1
|
Perrino M, Voulaz E, Balin S, Cazzato G, Fontana E, Franzese S, Defendi M, De Vincenzo F, Cordua N, Tamma R, Borea F, Aliprandi M, Airoldi M, Cecchi LG, Fazio R, Alloisio M, Marulli G, Santoro A, Di Tommaso L, Ingravallo G, Russo L, Da Rin G, Villa A, Della Bella S, Zucali PA, Mavilio D. Autoimmunity in thymic epithelial tumors: a not yet clarified pathologic paradigm associated with several unmet clinical needs. Front Immunol 2024; 15:1288045. [PMID: 38629065 PMCID: PMC11018877 DOI: 10.3389/fimmu.2024.1288045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/29/2024] [Indexed: 04/19/2024] Open
Abstract
Thymic epithelial tumors (TETs) are rare mediastinal cancers originating from the thymus, classified in two main histotypes: thymoma and thymic carcinoma (TC). TETs affect a primary lymphoid organ playing a critical role in keeping T-cell homeostasis and ensuring an adequate immunological tolerance against "self". In particular, thymomas and not TC are frequently associated with autoimmune diseases (ADs), with Myasthenia Gravis being the most common AD present in 30% of patients with thymoma. This comorbidity, in addition to negatively affecting the quality and duration of patients' life, reduces the spectrum of the available therapeutic options. Indeed, the presence of autoimmunity represents an exclusion criteria for the administration of the newest immunotherapeutic treatments with checkpoint inhibitors. The pathophysiological correlation between TETs and autoimmunity remains a mystery. Several studies have demonstrated the presence of a residual and active thymopoiesis in adult patients affected by thymomas, especially in mixed and lymphocytic-rich thymomas, currently known as type AB and B thymomas. The aim of this review is to provide the state of art in regard to the histological features of the different TET histotype, to the role of the different immune cells infiltrating tumor microenvironments and their impact in the break of central immunologic thymic tolerance in thymomas. We discuss here both cellular and molecular immunologic mechanisms inducing the onset of autoimmunity in TETs, limiting the portfolio of therapeutic strategies against TETs and greatly impacting the prognosis of associated autoimmune diseases.
Collapse
Affiliation(s)
- Matteo Perrino
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Emanuele Voulaz
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Simone Balin
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Gerardo Cazzato
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Elena Fontana
- Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council (CNR), Milan, Italy
- Human Genome and Biomedical Technologies Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Sara Franzese
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Martina Defendi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Fabio De Vincenzo
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Nadia Cordua
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Roberto Tamma
- Section of Human Anatomy and Histology, Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari “Aldo Moro”, Bari, Italy
| | - Federica Borea
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marta Aliprandi
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marco Airoldi
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luigi Giovanni Cecchi
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Roberta Fazio
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marco Alloisio
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giuseppe Marulli
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Armando Santoro
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Laura Russo
- Clinical Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giorgio Da Rin
- Clinical Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Anna Villa
- Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council (CNR), Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paolo Andrea Zucali
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
2
|
Onji M, Penninger JM. RANKL and RANK in Cancer Therapy. Physiology (Bethesda) 2023; 38:0. [PMID: 36473204 DOI: 10.1152/physiol.00020.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Receptor activator of nuclear factor-κB (RANK) and its ligand (RANKL) are key regulators of mammalian physiology such as bone metabolism, immune tolerance and antitumor immunity, and mammary gland biology. Here, we explore the multiple functions of RANKL/RANK in physiology and pathophysiology and discuss underlying principles and strategies to modulate the RANKL/RANK pathway as a therapeutic target in immune-mediated cancer treatment.
