1
|
Oladeinde A, Chung T, Mou C, Rothrock MJ, Li G, Adeli A, Looft T, Woyda R, Abdo Z, Lawrence JP, Cudnik D, Zock G, Teran J, Li X. Broiler litter moisture and trace metals contribute to the persistence of Salmonella strains that harbor large plasmids carrying siderophores. Appl Environ Microbiol 2025; 91:e0138824. [PMID: 40079597 PMCID: PMC12016502 DOI: 10.1128/aem.01388-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Broiler litter sampling has proven to be an effective method for determining the Salmonella status of a broiler chicken flock and understanding the ecology of Salmonella prior to harvest. In this study, we investigated the ecology of Salmonella within the litter (n = 224) from two commercial broiler houses in the United States. We employed culture enrichment methods and quantitative polymerase chain reaction to determine the prevalence and load of Salmonella and utilized antimicrobial susceptibility testing and whole-genome sequencing (WGS) to characterize select isolates. Additionally, we applied machine learning algorithms and in vitro experiments to identify environmental selective pressures that may contribute to the persistence of Salmonella in litter. Our findings indicate that the prevalence and abundance of Salmonella in broiler litter are influenced by the downtime between flocks as well as by the flock raised on the litter. A Decision Tree Classifier model developed demonstrated that the moisture in the caked part of litter was the most influential environmental parameter for predicting the prevalence of viable Salmonella. WGS analysis revealed that Typhimurium, Infantis, and Kentucky strains that harbored large self-conjugative plasmids encoding fitness factors for iron siderophore production were the dominant Salmonella population found in litter, and exposure to iron-limiting and copper-enriched culture media affected Salmonella growth. Our results suggest that trace metals may select for siderophores harbored on plasmids, and interventions that reduce litter moisture can potentially curtail the persistence of Salmonella in pre-harvest environments.IMPORTANCEBroiler chicken meat is the most consumed protein worldwide, and global poultry imports are projected to reach 17.5 million tons by 2031. To raise billions of chickens, litter is reused multiple times by the top global producers and exporters of chicken (Brazil and the United States). Chickens are in continuous contact with litter and depend on it for warmth and coprophagy. Consequently, litter serves as a major route for pathogens such as Salmonella to infect chickens, making it crucial to understand the environmental and genetic selective pressures that might explain why certain Salmonella strains persist on broiler farms more than others. In this study, we demonstrated that Salmonella strains that harbored siderophores on large conjugative plasmids persisted in litter and suggested that reducing litter moisture would significantly control Salmonella prevalence. However, a complete eradication of persisting Salmonella strains will require novel, innovative, and multifaceted approaches.
Collapse
Affiliation(s)
| | - Taejung Chung
- U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA
- SCINet Program, ARS AI Center of Excellence, Office of National Programs, USDA Agricultural Research Service, Beltsville, Maryland, USA
| | - Connie Mou
- Danisco Animal Nutrition & Health (IFF), Cedar Rapids, Iowa, USA
| | | | - Guoming Li
- Department of Poultry Science, University of Georgia, Athens, Georgia, USA
| | - Ardeshir Adeli
- Genetics and Sustainable Agriculture Research, USDA-ARS, Mississippi State, Mississippi, USA
| | - Torey Looft
- National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | - Reed Woyda
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Denice Cudnik
- U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA
| | - Gregory Zock
- U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA
| | - Jose Teran
- College of Civil Engineering, University of Georgia, Athens, Georgia, USA
| | - Xiang Li
- U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA
| |
Collapse
|
2
|
Wang H, Chen B, Xiao P, Han D, Gao B, Yan Y, Zhao R, Pan T, Zhang J, Zhou M, Lv L, Gao H. Yersiniabactin produced by Escherichia coli promotes intestinal inflammation through lipid peroxidation and ferroptosis. Front Microbiol 2025; 16:1542801. [PMID: 40034497 PMCID: PMC11872927 DOI: 10.3389/fmicb.2025.1542801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Escherichia coli (E. coli), a major foodborne pathogen, poses significant risks to public health by causing gastrointestinal diseases. Among its virulence factors, Yersiniabactin (Ybt), a siderophore, plays a crucial role in iron acquisition and enhancing intestinal colonization. Despite previous studies highlighting E. coli-Ybt's involvement in inflammation, its exact mechanisms remain unclear. This study investigates how Ybt contributes to intestinal inflammation through ferroptosis, using both in vitro and in vivo models. Our findings demonstrate that Ybt promotes oxidative stress, lipid peroxidation, inflammation, and iron accumulation in intestinal epithelial cells, leading to ferroptosis. Mechanistically, Ybt suppresses the Keap1/Nrf2 pathway, amplifying reactive oxygen species (ROS) and activating the TNF/NF-κB pathway, which drives inflammation. Moreover, Ybt induces lipid peroxidation via the arachidonic acid pathway, producing 6-trans-leukotriene B4 (6-transLTB4), which exacerbates inflammation and ferroptosis. Exogenous 6-transLTB4 further intensifies this cascade. Additionally, Ybt disrupts iron efflux by suppressing FPN1 expression, causing excessive intracellular iron accumulation. Using tree shrews as an in vivo model, we confirm that Ybt-induced ferroptosis significantly aggravates intestinal inflammation. These findings underscore the pathogenic role of Ybt in E. coli-induced intestinal injury and highlight ferroptosis as a novel mechanism contributing to gut health disruption. This study provides new insights into the molecular pathways of E. coli infection, with implications for therapeutic strategies targeting ferroptosis in intestinal diseases.
Collapse
Affiliation(s)
- Hao Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Bingxun Chen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Peng Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Dongmei Han
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Bin Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yulin Yan
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Ru Zhao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Tianling Pan
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jingsong Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Meng Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Longbao Lv
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hong Gao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Howell A, Chogule S, Djoko KY. Copper homeostasis in Streptococcus and Neisseria: Known knowns and unknown knowns. Adv Microb Physiol 2025; 86:99-140. [PMID: 40404273 DOI: 10.1016/bs.ampbs.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Our research group studies copper (Cu) homeostasis in Streptococcus and Neisseria, with a current focus on species that colonise the human oral cavity. Our early ventures into this field very quickly revealed major differences between well-characterised Cu homeostasis systems in species with well-known pathogenic potential and the uncharacterised systems in species that are considered as components of the normal healthy human microflora. In this article, we summarise the known and predicted mechanisms of Cu homeostasis in Streptococcus and Neisseria. We focus exclusively on proteins that directly sense and change (increase or decrease) cellular Cu availability. Where relevant, we make comparisons with examples from species isolated from outside the human oral cavity and from animal hosts. The emerging picture depicts diverse cellular strategies for handling Cu, even among closely related bacterial species.
Collapse
Affiliation(s)
- Archie Howell
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Safa Chogule
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Karrera Y Djoko
- Department of Biosciences, Durham University, Durham, United Kingdom.
| |
Collapse
|
4
|
Dehantschutter ET, Taylor CT. Linking E. coli to fibrosis in Crohn's disease. Cell Host Microbe 2025; 33:12-14. [PMID: 39788093 DOI: 10.1016/j.chom.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025]
Abstract
Intestinal fibrosis associated with Crohn's disease is a serious yet poorly understood clinical complication. In this issue of Cell Host & Microbe, Ahn and colleagues provide evidence that the adherent intestinal E. coli produced the metallophore yersiniabactin, which sequesters zinc to drive intestinal fibrosis in a HIF-1α-dependent manner.
Collapse
Affiliation(s)
- Ethan T Dehantschutter
- The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Cormac T Taylor
- The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; UCD School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
5
|
Ahn JH, da Silva Pedrosa M, Lopez LR, Tibbs TN, Jeyachandran JN, Vignieri EE, Rothemich A, Cumming I, Irmscher AD, Haswell CJ, Zamboni WC, Yu YRA, Ellermann M, Denson LA, Arthur JC. Intestinal E. coli-produced yersiniabactin promotes profibrotic macrophages in Crohn's disease. Cell Host Microbe 2025; 33:71-88.e9. [PMID: 39701098 DOI: 10.1016/j.chom.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Inflammatory bowel disease (IBD)-associated fibrosis causes significant morbidity. Mechanisms are poorly understood but implicate the microbiota, especially adherent-invasive Escherichia coli (AIEC). We previously demonstrated that AIEC producing the metallophore yersiniabactin (Ybt) promotes intestinal fibrosis in an IBD mouse model. Since macrophages interpret microbial signals and influence inflammation/tissue remodeling, we hypothesized that Ybt metal sequestration disrupts this process. Here, we show that macrophages are abundant in human IBD-fibrosis tissue and mouse fibrotic lesions, where they co-localize with AIEC. Ybt induces profibrotic gene expression in macrophages via stabilization and nuclear translocation of hypoxia-inducible factor 1-alpha (HIF-1α), a metal-dependent immune regulator. Importantly, Ybt-producing AIEC deplete macrophage intracellular zinc and stabilize HIF-1α through inhibition of zinc-dependent HIF-1α hydroxylation. HIF-1α+ macrophages localize to sites of disease activity in human IBD-fibrosis strictures and mouse fibrotic lesions, highlighting their physiological relevance. Our findings reveal microbiota-mediated metal sequestration as a profibrotic trigger targeting macrophages in the inflamed intestine.
Collapse
Affiliation(s)
- Ju-Hyun Ahn
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marlus da Silva Pedrosa
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lacey R Lopez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Taylor N Tibbs
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joanna N Jeyachandran
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emily E Vignieri
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Aaron Rothemich
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian Cumming
- Department of Pulmonary and Critical Care Medicine, Duke University, Durham, NC 27710, USA
| | - Alexander D Irmscher
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Corey J Haswell
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C Zamboni
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yen-Rei A Yu
- Department of Pulmonary and Critical Care Medicine, Duke University, Durham, NC 27710, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Melissa Ellermann
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Lee A Denson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Ahmed MA, Hammers C, Boudreau PD. Dual Screen for Metal-Tolerant Metallophore Producers Evaluated with Soil from the Carpenter Snow Creek Site, a Heavy-Metal-Toxified Site in Montana. ACS OMEGA 2024; 9:51213-51220. [PMID: 39758630 PMCID: PMC11696751 DOI: 10.1021/acsomega.4c07306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025]
Abstract
Bacteria have evolved numerous mechanisms to resist metal toxicity, including small-molecule metal chelators (metallophores). This study presents a dual screening methodology to isolate metallophore-producing bacteria from the Carpenter Snow Creek Mining District for potential use in heavy-metal bioremediation. Soil samples were screened on metal-supplemented plates from which colonies were picked onto chrome azurol S (CAS)-dyed plates. Copper or cerium toxicity was used as the primary selection step, while the CAS assay revealed the excretion of metal-binding compounds. From the pool of bacteria encompassed in the native soil microbiome, fifty-one isolates were picked from metal-toxified media by colony morphology. Out of these colonies, 17 exhibited positive results in the CAS assay. 16S rRNA sequencing identified eight unique species within these CAS-positive hits, the nearest BLAST hits of which were from the genera: Rhodanobacter, Dyella, Bradyrhizobium, Luteibacter, Cupriavidus, Arthrobacter, and Paraburkholderia. To validate our workflow, we profiled our Cupriavidus isolate by LCMS metabolomics and genome mining and purified its metabolites. These efforts led to the reisolation of the known metallophore taiwachelin. In efforts to identify lead strains for heavy-metal bioremediation applications, the present work suggests the utility of our screening method in rapidly targeting the metallophore producers from the soil microbiome.
