1
|
Jungfleisch J, Gebauer F. RNA-binding proteins as therapeutic targets in cancer. RNA Biol 2025; 22:1-8. [PMID: 40016176 PMCID: PMC11869776 DOI: 10.1080/15476286.2025.2470511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
RNA-binding proteins (RBPs) have emerged as critical regulators of cancer progression, influencing virtually all hallmarks of cancer. Their ability to modulate gene expression patterns that promote or inhibit tumorigenesis has positioned RBPs as promising targets for novel anti-cancer therapies. This mini-review summarizes the current state of RBP-targeted cancer treatments, focusing on five examples, eIF4F, FTO, SF3B1, RBM39 and nucleolin. We highlight the diversity of current targeting approaches and discuss ongoing challenges including the complexity of RBP regulatory networks, potential off-target effects and the need for more specific targeting methods. By assessing the future potential of novel therapeutic avenues, we provide insights into the evolving landscape of cancer treatment and the critical role RBPs may play in next-generation therapeutics.
Collapse
Affiliation(s)
- Jennifer Jungfleisch
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
2
|
Piao X, Li D, Liu H, Guo Q, Yu Y. Advances in gene and cellular therapeutic approaches for Huntington's disease. Protein Cell 2025; 16:307-337. [PMID: 39121016 PMCID: PMC12120246 DOI: 10.1093/procel/pwae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/24/2024] [Indexed: 08/11/2024] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the abnormal expansion of CAG trinucleotide repeats in the Huntingtin gene (HTT) located on chromosome 4. It is transmitted in an autosomal dominant manner and is characterized by motor dysfunction, cognitive decline, and emotional disturbances. To date, there are no curative treatments for HD have been developed; current therapeutic approaches focus on symptom relief and comprehensive care through coordinated pharmacological and nonpharmacological methods to manage the diverse phenotypes of the disease. International clinical guidelines for the treatment of HD are continually being revised in an effort to enhance care within a multidisciplinary framework. Additionally, innovative gene and cell therapy strategies are being actively researched and developed to address the complexities of the disorder and improve treatment outcomes. This review endeavours to elucidate the current and emerging gene and cell therapy strategies for HD, offering a detailed insight into the complexities of the disorder and looking forward to future treatment paradigms. Considering the complexity of the underlying mechanisms driving HD, a synergistic treatment strategy that integrates various factors-such as distinct cell types, epigenetic patterns, genetic components, and methods to improve the cerebral microenvironment-may significantly enhance therapeutic outcomes. In the future, we eagerly anticipate ongoing innovations in interdisciplinary research that will bring profound advancements and refinements in the treatment of HD.
Collapse
Affiliation(s)
- Xuejiao Piao
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Dan Li
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Hui Liu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Qing Guo
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yang Yu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
3
|
Krach F, Boerstler T, Neubert S, Krumm L, Regensburger M, Winkler J, Winner B. RNA splicing modulator for Huntington's disease treatment induces peripheral neuropathy. iScience 2025; 28:112380. [PMID: 40343270 PMCID: PMC12059699 DOI: 10.1016/j.isci.2025.112380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/05/2025] [Accepted: 04/03/2025] [Indexed: 05/11/2025] Open
Abstract
RNA splicing modulators, a new class of small molecules with the potential to modify the protein expression levels, have quickly been translated into clinical trials. These compounds hold promise for treating neurodegenerative disorders, including branaplam for lowering huntingtin levels in Huntington's disease. However, the VIBRANT-HD trial was terminated due to the emergence of peripheral neuropathy. Here, we describe the complex mechanism whereby branaplam activates p53, induces nucleolar stress in human induced pluripotent stem cell (iPSC)-derived motor neurons (iPSC-MN), and thereby enhanced expression of the neurotoxic p53-target gene BBC3. On the cellular level, branaplam disrupts neurite integrity, reflected by elevated neurofilament light chain levels. These findings illustrate the complex pharmacology of RNA splicing modulators with a small therapeutic window between lowering huntingtin levels and the clinically relevant off-target effect of neuropathy. Comprehensive toxicological screening in human stem cell models can complement pre-clinical testing before advancing RNA-targeting drugs to clinical trials.
Collapse
Affiliation(s)
- Florian Krach
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
| | - Tom Boerstler
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
| | - Stephanie Neubert
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
| | - Laura Krumm
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
- Center for Rare Disorders (ZSEER), University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
| |
Collapse
|
4
|
Wang J. Genome-Wide Analysis of Stable RNA Secondary Structures across Multiple Organisms Using Chemical Probing Data: Insights into Short Structural Motifs and RNA-Targeting Therapeutics. Biochemistry 2025; 64:1817-1827. [PMID: 40131856 PMCID: PMC12005188 DOI: 10.1021/acs.biochem.4c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
Small molecules targeting specific RNA-binding sites, including stable and transient RNA structures, are emerging as effective pharmacological approaches for modulating gene expression. However, little is understood about how stable RNA secondary structures are shared across organisms, which is an important factor in controlling drug selectivity. In this study, I provide an analytical pipeline named RNA secondary structure finder (R2S-Finder) to discover short, stable RNA structural motifs in humans, Escherichia coli (E. coli), SARS-CoV-2, and Zika virus by leveraging existing in vivo and in vitro genome-wide chemical RNA-probing datasets. I found several common features across the organisms. For example, apart from the well-documented tetraloops, AU-rich tetraloops are widely present in different organisms. I also validated that the 5' untranslated region (UTR) contains a higher proportion of stable structures than the coding sequences in humans and Zika virus. In general, stable structures predicted from in vitro (protein-free) and in vivo datasets are consistent across different organisms, indicating that stable structure formation is mostly driven by RNA folding, while a larger variation was found between in vitro and in vivo data for certain RNA types, such as human long intergenic noncoding RNAs (lincRNAs). Finally, I predicted stable three- and four-way RNA junctions that exist under both in vivo and in vitro conditions and can potentially serve as drug targets. All results of stable structures, stem-loops, internal loops, bulges, and n-way junctions have been collated in the R2S-Finder database (https://github.com/JingxinWangLab/R2S-Finder), which is coded in hyperlinked HTML pages and tabulated in CSV files.
Collapse
Affiliation(s)
- Jingxin Wang
- Section of Genetic Medicine,
Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Disney MD. The Druggable Transcriptome Project: From Chemical Probes to Precision Medicines. Biochemistry 2025; 64:1647-1661. [PMID: 40131857 PMCID: PMC12005196 DOI: 10.1021/acs.biochem.5c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025]
Abstract
RNA presents abundant opportunities as a drug target, offering significant potential for small molecule medicine development. The transcriptome, comprising both coding and noncoding RNAs, is a rich area for therapeutic innovation, yet challenges persist in targeting RNA with small molecules. RNA structure can be predicted with or without experimental data, but discrepancies with the actual biological structure can impede progress. Prioritizing RNA targets supported by genetic or evolutionary evidence enhances success. Further, small molecules must demonstrate binding to RNA in cells, not solely in vitro, to validate both the target and compound. Effective small molecule binders modulate functional sites that influence RNA biology, as binding to nonfunctional sites requires recruiting effector mechanisms, for example degradation, to achieve therapeutic outcomes. Addressing these challenges is critical to unlocking RNA's vast potential for small molecule medicines, and a strategic framework is proposed to navigate this promising field, with a focus on targeting human RNAs.
Collapse
Affiliation(s)
- Matthew D. Disney
- Department
of Chemistry, The Herbert Wertheim UF Scripps
Institute for Biomedical Innovation and Technology, 130 Scripps Way, Jupiter, Florida 33458, United States
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
6
|
Shah R, Yan W, Rigal J, Mullin S, Fan L, McGregor L, Krueger A, Renaud N, Byrnes A, Thomas JR. Photoaffinity enabled transcriptome-wide identification of splice modulating small molecule-RNA binding events in native cells. RSC Chem Biol 2025:d4cb00266k. [PMID: 40226337 PMCID: PMC11986670 DOI: 10.1039/d4cb00266k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Splice modulating small molecules have been developed to promote the U1 snRNP to engage with pre-mRNAs with strong and altered sequence preference. Transcriptomic profiling of bulk RNA from compound treated cells enables detection of RNAs impacted; however, it is difficult to delineate whether transcriptional changes are a consequence of direct compound treatment or trans-acting effects. To identify RNA targets that bind directly with splice modulating compounds, we deployed a photoaffinity labeling (PAL)-based Chem-CLIP approach. Through this workflow, we identify the telomerase lncRNA (TERC) as a previously unknown target of this class of clinically relevant small molecules. Using cellular ΔSHAPE-MaP, we orthogonally validate and further define the compound binding site as likely to be the conserved CR4/5 domain. Additionally, a thorough analysis of the PAL-based Chem-CLIP data reveals that considering competed RNAs, irrespective of magnitude of enrichment, adds a rich dimension of hit calling.
Collapse
Affiliation(s)
- Raven Shah
- Novartis Biomedical Research, Discovery Sciences Cambridge MA USA
| | - Wanlin Yan
- Novartis Biomedical Research, Discovery Sciences Cambridge MA USA
| | - Joyce Rigal
- Novartis Biomedical Research, Discovery Sciences Cambridge MA USA
| | - Steve Mullin
- Novartis Biomedical Research, Discovery Sciences Cambridge MA USA
| | - Lin Fan
- Novartis Biomedical Research, Discovery Sciences Cambridge MA USA
| | - Lynn McGregor
- Novartis Biomedical Research, Discovery Sciences Cambridge MA USA
| | - Andrew Krueger
- Novartis Biomedical Research, Discovery Sciences Cambridge MA USA
| | - Nicole Renaud
- Novartis Biomedical Research, Discovery Sciences Cambridge MA USA
| | - Andrea Byrnes
- Novartis Biomedical Research, Discovery Sciences Cambridge MA USA
| | - Jason R Thomas
- Novartis Biomedical Research, Discovery Sciences Cambridge MA USA
| |
Collapse
|
7
|
Samowitz P, Radnai L, Vaissiere T, Michaelson SD, Rojas C, Mitchell R, Kilinc M, Edwards A, Shumate J, Hawkins R, Fernandez-Vega V, Spicer TP, Scampavia L, Kamenecka T, Miller CA, Rumbaugh G. The Endo-GeneScreen Platform Identifies Drug-Like Probes that Regulate Endogenous Protein Levels within Physiological Contexts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643156. [PMID: 40161629 PMCID: PMC11952490 DOI: 10.1101/2025.03.13.643156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Traditional phenotypic drug discovery platforms have suffered from poor scalability and a lack of mechanistic understanding of newly discovered phenotypic probes. To address this, we created Endo- GeneScreen (EGS), a high-throughput enabled screening platform that identifies bioactive small molecules capable of regulating endogenous protein expression encoded by any preselected target gene within a biologically appropriate context. As a proof-of-concept, EGS successfully identified drug candidates that up-regulate endogenous expression of neuronal Syngap1, a gene that causes a neurodevelopmental disorder when haploinsufficient. For example, SR-1815, a previously unknown and undescribed kinase inhibitor, alleviated major cellular consequences of Syngap1 loss-of-function by restoring normal SynGAP protein levels and dampening neuronal hyperactivity within haploinsufficient neurons. Moreover, we demonstrate that EGS assays accelerate preclinical development of identified drug candidates and facilitate mode-of-action deconvolution studies. Thus, EGS identifies first-in-class bioactive small molecule probes that promote biological discovery and precision therapeutic development.