Collapse
Affiliation(s)
- Masahiro Onji
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter, Vienna, Austria.,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Roato I, Mauceri R, Notaro V, Genova T, Fusco V, Mussano F. Immune Dysfunction in Medication-Related Osteonecrosis of the Jaw. Int J Mol Sci 2023; 24:ijms24097948. [PMID: 37175652 PMCID: PMC10177780 DOI: 10.3390/ijms24097948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The pathogenesis of medication-related osteonecrosis of the jaw (MRONJ) is multifactorial and there is a substantial consensus on the role of antiresorptive drugs (ARDs), including bisphosphonates (BPs) and denosumab (Dmab), as one of the main determinants. The time exposure, cumulative dose and administration intensity of these drugs are critical parameters to be considered in the treatment of patients, as cancer patients show the highest incidence of MRONJ. BPs and Dmab have distinct mechanisms of action on bone, but they also exert different effects on immune subsets which interact with bone cells, thus contributing to the onset of MRONJ. Here, we summarized the main effects of ARDs on the different immune cell subsets, which consequently affect bone cells, particularly osteoclasts and osteoblasts. Data from animal models and MRONJ patients showed a deep interference of ARDs in modulating immune cells, even though a large part of the literature concerns the effects of BPs and there is a lack of data on Dmab, demonstrating the need to further studies.
Collapse
Affiliation(s)
- Ilaria Roato
- CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Rodolfo Mauceri
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90133 Palermo, Italy
| | - Vincenzo Notaro
- CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Vittorio Fusco
- Medical Oncology Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
- Department of Integrated Research Activity and Innovation (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Federico Mussano
- CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
4
|
Szwarc MM, Hai L, Maurya VK, Rajapakshe K, Perera D, Ittmann MM, Mo Q, Lin Y, Bettini ML, Coarfa C, Lydon JP. Histopathologic and transcriptomic phenotypes of a conditional RANKL transgenic mouse thymus. Cytokine 2022; 160:156022. [PMID: 36099756 DOI: 10.1016/j.cyto.2022.156022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022]
Abstract
Although conventional knockout and transgenic mouse models have significantly advanced our understanding of Receptor Activator of NF-κB Ligand (RANKL) signaling in intra-thymic crosstalk that establishes self-tolerance and later stages of lymphopoiesis, the unique advantages of conditional mouse transgenesis have yet to be explored. A main advantage of conditional transgenesis is the ability to express a transgene in a spatiotemporal restricted manner, enabling the induction (or de-induction) of transgene expression during predetermined stages of embryogenesis or during defined postnatal developmental or physiological states, such as puberty, adulthood, and pregnancy. Here, we describe the K5: RANKL bigenic mouse, in which transgene derived RANKL expression is induced by doxycycline and targeted to cytokeratin 5 positive medullary thymic epithelial cells (mTECs). Short-term doxycycline induction reveals that RANKL transgene expression is significantly induced in the thymic medulla and only in response to doxycycline. Prolonged doxycycline induction in the K5: RANKL bigenic results in a significantly enlarged thymus in which mTECs are hyperproliferative. Flow cytometry showed that there is a marked enrichment of CD4+ and CD8+ single positive thymocytes with a concomitant depletion of CD4+ CD8+ double positives. Furthermore, there is an increase in the number of FOXP3+ T regulatory (Treg) cells and Ulex Europaeus Agglutinin 1+ (UEA1+) mTECs. Transcriptomics revealed that a remarkable array of signals-cytokines, chemokines, growth factors, transcription factors, and morphogens-are governed by RANKL and drive in part the K5: RANKL thymic phenotype. Extended doxycycline administration to 6-weeks results in a K5: RANKL thymus that begins to display distinct histopathological features, such as medullary epithelial hyperplasia, extensive immune cell infiltration, and central tissue necrosis. As there are intense efforts to develop clinical approaches to restore thymic medullary function in the adult to treat immunopathological conditions in which immune cell function is compromised following cancer therapy or toxin exposure, an improved molecular understanding of RANKL's involvement in thymic medulla enlargement will be required. We believe the versatility of the conditional K5: RANKL mouse represents a tractable model system to assist in addressing this requirement as well as many other questions related to RANKL's role in thymic normal physiology and disease processes.
