1
|
Zhu B, Pitts MG, Buoncristiani MD, Bryant LT, Lopez-Nunez O, Gurria JP, Shedlock C, Ribas R, Keohane S, Liu J, Wang C, Gentry MS, Shelman NR, Allison DB, Evers BM, Sun RC, Rellinger EJ. GDP-mannose 4,6-dehydratase is a key driver of MYCN-amplified neuroblastoma core fucosylation and tumorigenesis. Oncogene 2025; 44:1272-1283. [PMID: 39956863 PMCID: PMC12048354 DOI: 10.1038/s41388-025-03297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/08/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025]
Abstract
MYCN-amplification is a genetic hallmark of ~40% of high-risk neuroblastomas (NBs). Altered glycosylation is a common feature of adult cancer progression, but little is known about how genetic signatures such as MYCN-amplification alter glycosylation profiles. Herein, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) revealed increased core fucosylated glycan abundance within neuroblast-rich regions of human MYCN-amplified NB tumors. GDP-mannose 4,6-dehydratase (GMDS) is responsible for the first-committed and rate-limiting step of de novo GDP-fucose synthesis. High GMDS expression was found to be associated with poor patient survival, advanced stage disease, and MYCN-amplification in human NB tumors. Chromatin immunoprecipitation and promoter reporter assays demonstrated that N-MYC directly binds and activates the GMDS promoter in NB cells. When GMDS was blocked through either genetic or pharmacological mechanisms, NBs were found to be dependent upon de novo GDP-fucose production to sustain cell surface and secreted core fucosylated glycan abundance, as well as adherence and motility. Moreover, genetic knockdown of GMDS inhibited tumor formation and progression in vivo. These critical findings identify de novo GDP-fucose production as a novel metabolic vulnerability that may be exploited in designing new treatment strategies for MYCN-amplified NBs.
Collapse
Affiliation(s)
- Beibei Zhu
- University of Kentucky, Department of Surgery, Lexington, KY, 40536, USA
| | - Michelle G Pitts
- University of Kentucky, Department of Surgery, Lexington, KY, 40536, USA
| | | | - Lindsay T Bryant
- University of Kentucky, Department of Surgery, Lexington, KY, 40536, USA
| | - Oscar Lopez-Nunez
- Cincinnati Children's Hospital Medical Center, Department of Pathology, Cincinnati, OH, 45229, USA
| | - Juan P Gurria
- Cincinnati Children's Hospital Medical Center, Department of Pediatric Surgery, Cincinnati, OH, 45229, USA
| | - Cameron Shedlock
- University of Florida, Department of Biochemistry & Molecular Biology, Gainesville, FL, 32610, USA
| | - Roberto Ribas
- University of Florida, Department of Biochemistry & Molecular Biology, Gainesville, FL, 32610, USA
| | - Shannon Keohane
- University of Florida, Department of Biochemistry & Molecular Biology, Gainesville, FL, 32610, USA
| | - Jinpeng Liu
- University of Kentucky, Department of Bioinformatics, Lexington, KY, 40536, USA
| | - Chi Wang
- University of Kentucky, Department of Bioinformatics, Lexington, KY, 40536, USA
| | - Matthew S Gentry
- University of Florida, Department of Biochemistry & Molecular Biology, Gainesville, FL, 32610, USA
| | - Nathan R Shelman
- University of Kentucky, Department of Pathology, Lexington, KY, 40536, USA
| | - Derek B Allison
- University of Kentucky, Department of Pathology, Lexington, KY, 40536, USA
- University of Kentucky, Markey Cancer Center, Lexington, KY, 40536, USA
| | - B Mark Evers
- University of Kentucky, Department of Surgery, Lexington, KY, 40536, USA
- University of Kentucky, Markey Cancer Center, Lexington, KY, 40536, USA
| | - Ramon C Sun
- University of Florida, Department of Biochemistry & Molecular Biology, Gainesville, FL, 32610, USA
| | - Eric J Rellinger
- University of Kentucky, Department of Surgery, Lexington, KY, 40536, USA.
- University of Kentucky, Markey Cancer Center, Lexington, KY, 40536, USA.
| |
Collapse
|
2
|
Zhang X, Ye XS. A review on the development of sialyltransferase inhibitors. Carbohydr Res 2025; 551:109427. [PMID: 39977976 DOI: 10.1016/j.carres.2025.109427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Sialylation of terminal glycoconjugates is involved in many important physiological and pathological processes such as tumor metastasis, drug resistance, organismal immunity, and viral infections. Sialyltransferases are enzymes responsible for sialylation modification in organisms, and potent sialyltransferase inhibitors can not only serve as probes for glycobiology studies, but also hold great promise to become agents for tumor therapy and viral infection control in the clinic. This review summarizes the latest progress in the development and application of various sialyltransferase inhibitors. The current challenges and development trends are also discussed.
Collapse
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing, 100191, China.
| |
Collapse
|
3
|
Li L, Wu J, Cao W, Zhang W, Wu Q, Li Y, Yang Y, Shan Z, Zheng Z, Ge X, Lin L, Wang P. N-deglycosylation targeting chimera (DGlyTAC): a strategy for immune checkpoint proteins inactivation by specifically removing N-glycan. Signal Transduct Target Ther 2025; 10:139. [PMID: 40289109 PMCID: PMC12034804 DOI: 10.1038/s41392-025-02219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 03/03/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Among the leading methods for triggering therapeutic anti-cancer immunity is the inhibition of immune checkpoint pathways. N-glycosylation is found to be essential for the function of various immune checkpoint proteins, playing a critical role in their stability and interaction with immune cells. Removing the N-glycans of these proteins seems to be an alternative therapy, but there is a lack of a de-N-glycosylation technique for target protein specificity, which limits its clinical application. Here, we developed a novel technique for specifically removing N-glycans from a target protein on the cell surface, named deglycosylation targeting chimera (DGlyTAC), which employs a fusing protein consisting of Peptide-N-glycosidase F (PNGF) and target-specific nanobody/affibody (Nb/Af). The DGlyTAC technique was developed to target a range of glycosylated surface proteins, especially these immune checkpoints-CD24, CD47, and PD-L1, which minimally affected the overall N-glycosylation landscape and the N-glycosylation of other representative membrane proteins, ensuring high specificity and minimal off-target effects. Importantly, DGlyTAC technique was successfully applied to lead inactivation of these immune checkpoints, especially PD-L1, and showed more potential in cancer immunotherapy than inhibitors. Finally, PD-L1 targeted DGlyTAC showed therapeutic effects on several tumors in vivo, even better than PD-L1 antibody. Overall, we created a novel target-specific N-glysocylation erasing technique that establishes a modular strategy for directing membrane proteins inactivation, with broad implications on tumor immune therapeutics.
Collapse
Affiliation(s)
- Li Li
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiajia Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Weiqian Cao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaxu Li
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Yanrong Yang
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Zezhi Shan
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zening Zheng
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Xin Ge
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liang Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Gray TE, Labasan KB, Daskhan GC, Bui DT, Joe M, Kumawat D, Schmidt EN, Klassen JS, Macauley MS. Synthesis of 4-azido sialic acid for testing against Siglec-7 and in metabolic oligosaccharide engineering. RSC Chem Biol 2025:d5cb00030k. [PMID: 40309065 PMCID: PMC12038855 DOI: 10.1039/d5cb00030k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
An important approach for tracking and visualizing sialic acid-containing glycans involves using sialic acid reporters functionalized with bioorthogonal handles. More specifically, metabolic oligosaccharide engineering (MOE) commonly employs monosaccharides with an alkyne or azide handle for incorporation into cellular glycans, followed by a subsequent click reaction to elaborate with a biotin or fluorophore handle. For sialic acid, this has been carried out extensively, with an azide or alkyne appended to the C5 N-acetamido group being the most common location for the handle. However, circumstances may require the handle to be at different positions and, to date, the C7 and C9 positions have been shown to work to varying degrees. Herein, we synthesized protected 4AzNeu5Ac that could be incorporated into cellular glycans nearly as efficiently as Neu5Az and targeted with DBCO-biotin through strain promoted azide-alkyne cycloaddition. Owing to the good incorporation of 4AzNeu5Ac into cellular glycans, we followed up this ability by first synthesizing the deprotected form of 4AzNeu5Ac, using a thioglycoside to lock the anomeric center during deprotection of the acetyl groups. Activation of 4AzNeu5Ac to CMP-4AzNeu5Ac then enabled the use of this donor by human sialyltransferase ST3GAL1 to transfer CMP-4AzNeu5Ac to β-Galp-(1→3)-α-GalpNAc. With purified α-4AzNeup5Ac-(2→3)-β-Galp-(1→3)-α-GalpNAc in hand, we tested it as a ligand for Siglec-7 and found that the C4-Az modification is tolerated, opening future possibilities to exploit this position to generate high affinity and selective ligands. These findings expand the repertoire of metabolic oligosaccharide engineering agents and show that azide modifications are tolerated at the C4 position of sialic acid.
Collapse
Affiliation(s)
- Taylor E Gray
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Kristin B Labasan
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Gour C Daskhan
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Duong T Bui
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Maju Joe
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Dhanraj Kumawat
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - John S Klassen
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
- Department of Medical Microbiology and Immunology, University of Alberta Edmonton T6G 2E1 Canada
| |
Collapse
|
5
|
Tang X, Schindler RL, Di Lucente J, Oloumi A, Tena J, Harvey D, Lebrilla CB, Zivkovic AM, Jin LW, Maezawa I. Unique N-glycosylation signatures in human iPSC derived microglia activated by Aβ oligomer and lipopolysaccharide. Sci Rep 2025; 15:12348. [PMID: 40210651 PMCID: PMC11985925 DOI: 10.1038/s41598-025-96596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Microglia are the immune cells in the central nervous system (CNS) and become pro-inflammatory/activated in Alzheimer's disease (AD). Cell surface glycosylation plays an important role in immune cells; however, the N-glycosylation and glycosphingolipid (GSL) signatures of activated microglia are poorly understood. Here, we study comprehensively combined transcriptomic and glycomic profiles using human induced pluripotent stem cells-derived microglia (hiMG). Distinct changes in N-glycosylation patterns in amyloid-β oligomer (AβO) and LPS-treated hiMG were observed. In AβO-treated cells, the relative abundance of bisecting N-acetylglucosamine (GlcNAc) N-glycans decreased, corresponding with a downregulation of MGAT3. The sialylation of N-glycans increased in response to AβO, accompanied by an upregulation of genes involved in N-glycan sialylation (ST3GAL4 and 6). Unlike AβO-induced hiMG, LPS-induced hiMG exhibited a decreased abundance of complex-type N-glycans, aligned with downregulation of mannosidase genes (MAN1A1, MAN2A2, and MAN1C1) and upregulation of ER degradation related-mannosidases (EDEM1-3). Fucosylation increased in LPS-induced hiMG, aligned with upregulated fucosyltransferase 4 (FUT4) and downregulated alpha-L-fucosidase 1 (FUCA1) gene expression, while sialofucosylation decreased, aligned with upregulated neuraminidase 4 (NEU4). Inhibition of sialylation and fucosylation in AβO- and LPS-induced hiMG alleviated pro-inflammatory responses. However, the GSL profile did not exhibit significant changes in response to AβO or LPS activation, at least in the 24-hour stimulation timeframe. AβO- and LPS- specific glycosylation changes could contribute to impaired microglia function, highlighting glycosylation pathways as potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Xinyu Tang
- Department of Nutrition, University of California, Davis, CA, 95618, USA
| | - Ryan Lee Schindler
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Jacopo Di Lucente
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA
| | - Armin Oloumi
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Jennyfer Tena
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Danielle Harvey
- Department of Public Health Sciences, University of California-Davis, Davis, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, CA, 95618, USA.
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
| |
Collapse
|
6
|
Kim H, Lupoli TJ. Defined Glycan Ligands for Detecting Rare l-Sugar-Binding Proteins. J Am Chem Soc 2025; 147:11693-11699. [PMID: 40167164 PMCID: PMC11987014 DOI: 10.1021/jacs.5c03251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Most cells are decorated with distinct sugar sequences that can be recognized by carbohydrate-binding proteins (CBPs), such as antibodies and lectins. While humans utilize ten monosaccharide building blocks, bacteria biosynthesize hundreds of activated sugars to assemble diverse glycans. Monosaccharides absent in mammals are termed "rare" and are enriched in deoxy l-sugars beyond the "common" sugar l-fucose (l-Fuc) found across species. While immune proteins recognize microbial surfaces, there are limited probes to identify CBPs for the many rare sugars that may mediate these interactions. Here, we devise chemoenzymatic strategies to defined glycoconjugates containing l-Fuc and its structural analog l-colitose (l-Col), a bacterial dideoxysugar believed to bind immune proteins. We report a concise synthesis of l-Col and semisynthetic routes to several activated l-sugars. Incorporation of these sugars into glycans is evaluated using bacterial and mammalian glycosyltransferases (GTs) annotated to transfer l-Col or l-Fuc, respectively. We find that each GT can transfer both l-sugars, along with the rare hexose l-galactose (l-Gal), onto various glycan acceptors. Incorporation of these l-sugars into the resulting glycoconjugates is confirmed using known CBPs. Finally, these glycan ligands are employed to detect rare sugar-binding proteins in human serum. Overall, this work reveals similarities between bacterial and mammalian GTs that may be exploited for in vitro glycoconjugate construction to unveil novel mediators of host-pathogen interactions.