Collapse
|
8
|
Marzec P, Richer M, Lahue RS. Therapeutic targeting of mismatch repair proteins in triplet repeat expansion diseases. DNA Repair (Amst) 2025; 147:103817. [PMID: 40010080 DOI: 10.1016/j.dnarep.2025.103817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/28/2025]
Abstract
Triplet repeat expansion diseases are a class of ∼20 inherited neurological disorders. Many of these diseases are debilitating, sometimes fatally so, and they have unfortunately proved difficult to treat. New compelling evidence shows that somatic repeat expansions in some diseases are essential to the pathogenic process, accelerating the age of onset and the rate of disease progression. Inhibiting somatic repeat expansions, therefore, provides a therapeutic opportunity to delay or block disease onset and/or slow progression. Several key aspects enhance the appeal of this therapeutic approach. First, the proteins responsible for promoting expansions are known from human genetics and model systems, obviating the need for lengthy target searches. They include the mismatch repair proteins MSH3, PMS1 and MLH3. Second, inhibiting or downregulating any of these three proteins is attractive due to their good safety profiles. Third, having three potential targets helps mitigate risk. Fourth, another protein, the nuclease FAN1, protects against expansions; in principle, increasing FAN1 activity could be therapeutic. Fifth, therapies aimed at inhibiting somatic repeat expansions could be used against several diseases that display this shared mechanistic feature, offering the opportunity for one treatment against multiple diseases. This review will address the underlying findings and the recent therapeutic advances in targeting MSH3, PMS1, MLH3 and FAN1 in triplet repeat expansion diseases.
Collapse
Affiliation(s)
- Paulina Marzec
- LoQus23 Therapeutics Ltd, Cambridge CB22 3AT, United Kingdom
| | | | - Robert S Lahue
- Centre for Chromosome Biology, University of Galway, H91W2TY, Ireland; Galway Neuroscience Centre, University of Galway, H91W2TY, Ireland.
| |
Collapse
|
9
|
Neil CR, Schaening-Burgos C, Alexis MS, Reynolds DJ, Smith PG, Seiler MW, Vaillancourt FH, Agrawal AA. Poison exons: tuning RNA splicing for targeted gene regulation. Trends Pharmacol Sci 2025; 46:264-278. [PMID: 39915130 DOI: 10.1016/j.tips.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 03/09/2025]
Abstract
Poison exons (PEs) are a class of alternatively spliced exons whose inclusion targets mRNA transcripts for degradation via the nonsense-mediated decay (NMD) pathway. Although a role for NMD as an essential mRNA quality control pathway has long been appreciated, recent advances in RNA sequencing (RNA-seq) strategies and analyses have revealed that its coupling to RNA splicing is broadly used to regulate mRNA stability and abundance. Regulation of PE splicing affects patterns of targeted degradation across the transcriptome and influences gene expression in both healthy and disease states. Importantly, PEs represent a novel therapeutic opportunity to modulate the expression of disease-relevant genes with sequence-specific resolution. We review the emergence of PE splicing in endogenous gene regulation, its misregulation in disease, and the ways in which it can be leveraged for therapeutic benefit.
Collapse
|
10
|
Pagiazitis JG, Delestrée N, Sowoidnich L, Sivakumar N, Simon CM, Chatzisotiriou A, Albani M, Mentis GZ. Catecholaminergic dysfunction drives postural and locomotor deficits in a mouse model of spinal muscular atrophy. Cell Rep 2025; 44:115147. [PMID: 39752251 PMCID: PMC11832083 DOI: 10.1016/j.celrep.2024.115147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/24/2024] [Accepted: 12/12/2024] [Indexed: 02/01/2025] Open
Abstract
Development and maintenance of posture is essential behavior for overground mammalian locomotion. Dopamine and noradrenaline strongly influence locomotion, and their dysregulation initiates the development of motor impairments linked to neurodegenerative disease. However, the precise cellular and circuit mechanisms are not well defined. Here, we investigated the role of catecholaminergic neuromodulation in a mouse model of spinal muscular atrophy (SMA). SMA is characterized by severe motor dysfunction and postural deficits. We identify progressive loss of catecholaminergic synapses from spinal neurons that occur via non-cell autonomous mechanisms. Importantly, the selective restoration of survival motor neuron (SMN) in either catecholaminergic or serotonergic neurons is sufficient to correct impairments in locomotion. However, only combined SMN restoration in both catecholaminergic and serotonergic neurons or pharmacological treatment with l-dopa improve the severe postural deficits. These findings uncover the synaptic and cellular mechanisms responsible for the postural and motor symptoms in SMA and identify catecholaminergic neuromodulation as a potential therapeutic target.
Collapse
Affiliation(s)
- John G Pagiazitis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Nicolas Delestrée
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Leonie Sowoidnich
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Nandhini Sivakumar
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Christian M Simon
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Athanasios Chatzisotiriou
- Department of Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Maria Albani
- Department of Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - George Z Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
11
|
Şimşek DC, Çetin KDK. Emotions experienced by parents whose children have spinal muscular atrophy: A qualitative research. J Pediatr Nurs 2025; 80:e111-e119. [PMID: 39645418 DOI: 10.1016/j.pedn.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND The lifelong and intensive treatment and care process of Spinal Muscular Atrophy may cause a decrease in the life quality of the child and the parents. This study aims to examine the emotions of parents who have a child with Spinal Muscular Atrophy within the framework of a phenomenological design. METHODS This study was conducted with a phenomenological design. The study was carried out between August 2022 and April 2024 with the parents of children treated for Spinal Muscular Atrophy in the pediatric ward of a university hospital. Using a purposive sampling method, 11 parents were involved in interviews. A semi-structured questionnaire was employed during the interviews, and all the interviews were audio recorded. The data analysis done by applying the inductive thematic analysis method. The study was carried out according to the COREQ checklist. FINDINGS It was found that 54.54 % of the children who participated in the study were diagnosed with Spinal Muscular Atrophy between the ages of 0 and 1 year, 72.72 % between 0 and 6 months, and 54.54 % were Spinal Muscular Atrophy TYPE 1 patients. As a result of thematic analysis method, five main and ten sub-themes had emerged. These are; (1) helplessness (helplessness of having to accept, helplessness of not being able to spare time), (2) being upset (being upset about the symptoms of the disease, feeling misunderstood, sadness about their healthy children), (3) stress (stress due to the intensive and exhausting treatment and care process, stress due to the economic situation), (4) fear (fear of death, fear of future pregnancies), (5) unhappiness (being unhappy with the changing living conditions). DISCUSSION It was observed that parents who have a child with Spinal Muscular Atrophy experience emotional challenges. APPLICATION TO PRACTICE Gaining insights into the perspectives of parents can enable healthcare professionals to better understand the negative emotional experiences of parents caring for children with Spinal Muscular Atrophy. Such understanding may guide the development of targeted strategies to provide comprehensive psychological support aimed at improving parental mental health outcomes. Increasing awareness among healthcare professionals and the broader society fosters a more informed and empathetic approach to addressing the challenges faced by children with Spinal Muscular Atrophy and their families, enhancing the quality of care and support provided.
Collapse
Affiliation(s)
- Didem Coşkun Şimşek
- Fırat University, Faculty of Health Sciences, Department of Pediatric Nursing, Elazığ, Turkey.
| | | |
Collapse
|
12
|
Aguilar R, Mardones C, Moreno AA, Cepeda-Plaza M. A guide to RNA structure analysis and RNA-targeting methods. FEBS J 2024. [PMID: 39718192 DOI: 10.1111/febs.17368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/22/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
RNAs are increasingly recognized as promising therapeutic targets, susceptible to modulation by strategies that include targeting with small molecules, antisense oligonucleotides, deoxyribozymes (DNAzymes), or CRISPR/Cas13. However, while drug development for proteins follows well-established paths for rational design based on the accurate knowledge of their three-dimensional structure, RNA-targeting strategies are challenging since comprehensive RNA structures are yet scarce and challenging to acquire. Numerous methods have been developed to elucidate the secondary and three-dimensional structure of RNAs, including X-ray crystallography, cryo-electron microscopy, nuclear magnetic resonance, SHAPE, DMS, and bioinformatic methods, yet they have often revealed flexible transcripts and co-existing populations rather than single-defined structures. Thus, researchers aiming to target RNAs face a critical decision: whether to acquire the detailed structure of transcripts in advance or to adopt phenotypic screens or sequence-based approaches that are independent of the structure. Still, even in strategies that seem to rely only on the nucleotide sequence (like the design of antisense oligonucleotides), researchers may need information about the accessibility of the compounds to the folded RNA molecule. In this concise guide, we provide an overview for researchers interested in targeting RNAs: We start by revisiting current methodologies for defining secondary or three-dimensional RNA structure and then we explore RNA-targeting strategies that may or may not require an in-depth knowledge of RNA structure. We envision that complementary approaches may expedite the development of RNA-targeting molecules to combat disease.
Collapse
Affiliation(s)
- Rodrigo Aguilar
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Constanza Mardones
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Adrian A Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | | |
Collapse
|
13
|
Mikutis S, Bernardes GJL. Technologies for Targeted RNA Degradation and Induced RNA Decay. Chem Rev 2024; 124:13301-13330. [PMID: 39499674 PMCID: PMC11638902 DOI: 10.1021/acs.chemrev.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
The vast majority of the human genome codes for RNA, but RNA-targeting therapeutics account for a small fraction of approved drugs. As such, there is great incentive to improve old and develop new approaches to RNA targeting. For many RNA targeting modalities, just binding is not sufficient to exert a therapeutic effect; thus, targeted RNA degradation and induced decay emerged as powerful approaches with a pronounced biological effect. This review covers the origins and advanced use cases of targeted RNA degrader technologies grouped by the nature of the targeting modality as well as by the mode of degradation. It covers both well-established methods and clinically successful platforms such as RNA interference, as well as emerging approaches such as recruitment of RNA quality control machinery, CRISPR, and direct targeted RNA degradation. We also share our thoughts on the biggest hurdles in this field, as well as possible ways to overcome them.
