1
|
Holthaus KB, Steinbinder J, Sachslehner AP, Eckhart L. Skin Appendage Proteins of Tetrapods: Building Blocks of Claws, Feathers, Hair and Other Cornified Epithelial Structures. Animals (Basel) 2025; 15:457. [PMID: 39943227 PMCID: PMC11816140 DOI: 10.3390/ani15030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Reptiles, birds, mammals and amphibians, together forming the clade tetrapods, have a large diversity of cornified skin appendages, such as scales, feathers, hair and claws. The skin appendages consist of dead epithelial cells that are tightly packed with specific structural proteins. Here, we review the molecular diversity and expression patterns of major types of skin appendage proteins, namely keratin intermediate filament proteins, keratin-associated proteins (KRTAPs) and proteins encoded by genes of the epidermal differentiation complex (EDC), including corneous beta-proteins, also known as beta-keratins. We summarize the current knowledge about the components of skin appendages with a focus on keratins and EDC proteins that have recently been identified in reptiles and birds. We discuss gaps of knowledge and suggest directions of future research.
Collapse
Affiliation(s)
| | | | | | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.H.)
| |
Collapse
|
2
|
Holthaus KB, Steinbinder J, Sachslehner AP, Eckhart L. Convergent Evolution Has Led to the Loss of Claw Proteins in Snakes and Worm Lizards. Genome Biol Evol 2025; 17:evae274. [PMID: 39696999 PMCID: PMC11704414 DOI: 10.1093/gbe/evae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024] Open
Abstract
The evolution of cornified skin appendages, such as hair, feathers, and claws, is closely linked to the evolution of proteins that establish the unique mechanical stability of these epithelial structures. We hypothesized that the evolution of the limbless body anatomy of the Florida worm lizard (Rhineura floridana) and the concomitant loss of claws had led to the degeneration of genes with claw-associated functions. To test this hypothesis, we investigated the evolution of three gene families implicated in epithelial cell architecture, namely type I keratins, type II keratins, and genes of the epidermal differentiation complex in R. floridana in comparison with other squamates. We report that the orthologs of mammalian hair and nail keratins have undergone pseudogenization in R. floridana. Likewise, the epidermal differentiation complex genes tentatively named EDYM1 and EDCCs have been lost in R. floridana. The aforementioned genes are conserved in various lizards with claws, but not in snakes. Proteomic analysis of the cornified claws of the bearded dragon (Pogona vitticeps) confirmed that type I and type II hair keratin homologs, EDYM1 and EDCCs, are protein components of claws in squamates. We conclude that the convergent evolution of a limbless body was associated with the convergent loss of claw keratins and differentiation genes in squamates.
Collapse
Affiliation(s)
| | - Julia Steinbinder
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | | | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
3
|
Zhang R, Xiang N, Gao X, Zhang G, Lu T, Yuan T. Molecular Phylogenetic Relationships Based on Mitogenomes of Spider: Insights Into Evolution and Adaptation to Extreme Environments. Ecol Evol 2025; 15:e70774. [PMID: 39781249 PMCID: PMC11707259 DOI: 10.1002/ece3.70774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/18/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
In this study, we performed a comparative analysis based on a total of 255 spider mitogenomes and four outgroups, of which the mitogenomes of 39 species were assembled de novo, to explore the phylogenetic relationships and the adaptive evolution of mitogenomes. Results showed that Argyroneta aquatica had the longest mitochondrial length and the most pronounced codon preference to be UUA, followed by CCU. Codon usage frequencies were similar between families and codon usage in the mitogenome of spiders was mainly influenced by natural selection pressures rather than G/C mutation bias. Our phylogenetic topology clearly explained the evolutionary relationships among the spiders, and divergence time estimates indicated that the spiders originated in the early Devonian, and that the two clades of Mesothelae and Opisthothelae separated in the late Carboniferous. Ancestral range and trait reconstruction results supported the ancestral origin of spiders to the Devonian Nearctic realm, with the trapdoor being the original trait. Selection analysis detected positive selection signals in the ATP8 gene in Desis jiaxiangi. The ND5 gene is a convergent evolutionary gene between D. jiaxiangi and A. aquatica. Positive selection signals in the ATP8 gene and convergent selection sites in the ND5 gene may facilitate metabolic adaptation to the aquatic environment in two aquatic spiders. In conclusion, our analysis contributes to a better understanding of the taxonomic status, species diversity, mitochondrial characteristics, and environmental adaptations of these spiders.
Collapse
Affiliation(s)
- Rongxiang Zhang
- School of Biological ScienceGuizhou Education UniversityGuiyangChina
| | - Niyan Xiang
- School of Ecology and EnvironmentTibet UneiversityLhasaChina
- School of Resources and Environmental ScienceHubei UniversityWuhanChina
| | - Xiaoman Gao
- School of Ecology and EnvironmentTibet UneiversityLhasaChina
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Guiyu Zhang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Tian Lu
- School of Municipal and Environmental EngineeringShandong Jianzhu UniversityJinanChina
| | - Tao Yuan
- School of Ecology and EnvironmentTibet UneiversityLhasaChina
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
4
|
Fattepur G, Patil AY, Kumar P, Kumar A, Hegde C, Siddhalingeshwar IG, Kumar R, Khan TMY. Bio-inspired designs: leveraging biological brilliance in mechanical engineering-an overview. 3 Biotech 2024; 14:312. [PMID: 39606010 PMCID: PMC11589069 DOI: 10.1007/s13205-024-04153-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Nature's evolutionary mastery has perfected design over the years, yielding organisms superbly adapted to their surroundings. This research delves into the promising domain of bio-inspired designs, poised to revolutionize mechanical engineering. Leveraging insights drawn from prior conversations, we categorize innovations influenced by life on land, in water, and through the air, emphasizing their pivotal contributions to mechanical properties. Our comprehensive review reveals a wealth of bio-inspired designs that have already made substantial inroads in mechanical engineering. From avian-inspired lightweight yet robust materials to hydrodynamically optimized forms borrowed from marine creatures, these innovations hold immense potential for enhancing mechanical systems. In conclusion, this study underscores the transformative potential of bio-inspired designs, offering improved mechanical characteristics and the promise of sustainability and efficiency across a broad spectrum of applications. This research envisions a future where bio-inspired designs shape the mechanical landscape, fostering a more harmonious coexistence between human technology and the natural world.
Collapse
Affiliation(s)
- Gururaj Fattepur
- School of Mechanical Engineering, KLE Technological University, Hubli, Karnataka 580031 India
| | - Arun Y. Patil
- Bio-Inspired Design and Optimization Centre (BIODOC), Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
- Department of Mechanical Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Piyush Kumar
- Department of Mechanical Engineering, Faculty of Engineering and Technology, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069 India
- Department of Mechanical Engineering, Vivekananda Global University, Jaipur, Rajasthan 303012 India
| | - Anil Kumar
- School of Engineering and Technology, Shobhit University, Gangoh, Uttar Pradesh 247341 India
- Department of Mechanical Engineering, Arka Jain University, Jamshedpur, Jharkhand 831001 India
| | - Chandrashekhar Hegde
- School of Mechanical Engineering, KLE Technological University, Hubli, Karnataka 580031 India
| | - I. G. Siddhalingeshwar
- School of Mechanical Engineering, KLE Technological University, Hubli, Karnataka 580031 India
| | - Raman Kumar
- University School of Mechanical Engineering, Rayat Bahra University, Kharar, Punjab 140103 India
- Faculty of Engineering, Sohar University, PO Box 44, Sohar, PCI 311 Oman
| | - T. M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, 61421 Abha, Saudi Arabia
| |
Collapse
|
5
|
Wu Z, Cai Y, Han Y, Su Y, Zhang T, Wang X, Yan A, Wang L, Wu S, Wang G, Zhang Z. Development of α-Helical Antimicrobial Peptides with Imperfect Amphipathicity for Superior Activity and Selectivity. J Med Chem 2024; 67:19561-19572. [PMID: 39484706 DOI: 10.1021/acs.jmedchem.4c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The advancement of antimicrobial peptides (AMPs) as therapeutic agents is hindered by their poor selectivity. Recent evidence indicates that controlled disruption of the amphipathicity of α-helical AMPs may increase the selectivity. This study investigated the role of imperfect amphipathicity in optimizing AMPs with varied sequences to enhance their activity and selectivity. Among these, the lead peptide RI-18, characterized by an imperfectly amphipathic α-helical structure, demonstrated potent and broad-spectrum antibacterial activity without inducing hemolytic or cytotoxic effects. RI-18 effectively eliminated planktonic and biofilm-associated bacteria as well as persister cells and exhibited high bacterial plasma membrane affinity, inducing rapid membrane permeabilization and rupture. Notably, RI-18 significantly reduced bacterial loads without promoting bacterial resistance, highlighting its therapeutic potential. Overall, this study identified RI-18 as a promising antimicrobial candidate. The rational strategy of tuning imperfect amphipathicity to enhance the AMP activity and selectivity may facilitate the design and development of AMPs.
Collapse
Affiliation(s)
- Zhongxiang Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Ying Cai
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Yajun Han
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yunhan Su
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Tianyu Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Xingyu Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - An Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Liunan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Sijing Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Gan Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Zhiye Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| |
Collapse
|
6
|
Gumangan MA, Pan Z, Lozito TP. Chromosome-level genome assembly and annotation of the crested gecko, Correlophus ciliatus, a lizard incapable of tail regeneration. GIGABYTE 2024; 2024:gigabyte140. [PMID: 39539519 PMCID: PMC11558660 DOI: 10.46471/gigabyte.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The vast majority of gecko species are capable of tail regeneration, but singular geckos of Correlophus, Uroplatus, and Nephrurus genera are unable to regrow lost tails. Of these non-regenerative geckos, the crested gecko (Correlophus ciliatus) is distinguished by ready availability, ease of care, high productivity, and hybridization potential. These features make C. ciliatus particularly suited as a model for studying the genetic, molecular, and cellular mechanisms underlying loss of tail regeneration capabilities. We report a contiguous genome of C. ciliatus with a total size of 1.65 Gb, 152 scaffolds, L50 of 6, and N50 of 109 Mb. Repetitive content consists of 40.41% of the genome, and a total of 30,780 genes were annotated. Our assembly of the crested gecko genome provides a valuable resource for future comparative genomic studies between non-regenerative and regenerative geckos and other squamate reptiles. Findings We report genome sequencing, assembly, and annotation for the crested gecko, Correlophus ciliatus.