Collapse
Affiliation(s)
- Hanee Kim
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Tania J. Lupoli
- Department of Chemistry, New
York University, New York, New York 10003, United States
| |
Collapse
|
7
|
Hao H, Eberand BM, Larance M, Haltiwanger RS. Protein O-Fucosyltransferases: Biological Functions and Molecular Mechanisms in Mammals. Molecules 2025; 30:1470. [PMID: 40286076 PMCID: PMC11990869 DOI: 10.3390/molecules30071470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Domain-specific O-fucosylation is an unusual type of glycosylation, where the fucose is directly attached to the serine or threonine residues in specific protein domains via an O-linkage. O-fucosylated proteins play critical roles in a wide variety of biological events and hold important therapeutic values, with the most studied being the Notch receptors and ADAMTS proteins. O-fucose glycans modulate the function of the proteins they modify and are closely associated with various diseases including cancer. In mammals, alongside the well-documented protein O-fucosyltransferase (POFUT) 1-mediated O-fucosylation of epidermal growth factor-like (EGF) repeats and POFUT2-mediated O-fucosylation of thrombospondin type 1 repeats (TSRs), a new type of O-fucosylation was recently identified on elastin microfibril interface (EMI) domains, mediated by POFUT3 and POFUT4 (formerly FUT10 and FUT11). In this review, we present an overview of our current knowledge of O-fucosylation, integrating the latest findings and with a particular focus on its biological functions and molecular mechanisms.
Collapse
Affiliation(s)
- Huilin Hao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30605, USA;
| | - Benjamin M. Eberand
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.M.E.); (M.L.)
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.M.E.); (M.L.)
| | | |
Collapse
|
8
|
Verma N, Tiwari G, Khanna A, Mishra VK, Yadav Y, Malviya M, Sagar R. Molecular Design, Synthesis and Anti-cancer Activity of Novel Pyrazolo[3,4-b]pyridine-based Glycohybrid Molecules. Bioorg Chem 2025; 156:108161. [PMID: 39848166 DOI: 10.1016/j.bioorg.2025.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/11/2025] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
Molecular hybridization is an emerging strategy in medicinal chemistry for designing new bioactive molecules that link pharmacophores covalently and shows synergistic enhanced properties. Herein, we have developed pyrazolo[3,4-b]pyridine-based new glycohybrids considering the Warburg effect. A microwave-assisted, copper-catalyzed efficient synthesis of new triazole-linked glycohybrids based on pyrazolo[3,4-b]pyridines scaffold was achieved successfully in high yields with inherent stereochemical diversity from d-glucose, d-galactose, and d-mannose. The twenty-three distinct new glycohybrids, incorporating various electron-donating and electron-withdrawing groups with stereochemical diversities, were prepared using developed synthetic protocol. This efficient synthesis significantly reduced reaction time and furnished products with high isolated yields, showcasing its potential for glycohybrids synthesis. In-vitro study revealed that among the synthesized glycohybrids, compound 8e emerged as a potential compound against MDA-MB231 (SI > 31) and MCF-7 (SI > 434) with an IC50 value of 19.58 µM and 1.42 µM respectively. The molecular docking study predicts the binding interaction of the chemical probe with the target protein HCK. The enzyme inhibition assay revealed that compound 8e is having strong inhibitory potency against HCK enzyme. This article highlights the synthetic utility of this strategy and the potential applications of these newly designed and prepared glycohybrids.
Collapse
Affiliation(s)
- Neetu Verma
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ghanshyam Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Khanna
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vinay Kumar Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manisha Malviya
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| | - Ram Sagar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India; Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
9
|
Pan Q, Zhang XL. Roles of core fucosylation modification in immune system and diseases. CELL INSIGHT 2025; 4:100211. [PMID: 39624801 PMCID: PMC11609374 DOI: 10.1016/j.cellin.2024.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 01/04/2025]
Abstract
Core fucosylation, catalyzed by α1,6-fucosyltransferase (FUT8), is an important N-glycosylation modification process that attaches a fucose residue via an α1,6-linkage to the core N-acetylglucosamine of N-glycans in mammals. Research over the past three decades has revealed the critical role of FUT8-mediated core fucosylation modification in various physiological and pathological processes, including cell growth, adhesion, receptor activation, antibody-dependent cellular cytotoxicity (ADCC), tumor metastasis and infections. This review discusses the immune system function involving FUT8 and the mechanisms by which core fucosylation regulates immunity and contributes to disease. A deeper understanding of these mechanisms can provide insights into cellular biology and suggest new therapeutic approaches and targets for related diseases.
Collapse
Affiliation(s)
- Qiu Pan
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital of Wuhan University, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital of Wuhan University, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, 430071, China
| |
Collapse
|
10
|
Costa AF, Teixeira A, Reis CA, Gomes C. Novel anticancer drug discovery efforts targeting glycosylation: the emergence of fluorinated monosaccharides analogs. Expert Opin Drug Discov 2025; 20:193-203. [PMID: 39749684 DOI: 10.1080/17460441.2024.2444375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Glycosylation is an essential enzymatic process of building glycan structures that occur mainly within the cell and gives rise to a diversity of cell surface and secreted glycoconjugates. These glycoconjugates play vital roles, for instance in cellcell adhesion, interaction and communication, activation of cell surface receptors, inflammatory response and immune recognition. This controlled and wellcoordinated enzymatic process is altered in cancer, leading to the biosynthesis of cancerassociated glycans, which impact glycandependent biological roles. AREAS COVERED In this review, the authors discuss the importance of targeting cancerassociated glycans through potent glycan biosynthesis inhibitors. It focuses on the use of analogs, providing an overview of findings involving these in cancer. The highly explored fluorinated monosaccharide analogs targeting aberrant glycosylation are described, aiming to inspire advances in the field. EXPERT OPINION Altered glycosylation, such as increased sialylation and fucosylation, is a feature in cancer and has been shown to play key roles in several malignant properties of cancer cells. Strategies aiming at remodeling cancer cells´ glycome are emerging and present a huge potential for cancer therapy. Fluorinated monosaccharides have been gathering promising preclinical results as novel cancer drugs. Nevertheless, cancer specific targeting strategies must be considered to avoid significant sideeffects.
Collapse
Affiliation(s)
- Ana F Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar - ICBAS, University of Porto, Porto, Portugal
| | - Andreia Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Celso A Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar - ICBAS, University of Porto, Porto, Portugal
- Medical Faculty, University of Porto, Porto, Portugal
| | - Catarina Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Mizumoto S, Matsumoto K, Tokoro Y, Komura N, Nakajima K, Ando H, Yamada S, Kizuka Y. Inhibition of cell growth and glycosaminoglycan biosynthesis by xylose analog 2-Az-Xyl. Biochem Biophys Res Commun 2024; 741:151083. [PMID: 39615206 DOI: 10.1016/j.bbrc.2024.151083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 10/22/2024] [Accepted: 11/26/2024] [Indexed: 12/11/2024]
Abstract
Sugar analogs are versatile chemical tools for probing or inhibiting glycan functions. However, chemical tools are insufficient for glycosaminoglycans (GAGs), which play crucial roles in various biological processes, such as extracellular matrix formation and growth factor signaling. To develop a new compound for detecting GAGs or manipulating GAG functions, we chemically synthesized 2-azide-xylose (2-Az-Xyl), an azide-type analog of Xyl that is a component of the common linkage tetrasaccharide in GAGs, and explored its application to biological experiments. Treatment of cultured cells with 2-Az-Xyl inhibited cell proliferation and reduced the levels of GAGs, particularly heparan sulfate (HS). Although this sugar analog did not perturb the biosynthesis of nucleotide sugars and expression of the key enzymes for HS biosynthesis, 2-Az-Xyl directly inhibited the activity of XYLT2, an initial enzyme for GAG biosynthesis, indicating that 2-Az-Xyl directly inhibits GAG biosynthesis. These findings suggest that 2-Az-Xyl inhibits cell proliferation by blocking GAG biosynthesis through inhibiting XYLT2 activity.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, 468-8503, Japan
| | - Kenjiroo Matsumoto
- Glyco-Biochemistry Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
| | - Yuko Tokoro
- Glyco-Biochemistry Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
| | - Naoko Komura
- Innovative Glyco-Chemistry Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
| | - Kazuki Nakajima
- Glycoanalytical Chemistry Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
| | - Hiromune Ando
- Innovative Glyco-Chemistry Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, 468-8503, Japan
| | - Yasuhiko Kizuka
- Glyco-Biochemistry Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
12
|
Manabe Y, Takebe T, Kasahara S, Hizume K, Kabayama K, Kamada Y, Asakura A, Shinzaki S, Takamatsu S, Miyoshi E, García-García A, Vakhrushev SY, Hurtado-Guerrero R, Fukase K. Development of a FUT8 Inhibitor with Cellular Inhibitory Properties. Angew Chem Int Ed Engl 2024; 63:e202414682. [PMID: 39340265 DOI: 10.1002/anie.202414682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 09/30/2024]
Abstract
Core fucosylation is catalyzed by α-1,6-fucosyltransferase (FUT8), which fucosylates the innermost GlcNAc of N-glycans. Given the association of FUT8 with various diseases, including cancer, selective FUT8 inhibitors applicable to in vivo or cell-based systems are highly sought-after. Herein, we report the discovery of a compound that selectively inhibits FUT8 in cell-based assays. High-throughput screening revealed a FUT8-inhibiting pharmacophore, and further structural optimization yielded an inhibitor with a KD value of 49 nM. Notably, this binding occurs only in the presence of GDP (a product of the enzymatic reaction catalyzed by FUT8). Mechanistic studies suggested that this inhibitor generates a highly reactive naphthoquinone methide derivative at the binding site in FUT8, which subsequently reacts with FUT8. Furthermore, prodrug derivatization of this inhibitor improved its stability, enabling suppression of core fucose expression and subsequent EGFR and T-cell signaling in cell-based assays, paving the way for the development of drugs targeting core fucosylation.
Collapse
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Tomoyuki Takebe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Satomi Kasahara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Koki Hizume
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Interdisciplinary Research Center for Radiation Sciences, Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akiko Asakura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Gastroenterology, Faculty of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, 663-8501, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry & Clinical Investigation, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry & Clinical Investigation, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ana García-García
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
- Fundación ARAID, 50018, Zaragoza, Spain
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Center for Advanced Modalities and DDS, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
13
|
Park S, Paek JH, Colville MJ, Huang LT, Struzyk AP, Womack SJ, Neelamegham S, Reesink HL, Paszek MJ. Leucine zipper-based SAIM imaging identifies therapeutic agents to disrupt the cancer cell glycocalyx for enhanced immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627089. [PMID: 39677754 PMCID: PMC11643053 DOI: 10.1101/2024.12.05.627089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The abnormally thick glycocalyx of cancer cells can provide a physical barrier to immune cell recognition and effective immunotherapy. Here, we demonstrate an optical method based on Scanning Angle Interference Microscopy (SAIM) for the screening of therapeutic agents that can disrupt the glycocalyx layer as a strategy to improve anti-cancer immune responses. We developed a new membrane labeling strategy utilizing leucine zipper pairs to fluorescently mark the glycocalyx layer boundary for precise and robust measurement of glycocalyx thickness with SAIM. Using this platform, we evaluated the effects of glycosylation inhibitors and targeted enzymatic degraders of the glycocalyx, with particular focus on strategies for cholangiocarcinoma (CCA), a highly lethal malignancy with limited therapeutic options. We found that CCA had the highest mean expression of the cancer-associated mucin, MUC1, across all cancers represented in the cancer cell line encyclopedia. Pharmacological inhibitors of mucin-type O-glycosylation and mucin-specific proteases, such as StcE, could dramatically reduce the glycocalyx layer in the YSCCC model of intrahepatic CCA. Motivated by these findings, we engineered Natural Killer (NK) cells tethered with StcE to enhance NK cell-mediated cytotoxicity against CCA. In a CCA xenograft model, these engineered NK cells demonstrated superior anti-tumor efficacy compared to wild-type NK cells, with no observable adverse effects. Our findings not only provide a reliable imaging-based screening platform for evaluating glycocalyx-targeting pharmacological interventions but also offer mechanistic insights into how CCA may avoid immune elimination through fortification of the glycocalyx layer with mucins. Additionally, this work presents a novel therapeutic strategy for mucin-overexpressing cancers, potentially improving immunotherapy efficacy across various cancer types.