Collapse
Affiliation(s)
- Mohammed
M. A. Ahmed
- Boudreau
Lab, Department of Biomolecular Science, School of Pharmacy, University of Mississippi, Faser Hall University, University, Mississippi 38677-1848, United States
- Department
of Pharmacognosy, Al-Azhar University, Nasr City, Cairo 11371, Egypt
| | - Cameron Hammers
- Boudreau
Lab, Department of Biomolecular Science, School of Pharmacy, University of Mississippi, Faser Hall University, University, Mississippi 38677-1848, United States
| | - Paul D. Boudreau
- Boudreau
Lab, Department of Biomolecular Science, School of Pharmacy, University of Mississippi, Faser Hall University, University, Mississippi 38677-1848, United States
| |
Collapse
|
7
|
Leprevost L, Jünger S, Lippens G, Guillaume C, Sicoli G, Oliveira L, Falcone E, de Santis E, Rivera-Millot A, Billon G, Stellato F, Henry C, Antoine R, Zirah S, Dubiley S, Li Y, Jacob-Dubuisson F. A widespread family of ribosomal peptide metallophores involved in bacterial adaptation to metal stress. Proc Natl Acad Sci U S A 2024; 121:e2408304121. [PMID: 39602266 PMCID: PMC11626156 DOI: 10.1073/pnas.2408304121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Ribosomally synthesized and posttranslationally modified peptides (RiPPs) are a structurally diverse group of natural products that bacteria employ in their survival strategies. Herein, we characterized the structure, the biosynthetic pathway, and the mode of action of a RiPP family called bufferins. With thousands of homologous biosynthetic gene clusters throughout the bacterial phylogenetic tree, bufferins form by far the largest family of RiPPs modified by multinuclear nonheme iron-dependent oxidases (MNIO, DUF692 family). Using Caulobacter vibrioides bufferins as a model, we showed that the conserved Cys residues of their precursors are transformed into 5-thiooxazoles, further expanding the reaction range of MNIO enzymes. This rare modification is installed in conjunction with a partner protein of the DUF2063 family. Bufferin precursors are rare examples of bacterial RiPPs found to feature an N-terminal Sec signal peptide allowing them to be exported by the ubiquitous Sec pathway. We reveal that bufferins are involved in copper homeostasis, and their metal-binding propensity requires the thiooxazole heterocycles. Bufferins enhance bacterial growth under copper stress by complexing excess metal ions. Our study thus describes a large family of RiPP metallophores and unveils a widespread but overlooked metal homeostasis mechanism in bacteria.
Collapse
Affiliation(s)
- Laura Leprevost
- Univ. Lille, CNRS, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille, LilleF-59000, France
| | - Sophie Jünger
- Unit Molecules of Communication and Adaptation of Microorganisms, UMR 7245 CNRS, Museum National d'Histoire Naturelle, Paris75005, France
| | - Guy Lippens
- Toulouse Biotechnology Institute, CNRS/Institut National de la Recherche en Agronomie, Alimentation et Environnement/Institut National des Sciences Appliquées, Toulouse31077, France
| | - Céline Guillaume
- Unit Molecules of Communication and Adaptation of Microorganisms, UMR 7245 CNRS, Museum National d'Histoire Naturelle, Paris75005, France
| | - Giuseppe Sicoli
- CNRS, UMR 8516 Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Université de Lille, LilleF-59000, France
| | - Lydie Oliveira
- Institut National de la Recherche en Agronomie, Alimentation et Environnement-AgroParisTech-Université Paris-Saclay, Microbiologie des aliments au service de la santé, Jouy-en Josas78352, France
| | - Enrico Falcone
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, Toulouse31077, France
| | - Emiliano de Santis
- Department of Physics, University of Rome Tor Vergata and Istituto Nazionale di Fisica Nucleare, Rome00133, Italy
| | - Alex Rivera-Millot
- Univ. Lille, CNRS, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille, LilleF-59000, France
| | - Gabriel Billon
- CNRS, UMR 8516 Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Université de Lille, LilleF-59000, France
| | - Francesco Stellato
- Department of Physics, University of Rome Tor Vergata and Istituto Nazionale di Fisica Nucleare, Rome00133, Italy
| | - Céline Henry
- Institut National de la Recherche en Agronomie, Alimentation et Environnement-AgroParisTech-Université Paris-Saclay, Microbiologie des aliments au service de la santé, Jouy-en Josas78352, France
| | - Rudy Antoine
- Univ. Lille, CNRS, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille, LilleF-59000, France
| | - Séverine Zirah
- Unit Molecules of Communication and Adaptation of Microorganisms, UMR 7245 CNRS, Museum National d'Histoire Naturelle, Paris75005, France
| | - Svetlana Dubiley
- Toulouse Biotechnology Institute, CNRS/Institut National de la Recherche en Agronomie, Alimentation et Environnement/Institut National des Sciences Appliquées, Toulouse31077, France
| | - Yanyan Li
- Unit Molecules of Communication and Adaptation of Microorganisms, UMR 7245 CNRS, Museum National d'Histoire Naturelle, Paris75005, France
| | - Françoise Jacob-Dubuisson
- Univ. Lille, CNRS, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille, LilleF-59000, France
| |
Collapse
|
8
|
Arnold E. Non-classical roles of bacterial siderophores in pathogenesis. Front Cell Infect Microbiol 2024; 14:1465719. [PMID: 39372500 PMCID: PMC11449898 DOI: 10.3389/fcimb.2024.1465719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Within host environments, iron availability is limited, which instigates competition for this essential trace element. In response, bacteria produce siderophores, secondary metabolites that scavenge iron and deliver it to bacterial cells via specific receptors. This role in iron acquisition contributes significantly to bacterial pathogenesis, thereby designating siderophores as virulence factors. While prior research has primarily focused on unravelling the molecular mechanisms underlying siderophore biosynthesis, uptake, and iron sequestration, recent investigations have unveiled additional non-iron chelating functions of siderophores. These emerging roles are being consistently shown to support bacterial pathogenesis. In this review, we present the current understanding of siderophores in various roles: acquiring non-iron metal ions, supporting tolerance to metal-induced and reactive oxygen species (ROS)-induced stresses, mediating siderophore signalling, inducing ROS formation, and functioning in class IIb microcins. By integrating recent findings, this review aims to provide an overview of the diverse roles of siderophores in bacterial pathogenesis.
Collapse
|
9
|
Ahmed MA, Boudreau PD. LCMS-Metabolomic Profiling and Genome Mining of Delftia lacustris DSM 21246 Revealed Lipophilic Delftibactin Metallophores. JOURNAL OF NATURAL PRODUCTS 2024; 87:1384-1393. [PMID: 38739531 PMCID: PMC11472818 DOI: 10.1021/acs.jnatprod.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Bacteria have evolved various strategies to combat heavy metal stress, including the secretion of small molecules, known as metallophores. These molecules hold a potential role in the mitigation of toxic metal contamination from the environment (bioremediation). Herein, we employed combined comparative metabolomic and genomic analyses to study the metallophores excreted by Delftia lacustris DSM 21246. LCMS-metabolomic analysis of this bacterium cultured under iron limitation led to a suite of lipophilic metallophores exclusively secreted in response to iron starvation. Additionally, we conducted genome sequencing of the DSM 21246 strain using nanopore sequencing technology and employed antiSMASH to mine the genome, leading to the identification of a biosynthetic gene cluster (BGC) matching the known BGC responsible for delftibactin A production. The isolated suite of amphiphilic metallophores, termed delftibactins C-F (1-4), was characterized using various chromatographic, spectroscopic, and bioinformatic techniques. The planar structure of these compounds was elucidated through 1D and 2D NMR analyses, as well as LCMS/MS-based fragmentation studies. Notably, their structures differed from previously known delftibactins due to the presence of a lipid tail. Marfey's and bioinformatic analyses were employed to determine the absolute configuration of the peptide scaffold. Delftibactin A, a previously identified metallophore, has exhibited a gold biomineralizing property; compound 1 was tested for and also demonstrated this property.
Collapse
Affiliation(s)
- Mohammed
M. A. Ahmed
- Boudreau
Lab, Department of BioMolecular Science, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
- Department
of Pharmacognosy, Al-Azhar University, Cairo 11651, Egypt
| | - Paul D. Boudreau
- Boudreau
Lab, Department of BioMolecular Science, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
10
|
Saenkham-Huntsinger P, Ritter M, Donati GL, Mitchell AM, Subashchandrabose S. The inner membrane protein YhiM links copper and CpxAR envelope stress responses in uropathogenic E. coli. mBio 2024; 15:e0352223. [PMID: 38470052 PMCID: PMC11005409 DOI: 10.1128/mbio.03522-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
Urinary tract infection (UTI) is a ubiquitous infectious condition, and uropathogenic Escherichia coli (UPEC) is the predominant causative agent of UTI. Copper (Cu) is implicated in innate immunity, including against UPEC. Cu is a trace element utilized as a co-factor, but excess Cu is toxic due to mismetalation of non-cognate proteins. E. coli precisely regulates Cu homeostasis via efflux systems. However, Cu import mechanisms into the bacterial cell are not clear. We hypothesized that Cu import defective mutants would exhibit increased resistance to Cu. This hypothesis was tested in a forward genetic screen with transposon (Tn5) insertion mutants in UPEC strain CFT073, and we identified 32 unique Cu-resistant mutants. Transposon and defined mutants lacking yhiM, which encodes a hypothetical inner membrane protein, were more resistant to Cu than parental strain. Loss of YhiM led to decreased cellular Cu content and increased expression of copA, encoding a Cu efflux pump. The CpxAR envelope stress response system was activated in the ΔyhiM mutant as indicated by increased expression of cpxP. Transcription of yhiM was regulated by CueR and CpxR, and the CpxAR system was essential for increased Cu resistance in the ΔyhiM mutant. Importantly, activation of CpxAR system in the ΔyhiM mutant was independent of NlpE, a known activator of this system. YhiM was required for optimal fitness of UPEC in a mouse model of UTI. Our findings demonstrate that YhiM is a critical mediator of Cu homeostasis and links bacterial adaptation to Cu stress with the CpxAR-dependent envelope stress response in UPEC.IMPORTANCEUPEC is a common bacterial infection. Bacterial pathogens are exposed to host-derived Cu during infection, including UTI. Here, we describe detection of genes involved in Cu homeostasis in UPEC. A UPEC mutant lacking YhiM, a membrane protein, exhibited dramatic increase in resistance to Cu. Our study demonstrates YhiM as a nexus between Cu stress and the CpxAR-dependent envelope stress response system. Importantly, our findings establish NlpE-independent activation of CpxAR system during Cu stress in UPEC. Collectively, YhiM emerges as a critical mediator of Cu homeostasis in UPEC and highlights the interlinked nature of bacterial adaptation to survival during Cu and envelope stress.
Collapse
Affiliation(s)
- Panatda Saenkham-Huntsinger
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Matthew Ritter
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - George L. Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Angela M. Mitchell
- Department of Biology, College of Science, Texas A&M University, College Station, Texas, USA
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
11
|
Matsuda K, Maruyama H, Imachi K, Ikeda H, Wakimoto T. Actinobacterial chalkophores: the biosynthesis of hazimycins. J Antibiot (Tokyo) 2024; 77:228-237. [PMID: 38378905 DOI: 10.1038/s41429-024-00706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Copper is a transition metal element with significant effects on the morphological development and secondary metabolism of actinobacteria. In some microorganisms, copper-binding natural products are employed to modulate copper homeostasis, although their significance in actinobacteria remains largely unknown. Here, we identified the biosynthetic genes of the diisocyanide natural product hazimycin in Kitasatospora purpeofusca HV058, through gene knock-out and heterologous expression. Biochemical analyses revealed that hazimycin A specifically binds to copper, which diminishes its antimicrobial activity. The presence of a set of putative importer/exporter genes surrounding the biosynthetic genes suggested that hazimycin is a chalkophore that modulates the intracellular copper level. A bioinformatic survey of homologous gene cassettes, as well as the identification of two previously unknown hazimycin-producing Streptomyces strains, indicated that the isocyanide-based mechanism of copper homeostasis is prevalent in actinobacteria.