Collapse
Affiliation(s)
- Sigitas Mikutis
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Gonçalo J. L. Bernardes
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
14
|
Basak S, Biswas N, Gill J, Ashili S. Spinal Muscular Atrophy: Current Medications and Re-purposed Drugs. Cell Mol Neurobiol 2024; 44:75. [PMID: 39514016 PMCID: PMC11549153 DOI: 10.1007/s10571-024-01511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic neuromuscular disorder that is characterized by gradual muscle weakness and atrophy due to the degeneration of alpha motor neurons that are present on the anterior horn of the spinal cord. Despite the comprehensive investigations conducted by global scientists, effective treatments or interventions remain elusive. The time- and resource-intensive nature of the initial stages of drug research underscores the need for alternate strategies like drug repurposing. This review explores the repurposed drugs that have shown some improvement in treating SMA, including branaplam, riluzole, olesoxime, harmine, and prednisolone. The current strategy for medication repurposing, however, lacks systematicity and frequently depends more on serendipitous discoveries than on organized approaches. To speed up the development of successful therapeutic interventions, it is apparent that a methodical approach targeting the molecular origins of SMA is strictly required.
Collapse
Affiliation(s)
| | - Nupur Biswas
- Rhenix Lifesciences, Hyderabad, 500038, Telangana, India.
- CureScience, 5820 Oberlin Dr, Suite 202, San Diego, CA, 92121, USA.
| | - Jaya Gill
- CureScience, 5820 Oberlin Dr, Suite 202, San Diego, CA, 92121, USA
| | | |
Collapse
|
15
|
Barraza SJ, Woll MG. Pre‐mRNA Splicing Modulation. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2024:151-202. [DOI: 10.1002/9783527840458.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Hegde S, Akhter S, Tang Z, Qi C, Yu C, Lewicka A, Liu Y, Koirala K, Reibarkh M, Battaile KP, Cooper A, Lovell S, Holmstrom ED, Wang X, Piccirilli JA, Gao Q, Miao Y, Wang J. Mechanistic Studies of Small Molecule Ligands Selective to RNA Single G Bulges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618236. [PMID: 39464119 PMCID: PMC11507752 DOI: 10.1101/2024.10.14.618236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Small-molecule RNA binders have emerged as an important pharmacological modality. A profound understanding of the ligand selectivity, binding mode, and influential factors governing ligand engagement with RNA targets is the foundation for rational ligand design. Here, we report a novel class of coumarin derivatives exhibiting selective binding affinity towards single G RNA bulges. Harnessing the computational power of all-atom Gaussian accelerated Molecular Dynamics (GaMD) simulations, we unveiled a rare minor groove binding mode of the ligand with a key interaction between the coumarin moiety and the G bulge. This predicted binding mode is consistent with results obtained from structure-activity-relationship (SAR) studies and transverse relaxation measurements by NMR spectroscopy. We further generated 444 molecular descriptors from 69 coumarin derivatives and identified key contributors to the binding events, such as charge state and planarity, by lasso (least absolute shrinkage and selection operator) regression. Strikingly, small structure perturbations on these key contributors, such as the addition of a methyl group that disrupts the planarity of the ligand resulted in > 100-fold reduction in the binding affinity. Our work deepened the understanding of RNA-small molecule interactions and integrated a new generalizable platform for the rational design of selective small-molecule RNA binders.
Collapse
Affiliation(s)
- Shalakha Hegde
- Section of Genetic Medicine, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, USA
- These authors contributed equally
| | - Sana Akhter
- Pharmacology and Computational Medicine Program, University of North Carolina, Chapel Hill, NC, USA
- These authors contributed equally
| | - Zhichao Tang
- Section of Genetic Medicine, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, USA
- These authors contributed equally
| | - Chang Qi
- Analytical Research & Development, Merck & Co., Inc, Rahway, NJ, USA
| | - Chenguang Yu
- Calibr-Skaggs Institute for Innovative Medicines, The Scripps Research Institute, La Jolla, CA, USA
| | - Anna Lewicka
- Department of Biochemistry and Molecular Biology, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Yu Liu
- Department of Chemistry, Rockhurst University, Kansas City, MO, USA
| | - Kushal Koirala
- Pharmacology and Computational Medicine Program, University of North Carolina, Chapel Hill, NC, USA
| | - Mikhail Reibarkh
- Analytical Research & Development, Merck & Co., Inc, Rahway, NJ, USA
| | | | - Anne Cooper
- Protein Structure and X-ray Crystallography Laboratory, University of Kansas, Lawrence, KS, USA
| | - Scott Lovell
- Protein Structure and X-ray Crystallography Laboratory, University of Kansas, Lawrence, KS, USA
| | - Erik D. Holmstrom
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Xiao Wang
- Analytical Research & Development, Merck & Co., Inc, Rahway, NJ, USA
| | - Joseph A. Piccirilli
- Department of Biochemistry and Molecular Biology, Biological Sciences Division, University of Chicago, Chicago, IL, USA
- Department of Chemistry, Physical Sciences Division, University of Chicago, Chicago, IL, USA
| | - Qi Gao
- Analytical Research & Development, Merck & Co., Inc, Rahway, NJ, USA
| | - Yinglong Miao
- Pharmacology and Computational Medicine Program, University of North Carolina, Chapel Hill, NC, USA
| | - Jingxin Wang
- Section of Genetic Medicine, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
White DS, Dunyak BM, Vaillancourt FH, Hoskins AA. A sequential binding mechanism for 5' splice site recognition and modulation for the human U1 snRNP. Nat Commun 2024; 15:8776. [PMID: 39389991 PMCID: PMC11467380 DOI: 10.1038/s41467-024-53124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Splice site recognition is essential for defining the transcriptome. Drugs like risdiplam and branaplam change how human U1 snRNP recognizes particular 5' splice sites (5'SS) and promote U1 snRNP binding and splicing at these locations. Despite the therapeutic potential of 5'SS modulators, the complexity of their interactions and snRNP substrates have precluded defining a mechanism for 5'SS modulation. We have determined a sequential binding mechanism for modulation of -1A bulged 5'SS by branaplam using a combination of ensemble kinetic measurements and colocalization single molecule spectroscopy (CoSMoS). Our mechanism establishes that U1-C protein binds reversibly to U1 snRNP, and branaplam binds to the U1 snRNP/U1-C complex only after it has engaged with a -1A bulged 5'SS. Obligate orders of binding and unbinding explain how reversible branaplam interactions cause formation of long-lived U1 snRNP/5'SS complexes. Branaplam targets a ribonucleoprotein, not only an RNA duplex, and its action depends on fundamental properties of 5'SS recognition.
Collapse
Affiliation(s)
- David S White
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Element Biosciences, San Diego, CA, USA
| | | | | | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
18
|
Wang J. Genome-Wide Identification of Stable RNA Secondary Structures Across Multiple Organisms Using Chemical Probing Data: Insights into Short Structural Motifs and RNA-Targeting Therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617329. [PMID: 39416040 PMCID: PMC11482745 DOI: 10.1101/2024.10.08.617329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Small molecules targeting specific RNA binding sites, including stable and transient RNA structures, are emerging as effective pharmacological approaches for modulating gene expression. However, little is understood about how stable RNA secondary structures are shared across organisms, an important factor in controlling drug selectivity. In this study, I provide an analytical pipeline named RNA Secondary Structure Finder (R2S-Finder) to discover short, stable RNA structural motifs for humans, Escherichia coli ( E. coli ), SARS-CoV-2, and Zika virus by leveraging existing in vivo and in vitro genome-wide chemical RNA-probing datasets. I found several common features across organisms. For example, apart from the well-documented tetraloops, AU-rich tetraloops are widely present in different organisms. I also found that the 5' untranslated region (UTR) contains a higher proportion of stable structures than the coding sequences in humans, SARS-CoV-2, and Zika virus. In general, stable structures predicted from in vitro (protein-free) and in vivo datasets are consistent in humans, E. coli , and SARS-CoV-2, indicating that most stable structure formation were driven by RNA folding alone, while a larger variation was found between in vitro and in vivo data with certain RNA types, such as human long intergenic non-coding RNAs (lincRNAs). Finally, I predicted stable three- and four-way RNA junctions that exist both in vivo and in vitro conditions, which can potentially serve as drug targets. All results of stable sequences, stem-loops, internal loops, bulges, and three- and four-way junctions have been collated in the R2S-Finder database ( https://github.com/JingxinWangLab/R2S-Finder ), which is coded in hyperlinked HTML pages and tabulated in CSV files.
Collapse
|
19
|
Martínez-Lumbreras S, Morguet C, Sattler M. Dynamic interactions drive early spliceosome assembly. Curr Opin Struct Biol 2024; 88:102907. [PMID: 39168044 DOI: 10.1016/j.sbi.2024.102907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Splicing is a critical processing step during pre-mRNA maturation in eukaryotes. The correct selection of splice sites during the early steps of spliceosome assembly is highly important and crucial for the regulation of alternative splicing. Splice site recognition and alternative splicing depend on cis-regulatory sequence elements in the RNA and trans-acting splicing factors that recognize these elements and crosstalk with the canonical splicing machinery. Structural mechanisms involving early spliceosome complexes are governed by dynamic RNA structures, protein-RNA interactions and conformational flexibility of multidomain RNA binding proteins. Here, we highlight structural studies and integrative structural biology approaches, which provide complementary information from cryo-EM, NMR, small angle scattering, and X-ray crystallography to elucidate mechanisms in the regulation of early spliceosome assembly and quality control, highlighting the role of conformational dynamics.
Collapse
Affiliation(s)
- Santiago Martínez-Lumbreras
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Clara Morguet
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstrasse 4, 85747 Garching, Germany.
| |
Collapse
|
20
|
Chen S, Mao Q, Cheng H, Tai W. RNA-Binding Small Molecules in Drug Discovery and Delivery: An Overview from Fundamentals. J Med Chem 2024; 67:16002-16017. [PMID: 39287926 DOI: 10.1021/acs.jmedchem.4c01330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
RNA molecules, similar to proteins, fold into complex structures to confer diverse functions in cells. The intertwining of functions with RNA structures offers a new therapeutic opportunity for small molecules to bind and manipulate disease-relevant RNA pathways, thus creating a therapeutic realm of RNA-binding small molecules. The ongoing interest in RNA targeting and subsequent screening campaigns have led to the identification of numerous compounds that can regulate RNAs from splicing, degradation to malfunctions, with therapeutic benefits for a variety of diseases. Moreover, along with the rise of RNA-based therapeutics, RNA-binding small molecules have expanded their application to the modification, regulation, and delivery of RNA drugs, leading to the burgeoning interest in this field. This Perspective overviews the emerging roles of RNA-binding small molecules in drug discovery and delivery, covering aspects from their action fundamentals to therapeutic applications, which may inspire researchers to advance the field.
