaches for the development of T cell-based immunotherapies. Among the complex regulatory processes, the balance between protein tyrosine kinases (PTK) and the protein tyrosine phosphatases (PTPs) controls the transcriptional and metabolic programs that determine T cell function, fate decision, and activation. In those, PTPs are de facto regulators of signaling in T cells acting for the most part as negative regulators of the canonical TCR pathway, costimulatory molecules such as CD28, and cytokine signaling. In this review, we examine the function of two close PTP homologs, PTP1B (PTPN1) and T-cell PTP (TCPTP; PTPN2), which have been recently identified as promising candidates for novel T-cell immunotherapeutic approaches. Herein, we focus on recent studies that examine the known contributions of these PTPs to T-cell development, homeostasis, and T-cell-mediated immunity. Additionally, we describe the signaling networks that underscored the ability of TCPTP and PTP1B, either individually and notably in combination, to attenuate TCR and JAK/STAT signals affecting T cell responses. Thus, we anticipate that uncovering the role of these two PTPs in T-cell biology may lead to new treatment strategies in the field of cancer immunotherapy. This review concludes by exploring the impacts and risks that pharmacological inhibition of these PTP enzymes offers as a therapeutic approach in T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Luis Alberto Perez-Quintero
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Belma Melda Abidin
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
39
|
Chen L, Qian Z, Zheng Y, Zhang J, Sun J, Zhou C, Xiao H. Structural analysis of PTPN21 reveals a dominant-negative effect of the FERM domain on its phosphatase activity. SCIENCE ADVANCES 2024; 10:eadi7404. [PMID: 38416831 PMCID: PMC10901363 DOI: 10.1126/sciadv.adi7404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
PTPN21 belongs to the four-point-one, ezrin, radixin, moesin (FERM) domain-containing protein tyrosine phosphatases (PTP) and plays important roles in cytoskeleton-associated cellular processes like cell adhesion, motility, and cargo transport. Because of the presence of a WPE loop instead of a WPD loop in the phosphatase domain, it is often considered to lack phosphatase activity. However, many of PTPN21's biological functions require its catalytic activity. To reconcile these findings, we have determined the structures of individual PTPN21 FERM, PTP domains, and a complex between FERM-PTP. Combined with biochemical analysis, we have found that PTPN21 PTP is weakly active and is autoinhibited by association with its FERM domain. Disruption of FERM-PTP interaction results in enhanced ERK activation. The oncogenic HPV18 E7 protein binds to PTP at the same location as PTPN21 FERM, indicating that it may act by displacing the FERM domain from PTP. Our results provide mechanistic insight into PTPN21 and benefit functional studies of PTPN21-mediated processes.
Collapse
Affiliation(s)
- Lu Chen
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zijun Qian
- Department of Hematology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yuyuan Zheng
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jie Zhang
- Department of Hematology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Jie Sun
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chun Zhou
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Haowen Xiao
- Department of Hematology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
40
|
Salmond RJ. Targeting Protein Tyrosine Phosphatases to Improve Cancer Immunotherapies. Cells 2024; 13:231. [PMID: 38334623 PMCID: PMC10854786 DOI: 10.3390/cells13030231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Advances in immunotherapy have brought significant therapeutic benefits to many cancer patients. Nonetheless, many cancer types are refractory to current immunotherapeutic approaches, meaning that further targets are required to increase the number of patients who benefit from these technologies. Protein tyrosine phosphatases (PTPs) have long been recognised to play a vital role in the regulation of cancer cell biology and the immune response. In this review, we summarize the evidence for both the pro-tumorigenic and tumour-suppressor function of non-receptor PTPs in cancer cells and discuss recent data showing that several of these enzymes act as intracellular immune checkpoints that suppress effective tumour immunity. We highlight new data showing that the deletion of inhibitory PTPs is a rational approach to improve the outcomes of adoptive T cell-based cancer immunotherapies and describe recent progress in the development of PTP inhibitors as anti-cancer drugs.
Collapse
Affiliation(s)
- Robert J Salmond
- Leeds Institute of Medical Research at St. James's, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
| |
Collapse
|
41
|
Qu Z, Dong J, Zhang ZY. Protein tyrosine phosphatases as emerging targets for cancer immunotherapy. Br J Pharmacol 2023:10.1111/bph.16304. [PMID: 38116815 PMCID: PMC11186978 DOI: 10.1111/bph.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
Contemporary strategies in cancer immunotherapy, despite remarkable success, remain constrained by inherent limitations such as suboptimal patient responses, the emergence of drug resistance, and the manifestation of pronounced adverse effects. Consequently, the need for alternative strategies for immunotherapy becomes clear. Protein tyrosine phosphatases (PTPs) wield a pivotal regulatory influence over an array of essential cellular processes. Substantial research has underscored the potential in targeting PTPs to modulate the immune responses and/or regulate antigen presentation, thereby presenting a novel paradigm for cancer immunotherapy. In this review, we focus on recent advances in genetic and biological validation of several PTPs as emerging targets for immunotherapy. We also highlight recent development of small molecule inhibitors and degraders targeting these PTPs as novel cancer immunotherapeutic agents.