Collapse
Affiliation(s)
- Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.
| | - Hiroto Maruyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Kumiko Imachi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Haruo Ikeda
- Technology Research Association for Next generation natural products chemistry, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
12
|
Olanrewaju OS, Molale-Tom LG, Kritzinger RK, Bezuidenhout CC. Genome mining of Escherichia coli WG5D from drinking water source: unraveling antibiotic resistance genes, virulence factors, and pathogenicity. BMC Genomics 2024; 25:263. [PMID: 38459466 PMCID: PMC10924361 DOI: 10.1186/s12864-024-10110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/09/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Escherichia coli, a ubiquitous inhabitant of the gut microbiota, has been recognized as an indicator of fecal contamination and a potential reservoir for antibiotic resistance genes. Its prevalence in drinking water sources raises concerns about the potential dissemination of antibiotic resistance within aquatic ecosystems and the subsequent impact on public health. The ability of E. coli to acquire and transfer resistance genes, coupled with the constant exposure to low levels of antibiotics in the environment, underscores the need for comprehensive surveillance and rigorous antimicrobial stewardship strategies to safeguard the quality and safety of drinking water supplies, ultimately mitigating the escalation of antibiotic resistance and its implications for human well-being. METHODS WG5D strain, isolated from a drinking water distribution source in North-West Province, South Africa, underwent genomic analysis following isolation on nutrient agar, anaerobic cultivation, and DNA extraction. Paired-end Illumina sequencing with a Nextera XT Library Preparation kit was performed. The assembly, annotation, and subsequent genomic analyses, including phylogenetic analysis using TYGS, pairwise comparisons, and determination of genes related to antimicrobial resistance and virulence, were carried out following standard protocols and tools, ensuring comprehensive insights into the strain's genomic features. RESULTS This study explores the notable characteristics of E. coli strain WG5D. This strain stands out because it possesses multiple antibiotic resistance genes, encompassing tetracycline, cephalosporin, vancomycin, and aminoglycoside resistances. Additionally, virulence-associated genes indicate potential heightened pathogenicity, complemented by the identification of mobile genetic elements that underscore its adaptability. The intriguing possibility of bacteriophage involvement and factors contributing to pathogenicity further enriches our understanding. We identified E. coli WG5D as a potential human pathogen associated with a drinking water source in South Africa. The analysis provided several antibiotic resistance-associated genes/mutations and mobile genetic elements. It further identified WG5D as a potential human pathogen. The occurrence of E. coli WG5D raised the awareness of the potential pathogens and the carrying of antibiotic resistance in drinking water. CONCLUSIONS The findings of this study have highlighted the advantages of the genomic approach in identifying the bacterial species and antibiotic resistance genes of E. coli and its potential as a human pathogen.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, 2520, Potchefstroom, South Africa
| | - Lesego G Molale-Tom
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, 2520, Potchefstroom, South Africa
| | - Rinaldo K Kritzinger
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, 2520, Potchefstroom, South Africa
| | - Cornelius Carlos Bezuidenhout
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, 2520, Potchefstroom, South Africa.
| |
Collapse
|
13
|
Heffernan JR, Wildenthal JA, Tran H, Katumba GL, McCoy WH, Henderson JP. Yersiniabactin is a quorum-sensing autoinducer and siderophore in uropathogenic Escherichia coli. mBio 2024; 15:e0027723. [PMID: 38236035 PMCID: PMC10865836 DOI: 10.1128/mbio.00277-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024] Open
Abstract
Siderophores are secreted ferric ion chelators used to obtain iron in nutrient-limited environmental niches, including human hosts. While all Escherichia coli express the enterobactin (Ent) siderophore system, isolates from patients with urinary tract infections additionally express the genetically distinct yersiniabactin (Ybt) siderophore system. To determine whether the Ent and Ybt systems are functionally redundant for iron uptake, we compared the growth of different isogenic siderophore biosynthetic mutants in the presence of transferrin, a human iron-binding protein. We observed that Ybt expression does not compensate for deficient Ent expression following low-density inoculation. Using transcriptional and product analysis, we found this non-redundancy to be attributable to a density-dependent transcriptional stimulation cycle in which Ybt functions as an autoinducer. These results distinguish the Ybt system as a combined quorum-sensing and siderophore system. These functions may reflect Ybt as a public good within bacterial communities or as an adaptation to confined, subcellular compartments in infected hosts. This combined functionality may contribute to the extraintestinal pathogenic potential of E. coli and related Enterobacterales.IMPORTANCEPatients with urinary tract infections are often infected with Escherichia coli strains carrying adaptations that increase their pathogenic potential. One of these adaptations is the accumulation of multiple siderophore systems, which scavenge iron for nutritional use. While iron uptake is important for bacterial growth, the increased metabolic costs of siderophore production could diminish bacterial fitness during infections. In a siderophore-dependent growth condition, we show that the virulence-associated yersiniabactin siderophore system in uropathogenic E. coli is not redundant with the ubiquitous E. coli enterobactin system. This arises not from differences in iron-scavenging activity but because yersiniabactin is preferentially expressed during bacterial crowding, leaving bacteria dependent upon enterobactin for growth at low cell density. Notably, this regulatory mode arises because yersiniabactin stimulates its own expression, acting as an autoinducer in a previously unappreciated quorum-sensing system. This unexpected result connects quorum-sensing with pathogenic potential in E. coli and related Enterobacterales.
Collapse
Affiliation(s)
- James R. Heffernan
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John A. Wildenthal
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hung Tran
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - George L. Katumba
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - William H. McCoy
- Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey P. Henderson
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Maunders EA, Giles MW, Ganio K, Cunningham BA, Bennett-Wood V, Cole GB, Ng D, Lai CC, Neville SL, Moraes TF, McDevitt CA, Tan A. Zinc acquisition and its contribution to Klebsiella pneumoniae virulence. Front Cell Infect Microbiol 2024; 13:1322973. [PMID: 38249299 PMCID: PMC10797113 DOI: 10.3389/fcimb.2023.1322973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
Klebsiella pneumoniae is a World Health Organization priority pathogen and a significant clinical concern for infections of the respiratory and urinary tracts due to widespread and increasing resistance to antimicrobials. In the absence of a vaccine, there is an urgent need to identify novel targets for therapeutic development. Bacterial pathogens, including K. pneumoniae, require the d-block metal ion zinc as an essential micronutrient, which serves as a cofactor for ~6% of the proteome. During infection, zinc acquisition necessitates the use of high affinity uptake systems to overcome niche-specific zinc limitation and host-mediated nutritional immunity. Here, we report the identification of ZnuCBA and ZniCBA, two ATP-binding cassette permeases that are highly conserved in Klebsiella species and contribute to K. pneumoniae AJ218 zinc homeostasis, and the high-resolution structure of the zinc-recruiting solute-binding protein ZniA. The Znu and Zni permeases appear functionally redundant with abrogation of both systems required to reduce K. pneumoniae zinc accumulation. Disruption of both systems also exerted pleiotropic effects on the homeostasis of other d-block elements. Zinc limitation perturbed K. pneumoniae cell morphology and compromised resistance to stressors, such as salt and oxidative stress. The mutant strain lacking both systems showed significantly impaired virulence in acute lung infection models, highlighting the necessity of zinc acquisition in the virulence and pathogenicity of K. pneumoniae.
Collapse
Affiliation(s)
- Eve A. Maunders
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Matthew W. Giles
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Bliss A. Cunningham
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Vicki Bennett-Wood
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Gregory B. Cole
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Dixon Ng
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Christine C. Lai
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Stephanie L. Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Trevor F. Moraes
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Christopher A. McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Aimee Tan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Zou Z, Robinson JI, Steinberg LK, Henderson JP. Uropathogenic Escherichia coli wield enterobactin-derived catabolites as siderophores. J Biol Chem 2024; 300:105554. [PMID: 38072063 PMCID: PMC10788543 DOI: 10.1016/j.jbc.2023.105554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) secrete multiple siderophore types to scavenge extracellular iron(III) ions during clinical urinary tract infections, despite the metabolic costs of biosynthesis. Here, we find the siderophore enterobactin (Ent) and its related products to be prominent components of the iron-responsive extracellular metabolome of a model UPEC strain. Using defined Ent biosynthesis and import mutants, we identify lower molecular weight dimeric exometabolites as products of incomplete siderophore catabolism, rather than prematurely released biosynthetic intermediates. In E. coli, iron acquisition from iron(III)-Ent complexes requires intracellular esterases that hydrolyze the siderophore. Although UPEC are equipped to consume the products of completely hydrolyzed Ent, we find that Ent and its derivatives may be incompletely hydrolyzed to yield products with retained siderophore activity. These results are consistent with catabolic inefficiency as means to obtain more than one iron ion per siderophore molecule. This is compatible with an evolved UPEC strategy to maximize the nutritional returns from metabolic investments in siderophore biosynthesis.
Collapse
Affiliation(s)
- Zongsen Zou
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, St Louis, Missouri, USA; Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - John I Robinson
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, St Louis, Missouri, USA; Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Lindsey K Steinberg
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, St Louis, Missouri, USA; Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jeffrey P Henderson
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, St Louis, Missouri, USA; Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
16
|
Chang J, Peng P, Farhan Ul-Haque M, Hira A, DiSpirito AA, Semrau JD. Inhibition of nitrous oxide reduction in forest soil microcosms by different forms of methanobactin. Environ Microbiol 2023; 25:2338-2350. [PMID: 37395163 DOI: 10.1111/1462-2920.16456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Copper plays a critical role in controlling greenhouse gas emissions as it is a key component of the particulate methane monooxygenase and nitrous oxide reductase. Some methanotrophs excrete methanobactin (MB) that has an extremely high copper affinity. As a result, MB may limit the ability of other microbes to gather copper, thereby decreasing their activity as well as impacting microbial community composition. Here, we show using forest soil microcosms that multiple forms of MB; MB from Methylosinus trichosporium OB3b (MB-OB3b) and MB from Methylocystis sp. strain SB2 (MB-SB2) increased nitrous oxide (N2 O) production as well caused significant shifts in microbial community composition. Such effects, however, were mediated by the amount of copper in the soils, with low-copper soil microcosms showing the strongest response to MB. Furthermore, MB-SB2 had a stronger effect, likely due to its higher affinity for copper. The presence of either form of MB also inhibited nitrite reduction and generally increased the presence of genes encoding for the iron-containing nitrite reductase (nirS) over the copper-dependent nitrite reductase (nirK). These data indicate the methanotrophic-mediated production of MB can significantly impact multiple steps of denitrification, as well as have broad effects on microbial community composition of forest soils.
Collapse
Affiliation(s)
- Jin Chang
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Peng Peng
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Abid Hira
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Alan A DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Hossain S, Morey JR, Neville SL, Ganio K, Radin JN, Norambuena J, Boyd JM, McDevitt CA, Kehl-Fie TE. Host subversion of bacterial metallophore usage drives copper intoxication. mBio 2023; 14:e0135023. [PMID: 37737591 PMCID: PMC10653882 DOI: 10.1128/mbio.01350-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/02/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE During infection, bacteria must overcome the dual threats of metal starvation and intoxication. This work reveals that the zinc-withholding response of the host sensitizes S. aureus to copper intoxication. In response to zinc starvation, S. aureus utilizes the metallophore staphylopine. The current work revealed that the host can leverage the promiscuity of staphylopine to intoxicate S. aureus during infection. Significantly, staphylopine-like metallophores are produced by a wide range of pathogens, suggesting that this is a conserved weakness that the host can leverage to toxify invaders with copper. Moreover, it challenges the assumption that the broad-spectrum metal binding of metallophores is inherently beneficial to bacteria.
Collapse
Affiliation(s)
- Saika Hossain
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jacqueline R. Morey
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Stephanie L. Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jana N. Radin
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Jeff M. Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Christopher A. McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas E. Kehl-Fie
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
18
|
Bosveli A, Griboura N, Kampouropoulos I, Kalaitzakis D, Montagnon T, Vassilikogiannakis G. The Rapid Synthesis of Colibactin Warhead Model Compounds Using New Metal-Free Photocatalytic Cyclopropanation Reactions Facilitates the Investigation of Biological Mechanisms. Chemistry 2023; 29:e202301713. [PMID: 37452669 DOI: 10.1002/chem.202301713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Herein, we report the synthesis of a series of colibactin warhead model compounds using two newly developed metal-free photocatalytic cyclopropanation reactions. These mild cyclopropanations expand the known applications of eosin within synthesis. A halogen atom transfer reaction mode has been harnessed so that dihalides can be used as the cyclopropanating agents. The colibactin warhead models were then used to provide new insight into two key mechanisms in colibactin chemistry. An explanation is provided for why the colibactin warhead sometimes undergoes a ring expansion-addition reaction to give fused cyclobutyl products while at other times nucleophiles add directly to the cyclopropyl unit (as when DNA adds to colibactin). Finally, we provide some evidence that Cu(II) chelated to colibactin may catalyze an important oxidation of the colibactin-DNA adduct. The Cu(I) generated as a result could then also play a role in inducing double strand breaks in DNA.
Collapse
Affiliation(s)
- Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | - Nefeli Griboura
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | | | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | | |
Collapse
|
19
|
Zou Z, Robinson JI, Steinberg LK, Henderson JP. Uropathogenic Escherichia coli wield enterobactin-derived catabolites as siderophores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550588. [PMID: 37546885 PMCID: PMC10402112 DOI: 10.1101/2023.07.25.550588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Uropathogenic E. coli (UPEC) secrete multiple siderophore types to scavenge extracellular iron(III) ions during clinical urinary tract infections, despite the metabolic costs of biosynthesis. Here we find the siderophore enterobactin and its related products to be prominent components of the iron-responsive extracellular metabolome of a model UPEC strain. Using defined enterobactin biosynthesis and import mutants, we identify lower molecular weight, dimeric exometabolites as products of incomplete siderophore catabolism, rather than prematurely released biosynthetic intermediates. In E. coli, iron acquisition from iron(III)-enterobactin complexes requires intracellular esterases that hydrolyze the siderophore. Although UPEC are equipped to consume the products of completely hydrolyzed enterobactin, we find that enterobactin and its derivatives may be incompletely hydrolyzed to yield products with retained siderophore activity. These results are consistent with catabolic inefficiency as means to obtain more than one iron ion per siderophore molecule. This is compatible with an evolved UPEC strategy to maximize the nutritional returns from metabolic investments in siderophore biosynthesis.