Collapse
Affiliation(s)
- Marc A. Gumangan
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA 90089, USA
| | - Zheyu Pan
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA 90089, USA
| | - Thomas P. Lozito
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA 90033, USA
| |
Collapse
|
7
|
Fan H, Chai Z, Yang X, Liu A, Sun H, Wu Z, Li Q, Ma C, Zhou R. Chromosome-scale genome assembly of Astragalus membranaceus using PacBio and Hi-C technologies. Sci Data 2024; 11:1071. [PMID: 39358417 PMCID: PMC11446949 DOI: 10.1038/s41597-024-03852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Astragalus membranaceus (Fisch.) Bge (AM) is a medicinal herb plant belonging to the Leguminosae family. In this study, we present a chromosome-scale genome assembly of AM, aiming to enhance the molecular biology and functional studies of Astragali Radix. The genome size of AM is about 1.43 Gb, with a contig N50 value of 1.67 Mb. A total of 98.16% of the assembly anchored to 9 pseudochromosomes using Hi-C technology. The assembly completeness was estimated to be 97.27% using BUSCO with the long terminal repeat assembly index (LAI) of 16.22 and quality value (QV) of 48.58. Additionally, the genome contained 67.98% repetitive sequences. Genome annotation predicted 29,914 protein-coding genes, including 73 genes involved in the flavonoid biosynthetic pathway and 2,048 transcription factors. The high-quality genome assembly and gene annotation resources will greatly facilitate future functional genomic studies in Leguminosae species.
Collapse
Affiliation(s)
- Huijie Fan
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| | - Zhi Chai
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| | | | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi, 046011, China
| | - Haifeng Sun
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | | | - Qingshan Li
- School of Chinese Materia Medica, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
- School of Pharmaceutical Science, shanxi medical university, Taiyuan, 030001, China.
| | - Cungen Ma
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| | - Ran Zhou
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| |
Collapse
|
8
|
Li Z, Li M, Huang S, Yu J, Liu M, Liu Y, Xu M. The expression pattern of Wnt6, Wnt10A, and HOXA13 during regenerating tails of Gekko Japonicus. Gene Expr Patterns 2024; 53:119374. [PMID: 39128795 DOI: 10.1016/j.gep.2024.119374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/28/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Wnt signal is crucial to correctly regenerate tissues along the original axis in many animals. Lizards are able to regenerate their tails spontaneously, while the anterior-posterior axis information required for the successful regeneration is still elusive. In this study, we investigated the expression pattern of Wnt ligands and HOX genes during regeneration. The results of in situ hybridization revealed that Wnt6 and Wnt10A mRNA levels are higher in wound epithelium (WE) than that in blastema during regeneration. In addition, we showed that Wnt agonist positively regulated the expression of HOXA13 in cultured blastema cells, while did not show similar effect on that of HOXB13, HOXC13 and HOXD13. Finally, we found that HOXA13 showed a gradient level along the anterior-posterior axis of regenerated blastema, with higher level at the caudal end. These data proposed that Wnt6, Wnt10A and HOXA13 might play an important role in establishing distal position for regeneration.
Collapse
Affiliation(s)
- Zhen Li
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Mingxuan Li
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Shuai Huang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Jing Yu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
9
|
Burriel-Carranza B, Mochales-Riaño G, Talavera A, Els J, Estarellas M, Al Saadi S, Urriago Suarez JD, Olsson PO, Matschiner M, Carranza S. Clinging on the brink: Whole genomes reveal human-induced population declines and severe inbreeding in the Critically Endangered Emirati Leaf-toed Gecko (Asaccus caudivolvulus). Mol Ecol 2024; 33:e17451. [PMID: 38970417 DOI: 10.1111/mec.17451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024]
Abstract
Human-mediated habitat destruction has had a profound impact on increased species extinction rates and population declines worldwide. The coastal development in the United Arab Emirates (UAE) over the last two decades, serves as an example of how habitat transformation can alter the landscape of a country in just a few years. Here, we study the genomic implications of habitat transformation in the Critically Endangered Emirati Leaf-toed Gecko (Asaccus caudivolvulus), the only endemic vertebrate of the UAE. We generate a high-quality reference genome for this gecko, representing the first reference genome for the family Phyllodactylidae, and produce whole-genome resequencing data for 23 specimens from 10 different species of leaf-toed geckos. Our results show that A. caudivolvulus has consistently lower genetic diversity than any other Arabian species of Asaccus, suggesting a history of ancient population declines. However, high levels of recent inbreeding are recorded among populations in heavily developed areas, with a more than 50% increase in long runs of homozygosity within a 9-year period. Moreover, results suggest that this species does not effectively purge deleterious mutations, hence making it more vulnerable to future stochastic threats. Overall, results show that A. caudivolvulus is in urgent need of protection, and habitat preservation must be warranted to ensure the species' survival.
Collapse
Affiliation(s)
- Bernat Burriel-Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Museu de Ciències Naturals de Barcelona, Barcelona, Spain
| | | | - Adrián Talavera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Johannes Els
- Breeding Centre for Endangered Arabian Wildlife, Environment and Protected Areas Authority, Sharjah, United Arab Emirates
| | - Maria Estarellas
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | | | | | | | | | - Salvador Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
10
|
Nagashima A, Torii K, Ota C, Kato A. slc26a12-A novel member of the slc26 family, is located in tandem with slc26a2 in coelacanths, amphibians, reptiles, and birds. Physiol Rep 2024; 12:e16089. [PMID: 38828713 PMCID: PMC11145369 DOI: 10.14814/phy2.16089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Solute carrier family 26 (Slc26) is a family of anion exchangers with 11 members in mammals (named Slc26a1-a11). Here, we identified a novel member of the slc26 family, slc26a12, located in tandem with slc26a2 in the genomes of several vertebrate lineages. BLAST and synteny analyses of various jawed vertebrate genome databases revealed that slc26a12 is present in coelacanths, amphibians, reptiles, and birds but not in cartilaginous fishes, lungfish, mammals, or ray-finned fishes. In some avian and reptilian lineages such as owls, penguins, egrets, and ducks, and most turtles examined, slc26a12 was lost or pseudogenized. Phylogenetic analysis showed that Slc26a12 formed an independent branch with the other Slc26 members and Slc26a12, Slc26a1 and Slc26a2 formed a single branch, suggesting that these three members formed a subfamily in Slc26. In jawless fish, hagfish have two genes homologous to slc26a2 and slc26a12, whereas lamprey has a single gene homologous to slc26a2. African clawed frogs express slc26a12 in larval gills, skin, and fins. These results show that slc26a12 was present at least before the separation of lobe-finned fish and tetrapods; the name slc26a12 is appropriate because the gene duplication occurred in the distant past.
Collapse
Affiliation(s)
- Ayumi Nagashima
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Kota Torii
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Chihiro Ota
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Akira Kato
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
11
|
Xia L, Li C, Chen S, Lyu L, Xie W, Yan J, Zhou K, Li P. Spatio-temporal expression patterns of glycine-rich beta proteins and cysteine-rich beta proteins in setae development of Gekko japonicus. BMC Genomics 2024; 25:535. [PMID: 38816837 PMCID: PMC11140998 DOI: 10.1186/s12864-024-10426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Setae on the pad lamellae of the Japanese gecko Gekko japonicus (Schlegel, 1836), a vital epidermal derivative, are primarily composed of cornified beta-proteins (CBPs) and play a pivotal role in adhesion and climbing. The amino acid composition of CBPs might be a determining factor influencing their functional properties. However, the molecular mechanisms governed by CBP genes with diverse amino acid compositions in setae development remain unexplored. RESULTS Based on RNA-seq analyses, this study confirmed that all G. japonicus CBPs (GjCBPs) are involved in setae formation. Cysteine-rich CBPs encoding genes (ge-cprp-17 to ge-cprp-26) and glycine-rich CBPs encoding genes (ge-gprp-17 to ge-gprp-22) were haphazardly selected, with quantitative real-time PCR revealing their expression patterns in embryonic pad lamellae and dorsal epidermis. It is inferred that glycine-rich CBPs are integral to the formation of both dorsal scales and lamellar setae, cysteine-rich CBPs are primarily associated with setae development. Additionally, fluorescence in situ hybridization revealed spatiotemporal differences in the expression of a glycine-rich CBP encoding gene (ge-gprp-19) and a cysteine-rich CBP encoding gene (ge-cprp-17) during dorsal scales and/or lamellar development. CONCLUSIONS All 66 CBPs are involved in the formation of setae. Glycine-rich CBPs hold a significant role in the development of dorsal scales and lamellar setae, whereas most cysteine-rich CBPs appear to be essential components of G. japonicus setae. Even GjCBPs with similar amino acid compositions may play diverse functions. The clear spatio-temporal expression differences between the glycine-rich and cysteine-rich CBP encoding genes during epidermal scale and/or setae formation were observed. Embryonic developmental stages 39 to 42 emerged as crucial phases for setae development. These findings lay the groundwork for deeper investigation into the function of GjCBPs in the development of G. japonicus setae.
Collapse
Affiliation(s)
- Longjie Xia
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Chao Li
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Shengnan Chen
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Linna Lyu
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Wenli Xie
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Jie Yan
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Kaiya Zhou
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Peng Li
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China.
| |
Collapse
|
12
|
Liang Z, Yue X, Liu Y, Ye M, Zhong L, Luan Y, Wang Q. Genome-Wide Identification of Specific Genetic Loci Common to Sheep and Goat. Biomolecules 2024; 14:638. [PMID: 38927042 PMCID: PMC11201639 DOI: 10.3390/biom14060638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024] Open
Abstract
Sheep and goat may become carriers of some zoonotic diseases. They are important livestock and experimental model animals for human beings. The fast and accurate identification of genetic materials originating from sheep and goat can prevent and inhibit the spread of some zoonotic diseases, monitor market product quality, and maintain the stability of animal husbandry and food industries. This study proposed a methodology for identifying sheep and goat common specific sites from a genome-wide perspective. A total of 150 specific sites were selected from three data sources, including the coding sequences of single copy genes from nine species (sheep, goat, cow, pig, dog, horse, human, mouse, and chicken), the dbSNPs for these species, and human 100-way alignment data. These 150 sites exhibited low intraspecific heterogeneity in the resequencing data of 1450 samples from five species (sheep, goat, cow, pig, and chicken) and high interspecific divergence in the human 100-way alignment data after quality control. The results were proven to be reliable at the data level. Using the process proposed in this study, specific sites of other species can be screened, and genome-level species identification can be performed using the screened sites.
Collapse
Affiliation(s)
- Zuoxiang Liang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (X.Y.); (Y.L.); (M.Y.); (L.Z.); (Y.L.)