Collapse
Affiliation(s)
- Maria M Szwarc
- Department of Molecular & Cellular Biology, United States
| | - Lan Hai
- Department of Molecular & Cellular Biology, United States
| | - Vineet K Maurya
- Department of Molecular & Cellular Biology, United States
| | | | - Dimuthu Perera
- Department of Molecular & Cellular Biology, United States
| | - Michael M Ittmann
- Department of Pathology, Baylor College of Medicine, Houston, TX, United States
| | - Qianxing Mo
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Yong Lin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Matthew L Bettini
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Cristian Coarfa
- Department of Molecular & Cellular Biology, United States
| | - John P Lydon
- Department of Molecular & Cellular Biology, United States.
| |
Collapse
|
5
|
Luo X, Wan Q, Cheng L, Xu R. Mechanisms of bone remodeling and therapeutic strategies in chronic apical periodontitis. Front Cell Infect Microbiol 2022; 12:908859. [PMID: 35937695 PMCID: PMC9353524 DOI: 10.3389/fcimb.2022.908859] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 12/19/2022] Open
Abstract
Chronic periapical periodontitis (CAP) is a typical oral disease in which periodontal inflammation caused by an odontogenic infection eventually leads to bone loss. Uncontrolled infections often lead to extensive bone loss around the root tip, which ultimately leads to tooth loss. The main clinical issue in the treatment of periapical periodontitis is the repair of jawbone defects, and infection control is the first priority. However, the oral cavity is an open environment, and the distribution of microorganisms through the mouth in jawbone defects is inevitable. The subversion of host cell metabolism by oral microorganisms initiates disease. The presence of microorganisms stimulates a series of immune responses, which in turn stimulates bone healing. Given the above background, we intended to examine the paradoxes and connections between microorganisms and jaw defect repair in anticipation of new ideas for jaw defect repair. To this end, we reviewed the microbial factors, human signaling pathways, immune cells, and cytokines involved in the development of CAP, as well as concentrated growth factor (CGF) and stem cells in bone defect repair, with the aim of understanding the impact of microbial factors on host cell metabolism to inform the etiology and clinical management of CAP.
Collapse
Affiliation(s)
| | | | - Lei Cheng
- *Correspondence: Lei Cheng, ; Ruoshi Xu,
| | - Ruoshi Xu
- *Correspondence: Lei Cheng, ; Ruoshi Xu,
| |
Collapse
|
6
|
Březina J, Vobořil M, Filipp D. Mechanisms of Direct and Indirect Presentation of Self-Antigens in the Thymus. Front Immunol 2022; 13:926625. [PMID: 35774801 PMCID: PMC9237256 DOI: 10.3389/fimmu.2022.926625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The inevitability of evolution of the adaptive immune system with its mechanism of randomly rearranging segments of the T cell receptor (TCR) gene is the generation of self-reactive clones. For the sake of prevention of autoimmunity, these clones must be eliminated from the pool of circulating T cells. This process occurs largely in the thymic medulla where the strength of affinity between TCR and self-peptide MHC complexes is the factor determining thymocyte fate. Thus, the display of self-antigens in the thymus by thymic antigen presenting cells, which are comprised of medullary thymic epithelial (mTECs) and dendritic cells (DCs), is fundamental for the establishment of T cell central tolerance. Whereas mTECs produce and present antigens in a direct, self-autonomous manner, thymic DCs can acquire these mTEC-derived antigens by cooperative antigen transfer (CAT), and thus present them indirectly. While the basic characteristics for both direct and indirect presentation of self-antigens are currently known, recent reports that describe the heterogeneity of mTEC and DC subsets, their presentation capacity, and the potentially non-redundant roles in T cell selection processes represents another level of complexity which we are attempting to unravel. In this review, we underscore the seminal studies relevant to these topics with an emphasis on new observations pertinent to the mechanism of CAT and its cellular trajectories underpinning the preferential distribution of thymic epithelial cell-derived self-antigens to specific subsets of DC. Identification of molecular determinants which control CAT would significantly advance our understanding of how the cellularly targeted presentation of thymic self-antigens is functionally coupled to the T cell selection process.