Collapse
Affiliation(s)
- Zongsen Zou
- Center for Women’s Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John I. Robinson
- Center for Women’s Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lindsey K. Steinberg
- Center for Women’s Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey P. Henderson
- Center for Women’s Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
20
|
Siddiqui NA, Ventrola AJ, Hartman AR, Konare T, Kamble NS, Thomas SC, Madaan T, Kharofa J, Sertorio MG, Kotagiri N. An Engineered Probiotic Platform for Cancer Epitope-Independent Targeted Radionuclide Therapy of Solid Tumors. Adv Healthc Mater 2023; 12:e2202870. [PMID: 36913614 PMCID: PMC10497710 DOI: 10.1002/adhm.202202870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/06/2023] [Indexed: 03/15/2023]
Abstract
Targeted radionuclide therapy (TRT) is an emerging therapeutic modality for the treatment of various solid cancers. Current approaches rely on the presence of cancer-specific epitopes and receptors against which a radiolabeled ligand is systemically administered to specifically deliver cytotoxic doses of α and β particles to tumors. In this proof-of-concept study, tumor-colonizing Escherichia coli Nissle 1917 (EcN) is utilized to deliver a bacteria-specific radiopharmaceutical to solid tumors in a cancer-epitope independent manner. In this microbe-based pretargeted approach, the siderophore-mediated metal uptake pathway is leveraged to selectively concentrate copper radioisotopes, 64 Cu and 67 Cu, complexed to yersiniabactin (YbT) in the genetically modified bacteria. 64 Cu-YbT facilitates positron emission tomography (PET) imaging of the intratumoral bacteria, whereas 67 Cu-YbT delivers a cytotoxic dose to the surrounding cancer cells. PET imaging with 64 Cu-YbT reveals persistence and sustained growth of the bioengineered microbes in the tumor microenvironment. Survival studies with 67 Cu-YbT reveals significant attenuation of tumor growth and extends survival of both MC38 and 4T1 tumor-bearing mice harboring the microbes. Tumor response to this pretargeted approach correlates with promising anti-tumor immunity, with noticeable CD8+ T:Treg cell ratio. Their strategy offers a pathway to target and ablate multiple solid tumors independent of their epitope and receptor phenotype.
Collapse
Affiliation(s)
- Nabil A. Siddiqui
- Division of Pharmaceutical SciencesJames L. Winkle College of PharmacyUniversity of CincinnatiCincinnatiOH45267USA
| | - Alec J. Ventrola
- Division of Pharmaceutical SciencesJames L. Winkle College of PharmacyUniversity of CincinnatiCincinnatiOH45267USA
| | - Alexandra R. Hartman
- Division of Pharmaceutical SciencesJames L. Winkle College of PharmacyUniversity of CincinnatiCincinnatiOH45267USA
| | - Tohonne Konare
- Division of Pharmaceutical SciencesJames L. Winkle College of PharmacyUniversity of CincinnatiCincinnatiOH45267USA
| | - Nitin S. Kamble
- Division of Pharmaceutical SciencesJames L. Winkle College of PharmacyUniversity of CincinnatiCincinnatiOH45267USA
| | - Shindu C. Thomas
- Division of Pharmaceutical SciencesJames L. Winkle College of PharmacyUniversity of CincinnatiCincinnatiOH45267USA
| | - Tushar Madaan
- Division of Pharmaceutical SciencesJames L. Winkle College of PharmacyUniversity of CincinnatiCincinnatiOH45267USA
| | - Jordan Kharofa
- Department of Radiation OncologyCollege of MedicineUniversity of CincinnatiCincinnatiOH45219USA
| | - Mathieu G. Sertorio
- Department of Radiation OncologyCollege of MedicineUniversity of CincinnatiCincinnatiOH45219USA
| | - Nalinikanth Kotagiri
- Division of Pharmaceutical SciencesJames L. Winkle College of PharmacyUniversity of CincinnatiCincinnatiOH45267USA
| |
Collapse
|
21
|
Patil RH, Luptáková D, Havlíček V. Infection metallomics for critical care in the post-COVID era. MASS SPECTROMETRY REVIEWS 2023; 42:1221-1243. [PMID: 34854486 DOI: 10.1002/mas.21755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 06/07/2023]
Abstract
Infection metallomics is a mass spectrometry (MS) platform we established based on the central concept that microbial metallophores are specific, sensitive, noninvasive, and promising biomarkers of invasive infectious diseases. Here we review the in vitro, in vivo, and clinical applications of metallophores from historical and functional perspectives, and identify under-studied and emerging application areas with high diagnostic potential for the post-COVID era. MS with isotope data filtering is fundamental to infection metallomics; it has been used to study the interplay between "frenemies" in hosts and to monitor the dynamic response of the microbiome to antibiotic and antimycotic therapies. During infection in critically ill patients, the hostile environment of the host's body activates secondary bacterial, mycobacterial, and fungal metabolism, leading to the production of metallophores that increase the pathogen's chance of survival in the host. MS can reveal the structures, stability, and threshold concentrations of these metal-containing microbial biomarkers of infection in humans and model organisms, and can discriminate invasive disease from benign colonization based on well-defined thresholds distinguishing proliferation from the colonization steady state.
Collapse
Affiliation(s)
- Rutuja H Patil
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Analytical Chemistry, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Dominika Luptáková
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Vladimír Havlíček
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Analytical Chemistry, Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
22
|
Colbert JF, Kirsch JM, Erzen CL, Langouët-Astrié CJ, Thompson GE, McMurtry SA, Kofonow JM, Robertson CE, Kovacs EJ, Sullivan RC, Hippensteel JA, Sawant NV, De Nisco NJ, McCollister BD, Schwartz RS, Horswill AR, Frank DN, Duerkop BA, Schmidt EP. Aging-Associated Augmentation of Gut Microbiome Virulence Capability Drives Sepsis Severity. mBio 2023; 14:e0005223. [PMID: 37102874 PMCID: PMC10294665 DOI: 10.1128/mbio.00052-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Prior research has focused on host factors as mediators of exaggerated sepsis-associated morbidity and mortality in older adults. This focus on the host, however, has failed to identify therapies that improve sepsis outcomes in the elderly. We hypothesized that the increased susceptibility of the aging population to sepsis is not only a function of the host but also reflects longevity-associated changes in the virulence of gut pathobionts. We utilized two complementary models of gut microbiota-induced experimental sepsis to establish the aged gut microbiome as a key pathophysiologic driver of heightened disease severity. Further murine and human investigations into these polymicrobial bacterial communities demonstrated that age was associated with only subtle shifts in ecological composition but also an overabundance of genomic virulence factors that have functional consequence on host immune evasion. IMPORTANCE Older adults suffer more frequent and worse outcomes from sepsis, a critical illness secondary to infection. The reasons underlying this unique susceptibility are incompletely understood. Prior work in this area has focused on how the immune response changes with age. The current study, however, focuses instead on alterations in the community of bacteria that humans live with within their gut (i.e., the gut microbiome). The central concept of this paper is that the bacteria in our gut evolve along with the host and "age," making them more efficient at causing sepsis.
Collapse
Affiliation(s)
- James F. Colbert
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| | - Joshua M. Kirsch
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christopher L. Erzen
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | - Sarah A. McMurtry
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jennifer M. Kofonow
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Charles E. Robertson
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Elizabeth J. Kovacs
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ryan C. Sullivan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Joseph A. Hippensteel
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Namrata V. Sawant
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Nicole J. De Nisco
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bruce D. McCollister
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Robert S. Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| | - Daniel N. Frank
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Eric P. Schmidt
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Zhang Y, Zhou J, Li H, Liu Y, Li J. Prediction of risk and clinical outcome of cuproptosis in lung squamous carcinoma. BMC Pulm Med 2023; 23:205. [PMID: 37308925 PMCID: PMC10258956 DOI: 10.1186/s12890-023-02490-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) is an important subtype of non-small cell lung cancer. Its special clinicopathological features and molecular background determine the limitations of its treatment. A recent study published on Science defined a newly regulatory cell death (RCD) form - cuproptosis. Which manifested as an excessive intracellular copper accumulation, mitochondrial respiration-dependent, protein acylation-mediated cell death. Different from apoptosis, pyroptosis, necroptosis, ferroptosis and other forms of regulatory cell death (RCD). The imbalance of copper homeostasis in vivo will trigger cytotoxicity and further affect the occurrence and progression of tumors. Our study is the first to predict the prognosis and immune landscape of cuproptosis-related genes (CRGs) in LUSC. METHODS The RNA-seq profiles and clinical data of LUSC patients were downloaded from TCGA and GEO databases and then combined into a novel cohort. R language packages are used to analyze and process the data, and CRGs related to the prognosis of LUSC were screened according to the differentially expressed genes (DEGs). After analyzed the tumor mutation burden (TMB), copy number variation (CNV) and CRGs interaction network. Based on CRGs and DEGs, cluster analysis was used to classify LUSC patients twice. The selected key genes were used to construct a CRGs prognostic model to further analyze the correlation between LUSC immune cell infiltration and immunity. Through the risk score and clinical factors, a more accurate nomogram was further constructed. Finally, the drug sensitivity of CRGs in LUSC was analyzed. RESULTS Patients with LUSC were divided into different cuproptosis subtypes and gene clusters, showing different levels of immune infiltration. The risk score showed that the high-risk group had higher tumor microenvironment score, lower tumor mutation load frequency and worse prognosis than the low-risk group. In addition, the high-risk group was more sensitive to vinorelbine, cisplatin, paclitaxel, doxorubicin, etoposide and other drugs. CONCLUSIONS Through bioinformatics analysis, we successfully constructed a prognostic risk assessment model based on CRGs, which can not only accurately predict the prognosis of LUSC patients, but also evaluate the patient 's immune infiltration status and sensitivity to chemotherapy drugs. This model shows satisfactory predictive results and provides a reference for subsequent tumor immunotherapy.
Collapse
Affiliation(s)
| | - Jia Zhou
- Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxi, China
| | - Hong Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yaobang Liu
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jinping Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
24
|
Hossain S, Morey JR, Neville SL, Ganio K, Radin JN, Norambuena J, Boyd JM, McDevitt CA, Kehl-Fie TE. Host subversion of bacterial metallophore usage drives copper intoxication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542972. [PMID: 37398167 PMCID: PMC10312489 DOI: 10.1101/2023.05.30.542972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Microorganisms can acquire metal ions in metal-limited environments using small molecules called metallophores. While metals and their importers are essential, metals can also be toxic, and metallophores have limited ability to discriminate metals. The impact of the metallophore-mediated non-cognate metal uptake on bacterial metal homeostasis and pathogenesis remains to be defined. The globally significant pathogen Staphylococcus aureus uses the Cnt system to secrete the metallophore staphylopine in zinc-limited host niches. Here, we show that staphylopine and the Cnt system facilitate bacterial copper uptake, potentiating the need for copper detoxification. During in vivo infection, staphylopine usage increased S. aureus susceptibility to host-mediated copper stress, indicating that the innate immune response can harness the antimicrobial potential of altered elemental abundances in host niches. Collectively, these observations show that while the broad-spectrum metal-chelating properties of metallophores can be advantageous, the host can exploit these properties to drive metal intoxication and mediate antibacterial control. IMPORTANCE During infection bacteria must overcome the dual threats of metal starvation and intoxication. This work reveals that the zinc-withholding response of the host sensitizes Staphylococcus aureus to copper intoxication. In response to zinc starvation S. aureus utilizes the metallophore staphylopine. The current work revealed that the host can leverage the promiscuity of staphylopine to intoxicate S. aureus during infection. Significantly, staphylopine-like metallophores are produced by a wide range of pathogens, suggesting that this is a conserved weakness that the host can leverage to toxify invaders with copper. Moreover, it challenges the assumption that the broad-spectrum metal binding of metallophores is inherently beneficial to bacteria.