Collapse
Affiliation(s)
- Zihan Qu
- Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Jiajun Dong
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
- Institute for Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
- Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
42
|
Aguilar-Ramírez E, Reyes-Pérez V, Fajardo-Hernández CA, Quezada-Suaste CD, Carreón-Escalante M, Merlin-Lucas V, Quiroz-García B, Granados-Soto V, Rivera-Chávez J. Harnessing the Reactivity of Duclauxin toward Obtaining hPTP1B 1-400 Inhibitors. J Med Chem 2023; 66:16222-16234. [PMID: 38051546 DOI: 10.1021/acs.jmedchem.3c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Duclauxin (1) from Talaromyces sp. IQ-313 was reported as a putative allosteric modulator of human recombinant protein tyrosine phosphatase 1B (400 amino acids) (hPTP1B1-400), a validated target for the treatment of type II diabetes. Based on these findings, a one-strain-many-compound (OSMAC) experiment on the IQ-313 strain generated derivatives 5a, 6, and 7. Moreover, a one-/two-step semisynthetic approach guided by docking toward hPTP1B1-400 produced 38 analogs, a series (A) incorporating a lactam functionalization at C-1 (8a-15a, 36a, and 37a) and a series (B) containing a lactam at C-1 and an extra unsaturation between C-7 and C-8 (5b, 11b-37b). In vitro evaluation and structure-activity relationship (SAR) analysis revealed that analogs from the B series are up to 10-fold more active than 1 and derivatives from the A series. Furthermore, duclauxin (1) and 36b were assessed for their potential acute toxicity, estimating their LD50 to be higher than 300 mg/kg. Moreover, 36b significantly reduced glycemia in an insulin tolerance test in mice, suggesting that its mechanism of action is through the PTP1B inhibition.
Collapse
Affiliation(s)
- Enrique Aguilar-Ramírez
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Valeria Reyes-Pérez
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carlos A Fajardo-Hernández
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carlos D Quezada-Suaste
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mario Carreón-Escalante
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Verenice Merlin-Lucas
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Beatriz Quiroz-García
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Vinicio Granados-Soto
- Pharmacobiology Department, Centro de Investigación y de Estudios Avanzados, Sede Sur, Mexico City 14330, Mexico
| | - José Rivera-Chávez
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
43
|
Coronell-Tovar A, Cortés-Benítez F, González-Andrade M. The importance of including the C-terminal domain of PTP1B 1-400 to identify potential antidiabetic inhibitors. J Enzyme Inhib Med Chem 2023; 38:2170369. [PMID: 36997321 PMCID: PMC10064822 DOI: 10.1080/14756366.2023.2170369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
In the present work, we studied the inhibitory and kinetic implications of classical PTP1B inhibitors (chlorogenic acid, ursolic acid, suramin) using three enzyme constructs (hPTP1B1-285, hPTP1B1-321, and hPTP1B1-400). The results indicate that the unstructured region of PTP1B (300-400 amino acids) is very important both to obtain optimal inhibitory results and propose classical inhibition mechanisms (competitive or non-competitive) through kinetic studies. The IC50 calculated for ursolic acid and suramin using hPTP1B1-400 are around four and three times lower to the short form of the enzyme, the complete form of PTP1B, the one found in the cytosol (in vivo). On the other hand, we highlight the studies of enzymatic kinetics using the hPTP1B1-400 to know the type of enzymatic inhibition and to be able to direct docking studies, where the unstructured region of the enzyme can be one more option for binding compounds with inhibitory activity.