Collapse
Affiliation(s)
- Sangwoo Park
- Graduate Field of Biophysics, Cornell University, Ithaca, NY, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Current address: Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- These authors contributed equally to this work
| | - Justin H. Paek
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- These authors contributed equally to this work
| | - Marshall J. Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Ling-Ting Huang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Audrey P. Struzyk
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Sydney J. Womack
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Heidi L. Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matthew J. Paszek
- Graduate Field of Biophysics, Cornell University, Ithaca, NY, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
14
|
Lustig M, Hahn C, Leangen Herigstad M, Andersen JT, Leusen JHW, Burger R, Valerius T. Sialylation inhibition improves macrophage mediated tumor cell phagocytosis of breast cancer cells triggered by therapeutic antibodies of different isotypes. Front Oncol 2024; 14:1488668. [PMID: 39659795 PMCID: PMC11628485 DOI: 10.3389/fonc.2024.1488668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Tumor cell phagocytosis by macrophages is considered a relevant mechanism of action for many therapeutic IgG antibodies. However, tumor cells employ several mechanisms to evade immune recognition, including hypersialylation. Here, we describe how reduction of sialic acid exposure on tumor cells promotes antibody-dependent tumor cell phagocytosis (ADCP) by macrophages. Incubation with the sialyltransferase inhibitor (STi) P-3Fax-Neu5Ac reduced sialylation on two breast cancer cell lines, rendering these cells more susceptible to macrophage mediated phagocytosis by EGFR or HER2 antibodies. This was observed with not only IgG1 and IgG2 antibodies but also IgA2 variants. These results show that inhibiting sialic acid exposure triggers enhanced tumor cell phagocytosis by macrophages irrespective of the antibody isotype and the tumor target antigen. Investigating the underlying mechanisms of enhanced ADCP, we observed reduced binding of soluble sialic acid-binding immunoglobulin-like lectins (Siglec)-7 and Siglec-9 to tumor cells after sialylation inhibition. However, Fc silent blocking antibodies against Siglec-7 or Siglec-9, or their combination, only marginally improved ADCP. Our results further promote the concept of cancer hypersialylation as immune escape mechanism, which could serve as target to improve tumor immunotherapy with monoclonal antibodies.
Collapse
Affiliation(s)
- Marta Lustig
- Division of Stem Cell Transplantation and Cellular Immunotherapies, Department of Medicine II, University Medical Center Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christoph Hahn
- Division of Stem Cell Transplantation and Cellular Immunotherapies, Department of Medicine II, University Medical Center Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Marie Leangen Herigstad
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Jan Terje Andersen
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Renate Burger
- Division of Stem Cell Transplantation and Cellular Immunotherapies, Department of Medicine II, University Medical Center Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Cellular Immunotherapies, Department of Medicine II, University Medical Center Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
15
|
Zhang X, Hao P, Mo J, Wang PY, Wang G, Li L, Zheng XJ, Yuan X, Yao W, Jin N, Li C, Ye XS. Local and Noninvasive Glyco-Virus Checkpoint Nanoblockades Restrict Sialylation for Prolonged Broad-Spectrum Epidemic Virus Therapy. ACS NANO 2024; 18:32910-32923. [PMID: 39536146 DOI: 10.1021/acsnano.4c12434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has driven major advances in virus research. The role of glycans in viral infection has been revealed, with research demonstrating that terminal sialic acids are key receptors during viral attachment and infection into host cells. However, there is an urgent demand for universal tools to study the mechanism of sialic acids in viral infections, as well as to develop therapeutic agents against epidemic viruses through the downregulation of terminal sialic acid residues on glycans acting as a glyco-virus checkpoint to accelerate virus clearance. In this study, we developed a robust sialic acids blockade tool termed local and noninvasive glyco-virus checkpoint nanoblockades (LONG NBs), which blocked cell surface sialic acids by endogenously and continuously inhibiting the de novo sialic acids biosynthesis pathway. Furthermore, LONG NBs could accurately characterize the sialic acid-dependent profiles of multiple virus variants and protected the host against partial SARS-CoV-2, rotavirus, and influenza A virus infections after local and noninvasive administration. Our results suggest that LONG NBs represent a promising tool to facilitate in-depth research on the mechanism of viral infection, and serve as a broad-spectrum protectant against existing and emerging viral variants via glyco-virus checkpoint blockade.
Collapse
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Pengfei Hao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun 130000, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun 130000, China
| | - Juan Mo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Peng-Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Guoqing Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun 130000, China
| | - Letian Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun 130000, China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Wenlong Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun 130000, China
| | - Chang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun 130000, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| |
Collapse
|
16
|
Zhang X, Li ZY, Xiao JH, Hao PF, Mo J, Zheng XJ, Geng YQ, Ye XS. Sialic Acids Blockade-Based Chemo-Immunotherapy Featuring Cancer Cell Chemosensitivity and Antitumor Immune Response Synergies. Adv Healthc Mater 2024; 13:e2401649. [PMID: 38938121 DOI: 10.1002/adhm.202401649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/11/2024] [Indexed: 06/29/2024]
Abstract
Immune checkpoint blockade (ICB) has significantly improved the prognosis of patients with cancer, although the majority of such patients achieve low response rates; consequently, new therapeutic approaches are urgently needed. The upregulation of sialic acid-containing glycans is a common characteristic of cancer-related glycosylation, which drives disease progression and immune escape via numerous pathways. Herein, the development of self-assembled core-shell nanoscale coordination polymer nanoparticles loaded with a sialyltransferase inhibitor, referred to as NCP-STI which effectively stripped diverse sialoglycans from cancer cells, providing an antibody-independent pattern to disrupt the emerging Siglec-sialic acid glyco-immune checkpoint is reported. Furthermore, NCP-STI inhibits sialylation of the concentrated nucleoside transporter 1 (CNT1), promotes the intracellular accumulation of anticancer agent gemcitabine (Gem), and enhances Gem-induced immunogenic cell death (ICD). As a result, the combination of NCP-STI and Gem (NCP-STI/Gem) evokes a robust antitumor immune response and exhibits superior efficacy in restraining the growth of multiple murine tumors and pulmonary metastasis. Collectively, the findings demonstrate a novel form of small molecule-based chemo-immunotherapy approach which features sialic acids blockade that enables cooperative effects of cancer cell chemosensitivity and antitumor immune responses for cancer treatment.
Collapse
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing, 100191, China
| | - Zi-Yi Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing, 100191, China
| | - Jia-Heng Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing, 100191, China
| | - Peng-Fei Hao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Juan Mo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing, 100191, China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing, 100191, China
| | - Yi-Qun Geng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing, 100191, China
| |
Collapse
|
17
|
Liu Y, Sweet IR, Boons GJ. 2,2-Difluoro Derivatives of Fucose Can Inhibit Cell Surface Fucosylation without Causing Slow Transfer to Acceptors. JACS AU 2024; 4:3953-3963. [PMID: 39483231 PMCID: PMC11522930 DOI: 10.1021/jacsau.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 11/03/2024]
Abstract
Fucosyl transferases (FUTs) are enzymes that transfer fucose (Fuc) from GDP-Fuc to acceptor substrates, resulting in fucosylated glycoconjugates that are involved in myriad physiological and disease processes. Previously, it has been shown that per-O-acetylated 2-F-Fuc can be taken up by cells and converted into GDP-2-F-Fuc, which is a competitive inhibitor of FUTs. Furthermore, it can act as a feedback inhibitor of de novo biosynthesis of GDP-Fuc resulting in reduced glycoconjugate fucosylation. However, GDP-2-F-Fuc and several other reported analogues are slow substrates, which can result in unintended incorporation of unnatural fucosides. Here, we describe the design, synthesis, and biological evaluation of GDP-2,2-di-F-Fuc and the corresponding prodrugs as an inhibitor of FUTs. This compound lacks the slow transfer activity observed for the monofluorinated counterpart. Furthermore, it was found that GDP-2-F-Fuc and GDP-2,2-di-F-Fuc have similar Ki values for the various human fucosyl transferases, while the corresponding phosphate prodrugs exhibit substantial differences in inhibition of cell surface fucosylation. Quantitative sugar nucleotide analysis by Liquid chromatography-mass spectrometry (LC-MS) indicates that the 2,2-di-F-Fuc prodrug has substantially greater feedback inhibitory activity. It was also found that by controlling the concentration of the inhibitor, varying degrees of inhibition of the biosynthesis of different types of fucosylated N-glycan structures can be achieved. These findings open new avenues for the modulation of fucosylation of cell surface glycoconjugates.
Collapse
Affiliation(s)
- Yanyan Liu
- Chemical
Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Igor R. Sweet
- Chemical
Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Geert-Jan Boons
- Chemical
Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Bijvoet
Center for Biomolecular Research, Utrecht
University, 3584 CG Utrecht, The Netherlands
- Chemistry
Department, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
18
|
Kumawat D, Gray TE, Garnier CR, Bui DT, Li Z, Jame-Chenarboo Z, Jerasi J, Wong WO, Klassen JS, Capicciotti CJ, Macauley MS. A Kinetic Trapping Approach for Facile Access to 3F axNeu5Ac and a Photo-Cross-Linkable Sialyltransferase Probe. J Am Chem Soc 2024; 146:28630-28634. [PMID: 39377645 DOI: 10.1021/jacs.4c10835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Sialic acid (Neu5Ac) is installed onto glycoconjugates by sialyltransferases (STs) using cytidine monophosphate-Neu5Ac (CMP-β-d-Neu5Ac) as their donor. The only class of cell-active ST inhibitors are those based on a 3FaxNeu5Ac scaffold, which is metabolically converted into CMP-3FaxNeu5Ac within cells. It is essential for the fluorine to be axial, yet stereoselective installation of fluorine in this specific orientation is challenging. Sialic acid aldolase can convert 3-fluoropyruvate and 2-acetamido-2-deoxy-d-mannopyranose (ManNAc) to 3FNeu5Ac, but stereocontrol of the fluorine in the product has not been possible. We hypothesized that the 3Fax kinetic product of a sialic acid aldolase reaction could be trapped by coupling with CMP-sialic acid synthetase to yield CMP-3FaxNeu5Ac. Here, we report that highly active CMP-sialic acid synthetase and short reaction times produce exclusively CMP-3FaxNeu5Ac. Removal of CMP from CMP-3FaxNeu5Ac under acidic conditions unexpectedly led to 3-fluoro-β-d-Neu5Ac 2-phosphate (3FaxNeu5Ac-2P). Alkaline phosphatase successfully converted 3FaxNeu5Ac-2P to 3FaxNeu5Ac, enabling stereochemically controlled access to 3FaxNeu5Ac, which is effective in lowering the sialoglycan ligands for Siglecs on cells. Moreover, our kinetic trapping approach could be used to access CMP-3FaxNeu5Ac with modifications at the C5, C9, or both positions, which enabled the chemoenzymatic synthesis of a photo-cross-linkable version of CMP-3FaxNeu5Ac that selectively photo-cross-linked to ST6GAL1 over two other STs.
Collapse
Affiliation(s)
- Dhanraj Kumawat
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Canada
| | - Taylor E Gray
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Canada
| | - Cole R Garnier
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Duong T Bui
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Canada
| | - Zhixiong Li
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Canada
| | | | - Jeremy Jerasi
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Canada
| | - Warren O Wong
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Canada
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Canada
| | - Chantelle J Capicciotti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
- Department of Chemistry, Queen's University, Kingston K7L 2S8, Canada
- Department of Surgery, Queen's University, Kingston K7L 2V7, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2E1, Canada
| |
Collapse
|
19
|
Xie Y, Chai P, Till NA, Hemberger H, Lebedenko CG, Porat J, Watkins CP, Caldwell RM, George BM, Perr J, Bertozzi CR, Garcia BA, Flynn RA. The modified RNA base acp 3U is an attachment site for N-glycans in glycoRNA. Cell 2024; 187:5228-5237.e12. [PMID: 39173631 PMCID: PMC11571744 DOI: 10.1016/j.cell.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/17/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024]
Abstract
GlycoRNA consists of RNAs modified with secretory N-glycans that are presented on the cell surface. Although previous work supported a covalent linkage between RNA and glycans, the direct chemical nature of the RNA-glycan connection was not described. Here, we develop a sensitive and scalable protocol to detect and characterize native glycoRNAs. Leveraging RNA-optimized periodate oxidation and aldehyde ligation (rPAL) and sequential window acquisition of all theoretical mass spectra (SWATH-MS), we identified the modified RNA base 3-(3-amino-3-carboxypropyl)uridine (acp3U) as a site of attachment of N-glycans in glycoRNA. rPAL offers sensitivity and robustness as an approach for characterizing direct glycan-RNA linkages occurring in cells, and its flexibility will enable further exploration of glycoRNA biology.
Collapse
Affiliation(s)
- Yixuan Xie
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Peiyuan Chai
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Nicholas A Till
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Helena Hemberger
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Charlotta G Lebedenko
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jennifer Porat
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Christopher P Watkins
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Reese M Caldwell
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Benson M George
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jonathan Perr
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford, CA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
20
|
Kranjc J, Kramer L, Mikelj M, Anderluh M, Pišlar A, Brinc M. Modulating antibody N-glycosylation through feed additives using a multi-tiered approach. Front Bioeng Biotechnol 2024; 12:1448925. [PMID: 39253702 PMCID: PMC11381414 DOI: 10.3389/fbioe.2024.1448925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
Glycosylation of recombinant proteins is a post-translational modification that affects multiple physicochemical and biological properties of proteins. As such, it is a critical quality attribute that must be carefully controlled during protein production in the pharmaceutical industry. Glycosylation can be modulated by various conditions, including the composition of production media and feeds. In this study, the N-glycosylation-modulating effects of numerous compounds, including metal enzyme cofactors, enzyme inhibitors, and metabolic intermediates, were evaluated. Chinese hamster ovary cells producing three different IgG antibodies were cultivated in a fed-batch mode. First, a one-factor-at-a-time experiment was performed in 24-well deep well plates to identify the strongest modulators and appropriate concentration ranges. Then, a full response surface experiment was designed to gauge the effects and interactions of the 14 most effective hit compounds in an Ambr® 15 bioreactor system. A wide range of glycoform content was achieved, with an up to eight-fold increase in individual glycoforms compared to controls. The resulting model can be used to determine modulator combinations that will yield desired glycoforms in the final product.