Collapse
Affiliation(s)
- Saika Hossain
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jacqueline R Morey
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Stephanie L Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Jana N Radin
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
25
|
Jiao X, Huang W, Wang A, Wu B, Kang Q, Luo X, Bai L, Deng Z. Crystallographic Deciphering of Spontaneous Self-Assembly of Achiral Calciphores to Chiral Complexes. Chemistry 2023; 29:e202203127. [PMID: 36408990 DOI: 10.1002/chem.202203127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Thiapyricins (TPC-A/B, 1 and 2), which are new metallophore scaffolds exhibiting selective divalent cation binding property, were produced in response to metal-deprived conditions by Saccharothrix sp. TRM_47004 isolated from the Lop Nor Salt Lake. TPCs represent a thiazolyl-pyridine skeleton of a calcium-binding natural product, calciphore, owing to the selectivity to calcium ions among diverse metal ions. The thiapyricins exhibited notable co-crystalline characteristics of the apo- and holo-forms with racemic enantiomers comprising a pair of space isomers in a Δ/Λ-form. Therefore, we postulated a mechanism for the four-hierarchical self-assembly of achiral natural products into chiral complexes. Furthermore, their metal-chelating trait aided the adaptation of the host during metal starvation by increasing the production of TPCs. This study presents a structural paradigm of a new calciphore, provides insight into the mechanism of natural product assembly, and highlights the causality between the production of the metallophore and metallic habitats.
Collapse
Affiliation(s)
- Xingzhi Jiao
- State Key Laboratory of, Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research, Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Wei Huang
- College of Life Science, Tarim University, 843300, Alar, Xinjiang, P. R. China
| | - Anqi Wang
- State Key Laboratory of, Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research, Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Banghao Wu
- State Key Laboratory of, Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research, Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Qianjin Kang
- State Key Laboratory of, Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research, Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xiaoxia Luo
- College of Life Science, Tarim University, 843300, Alar, Xinjiang, P. R. China
| | - Linquan Bai
- State Key Laboratory of, Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research, Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,College of Life Science, Tarim University, 843300, Alar, Xinjiang, P. R. China
| | - Zixin Deng
- State Key Laboratory of, Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research, Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| |
Collapse
|
26
|
Heffernan JR, Katumba GL, McCoy WH, Henderson JP. Yersiniabactin is a quorum sensing autoinducer and siderophore in uropathogenic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527953. [PMID: 36798367 PMCID: PMC9934619 DOI: 10.1101/2023.02.09.527953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Siderophores are secreted ferric ion chelators used to obtain iron in nutrient-limited environmental niches, including human hosts. While all E. coli encode the enterobactin (Ent) siderophore system, isolates from patients with urinary tract infections additionally encode the genetically distinct yersiniabactin (Ybt) siderophore system. To determine whether the Ent and Ybt systems are functionally redundant for iron uptake, we compared growth of different isogenic siderophore biosynthesis mutants in the presence of transferrin, a human iron-binding protein. We observed that the Ybt system does not compensate for loss of the Ent system during siderophore-dependent, low density growth. Using transcriptional and product analysis, we found that this non-redundancy is attributable to a density-dependent transcriptional stimulation cycle in which Ybt assume an additional autoinducer function. These results distinguish the Ybt system as a combined quorum-sensing and siderophore system. These functions may reflect Ybt as a public good within bacterial communities or as an adaptation to confined, subcellular compartments in infected hosts. The efficiency of this arrangement may contribute to the extraintestinal pathogenic potential of E. coli and related Enterobacterales. IMPORTANCE Urinary tract infections (UTIs) are one of the most common human bacterial infections encountered by physicians. Adaptations that increase the pathogenic potential of commensal microbes such as E.coli are of great interest. One potential adaptation observed in clinical isolates is accumulation of multiple siderophore systems, which scavenge iron for nutritional use. While iron uptake is important for bacterial growth, the increased metabolic costs of siderophore production could diminish bacterial fitness during infections. In a siderophore-dependent growth conditions, we show that the virulence-associated yersiniabactin siderophore system in uropathogenic E. coli is not redundant with the ubiquitous E. coli enterobactin system. This arises not from differences in iron scavenging activity but because yersiniabactin is preferentially expressed during bacterial crowding, leaving bacteria dependent upon enterobactin for growth at low cell density. Notably, this regulatory mode arises because yersiniabactin stimulates its own expression, acting as an autoinducer in a previously unappreciated quorum-sensing system. This unexpected result connects quorum-sensing with pathogenic potential in E. coli and related Enterobacterales.
Collapse
|
27
|
Colbert JF, Kirsch JM, Erzen CL, Langouët-Astrié CJ, Thompson GE, McMurtry SA, Kofonow JM, Robertson CE, Kovacs EJ, Sullivan RC, Hippensteel JA, Sawant NV, De Nisco NJ, McCollister BD, Schwartz RS, Horswill AR, Frank DN, Duerkop BA, Schmidt EP. Aging-associated augmentation of gut microbiome virulence capability drives sepsis severity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523523. [PMID: 36711447 PMCID: PMC9882086 DOI: 10.1101/2023.01.10.523523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Prior research has focused on host factors as mediators of exaggerated sepsis-associated morbidity and mortality in older adults. This focus on the host, however, has failed to identify therapies that improve sepsis outcomes in the elderly. We hypothesized that the increased susceptibility of the aging population to sepsis is not only a function of the host, but also reflects longevity-associated changes in the virulence of gut pathobionts. We utilized two complementary models of gut microbiota-induced experimental sepsis to establish the aged gut microbiome as a key pathophysiologic driver of heightened disease severity. Further murine and human investigations into these polymicrobial bacterial communities demonstrated that age was associated with only subtle shifts in ecological composition, but an overabundance of genomic virulence factors that have functional consequence on host immune evasion. One Sentence Summary The severity of sepsis in the aged host is in part mediated by longevity-associated increases in gut microbial virulence.
Collapse
|
28
|
Akter A, Lyons O, Mehra V, Isenman H, Abbate V. Radiometal chelators for infection diagnostics. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 2:1058388. [PMID: 37388440 PMCID: PMC7614707 DOI: 10.3389/fnume.2022.1058388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Infection of native tissues or implanted devices is common, but clinical diagnosis is frequently difficult and currently available noninvasive tests perform poorly. Immunocompromised individuals (for example transplant recipients, or those with cancer) are at increased risk. No imaging test in clinical use can specifically identify infection, or accurately differentiate bacterial from fungal infections. Commonly used [18F]fluorodeoxyglucose (18FDG) positron emission computed tomography (PET/CT) is sensitive for infection, but limited by poor specificity because increased glucose uptake may also indicate inflammation or malignancy. Furthermore, this tracer provides no indication of the type of infective agent (bacterial, fungal, or parasitic). Imaging tools that directly and specifically target microbial pathogens are highly desirable to improve noninvasive infection diagnosis and localization. A growing field of research is exploring the utility of radiometals and their chelators (siderophores), which are small molecules that bind radiometals and form a stable complex allowing sequestration by microbes. This radiometal-chelator complex can be directed to a specific microbial target in vivo, facilitating anatomical localization by PET or single photon emission computed tomography. Additionally, bifunctional chelators can further conjugate therapeutic molecules (e.g., peptides, antibiotics, antibodies) while still bound to desired radiometals, combining specific imaging with highly targeted antimicrobial therapy. These novel therapeutics may prove a useful complement to the armamentarium in the global fight against antimicrobial resistance. This review will highlight current state of infection imaging diagnostics and their limitations, strategies to develop infection-specific diagnostics, recent advances in radiometal-based chelators for microbial infection imaging, challenges, and future directions to improve targeted diagnostics and/or therapeutics.
Collapse
Affiliation(s)
- Asma Akter
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| | - Oliver Lyons
- Vascular Endovascular and Transplant Surgery, Christchurch Public Hospital, Christchurch, New Zealand
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Varun Mehra
- Department of Hematology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Heather Isenman
- Department of Infectious Diseases, General Medicine, Christchurch Hospital, Christchurch, New Zealand
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
29
|
Cai J, Xie H, Yan Y, Huang Z, Tang P, Cao X, Wang Z, Yang C, Wen J, Tan M, Zhang F, Shen B. A novel cuproptosis-related lncRNA signature predicts prognosis and therapeutic response in bladder cancer. Front Genet 2023; 13:1082691. [PMID: 36685947 PMCID: PMC9845412 DOI: 10.3389/fgene.2022.1082691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Bladder cancer (BC) ranks the tenth in the incidence of global tumor epidemiology. LncRNAs and cuproptosis were discovered to regulate the cell death. Herein, we downloaded transcriptome profiling, mutational data, and clinical data on patients from The Cancer Genome Atlas (TCGA). High- and low-risk BC patients were categorized. Three CRLs (AL590428.1, AL138756.1 and GUSBP11) were taken into prognostic signature through least absolute shrinkage and selection operator (LASSO) Cox regression. Worse OS and PFS were shown in high-risk group (p < 0.05). ROC, independent prognostic analyses, nomogram and C-index were predicted via CRLs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated IncRNAs play a biological role in BC progression. Immune-related functions showed the high-risk group received more benefit from immunotherapy and had stronger immune responses, and the overall survival was better (p < 0.05). Finally, a more effective outcome (p < 0.05) was found from clinical immunotherapy via the TIDE algorithm and many potential anti-tumor drugs were identified. In our study, the cuproptosis-related signature provided a novel tool to predict the prognosis in BC patients accurately and provided a novel strategy for clinical immunotherapy and clinical applications.
Collapse
Affiliation(s)
- Jinming Cai
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haoran Xie
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengnan Huang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengfei Tang
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai, China
| | - Xiangqian Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyi Wang
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiling Wen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,*Correspondence: Jiling Wen, ; Mingyue Tan, ; Fang Zhang, ; Bing Shen,
| | - Mingyue Tan
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Jiling Wen, ; Mingyue Tan, ; Fang Zhang, ; Bing Shen,
| | - Fang Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jiling Wen, ; Mingyue Tan, ; Fang Zhang, ; Bing Shen,
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jiling Wen, ; Mingyue Tan, ; Fang Zhang, ; Bing Shen,
| |
Collapse
|
30
|
Zakaria AS, Edward EA, Mohamed NM. Pathogenicity Islands in Uropathogenic Escherichia coli Clinical Isolate of the Globally Disseminated O25:H4-ST131 Pandemic Clonal Lineage: First Report from Egypt. Antibiotics (Basel) 2022; 11:1620. [PMID: 36421264 PMCID: PMC9686529 DOI: 10.3390/antibiotics11111620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 10/25/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the main etiological agent of urinary tract infections (UTIs). The pathogenesis of UTIs relies upon UPEC's acquisition of virulence determinants that are commonly inserted into large chromosomal blocks which are termed 'pathogenicity islands' (PAIs). In this study, we investigated the virulence-associated genes embedded in the chromosome of a UPEC Egyptian strain, EC14142. Additionally, we present a detailed characterization of the PAIs in the EGY_EC14142 chromosome. The isolate displayed a multidrug-resistant phenotype, and whole genome sequencing indicated that it belonged to the globally disseminated O25:H4-ST131 pandemic lineage and the H30-Rx clade. EGY_EC14142 carried genes that are responsible for resistance to aminoglycosides, fluoroquinolones, extended-spectrum β-lactams, macrolides, folate pathway antagonists, and tetracyclines. It encoded five PAIs with a high similarity to PAI II536, PAI IV536, PAI V536, PAI-536-icd, and PAIusp. The genome analysis of EGY_EC14142 with other closely related UPEC strains revealed that they have a high nucleotide sequence identity. The constructed maximum-likelihood phylogenetic tree showed the close clonality of EGY_EC14142 with the previously published ST131 UPEC international isolates, thus endorsing the broad geographical distribution of this clone. This is the first report characterizing PAIs in a UPEC Egyptian strain belonging to the globally disseminated pandemic clone O25:H4-ST131.