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Xiaoyu Yue
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (X.Y.); (Y.L.); (M.Y.); (L.Z.); (Y.L.)
| | - Yangxiu Liu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (X.Y.); (Y.L.); (M.Y.); (L.Z.); (Y.L.)
| | - Mengyan Ye
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (X.Y.); (Y.L.); (M.Y.); (L.Z.); (Y.L.)
| | - Ling Zhong
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (X.Y.); (Y.L.); (M.Y.); (L.Z.); (Y.L.)
| | - Yue Luan
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (X.Y.); (Y.L.); (M.Y.); (L.Z.); (Y.L.)
| | - Qin Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (X.Y.); (Y.L.); (M.Y.); (L.Z.); (Y.L.)
| |
Collapse
|
13
|
Kato A, Pipil S, Ota C, Kusakabe M, Watanabe T, Nagashima A, Chen AP, Islam Z, Hayashi N, Wong MKS, Komada M, Romero MF, Takei Y. Convergent gene losses and pseudogenizations in multiple lineages of stomachless fishes. Commun Biol 2024; 7:408. [PMID: 38570609 PMCID: PMC10991444 DOI: 10.1038/s42003-024-06103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
The regressive evolution of independent lineages often results in convergent phenotypes. Several teleost groups display secondary loss of the stomach, and four gastric genes, atp4a, atp4b, pgc, and pga2 have been co-deleted in agastric (stomachless) fish. Analyses of genotypic convergence among agastric fishes showed that four genes, slc26a9, kcne2, cldn18a, and vsig1, were co-deleted or pseudogenized in most agastric fishes of the four major groups. kcne2 and vsig1 were also deleted or pseudogenized in the agastric monotreme echidna and platypus, respectively. In the stomachs of sticklebacks, these genes are expressed in gastric gland cells or surface epithelial cells. An ohnolog of cldn18 was retained in some agastric teleosts but exhibited an increased non-synonymous substitution when compared with gastric species. These results revealed novel convergent gene losses at multiple loci among the four major groups of agastric fish, as well as a single gene loss in the echidna and platypus.
Collapse
Affiliation(s)
- Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan.
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan.
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, Rochester, MN, USA.
| | - Supriya Pipil
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Chihiro Ota
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Makoto Kusakabe
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
- Department of Biological Sciences, Faculty of Science, Shizuoka University, Shizuoka, Japan
| | - Taro Watanabe
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Ayumi Nagashima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - An-Ping Chen
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, Rochester, MN, USA
| | - Zinia Islam
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Naoko Hayashi
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Marty Kwok-Shing Wong
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
- Department of Biomolecular Science, Toho University, Funabashi, Japan
| | - Masayuki Komada
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Michael F Romero
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, Rochester, MN, USA
- Department of Nephrology & Hypertension, Mayo Clinic College of Medicine & Science, Rochester, MN, USA
| | - Yoshio Takei
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
14
|
Kojima K, Yanagawa M, Imamoto Y, Yamano Y, Wada A, Shichida Y, Yamashita T. Convergent mechanism underlying the acquisition of vertebrate scotopic vision. J Biol Chem 2024; 300:107175. [PMID: 38499150 PMCID: PMC11007431 DOI: 10.1016/j.jbc.2024.107175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
High sensitivity of scotopic vision (vision in dim light conditions) is achieved by the rods' low background noise, which is attributed to a much lower thermal activation rate (kth) of rhodopsin compared with cone pigments. Frogs and nocturnal geckos uniquely possess atypical rods containing noncanonical cone pigments that exhibit low kth, mimicking rhodopsin. Here, we investigated the convergent mechanism underlying the low kth of rhodopsins and noncanonical cone pigments. Our biochemical analysis revealed that the kth of canonical cone pigments depends on their absorption maximum (λmax). However, rhodopsin and noncanonical cone pigments showed a substantially lower kth than predicted from the λmax dependency. Given that the λmax is inversely proportional to the activation energy of the pigments in the Hinshelwood distribution-based model, our findings suggest that rhodopsin and noncanonical cone pigments have convergently acquired low frequency of spontaneous-activation attempts, including thermal fluctuations of the protein moiety, in the molecular evolutionary processes from canonical cone pigments, which contributes to highly sensitive scotopic vision.
Collapse
Affiliation(s)
- Keiichi Kojima
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan; Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan; Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yasushi Imamoto
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yumiko Yamano
- Comprehensive Education and Research Center, Kobe Pharmaceutical University, Kobe, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan; Research Organization for Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
15
|
Yurchenko A, Pšenička T, Mora P, Ortega JAM, Baca AS, Rovatsos M. Cytogenetic Analysis of Satellitome of Madagascar Leaf-Tailed Geckos. Genes (Basel) 2024; 15:429. [PMID: 38674364 PMCID: PMC11049218 DOI: 10.3390/genes15040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Satellite DNA (satDNA) consists of sequences of DNA that form tandem repetitions across the genome, and it is notorious for its diversity and fast evolutionary rate. Despite its importance, satDNA has been only sporadically studied in reptile lineages. Here, we sequenced genomic DNA and PCR-amplified microdissected W chromosomes on the Illumina platform in order to characterize the monomers of satDNA from the Henkel's leaf-tailed gecko U. henkeli and to compare their topology by in situ hybridization in the karyotypes of the closely related Günther's flat-tail gecko U. guentheri and gold dust day gecko P. laticauda. We identified seventeen different satDNAs; twelve of them seem to accumulate in centromeres, telomeres and/or the W chromosome. Notably, centromeric and telomeric regions seem to share similar types of satDNAs, and we found two that seem to accumulate at both edges of all chromosomes in all three species. We speculate that the long-term stability of all-acrocentric karyotypes in geckos might be explained from the presence of specific satDNAs at the centromeric regions that are strong meiotic drivers, a hypothesis that should be further tested.
Collapse
Affiliation(s)
- Alona Yurchenko
- Department of Ecology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; (A.Y.); (T.P.)
| | - Tomáš Pšenička
- Department of Ecology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; (A.Y.); (T.P.)
| | - Pablo Mora
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas s/n, E-23071 Jaen, Spain; (P.M.); (J.A.M.O.); (A.S.B.)
| | - Juan Alberto Marchal Ortega
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas s/n, E-23071 Jaen, Spain; (P.M.); (J.A.M.O.); (A.S.B.)
| | - Antonio Sánchez Baca
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas s/n, E-23071 Jaen, Spain; (P.M.); (J.A.M.O.); (A.S.B.)
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; (A.Y.); (T.P.)
| |
Collapse
|
16
|
Wang Y, Yue Y, Li C, Chen Z, Cai Y, Hu C, Qu Y, Li H, Zhou K, Yan J, Li P. Insights into the adaptive evolution of chromosome and essential traits through chromosome-level genome assembly of Gekko japonicus. iScience 2024; 27:108445. [PMID: 38205241 PMCID: PMC10776941 DOI: 10.1016/j.isci.2023.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/05/2023] [Accepted: 11/09/2023] [Indexed: 01/12/2024] Open
Abstract
Gekko japonicus possesses flexible climbing and detoxification abilities under insectivorous habits. Still, the evolutionary mechanisms behind these traits remain unclarified. This study presents a chromosome-level G. japonicus genome, revealing that its evolutionary breakpoint regions were enriched with specific repetitive elements and defense response genes. Gene families unique to G. japonicus and positively selected genes are mainly enriched in immune, sensory, and nervous pathways. Expansion of bitter taste receptor type 2 primarily in insectivorous species could be associated with toxin clearance. Detox cytochrome P450 in G. japonicus has undergone more birth and death processes than biosynthesis-type P450 genes. Proline, cysteine, glycine, and serine in corneous beta proteins of G. japonicus might influence flexibility and setae adhesiveness. Certain thermosensitive transient receptor potential channels under relaxed purifying selection or positive selection in G. japonicus might enhance adaptation to climate change. This genome assembly offers insights into the adaptive evolution of gekkotans.
Collapse
Affiliation(s)
- Yinwei Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Youxia Yue
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Chao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Zhiyi Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Yao Cai
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, P.R. China
| | - Chaochao Hu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
- Analytical and Testing Center, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Yanfu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Kaiya Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Jie Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
17
|
Holthaus KB, Eckhart L. Development-Associated Genes of the Epidermal Differentiation Complex (EDC). J Dev Biol 2024; 12:4. [PMID: 38248869 PMCID: PMC10801484 DOI: 10.3390/jdb12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The epidermal differentiation complex (EDC) is a cluster of genes that encode protein components of the outermost layers of the epidermis in mammals, reptiles and birds. The development of the stratified epidermis from a single-layered ectoderm involves an embryo-specific superficial cell layer, the periderm. An additional layer, the subperiderm, develops in crocodilians and over scutate scales of birds. Here, we review the expression of EDC genes during embryonic development. Several EDC genes are expressed predominantly or exclusively in embryo-specific cell layers, whereas others are confined to the epidermal layers that are maintained in postnatal skin. The S100 fused-type proteins scaffoldin and trichohyalin are expressed in the avian and mammalian periderm, respectively. Scaffoldin forms the so-called periderm granules, which are histological markers of the periderm in birds. Epidermal differentiation cysteine-rich protein (EDCRP) and epidermal differentiation protein containing DPCC motifs (EDDM) are expressed in the avian subperiderm where they are supposed to undergo cross-linking via disulfide bonds. Furthermore, a histidine-rich epidermal differentiation protein and feather-type corneous beta-proteins, also known as beta-keratins, are expressed in the subperiderm. The accumulating evidence for roles of EDC genes in the development of the epidermis has implications on the evolutionary diversification of the skin in amniotes.
Collapse
Affiliation(s)
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
18
|
Liu Q, Zhao RM, Wang DY, Li P, Qu YF, Ji X. Genome-wide characterization of the TGF-β gene family and their expression in different tissues during tail regeneration in the Schlegel's Japanese gecko Gekko japonicus. Int J Biol Macromol 2024; 255:128127. [PMID: 37984573 DOI: 10.1016/j.ijbiomac.2023.128127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
The transforming growth factor-β (TGF-β) gene family is unique to animals and is involved in various important processes including tissue regeneration. Here, we identified 52 TGF-β family genes based on genome sequences of the gecko (Gekko japonicus), compared TGF-β genes between G. japonicus and other four reptilian species, and evaluated the expression of 14 randomly selected genes in muscle, kidney, liver, heart, and brain during tail regeneration to investigate whether their expression was tissue-dependent. We detected 23 conserved domains, 13 in the TGF-β ligand subfamily, and 10 in the receptor subfamily. The pattern of higher genetic variation in the ligand subfamily than in the receptor subfamily in vertebrates might result from the precise localization of agonists and antagonists in the cell surface and intracellular compartment. TGF-β genes were unevenly distributed across 15 chromosomes in G. japonicus, presumably resulting from gene losses and gains during evolution. Genes in the TGF-β receptor subfamily (ACVR2A, ACVR2B, ACVR1, BMPR1A, ACVRL1, BMPR2 and TGFBR1) played a vital role in the TGF-β signal pathway. The expression of all 14 randomly selected TGF-β genes was tissue-specific. Our study supports the speculation that some TGF-β family genes are involved in the early stages of tail regeneration.