Collapse
Affiliation(s)
- Jaka Kranjc
- Institute of Pharmacy, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Lovro Kramer
- Cell Line Engineering and Characterization, Technical Research & Development, Novartis Pharmaceutical Manufacturing LLC, Mengeš, Slovenia
| | - Miha Mikelj
- Process Analytical Science, Technical Research & Development, Novartis Pharmaceutical Manufacturing LLC, Mengeš, Slovenia
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Pišlar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Matjaž Brinc
- Process Development, Technical Research & Development, Novartis Pharmaceutical Manufacturing LLC, Mengeš, Slovenia
| |
Collapse
|
21
|
Izzati FN, Choksi H, Giuliana P, Abd-Rabbo D, Elsaesser H, Blundell A, Affe V, Kannen V, Jame-Chenarboo Z, Schmidt E, Kuypers M, Avila DB, Chiu ESY, Badmaev D, Cui H, Matthews J, Mallevaey T, Macauley MS, Brooks DG, Edgar LJ. A Unified Atlas of T cell Glycophysiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609521. [PMID: 39229125 PMCID: PMC11370581 DOI: 10.1101/2024.08.24.609521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Glycans are emerging as important regulators of T cell function but remain poorly characterized across the functionally distinct populations that exist in vivo . Here, we couple single-cell analysis technologies with soluble lectins and chemical probes to interrogate glycosylation patterns on major T cell populations across multiple mouse and human tissues. Our analysis focused on terminal glycan epitopes with immunomodulatory functions, including sialoglycan ligands for Siglecs. We demonstrate that glycosylation patterns are diverse across the resting murine T cell repertoire and dynamically remodelled in response to antigen-specific stimulation. Surprisingly, we find that human T cell populations do not share the same glycoprofiles or glycan remodelling dynamics as their murine counterparts. We show that these differences can be explained by divergent regulation of glycan biosynthesis pathways between the species. These results highlight fundamental glycophysiological differences between mouse and human T cells and reveal features that are critical to consider for glycan-targeted therapies.
Collapse
|
22
|
Szabo R, Dobie C, Montgomery AP, Steele H, Yu H, Skropeta D. Synthesis of α-Hydroxy-1,2,3-Triazole-linked Sialyltransferase Inhibitors and Evaluation of Selectivity Towards ST3GAL1, ST6GAL1 and ST8SIA2. ChemMedChem 2024; 19:e202400088. [PMID: 38758134 DOI: 10.1002/cmdc.202400088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
Tumour-derived sialoglycans, bearing the charged nonulosonic sugar sialic acid at their termini, play a critical role in tumour cell adhesion and invasion, as well as evading cell death and immune surveillance. Sialyltransferases (ST), the enzymes responsible for the biosynthesis of sialylated glycans, are highly upregulated in cancer, with tumour hypersialylation strongly correlated with tumour growth, metastasis and drug resistance. As a result, desialylation of the tumour cell surface using either targeted delivery of a pan-ST inhibitor (or sialidase) or systemic delivery of a non-toxic selective ST inhibitors are being pursued as potential new anti-metastatic strategies against multiple cancers including pancreatic, ovarian, breast, melanoma and lung cancer. Herein, we have employed molecular modelling to give insights into the selectivity observed in a series of selective ST inhibitors that incorporate a uridyl ring in place of the cytidine of the natural donor (CMP-Neu5Ac) and replace the charged phosphodiester linker of classical ST inhibitors with a neutral α-hydroxy-1,2,3-triazole linker. The inhibitory activities of the nascent compounds were determined against recombinant human ST enzymes (ST3GAL1, ST6GAL1, ST8SIA2) showing promising activity and selectivity towards specific ST sub-types. Our ST inhibitors are non-toxic and show improved synthetic accessibility and drug-likeness compared to earlier nucleoside-based ST inhibitors.
Collapse
Affiliation(s)
- Rémi Szabo
- School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Chris Dobie
- School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Andrew P Montgomery
- School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Harrison Steele
- School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Haibo Yu
- School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- ARC Centre of Excellence in Quantum Biotechnology, University of Wollongong, Wollongong, NSW, Australia
| | - Danielle Skropeta
- School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
23
|
Cai N, Zhan X, Chen Y, Xue J, Chen C, Li Y, Tian Y, Yan X. Surface Sialic Acid Detection of Small Extracellular Vesicles at the Single-Particle Level by Nano-Flow Cytometry. Anal Chem 2024; 96:12718-12728. [PMID: 39047233 DOI: 10.1021/acs.analchem.4c01763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Glycans, particularly sialic acids (SAs), play crucial roles in diverse biological processes. Despite their significance, analyzing specific glycans, such as sialic acids, on individual small extracellular vesicles (sEVs) has remained challenging due to the limited glycan capacity and substantial heterogeneity of sEVs. To tackle this issue, we introduce a chemical modification method of surface SAs on sEVs named PALEV-nFCM, which involves periodate oxidation and aniline-catalyzed oxime ligation (PAL), in conjunction with single-particle analysis using a laboratory-built nano-flow cytometer (nFCM). The specificity of the PALEV labeling method was validated using SA-decorated liposomes, enzymatic removal of terminal SA residues, lectin preblocking, and cellular treatment with an endogenous sialyltransferase inhibitor. Comprehensive mapping of SA distributions was conducted for sEVs derived from different sources, including conditioned cell culture medium (CCCM) of various cell lines, human saliva, and human red blood cells (RBCs). Notably, treatment with the calcium ionophore substantially increases the population of SA-positive RBC sEVs and enhances the SA content on individual RBC sEVs as well. nFCM provides a sensitive and versatile platform for mapping SAs of individual sEVs, which could significantly contribute to resolving the heterogeneity of sEVs and advancing the understanding of their glycosignature.
Collapse
Affiliation(s)
- Niangui Cai
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Xiaozhen Zhan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Yan Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Junwei Xue
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Chen Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Yurou Li
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Ye Tian
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| |
Collapse
|
24
|
Lv Y, Zhang Z, Wang M, Wang Y, Chen M, Jia J, Guo Y, Wang K, Li Z, Wang W, Li H. Discovery of novel FUT8 inhibitors with promising affinity and in vivo efficacy for colorectal cancer therapy. Bioorg Chem 2024; 149:107492. [PMID: 38820939 DOI: 10.1016/j.bioorg.2024.107492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
As a member of glycosyltransferases, fucosyltransferase 8 (FUT8) is essential to core fucosylation and has been considered as a potential therapeutic target for malignant tumors, including colorectal cancer (CRC). Based on the identification of key binding residues and probable conformation of FUT8, an integrated strategy that combines virtual screening and chemical optimization was carried out and compound 15 was identified as a potent FUT8 inhibitor with novel chemical structure and in vitro antitumor activity. Moreover, chemical pulldown experiments and binding assays confirmed that compound 15 selectively bound to FUT8. In vivo, compound 15 showed promising anti-CRC effects in SW480 xenografts. These data support that compound 15 is a potential FUT8 inhibitor for CRC treatment and deserve further optimization studies.
Collapse
Affiliation(s)
- Yixin Lv
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zhoudong Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mengmeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215123, China
| | - Yiyun Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mengxi Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jie Jia
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yueyue Guo
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Kai Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zhi Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
25
|
Kao MR, Ma TH, Chou HY, Chang SC, Cheng LC, Liao KS, Shie JJ, Harris PJ, Wong CH, Hsieh YSY. A Robust α-l-Fucosidase from Prevotella nigrescens for Glycoengineering Therapeutic Antibodies. ACS Chem Biol 2024; 19:1515-1524. [PMID: 38912881 PMCID: PMC11267573 DOI: 10.1021/acschembio.4c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Eliminating the core fucose from the N-glycans of the Fc antibody segment by pathway engineering or enzymatic methods has been shown to enhance the potency of therapeutic antibodies, especially in the context of antibody-dependent cytotoxicity (ADCC). However, there is a significant challenge due to the limited defucosylation efficiency of commercially available α-l-fucosidases. In this study, we report a unique α-l-fucosidase (PnfucA) from the bacterium Prevotella nigrescens that has a low sequence identity compared with all other known α-l-fucosidases and is highly reactive toward a core disaccharide substrate with fucose α(1,3)-, α (1,4)-and α(1,6)-linked to GlcNAc, and is less reactive toward the Fuc-α(1,2)-Gal on the terminal trisaccharide of the oligosaccharide Globo H (Bb3). The kinetic properties of the enzyme, such as its Km and kcat, were determined and the optimized expression of PnfucA gave a yield exceeding 30 mg/L. The recombinant enzyme retained its full activity even after being incubated for 6 h at 37 °C. Moreover, it retained 92 and 87% of its activity after freezing and freeze-drying treatments, respectively, for over 28 days. In a representative glycoengineering of adalimumab (Humira), PnfucA showed remarkable hydrolytic efficiency in cleaving the α(1,6)-linked core fucose from FucGlcNAc on the antibody with a quantitative yield. This enabled the seamless incorporation of biantennary sialylglycans by Endo-S2 D184 M in a one-pot fashion to yield adalimumab in a homogeneous afucosylated glycoform with an improved binding affinity toward Fcγ receptor IIIa.
Collapse
Affiliation(s)
- Mu-Rong Kao
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan
- Genomics
Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 115201, Taiwan
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
| | - Tzu-Hsuan Ma
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
| | - Hsiang-Yu Chou
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan
| | - Shu-Chieh Chang
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
| | - Lin-Chen Cheng
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan
| | - Kuo-Shiang Liao
- Genomics
Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 115201, Taiwan
| | - Jiun-Jie Shie
- Institute
of Chemistry, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 115201, Taiwan
| | - Philip J. Harris
- School
of Biological Sciences, The University of
Auckland, Auckland Mail Centre, Private Bag 92019, Auckland 1142, New Zealand
| | - Chi-Huey Wong
- Genomics
Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 115201, Taiwan
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yves S. Y. Hsieh
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan
- Genomics
Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 115201, Taiwan
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
| |
Collapse
|
26
|
Cornelissen LAM, Santegoets KCM, Kers-Rebel ED, Bossmann SAJFH, Ter Laan M, Granado D, Adema GJ. Glioma-Associated Sialoglycans Drive the Immune Suppressive Phenotype and Function of Myeloid Cells. Pharmaceutics 2024; 16:953. [PMID: 39065651 PMCID: PMC11279593 DOI: 10.3390/pharmaceutics16070953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment of glioblastoma IDH-wildtype is highly immune suppressive and is characterized by a strong component of myeloid-derived suppressor cells (MDSCs). To interfere with the immune suppressive functions of MDSCs, a comprehensive understanding on how MDSCs acquire their suppressive phenotype is essential. Previously, we and others have shown a distinct Sialic acid-binding immunoglobulin-like lectin (Siglec) receptor expression profile for MDSCs in glioblastoma. Siglec receptors can transmit inhibitory signals comparable to PD-1 and are suggested to act as glyco-immune checkpoints. Here, we investigated how glioma specific Siglec-sialic acid interactions influence myeloid immune suppressive functions. Co-culturing monocytes with glioblastoma cells induced CD163 expression on the monocytes. Upon desialylation of the glioblastoma cells, this induction of CD163 was hampered, and furthermore, the monocytes were now able to secrete higher amounts of IL-6 and TNFα compared to fully sialylated glioblastoma cells. Additionally, Siglec-specific triggering using anti-Siglec-7 or Siglec-9 antibodies displayed a decreased TNFα secretion by the monocytes, validating the role of the Siglec-Sialic axis in the co-culture experiments. Together, our results demonstrate that glioblastoma cells induce a myeloid immune-suppressive phenotype that could be partly rescued by lowering the glioblastoma-associated sialic acid levels. This manuscript supports further research of the Siglec-Sialic acid axis in the context of glioblastoma and its potential to improve clinical outcome.