Collapse
Affiliation(s)
- Azza S. Zakaria
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, Alexandria 25435, Egypt
| | | | | |
Collapse
|
31
|
Wang F, Lin H, Su Q, Li C. Cuproptosis-related lncRNA predict prognosis and immune response of lung adenocarcinoma. World J Surg Oncol 2022; 20:275. [PMID: 36050740 PMCID: PMC9434888 DOI: 10.1186/s12957-022-02727-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) accounts for 50% of lung cancers, with high mortality and poor prognosis. Long non-coding RNA (lncRNA) plays a vital role in the progression of tumors. Cuproptosis is a newly discovered form of cell death that is highly investigated. Therefore, in the present study, we aimed to investigate the role of cuproptosis-related lncRNA signature in clinical prognosis prediction and immunotherapy and the relationship with drug sensitivity. MATERIAL AND METHODS Genomic and clinical data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and cuproptosis-related genes were obtained from cuproptosis-related studies. The prognostic signature was constructed by co-expression analysis and Cox regression analysis. Patients were divided into high and low risk groups, and then, a further series of model validations were carried out to assess the prognostic value of the signature. Subsequently, lncRNAs were analyzed for gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes Enrichment (KEGG), immune-related functions, and tumor mutation burden (TMB). Finally, we used tumor immune dysfunction and exclusion (TIDE) algorithms on immune escape and immunotherapy of cuproptosis-related lncRNAs, thereby identifying its sensitivity toward potential drugs for LUAD. RESULTS A total of 16 cuproptosis-related lncRNAs were obtained, and a prognostic signature was developed. We found that high-risk patients had worse overall survival (OS) and progression-free survival (PFS) and higher mortality. Independent prognostic analyses, ROC, C-index, and nomogram showed that the cuproptosis-related lncRNAs can accurately predict the prognosis of patients. The nomogram and heatmap showed a distinct distribution of the high- and low-risk cuproptosis-related lncRNAs. Enrichment analysis showed that the biological functions of lncRNAs are associated with tumor development. We also found that immune-related functions, such as antiviral activity, were suppressed in high-risk patients who had mutations in oncogenes. OS was poorer in patients with high TMB. TIDE algorithms showed that high-risk patients have a greater potential for immune escape and less effective immunotherapy. CONCLUSION To conclude, the 16 cuproptosis-related lncRNAs can accurately predict the prognosis of patients with LUAD and may provide new insights into clinical applications and immunotherapy.
Collapse
Affiliation(s)
- Fangwei Wang
- grid.412594.f0000 0004 1757 2961Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nan’ning, China
| | - Hongsheng Lin
- grid.256607.00000 0004 1798 2653Department of Microbiology, School of Basic Medical Sciences, Guangxi Medical University, Nan’ning, China
| | - Qisheng Su
- grid.412594.f0000 0004 1757 2961Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nan’ning, China
| | - Chaoqian Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nan'ning, China.
| |
Collapse
|
32
|
Peralta DR, Farizano JV, Bulacio Gil N, Corbalán NS, Pomares MF, Vincent PA, Adler C. Less is more: Enterobactin concentration dependency in copper tolerance and toxicity. Front Mol Biosci 2022; 9:961917. [PMID: 36052165 PMCID: PMC9426971 DOI: 10.3389/fmolb.2022.961917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
The ability of siderophores to play roles beyond iron acquisition has been recently proven for many of them and evidence continues to grow. An earlier work showed that the siderophore enterobactin is able to increase copper toxicity by reducing Cu2+ to Cu+, a form of copper that is more toxic to cells. Copper toxicity is multifaceted. It involves the formation of reactive oxygen species (ROS), mismetallation of enzymes and possibly other mechanisms. Given that we previously reported on the capacity of enterobactin to alleviate oxidative stress caused by various stressors other than copper, we considered the possibility that the siderophore could play a dual role regarding copper toxicity. In this work, we show a bimodal effect of enterobactin on copper toxicity (protective and harmful) which depends on the siderophore concentration. We found that the absence of enterobactin rendered Escherichia coli cells more sensitive to copper, due to the reduced ability of those cells to cope with the metal-generated ROS. Consistently, addition of low concentrations of the siderophore had a protective effect by reducing ROS levels. We observed that in order to achieve this protection, enterobactin had to enter cells and be hydrolyzed in the cytoplasm. Further supporting the role of enterobactin in oxidative stress protection, we found that both oxygen and copper, induced the expression of the siderophore and also found that copper strongly counteracted the well-known downregulation effect of iron on enterobactin synthesis. Interestingly, when enterobactin was present in high concentrations, cells became particularly sensitive to copper most likely due to the Cu2+ to Cu+ reduction, which increased the metal toxicity leading to cell death.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Conrado Adler
- *Correspondence: Paula Andrea Vincent, ; Conrado Adler,
| |
Collapse
|
33
|
Kram W, Rebl H, de la Cruz JE, Haag A, Renner J, Epting T, Springer A, Soria F, Wienecke M, Hakenberg OW. Interactive Effects of Copper-Doped Urological Implants with Tissue in the Urinary Tract for the Inhibition of Cell Adhesion and Encrustation in the Animal Model Rat. Polymers (Basel) 2022; 14:polym14163324. [PMID: 36015581 PMCID: PMC9412396 DOI: 10.3390/polym14163324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022] Open
Abstract
The insertion of a ureteral stent provides acute care by restoring urine flow and alleviating urinary retention or dysfunction. The problems of encrustation, bacterial colonization and biofilm formation become increasingly important when ureteral stents are left in place for a longer period of time. One way to reduce encrustation and bacterial adherence is to modify the stent surface with a diamond-like carbon coating, in combination with copper doping. The biocompatibilities of the Elastollan® base material and the a-C:H/Cu-mulitilayer coating were tested in synthetic urine. The copper content in bladder tissue was determined by atomic absorption spectroscopy and in blood and in urine by inductively coupled plasma mass spectrometry. Encrustations on the materials were analyzed by scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. A therapeutic window for copper ions of 0.5–1.0 mM was determined to kill bacteria without affecting human urothelial cells. In the rat animal model, it was found that copper release did not reach toxic concentrations in the affecting tissue of the urinary tract or in the blood. The encrustation behavior of the surfaces showed that the roughness of the amorphous carbon layer with the copper doping is probably the causal factor for the higher encrustation.
Collapse
Affiliation(s)
- Wolfgang Kram
- Department of Urology, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
- Correspondence:
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | - Julia E. de la Cruz
- Jesús Usón Minimally Invasive Surgery Centre, Carretera N-521, Km. 41.8, 10071 Cáceres, Spain
| | - Antonia Haag
- Department of Urology, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| | - Jürgen Renner
- Institute for Polymer- and Production Technologies e. V., Alter Holzhafen 19, 23966 Wismar, Germany
| | - Thomas Epting
- Institute for Clinical Chemistry and Laboratory Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetterstraße 55, 79106 Freiburg, Germany
| | - Armin Springer
- Electron Microscopy Center, Rostock University Medical Center, Strempelstraße 14, 18057 Rostock, Germany
| | - Federico Soria
- Jesús Usón Minimally Invasive Surgery Centre, Carretera N-521, Km. 41.8, 10071 Cáceres, Spain
| | | | - Oliver W. Hakenberg
- Department of Urology, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| |
Collapse
|
34
|
Focarelli F, Giachino A, Waldron KJ. Copper microenvironments in the human body define patterns of copper adaptation in pathogenic bacteria. PLoS Pathog 2022; 18:e1010617. [PMID: 35862345 PMCID: PMC9302775 DOI: 10.1371/journal.ppat.1010617] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Copper is an essential micronutrient for most organisms that is required as a cofactor for crucial copper-dependent enzymes encoded by both prokaryotes and eukaryotes. Evidence accumulated over several decades has shown that copper plays important roles in the function of the mammalian immune system. Copper accumulates at sites of infection, including the gastrointestinal and respiratory tracts and in blood and urine, and its antibacterial toxicity is directly leveraged by phagocytic cells to kill pathogens. Copper-deficient animals are more susceptible to infection, whereas those fed copper-rich diets are more resistant. As a result, copper resistance genes are important virulence factors for bacterial pathogens, enabling them to detoxify the copper insult while maintaining copper supply to their essential cuproenzymes. Here, we describe the accumulated evidence for the varied roles of copper in the mammalian response to infections, demonstrating that this metal has numerous direct and indirect effects on immune function. We further illustrate the multifaceted response of pathogenic bacteria to the elevated copper concentrations that they experience when invading the host, describing both conserved and species-specific adaptations to copper toxicity. Together, these observations demonstrate the roles of copper at the host–pathogen interface and illustrate why bacterial copper detoxification systems can be viable targets for the future development of novel antibiotic drug development programs. Copper is required by both animals and bacteria in small quantities as a micronutrient. During infection, the mammalian immune system increases the local concentration of copper, which gives rise to copper toxicity in the pathogen. In turn, bacterial pathogens possess specialized systems to resist this copper toxicity. Copper also plays important, indirect roles in the function of the immune system. In this review, we explain the diverse roles of copper in the human body with a focus on its functions within the immune system. We also describe how bacterial pathogens respond to the copper toxicity that they experience within the host during infection, illustrating both conserved copper homeostasis and detoxification systems in bacteria and species-specific adaptations that have been shown to be important to pathogenicity. The key role of copper at the host–pathogen interface and the essential requirement for pathogenic bacteria to resist copper toxicity makes the protein components that confer resistance on pathogens potential targets for future development of novel antibiotic drugs.
Collapse
Affiliation(s)
- Francesca Focarelli
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrea Giachino
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kevin John Waldron
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Menghani SV, Cutcliffe MP, Sanchez-Rosario Y, Pok C, Watson A, Neubert MJ, Ochoa K, Wu HJJ, Johnson MDL. N, N-Dimethyldithiocarbamate Elicits Pneumococcal Hypersensitivity to Copper and Macrophage-Mediated Clearance. Infect Immun 2022; 90:e0059721. [PMID: 35311543 PMCID: PMC9022595 DOI: 10.1128/iai.00597-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/12/2022] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae is a Gram-positive, encapsulated bacterium that is a significant cause of disease burden in pediatric and elderly populations. The rise in unencapsulated disease-causing strains and antimicrobial resistance in S. pneumoniae has increased the need for developing new antimicrobial strategies. Recent work by our laboratory has identified N,N-dimethyldithiocarbamate (DMDC) as a copper-dependent antimicrobial against bacterial, fungal, and parasitic pathogens. As a bactericidal antibiotic against S. pneumoniae, DMDC's ability to work as a copper-dependent antibiotic and its ability to work in vivo warranted further investigation. Here, our group studied the mechanisms of action of DMDC under various medium and excess-metal conditions and investigated DMDC's interactions with the innate immune system in vitro and in vivo. Of note, we found that DMDC plus copper significantly increased the internal copper concentration, hydrogen peroxide stress, nitric oxide stress, and the in vitro macrophage killing efficiency and decreased capsule. Furthermore, we found that in vivo DMDC treatment increased the quantity of innate immune cells in the lung during infection. Taken together, this study provides mechanistic insights regarding DMDC's activity as an antibiotic at the host-pathogen interface.
Collapse
Affiliation(s)
- Sanjay V. Menghani
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- Medical Scientist Training M.D.-Ph.D. Program (MSTP), University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Madeline P. Cutcliffe
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Yamil Sanchez-Rosario
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Chansorena Pok
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Alison Watson
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Miranda J. Neubert
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Klariza Ochoa
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Hsin-Jung Joyce Wu
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- Arizona Arthritis Center, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Michael D. L. Johnson
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- Valley Fever Center for Excellence, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- Asthma and Airway Disease Research Center, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| |
Collapse
|
36
|
Tang JW, Liu X, Ye W, Li ZR, Qian PY. Biosynthesis and bioactivities of microbial genotoxin colibactins. Nat Prod Rep 2022; 39:991-1014. [PMID: 35288725 DOI: 10.1039/d1np00050k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to 2021Colibactin(s), a group of secondary metabolites produced by the pks island (clb cluster) of Escherichia coli, shows genotoxicity relevant to colorectal cancer and thus significantly affects human health. Over the last 15 years, substantial efforts have been exerted to reveal the molecular structure of colibactin, but progress is slow owing to its instability, low titer, and elusive and complex biosynthesis logic. Fortunately, benefiting from the discovery of the prodrug mechanism, over 40 precursors of colibactin have been reported. Some key biosynthesis genes located on the pks island have also been characterised. Using an integrated bioinformatics, metabolomics, and chemical synthesis approach, researchers have recently characterised the structure and possible biosynthesis processes of colibactin, thereby providing new insights into the unique biosynthesis logic and the underlying mechanism of the biological activity of colibactin. Early developments in the study of colibactin have been summarised in several previous reviews covering various study periods, whereas the two most recent reviews have focused primarily on the chemical synthesis of colibactin. The present review aims to provide an update on the biosynthesis and bioactivities of colibactin.