Collapse
Affiliation(s)
- Siyi Chen
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Qi Mao
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Hong Cheng
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Wanyi Tai
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
21
|
Han TW, Portz B, Young RA, Boija A, Klein IA. RNA and condensates: Disease implications and therapeutic opportunities. Cell Chem Biol 2024; 31:1593-1609. [PMID: 39303698 DOI: 10.1016/j.chembiol.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
Biomolecular condensates are dynamic membraneless organelles that compartmentalize proteins and RNA molecules to regulate key cellular processes. Diverse RNA species exert their effects on the cell by their roles in condensate formation and function. RNA abnormalities such as overexpression, modification, and mislocalization can lead to pathological condensate behaviors that drive various diseases, including cancer, neurological disorders, and infections. Here, we review RNA's role in condensate biology, describe the mechanisms of RNA-induced condensate dysregulation, note the implications for disease pathogenesis, and discuss novel therapeutic strategies. Emerging approaches to targeting RNA within condensates, including small molecules and RNA-based therapies that leverage the unique properties of condensates, may revolutionize treatment for complex diseases.
Collapse
Affiliation(s)
| | | | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ann Boija
- Dewpoint Therapeutics, Boston, MA, USA.
| | | |
Collapse
|
22
|
Chi Y, Lu X, Li S, Wang J, Xi J, Zhou X, Tang C, Chen M, Yuan H, Lin S, Xiao Y, Lai L, Zou Q. A compact, versatile drug-induced splicing switch system with minimal background expression. CELL REPORTS METHODS 2024; 4:100842. [PMID: 39236714 PMCID: PMC11440066 DOI: 10.1016/j.crmeth.2024.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024]
Abstract
Gene-switch techniques hold promising applications in contemporary genetics research, particularly in disease treatment and genetic engineering. Here, we developed a compact drug-induced splicing system that maintains low background using a human ubiquitin C (hUBC) promoter and optimized drug (LMI070) binding sequences based on the Xon switch system. To ensure precise subcellular localization of the protein of interest (POI), we inserted a 2A self-cleaving peptide between the extra N-terminal peptide and POI. This streamlined and optimized switch system, named miniXon2G, effectively regulated POIs in different subcellular localizations both in vitro and in vivo. Furthermore, miniXon2G could be integrated into endogenous gene loci, resulting in precise, reversible regulation of target genes by both endogenous regulators and drugs. Overall, these findings highlight the performance of miniXon2G in controlling protein expression with great potential for general applicability to diverse biological scenarios requiring precise and delicate regulation.
Collapse
Affiliation(s)
- Yue Chi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Xuan Lu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Shuangpeng Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Jinling Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Jiahui Xi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Xiaoqing Zhou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Chengcheng Tang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Min Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Hui Yuan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Shuo Lin
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Yingying Xiao
- Jiangmen Wuyi Traditional Chinese Medicine Hospital, Jiangmen 529000, China
| | - Liangxue Lai
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Qingjian Zou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
23
|
Fullenkamp CR, Mehdi S, Jones CP, Tenney L, Pichling P, Prestwood PR, Ferré-D’Amaré AR, Tiwary P, Schneekloth JS. Machine learning-augmented molecular dynamics simulations (MD) reveal insights into the disconnect between affinity and activation of ZTP riboswitch ligands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612887. [PMID: 39314358 PMCID: PMC11419147 DOI: 10.1101/2024.09.13.612887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The challenge of targeting RNA with small molecules necessitates a better understanding of RNA-ligand interaction mechanisms. However, the dynamic nature of nucleic acids, their ligand-induced stabilization, and how conformational changes influence gene expression pose significant difficulties for experimental investigation. This work employs a combination of computational and experimental methods to address these challenges. By integrating structure-informed design, crystallography, and machine learning-augmented all-atom molecular dynamics simulations (MD) we synthesized, biophysically and biochemically characterized, and studied the dissociation of a library of small molecule activators of the ZTP riboswitch, a ligand-binding RNA motif that regulates bacterial gene expression. We uncovered key interaction mechanisms, revealing valuable insights into the role of ligand binding kinetics on riboswitch activation. Further, we established that ligand on-rates determine activation potency as opposed to binding affinity and elucidated RNA structural differences, which provide mechanistic insights into the interplay of RNA structure on riboswitch activation.
Collapse
Affiliation(s)
| | - Shams Mehdi
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
| | - Christopher P. Jones
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Logan Tenney
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Patricio Pichling
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peri R. Prestwood
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Adrian R. Ferré-D’Amaré
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
- University of Maryland Institute for Health Computing, Bethesda, Maryland 20852, USA
| | | |
Collapse
|
24
|
Herrero-Vicente J, Black DL, Valcárcel J. Splice-modifying drug mechanisms. Nat Chem Biol 2024; 20:1103-1105. [PMID: 39060391 DOI: 10.1038/s41589-024-01678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Affiliation(s)
- Jorge Herrero-Vicente
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Douglas L Black
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
25
|
Fair B, Buen Abad Najar CF, Zhao J, Lozano S, Reilly A, Mossian G, Staley JP, Wang J, Li YI. Global impact of unproductive splicing on human gene expression. Nat Genet 2024; 56:1851-1861. [PMID: 39223315 PMCID: PMC11387194 DOI: 10.1038/s41588-024-01872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Alternative splicing (AS) in human genes is widely viewed as a mechanism for enhancing proteomic diversity. AS can also impact gene expression levels without increasing protein diversity by producing 'unproductive' transcripts that are targeted for rapid degradation by nonsense-mediated decay (NMD). However, the relative importance of this regulatory mechanism remains underexplored. To better understand the impact of AS-NMD relative to other regulatory mechanisms, we analyzed population-scale genomic data across eight molecular assays, covering various stages from transcription to cytoplasmic decay. We report threefold more unproductive splicing compared with prior estimates using steady-state RNA. This unproductive splicing compounds across multi-intronic genes, resulting in 15% of transcript molecules from protein-coding genes being unproductive. Leveraging genetic variation across cell lines, we find that GWAS trait-associated loci explained by AS are as often associated with NMD-induced expression level differences as with differences in protein isoform usage. Our findings suggest that much of the impact of AS is mediated by NMD-induced changes in gene expression rather than diversification of the proteome.
Collapse
Affiliation(s)
- Benjamin Fair
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Junxing Zhao
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Stephanie Lozano
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
- Center for Neuroscience, University of California Davis, Davis, CA, USA
| | - Austin Reilly
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Gabriela Mossian
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Yang I Li
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
26
|
Rot G, Wehling A, Schmucki R, Berntenis N, Zhang JD, Ebeling M. splicekit: an integrative toolkit for splicing analysis from short-read RNA-seq. BIOINFORMATICS ADVANCES 2024; 4:vbae121. [PMID: 39219843 PMCID: PMC11364168 DOI: 10.1093/bioadv/vbae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Motivation Analysis of alternative splicing using short-read RNA-seq data is a complex process that involves several steps: alignment of reads to the reference genome, identification of alternatively spliced features, motif discovery, analysis of RNA-protein binding near donor and acceptor splice sites, and exploratory data visualization. To the best of our knowledge, there is currently no integrative open-source software dedicated to this task. Results Here, we introduce splicekit, a Python package that provides and integrates a set of existing and novel splicing analysis tools for conducting splicing analysis. Availability and implementation The software splicekit is open-source and available at Github (https://github.com/bedapub/splicekit) and via the Python Package Index.
Collapse
Affiliation(s)
- Gregor Rot
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Arne Wehling
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Roland Schmucki
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Nikolaos Berntenis
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Jitao David Zhang
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Martin Ebeling
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
27
|
Gentile JE, Corridon TL, Mortberg MA, D'Souza EN, Whiffin N, Minikel EV, Vallabh SM. Modulation of prion protein expression through cryptic splice site manipulation. J Biol Chem 2024; 300:107560. [PMID: 39002681 PMCID: PMC11342779 DOI: 10.1016/j.jbc.2024.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024] Open
Abstract
Lowering expression of prion protein (PrP) is a well-validated therapeutic strategy in prion disease, but additional modalities are urgently needed. In other diseases, small molecules have proven capable of modulating pre-mRNA splicing, sometimes by forcing inclusion of cryptic exons that reduce gene expression. Here, we characterize a cryptic exon located in human PRNP's sole intron and evaluate its potential to reduce PrP expression through incorporation into the 5' untranslated region. This exon is homologous to exon 2 in nonprimate species but contains a start codon that would yield an upstream open reading frame with a stop codon prior to a splice site if included in PRNP mRNA, potentially downregulating PrP expression through translational repression or nonsense-mediated decay. We establish a minigene transfection system and test a panel of splice site alterations, identifying mutants that reduce PrP expression by as much as 78%. Our findings nominate a new therapeutic target for lowering PrP.
Collapse
Affiliation(s)
- Juliana E Gentile
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Taylor L Corridon
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Meredith A Mortberg
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Elston Neil D'Souza
- Big Data Institute and Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicola Whiffin
- Big Data Institute and Centre for Human Genetics, University of Oxford, Oxford, UK; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Eric Vallabh Minikel
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Sonia M Vallabh
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
| |
Collapse
|
28
|
Zhang X. Splice-switching antisense oligonucleotides for pediatric neurological disorders. Front Mol Neurosci 2024; 17:1412964. [PMID: 39119251 PMCID: PMC11306167 DOI: 10.3389/fnmol.2024.1412964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Pediatric neurological disorders are frequently devastating and present unmet needs for effective medicine. The successful treatment of spinal muscular atrophy with splice-switching antisense oligonucleotides (SSO) indicates a feasible path to targeting neurological disorders by redirecting pre-mRNA splicing. One direct outcome is the development of SSOs to treat haploinsufficient disorders by targeting naturally occurring non-productive splice isoforms. The development of personalized SSO treatment further inspired the therapeutic exploration of rare diseases. This review will discuss the recent advances that utilize SSOs to treat pediatric neurological disorders.
Collapse
Affiliation(s)
- Xiaochang Zhang
- Department of Human Genetics, The Neuroscience Institute, University of Chicago, Chicago, IL, United States
| |
Collapse
|
29
|
Mohsen M, Midy MK, Balaji A, Breaker RR. Engineered Branaplam Aptamers Exploit Structural Elements from Natural Riboswitches. ACS Chem Biol 2024; 19:1447-1452. [PMID: 38954594 PMCID: PMC11267568 DOI: 10.1021/acschembio.4c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Drug candidates that fail in clinical trials for efficacy reasons might still have favorable safety and bioavailability characteristics that could be exploited. A failed drug candidate could be repurposed if a receptor, such as an aptamer, were created that binds the compound with high specificity. Branaplam is a small molecule that was previously in development to treat spinal muscular atrophy and Huntington's disease. Here, we report the development of a small (48-nucleotide) RNA aptamer for branaplam with a dissociation constant of ∼150 nM. Starting with a combinatorial RNA pool integrating the secondary and tertiary structural scaffold of a Guanine-I riboswitch aptamer interspersed with regions of random sequence, in vitro selection yielded aptamer candidates for branaplam. Reselection and rational design were employed to improve binding of a representative branaplam aptamer candidate. A resulting variant retains the pseudoknot and two of the paired elements (P2 and P3) from the scaffold but lacks the enclosing paired element (P1) that is essential for the function of the natural Guanine-I riboswitch aptamer. A second combinatorial RNA pool based on the scaffold for TPP (thiamin pyrophosphate) riboswitches also yielded a candidate offering additional opportunities for branaplam aptamer development.