Collapse
Affiliation(s)
- Qian Liu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ru-Meng Zhao
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Dan-Yan Wang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Peng Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yan-Fu Qu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xiang Ji
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
19
|
Xu C, Hutchins ED, Eckalbar W, Pendarvis K, Benson DM, Lake DF, McCarthy FM, Kusumi K. Comparative proteomic analysis of tail regeneration in the green anole lizard, Anolis carolinensis. NATURAL SCIENCES (WEINHEIM, GERMANY) 2024; 4:e20210421. [PMID: 38505006 PMCID: PMC10947082 DOI: 10.1002/ntls.20210421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
As amniote vertebrates, lizards are the most closely related organisms to humans capable of appendage regeneration. Lizards can autotomize, or release their tails as a means of predator evasion, and subsequently regenerate a functional replacement. Green anoles (Anolis carolinensis) can regenerate their tails through a process that involves differential expression of hundreds of genes, which has previously been analyzed by transcriptomic and microRNA analysis. To investigate protein expression in regenerating tissue, we performed whole proteomic analysis of regenerating tail tip and base. This is the first proteomic data set available for any anole lizard. We identified a total of 2,646 proteins - 976 proteins only in the regenerating tail base, 796 only in the tail tip, and 874 in both tip and base. For over 90% of these proteins in these tissues, we were able to assign a clear orthology to gene models in either the Ensembl or NCBI databases. For 13 proteins in the tail base, 9 proteins in the tail tip, and 10 proteins in both regions, the gene model in Ensembl and NCBI matched an uncharacterized protein, confirming that these predictions are present in the proteome. Ontology and pathways analysis of proteins expressed in the regenerating tail base identified categories including actin filament-based process, ncRNA metabolism, regulation of phosphatase activity, small GTPase mediated signal transduction, and cellular component organization or biogenesis. Analysis of proteins expressed in the tail tip identified categories including regulation of organelle organization, regulation of protein localization, ubiquitin-dependent protein catabolism, small GTPase mediated signal transduction, morphogenesis of epithelium, and regulation of biological quality. These proteomic findings confirm pathways and gene families activated in tail regeneration in the green anole as well as identify uncharacterized proteins whose role in regrowth remains to be revealed. This study demonstrates the insights that are possible from the integration of proteomic and transcriptomic data in tail regrowth in the green anole, with potentially broader application to studies in other regenerative models.
Collapse
Affiliation(s)
- Cindy Xu
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Elizabeth D. Hutchins
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Current addresses: Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Walter Eckalbar
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Current addresses: School of Medicine, University of California, San Francisco, California, USA
| | - Ken Pendarvis
- Department of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Derek M. Benson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Douglas F. Lake
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Fiona M. McCarthy
- Department of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
20
|
Alibardi L. Scales of non-avian reptiles and their derivatives contain corneous beta proteins coded from genes localized in the Epidermal Differentiation Complex. Tissue Cell 2023; 85:102228. [PMID: 37793208 DOI: 10.1016/j.tice.2023.102228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
The evolution of modern reptiles from basic reptilian ancestors gave rise to scaled vertebrates. Scales are of different types, and their corneous layer can shed frequently during the year in lepidosaurians (lizards, snakes), 1-2 times per year in the tuatara and in some freshwater turtle, irregularly in different parts of the body in crocodilians, or simply wore superficially in marine and terrestrial turtles. Lepidosaurians possess tuberculate, non-overlapped or variably overlapped scales with inter-scale (hinge) regions. The latter are hidden underneath the outer scale surface or may be more exposed in specific body areas. Hinge regions allow stretching during growth and movement so that the skin remains mechanically functional. Crocodilian and turtles feature flat and shield scales (scutes) with narrow inter-scale regions for stretching and growth. The epidermis of non-avian reptilian hinge regions is much thinner than the exposed outer surface of scales and is less cornified. Despite the thickness of the epidermis, scales are mainly composed of variably amount of Corneous Beta Proteins (CBPs) that are coded in a gene cluster known as EDC (Epidermal Differentiation Complex). These are small proteins, 100-200 amino acid long of 8-25 kDa, rich in glycine and cysteine but also in serine, proline and valine that participate to the formation of beta-sheets in the internal part of the protein, the beta-region. This region determines the further polymerization of CBPs in filamentous proteins that, together a network of Intermediate Filament Keratins (IFKs) and other minor epidermal proteins from the EDC make the variable pliable or inflexible corneous material of reptilian scales, claws and of turtle beak. The acquisition of scales and skin derivatives with different mechanical and material properties, mainly due to the evolution of reptile CBPs, is essential for the life and different adaptations of these vertebrates.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Italy; Department of Biology, University of Bologna, Bologna, Italy.
| |
Collapse
|
21
|
Kim J, Kim S, Lee SY, Jo BK, Oh JY, Kwon EJ, Kim KT, Adpaikar AA, Kim EJ, Jung HS, Kim HR, Roe JS, Hong CP, Kim JK, Koo BK, Cha HJ. Partial in vivo reprogramming enables injury-free intestinal regeneration via autonomous Ptgs1 induction. SCIENCE ADVANCES 2023; 9:eadi8454. [PMID: 38000027 PMCID: PMC10672161 DOI: 10.1126/sciadv.adi8454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
Tissue regeneration after injury involves the dedifferentiation of somatic cells, a natural adaptive reprogramming that leads to the emergence of injury-responsive cells with fetal-like characteristics. However, there is no direct evidence that adaptive reprogramming involves a shared molecular mechanism with direct cellular reprogramming. Here, we induced dedifferentiation of intestinal epithelial cells using OSKM (Oct4, Sox2, Klf4, and c-Myc) in vivo. The OSKM-induced forced dedifferentiation showed similar molecular features of intestinal regeneration, including a transition from homeostatic cell types to injury-responsive-like cell types. These injury-responsive-like cells, sharing gene signatures of revival stem cells and atrophy-induced villus epithelial cells, actively assisted tissue regeneration following damage. In contrast to normal intestinal regeneration involving Ptgs2 induction, the OSKM promotes autonomous production of prostaglandin E2 via epithelial Ptgs1 expression. These results indicate prostaglandin synthesis is a common mechanism for intestinal regeneration but involves a different enzyme when partial reprogramming is applied to the intestinal epithelium.
Collapse
Affiliation(s)
- Jumee Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seung-Yeon Lee
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Beom-Ki Jo
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ji-Young Oh
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun-Ji Kwon
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Keun-Tae Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Anish Ashok Adpaikar
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Eun-Jung Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | - Jae-Seok Roe
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | - Chang Pyo Hong
- Theragen Bio Co., Ltd, Seongnam 13488, Republic of Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Bon-Kyoung Koo
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, Republic of Korea
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Huang X, Zhao R, Xu Z, Fu C, Xie L, Li S, Wang X, Zhang Y. gjSOX9 Cloning, Expression, and Comparison with gjSOXs Family Members in Gekko japonicus. Curr Issues Mol Biol 2023; 45:9328-9341. [PMID: 37998761 PMCID: PMC10670703 DOI: 10.3390/cimb45110584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
SOX9 plays a crucial role in the male reproductive system, brain, and kidneys. In this study, we firstly analyzed the complete cDNA sequence and expression patterns for SOX9 from Gekko japonicus SOX9 (gjSOX9), carried out bioinformatic analyses of physiochemical properties, structure, and phylogenetic evolution, and compared these with other members of the gjSOX family. The results indicate that gjSOX9 cDNA comprises 1895 bp with a 1482 bp ORF encoding 494aa. gjSOX9 was not only expressed in various adult tissues but also exhibited a special spatiotemporal expression pattern in gonad tissues. gjSOX9 was predicted to be a hydrophilic nucleoprotein with a characteristic HMG-Box harboring a newly identified unique sequence, "YKYQPRRR", only present in SOXE members. Among the 20 SOX9 orthologs, gjSOX9 shares the closest genetic relationships with Eublepharis macularius SOX9, Sphacrodactylus townsendi SOX9, and Hemicordylus capensis SOX9. gjSOX9 and gjSOX10 possessed identical physicochemical properties and subcellular locations and were tightly clustered with gjSOX8 in the SOXE group. Sixteen gjSOX family members were divided into six groups: SOXB, C, D, E, F, and H with gjSOX8, 9, and 10 in SOXE among 150 SOX homologs. Collectively, the available data in this study not only facilitate a deep exploration of the functions and molecular regulation mechanisms of the gjSOX9 and gjSOX families in G. japonicus but also contribute to basic research regarding the origin and evolution of SOX9 homologs or even sex-determination mode in reptiles.
Collapse
Affiliation(s)
- Xingze Huang
- Department of Biotechnology, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
| | - Ruonan Zhao
- Department of Bioscience, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
| | - Zhiwang Xu
- Department of Bioscience, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
| | - Chuyan Fu
- Department of Biotechnology, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
| | - Lei Xie
- Department of Bioscience, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Zhejiang Provincial Key Laboratory of Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China
| | - Shuran Li
- Department of Bioscience, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Zhejiang Provincial Key Laboratory of Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China
| | - Xiaofeng Wang
- Department of Biotechnology, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Zhejiang Provincial Key Laboratory of Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China
| | - Yongpu Zhang
- Department of Biotechnology, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Department of Bioscience, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Zhejiang Provincial Key Laboratory of Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China
| |
Collapse
|
23
|
Lu B. Evolutionary Insights into the Relationship of Frogs, Salamanders, and Caecilians and Their Adaptive Traits, with an Emphasis on Salamander Regeneration and Longevity. Animals (Basel) 2023; 13:3449. [PMID: 38003067 PMCID: PMC10668855 DOI: 10.3390/ani13223449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The extant amphibians have developed uncanny abilities to adapt to their environment. I compared the genes of amphibians to those of other vertebrates to investigate the genetic changes underlying their unique traits, especially salamanders' regeneration and longevity. Using the well-supported Batrachia tree, I found that salamander genomes have undergone accelerated adaptive evolution, especially for development-related genes. The group-based comparison showed that several genes are under positive selection, rapid evolution, and unexpected parallel evolution with traits shared by distantly related species, such as the tail-regenerative lizard and the longer-lived naked mole rat. The genes, such as EEF1E1, PAFAH1B1, and OGFR, may be involved in salamander regeneration, as they are involved in the apoptotic process, blastema formation, and cell proliferation, respectively. The genes PCNA and SIRT1 may be involved in extending lifespan, as they are involved in DNA repair and histone modification, respectively. Some genes, such as PCNA and OGFR, have dual roles in regeneration and aging, which suggests that these two processes are interconnected. My experiment validated the time course differential expression pattern of SERPINI1 and OGFR, two genes that have evolved in parallel in salamanders and lizards during the regeneration process of salamander limbs. In addition, I found several candidate genes responsible for frogs' frequent vocalization and caecilians' degenerative vision. This study provides much-needed insights into the processes of regeneration and aging, and the discovery of the critical genes paves the way for further functional analysis, which could open up new avenues for exploiting the genetic potential of humans and improving human well-being.