Collapse
Affiliation(s)
- Lenneke A. M. Cornelissen
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Kim C. M. Santegoets
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Esther D. Kers-Rebel
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | | | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Daniel Granado
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Gosse J. Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
27
|
Harris ES, McIntire HJ, Mazur M, Schulz-Hildebrandt H, Leung HM, Tearney GJ, Krick S, Rowe SM, Barnes JW. Reduced sialylation of airway mucin impairs mucus transport by altering the biophysical properties of mucin. Sci Rep 2024; 14:16568. [PMID: 39019950 PMCID: PMC11255327 DOI: 10.1038/s41598-024-66510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Mucus stasis is a pathologic hallmark of muco-obstructive diseases, including cystic fibrosis (CF). Mucins, the principal component of mucus, are extensively modified with hydroxyl (O)-linked glycans, which are largely terminated by sialic acid. Sialic acid is a negatively charged monosaccharide and contributes to the biochemical/biophysical properties of mucins. Reports suggest that mucin sialylation may be altered in CF; however, the consequences of reduced sialylation on mucus clearance have not been fully determined. Here, we investigated the consequences of reduced sialylation on the charge state and conformation of the most prominent airway mucin, MUC5B, and defined the functional consequences of reduced sialylation on mucociliary transport (MCT). Reduced sialylation contributed to a lower charged MUC5B form and decreased polymer expansion. The inhibition of total mucin sialylation de novo impaired MCT in primary human bronchial epithelial cells and rat airways, and specific α-2,3 sialylation blockade was sufficient to recapitulate these findings. Finally, we show that ST3 beta-galactoside alpha-2,3-sialyltransferase (ST3Gal1) expression is downregulated in CF and partially restored by correcting CFTR via Elexacaftor/Tezacaftor/Ivacaftor treatment. Overall, this study demonstrates the importance of mucin sialylation in mucus clearance and identifies decreased sialylation by ST3Gal1 as a possible therapeutic target in CF and potentially other muco-obstructive diseases.
Collapse
Affiliation(s)
- Elex S Harris
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hannah J McIntire
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marina Mazur
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA
| | | | - Hui Min Leung
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Guillermo J Tearney
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Stefanie Krick
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA.
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Departments of Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jarrod W Barnes
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA.
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
28
|
Wang X, Chen D, Guo M, Ning Y, Geng M, Guo J, Gao J, Zhao D, Zhang Y, Li Q, Li L, Li S, Li Y, Xie X, Zuo X, Li J. Oxytocin Alleviates Colitis and Colitis-Associated Colorectal Tumorigenesis via Noncanonical Fucosylation. RESEARCH (WASHINGTON, D.C.) 2024; 7:0407. [PMID: 38979515 PMCID: PMC11228076 DOI: 10.34133/research.0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 07/10/2024]
Abstract
Colon cancer is increasing worldwide and is commonly regarded as hormone independent, yet recent reports have implicated sex hormones in its development. Nevertheless, the role of hormones from the hypothalamus-hypophysis axis in colitis-associated colorectal cancer (CAC) remains uncertain. In this study, we observed a significant reduction in the expression of the oxytocin receptor (OXTR) in colon samples from both patient with colitis and patient with CAC. To investigate further, we generated mice with an intestinal-epithelium-cell-specific knockout of OXTR. These mice exhibited markedly increased susceptibility to dextran-sulfate-sodium-induced colitis and dextran sulfate sodium/azoxymethane-induced CAC compared to wild-type mice. Our findings indicate that OXTR depletion impaired the inner mucus of the colon epithelium. Mechanistically, oxytocin was found to regulate Mucin 2 maturation through β1-3-N-acetylglucosaminyltransferase 7 (B3GNT7)-mediated fucosylation. Interestingly, we observed a positive correlation between B3GNT7 expression and OXTR expression in human colitis and CAC colon samples. Moreover, the simultaneous activations of OXTR and fucosylation by l-fucose significantly alleviated tumor burden. Hence, our study unveils oxytocin's promising potential as an affordable and effective therapeutic intervention for individuals affected by colitis and CAC.
Collapse
Affiliation(s)
- Xia Wang
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Dawei Chen
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine,
Shandong University, Jinan, Shandong 250012, China
| | - Mengnan Guo
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine,
Shandong University, Jinan, Shandong 250012, China
| | - Yao Ning
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine,
Shandong University, Jinan, Shandong 250012, China
| | - Mingze Geng
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine,
Shandong University, Jinan, Shandong 250012, China
| | - Jing Guo
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Jiahui Gao
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Dong Zhao
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Yupeng Zhang
- Department of Molecular Plant Biology,
Norwegian Institute of Bioeconomy Research, Ås 1430, Norway
| | - Qianpeng Li
- Department of Hematology,
Weifang People’s Hospital, Weifang, Shandong 261000, China
| | - Lixiang Li
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Shiyang Li
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
- Advanced Medical Research Institute,
Shandong University, Jinan, Shandong 250012, China
| | - Yanqing Li
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Xiaoran Xie
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Xiuli Zuo
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine,
Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
29
|
Gilormini PA, Thota VN, Fers-Lidou A, Ashmus RA, Nodwell M, Brockerman J, Kuo CW, Wang Y, Gray TE, Nitin, McDonagh AW, Guu SY, Ertunc N, Yeo D, Zandberg WF, Khoo KH, Britton R, Vocadlo DJ. A metabolic inhibitor blocks cellular fucosylation and enables production of afucosylated antibodies. Proc Natl Acad Sci U S A 2024; 121:e2314026121. [PMID: 38917011 PMCID: PMC11228515 DOI: 10.1073/pnas.2314026121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
The fucosylation of glycoproteins regulates diverse physiological processes. Inhibitors that can control cellular levels of protein fucosylation have consequently emerged as being of high interest. One area where inhibitors of fucosylation have gained significant attention is in the production of afucosylated antibodies, which exhibit superior antibody-dependent cell cytotoxicity as compared to their fucosylated counterparts. Here, we describe β-carbafucose, a fucose derivative in which the endocyclic ring oxygen is replaced by a methylene group, and show that it acts as a potent metabolic inhibitor within cells to antagonize protein fucosylation. β-carbafucose is assimilated by the fucose salvage pathway to form GDP-carbafucose which, due to its being unable to form the oxocarbenium ion-like transition states used by fucosyltransferases, is an incompetent substrate for these enzymes. β-carbafucose treatment of a CHO cell line used for high-level production of the therapeutic antibody Herceptin leads to dose-dependent reductions in core fucosylation without affecting cell growth or antibody production. Mass spectrometry analyses of the intact antibody and N-glycans show that β-carbafucose is not incorporated into the antibody N-glycans at detectable levels. We expect that β-carbafucose will serve as a useful research tool for the community and may find immediate application for the rapid production of afucosylated antibodies for therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Anthony Fers-Lidou
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Roger A. Ashmus
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Matthew Nodwell
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Jacob Brockerman
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei11529, Taiwan
| | - Yang Wang
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Taylor E. Gray
- Department of Chemistry, University of British Columbia, Kelowna, BCV1V 1V7, Canada
| | - Nitin
- Department of Chemistry, University of British Columbia, Kelowna, BCV1V 1V7, Canada
| | - Anthony W. McDonagh
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Shih-Yun Guu
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei11529, Taiwan
| | - Nursah Ertunc
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | | | - Wesley F. Zandberg
- Department of Chemistry, University of British Columbia, Kelowna, BCV1V 1V7, Canada
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei11529, Taiwan
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - David J. Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| |
Collapse
|
30
|
Cao Y, Yi W, Zhu Q. Glycosylation in the tumor immune response: the bitter side of sweetness. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1184-1198. [PMID: 38946426 PMCID: PMC11399423 DOI: 10.3724/abbs.2024107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
Glycosylation is the most structurally diverse form of post-translational modification (PTM) of proteins that affects a myriad of cellular processes. As a pivotal regulator of protein homeostasis, glycosylation notably impacts the function of proteins, spanning from protein localization and stability to protein-protein interactions. Aberrant glycosylation is a hallmark of cancer, and extensive studies have revealed the multifaceted roles of glycosylation in tumor growth, migration, invasion and immune escape Over the past decade, glycosylation has emerged as an immune regulator in the tumor microenvironment (TME). Here, we summarize the intricate interplay between glycosylation and the immune system documented in recent literature, which orchestrates the regulation of the tumor immune response through endogenous lectins, immune checkpoints and the extracellular matrix (ECM) in the TME. In addition, we discuss the latest progress in glycan-based cancer immunotherapy. This review provides a basic understanding of glycosylation in the tumor immune response and a theoretical framework for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuting Cao
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Wen Yi
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Qiang Zhu
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
31
|
Kasahara T, Chang TC, Yoshioka H, Urano S, Egawa Y, Inoue M, Tahara T, Morimoto K, Pradipta AR, Tanaka K. Anticancer approach by targeted activation of a global inhibitor of sialyltransferases with acrolein. Chem Sci 2024; 15:9566-9573. [PMID: 38939146 PMCID: PMC11206204 DOI: 10.1039/d4sc00969j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/28/2024] [Indexed: 06/29/2024] Open
Abstract
Cells are covered with a thick layer of sugar molecules known as glycans. Abnormal glycosylation is a hallmark of cancer, and hypersialylation increases tumor metastasis by promoting immune evasion and inducing tumor cell invasion and migration. Inhibiting sialylation is thus a potential anticancer treatment strategy. However, targeting sialic acids is difficult because of the lack of selective delivery tools. Here, we present a prodrug strategy for selectively releasing the global inhibitor of sialylation peracetylated 3Fax-Neu5Ac (PFN) in cancer cells using the reaction between phenyl azide and endogenous acrolein, which is overproduced in most cancer cells. The prodrug significantly suppressed tumor growth in mice as effectively as PFN without causing kidney dysfunction, which is associated with PFN. The use of sialylated glycans as immune checkpoints is gaining increasing attention, and the proposed method for precisely targeting aberrant sialylation provides a novel avenue for expanding current cancer treatments.
Collapse
Affiliation(s)
- Takatsugu Kasahara
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
| | - Tsung-Che Chang
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Hiromasa Yoshioka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Sayaka Urano
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Yasuko Egawa
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Michiko Inoue
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research 6-7-3 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| | - Tsuyoshi Tahara
- Department of In vivo Imaging, Advanced Research Promoting Center, Tokushima University 3-18-15 Kuramto-cho Tokushima Tokushima 770-8503 Japan
| | - Koji Morimoto
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Ambara R Pradipta
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| |
Collapse
|
32
|
Fioretto BS, Rosa I, Tani A, Andreucci E, Romano E, Sgambati E, Manetti M. Blockade of Sialylation with Decrease in Polysialic Acid Levels Counteracts Transforming Growth Factor β1-Induced Skin Fibroblast-to-Myofibroblast Transition. Cells 2024; 13:1067. [PMID: 38920695 PMCID: PMC11201575 DOI: 10.3390/cells13121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Aberrant sialylation with overexpression of the homopolymeric glycan polysialic acid (polySia) was recently reported in fibroblasts from fibrotic skin lesions. Yet, whether such a rise in polySia levels or sialylation in general may be functionally implicated in profibrotic activation of fibroblasts and their transition to myofibroblasts remains unknown. Therefore, we herein explored whether inhibition of sialylation could interfere with the process of skin fibroblast-to-myofibroblast transition induced by the master profibrotic mediator transforming growth factor β1 (TGFβ1). Adult human skin fibroblasts were pretreated with the competitive pan-sialyltransferase inhibitor 3-Fax-peracetyl-Neu5Ac (3-Fax) before stimulation with recombinant human TGFβ1, and then analyzed for polySia expression, cell viability, proliferation, migratory ability, and acquisition of myofibroblast-like morphofunctional features. Skin fibroblast stimulation with TGFβ1 resulted in overexpression of polySia, which was effectively blunted by 3-Fax pre-administration. Pretreatment with 3-Fax efficiently lessened TGFβ1-induced skin fibroblast proliferation, migration, changes in cell morphology, and phenotypic and functional differentiation into myofibroblasts, as testified by a significant reduction in FAP, ACTA2, COL1A1, COL1A2, and FN1 gene expression, and α-smooth muscle actin, N-cadherin, COL1A1, and FN-EDA protein levels, as well as a reduced contractile capability. Moreover, skin fibroblasts pre-administered with 3-Fax displayed a significant decrease in Smad3-dependent canonical TGFβ1 signaling. Collectively, our in vitro findings demonstrate for the first time that aberrant sialylation with increased polySia levels has a functional role in skin fibroblast-to-myofibroblast transition and suggest that competitive sialyltransferase inhibition might offer new therapeutic opportunities against skin fibrosis.
Collapse
Affiliation(s)
- Bianca Saveria Fioretto
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (A.T.)
| | - Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (A.T.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Alessia Tani
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (A.T.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Elena Andreucci
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Eloisa Romano
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy;
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (A.T.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
33
|
Harris ES, McIntire HJ, Mazur M, Schulz-Hildebrandt H, Leung HM, Tearney GJ, Krick S, Rowe SM, Barnes JW. Reduced Sialylation of Airway Mucin Impairs Mucus Transport by Altering the Biophysical Properties of Mucin. RESEARCH SQUARE 2024:rs.3.rs-4421613. [PMID: 38853971 PMCID: PMC11160914 DOI: 10.21203/rs.3.rs-4421613/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mucus stasis is a pathologic hallmark of muco-obstructive diseases, including cystic fibrosis (CF). Mucins, the principal component of mucus, are extensively modified with hydroxyl (O)-linked glycans, which are largely terminated by sialic acid. Sialic acid is a negatively charged monosaccharide and contributes to the biochemical/biophysical properties of mucins. Reports suggest that mucin sialylation may be altered in CF; however, the consequences of reduced sialylation on mucus clearance have not been fully determined. Here, we investigated the consequences of reduced sialylation on the charge state and conformation of the most prominent airway mucin, MUC5B, and defined the functional consequences of reduced sialylation on mucociliary transport (MCT). Reduced sialylation contributed to a lower charged MUC5B form and decreased polymer expansion. The inhibition of total mucin sialylation de novo impaired MCT in primary human bronchial epithelial cells and rat airways, and specific α-2,3 sialylation blockade was sufficient to recapitulate these findings. Finally, we show that ST3 beta-galactoside alpha-2,3-sialyltransferase (ST3Gal1) expression is downregulated in CF and partially restored by correcting CFTR via Elexacaftor/Tezacaftor/Ivacaftor treatment. Overall, this study demonstrates the importance of mucin sialylation in mucus clearance and identifies decreased sialylation by ST3Gal1 as a possible therapeutic target in CF and potentially other muco-obstructive diseases.