Collapse
Affiliation(s)
- Michael
G. Mohsen
- Department
of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
- Howard
Hughes Medical Institute, Yale University, New Haven, Connecticut 06511, United States
| | - Matthew K. Midy
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Aparaajita Balaji
- Department
of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Ronald R. Breaker
- Department
of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, United States
- Howard
Hughes Medical Institute, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
30
|
Shimo T, Ueda O, Yamamoto S. Design and evaluation of antisense sequence length for modified mouse U7 small nuclear RNA to induce efficient pre-messenger RNA splicing modulation in vitro. PLoS One 2024; 19:e0305012. [PMID: 38980892 PMCID: PMC11232981 DOI: 10.1371/journal.pone.0305012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/21/2024] [Indexed: 07/11/2024] Open
Abstract
Pre-messenger RNA (pre-mRNA) splicing modulation is an attractive approach for investigating the mechanisms of genetic disorders caused by mis-splicing. Previous reports have indicated that a modified U7 small nuclear RNA (U7 snRNA) is a prospective tool for modulating splicing both in vitro and in vivo. To date, very few studies have investigated the role of antisense sequence length in modified U7 snRNA. In this study, we designed a series of antisense sequences with various lengths and evaluated their efficiency in inducing splicing modulation. To express modified U7 snRNAs, we constructed a series of plasmid DNA sequences which codes cytomegalovirus (CMV) enhancer, human U1 promoter, and modified mouse U7 snRNAs with antisense sequences of different lengths. We evaluated in vitro splicing modulation efficiency using a luciferase reporter system for simple and precise evaluation as well as reverse transcription-polymerase chain reaction to monitor splicing patterns. Our in vitro assay findings suggest that antisense sequences of modified mouse U7 snRNAs have an optimal length for efficient splicing modulation, which depends on the target exon. In addition, antisense sequences that were either too long or too short decreased splicing modulation efficiency. To confirm reproducibility, we performed an in vitro assay using two target genes, mouse Fas and mouse Dmd. Together, our data suggests that the antisense sequence length should be optimized for modified mouse U7 snRNAs to induce efficient splicing modulation.
Collapse
Affiliation(s)
- Takenori Shimo
- Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Otoya Ueda
- Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Satoshi Yamamoto
- Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| |
Collapse
|
31
|
Simon CM, Delestree N, Montes J, Gerstner F, Carranza E, Sowoidnich L, Buettner JM, Pagiazitis JG, Prat-Ortega G, Ensel S, Donadio S, Garcia JL, Kratimenos P, Chung WK, Sumner CJ, Weimer LH, Pirondini E, Capogrosso M, Pellizzoni L, De Vivo DC, Mentis GZ. Dysfunction of proprioceptive sensory synapses is a pathogenic event and therapeutic target in mice and humans with spinal muscular atrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.03.24308132. [PMID: 38883729 PMCID: PMC11177917 DOI: 10.1101/2024.06.03.24308132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by a varying degree of severity that correlates with the reduction of SMN protein levels. Motor neuron degeneration and skeletal muscle atrophy are hallmarks of SMA, but it is unknown whether other mechanisms contribute to the spectrum of clinical phenotypes. Here, through a combination of physiological and morphological studies in mouse models and SMA patients, we identify dysfunction and loss of proprioceptive sensory synapses as key signatures of SMA pathology. We demonstrate that SMA patients exhibit impaired proprioception, and their proprioceptive sensory synapses are dysfunctional as measured by the neurophysiological test of the Hoffmann reflex (H-reflex). We further show that loss of excitatory afferent synapses and altered potassium channel expression in SMA motor neurons are conserved pathogenic events found in both severely affected patients and mouse models. Lastly, we report that improved motor function and fatigability in ambulatory SMA patients and mouse models treated with SMN-inducing drugs correlate with increased function of sensory-motor circuits that can be accurately captured by the H-reflex assay. Thus, sensory synaptic dysfunction is a clinically relevant event in SMA, and the H-reflex is a suitable assay to monitor disease progression and treatment efficacy of motor circuit pathology.
Collapse
Affiliation(s)
- CM Simon
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Neurology, Columbia University, NY, USA
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - N Delestree
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Neurology, Columbia University, NY, USA
| | - J Montes
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Rehabilitation and Regenerative Medicine, Columbia University, NY, USA
| | - F Gerstner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - E Carranza
- Depts. Physical Medicine & Rehabilitation & Bioengineering, University of Pittsburgh, PA, USA
- Rehab and Neural Engineering Labs, University of Pittsburgh, PA, USA
| | - L Sowoidnich
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - JM Buettner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - JG Pagiazitis
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Neurology, Columbia University, NY, USA
| | - G Prat-Ortega
- Rehab and Neural Engineering Labs, University of Pittsburgh, PA, USA
- Depts. of Neurological Surgery & Bioengineering, University of Pittsburgh, PA, USA
| | - S Ensel
- Rehab and Neural Engineering Labs, University of Pittsburgh, PA, USA
- Depts. of Neurological Surgery & Bioengineering, University of Pittsburgh, PA, USA
| | - S Donadio
- Rehab and Neural Engineering Labs, University of Pittsburgh, PA, USA
- Depts. of Neurological Surgery & Bioengineering, University of Pittsburgh, PA, USA
| | - JL Garcia
- Dept. of Neurology, Columbia University, NY, USA
| | - P Kratimenos
- Center for Neuroscience Research, Children’s National Res. Institute, Washington, DC, USA
- Dept. of Pediatrics, G Washington Univ. Sch. of Medicine, Washington, DC, USA
| | - WK Chung
- Dept. of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA USA
| | - CJ Sumner
- Depts. of Neurology, Neuroscience and Genetic Medicine, Johns Hopkins University School of Medicine, MD, USA
| | - LH Weimer
- Dept. of Neurology, Columbia University, NY, USA
| | - E Pirondini
- Depts. Physical Medicine & Rehabilitation & Bioengineering, University of Pittsburgh, PA, USA
- Rehab and Neural Engineering Labs, University of Pittsburgh, PA, USA
| | - M Capogrosso
- Rehab and Neural Engineering Labs, University of Pittsburgh, PA, USA
- Depts. of Neurological Surgery & Bioengineering, University of Pittsburgh, PA, USA
| | - L Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Neurology, Columbia University, NY, USA
- Dept. of Pathology and Cell Biology, Columbia University, NY, USA
| | - DC De Vivo
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Neurology, Columbia University, NY, USA
| | - GZ Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Neurology, Columbia University, NY, USA
- Dept. of Pathology and Cell Biology, Columbia University, NY, USA
| |
Collapse
|
32
|
Malard F, Wolter AC, Marquevielle J, Morvan E, Ecoutin A, Rüdisser S, Allain FT, Campagne S. The diversity of splicing modifiers acting on A-1 bulged 5'-splice sites reveals rules for rational drug design. Nucleic Acids Res 2024; 52:4124-4136. [PMID: 38554107 PMCID: PMC11077090 DOI: 10.1093/nar/gkae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/07/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Pharmacological modulation of RNA splicing by small molecules is an emerging facet of drug discovery. In this context, the SMN2 splicing modifier SMN-C5 was used as a prototype to understand the mode of action of small molecule splicing modifiers and propose the concept of 5'-splice site bulge repair. In this study, we combined in vitro binding assays and structure determination by NMR spectroscopy to identify the binding modes of four other small molecule splicing modifiers that switch the splicing of either the SMN2 or the HTT gene. Here, we determined the solution structures of risdiplam, branaplam, SMN-CX and SMN-CY bound to the intermolecular RNA helix epitope containing an unpaired adenine within the G-2A-1G+1U+2 motif of the 5'-splice site. Despite notable differences in their scaffolds, risdiplam, SMN-CX, SMN-CY and branaplam contact the RNA epitope similarly to SMN-C5, suggesting that the 5'-splice site bulge repair mechanism can be generalised. These findings not only deepen our understanding of the chemical diversity of splicing modifiers that target A-1 bulged 5'-splice sites, but also identify common pharmacophores required for modulating 5'-splice site selection with small molecules.
Collapse
Affiliation(s)
- Florian Malard
- Université de Bordeaux, Inserm U1212, CNRS UMR5320, ARNA unit, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac Cedex, France
| | - Antje C Wolter
- ETH Zürich, Department of Biology, Institute of Biochemistry, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Julien Marquevielle
- Université de Bordeaux, Inserm U1212, CNRS UMR5320, ARNA unit, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac Cedex, France
| | - Estelle Morvan
- Institut Européen de Chimie et Biologie, UAR3033 CNRS, Université de Bordeaux, INSERM US01, Pessac 33600, France
| | - Agathe Ecoutin
- Université de Bordeaux, Inserm U1212, CNRS UMR5320, ARNA unit, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac Cedex, France
| | - Simon H Rüdisser
- ETH Zürich, Department of Biology, BioNMR platform, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Frédéric H T Allain
- ETH Zürich, Department of Biology, Institute of Biochemistry, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Sebastien Campagne
- Université de Bordeaux, Inserm U1212, CNRS UMR5320, ARNA unit, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac Cedex, France
- ETH Zürich, Department of Biology, Institute of Biochemistry, Hönggerbergring 64, 8093 Zürich, Switzerland
| |
Collapse
|
33
|
Kovachka S, Tong Y, Childs-Disney JL, Disney MD. Heterobifunctional small molecules to modulate RNA function. Trends Pharmacol Sci 2024; 45:449-463. [PMID: 38641489 PMCID: PMC11774243 DOI: 10.1016/j.tips.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
RNA has diverse cellular functionality, including regulating gene expression, protein translation, and cellular response to stimuli, due to its intricate structures. Over the past decade, small molecules have been discovered that target functional structures within cellular RNAs and modulate their function. Simple binding, however, is often insufficient, resulting in low or even no biological activity. To overcome this challenge, heterobifunctional compounds have been developed that can covalently bind to the RNA target, alter RNA sequence, or induce its cleavage. Herein, we review the recent progress in the field of RNA-targeted heterobifunctional compounds using representative case studies. We identify critical gaps and limitations and propose a strategic pathway for future developments of RNA-targeted molecules with augmented functionalities.