Collapse
Affiliation(s)
- Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
24
|
Guo L, Kruglyak L. Genetics and biology of coloration in reptiles: the curious case of the Lemon Frost geckos. Physiol Genomics 2023; 55:479-486. [PMID: 37642275 DOI: 10.1152/physiolgenomics.00015.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
Although there are more than 10,000 reptile species, and reptiles have historically contributed to our understanding of biology, genetics research into class Reptilia has lagged compared with other animals. Here, we summarize recent progress in genetics of coloration in reptiles, with a focus on the leopard gecko, Eublepharis macularius. We highlight genetic approaches that have been used to examine variation in color and pattern formation in this species as well as to provide insights into mechanisms underlying skin cancer. We propose that their long breeding history in captivity makes leopard geckos one of the most promising emerging reptilian models for genetic studies. More broadly, technological advances in genetics, genomics, and gene editing may herald a golden era for studies of reptile biology.
Collapse
Affiliation(s)
- Longhua Guo
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Geriatrics Center and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, United States
| | - Leonid Kruglyak
- Department of Human Genetics, University of California, Los Angeles, California, United States
- Department of Biological Chemistry, University of California, Los Angeles, California, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States
| |
Collapse
|
25
|
Greco N, Onisto M, Alibardi L. Protein extracts from regenerating lizard tail show an inhibitory effect on human cancer cells cultivated in-vitro. Ann Anat 2023; 250:152115. [PMID: 37315628 DOI: 10.1016/j.aanat.2023.152115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND accumulating evidence indicates that during tail regeneration in lizards the initial stage of regenerative blastema is a tumor-like proliferative outgrowth that rapidly elongates into a new tail composed of fully differentiated tissues. Both oncogenes and tumor-suppressors are expressed during regeneration, and it has been hypothesized that an efficient control of cell proliferation avoids that the blastema is turned into a tumor outgrowth. METHODS in order to determine whether functional tumor-suppressors are present in the growing blastema we have utilized protein extracts collected from early regenerating tails of 3-5 mm that have been tested for a potential anti-tumor effect on in-vitro culture by using cancer cell lines from human mammary gland (MDA-MB-231) and prostate cancer (DU145). RESULTS at specific dilutions, the extract determines a reduction of viability in cancer cells after 2-4 days of culture, as supported by statistical and morphological analyses. While control cells appear viable, treated cells result damaged and produce an intense cytoplasmic granulation and degeneration. CONCLUSIONS this negative effect on cell viability and proliferation is absent using tissues from the original tail supporting the hypothesis that only regenerating tissues synthesize tumor-suppressor molecules. The study suggests that the regenerating tail of lizard at the stages here selected contains some molecules that determine inhibition of cell viability on the cancer cells analyzed.
Collapse
Affiliation(s)
- Nicola Greco
- Department of Biomedical Science, University of Padova, Italy
| | - Maurizio Onisto
- Department of Biomedical Science, University of Padova, Italy
| | | |
Collapse
|
26
|
Liang H, Zhang X, Hou Y, Zheng K, Hao H, He B, Li H, Sun C, Yang T, Song H, Cai R, Wang Y, Jiang H, Qi L, Wang Y. Super-high procoagulant activity of gecko thrombin: A gift from sky dragon. CNS Neurosci Ther 2023; 29:3081-3093. [PMID: 37144588 PMCID: PMC10493662 DOI: 10.1111/cns.14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS Gecko, the "sky dragon" named by Traditional Chinese Medicine, undergoes rapid coagulation and scarless regeneration following tail amputation in the natural ecology, providing a perfect opportunity to develop the efficient and safe drug for blood clotting. Here, gecko thrombin (gthrombin) was recombinantly prepared and comparatively studied on its procoagulant activity. METHODS The 3D structure of gthrombin was constructed using the homology modeling method of I-TASSER. The active gthrombin was prepared by the expression of gecko prethrombin-2 in 293 T cells, followed by purification with Ni2+ -chelating column chromatography prior to activation by snake venom-derived Ecarin. The enzymatic activities of gthrombin were assayed by hydrolysis of synthetic substrate S-2238 and the fibrinogen clotting. The vulnerable nerve cells were used to evaluate the toxicity of gthrombin at molecular and cellular levels. RESULTS The active recombinant gthrombin showed super-high catalytic and fibrinogenolytic efficiency than those of human under different temperatures and pH conditions. In addition, gthrombin made nontoxic effects on the central nerve cells including neurons, contrary to those of mammalian counterparts, which contribute to neuronal damage, astrogliosis, and demyelination. CONCLUSIONS A super-high activity but safe procoagulant candidate drug was identified from reptiles, which provided a promising perspective for clinical application in rapid blood clotting.
Collapse
Affiliation(s)
- Hao Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Xingyuan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Yuxuan Hou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Kang Zheng
- Anti‐aging & Regenerative Medicine Research Institution, School of Life Sciences and MedicineShandong University of TechnologyZiboPR China
| | - Huifei Hao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Bingqiang He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Hui Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Chunshuai Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Ting Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Honghua Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Rixin Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Haiyan Jiang
- Department of Emergency MedicineAffiliated Hospital of Nantong UniversityNantongPR China
| | - Lei Qi
- Department of Emergency MedicineAffiliated Hospital of Nantong UniversityNantongPR China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| |
Collapse
|
27
|
Xia L, Li C, Zhao Y, Zhang W, Hu C, Qu Y, Li H, Yan J, Zhou K, Li P. Expression analysis of alpha keratins and corneous beta-protein genes during embryonic development of Gekko japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101116. [PMID: 37567027 DOI: 10.1016/j.cbd.2023.101116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Epidermal appendages of birds and reptiles, including claws, feathers, scales, and setae, are primarily composed of alpha keratins (KRTs) and corneous beta-proteins (CBPs). A comprehensive and systematic knowledge of KRTs and CBPs in Schlegel's Japanese gecko (Gekko japonicus) is still lacking. In this study, 22 candidate Gecko japonicus keratin (GjKRT) family genes (12 type I genes, 10 type II genes) were identified in the G. japonicus genome. The majority of GjKRT genes across various subgroups had undergone a prolonged and highly conservative evolutionary process. Through a combination of morphological observation, RNA-seq analysis, and qRT-PCR assay, it was possible to discern the dynamic alterations in the expression of GjKRTs and Gecko japonicus corneous beta-proteins genes (GjCBPs). These findings strongly indicate that GjKRTs gradually accumulate to constitute an α-layer, which is subsequently succeeded by the formation of the corneous beta layer containing GjCBPs at late stages (40-42) of embryonic development. The epidermal appendages in G. japonicus may result from the joint accumulation of KRTs and CBPs, with stages 40-42 being critical for their development. These findings provide novel insights into KRTs and CBPs of G. japonicus and offer a foundation for investigating the functions of GjKRT and GjCBP gene families. Furthermore, this knowledge contributes to unraveling the molecular mechanisms underlying the formation of epidermal appendages in G. japonicus.
Collapse
Affiliation(s)
- Longjie Xia
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Chao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Yue Zhao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Wenyi Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Chaochao Hu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Yanfu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Jie Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Kaiya Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
28
|
Bishop AP, Westeen EP, Yuan ML, Escalona M, Beraut E, Fairbairn C, Marimuthu MPA, Nguyen O, Chumchim N, Toffelmier E, Fisher RN, Shaffer HB, Wang IJ. Assembly of the largest squamate reference genome to date: The western fence lizard, Sceloporus occidentalis. J Hered 2023; 114:521-528. [PMID: 37335574 PMCID: PMC10445515 DOI: 10.1093/jhered/esad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023] Open
Abstract
Spiny lizards (genus Sceloporus) have long served as important systems for studies of behavior, thermal physiology, dietary ecology, vector biology, speciation, and biogeography. The western fence lizard, Sceloporus occidentalis, is found across most of the major biogeographical regions in the western United States and northern Baja California, Mexico, inhabiting a wide range of habitats, from grassland to chaparral to open woodlands. As small ectotherms, Sceloporus lizards are particularly vulnerable to climate change, and S. occidentalis has also become an important system for studying the impacts of land use change and urbanization on small vertebrates. Here, we report a new reference genome assembly for S. occidentalis, as part of the California Conservation Genomics Project (CCGP). Consistent with the reference genomics strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises a total of 608 scaffolds spanning 2,856 Mb, has a contig N50 of 18.9 Mb, a scaffold N50 of 98.4 Mb, and BUSCO completeness score of 98.1% based on the tetrapod gene set. This reference genome will be valuable for understanding ecological and evolutionary dynamics in S. occidentalis, the species status of the California endemic island fence lizard (S. becki), and the spectacular radiation of Sceloporus lizards.