Collapse
Affiliation(s)
- Elex S Harris
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Hannah J McIntire
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Marina Mazur
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | - Stefanie Krick
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Jarrod W Barnes
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
34
|
Suzuki S, Liu J, Sato Y, Miyake R, Suzuki S, Okitsu Y, Fukuda T, Isaji T, Gu J, Takahashi S. Fucosylation inhibitor 6-alkynylfucose enhances the ATRA-induced differentiation effect on acute promyelocytic leukemia cells. Biochem Biophys Res Commun 2024; 710:149541. [PMID: 38608490 DOI: 10.1016/j.bbrc.2024.149541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 04/14/2024]
Abstract
For acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA) is well established. However, the narrow application and tolerance development of ATRA remain to be improved. In this study, we investigated the effects of combinations of glycosylation inhibitors with ATRA to achieve better efficiency than ATRA alone. We found that the combination of fucosylation inhibitor 6-alkynylfucose (6AF) and ATRA had an additional effect on cell differentiation, as revealed by expression changes in two differentiation markers, CD11b and CD11c, and significant morphological changes in NB4 APL and HL-60 acute myeloid leukemia (AML) cells. In AAL lectin blot analyses, ATRA or 6AF alone could decrease fucosylation, while their combination decreased fucosylation more efficiently. To clarify the molecular mechanism for the 6AF effect on ATRA-induced differentiation, we performed microarray analyses using NB4 cells. In a pathway analysis using DAVID software, we found that the C-type lectin receptor (CLR) signaling pathway was enriched with high significance. In real-time PCR analyses using NB4 and HL-60 cells, FcεRIγ, CLEC6A, CLEC7A, CASP1, IL-1β, and EGR3, as components of the CLR pathway, as well as CD45 and AKT3 were upregulated by 6AF in ATRA-induced differentiation. Taken together, the present findings suggest that the CLR signaling pathway is involved in the 6AF effect on ATRA-induced differentiation.
Collapse
Affiliation(s)
- Susumu Suzuki
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan; Department of Clinical Laboratory, Tohoku Medical and Pharmaceutical University Hospital, 1-12-1 Fukumuro, Miyagino-ku, Sendai, 983-8512, Japan
| | - Jianwei Liu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Yuri Sato
- Department of Clinical Laboratory, Tohoku Medical and Pharmaceutical University Hospital, 1-12-1 Fukumuro, Miyagino-ku, Sendai, 983-8512, Japan
| | - Rikuto Miyake
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan
| | - Souma Suzuki
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan
| | - Yoko Okitsu
- Division of Rheumatology and Hematology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| | - Shinichiro Takahashi
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan; Department of Clinical Laboratory, Tohoku Medical and Pharmaceutical University Hospital, 1-12-1 Fukumuro, Miyagino-ku, Sendai, 983-8512, Japan.
| |
Collapse
|
35
|
Imae R, Manya H, Tsumoto H, Umezawa K, Miura Y, Endo T. Changes in the amount of nucleotide sugars in aged mouse tissues. Glycobiology 2024; 34:cwae032. [PMID: 38598324 DOI: 10.1093/glycob/cwae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024] Open
Abstract
Aging affects tissue glycan profiles, which may alter cellular functions and increase the risk of age-related diseases. Glycans are biosynthesized by glycosyltransferases using the corresponding nucleotide sugar, and the availability of nucleotide sugars affects glycosylation efficiency. However, the effects of aging on nucleotide sugar profiles and contents are yet to be elucidated. Therefore, this study aimed to investigate the effects of aging on nucleotide sugars using a new LC-MS/MS method. Specifically, the new method was used to determine the nucleotide sugar contents of various tissues (brain, liver, heart, skeletal muscle, kidney, lung, and colon) of male C57BL/6NCr mice (7- or 26-month-old). Characteristic age-associated nucleotide sugar changes were observed in each tissue sample. Particularly, there was a significant decrease in UDP-glucuronic acid content in the kidney of aged mice and a decrease in the contents of several nucleotide sugars, including UDP-N-acetylgalactosamine, in the brain of aged mice. Additionally, there were variations in nucleotide sugar profiles among the tissues examined regardless of the age. The kidneys had the highest concentration of UDP-glucuronic acid among the seven tissues. In contrast, the skeletal muscle had the lowest concentration of total nucleotide sugars among the tissues; however, CMP-N-acetylneuraminic acid and CDP-ribitol were relatively enriched. Conclusively, these findings may contribute to the understanding of the roles of glycans in tissue aging.
Collapse
Affiliation(s)
- Rieko Imae
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Hiroki Tsumoto
- Proteome Research, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Keitaro Umezawa
- Proteome Research, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Yuri Miura
- Proteome Research, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
36
|
Nashed A, Naidoo KJ. Universal Glycosyltransferase Continuous Assay for Uniform Kinetics and Inhibition Database Development and Mechanistic Studies Illustrated on ST3GAL1, C1GALT1, and FUT1. ACS OMEGA 2024; 9:17518-17532. [PMID: 38645360 PMCID: PMC11025096 DOI: 10.1021/acsomega.4c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
Chemical systems glycobiology requires experimental and computational tools to make possible big data analytics benefiting genomics and proteomics. The impediment to tool development is that the nature of glycan construction and mutation is not template driven but rests on cooperative glycosyltransferase (GT) catalytic synthesis. What is needed is the collation of kinetics and inhibition data in a standardized form to make possible analytics of glycan and glycoconjugate synthesis, mechanism extraction, and pattern recognition. Currently, kinetics assays in use for GTs are not universal in processing nucleoside phosphate UDP, GDP, and CMP donor-based glycosylation reactions due to limitations in accuracy and large substrate volume requirements. Here we present a universal glycosyltransferase continuous (UGC) assay able to measure the declining concentration of the NADH reporter molecule through fluorescence spectrophotometry and, therefore, determine reaction rate parameters. The development and parametrization of the assay is based on coupling the nucleotide released from GT reactions with pyruvate kinase, via nucleoside diphosphate kinase (NDK) in the case of NDP-based donor reactions. In the case of CMP-based reactions, the coupling is carried out via another kinase, cytidylate kinase in combination with NDK, which phosphorylates CMP to CDP, then CDP to CTP. Following this, we conduct kinetics and inhibition assay studies on the UDP, GDP, and CMP-based glycosylation reactions, specifically C1GAlT1, FUT1, and ST3GAL1, to represent each class of donor, respectively. The accuracy of calculating initial rates using the continuous assay compared to end point (noncontinuous) assays is demonstrated for the three classes of GTs. The previously identified natural product soyasaponin1 inhibitor was used as a model to demonstrate the application of the UGC assay as a standardized inhibition assay for GTs. We show that the dose response of ST3GAL1 to a serial dilution of Soyasaponin1 has time-dependent inhibition. This brings into question previous inhibition findings, arrived at using an end point assay, that have selected a seemingly random time point to measure inhibition. Consequently, using standardized Km values taken from the UGC assay study, ST3GAL1 was shown to be the most responsive enzyme to soyasaponin1 inhibition, followed by FUT1, then C1GALT1 with IC50 values of 37, 52, and 886 μM respectively.
Collapse
Affiliation(s)
- Abdullateef Nashed
- Scientific
Computing Research Unit, University of Cape
Town, PD Hahn Building, Rondebosch 7701, South Africa
- Department
of Chemistry, University of Cape Town, PD Hahn Building, Rondebosch 7701, South Africa
| | - Kevin J. Naidoo
- Scientific
Computing Research Unit, University of Cape
Town, PD Hahn Building, Rondebosch 7701, South Africa
- Department
of Chemistry, University of Cape Town, PD Hahn Building, Rondebosch 7701, South Africa
| |
Collapse
|
37
|
Tsai HE, Chen CL, Chang TT, Fu CW, Chen WC, Perez SJLP, Hsiao PW, Tai MH, Li WS. Development of a Novel, Potent, and Selective Sialyltransferase Inhibitor for Suppressing Cancer Metastasis. Int J Mol Sci 2024; 25:4283. [PMID: 38673867 PMCID: PMC11050067 DOI: 10.3390/ijms25084283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Sialyltransferase-catalyzed membrane protein and lipid glycosylation plays a vital role as one of the most abundant post-translational modifications and diversification reactions in eukaryotes. However, aberrant sialylation has been associated with cancer malignancy and metastasis. Sialyltransferases thus represent emerging targets for the development of small molecule cancer drugs. Herein, we report the inhibitory effects of a recently discovered lithocholic acid derivative FCW393 on sialyltransferase catalytic activity, integrin sialyation, cancer-associated signal transduction, MDA-MB-231 and B16F10 cell migration and invasion, and in in vivo studies, on tumor growth, metastasis, and angiogenesis. FCW393 showed effective and selective inhibition of the sialyltransferases ST6GAL1 (IC50 = 7.8 μM) and ST3GAL3 (IC50 = 9.45 μM) relative to ST3GAL1 (IC50 > 400 μM) and ST8SIA4 (IC50 > 100 μM). FCW393 reduced integrin sialylation in breast cancer and melanoma cells dose-dependently and downregulated proteins associated with the integrin-regulated FAK/paxillin and GEF/Rho/ROCK pathways, and with the VEGF-regulated Akt/NFκB/HIF-1α pathway. FCW393 inhibited cell migration (IC50 = 2.6 μM) and invasion in in vitro experiments, and in in vivo studies of tumor-bearing mice, FCW393 reduced tumor size, angiogenesis, and metastatic potential. Based on its demonstrated selectivity, cell permeability, relatively low cytotoxicity (IC50 = 55 μM), and high efficacy, FCW393 shows promising potential as a small molecule experimental tool compound and a lead for further development of a novel cancer therapeutic.
Collapse
Grants
- AS-KPQ-110-EIMD, AS-KPQ-109-BioMed, AS-KPQ-110-BioMed and AS-KPQ-111-KNT Academia Sinica
- MOST, Taiwan, MOST 110-0210-01-22-02, MOST-108-3114-Y-001-002, MOST 108-3111-Y-001-056, MOST 106-2113-M-001-011, MOST 103-2325-B-001-001 and MOST108-2314-B-110-003-MY2 Ministry of Science and Technology, TAIWAN
- 108-36 Kaohsiung Armed Forces General Hospital, TAIWAN
Collapse
Affiliation(s)
- Han-En Tsai
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (C.-W.F.); (S.J.L.P.P.)
| | - Chia-Ling Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (C.-W.F.); (S.J.L.P.P.)
| | - Tzu-Ting Chang
- Biomedical Translation Research Center, Academia Sinica, National Biotechnology Research Park, Taipei 115, Taiwan
| | - Chih-Wei Fu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (C.-W.F.); (S.J.L.P.P.)
- Department of Chemistry, National Central University, Taoyuan 320, Taiwan
| | - Wei-Chia Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (C.-W.F.); (S.J.L.P.P.)
- Department of Chemistry, National Taiwan Normal University, Taipei 106, Taiwan
| | - Ser John Lynon P. Perez
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (C.-W.F.); (S.J.L.P.P.)
- Biomedical Translation Research Center, Academia Sinica, National Biotechnology Research Park, Taipei 115, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 115, Taiwan
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ming-Hong Tai
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Wen-Shan Li
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (C.-W.F.); (S.J.L.P.P.)
- Biomedical Translation Research Center, Academia Sinica, National Biotechnology Research Park, Taipei 115, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 115, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
38
|
Domma AJ, Henderson LA, Nurdin JA, Kamil JP. Uncloaking the viral glycocalyx: How do viruses exploit glycoimmune checkpoints? Adv Virus Res 2024; 119:63-110. [PMID: 38897709 PMCID: PMC11192240 DOI: 10.1016/bs.aivir.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The surfaces of cells and enveloped viruses alike are coated in carbohydrates that play multifarious roles in infection and immunity. Organisms across all kingdoms of life make use of a diverse set of monosaccharide subunits, glycosidic linkages, and branching patterns to encode information within glycans. Accordingly, sugar-patterning enzymes and glycan binding proteins play integral roles in cell and organismal biology, ranging from glycoprotein quality control within the endoplasmic reticulum to lymphocyte migration, coagulation, inflammation, and tissue homeostasis. Unsurprisingly, genes involved in generating and recognizing oligosaccharide patterns are playgrounds for evolutionary conflicts that abound in cross-species interactions, exemplified by the myriad plant lectins that function as toxins. In vertebrates, glycans bearing acidic nine-carbon sugars called sialic acids are key regulators of immune responses. Various bacterial and fungal pathogens adorn their cells in sialic acids that either mimic their hosts' or are stolen from them. Yet, how viruses commandeer host sugar-patterning enzymes to thwart immune responses remains poorly studied. Here, we review examples of viruses that interact with sialic acid-binding immunoglobulin-like lectins (Siglecs), a family of immune cell receptors that regulate toll-like receptor signaling and govern glycoimmune checkpoints, while highlighting knowledge gaps that merit investigation. Efforts to illuminate how viruses leverage glycan-dependent checkpoints may translate into new clinical treatments that uncloak viral antigens and infected cell surfaces by removing or masking immunosuppressive sialoglycans, or by inhibiting viral gene products that induce their biosynthesis. Such approaches may hold the potential to unleash the immune system to clear long intractable chronic viral infections.