Collapse
Affiliation(s)
- Sandra Kovachka
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Yuquan Tong
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way, Jupiter, FL 33458, USA; The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Jessica L Childs-Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way, Jupiter, FL 33458, USA; The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
34
|
Bouton L, Ecoutin A, Malard F, Campagne S. Small molecules modulating RNA splicing: a review of targets and future perspectives. RSC Med Chem 2024; 15:1109-1126. [PMID: 38665842 PMCID: PMC11042171 DOI: 10.1039/d3md00685a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 04/28/2024] Open
Abstract
In eukaryotic cells, RNA splicing is crucial for gene expression. Dysregulation of this process can result in incorrect mRNA processing, leading to aberrant gene expression patterns. Such abnormalities are implicated in many inherited diseases and cancers. Historically, antisense oligonucleotides, which bind to specific RNA targets, have been used to correct these splicing abnormalities. Despite their high specificity of action, these oligonucleotides have drawbacks, such as lack of oral bioavailability and the need for chemical modifications to enhance cellular uptake and stability. As a result, recent efforts focused on the development of small organic molecules that can correct abnormal RNA splicing event under disease conditions. This review discusses known and potential targets of these molecules, including RNA structures, trans-acting splicing factors, and the spliceosome - the macromolecular complex responsible for RNA splicing. We also rely on recent advances to discuss therapeutic applications of RNA-targeting small molecules in splicing correction. Overall, this review presents an update on strategies for RNA splicing modulation, emphasizing the therapeutic promise of small molecules.
Collapse
Affiliation(s)
- Léa Bouton
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Agathe Ecoutin
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Florian Malard
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Sébastien Campagne
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| |
Collapse
|
35
|
White DS, Dunyak BM, Vaillancourt FH, Hoskins AA. A Sequential Binding Mechanism for 5' Splice Site Recognition and Modulation for the Human U1 snRNP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590139. [PMID: 38659798 PMCID: PMC11042371 DOI: 10.1101/2024.04.18.590139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Splice site recognition is essential for defining the transcriptome. Drugs like risdiplam and branaplam change how U1 snRNP recognizes particular 5' splice sites (5'SS) and promote U1 snRNP binding and splicing at these locations. Despite the therapeutic potential of 5'SS modulators, the complexity of their interactions and snRNP substrates have precluded defining a mechanism for 5'SS modulation. We have determined a sequential binding mechanism for modulation of -1A bulged 5'SS by branaplam using a combination of ensemble kinetic measurements and colocalization single molecule spectroscopy (CoSMoS). Our mechanism establishes that U1-C protein binds reversibly to U1 snRNP, and branaplam binds to the U1 snRNP/U1-C complex only after it has engaged a -1A bulged 5'SS. Obligate orders of binding and unbinding explain how reversible branaplam interactions cause formation of long-lived U1 snRNP/5'SS complexes. Branaplam is a ribonucleoprotein, not RNA duplex alone, targeting drug whose action depends on fundamental properties of 5'SS recognition.
Collapse
Affiliation(s)
- David S. White
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
- Present Address: Element Biosciences, San Diego, CA
| | | | | | - Aaron A. Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
36
|
Cheng Y, Zhang S, Shang H. Latest advances on new promising molecular-based therapeutic approaches for Huntington's disease. J Transl Int Med 2024; 12:134-147. [PMID: 38779119 PMCID: PMC11107186 DOI: 10.2478/jtim-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Huntington's disease (HD) is a devastating, autosomal-dominant inherited, neurodegenerative disorder characterized by progressive motor deficits, cognitive impairments, and neuropsychiatric symptoms. It is caused by excessive cytosine-adenine-guanine (CAG) trinucleotide repeats within the huntingtin gene (HTT). Presently, therapeutic interventions capable of altering the trajectory of HD are lacking, while medications for abnormal movement and psychiatric symptoms are limited. Numerous pre-clinical and clinical studies have been conducted and are currently underway to test the efficacy of therapeutic approaches targeting some of these mechanisms with varying degrees of success. In this review, we update the latest advances on new promising molecular-based therapeutic strategies for this disorder, including DNA-targeting techniques such as zinc-finger proteins, transcription activator-like effector nucleases, and CRISPR/Cas9; post-transcriptional huntingtin-lowering approaches such as RNAi, antisense oligonucleotides, and small-molecule splicing modulators; and novel methods to clear the mHTT protein, such as proteolysis-targeting chimeras. We mainly focus on the ongoing clinical trials and the latest pre-clinical studies to explore the progress of emerging potential HD therapeutics.
Collapse
Affiliation(s)
- Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu610041, Sichuan Province, China
| | - Sirui Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu610041, Sichuan Province, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu610041, Sichuan Province, China
| |
Collapse
|
37
|
Kaur J, Sharma A, Mundlia P, Sood V, Pandey A, Singh G, Barnwal RP. RNA-Small-Molecule Interaction: Challenging the "Undruggable" Tag. J Med Chem 2024; 67:4259-4297. [PMID: 38498010 DOI: 10.1021/acs.jmedchem.3c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
RNA targeting, specifically with small molecules, is a relatively new and rapidly emerging avenue with the promise to expand the target space in the drug discovery field. From being "disregarded" as an "undruggable" messenger molecule to FDA approval of an RNA-targeting small-molecule drug Risdiplam, a radical change in perspective toward RNA has been observed in the past decade. RNAs serve important regulatory functions beyond canonical protein synthesis, and their dysregulation has been reported in many diseases. A deeper understanding of RNA biology reveals that RNA molecules can adopt a variety of structures, carrying defined binding pockets that can accommodate small-molecule drugs. Due to its functional diversity and structural complexity, RNA can be perceived as a prospective target for therapeutic intervention. This perspective highlights the proof of concept of RNA-small-molecule interactions, exemplified by targeting of various transcripts with functional modulators. The advent of RNA-oriented knowledge would help expedite drug discovery.
Collapse
Affiliation(s)
- Jaskirat Kaur
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh 160014, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Poonam Mundlia
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India
| | - Ankur Pandey
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
38
|
Ishigami Y, Wong MS, Martí-Gómez C, Ayaz A, Kooshkbaghi M, Hanson SM, McCandlish DM, Krainer AR, Kinney JB. Specificity, synergy, and mechanisms of splice-modifying drugs. Nat Commun 2024; 15:1880. [PMID: 38424098 PMCID: PMC10904865 DOI: 10.1038/s41467-024-46090-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024] Open
Abstract
Drugs that target pre-mRNA splicing hold great therapeutic potential, but the quantitative understanding of how these drugs work is limited. Here we introduce mechanistically interpretable quantitative models for the sequence-specific and concentration-dependent behavior of splice-modifying drugs. Using massively parallel splicing assays, RNA-seq experiments, and precision dose-response curves, we obtain quantitative models for two small-molecule drugs, risdiplam and branaplam, developed for treating spinal muscular atrophy. The results quantitatively characterize the specificities of risdiplam and branaplam for 5' splice site sequences, suggest that branaplam recognizes 5' splice sites via two distinct interaction modes, and contradict the prevailing two-site hypothesis for risdiplam activity at SMN2 exon 7. The results also show that anomalous single-drug cooperativity, as well as multi-drug synergy, are widespread among small-molecule drugs and antisense-oligonucleotide drugs that promote exon inclusion. Our quantitative models thus clarify the mechanisms of existing treatments and provide a basis for the rational development of new therapies.
Collapse
Affiliation(s)
- Yuma Ishigami
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Mandy S Wong
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Beam Therapeutics, Cambridge, MA, 02142, USA
| | | | - Andalus Ayaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Mahdi Kooshkbaghi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- The Estée Lauder Companies, New York, NY, 10153, USA
| | | | | | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| | - Justin B Kinney
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
39
|
Jaiswal AK, Thaxton ML, Scherer GM, Sorrentino JP, Garg NK, Rao DS. Small molecule inhibition of RNA binding proteins in haematologic cancer. RNA Biol 2024; 21:1-14. [PMID: 38329136 PMCID: PMC10857685 DOI: 10.1080/15476286.2024.2303558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024] Open
Abstract
In recent years, advances in biomedicine have revealed an important role for post-transcriptional mechanisms of gene expression regulation in pathologic conditions. In cancer in general and leukaemia specifically, RNA binding proteins have emerged as important regulator of RNA homoeostasis that are often dysregulated in the disease state. Having established the importance of these pathogenetic mechanisms, there have been a number of efforts to target RNA binding proteins using oligonucleotide-based strategies, as well as with small organic molecules. The field is at an exciting inflection point with the convergence of biomedical knowledge, small molecule screening strategies and improved chemical methods for synthesis and construction of sophisticated small molecules. Here, we review the mechanisms of post-transcriptional gene regulation, specifically in leukaemia, current small-molecule based efforts to target RNA binding proteins, and future prospects.
Collapse
Affiliation(s)
- Amit K. Jaiswal
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Michelle L. Thaxton
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Georgia M. Scherer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Jacob P. Sorrentino
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Neil K. Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Dinesh S. Rao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
40
|
Gentile JE, Corridon TL, Mortberg MA, D'Souza EN, Whiffin N, Minikel EV, Vallabh SM. Modulation of prion protein expression through cryptic splice site manipulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572439. [PMID: 38187635 PMCID: PMC10769280 DOI: 10.1101/2023.12.19.572439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Lowering expression of prion protein (PrP) is a well-validated therapeutic strategy in prion disease, but additional modalities are urgently needed. In other diseases, small molecules have proven capable of modulating pre-mRNA splicing, sometimes by forcing inclusion of cryptic exons that reduce gene expression. Here, we characterize a cryptic exon located in human PRNP's sole intron and evaluate its potential to reduce PrP expression through incorporation into the 5' untranslated region (5'UTR). This exon is homologous to exon 2 in non-primate species, but contains a start codon that would yield an upstream open reading frame (uORF) with a stop codon prior to a splice site if included in PRNP mRNA, potentially downregulating PrP expression through translational repression or nonsense-mediated decay. We establish a minigene transfection system and test a panel of splice site alterations, identifying mutants that reduce PrP expression by as much as 78%. Our findings nominate a new therapeutic target for lowering PrP.
Collapse
Affiliation(s)
- Juliana E Gentile
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Taylor L Corridon
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Meredith A Mortberg
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Elston Neil D'Souza
- Big Data Institute and Centre for Human Genetics, University of Oxford, Oxford OX3 7LF, UK
| | - Nicola Whiffin
- Big Data Institute and Centre for Human Genetics, University of Oxford, Oxford OX3 7LF, UK
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Eric Vallabh Minikel
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Sonia M Vallabh
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| |
Collapse
|
41
|
Li A, Bouhss A, Clément MJ, Bauvais C, Taylor JP, Bollot G, Pastré D. Using the structural diversity of RNA: protein interfaces to selectively target RNA with small molecules in cells: methods and perspectives. Front Mol Biosci 2023; 10:1298441. [PMID: 38033386 PMCID: PMC10687564 DOI: 10.3389/fmolb.2023.1298441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
In recent years, RNA has gained traction both as a therapeutic molecule and as a therapeutic target in several human pathologies. In this review, we consider the approach of targeting RNA using small molecules for both research and therapeutic purposes. Given the primary challenge presented by the low structural diversity of RNA, we discuss the potential for targeting RNA: protein interactions to enhance the structural and sequence specificity of drug candidates. We review available tools and inherent challenges in this approach, ranging from adapted bioinformatics tools to in vitro and cellular high-throughput screening and functional analysis. We further consider two critical steps in targeting RNA/protein interactions: first, the integration of in silico and structural analyses to improve the efficacy of molecules by identifying scaffolds with high affinity, and second, increasing the likelihood of identifying on-target compounds in cells through a combination of high-throughput approaches and functional assays. We anticipate that the development of a new class of molecules targeting RNA: protein interactions to prevent physio-pathological mechanisms could significantly expand the arsenal of effective therapeutic compounds.