Collapse
Affiliation(s)
- Anusha P Bishop
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| | - Erin P Westeen
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| | - Michael L Yuan
- Center for Population Biology, University of California, Davis, Davis, CA, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Colin Fairbairn
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Mohan P A Marimuthu
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, Davis, CA, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, Davis, CA, United States
| | - Noravit Chumchim
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, Davis, CA, United States
| | - Erin Toffelmier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, United States
| | - Robert N Fisher
- U.S. Geological Survey Western Ecological Research Center, San Diego, CA, United States
| | - H. Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ian J Wang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
29
|
Gable SM, Mendez JM, Bushroe NA, Wilson A, Byars MI, Tollis M. The State of Squamate Genomics: Past, Present, and Future of Genome Research in the Most Speciose Terrestrial Vertebrate Order. Genes (Basel) 2023; 14:1387. [PMID: 37510292 PMCID: PMC10379679 DOI: 10.3390/genes14071387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Squamates include more than 11,000 extant species of lizards, snakes, and amphisbaenians, and display a dazzling diversity of phenotypes across their over 200-million-year evolutionary history on Earth. Here, we introduce and define squamates (Order Squamata) and review the history and promise of genomic investigations into the patterns and processes governing squamate evolution, given recent technological advances in DNA sequencing, genome assembly, and evolutionary analysis. We survey the most recently available whole genome assemblies for squamates, including the taxonomic distribution of available squamate genomes, and assess their quality metrics and usefulness for research. We then focus on disagreements in squamate phylogenetic inference, how methods of high-throughput phylogenomics affect these inferences, and demonstrate the promise of whole genomes to settle or sustain persistent phylogenetic arguments for squamates. We review the role transposable elements play in vertebrate evolution, methods of transposable element annotation and analysis, and further demonstrate that through the understanding of the diversity, abundance, and activity of transposable elements in squamate genomes, squamates can be an ideal model for the evolution of genome size and structure in vertebrates. We discuss how squamate genomes can contribute to other areas of biological research such as venom systems, studies of phenotypic evolution, and sex determination. Because they represent more than 30% of the living species of amniote, squamates deserve a genome consortium on par with recent efforts for other amniotes (i.e., mammals and birds) that aim to sequence most of the extant families in a clade.
Collapse
Affiliation(s)
- Simone M Gable
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jasmine M Mendez
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Nicholas A Bushroe
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Adam Wilson
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Michael I Byars
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
30
|
Jiang XR, Dai YY, Wang YR, Guo K, Du Y, Gao JF, Lin LH, Li P, Li H, Ji X, Qu YF. Dietary and Sexual Correlates of Gut Microbiota in the Japanese Gecko, Gekko japonicus (Schlegel, 1836). Animals (Basel) 2023; 13:ani13081365. [PMID: 37106928 PMCID: PMC10134999 DOI: 10.3390/ani13081365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Numerous studies have demonstrated that multiple intrinsic and extrinsic factors shape the structure and composition of gut microbiota in a host. The disorder of the gut microbiota may trigger various host diseases. Here, we collected fecal samples from wild-caught Japanese geckos (Gekko japonicus) and captive conspecifics fed with mealworms (mealworm-fed geckos) and fruit flies (fly-fed geckos), aiming to examine the dietary and sexual correlates of the gut microbiota. We used 16S rRNA gene sequencing technology to determine the composition of the gut microbiota. The dominant phyla with a mean relative abundance higher than 10% were Verrucomicrobiota, Bacteroidota, and Firmicutes. Gut microbial community richness and diversity were higher in mealworm-fed geckos than in wild geckos. Neither community evenness nor beta diversity of gut microbiota differed among wild, mealworm-fed, and fly-fed geckos. The beta rather than alpha diversity of gut microbiota was sex dependent. Based on the relative abundance of gut bacteria and their gene functions, we concluded that gut microbiota contributed more significantly to the host's metabolic and immune functions. A higher diversity of gut microbiota in mealworm-fed geckos could result from higher chitin content in insects of the order Coleoptera. This study not only provides basic information about the gut microbiota of G. japonicus but also shows that gut microbiota correlates with dietary habits and sex in the species.
Collapse
Affiliation(s)
- Xin-Ru Jiang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ying-Yu Dai
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yu-Rong Wang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Kun Guo
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yu Du
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya 572022, China
| | - Jian-Fang Gao
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Long-Hui Lin
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Peng Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hong Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiang Ji
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yan-Fu Qu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
31
|
Dodge TO, Farquharson KA, Ford C, Cavanagh L, Schubert K, Schumer M, Belov K, Hogg CJ. Genomes of two Extinct-in-the-Wild reptiles from Christmas Island reveal distinct evolutionary histories and conservation insights. Mol Ecol Resour 2023. [PMID: 36872490 DOI: 10.1111/1755-0998.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Genomics can play important roles in biodiversity conservation, especially for Extinct-in-the-Wild species where genetic factors greatly influence risk of total extinction and probability of successful reintroductions. The Christmas Island blue-tailed skink (Cryptoblepharus egeriae) and Lister's gecko (Lepidodactylus listeri) are two endemic reptile species that went extinct in the wild shortly after the introduction of a predatory snake. After a decade of management, captive populations have expanded from 66 skinks and 43 geckos to several thousand individuals; however, little is known about patterns of genetic variation in these species. Here, we use PacBio HiFi long-read and Hi-C sequencing to generate highly contiguous reference genomes for both reptiles, including the XY chromosome pair in the skink. We then analyse patterns of genetic diversity to infer ancient demography and more recent histories of inbreeding. We observe high genome-wide heterozygosity in the skink (0.007 heterozygous sites per base-pair) and gecko (0.005), consistent with large historical population sizes. However, nearly 10% of the blue-tailed skink reference genome falls within long (>1 Mb) runs of homozygosity (ROH), resulting in homozygosity at all major histocompatibility complex (MHC) loci. In contrast, we detect a single ROH in Lister's gecko. We infer from the ROH lengths that related skinks may have established the captive populations. Despite a shared recent extinction in the wild, our results suggest important differences in these species' histories and implications for management. We show how reference genomes can contribute evolutionary and conservation insights, and we provide resources for future population-level and comparative genomic studies in reptiles.
Collapse
Affiliation(s)
- Tristram O Dodge
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
- Department of Biology, Stanford University, Stanford, California, USA
- Australian-American Fulbright Commission, Deakin, Australian Capital Territory, Australia
| | - Katherine A Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Claire Ford
- Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - Lisa Cavanagh
- Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | | | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, USA
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
32
|
Wang J, Huang D, Zhao Y. Energetic regenerative medicine based on plant photosynthesis grafted human cells. Sci Bull (Beijing) 2023; 68:370-372. [PMID: 36740529 DOI: 10.1016/j.scib.2023.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jinglin Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing 210008, China
| | - Danqing Huang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing 210008, China
| | - Yuanjin Zhao
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing 210008, China.
| |
Collapse
|
33
|
Mezzasalma M, Capriglione T, Kupriyanova L, Odierna G, Pallotta MM, Petraccioli A, Picariello O, Guarino FM. Characterization of Two Transposable Elements and an Ultra-Conserved Element Isolated in the Genome of Zootoca vivipara (Squamata, Lacertidae). Life (Basel) 2023; 13:life13030637. [PMID: 36983793 PMCID: PMC10058329 DOI: 10.3390/life13030637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Transposable elements (TEs) constitute a considerable fraction of eukaryote genomes representing a major source of genetic variability. We describe two DNA sequences isolated in the lizard Zootoca vivipara, here named Zv516 and Zv817. Both sequences are single-copy nuclear sequences, including a truncation of two transposable elements (TEs), SINE Squam1 in Zv516 and a Tc1/Mariner-like DNA transposon in Zv817. FISH analyses with Zv516 showed the occurrence of interspersed signals of the SINE Squam1 sequence on all chromosomes of Z. vivipara and quantitative dot blot indicated that this TE is present with about 4700 copies in the Z. vivipara genome. FISH and dot blot with Zv817 did not produce clear hybridization signals. Bioinformatic analysis showed the presence of active SINE Squam 1 copies in the genome of different lacertids, in different mRNAs, and intronic and coding regions of various genes. The Tc1/Mariner-like DNA transposon occurs in all reptiles, excluding Sphenodon and Archosauria. Zv817 includes a trait of 284 bp, representing an amniote ultra-conserved element (UCE). Using amniote UCE homologous sequences from available whole genome sequences of major amniote taxonomic groups, we performed a phylogenetic analysis which retrieved Prototheria as the sister group of Metatheria and Eutheria. Within diapsids, Testudines are the sister group to Aves + Crocodylia (Archosauria), and Sphenodon is the sister group to Squamata. Furthermore, large trait regions flanking the UCE are conserved at family level.
Collapse
Affiliation(s)
- Marcello Mezzasalma
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy
- Correspondence: (M.M.); (G.O.)
| | - Teresa Capriglione
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Larissa Kupriyanova
- Zoological Institute, Russian Academy of Sciences, 190121 St. Petersburg, Russia
| | - Gaetano Odierna
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
- Correspondence: (M.M.); (G.O.)
| | | | - Agnese Petraccioli
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Orfeo Picariello
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Fabio M. Guarino
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| |
Collapse
|
34
|
Yenmiş M, Ayaz D. The Story of the Finest Armor: Developmental Aspects of Reptile Skin. J Dev Biol 2023; 11:jdb11010005. [PMID: 36810457 PMCID: PMC9944452 DOI: 10.3390/jdb11010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
The reptile skin is a barrier against water loss and pathogens and an armor for mechanical damages. The integument of reptiles consists of two main layers: the epidermis and the dermis. The epidermis, the hard cover of the body which has an armor-like role, varies among extant reptiles in terms of structural aspects such as thickness, hardness or the kinds of appendages it constitutes. The reptile epithelial cells of the epidermis (keratinocytes) are composed of two main proteins: intermediate filament keratins (IFKs) and corneous beta proteins (CBPs). The outer horny layer of the epidermis, stratum corneum, is constituted of keratinocytes by means of terminal differentiation or cornification which is a result of the protein interactions where CBPs associate with and coat the initial scaffold of IFKs. Reptiles were able to colonize the terrestrial environment due to the changes in these epidermal structures, which led to various cornified epidermal appendages such as scales and scutes, a beak, claws or setae. Developmental and structural aspects of the epidermal CBPs as well as their shared chromosomal locus (EDC) indicate an ancestral origin that gave rise to the finest armor of reptilians.
Collapse
|
35
|
Pensabene E, Yurchenko A, Kratochvíl L, Rovatsos M. Madagascar Leaf-Tail Geckos ( Uroplatus spp.) Share Independently Evolved Differentiated ZZ/ZW Sex Chromosomes. Cells 2023; 12:260. [PMID: 36672195 PMCID: PMC9856856 DOI: 10.3390/cells12020260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/10/2023] Open
Abstract
Geckos are an excellent group to study the evolution of sex determination, as they possess a remarkable variability ranging from a complete absence of sex chromosomes to highly differentiated sex chromosomes. We explored sex determination in the Madagascar leaf-tail geckos of the genus Uroplatus. The cytogenetic analyses revealed highly heterochromatic W chromosomes in all three examined species (Uroplatus henkeli, U. alluaudi, U. sikorae). The comparative gene coverage analysis between sexes in U. henkeli uncovered an extensive Z-specific region, with a gene content shared with the chicken chromosomes 8, 20, 26 and 28. The genomic region homologous to chicken chromosome 28 has been independently co-opted for the role of sex chromosomes in several vertebrate lineages, including monitors, beaded lizards and monotremes, perhaps because it contains the amh gene, whose homologs were repeatedly recruited as a sex-determining locus. We demonstrate that all tested species of leaf-tail geckos share homologous sex chromosomes despite the differences in shape and size of their W chromosomes, which are not homologous to the sex chromosomes of other closely related genera. The rather old (at least 40 million years), highly differentiated sex chromosomes of Uroplatus geckos can serve as a great system to study the convergence of sex chromosomes evolved from the same genomic region.