Collapse
Affiliation(s)
- Andrea Coronell-Tovar
- Departamento de Bioquímica, Facultad de Medicina, Laboratorio de Biosensores y Modelaje molecular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Francisco Cortés-Benítez
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Ciudad de México, México
| | - Martin González-Andrade
- Departamento de Bioquímica, Facultad de Medicina, Laboratorio de Biosensores y Modelaje molecular, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
44
|
Hu L, Li H, Qin J, Yang D, Liu J, Luo X, Ma J, Luo C, Ye F, Zhou Y, Li J, Wang M. Discovery of PVD-06 as a Subtype-Selective and Efficient PTPN2 Degrader. J Med Chem 2023; 66:15269-15287. [PMID: 37966047 DOI: 10.1021/acs.jmedchem.3c01348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Protein tyrosine phosphatase nonreceptor Type 2 (PTPN2) is an attractive target for cancer immunotherapy. PTPN2 and another subtype of PTP1B are highly similar in structure, but their biological functions are distinct. Therefore, subtype-selective targeting of PTPN2 remains a challenge for researchers. Herein, the development of small molecular PTPN2 degraders based on a thiadiazolidinone dioxide-naphthalene scaffold and a VHL E3 ligase ligand is described, and the PTPN2/PTP1B subtype-selective degradation is achieved for the first time. The linker structure modifications led to the discovery of the subtype-selective PTPN2 degrader PVD-06 (PTPN2/PTP1B selective index > 60-fold), which also exhibits excellent proteome-wide degradation selectivity. PVD-06 induces PTPN2 degradation in a ubiquitination- and proteasome-dependent manner. It efficiently promotes T cell activation and amplifies IFN-γ-mediated B16F10 cell growth inhibition. This study provides a convenient chemical knockdown tool for PTPN2-related research and a paradigm for subtype-selective PTP degradation through nonspecific substrate-mimicking ligands, demonstrating the therapeutic potential of PTPN2 subtype-selective degradation.
Collapse
Affiliation(s)
- Linghao Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
| | - Huiyun Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou China
| | - Junlin Qin
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Dan Yang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, Guangdong, China
| | - Jieming Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
| | - Xiaomin Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
| | | | - Cheng Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yubo Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
| | - Jia Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Mingliang Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, Guangdong, China
| |
Collapse
|
45
|
Woods VA, Abzalimov RR, Keedy DA. Native dynamics and allosteric responses in PTP1B probed by high-resolution HDX-MS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548582. [PMID: 37503000 PMCID: PMC10369962 DOI: 10.1101/2023.07.12.548582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a validated therapeutic target for obesity, diabetes, and certain types of cancer. In particular, allosteric inhibitors hold potential for therapeutic use, but an incomplete understanding of conformational dynamics and allostery in this protein has hindered their development. Here, we interrogate solution dynamics and allosteric responses in PTP1B using high-resolution hydrogen-deuterium exchange mass spectrometry (HDX-MS), an emerging and powerful biophysical technique. Using HDX-MS, we obtain a detailed map of the solution dynamics of apo PTP1B, revealing several flexible loops interspersed among more constrained and rigid regions within the protein structure, as well as local regions that exchange faster than expected from their secondary structure and buriedness. We demonstrate that our HDX rate data obtained in solution adds value to predictions of dynamics derived from a pseudo-ensemble constructed from ~200 crystal structures of PTP1B. Furthermore, we report HDX-MS maps for PTP1B with active-site vs. allosteric small-molecule inhibitors. These maps reveal distinct, dramatic, and widespread effects on protein dynamics relative to the apo form, including changes to dynamics in locations distal (>35 Å) from the respective ligand binding sites. These results help shed light on the allosteric nature of PTP1B and the surprisingly far-reaching consequences of inhibitor binding in this important protein. Overall, our work showcases the potential of HDX-MS for elucidating protein conformational dynamics and allosteric effects of small-molecule ligands, and highlights the potential of integrating HDX-MS alongside other complementary methods to guide the development of new therapeutics.
Collapse
Affiliation(s)
- Virgil A. Woods
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- PhD Program in Biochemistry, CUNY Graduate Center, New York, NY 10016
| | - Rinat R. Abzalimov
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031
- PhD Programs in Biochemistry, Biology, & Chemistry, CUNY Graduate Center, New York, NY 10016
| |
Collapse
|
46
|
Schlicher L, Green LG, Romagnani A, Renner F. Small molecule inhibitors for cancer immunotherapy and associated biomarkers - the current status. Front Immunol 2023; 14:1297175. [PMID: 38022587 PMCID: PMC10644399 DOI: 10.3389/fimmu.2023.1297175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Following the success of cancer immunotherapy using large molecules against immune checkpoint inhibitors, the concept of using small molecules to interfere with intracellular negative regulators of anti-tumor immune responses has emerged in recent years. The main targets for small molecule drugs currently include enzymes of negative feedback loops in signaling pathways of immune cells and proteins that promote immunosuppressive signals within the tumor microenvironment. In the adaptive immune system, negative regulators of T cell receptor signaling (MAP4K1, DGKα/ζ, CBL-B, PTPN2, PTPN22, SHP1), co-receptor signaling (CBL-B) and cytokine signaling (PTPN2) have been preclinically validated as promising targets and initial clinical trials with small molecule inhibitors are underway. To enhance innate anti-tumor immune responses, inhibitory immunomodulation of cGAS/STING has been in the focus, and inhibitors of ENPP1 and TREX1 have reached the clinic. In addition, immunosuppressive signals via adenosine can be counteracted by CD39 and CD73 inhibition, while suppression via intratumoral immunosuppressive prostaglandin E can be targeted by EP2/EP4 antagonists. Here, we present the status of the most promising small molecule drug candidates for cancer immunotherapy, all residing relatively early in development, and the potential of relevant biomarkers.