Collapse
Affiliation(s)
- Aixiao Li
- Synsight, Genopole Entreprises, Evry, France
| | - Ahmed Bouhss
- Université Paris-Saclay, INSERM U1204, Université d’Évry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry, France
| | - Marie-Jeanne Clément
- Université Paris-Saclay, INSERM U1204, Université d’Évry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry, France
| | | | - J. Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | | | - David Pastré
- Université Paris-Saclay, INSERM U1204, Université d’Évry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry, France
| |
Collapse
|
42
|
Valsecchi V, Errico F, Bassareo V, Marino C, Nuzzo T, Brancaccio P, Laudati G, Casamassa A, Grimaldi M, D'Amico A, Carta M, Bertini E, Pignataro G, D'Ursi AM, Usiello A. SMN deficiency perturbs monoamine neurotransmitter metabolism in spinal muscular atrophy. Commun Biol 2023; 6:1155. [PMID: 37957344 PMCID: PMC10643621 DOI: 10.1038/s42003-023-05543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Beyond motor neuron degeneration, homozygous mutations in the survival motor neuron 1 (SMN1) gene cause multiorgan and metabolic defects in patients with spinal muscular atrophy (SMA). However, the precise biochemical features of these alterations and the age of onset in the brain and peripheral organs remain unclear. Using untargeted NMR-based metabolomics in SMA mice, we identify cerebral and hepatic abnormalities related to energy homeostasis pathways and amino acid metabolism, emerging already at postnatal day 3 (P3) in the liver. Through HPLC, we find that SMN deficiency induces a drop in cerebral norepinephrine levels in overt symptomatic SMA mice at P11, affecting the mRNA and protein expression of key genes regulating monoamine metabolism, including aromatic L-amino acid decarboxylase (AADC), dopamine beta-hydroxylase (DβH) and monoamine oxidase A (MAO-A). In support of the translational value of our preclinical observations, we also discovered that SMN upregulation increases cerebrospinal fluid norepinephrine concentration in Nusinersen-treated SMA1 patients. Our findings highlight a previously unrecognized harmful influence of low SMN levels on the expression of critical enzymes involved in monoamine metabolism, suggesting that SMN-inducing therapies may modulate catecholamine neurotransmission. These results may also be relevant for setting therapeutic approaches to counteract peripheral metabolic defects in SMA.
Collapse
Affiliation(s)
- Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | - Francesco Errico
- Department of Agricultural Sciences, University of Naples "Federico II", 80055, Portici, Italy
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate, 80145, Naples, Italy
| | - Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Carmen Marino
- Department of Pharmacy, University of Salerno, 84084, Fisciano, Salerno, Italy
| | - Tommaso Nuzzo
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate, 80145, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | | | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, 84084, Fisciano, Salerno, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital IRCCS, 00163, Rome, Italy
| | - Manolo Carta
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital IRCCS, 00163, Rome, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | - Anna Maria D'Ursi
- Department of Pharmacy, University of Salerno, 84084, Fisciano, Salerno, Italy
| | - Alessandro Usiello
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate, 80145, Naples, Italy.
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100, Caserta, Italy.
| |
Collapse
|
43
|
Fair B, Najar CBA, Zhao J, Lozano S, Reilly A, Mossian G, Staley JP, Wang J, Li YI. Global impact of aberrant splicing on human gene expression levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557588. [PMID: 37745605 PMCID: PMC10515962 DOI: 10.1101/2023.09.13.557588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Alternative splicing (AS) is pervasive in human genes, yet the specific function of most AS events remains unknown. It is widely assumed that the primary function of AS is to diversify the proteome, however AS can also influence gene expression levels by producing transcripts rapidly degraded by nonsense-mediated decay (NMD). Currently, there are no precise estimates for how often the coupling of AS and NMD (AS-NMD) impacts gene expression levels because rapidly degraded NMD transcripts are challenging to capture. To better understand the impact of AS on gene expression levels, we analyzed population-scale genomic data in lymphoblastoid cell lines across eight molecular assays that capture gene regulation before, during, and after transcription and cytoplasmic decay. Sequencing nascent mRNA transcripts revealed frequent aberrant splicing of human introns, which results in remarkably high levels of mRNA transcripts subject to NMD. We estimate that ~15% of all protein-coding transcripts are degraded by NMD, and this estimate increases to nearly half of all transcripts for lowly-expressed genes with many introns. Leveraging genetic variation across cell lines, we find that GWAS trait-associated loci explained by AS are similarly likely to associate with NMD-induced expression level differences as with differences in protein isoform usage. Additionally, we used the splice-switching drug risdiplam to perturb AS at hundreds of genes, finding that ~3/4 of the splicing perturbations induce NMD. Thus, we conclude that AS-NMD substantially impacts the expression levels of most human genes. Our work further suggests that much of the molecular impact of AS is mediated by changes in protein expression levels rather than diversification of the proteome.
Collapse
Affiliation(s)
- Benjamin Fair
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Carlos Buen Abad Najar
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Junxing Zhao
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Stephanie Lozano
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Present address: Center for Neuroscience, University of California Davis, Davis, CA 95618, USA
| | - Austin Reilly
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Gabriela Mossian
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Yang I Li
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
44
|
Walters K, Sajek MP, Murphy E, Issaian A, Baldwin A, Harrison E, Daniels M, Reisz JA, Hansen K, D'Alessandro A, Mukherjee N. Small-molecule Ro-08-2750 interacts with many RNA-binding proteins and elicits MUSASHI2-independent phenotypes. RNA (NEW YORK, N.Y.) 2023; 29:1458-1470. [PMID: 37369529 PMCID: PMC10578479 DOI: 10.1261/rna.079605.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
RNA-binding proteins (RBPs) are key regulators of gene expression. Small molecules targeting these RBP-RNA interactions are a rapidly emerging class of therapeutics for treating a variety of diseases. Ro-08-2750 (Ro) is a small molecule identified as a competitive inhibitor of Musashi (MSI)-RNA interactions. Here, we show that multiple Ro-dependent cellular phenotypes, specifically adrenocortical steroid production and cell viability, are Musashi-2 (MSI2)-independent. Using an unbiased proteome-wide approach, we discovered Ro broadly interacts with RBPs, many containing RRM domains. To confirm this finding, we leveraged the large-scale ENCODE data to identify a subset of RBPs whose depletion phenocopies Ro inhibition, indicating Ro is a promiscuous inhibitor of multiple RBPs. Consistent with broad disruption of ribonucleoprotein complexes, Ro treatment leads to stress granule formation. This strategy represents a generalizable framework for validating the specificity and identifying targets of RBP inhibitors in a cellular context.
Collapse
Affiliation(s)
- Kathryn Walters
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Marcin Piotr Sajek
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Elisabeth Murphy
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Aaron Issaian
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Amber Baldwin
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Evan Harrison
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Miles Daniels
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Howard University Karsh STEM Scholars Program, Washington DC 20059, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Neelanjan Mukherjee
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
45
|
Liu L, Malagu K, Haughan AF, Khetarpal V, Stott AJ, Esmieu W, Vater HD, Webster SJ, Van de Poël AJ, Clissold C, Cosgrove B, Sutton B, Spencer JA, Breccia P, Gancia E, Bonomo S, Ladduwahetty T, Lazari O, Patel H, Atton HC, Clifton S, Mota DM, Magnani D, O'Neill A, Stebbeds M, Macabuag N, Todd D, Herva ME, Mitchell P, Visser M, Compte Sancerni S, Grand Moursel L, da Silva M, Kritikou E, Heikkinen TT, Bolkvadze T, Fodale V, Spadafora D, Daldin M, Bresciani A, Mangette JE, Doherty EM, Lee MR, Herbst T, Monteagudo E, Macdonald D, Plotnikov NV, Chambers M, McAllister G, Muňoz-Sanjuan I, Dominguez C. Identification and Optimization of RNA-Splicing Modulators as Huntingtin Protein-Lowering Agents for the Treatment of Huntington's Disease. J Med Chem 2023; 66:13205-13246. [PMID: 37712656 DOI: 10.1021/acs.jmedchem.3c01173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat in exon 1 of the huntingtin (HTT) gene. We report the design of a series of HTT pre-mRNA splicing modulators that lower huntingtin (HTT) protein, including the toxic mutant huntingtin (mHTT), by promoting insertion of a pseudoexon containing a premature termination codon at the exon 49-50 junction. The resulting transcript undergoes nonsense-mediated decay, leading to a reduction of HTT mRNA transcripts and protein levels. The starting benzamide core was modified to pyrazine amide and further optimized to give a potent, CNS-penetrant, and orally bioavailable HTT-splicing modulator 27. This compound reduced canonical splicing of the HTT RNA exon 49-50 and demonstrated significant HTT-lowering in both human HD stem cells and mouse BACHD models. Compound 27 is a structurally diverse HTT-splicing modulator that may help understand the mechanism of adverse effects such as peripheral neuropathy associated with branaplam.