Collapse
Affiliation(s)
| | | | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
Tanaka PP, Oliveira EH, Vieira-Machado MC, Duarte MJ, Assis AF, Bombonato-Prado KF, Passos GA. miR-155 exerts posttranscriptional control of autoimmune regulator (Aire) and tissue-restricted antigen genes in medullary thymic epithelial cells. BMC Genomics 2022; 23:404. [PMID: 35643451 PMCID: PMC9145475 DOI: 10.1186/s12864-022-08631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 05/13/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The autoimmune regulator (Aire) gene is critical for the appropriate establishment of central immune tolerance. As one of the main controllers of promiscuous gene expression in the thymus, Aire promotes the expression of thousands of downstream tissue-restricted antigen (TRA) genes, cell adhesion genes and transcription factor genes in medullary thymic epithelial cells (mTECs). Despite the increasing knowledge about the role of Aire as an upstream transcriptional controller, little is known about the mechanisms by which this gene could be regulated. RESULTS Here, we assessed the posttranscriptional control of Aire by miRNAs. The in silico miRNA-mRNA interaction analysis predicted thermodynamically stable hybridization between the 3'UTR of Aire mRNA and miR-155, which was confirmed to occur within the cellular milieu through a luciferase reporter assay. This finding enabled us to hypothesize that miR-155 might play a role as an intracellular posttranscriptional regulator of Aire mRNA. To test this hypothesis, we transfected a murine mTEC cell line with a miR-155 mimic in vitro, which reduced the mRNA and protein levels of Aire. Moreover, large-scale transcriptome analysis showed the modulation of 311 downstream mRNAs, which included 58 TRA mRNAs. Moreover, miR-155 mimic-transfected cells exhibited a decrease in their chemotaxis property compared with control thymocytes. CONCLUSION Overall, the results indicate that miR-155 may posttranscriptionally control Aire mRNA, reducing the respective Aire protein levels; consequently, the levels of mRNAs encode tissue-restricted antigens were affected. In addition, miR-155 regulated a crucial process by which mTECs allow thymocytes' migration through chemotaxis.
Collapse
Affiliation(s)
- Pedro Paranhos Tanaka
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ernna Hérida Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Mayara Cristina Vieira-Machado
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Max Jordan Duarte
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Amanda Freire Assis
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Karina Fittipaldi Bombonato-Prado
- Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
- Center for Cell-Based Therapy in Dentistry, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Geraldo Aleixo Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
- Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil.
- Center for Cell-Based Therapy in Dentistry, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
8
|
Abstract
A high diversity of αβ T cell receptors (TCRs), capable of recognizing virtually any pathogen but also self-antigens, is generated during T cell development in the thymus. Nevertheless, a strict developmental program supports the selection of a self-tolerant T cell repertoire capable of responding to foreign antigens. The steps of T cell selection are controlled by cortical and medullary stromal niches, mainly composed of thymic epithelial cells and dendritic cells. The integration of important cues provided by these specialized niches, including (a) the TCR signal strength induced by the recognition of self-peptide-MHC complexes, (b) costimulatory signals, and (c) cytokine signals, critically controls T cell repertoire selection. This review discusses our current understanding of the signals that coordinate positive selection, negative selection, and agonist selection of Foxp3+ regulatory T cells. It also highlights recent advances that have unraveled the functional diversity of thymic antigen-presenting cell subsets implicated in T cell selection.
Collapse
Affiliation(s)
- Magali Irla
- Centre d'Immunologie de Marseille-Luminy (CIML), CNRS, INSERM, Aix-Marseille Université, Marseille, France;
| |
Collapse
|
9
|
Tao Z, Jiang Y, Xia S. Regulation of thymic T regulatory cell differentiation by TECs in health and disease. Scand J Immunol 2021; 94:e13094. [PMID: 34780092 DOI: 10.1111/sji.13094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022]
Abstract
The thymus produces self-limiting and self-tolerant T cells through the interaction between thymocytes and thymus epithelial cells (TECs), thereby generating central immune tolerance. The TECs are composed of cortical and medullary thymic epithelial cells, which regulate the positive and negative selection of T cells, respectively. During the process of negative selection, thymocytes with self-reactive ability are deleted or differentiated into regulatory T cells (Tregs). Tregs are a subset of suppressor T cells that are important for maintaining immune homeostasis. The differentiation and development of Tregs depend on the development of TECs and other underlying molecular mechanisms. Tregs regulated by thymic epithelial cells are closely related to human health and are significant in autoimmune diseases, thymoma and pregnancy. In this review, we summarize the current molecular and transcriptional regulatory mechanisms by which TECs affect the development and function of thymic Tregs. We also review the pathophysiological models of thymic epithelial cells regulating thymic Tregs in human diseases and specific physiological conditions.