Collapse
Affiliation(s)
- Lisa Schlicher
- Cancer Cell Targeted Therapy, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Luke G. Green
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Andrea Romagnani
- Cancer Cell Targeted Therapy, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Florian Renner
- Cancer Cell Targeted Therapy, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| |
Collapse
|
47
|
Friedman AJ, Padgette HM, Kramer L, Liechty ET, Donovan GW, Fox JM, Shirts MR. Biophysical Rationale for the Selective Inhibition of PTP1B over TCPTP by Nonpolar Terpenoids. J Phys Chem B 2023; 127:8305-8316. [PMID: 37729547 PMCID: PMC10694825 DOI: 10.1021/acs.jpcb.3c03791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are emerging drug targets for many diseases, including cancer, autoimmunity, and neurological disorders. A high degree of structural similarity between their catalytic domains, however, has hindered the development of selective pharmacological agents. Our previous research uncovered two unfunctionalized terpenoid inhibitors that selectively inhibit PTP1B over T-cell PTP (TCPTP), two PTPs with high sequence conservation. Here, we use molecular modeling, with supporting experimental validation, to study the molecular basis of this unusual selectivity. Molecular dynamics (MD) simulations suggest that PTP1B and TCPTP share a h-bond network that connects the active site to a distal allosteric pocket; this network stabilizes the closed conformation of the catalytically essential WPD loop, which it links to the L-11 loop and neighboring α3 and α7 helices on the other side of the catalytic domain. Terpenoid binding to either of two proximal C-terminal sites─an α site and a β site─can disrupt the allosteric network; however, binding to the α site forms a stable complex only in PTP1B. In TCPTP, two charged residues disfavor binding at the α site in favor of binding at the β site, which is conserved between the two proteins. Our findings thus indicate that minor amino acid differences at the poorly conserved α site enable selective binding, a property that might be enhanced with chemical elaboration, and illustrate more broadly how minor differences in the conservation of neighboring─yet functionally similar─allosteric sites can affect the selectivity of inhibitory scaffolds (e.g., fragments).
Collapse
Affiliation(s)
- Anika J Friedman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hannah M Padgette
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Levi Kramer
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Evan T Liechty
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Gregory W Donovan
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
48
|
Bourebaba L, Serwotka-Suszczak A, Bourebaba N, Zyzak M, Marycz K. The PTP1B Inhibitor Trodusquemine (MSI-1436) Improves Glucose Uptake in Equine Metabolic Syndrome Affected Liver through Anti-Inflammatory and Antifibrotic Activity. Int J Inflam 2023; 2023:3803056. [PMID: 37808009 PMCID: PMC10560121 DOI: 10.1155/2023/3803056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/12/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Background Hyperactivation of protein tyrosine phosphatase (PTP1B) has been associated with several metabolic malfunctions ranging from insulin resistance, metaflammation, lipotoxicity, and hyperglycaemia. Liver metabolism failure has been proposed as a core element in underlying endocrine disorders through persistent inflammation and highly fibrotic phenotype. Methods In this study, the outcomes of PTP1B inhibition using trodusquemine (MSI-1436) on key equine metabolic syndrome (EMS)-related alterations including inflammation, fibrosis, and glucose uptake have been analyzed in liver explants collected from EMS-affected horses using various analytical techniques, namely, flow cytometry, RT-qPCR, and Western blot. Results PTP1B inhibition using trodusquemine resulted in decreased proinflammatory cytokines (IL-1β, TNF-α, and IL-6) release from liver and PBMC affected by EMS and regulated expression of major proinflammatory microRNAs such as miR-802 and miR-211. Moreover, MSI-1436 enhanced the anti-inflammatory profile of livers by elevating the expression of IL-10 and IL-4 and activating CD4+CD25+Foxp3+ regulatory T cells in treated PBMC. Similarly, the inhibitor attenuated fibrogenic pathways in the liver by downregulating TGF-β/NOX1/4 axis and associated MMP-2/9 overactivation. Interestingly, PTP1B inhibition ameliorated the expression of TIMP-1 and Smad7, both important antifibrotic mediators. Furthermore, application of MSI-1436 was found to augment the abundance of glycosylated Glut-2, which subsequently expanded the glucose absorption in the EMS liver, probably due to an enhanced Glut-2 stability and half-life onto the plasma cell membranes. Conclusion Taken together, the presented data suggest that the PTP1B inhibition strategy and the use of its specific inhibitor MSI-1436 represents a promising option for the improvement of liver tissue integrity and homeostasis in the course of EMS and adds more insights for ongoing clinical trials for human MetS management.