Collapse
Affiliation(s)
- Longbin Liu
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Karine Malagu
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Alan F Haughan
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Vinod Khetarpal
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Andrew J Stott
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - William Esmieu
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Huw D Vater
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Stephen J Webster
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Amanda J Van de Poël
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Cole Clissold
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Brett Cosgrove
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Benjamin Sutton
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Jonathan A Spencer
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Perla Breccia
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Emanuela Gancia
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Silvia Bonomo
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Tammy Ladduwahetty
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Ovadia Lazari
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Hiral Patel
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Helen C Atton
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Steve Clifton
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Daniel M Mota
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Dario Magnani
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Amy O'Neill
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Marta Stebbeds
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Natsuko Macabuag
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Daniel Todd
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Maria E Herva
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Philip Mitchell
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Mijke Visser
- Charles River, Darwinweg 24, 2333 CR Leiden, The Netherlands
| | | | | | - Marta da Silva
- Charles River, Darwinweg 24, 2333 CR Leiden, The Netherlands
| | - Eva Kritikou
- Charles River, Darwinweg 24, 2333 CR Leiden, The Netherlands
| | | | | | | | | | | | | | | | - Elizabeth M Doherty
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Matthew R Lee
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Todd Herbst
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Edith Monteagudo
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Douglas Macdonald
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Nikolay V Plotnikov
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Mark Chambers
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - George McAllister
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Ignacio Muňoz-Sanjuan
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Celia Dominguez
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| |
Collapse
|
46
|
Jiang T, Wang L, Tang L, Zeb A, Hou Y. Identification of two short peptide motifs from serine/arginine-rich protein ribonucleic acid recognition motif-1 domain acting as splicing regulators. PeerJ 2023; 11:e16103. [PMID: 37744237 PMCID: PMC10512959 DOI: 10.7717/peerj.16103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Background Serine/arginine-rich (SR) proteins regulate pre-mRNA splicing. However, structurally similar proteins often behave differently in splicing regulation and the underlying mechanisms are largely unknown. Here, using SMN1/2 minigenes we extensively analyzed four SR proteins, SRSF1/5/6/9. Methods In this study, the effects of these proteins on SMN1/2 exon 7 splicing when tethered at either intron 6 or 7 were evaluated using an MS2-tethering assay. Deletion analysis in four SR proteins and co-overexpression analysis were performed. Results Splicing outcomes varied among all four SR proteins, SRSF1 and SRSF5 function the same at the two sites, acting as repressor and stimulator, respectively; while SRSF6 and SRSF9 promote exon 7 inclusion at only one site. Further, the key domains of each SR proteins were investigated, which identified a potent inhibitory nonapeptide in the C-terminus of SRSF1/9 ribonucleic acid recognition motif-1 (RRM1) and a potent stimulatory heptapeptide at the N-terminus of SRSF5/6 RRM1. Conclusion The insight of the four SR proteins and their domains in affecting SMN gene splicing brings a new perspective on the modes of action of SR proteins; and the functional peptides obtained here offers new ideas for developing splice switching-related therapies.
Collapse
Affiliation(s)
- Tao Jiang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, NanJing, China
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University Army Medical University, Chongqing, China
| | - Li Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, NanJing, China
| | - Liang Tang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, NanJing, China
| | - Azhar Zeb
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, NanJing, China
| | - Yanjun Hou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, NanJing, China
| |
Collapse
|
47
|
Campagne S, Jutzi D, Malard F, Matoga M, Romane K, Feldmuller M, Colombo M, Ruepp MD, Allain FHT. Molecular basis of RNA-binding and autoregulation by the cancer-associated splicing factor RBM39. Nat Commun 2023; 14:5366. [PMID: 37666821 PMCID: PMC10477243 DOI: 10.1038/s41467-023-40254-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/14/2023] [Indexed: 09/06/2023] Open
Abstract
Pharmacologic depletion of RNA-binding motif 39 (RBM39) using aryl sulfonamides represents a promising anti-cancer therapy but requires high levels of the adaptor protein DCAF15. Consequently, novel approaches to deplete RBM39 in an DCAF15-independent manner are required. Here, we uncover that RBM39 autoregulates via the inclusion of a poison exon into its own pre-mRNA and identify the cis-acting elements that govern this regulation. We also determine the NMR solution structures of RBM39's tandem RNA recognition motifs (RRM1 and RRM2) bound to their respective RNA targets, revealing how RRM1 recognises RNA stem loops whereas RRM2 binds specifically to single-stranded N(G/U)NUUUG. Our results support a model where RRM2 selects the 3'-splice site of a poison exon and the RRM3 and RS domain stabilise the U2 snRNP at the branchpoint. Our work provides molecular insights into RBM39-dependent 3'-splice site selection and constitutes a solid basis to design alternative anti-cancer therapies.
Collapse
Affiliation(s)
- Sébastien Campagne
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland.
- University of Bordeaux, Inserm U1212, CNRS UMR5320, ARNA Laboratory, 33077, Bordeaux, France.
| | - Daniel Jutzi
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9NU, UK
| | - Florian Malard
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland
- University of Bordeaux, Inserm U1212, CNRS UMR5320, ARNA Laboratory, 33077, Bordeaux, France
| | - Maja Matoga
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland
| | - Ksenija Romane
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland
| | - Miki Feldmuller
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland
| | - Martino Colombo
- University of Bern, Department of Chemistry and Biochemistry, 3012, Bern, Switzerland
- Celgene Institute of Translational Research in Europe (CITRE), Bristol Myers Squibb, 41092, Seville, Spain
| | - Marc-David Ruepp
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9NU, UK.
| | - Frédéric H-T Allain
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland.
| |
Collapse
|
48
|
Bergant V, Schnepf D, de Andrade Krätzig N, Hubel P, Urban C, Engleitner T, Dijkman R, Ryffel B, Steiger K, Knolle PA, Kochs G, Rad R, Staeheli P, Pichlmair A. mRNA 3'UTR lengthening by alternative polyadenylation attenuates inflammatory responses and correlates with virulence of Influenza A virus. Nat Commun 2023; 14:4906. [PMID: 37582777 PMCID: PMC10427651 DOI: 10.1038/s41467-023-40469-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023] Open
Abstract
Changes of mRNA 3'UTRs by alternative polyadenylation (APA) have been associated to numerous pathologies, but the mechanisms and consequences often remain enigmatic. By combining transcriptomics, proteomics and recombinant viruses we show that all tested strains of IAV, including A/PR/8/34(H1N1) (PR8) and A/Cal/07/2009 (H1N1) (Cal09), cause APA. We mapped the effect to the highly conserved glycine residue at position 184 (G184) of the viral non-structural protein 1 (NS1). Unbiased mass spectrometry-based analyses indicate that NS1 causes APA by perturbing the function of CPSF4 and that this function is unrelated to virus-induced transcriptional shutoff. Accordingly, IAV strain PR8, expressing an NS1 variant with weak CPSF binding, does not induce host shutoff but only APA. However, recombinant IAV (PR8) expressing NS1(G184R) lacks binding to CPSF4 and thereby also the ability to cause APA. Functionally, the impaired ability to induce APA leads to an increased inflammatory cytokine production and an attenuated phenotype in a mouse infection model. Investigating diverse viral infection models showed that APA induction is a frequent ability of many pathogens. Collectively, we propose that targeting of the CPSF complex, leading to widespread alternative polyadenylation of host transcripts, constitutes a general immunevasion mechanism employed by a variety of pathogenic viruses.
Collapse
Affiliation(s)
- Valter Bergant
- Institute of Virology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Max Planck Institute of Biochemistry, Munich, Germany
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | - Niklas de Andrade Krätzig
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Philipp Hubel
- Max Planck Institute of Biochemistry, Munich, Germany
| | - Christian Urban
- Institute of Virology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Max Planck Institute of Biochemistry, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Ronald Dijkman
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland
- Department of Infectious diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Bernhard Ryffel
- CNRS, UMR7355, Orleans, France
- Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Katja Steiger
- Institut für allgemeine Pathologie und Pathologische Anatomie, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, Munich, Germany
- Department of Medicine II, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter Staeheli
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Andreas Pichlmair
- Institute of Virology, TUM School of Medicine, Technical University of Munich, Munich, Germany.
- Max Planck Institute of Biochemistry, Munich, Germany.
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany.
| |
Collapse
|
49
|
Gotthardt M, Badillo-Lisakowski V, Parikh VN, Ashley E, Furtado M, Carmo-Fonseca M, Schudy S, Meder B, Grosch M, Steinmetz L, Crocini C, Leinwand L. Cardiac splicing as a diagnostic and therapeutic target. Nat Rev Cardiol 2023; 20:517-530. [PMID: 36653465 DOI: 10.1038/s41569-022-00828-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/19/2023]
Abstract
Despite advances in therapeutics for heart failure and arrhythmias, a substantial proportion of patients with cardiomyopathy do not respond to interventions, indicating a need to identify novel modifiable myocardial pathobiology. Human genetic variation associated with severe forms of cardiomyopathy and arrhythmias has highlighted the crucial role of alternative splicing in myocardial health and disease, given that it determines which mature RNA transcripts drive the mechanical, structural, signalling and metabolic properties of the heart. In this Review, we discuss how the analysis of cardiac isoform expression has been facilitated by technical advances in multiomics and long-read and single-cell sequencing technologies. The resulting insights into the regulation of alternative splicing - including the identification of cardiac splice regulators as therapeutic targets and the development of a translational pipeline to evaluate splice modulators in human engineered heart tissue, animal models and clinical trials - provide a basis for improved diagnosis and therapy. Finally, we consider how the medical and scientific communities can benefit from facilitated acquisition and interpretation of splicing data towards improved clinical decision-making and patient care.
Collapse
Affiliation(s)
- Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research Partner Site Berlin), Berlin, Germany.
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Victor Badillo-Lisakowski
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research Partner Site Berlin), Berlin, Germany
| | - Victoria Nicole Parikh
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Euan Ashley
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Palo Alto, CA, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Marta Furtado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sarah Schudy
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research Partner Site Heidelberg-Mannheim), Heidelberg, Germany
| | - Markus Grosch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Lars Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Claudia Crocini
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Leslie Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| |
Collapse
|
50
|
Ottesen EW, Singh NN, Luo D, Kaas B, Gillette B, Seo J, Jorgensen H, Singh RN. Diverse targets of SMN2-directed splicing-modulating small molecule therapeutics for spinal muscular atrophy. Nucleic Acids Res 2023; 51:5948-5980. [PMID: 37026480 PMCID: PMC10325915 DOI: 10.1093/nar/gkad259] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Designing an RNA-interacting molecule that displays high therapeutic efficacy while retaining specificity within a broad concentration range remains a challenging task. Risdiplam is an FDA-approved small molecule for the treatment of spinal muscular atrophy (SMA), the leading genetic cause of infant mortality. Branaplam is another small molecule which has undergone clinical trials. The therapeutic merit of both compounds is based on their ability to restore body-wide inclusion of Survival Motor Neuron 2 (SMN2) exon 7 upon oral administration. Here we compare the transcriptome-wide off-target effects of these compounds in SMA patient cells. We captured concentration-dependent compound-specific changes, including aberrant expression of genes associated with DNA replication, cell cycle, RNA metabolism, cell signaling and metabolic pathways. Both compounds triggered massive perturbations of splicing events, inducing off-target exon inclusion, exon skipping, intron retention, intron removal and alternative splice site usage. Our results of minigenes expressed in HeLa cells provide mechanistic insights into how these molecules targeted towards a single gene produce different off-target effects. We show the advantages of combined treatments with low doses of risdiplam and branaplam. Our findings are instructive for devising better dosing regimens as well as for developing the next generation of small molecule therapeutics aimed at splicing modulation.
Collapse
Affiliation(s)
- Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Diou Luo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Bailey Kaas
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Benjamin J Gillette
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Hannah J Jorgensen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|