Collapse
Affiliation(s)
- Zehua Tao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yalan Jiang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Moura Silva H, Kitoko JZ, Queiroz CP, Kroehling L, Matheis F, Yang KL, Reis BS, Ren-Fielding C, Littman DR, Bozza MT, Mucida D, Lafaille JJ. c-MAF-dependent perivascular macrophages regulate diet-induced metabolic syndrome. Sci Immunol 2021; 6:eabg7506. [PMID: 34597123 DOI: 10.1126/sciimmunol.abg7506] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hernandez Moura Silva
- Kimmel Center for Biology and Medicine at the Skirball Institute; New York University School of Medicine, New York, NY 10016, USA
| | - Jamil Zola Kitoko
- Kimmel Center for Biology and Medicine at the Skirball Institute; New York University School of Medicine, New York, NY 10016, USA.,Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Camila Pereira Queiroz
- Kimmel Center for Biology and Medicine at the Skirball Institute; New York University School of Medicine, New York, NY 10016, USA.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas. Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Lina Kroehling
- Kimmel Center for Biology and Medicine at the Skirball Institute; New York University School of Medicine, New York, NY 10016, USA
| | - Fanny Matheis
- Laboratory of Mucosal Immunology, Rockefeller University, New York, NY 10065, USA
| | - Katharine Lu Yang
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, Rockefeller University, New York, NY 10065, USA
| | | | - Dan R Littman
- Kimmel Center for Biology and Medicine at the Skirball Institute; New York University School of Medicine, New York, NY 10016, USA.,Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.,Howard Hughes Medical Institute, New York, NY 10016, USA
| | - Marcelo Torres Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, Rockefeller University, New York, NY 10065, USA
| | - Juan J Lafaille
- Kimmel Center for Biology and Medicine at the Skirball Institute; New York University School of Medicine, New York, NY 10016, USA.,Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
11
|
Bettini M, Bettini ML. Function, Failure, and the Future Potential of Tregs in Type 1 Diabetes. Diabetes 2021; 70:1211-1219. [PMID: 34016597 PMCID: PMC8275894 DOI: 10.2337/dbi18-0058] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/10/2021] [Indexed: 12/22/2022]
Abstract
Critical insights into the etiology of type 1 diabetes (T1D) came from genome-wide association studies that unequivocally connected genetic susceptibility to immune cell function. At the top of the susceptibility are genes involved in regulatory T-cell (Treg) function and development. The advances in epigenetic and transcriptional analyses have provided increasing evidence for Treg dysfunction in T1D. These are well supported by functional studies in mouse models and analysis of peripheral blood during T1D. For these reasons, Treg-based therapies are at the forefront of research and development and have a tangible probability to deliver a long-sought-after successful immune-targeted treatment for T1D. The current challenge in the field is whether we can directly assess Treg function at the tissue site or make informative interpretations based on peripheral data. Future studies focused on Treg function in pancreatic lymph nodes and pancreas could provide key insight into the ultimate mechanisms underlying Treg failure in T1D. In this Perspective we will provide an overview of current literature regarding Treg development and function in T1D and how this knowledge has been applied to Treg therapies.