Collapse
Affiliation(s)
- Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, Wrocław 50-375, Poland
| | - Anna Serwotka-Suszczak
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, Wrocław 50-375, Poland
| | - Nabila Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, Wrocław 50-375, Poland
| | - Magdalena Zyzak
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, Wrocław 50-375, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, Wrocław 50-375, Poland
- Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA 95516, USA
| |
Collapse
|
49
|
Thompson MC. Combining temperature perturbations with X-ray crystallography to study dynamic macromolecules: A thorough discussion of experimental methods. Methods Enzymol 2023; 688:255-305. [PMID: 37748829 DOI: 10.1016/bs.mie.2023.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Temperature is an important state variable that governs the behavior of microscopic systems, yet crystallographers rarely exploit temperature changes to study the structure and dynamics of biological macromolecules. In fact, approximately 90% of crystal structures in the Protein Data Bank were determined under cryogenic conditions, because sample cryocooling makes crystals robust to X-ray radiation damage and facilitates data collection. On the other hand, cryocooling can introduce artifacts into macromolecular structures, and can suppress conformational dynamics that are critical for function. Fortunately, recent advances in X-ray detector technology, X-ray sources, and computational data processing algorithms make non-cryogenic X-ray crystallography easier and more broadly applicable than ever before. Without the reliance on cryocooling, high-resolution crystallography can be combined with various temperature perturbations to gain deep insight into the conformational landscapes of macromolecules. This Chapter reviews the historical reasons for the prevalence of cryocooling in macromolecular crystallography, and discusses its potential drawbacks. Next, the Chapter summarizes technological developments and methodologies that facilitate non-cryogenic crystallography experiments. Finally, the chapter discusses the theoretical underpinnings and practical aspects of multi-temperature and temperature-jump crystallography experiments, which are powerful tools for understanding the relationship between the structure, dynamics, and function of proteins and other biological macromolecules.
Collapse
Affiliation(s)
- Michael C Thompson
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, United States.
| |
Collapse
|
50
|
Qian Z, Song D, Ipsaro JJ, Bautista C, Joshua-Tor L, Yeh JTH, Tonks NK. Manipulating PTPRD function with ectodomain antibodies. Genes Dev 2023; 37:743-759. [PMID: 37669874 PMCID: PMC10546974 DOI: 10.1101/gad.350713.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are critical regulators of signal transduction but have yet to be exploited fully for drug development. Receptor protein tyrosine phosphatase δ (RPTPδ/PTPRD) has been shown to elicit tumor-promoting functions, including elevating SRC activity and promoting metastasis in certain cell contexts. Dimerization has been implicated in the inhibition of receptor protein tyrosine phosphatases (RPTPs). We have generated antibodies targeting PTPRD ectodomains with the goal of manipulating their dimerization status ectopically, thereby regulating intracellular signaling. We have validated antibody binding to endogenous PTPRD in a metastatic breast cancer cell line, CAL51, and demonstrated that a monoclonal antibody, RD-43, inhibited phosphatase activity and induced the degradation of PTPRD. Similar effects were observed following chemically induced dimerization of its phosphatase domain. Mechanistically, RD-43 triggered the formation of PTPRD dimers in which the phosphatase activity was impaired. Subsequently, the mAb-PTPRD dimer complex was degraded through lysosomal and proteasomal pathways, independently of secretase cleavage. Consequently, treatment with RD-43 inhibited SRC signaling and suppressed PTPRD-dependent cell invasion. Together, these findings demonstrate that manipulating RPTP function via antibodies to the extracellular segments has therapeutic potential.
Collapse
Affiliation(s)
- Zhe Qian
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Graduate Program of Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11760, USA
| | - Dongyan Song
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Jonathan J Ipsaro
- Howard Hughes Medical Institute, W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | - Leemor Joshua-Tor
- Howard Hughes Medical Institute, W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Johannes T-H Yeh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| |
Collapse
|