Collapse
Affiliation(s)
| | | | | | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| |
Collapse
|
36
|
Austin LE, Graham C, Vickaryous MK. Spontaneous neuronal regeneration in the forebrain of the leopard gecko (Eublepharis macularius) following neurochemical lesioning. Dev Dyn 2023; 252:186-207. [PMID: 35973979 DOI: 10.1002/dvdy.525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Neurogenesis is the ability to generate new neurons from resident stem/progenitor populations. Although often understood as a homeostatic process, several species of teleost fish, salamanders, and lacertid lizards are also capable of reactive neurogenesis, spontaneously replacing lost or damaged neurons. Here, we demonstrate that reactive neurogenesis also occurs in a distantly related lizard species, Eublepharis macularius, the leopard gecko. RESULTS To initiate reactive neurogenesis, the antimetabolite 3-acetylpyridine (3-AP) was administered. Four days following 3-AP administration there is a surge in neuronal cell death within a region of the forebrain known as the medial cortex (homolog of the mammalian hippocampal formation). Neuronal cell death is accompanied by a shift in resident microglial morphology and an increase neural stem/progenitor cell proliferation. By 30 days following 3-AP administration, the medial cortex was entirely repopulated by NeuN+ neurons. At the same time, local microglia have reverted to a resting state and cell proliferation by neural stem/progenitors has returned to levels comparable with uninjured controls. CONCLUSIONS Together, these data provide compelling evidence of reactive neurogenesis in leopard geckos, and indicate that the ability of lizards to spontaneously replace lost or damaged forebrain neurons is more taxonomically widespread and evolutionarily conserved than previously considered.
Collapse
Affiliation(s)
- Laura E Austin
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Chloe Graham
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Matthew K Vickaryous
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
37
|
Hagen JFD, Roberts NS, Johnston RJ. The evolutionary history and spectral tuning of vertebrate visual opsins. Dev Biol 2023; 493:40-66. [PMID: 36370769 PMCID: PMC9729497 DOI: 10.1016/j.ydbio.2022.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Many animals depend on the sense of vision for survival. In eumetazoans, vision requires specialized, light-sensitive cells called photoreceptors. Light reaches the photoreceptors and triggers the excitation of light-detecting proteins called opsins. Here, we describe the story of visual opsin evolution from the ancestral bilaterian to the extant vertebrate lineages. We explain the mechanisms determining color vision of extant vertebrates, focusing on opsin gene losses, duplications, and the expression regulation of vertebrate opsins. We describe the sequence variation both within and between species that has tweaked the sensitivities of opsin proteins towards different wavelengths of light. We provide an extensive resource of wavelength sensitivities and mutations that have diverged light sensitivity in many vertebrate species and predict how these mutations were accumulated in each lineage based on parsimony. We suggest possible natural and sexual selection mechanisms underlying these spectral differences. Understanding how molecular changes allow for functional adaptation of animals to different environments is a major goal in the field, and therefore identifying mutations affecting vision and their relationship to photic selection pressures is imperative. The goal of this review is to provide a comprehensive overview of our current understanding of opsin evolution in vertebrates.
Collapse
Affiliation(s)
- Joanna F D Hagen
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Natalie S Roberts
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
38
|
Simon MN, Rothier PS, Donihue CM, Herrel A, Kolbe JJ. Can extreme climatic events induce shifts in adaptive potential? A conceptual framework and empirical test with Anolis lizards. J Evol Biol 2023; 36:195-208. [PMID: 36357963 DOI: 10.1111/jeb.14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/04/2022] [Accepted: 09/10/2022] [Indexed: 11/12/2022]
Abstract
Multivariate adaptation to climatic shifts may be limited by trait integration that causes genetic variation to be low in the direction of selection. However, strong episodes of selection induced by extreme climatic pressures may facilitate future population-wide responses if selection reduces trait integration and increases adaptive potential (i.e., evolvability). We explain this counter-intuitive framework for extreme climatic events in which directional selection leads to increased evolvability and exemplify its use in a case study. We tested this hypothesis in two populations of the lizard Anolis scriptus that experienced hurricane-induced selection on limb traits. We surveyed populations immediately before and after the hurricane as well as the offspring of post-hurricane survivors, allowing us to estimate both selection and response to selection on key functional traits: forelimb length, hindlimb length, and toepad area. The direct selection was parallel in both islands and strong in several limb traits. Even though overall limb integration did not change after the hurricane, both populations showed a non-significant tendency toward increased evolvability after the hurricane despite the direction of selection not being aligned with the axis of most variance (i.e., body size). The population with comparably lower between-limb integration showed a less constrained response to selection. Hurricane-induced selection, not aligned with the pattern of high trait correlations, likely conflicts with selection occurring during normal ecological conditions that favours functional coordination between limb traits, and would likely need to be very strong and more persistent to elicit a greater change in trait integration and evolvability. Future tests of this hypothesis should use G-matrices in a variety of wild organisms experiencing selection due to extreme climatic events.
Collapse
Affiliation(s)
- Monique N Simon
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | | | - Colin M Donihue
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| | - Anthony Herrel
- UMR 7179, Centre National de la Recherche Scientifique/Muséum National d'Histoire Naturelle, Paris, France.,Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium.,Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
| | - Jason J Kolbe
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
39
|
Rovatsos M, Galoyan E, Spangenberg V, Vassilieva A, Kratochvíl L. XX
/
XY
sex chromosomes in a blind lizard (Dibamidae): Towards understanding the evolution of sex determination in squamates. J Evol Biol 2022; 35:1791-1796. [DOI: 10.1111/jeb.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 12/05/2022]
Affiliation(s)
- Michail Rovatsos
- Department of Ecology, Faculty of Science Charles University in Prague Praha 2 Czech Republic
| | - Eduard Galoyan
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences Moscow Russia
- Joint Russian‐Vietnamese Tropical Research and Technological Centre Hanoi Vietnam
- Zoological museum of Moscow State University Moscow State Regional University Mytishchi Russia
| | - Victor Spangenberg
- Zoological museum of Moscow State University Moscow State Regional University Mytishchi Russia
- Vavilov Institute of General Genetics Russian Academy of Sciences Moscow Russia
- Moscow State Regional University Mytishchi Russia
| | - Anna Vassilieva
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences Moscow Russia
- Joint Russian‐Vietnamese Tropical Research and Technological Centre Hanoi Vietnam
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science Charles University in Prague Praha 2 Czech Republic
| |
Collapse
|
40
|
Dyson CJ, Pfennig A, Ariano-Sánchez D, Lachance J, Mendelson III JR, Goodisman MAD. Genome of the endangered Guatemalan Beaded Lizard, Heloderma charlesbogerti, reveals evolutionary relationships of squamates and declines in effective population sizes. G3 GENES|GENOMES|GENETICS 2022; 12:6760128. [DOI: 10.1093/g3journal/jkac276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Abstract
Many lizard species face extinction due to worldwide climate change. The Guatemalan Beaded Lizard, Heloderma charlesbogerti, is a member of the Family Helodermatidae that may be particularly imperiled; fewer than 600 mature individuals are believed to persist in the wild. In addition, H. charlesbogerti lizards are phenotypically remarkable. They are large in size, charismatically patterned, and possess a venomous bite. Here, we report the draft genome of the Guatemalan Beaded Lizard using DNA from a wild-caught individual. The assembled genome totals 2.31 Gb in length, similar in size to the genomes of related species. Single-copy orthologs were used to produce a novel molecular phylogeny, revealing that the Guatemalan Beaded Lizard falls into a clade with the Asian Glass Lizard (Anguidae) and in close association with the Komodo Dragon (Varanidae) and the Chinese Crocodile Lizard (Shinisauridae). In addition, we identified 31,411 protein-coding genes within the genome. Of the genes identified, we found 504 that evolved with a differential constraint on the branch leading to the Guatemalan Beaded Lizard. Lastly, we identified a decline in the effective population size of the Guatemalan Beaded Lizard approximately 400,000 years ago, followed by a stabilization before starting to dwindle again 60,000 years ago. The results presented here provide important information regarding a highly endangered, venomous reptile that can be used in future conservation, functional genetic, and phylogenetic analyses.
Collapse
Affiliation(s)
- Carl J Dyson
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, GA 30332, USA
| | - Aaron Pfennig
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, GA 30332, USA
| | - Daniel Ariano-Sánchez
- Centro de Estudios Ambientales y Biodiversidad, Universidad del Valle de Guatemala , Zona 15 01015, Guatemala
- Heloderma Natural Reserve , Zacapa 19007, Guatemala
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, GA 30332, USA
| | - Joseph R Mendelson III
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, GA 30332, USA
- Zoo Atlanta , Atlanta, GA 30315, USA
| | - Michael A D Goodisman
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, GA 30332, USA
| |
Collapse
|
41
|
Wang Q, Mao Z, Liu Z, Xu M, Huang S, Wang Y, Xu Y, Qi L, Liu M, Liu Y. Akt/mTOR integrate energy metabolism with Wnt signal to influence wound epithelium growth in Gekko Japonicus. Commun Biol 2022; 5:1018. [PMID: 36167813 PMCID: PMC9515156 DOI: 10.1038/s42003-022-04004-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
The formation of wound epithelium initiates regeneration of amputated tail in Gekko japonicus. Energy metabolism is indispensable for the growth of living creatures and typically influenced by temperature. In this study, we reveal that low temperature lowers energy metabolism level and inhibits the regeneration of amputated tails of Gekko japonicus. We further find that low temperature attenuates the activation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR) in regenerated tissues upon injury signals, and the inhibition of Akt hinders proliferation of the wound epithelium. Additionally, wingless/integrated (Wnt) inhibition suppresses epithelium proliferation and formation by inhibiting Akt activation. Finally, low temperature elevates the activity of adenylate-activated kinase (AMPK) pathway and in turn attenuates wound epithelium formation. Meanwhile, either mTOR downregulation or AMPK upregulation is associated with worse wound epithelium formation. Summarily, low temperature restricts wound epithelium formation by influencing energy sensory pathways including Akt/mTOR and AMPK signaling, which is also modulated by injury induced Wnt signal. Our results provide a mechanism that incorporates the injury signals with metabolic pathway to facilitate regeneration. Low temperature inhibits the regeneration of amputated tails of Gekko japonicus by influencing the energy sensory Akt/mTOR pathway, which is also modulated by injury-induced Wnt signal.