Collapse
Affiliation(s)
- Jian-Wei Tang
- Department of Ocean Science, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Xin Liu
- Department of Ocean Science, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Wei Ye
- Department of Ocean Science, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China. .,State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhong-Rui Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pei-Yuan Qian
- Department of Ocean Science, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| |
Collapse
|
37
|
Katumba GL, Tran H, Henderson JP. The Yersinia High-Pathogenicity Island Encodes a Siderophore-Dependent Copper Response System in Uropathogenic Escherichia coli. mBio 2022; 13:e0239121. [PMID: 35089085 PMCID: PMC8725597 DOI: 10.1128/mbio.02391-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023] Open
Abstract
Siderophores are iron chelators used by microbes to bind and acquire iron, which, once in the cell, inhibits siderophore production through feedback repression mediated by the ferric uptake repressor (Fur). Yersiniabactin (Ybt), a siderophore associated with enhanced pathogenic potential among Enterobacteriaceae, also binds copper ions during human and experimental murine infections. In contrast to iron, we found that extracellular copper ions rapidly and selectively stimulate Ybt production in extraintestinal pathogenic Escherichia coli. The stimulatory pathway requires formation of an extracellular copper-Ybt (Cu(II)-Ybt) complex, internalization of Cu(II)-Ybt entry through the canonical TonB-dependent outer membrane transporter, and Fur-independent transcriptional regulation by the specialized transcription factor YbtA. Dual regulation by iron and copper is consistent with a multifunctional metallophore role for Ybt. Feed-forward regulation is typical of stress responses, implicating Ybt in prevention of, or response to, copper stress during infection pathogenesis. IMPORTANCE Interactions between bacteria and transition metal ions play an important role in encounters between humans and bacteria. Siderophore systems have long been prominent mediators of these interactions. These systems secrete small-molecule chelators that bind oxidized iron(III) and express proteins that specifically recognize and import these complexes as a nutritional iron source. While E. coli and other Enterobacteriaceae secrete enterobactin, clinical isolates often secrete an additional siderophore, yersiniabactin (Ybt), which has been found to also bind copper and other non-iron metal ions. The observation here that an extraintestinal E. coli isolate secretes Ybt in a copper-inducible manner suggests an important gain of function over the enterobactin system. Copper recognition involves using Ybt to bind Cu(II) ions, consistent with a distinctively extracellular mode of copper detection. The resulting Cu(II)-Ybt complex signals upregulation of Ybt biosynthesis genes as a rapid response against potentially toxic extracellular copper ions. The Ybt system is distinguishable from other copper response systems that sense cytosolic and periplasmic copper ions. The Ybt dependence of the copper response presents an implicit feed-forward regulatory scheme that is typical of bacterial stress responses. The distinctive extracellular copper recognition-response functionality of the Ybt system may enhance the pathogenic potential of infection-associated Enterobacteriaceae.
Collapse
Affiliation(s)
- George L. Katumba
- Center for Women’s Infectious Disease Research, Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hung Tran
- Center for Women’s Infectious Disease Research, Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey P. Henderson
- Center for Women’s Infectious Disease Research, Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
38
|
Abstract
Metals are essential components in life processes and participate in many important biological processes. Dysregulation of metal homeostasis is correlated with many diseases. Metals are also frequently incorporated into diagnosis and therapeutics. Understanding of metal homeostasis under (patho)physiological conditions and the molecular mechanisms of action of metallodrugs in biological systems has positive impacts on human health. As an emerging interdisciplinary area of research, metalloproteomics involves investigating metal-protein interactions in biological systems at a proteome-wide scale, has received growing attention, and has been implemented into metal-related research. In this review, we summarize the recent advances in metalloproteomics methodologies and applications. We also highlight emerging single-cell metalloproteomics, including time-resolved inductively coupled plasma mass spectrometry, mass cytometry, and secondary ion mass spectrometry. Finally, we discuss future perspectives in metalloproteomics, aiming to attract more original research to develop more advanced methodologies, which could be utilized rapidly by biochemists or biologists to expand our knowledge of how metal functions in biology and medicine. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| |
Collapse
|
39
|
Metal sequestration by S100 proteins in chemically diverse environments. Trends Microbiol 2022; 30:654-664. [DOI: 10.1016/j.tim.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
|
40
|
Thomas SC, Madaan T, Kamble NS, Siddiqui NA, Pauletti GM, Kotagiri N. Engineered Bacteria Enhance Immunotherapy and Targeted Therapy through Stromal Remodeling of Tumors. Adv Healthc Mater 2022; 11:e2101487. [PMID: 34738725 PMCID: PMC8770579 DOI: 10.1002/adhm.202101487] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/28/2021] [Indexed: 01/03/2023]
Abstract
Desmoplastic solid tumors are characterized by the rapid build-up of extracellular matrix (ECM) macromolecules, such as hyaluronic acid (HA). The resulting physiological barrier prevents the infiltration of immune cells and also impedes the delivery of anticancer agents. The development of a hypervesiculating Escherichia coli Nissle (ΔECHy) based tumor targeting bacterial system capable of distributing a fusion peptide, cytolysin A (ClyA)-hyaluronidase (Hy) via outer membrane vesicles (OMVs) is reported. The capability of targeting hypoxic tumors, manufacturing recombinant proteins in situ and the added advantage of an on-site OMV based distribution system makes the engineered bacterial vector a unique candidate for peptide delivery. The HA degrading potential of Hy for stromal modulation is combined with the cytolytic activity of ClyA followed by testing it within syngeneic cancer models. ΔECHy is combined with immune checkpoint antibodies and tyrosine kinase inhibitors (TKIs) to demonstrate that remodeling the tumor stroma results in the improvement of immunotherapy outcomes and enhancing the efficacy of biological signaling inhibitors. The biocompatibility of ΔECHy is also investigated to show that the engineered bacteria are effectively cleared, elicit minimal inflammatory and immune responses, and therefore could be a reliable candidate as a live biotherapeutic.
Collapse
Affiliation(s)
- Shindu C. Thomas
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Tushar Madaan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Nitin S. Kamble
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Nabil A. Siddiqui
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Giovanni M. Pauletti
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, 1 Pharmacy Place, St. Louis, MO 63110, USA
| | - Nalinikanth Kotagiri
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| |
Collapse
|
41
|
Hyre A, Casanova-Hampton K, Subashchandrabose S. Copper Homeostatic Mechanisms and Their Role in the Virulence of Escherichia coli and Salmonella enterica. EcoSal Plus 2021; 9:eESP00142020. [PMID: 34125582 PMCID: PMC8669021 DOI: 10.1128/ecosalplus.esp-0014-2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Copper is an essential micronutrient that also exerts toxic effects at high concentrations. This review summarizes the current state of knowledge on copper handling and homeostasis systems in Escherichia coli and Salmonella enterica. We describe the mechanisms by which transcriptional regulators, efflux pumps, detoxification enzymes, metallochaperones, and ancillary copper response systems orchestrate cellular response to copper stress. E. coli and S. enterica are important pathogens of humans and animals. We discuss the critical role of copper during killing of these pathogens by macrophages and in nutritional immunity at the bacterial-pathogen-host interface. In closing, we identify opportunities to advance our understanding of the biological roles of copper in these model enteric bacterial pathogens.
Collapse
Affiliation(s)
- Amanda Hyre
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Kaitlin Casanova-Hampton
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
42
|
Abstract
Iron is an essential element for Escherichia, Salmonella, and Shigella species. The acquisition of sufficient amounts of iron is difficult in many environments, including the intestinal tract, where these bacteria usually reside. Members of these genera have multiple iron transport systems to transport both ferrous and ferric iron. These include transporters for free ferrous iron, ferric iron associated with chelators, and heme. The numbers and types of transport systems in any species reflect the diversity of niches that it can inhabit. Many of the iron transport genes are found on mobile genetic elements or pathogenicity islands, and there is evidence of the spread of the genes among different species and pathotypes. This is notable among the pathogenic members of the genera in which iron transport systems acquired by horizontal gene transfer allow the bacteria to overcome host innate defenses that act to restrict the availability of iron to the pathogen. The need for iron is balanced by the need to avoid iron overload since excess iron is toxic to the cell. Genes for iron transport and metabolism are tightly regulated and respond to environmental cues, including iron availability, oxygen, and temperature. Master regulators, the iron sensor Fur and the Fur-regulated small RNA (sRNA) RyhB, coordinate the expression of iron transport and cellular metabolism genes in response to the availability of iron.
Collapse
|
43
|
Behnsen J, Zhi H, Aron AT, Subramanian V, Santus W, Lee MH, Gerner RR, Petras D, Liu JZ, Green KD, Price SL, Camacho J, Hillman H, Tjokrosurjo J, Montaldo NP, Hoover EM, Treacy-Abarca S, Gilston BA, Skaar EP, Chazin WJ, Garneau-Tsodikova S, Lawrenz MB, Perry RD, Nuccio SP, Dorrestein PC, Raffatellu M. Siderophore-mediated zinc acquisition enhances enterobacterial colonization of the inflamed gut. Nat Commun 2021; 12:7016. [PMID: 34853318 PMCID: PMC8636617 DOI: 10.1038/s41467-021-27297-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/09/2021] [Indexed: 11/09/2022] Open
Abstract
Zinc is an essential cofactor for bacterial metabolism, and many Enterobacteriaceae express the zinc transporters ZnuABC and ZupT to acquire this metal in the host. However, the probiotic bacterium Escherichia coli Nissle 1917 (or "Nissle") exhibits appreciable growth in zinc-limited media even when these transporters are deleted. Here, we show that Nissle utilizes the siderophore yersiniabactin as a zincophore, enabling Nissle to grow in zinc-limited media, to tolerate calprotectin-mediated zinc sequestration, and to thrive in the inflamed gut. We also show that yersiniabactin's affinity for iron or zinc changes in a pH-dependent manner, with increased relative zinc binding as the pH increases. Thus, our results indicate that siderophore metal affinity can be influenced by the local environment and reveal a mechanism of zinc acquisition available to commensal and pathogenic Enterobacteriaceae.
Collapse
Affiliation(s)
- Judith Behnsen
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA, USA
- Department of Microbiology & Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Hui Zhi
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Allegra T Aron
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Vivekanandan Subramanian
- University of Kentucky PharmNMR Center, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - William Santus
- Department of Microbiology & Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Michael H Lee
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Romana R Gerner
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Daniel Petras
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Janet Z Liu
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA, USA
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Sarah L Price
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Jose Camacho
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hannah Hillman
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joshua Tjokrosurjo
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA, USA
| | - Nicola P Montaldo
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA, USA
| | - Evelyn M Hoover
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA, USA
| | - Sean Treacy-Abarca
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA, USA
| | - Benjamin A Gilston
- Department of Biochemistry and Chemistry, and Center for Structural Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Walter J Chazin
- Department of Biochemistry and Chemistry, and Center for Structural Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Matthew B Lawrenz
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Robert D Perry
- Department of Microbiology and Immunology, University of Kentucky, Lexington, KY, 40536, USA
| | - Sean-Paul Nuccio
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA, USA
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, 92093, USA
| | - Manuela Raffatellu
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA, USA.
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, 92093, USA.
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, CA, 92093, USA.
| |
Collapse
|
44
|
Patteson JB, Putz AT, Tao L, Simke WC, Bryant LH, Britt RD, Li B. Biosynthesis of fluopsin C, a copper-containing antibiotic from Pseudomonas aeruginosa. Science 2021; 374:1005-1009. [PMID: 34793213 PMCID: PMC8939262 DOI: 10.1126/science.abj6749] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal-binding natural products contribute to metal acquisition and bacterial virulence, but their roles in metal stress response are underexplored. We show that a five-enzyme pathway in Pseudomonas aeruginosa synthesizes a small-molecule copper complex, fluopsin C, in response to elevated copper concentrations. Fluopsin C is a broad-spectrum antibiotic that contains a copper ion chelated by two minimal thiohydroxamates. Biosynthesis of the thiohydroxamate begins with cysteine and requires two lyases, two iron-dependent enzymes, and a methyltransferase. The iron-dependent enzymes remove the carboxyl group and the α carbon from cysteine through decarboxylation, N-hydroxylation, and methylene excision. Conservation of the pathway in P. aeruginosa and other bacteria suggests a common role for fluopsin C in the copper stress response, which involves fusing copper into an antibiotic against other microbes.