Collapse
Affiliation(s)
- Anthony J Domma
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | | | - Jeffery A Nurdin
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Jeremy P Kamil
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States.
| |
Collapse
|
39
|
Nie H, Saini P, Miyamoto T, Liao L, Zielinski RJ, Liu H, Zhou W, Wang C, Murphy B, Towers M, Yang T, Qi Y, Kannan T, Kossenkov A, Tateno H, Claiborne DT, Zhang N, Abdel-Mohsen M, Zhang R. Targeting branched N-glycans and fucosylation sensitizes ovarian tumors to immune checkpoint blockade. Nat Commun 2024; 15:2853. [PMID: 38565883 PMCID: PMC10987604 DOI: 10.1038/s41467-024-47069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Aberrant glycosylation is a crucial strategy employed by cancer cells to evade cellular immunity. However, it's unclear whether homologous recombination (HR) status-dependent glycosylation can be therapeutically explored. Here, we show that the inhibition of branched N-glycans sensitizes HR-proficient, but not HR-deficient, epithelial ovarian cancers (EOCs) to immune checkpoint blockade (ICB). In contrast to fucosylation whose inhibition sensitizes EOCs to anti-PD-L1 immunotherapy regardless of HR-status, we observe an enrichment of branched N-glycans on HR-proficient compared to HR-deficient EOCs. Mechanistically, BRCA1/2 transcriptionally promotes the expression of MGAT5, the enzyme responsible for catalyzing branched N-glycans. The branched N-glycans on HR-proficient tumors augment their resistance to anti-PD-L1 by enhancing its binding with PD-1 on CD8+ T cells. In orthotopic, syngeneic EOC models in female mice, inhibiting branched N-glycans using 2-Deoxy-D-glucose sensitizes HR-proficient, but not HR-deficient EOCs, to anti-PD-L1. These findings indicate branched N-glycans as promising therapeutic targets whose inhibition sensitizes HR-proficient EOCs to ICB by overcoming immune evasion.
Collapse
Affiliation(s)
- Hao Nie
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Pratima Saini
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Taito Miyamoto
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Liping Liao
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Rafal J Zielinski
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Heng Liu
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Wei Zhou
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Chen Wang
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Brennah Murphy
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Martina Towers
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Tyler Yang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Yuan Qi
- Department of Bioinformatics & Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Toshitha Kannan
- Bioinformatics Facility, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Andrew Kossenkov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Daniel T Claiborne
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Nan Zhang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA.
| | - Rugang Zhang
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA.
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
40
|
Ayyalasomayajula R, Cudic M. Targeting Siglec-Sialylated MUC1 Immune Axis in Cancer. Cancers (Basel) 2024; 16:1334. [PMID: 38611013 PMCID: PMC11011055 DOI: 10.3390/cancers16071334] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Siglecs play a key role in mediating cell-cell interactions via the recognition of different sialylated glycoconjugates, including tumor-associated MUC1, which can lead to the activation or inhibition of the immune response. The activation occurs through the signaling of Siglecs with the cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM)-containing proteins, while the inhibition signal is a result of the interaction of intracellular immunoreceptor tyrosine-based inhibition motif (ITIM)-bearing receptors. The interaction of tumor-associated MUC1 sialylated glycans with Siglecs via ITIM motifs decreases antitumor immunity. Consequently, these interactions are expected to play a key role in tumor evasion. Efforts to modulate the response of immune cells by blocking the immune-suppressive effects of inhibitory Siglecs, driving immune-activating Siglecs, and/or altering the synthesis and expression of the sialic acid glycocalyx are new therapeutic strategies deserving further investigation. We will highlight the role of Siglec's family receptors in immune evasion through interactions with glycan ligands in their natural context, presented on the protein such as MUC1, factors affecting their fine binding specificities, such as the role of multivalency either at the ligand or receptor side, their spatial organization, and finally the current and future therapeutic interventions targeting the Siglec-sialylated MUC1 immune axis in cancer.
Collapse
Affiliation(s)
| | - Mare Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA;
| |
Collapse
|
41
|
Liu Q, Adhikari E, Lester DK, Fang B, Johnson JO, Tian Y, Mockabee-Macias AT, Izumi V, Guzman KM, White MG, Koomen JM, Wargo JA, Messina JL, Qi J, Lau EK. Androgen drives melanoma invasiveness and metastatic spread by inducing tumorigenic fucosylation. Nat Commun 2024; 15:1148. [PMID: 38326303 PMCID: PMC10850104 DOI: 10.1038/s41467-024-45324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Melanoma incidence and mortality rates are historically higher for men than women. Although emerging studies have highlighted tumorigenic roles for the male sex hormone androgen and its receptor (AR) in melanoma, cellular and molecular mechanisms underlying these sex-associated discrepancies are poorly defined. Here, we delineate a previously undisclosed mechanism by which androgen-activated AR transcriptionally upregulates fucosyltransferase 4 (FUT4) expression, which drives melanoma invasiveness by interfering with adherens junctions (AJs). Global phosphoproteomic and fucoproteomic profiling, coupled with in vitro and in vivo functional validation, further reveal that AR-induced FUT4 fucosylates L1 cell adhesion molecule (L1CAM), which is required for FUT4-increased metastatic capacity. Tumor microarray and gene expression analyses demonstrate that AR-FUT4-L1CAM-AJs signaling correlates with pathological staging in melanoma patients. By delineating key androgen-triggered signaling that enhances metastatic aggressiveness, our findings help explain sex-associated clinical outcome disparities and highlight AR/FUT4 and its effectors as potential prognostic biomarkers and therapeutic targets in melanoma.
Collapse
Affiliation(s)
- Qian Liu
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Emma Adhikari
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Daniel K Lester
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Bin Fang
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Joseph O Johnson
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Yijun Tian
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Andrea T Mockabee-Macias
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Victoria Izumi
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Kelly M Guzman
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Michael G White
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - John M Koomen
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Jane L Messina
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jianfei Qi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eric K Lau
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
42
|
Feng H, Feng J, Han X, Ying Y, Lou W, Liu L, Zhang L. The Potential of Siglecs and Sialic Acids as Biomarkers and Therapeutic Targets in Tumor Immunotherapy. Cancers (Basel) 2024; 16:289. [PMID: 38254780 PMCID: PMC10813689 DOI: 10.3390/cancers16020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The dysregulation of sialic acid is closely associated with oncogenesis and tumor progression. Most tumor cells exhibit sialic acid upregulation. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are receptors that recognize sialic acid and are expressed in various immune cells. The activity of Siglecs in the tumor microenvironment promotes immune escape, mirroring the mechanisms of the well-characterized PD-1/PD-L1 pathway in cancer. Cancer cells utilize sialic acid-linked glycans to evade immune surveillance. As Siglecs exhibit similar mechanisms as the established immune checkpoint inhibitors (ICIs), they are potential therapeutic targets for different forms of cancer, especially ICI-resistant malignancies. Additionally, the upregulation of sialic acid serves as a potential tumor biomarker. This review examines the feasibility of using sialic acid and Siglecs for early malignant tumor detection and discusses the potential of targeting Siglec-sialic acid interaction as a novel cancer therapeutic strategy.
Collapse
Affiliation(s)
- Haokang Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiale Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xu Han
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Ying
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The Shanghai Geriatrics Medical Center, Zhongshan Hospital MinHang MeiLong Branch, Fudan University, Shanghai 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
43
|
Baysal Ö, Genç D, Silme RS, Kırboğa KK, Çoban D, Ghafoor NA, Tekin L, Bulut O. Targeting Breast Cancer with N-Acetyl-D-Glucosamine: Integrating Machine Learning and Cellular Assays for Promising Results. Anticancer Agents Med Chem 2024; 24:334-347. [PMID: 38305389 DOI: 10.2174/0118715206270568231129054853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Breast cancer is a common cancer with high mortality rates. Early diagnosis is crucial for reducing the prognosis and mortality rates. Therefore, the development of alternative treatment options is necessary. OBJECTIVE This study aimed to investigate the inhibitory effect of N-acetyl-D-glucosamine (D-GlcNAc) on breast cancer using a machine learning method. The findings were further confirmed through assays on breast cancer cell lines. METHODS MCF-7 and 4T1 cell lines (ATCC) were cultured in the presence and absence of varying concentrations of D-GlcNAc (0.5 mM, 1 mM, 2 mM, and 4 mM) for 72 hours. A xenograft mouse model for breast cancer was established by injecting 4T1 cells into mammary glands. D-GlcNAc (2 mM) was administered intraperitoneally to mice daily for 28 days, and histopathological effects were evaluated at pre-tumoral and post-tumoral stages. RESULTS Treatment with 2 mM and 4 mM D-GlcNAc significantly decreased cell proliferation rates in MCF-7 and 4T1 cell lines and increased Fas expression. The number of apoptotic cells was significantly higher than untreated cell cultures (p < 0.01 - p < 0.0001). D-GlcNAc administration also considerably reduced tumour size, mitosis, and angiogenesis in the post-treatment group compared to the control breast cancer group (p < 0.01 - p < 0.0001). Additionally, molecular docking/dynamic analysis revealed a high binding affinity of D-GlcNAc to the marker protein HER2, which is involved in tumour progression and cell signalling. CONCLUSION Our study demonstrated the positive effect of D-GlcNAc administration on breast cancer cells, leading to increased apoptosis and Fas expression in the malignant phenotype. The binding affinity of D-GlcNAc to HER2 suggests a potential mechanism of action. These findings contribute to understanding D-GlcNAc as a potential anti-tumour agent for breast cancer treatment.
Collapse
Affiliation(s)
- Ömür Baysal
- Department of Molecular Biology and Genetics, Faculty of Science, Molecular Microbiology Unit, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Deniz Genç
- Faculty of Health Sciences, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Ragıp Soner Silme
- Center for Research and Practice in Biotechnology and Genetic Engineering, Istanbul University, Istanbul, Türkiye
| | - Kevser Kübra Kırboğa
- Department of Bioengineering, Bilecik Seyh Edebali University, 11230, Bilecik, Türkiye
| | - Dilek Çoban
- Department of Molecular Biology and Genetics, Faculty of Science, Molecular Microbiology Unit, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Naeem Abdul Ghafoor
- Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Leyla Tekin
- Department of Pathology, Faculty of Medicine, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Osman Bulut
- Milas Faculty of Veterinary Medicine, Muğla Sıtkı Koçman University, Milas, Muğla, Türkiye
| |
Collapse
|
44
|
Orozco-Moreno M, Visser EA, Hodgson K, Hipgrave Ederveen AL, Bastian K, Goode EA, Öztürk Ö, Pijnenborg JFA, Eerden N, Moons SJ, Rossing E, Wang N, de Haan N, Büll C, Boltje TJ, Munkley J. Targeting aberrant sialylation and fucosylation in prostate cancer cells using potent metabolic inhibitors. Glycobiology 2023; 33:1155-1171. [PMID: 37847613 PMCID: PMC10876042 DOI: 10.1093/glycob/cwad085] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023] Open
Abstract
Aberrant glycosylation is a hallmark of cancer and is not just a consequence, but also a driver of a malignant phenotype. In prostate cancer, changes in fucosylated and sialylated glycans are common and this has important implications for tumor progression, metastasis, and immune evasion. Glycans hold huge translational potential and new therapies targeting tumor-associated glycans are currently being tested in clinical trials for several tumor types. Inhibitors targeting fucosylation and sialylation have been developed and show promise for cancer treatment, but translational development is hampered by safety issues related to systemic adverse effects. Recently, potent metabolic inhibitors of sialylation and fucosylation were designed that reach higher effective concentrations within the cell, thereby rendering them useful tools to study sialylation and fucosylation as potential candidates for therapeutic testing. Here, we investigated the effects of global metabolic inhibitors of fucosylation and sialylation in the context of prostate cancer progression. We find that these inhibitors effectively shut down the synthesis of sialylated and fucosylated glycans to remodel the prostate cancer glycome with only minor apparent side effects on other glycan types. Our results demonstrate that treatment with inhibitors targeting fucosylation or sialylation decreases prostate cancer cell growth and downregulates the expression of genes and proteins important in the trajectory of disease progression. We anticipate our findings will lead to the broader use of metabolic inhibitors to explore the role of fucosylated and sialylated glycans in prostate tumor pathology and may pave the way for the development of new therapies for prostate cancer.