Collapse
Affiliation(s)
- Qinghua Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.,Comparative Medicine Research Institution, Nantong University, Nantong, 226001, China
| | - Zuming Mao
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Zhuang Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Shuai Huang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yin Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yanran Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Longju Qi
- Affiliated Nantong Hospital 3 of Nantong University, Nantong University, Nantong, 226001, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
42
|
Yamagishi G, Park MK, Miyagawa S. Phylogeny of g6pc1 Genes and Their Functional Divergence among Sarcopterygian Vertebrates: Implications for Thermoregulatory Strategies. Zoolog Sci 2022; 39:419-430. [DOI: 10.2108/zs210113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/05/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Genki Yamagishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Min Kyun Park
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
43
|
Pandey M, Jadav D, Manhas A, Kediya S, Tsunoji N, Kumar R, Das S, Bandyopadhyay M. Synthesis and characterization of mononuclear Zn complex, immobilized on ordered mesoporous silica and their tunable catalytic properties. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Pinto BJ, Keating SE, Nielsen SV, Scantlebury DP, Daza JD, Gamble T. Chromosome-Level Genome Assembly Reveals Dynamic Sex Chromosomes in Neotropical Leaf-Litter Geckos (Sphaerodactylidae: Sphaerodactylus). J Hered 2022; 113:272-287. [PMID: 35363859 PMCID: PMC9270867 DOI: 10.1093/jhered/esac016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Sex determination is a critical element of successful vertebrate development, suggesting that sex chromosome systems might be evolutionarily stable across lineages. For example, mammals and birds have maintained conserved sex chromosome systems over long evolutionary time periods. Other vertebrates, in contrast, have undergone frequent sex chromosome transitions, which is even more amazing considering we still know comparatively little across large swaths of their respective phylogenies. One reptile group in particular, the gecko lizards (infraorder Gekkota), shows an exceptional lability with regard to sex chromosome transitions and may possess the majority of transitions within squamates (lizards and snakes). However, detailed genomic and cytogenetic information about sex chromosomes is lacking for most gecko species, leaving large gaps in our understanding of the evolutionary processes at play. To address this, we assembled a chromosome-level genome for a gecko (Sphaerodactylidae: Sphaerodactylus) and used this assembly to search for sex chromosomes among six closely related species using a variety of genomic data, including whole-genome re-sequencing, RADseq, and RNAseq. Previous work has identified XY systems in two species of Sphaerodactylus geckos. We expand upon that work to identify between two and four sex chromosome cis-transitions (XY to a new XY) within the genus. Interestingly, we confirmed two different linkage groups as XY sex chromosome systems that were previously unknown to act as sex chromosomes in tetrapods (syntenic with Gallus chromosome 3 and Gallus chromosomes 18/30/33), further highlighting a unique and fascinating trend that most linkage groups have the potential to act as sex chromosomes in squamates.
Collapse
Affiliation(s)
- Brendan J Pinto
- Address correspondence to B. J. Pinto at the address above, or e-mail:
| | - Shannon E Keating
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Stuart V Nielsen
- Department of Biological Sciences, Louisiana State University in Shreveport, Shreveport, LA 71115, USA,Division of Herpetology, Florida Museum of Natural History, Gainesville, FL 32611, USA
| | | | - Juan D Daza
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77340, USA
| | - Tony Gamble
- Milwaukee Public Museum, Milwaukee, WI 53233, USA,Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA,Bell Museum of Natural History, University of Minnesota, St Paul, MN 55455, USA
| |
Collapse
|
45
|
Abstract
SignificanceTo adapt to arboreal lifestyles, treefrogs have evolved a suite of complex traits that support vertical movement and gliding, thus presenting a unique case for studying the genetic basis for traits causally linked to vertical niche expansion. Here, based on two de novo-assembled Asian treefrog genomes, we determined that genes involved in limb development and keratin cytoskeleton likely played a role in the evolution of their climbing systems. Behavioral and morphological evaluation and time-ordered gene coexpression network analysis revealed the developmental patterns and regulatory pathways of the webbed feet used for gliding in Rhacophorus kio.
Collapse
|
46
|
Alibardi L. Immunolocalization of Adenomatous Polyposis Coli protein (apc) in the regenerating lizard tail suggests involvement in tissue differentiation and regulation of growth. J Morphol 2022; 283:677-688. [PMID: 35195910 DOI: 10.1002/jmor.21465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 11/07/2022]
Abstract
Lizard tail regeneration is likely regulated by the balanced activity of oncogenes and tumor suppressors that control cell proliferation avoiding tumorigenic degeneration. One of the main tumor suppressor genes present in the regenerating tail is the "adenomatous polyposis coli (apc)" but the localization of its coded protein (apc) is not known. This protein may be involved in regulation of apical-basal tail regeneration in lizards. The present immunohistochemical study shows that apc is localized in apical wound epidermis and regenerating ependyme, two tissues that proliferate and also express onco-genes. Apc is not present in blastema cells but localizes in differentiating cells of regenerating scales, muscles and less intensely in the non-apical ependymal epithelium and cartilage. This suggests that apc is involved in the induction of their differentiation. The apc immunolabeling is mainly nuclear in the basal epidermal layer of the apical wound epidermis where it may be involved in modulating keratinocytes proliferation, like in the forming scales. In regenerating muscle and cartilage apc is mainly cytoplasmic while sparse labeled nuclei are seen in proliferative areas of these tissues. In the regenerating spinal cord, the nuclear and cytoplasmic apc labeling is present in ependymal cells of the distal-most ependymal ampulla but the labeling fades in more proximal regions and mainly remains in the cytoplasm facing the central canal and in sparse nuclei. It is suggested that the pattern of immunolabeling for apc indicates that this tumor suppressor may contribute to tissue differentiation within the regenerating tail. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology of the University of Bologna
| |
Collapse
|
47
|
Baban NS, Orozaliev A, Kirchhof S, Stubbs CJ, Song YA. Biomimetic fracture model of lizard tail autotomy. Science 2022; 375:770-774. [PMID: 35175822 DOI: 10.1126/science.abh1614] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lizard tail autotomy is an antipredator strategy consisting of sturdy attachment at regular times but quick detachment during need. We propose a biomimetic fracture model of lizard tail autotomy using multiscale hierarchical structures. The structures consist of uniformly distributed micropillars with nanoporous tops, which recapitulate the high-density mushroom-shaped microstructures found on the lizard tail's muscle fracture plane. The biomimetic experiments showed adhesion enhancement when combining nanoporous interfacial surfaces with flexible micropillars in tensile and peel modes. The fracture modeling identified micro- and nanostructure-based toughening mechanisms as the critical factor. Under wet conditions, capillarity-assisted energy dissipation pertaining to liquid-filled microgaps and nanopores further increased the adhesion performance. This research presents insights on lizard tail autotomy and provides new biomimetic ideas to solve adhesion problems.
Collapse
Affiliation(s)
- Navajit S Baban
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ajymurat Orozaliev
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sebastian Kirchhof
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Christopher J Stubbs
- Gildart Haase School of Computer Sciences and Engineering, Fairleigh Dickinson University, Teaneck, NJ 07666, USA
| | - Yong-Ak Song
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA.,Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA
| |
Collapse
|
48
|
Koochekian N, Ascanio A, Farleigh K, Card DC, Schield DR, Castoe TA, Jezkova T. A chromosome-level genome assembly and annotation of the desert horned lizard, Phrynosoma platyrhinos, provides insight into chromosomal rearrangements among reptiles. Gigascience 2022; 11:giab098. [PMID: 35134927 PMCID: PMC8848323 DOI: 10.1093/gigascience/giab098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/27/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The increasing number of chromosome-level genome assemblies has advanced our knowledge and understanding of macroevolutionary processes. Here, we introduce the genome of the desert horned lizard, Phrynosoma platyrhinos, an iguanid lizard occupying extreme desert conditions of the American southwest. We conduct analysis of the chromosomal structure and composition of this species and compare these features across genomes of 12 other reptiles (5 species of lizards, 3 snakes, 3 turtles, and 1 bird). FINDINGS The desert horned lizard genome was sequenced using Illumina paired-end reads and assembled and scaffolded using Dovetail Genomics Hi-C and Chicago long-range contact data. The resulting genome assembly has a total length of 1,901.85 Mb, scaffold N50 length of 273.213 Mb, and includes 5,294 scaffolds. The chromosome-level assembly is composed of 6 macrochromosomes and 11 microchromosomes. A total of 20,764 genes were annotated in the assembly. GC content and gene density are higher for microchromosomes than macrochromosomes, while repeat element distributions show the opposite trend. Pathway analyses provide preliminary evidence that microchromosome and macrochromosome gene content are functionally distinct. Synteny analysis indicates that large microchromosome blocks are conserved among closely related species, whereas macrochromosomes show evidence of frequent fusion and fission events among reptiles, even between closely related species. CONCLUSIONS Our results demonstrate dynamic karyotypic evolution across Reptilia, with frequent inferred splits, fusions, and rearrangements that have resulted in shuffling of chromosomal blocks between macrochromosomes and microchromosomes. Our analyses also provide new evidence for distinct gene content and chromosomal structure between microchromosomes and macrochromosomes within reptiles.
Collapse
Affiliation(s)
| | - Alfredo Ascanio
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Keaka Farleigh
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Daren C Card
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Tereza Jezkova
- Department of Biology, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
49
|
Bouffet-Halle A, Yang W, Gardner MG, Whiting MJ, Wapstra E, Uller T, While GM. Characterisation and cross-amplification of sex-specific genetic markers in Australasian Egerniinae lizards and their implications for understanding the evolution of sex determination and social complexity. AUST J ZOOL 2022. [DOI: 10.1071/zo21023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Roscito JG, Sameith K, Kirilenko BM, Hecker N, Winkler S, Dahl A, Rodrigues MT, Hiller M. Convergent and lineage-specific genomic differences in limb regulatory elements in limbless reptile lineages. Cell Rep 2022; 38:110280. [DOI: 10.1016/j.celrep.2021.110280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 01/02/2023] Open
|