Collapse
Affiliation(s)
- Jon B. Patteson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew T. Putz
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lizhi Tao
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - William C. Simke
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L. Henry Bryant
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R. David Britt
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Bo Li
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
45
|
Price SL, Vadyvaloo V, DeMarco JK, Brady A, Gray PA, Kehl-Fie TE, Garneau-Tsodikova S, Perry RD, Lawrenz MB. Yersiniabactin contributes to overcoming zinc restriction during Yersinia pestis infection of mammalian and insect hosts. Proc Natl Acad Sci U S A 2021; 118:e2104073118. [PMID: 34716262 PMCID: PMC8612365 DOI: 10.1073/pnas.2104073118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/09/2021] [Indexed: 02/04/2023] Open
Abstract
Yersinia pestis causes human plague and colonizes both a mammalian host and a flea vector during its transmission cycle. A key barrier to bacterial infection is the host's ability to actively sequester key biometals (e.g., iron, zinc, and manganese) required for bacterial growth. This is referred to as nutritional immunity. Mechanisms to overcome nutritional immunity are essential virulence factors for bacterial pathogens. Y. pestis produces an iron-scavenging siderophore called yersiniabactin (Ybt) that is required to overcome iron-mediated nutritional immunity and cause lethal infection. Recently, Ybt has been shown to bind to zinc, and in the absence of the zinc transporter ZnuABC, Ybt improves Y. pestis growth in zinc-limited medium. These data suggest that, in addition to iron acquisition, Ybt may also contribute to overcoming zinc-mediated nutritional immunity. To test this hypothesis, we used a mouse model defective in iron-mediated nutritional immunity to demonstrate that Ybt contributes to virulence in an iron-independent manner. Furthermore, using a combination of bacterial mutants and mice defective in zinc-mediated nutritional immunity, we identified calprotectin as the primary barrier for Y. pestis to acquire zinc during infection and that Y. pestis uses Ybt to compete with calprotectin for zinc. Finally, we discovered that Y. pestis encounters zinc limitation within the flea midgut, and Ybt contributes to overcoming this limitation. Together, these results demonstrate that Ybt is a bona fide zinc acquisition mechanism used by Y. pestis to surmount zinc limitation during the infection of both the mammalian and insect hosts.
Collapse
Affiliation(s)
- Sarah L Price
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164
| | - Jennifer K DeMarco
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40292
| | - Amanda Brady
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Phoenix A Gray
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Thomas E Kehl-Fie
- Department of Microbiology and Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL 61820
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40536
| | - Robert D Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40506
| | - Matthew B Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202;
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40292
| |
Collapse
|
46
|
Wang Q, Zhao K, Guo C, Li H, Huang T, Ji J, Sun X, Cao Y, Dong Z, Wang H. Antibiotic Resistance and Virulence Genes of Escherichia coli Isolated from Patients with Urinary Tract Infections After Kidney Transplantation from Deceased Donors. Infect Drug Resist 2021; 14:4039-4046. [PMID: 34616161 PMCID: PMC8487860 DOI: 10.2147/idr.s332897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
Objective This study aimed to determine the prevalence of antibiotic resistance and virulence genes of Escherichia coli strains among patients with urinary tract infections (UTIs) after kidney transplantation from deceased donors. Methods Between January 2014 and June 2018, 64 patients who received kidney transplants from deceased donors at our institution developed a UTI due to E. coli. Polymerase chain reaction was used to detect virulence genes in E. coli strains. The Kirby–Bauer method was used to evaluate the antibiotic susceptibility pattern of the isolates. Results Among the study cohort, 46 (71.9%) UTIs were community-acquired (CA), and 18 (28.1%) were hospital-acquired (HA). The percentages of isolated E. coli strains that showed antibiotic resistance were as follows: 92.2% to ampicillin, 76.6% to cefalotin, 81.3% to carbenicillin, 29.7% to ciprofloxacin, 62.5% to cotrimoxazole, 35.9% to gentamicin, 34.4% to levofloxacin, 28.1% to norfloxacin, 68.8% to pefloxacin, 57.8% to trimethoprim/sulfamethoxazole, and 20.3% to amikacin. HA E. coli showed higher resistance to ciprofloxacin, cotrimoxazole, trimethoprim/sulfamethoxazole and amikacin, compared with CA E. coli (P<0.05). The most prevalent virulence genes among the E. coli strains were fim (64.1%), followed by irp2 (56.3%), iroN (46.9%), pap GII (45.3%), sfa (31.3%), pap (25%), iuc (23.4%), pap GI (15.6%), pap GIII (14.1%), hly (9.4%), and cnf (4.7%). The irp2 and iroN genes were found more frequently in the HA E. coli than in the CA E. coli (P<0.05). Conclusion The E. coli strains, especially HA E. coli, isolated from UTI patients after kidney transplantation from deceased donors showed resistance to multiple antibiotics and harbored numerous virulence genes. These findings provide insight for genetic characterizations and epidemiological studies of E. coli strains causing UTIs in patients after kidney transplantation from deceased donors.
Collapse
Affiliation(s)
- Qinghai Wang
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Kai Zhao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Chen Guo
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Hong Li
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Tao Huang
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Jianlei Ji
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Xiaoxia Sun
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Yanwei Cao
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Zhen Dong
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Hongyang Wang
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| |
Collapse
|
47
|
Jones CV, Jarboe BG, Majer HM, Ma AT, Beld J. Escherichia coli Nissle 1917 secondary metabolism: aryl polyene biosynthesis and phosphopantetheinyl transferase crosstalk. Appl Microbiol Biotechnol 2021; 105:7785-7799. [PMID: 34546406 DOI: 10.1007/s00253-021-11546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Escherichia coli Nissle 1917 (EcN) is a Gram-negative bacterium that is used to treat inflammatory bowel diseases. The probiotic character of EcN is not well-understood, but its ability to produce secondary metabolites plays an important role in its activity. The EcN genome encodes for an aryl polyene (APE) biosynthetic gene cluster (BGC), and APE products have a role in biofilm formation. We show here that this unusual polyketide assembly line synthase produces four APE molecules which are likely cis/trans isomers. Within the APE BGC, two acyl carrier proteins are involved in biosynthesis. Acyl carrier proteins require activation by post-translational modification with a phosphopantetheinyl transferase (PPTase). Through analysis of single, double, and triple mutants of three PPTases, the PPTase-BGC crosstalk relationship in EcN was characterized. Understanding PPTase-BGC crosstalk is important for the engineering of secondary metabolite production hosts and for targeting of PPTases with new antibiotics. KEY POINTS: • Escherichia coli Nissle 1917 biosynthesizes four aryl polyene isoforms. • Phosphopantetheinyl transferase crosstalk is important for biosynthesis.
Collapse
Affiliation(s)
- Courtney V Jones
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Brianna G Jarboe
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Haley M Majer
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Amy T Ma
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA.
| |
Collapse
|
48
|
Casanova-Hampton K, Carey A, Kassam S, Garner A, Donati GL, Thangamani S, Subashchandrabose S. A genome-wide screen reveals the involvement of enterobactin-mediated iron acquisition in Escherichia coli survival during copper stress. Metallomics 2021; 13:6355450. [PMID: 34415046 PMCID: PMC8419524 DOI: 10.1093/mtomcs/mfab052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022]
Abstract
Copper (Cu) is a key transition metal that is involved in many important biological processes in a cell. Cu is also utilized by the immune system to hamper pathogen growth during infection. However, genome-level knowledge on the mechanisms involved in adaptation to Cu stress is limited. Here, we report the results of a genome-wide reverse genetic screen for Cu-responsive phenotypes in Escherichia coli. Our screen has identified novel genes involved in adaptation to Cu stress in E. coli. We detected multiple genes involved in the biosynthesis and uptake of enterobactin, a siderophore utilized for high-affinity TonB-dependent acquisition of iron (Fe), as critical players in survival under Cu intoxication. We demonstrated the specificity of Cu-dependent killing by chelation of Cu and by genetic complementation of tonB. Notably, TonB is involved in protection from Cu in both laboratory and uropathogenic strains of E. coli. Cu stress leads to increased expression of the genes involved in Fe uptake, indicating that Fur regulon is derepressed during exposure to excess Cu. Trace element analyses revealed that Fe homeostasis is dysregulated during Cu stress. Taken together, our data supports a model in which lack of enterobactin-dependent Fe uptake leads to exacerbation of Cu toxicity, and elucidates the intricate connection between the homeostasis of Cu and Fe in a bacterial cell.
Collapse
Affiliation(s)
- Kaitlin Casanova-Hampton
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Alexis Carey
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Sarah Kassam
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Alyssa Garner
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - George L Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, USA
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
49
|
Dual-purpose isocyanides produced by Aspergillus fumigatus contribute to cellular copper sufficiency and exhibit antimicrobial activity. Proc Natl Acad Sci U S A 2021; 118:2015224118. [PMID: 33593906 DOI: 10.1073/pnas.2015224118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The maintenance of sufficient but nontoxic pools of metal micronutrients is accomplished through diverse homeostasis mechanisms in fungi. Siderophores play a well established role for iron homeostasis; however, no copper-binding analogs have been found in fungi. Here we demonstrate that, in Aspergillus fumigatus, xanthocillin and other isocyanides derived from the xan biosynthetic gene cluster (BGC) bind copper, impact cellular copper content, and have significant metal-dependent antimicrobial properties. xan BGC-derived isocyanides are secreted and bind copper as visualized by a chrome azurol S (CAS) assay, and inductively coupled plasma mass spectrometry analysis of A. fumigatus intracellular copper pools demonstrated a role for xan cluster metabolites in the accumulation of copper. A. fumigatus coculture with a variety of human pathogenic fungi and bacteria established copper-dependent antimicrobial properties of xan BGC metabolites, including inhibition of laccase activity. Remediation of xanthocillin-treated Pseudomonas aeruginosa growth by copper supported the copper-chelating properties of xan BGC isocyanide products. The existence of the xan BGC in several filamentous fungi suggests a heretofore unknown role of eukaryotic natural products in copper homeostasis and mediation of interactions with competing microbes.
Collapse
|
50
|
Prudent V, Demarre G, Vazeille E, Wery M, Quenech'Du N, Ravet A, Dauverd-Girault J, van Dijk E, Bringer MA, Descrimes M, Barnich N, Rimsky S, Morillon A, Espéli O. The Crohn's disease-related bacterial strain LF82 assembles biofilm-like communities to protect itself from phagolysosomal attack. Commun Biol 2021; 4:627. [PMID: 34035436 PMCID: PMC8149705 DOI: 10.1038/s42003-021-02161-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/28/2021] [Indexed: 11/09/2022] Open
Abstract
Patients with Crohn's disease exhibit abnormal colonization of the intestine by adherent invasive E. coli (AIEC). They adhere to epithelial cells, colonize them and survive inside macrophages. It appeared recently that AIEC LF82 adaptation to phagolysosomal stress involves a long lag phase in which many LF82 cells become antibiotic tolerant. Later during infection, they proliferate in vacuoles and form colonies harboring dozens of LF82 bacteria. In the present work, we investigated the mechanism sustaining this phase of growth. We found that intracellular LF82 produced an extrabacterial matrix that acts as a biofilm and controls the formation of LF82 intracellular bacterial communities (IBCs) for several days post infection. We revealed the crucial role played by the pathogenicity island encoding the yersiniabactin iron capture system to form IBCs and for optimal LF82 survival. These results illustrate that AIECs use original strategies to establish their replicative niche within macrophages.
Collapse
Affiliation(s)
- Victoria Prudent
- CIRB - Collège de France, CNRS-UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Gaëlle Demarre
- CIRB - Collège de France, CNRS-UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Emilie Vazeille
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte. UMR Inserm/ Université de Clermont -Auvergne U1071, USC INRA 2018, Clermont, Ferrand, France
| | - Maxime Wery
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne University, CNRS UMR 3244, Paris, France
| | - Nicole Quenech'Du
- CIRB - Collège de France, CNRS-UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Antinéa Ravet
- CIRB - Collège de France, CNRS-UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Julie Dauverd-Girault
- CIRB - Collège de France, CNRS-UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Erwin van Dijk
- Next-Generation Sequencing Service - I2BC, I2BC-CNRS, Gif-sur-Yvette, France
| | - Marie-Agnès Bringer
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte. UMR Inserm/ Université de Clermont -Auvergne U1071, USC INRA 2018, Clermont, Ferrand, France
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Marc Descrimes
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne University, CNRS UMR 3244, Paris, France
| | - Nicolas Barnich
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte. UMR Inserm/ Université de Clermont -Auvergne U1071, USC INRA 2018, Clermont, Ferrand, France
| | - Sylvie Rimsky
- CIRB - Collège de France, CNRS-UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne University, CNRS UMR 3244, Paris, France
| | - Olivier Espéli
- CIRB - Collège de France, CNRS-UMR7241, INSERM U1050, PSL Research University, Paris, France.
| |
Collapse
|