Collapse
Affiliation(s)
- Margarita Orozco-Moreno
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Central Parkway, Newcastle-upon-Tyne, Tyne and Wear NE1 3BZ, United Kingdom
| | - Eline A Visser
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Kirsty Hodgson
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Central Parkway, Newcastle-upon-Tyne, Tyne and Wear NE1 3BZ, United Kingdom
| | - Agnes L Hipgrave Ederveen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Kayla Bastian
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Central Parkway, Newcastle-upon-Tyne, Tyne and Wear NE1 3BZ, United Kingdom
| | - Emily Archer Goode
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Central Parkway, Newcastle-upon-Tyne, Tyne and Wear NE1 3BZ, United Kingdom
| | - Özden Öztürk
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | - Nienke Eerden
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
- GlycoTherapeutics B.V., Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Sam J Moons
- Synvenio B.V., Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Emiel Rossing
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Medical School, Beech Hill Rd, Sheffield, Yorkshire S10 2RX, United Kingdom
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Christian Büll
- Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Jennifer Munkley
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Central Parkway, Newcastle-upon-Tyne, Tyne and Wear NE1 3BZ, United Kingdom
| |
Collapse
|
45
|
Adhikari E, Liu Q, Johnson J, Stewart P, Marusyk V, Fang B, Izumi V, Bowers K, Guzman KM, Koomen JM, Marusyk A, Lau EK. Brain metastasis-associated fibroblasts secrete fucosylated PVR/CD155 that induces breast cancer invasion. Cell Rep 2023; 42:113463. [PMID: 37995180 DOI: 10.1016/j.celrep.2023.113463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Brain metastasis cancer-associated fibroblasts (bmCAFs) are emerging as crucial players in the development of breast cancer brain metastasis (BCBM), but our understanding of the underlying molecular mechanisms is limited. In this study, we aim to elucidate the pathological contributions of fucosylation (the post-translational modification of proteins by the dietary sugar L-fucose) to tumor-stromal interactions that drive the development of BCBM. Here, we report that patient-derived bmCAFs secrete high levels of polio virus receptor (PVR), which enhance the invasive capacity of BC cells. Mechanistically, we find that HIF1α transcriptionally upregulates fucosyltransferase 11, which fucosylates PVR, triggering its secretion from bmCAFs. Global phosphoproteomic analysis of BC cells followed by functional verification identifies cell-cell junction and actin cytoskeletal signaling as modulated by bmCAF-secreted, -fucosylated PVR. Our findings delineate a hypoxia- and fucosylation-regulated mechanism by which bmCAFs contribute to the invasiveness of BCBM in the brain.
Collapse
Affiliation(s)
- Emma Adhikari
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, USA; Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Qian Liu
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, USA; Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Joseph Johnson
- Department of Analytic Microscopy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paul Stewart
- Biostatistics and Bioinformatics Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Viktoriya Marusyk
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Victoria Izumi
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kiah Bowers
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kelly M Guzman
- Department of Analytic Microscopy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John M Koomen
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Andriy Marusyk
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eric K Lau
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
46
|
Tian X, Zheng L, Wang C, Han Y, Li Y, Cui T, Liu J, Liu C, Jia G, Yang L, Hsu Y, Zeng C, Ding L, Wang C, Cheng B, Wang M, Xie R. Selenium-based metabolic oligosaccharide engineering strategy for quantitative glycan detection. Nat Commun 2023; 14:8281. [PMID: 38092825 PMCID: PMC10719347 DOI: 10.1038/s41467-023-44118-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Metabolic oligosaccharide engineering (MOE) is a classical chemical approach to perturb, profile and perceive glycans in physiological systems, but probes upon bioorthogonal reaction require accessibility and the background signal readout makes it challenging to achieve glycan quantification. Here we develop SeMOE, a selenium-based metabolic oligosaccharide engineering strategy that concisely combines elemental analysis and MOE,enabling the mass spectrometric imaging of glycome. We also demonstrate that the new-to-nature SeMOE probes allow for detection, quantitative measurement and visualization of glycans in diverse biological contexts. We also show that chemical reporters on conventional MOE can be integrated into a bifunctional SeMOE probe to provide multimodality signal readouts. SeMOE thus provides a convenient and simplified method to explore the glyco-world.
Collapse
Affiliation(s)
- Xiao Tian
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Changjiang Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yida Han
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yujie Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Tongxiao Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Jialin Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Chuanming Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Guogeng Jia
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Lujie Yang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yi Hsu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Chen Zeng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Chu Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Bo Cheng
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| | - Ran Xie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| |
Collapse
|
47
|
Dufva O, Gandolfi S, Huuhtanen J, Dashevsky O, Duàn H, Saeed K, Klievink J, Nygren P, Bouhlal J, Lahtela J, Näätänen A, Ghimire BR, Hannunen T, Ellonen P, Lähteenmäki H, Rumm P, Theodoropoulos J, Laajala E, Härkönen J, Pölönen P, Heinäniemi M, Hollmén M, Yamano S, Shirasaki R, Barbie DA, Roth JA, Romee R, Sheffer M, Lähdesmäki H, Lee DA, De Matos Simoes R, Kankainen M, Mitsiades CS, Mustjoki S. Single-cell functional genomics reveals determinants of sensitivity and resistance to natural killer cells in blood cancers. Immunity 2023; 56:2816-2835.e13. [PMID: 38091953 DOI: 10.1016/j.immuni.2023.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/19/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Cancer cells can evade natural killer (NK) cell activity, thereby limiting anti-tumor immunity. To reveal genetic determinants of susceptibility to NK cell activity, we examined interacting NK cells and blood cancer cells using single-cell and genome-scale functional genomics screens. Interaction of NK and cancer cells induced distinct activation and type I interferon (IFN) states in both cell types depending on the cancer cell lineage and molecular phenotype, ranging from more sensitive myeloid to less sensitive B-lymphoid cancers. CRISPR screens in cancer cells uncovered genes regulating sensitivity and resistance to NK cell-mediated killing, including adhesion-related glycoproteins, protein fucosylation genes, and transcriptional regulators, in addition to confirming the importance of antigen presentation and death receptor signaling pathways. CRISPR screens with a single-cell transcriptomic readout provided insight into underlying mechanisms, including regulation of IFN-γ signaling in cancer cells and NK cell activation states. Our findings highlight the diversity of mechanisms influencing NK cell susceptibility across different cancers and provide a resource for NK cell-based therapies.
Collapse
Affiliation(s)
- Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Sara Gandolfi
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland; Department of Computer Science, Aalto University, 02150 Espoo, Finland
| | - Olga Dashevsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hanna Duàn
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Khalid Saeed
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Jay Klievink
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Petra Nygren
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Jonas Bouhlal
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Jenni Lahtela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Anna Näätänen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Bishwa R Ghimire
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Tiina Hannunen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Hanna Lähteenmäki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Pauliina Rumm
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Jason Theodoropoulos
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Essi Laajala
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Jouni Härkönen
- Faculty of Health Sciences, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Petri Pölönen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Merja Heinäniemi
- Faculty of Health Sciences, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Maija Hollmén
- Medicity Research Laboratory, University of Turku, 20014 Turku, Finland
| | - Shizuka Yamano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ryosuke Shirasaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michal Sheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University, 02150 Espoo, Finland
| | - Dean A Lee
- Hematology/Oncology/BMT, Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Ricardo De Matos Simoes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Matti Kankainen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland; Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusima (HUS), 00290 Helsinki, Finland
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland.
| |
Collapse
|
48
|
Manabe Y, Fukase K, Hizume K, Takakura Y, Takamatsu S, Miyoshi E, Kamada Y, Hurtado-Guerrero R. Systematic Strategy for the Development of Glycosyltransferase Inhibitors: Diversity-Oriented Synthesis of FUT8 Inhibitors. Synlett 2023. [DOI: 10.1055/a-2221-9096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
AbstractGlycans control various biological processes, depending on their structures. Particularly, core fucose, formed by α1,6-fucosyltransferase (FUT8), has a substantial influence on multiple biological processes. In this study, we investigated the development of FUT8 inhibitors with structural elements encompassing both the glycosyl donor (GDP-fucose) and acceptor (N-glycan) of FUT8. To efficiently optimize the structure of FUT8 inhibitors, we employed a strategy involving fragmentation of the target structure, followed by a structure optimization using a diversity-oriented synthesis approach. This study proposes an efficient strategy to accelerate the structural optimization of middle molecules.
Collapse
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University
- Forefront Research Center, Osaka University
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University
- Forefront Research Center, Osaka University
- Center for Advanced Modalities and DDS, Osaka University
| | - Koki Hizume
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Yohei Takakura
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Graduate School of Medicine, Osaka University
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza
- Fundación ARAID
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen
| |
Collapse
|
49
|
Aguilar Díaz de León JS, Cruz Villarreal J, Kapuruge EP, Borges CR. Glycan node profiling of soluble and membrane glycoproteins in whole cell lysates. Anal Biochem 2023; 680:115317. [PMID: 37699507 DOI: 10.1016/j.ab.2023.115317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/10/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
Glycan node analysis (GNA) is a molecularly bottom-up glycomics technique based on the relative quantification of glycan linkage-specific monosaccharide units ("glycan nodes"). It was originally applied to blood plasma/serum, where it detected and predicted progression, reoccurrence, and survival in different types of cancer. Here, we have adapted this technology to previously inaccessible membrane glycoproteins from cultured cells. The approach is facilitated by methanol/chloroform precipitation of cell lysates and a "liquid phase permethylation" (LPP) procedure. LPP gave better signal-to-noise, yield and precision for most of the glycan nodes from membrane glycoproteins/glycolipids than the conventional solid phase permethylation approach. This GNA approach in cell lysates revealed that specific glycan features such as antennary fucosylation, N-glycan branching, and α2,6-sialylation were elevated in hepatocellular carcinoma (HepG2) cells relative to leukemia cells (THP-1 and K562) and normal donor PBMCs. Additional nodes commonly associated with glycolipids were elevated in the leukemia cells relative to HepG2 cells and PBMCs. Exposure of HepG2 cells to a fucosyltransferase inhibitor resulted in a significant reduction in the relative abundance of 3,4-substituted GlcNAc, which represents antennary fucosylation-providing further proof-of-concept that downregulation of glycosyltransferase activity is detected by shifts in glycan node expression-now detectable in membrane glycoproteins.
Collapse
Affiliation(s)
- Jesús S Aguilar Díaz de León
- School of Molecular Sciences and the Biodesign Institute - Center for Personalized Diagnostics, Arizona State University, P.O. Box 876401, Tempe, AZ, 85287, USA
| | - Jorvani Cruz Villarreal
- School of Molecular Sciences and the Biodesign Institute - Center for Personalized Diagnostics, Arizona State University, P.O. Box 876401, Tempe, AZ, 85287, USA
| | - Erandi P Kapuruge
- School of Molecular Sciences and the Biodesign Institute - Center for Personalized Diagnostics, Arizona State University, P.O. Box 876401, Tempe, AZ, 85287, USA
| | - Chad R Borges
- School of Molecular Sciences and the Biodesign Institute - Center for Personalized Diagnostics, Arizona State University, P.O. Box 876401, Tempe, AZ, 85287, USA.
| |
Collapse
|
50
|
Singla A, Boucher A, Wallom KL, Lebens M, Kohler JJ, Platt FM, Yrlid U. Cholera intoxication of human enteroids reveals interplay between decoy and functional glycoconjugate ligands. Glycobiology 2023; 33:801-816. [PMID: 37622990 PMCID: PMC10629719 DOI: 10.1093/glycob/cwad069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Prior research on cholera toxin (CT) binding and intoxication has relied on human colonic cancer derived epithelial cells. While these transformed cell lines have been beneficial, they neither derive from small intestine where intoxication occurs, nor represent the diversity of small intestinal epithelial cells (SI-ECs) and variation in glycoconjugate expression among individuals. Here, we used human enteroids, derived from jejunal biopsies of multipledonors to study CT binding and intoxication of human non-transformed SI-ECs. We modulated surface expression of glycosphingolipids, glycoproteins and specific glycans to distinguish the role of each glycan/glycoconjugate. Cholera-toxin-subunit-B (CTB) mutants were generated to decipher the preference of each glycoconjugate to different binding sites and the correlation between CT binding and intoxication. Human enteroids contain trace amounts of GM1, but other glycosphingolipids may be contributing to CT intoxication. We discovered that inhibition of either fucosylation or O-glycosylation sensitize enteroids to CT-intoxication. This can either be a consequence of the removal of fucosylated "decoy-like-ligands" binding to CTB's non-canonical site and/or increase in the availability of Gal/GalNAc-terminating glycoconjugates binding to the canonical site. Furthermore, simultaneous inhibition of fucosylation and O-glycosylation increased the availability of additional Gal/GalNAc-terminating glycoconjugates but counteracted the sensitization in CT intoxication caused by inhibiting O-glycosylation because of reduction in fucose. This implies a dual role of fucose as a functional glycan and a decoy, the interplay of which influences CT binding and intoxication. Finally, while the results were similar for enteroids from different donors, they were not identical, pointing to a role for human genetic variation in determining sensitivity to CT.
Collapse
Affiliation(s)
- Akshi Singla
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
| | - Andrew Boucher
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
| | - Kerri-Lee Wallom
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Michael Lebens
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9185, United States
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
| |
Collapse
|