Collapse
MESH Headings
- Animals
- Autoimmunity/physiology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/therapy
- Endocrinology/methods
- Endocrinology/trends
- Humans
- Immune Tolerance/physiology
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Mice
- Molecular Targeted Therapy/methods
- Molecular Targeted Therapy/trends
- Pancreas/immunology
- Pancreas/metabolism
- Pancreas/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/physiology
- T-Lymphocytes, Regulatory/transplantation
Collapse
Affiliation(s)
- Maria Bettini
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Matthew L Bettini
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| |
Collapse
|
12
|
Walsh MC, Choi Y. Regulation of T cell-associated tissues and T cell activation by RANKL-RANK-OPG. J Bone Miner Metab 2021; 39:54-63. [PMID: 33438173 PMCID: PMC8670018 DOI: 10.1007/s00774-020-01178-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/28/2020] [Indexed: 10/22/2022]
Abstract
The receptor activator of nuclear factor kappa-B ligand (RANKL)-RANK-osteoprotegerin (OPG) system is critical to bone homeostasis, but genetically deficient mouse models have revealed important roles in the immune system as well. RANKL-RANK-OPG is particularly important to T cell biology because of its organogenic control of thymic development and secondary lymphoid tissues influence central T cell tolerance and peripheral T cell function. RANKL-RANK-OPG cytokine-receptor interactions are often controlled by regulation of expression of RANKL on developing T cells, which interacts with RANK expressed on some lymphoid tissue cells to stimulate key downstream signaling pathways that affect critical tuning functions of the T cell compartment, like cell survival and antigen presentation. Activation of peripheral T cells is regulated by RANKL-enhanced dendritic cell survival, and dysregulation of the RANKL-RANK-OPG system in this context is associated with loss of T cell tolerance and autoimmune disease. Given its broader implications for immune homeostasis and osteoimmunology, it is critical to further understand how the RANKL-RANK-OPG system operates in T cell biology.
Collapse
Affiliation(s)
- Matthew C Walsh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Wang H, Ashton R, Hensel JA, Lee JH, Khattar V, Wang Y, Deshane JS, Ponnazhagan S. RANKL-Targeted Combination Therapy with Osteoprotegerin Variant Devoid of TRAIL Binding Exerts Biphasic Effects on Skeletal Remodeling and Antitumor Immunity. Mol Cancer Ther 2020; 19:2585-2597. [PMID: 33199500 DOI: 10.1158/1535-7163.mct-20-0378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/24/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023]
Abstract
Complexities in treating breast cancer with bone metastasis are enhanced by a vicious protumorigenic pathology, involving a shift in skeletal homeostasis toward aggressive osteoclast activity and polarization of immune cells supporting tumor growth and immunosuppression. Recent studies signify the role of receptor activator of NF-κB ligand (RANKL) beyond skeletal pathology in breast cancer, including tumor growth and immunosuppression. By using an osteoprotegerin (OPG) variant, which we developed recently through protein engineering to uncouple TNF-related apoptosis-inducing ligand (TRAIL) binding, this study established the potential of a cell-based OPGY49R therapy for both bone damage and immunosuppression in an immunocompetent mouse model of orthotopic and metastatic breast cancers. In combination with agonistic death receptor (DR5) activation, the OPGY49R therapy significantly increased both bone remolding and long-term antitumor immunity, protecting mice from breast cancer relapse and osteolytic pathology. With limitations, cost, and toxicity issues associated with the use of denosumab, bisphosphonates, and chemotherapy for bone metastatic disease, use of OPGY49R combination could offer a viable alternate therapeutic approach.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Reading Ashton
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan A Hensel
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Joo Hyoung Lee
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Vinayak Khattar
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Yong Wang
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jessy S Deshane
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | | |
Collapse
|
14
|
Cavalla F, Letra A, Silva RM, Garlet GP. Determinants of Periodontal/Periapical Lesion Stability and Progression. J Dent Res 2020; 100:29-36. [PMID: 32866421 DOI: 10.1177/0022034520952341] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Periodontal and periapical lesions are infectious inflammatory osteolitytic conditions in which a complex inflammatory immune response mediates bone destruction. However, the uncertainty of a lesion's progressive or stable phenotype complicates understanding of the cellular and molecular mechanisms triggering lesion activity. Evidence from clinical and preclinical studies of both periodontal and periapical lesions points to a high receptor activator of NF-κB ligand/osteoprotegerin (RANKL/OPG) ratio as the primary determinant of osteolytic activity, while a low RANKL/OPG ratio is often observed in inactive lesions. Proinflammatory cytokines directly modulate RANKL/OPG expression and consequently drive lesion progression, along with pro-osteoclastogenic support provided by Th1, Th17, and B cells. Conversely, the cooperative action between Th2 and Tregs subsets creates an anti-inflammatory and proreparative milieu associated with lesion stability. Interestingly, the trigger for lesion status switch from active to inactive can originate from an unanticipated RANKL immunoregulatory feedback, involving the induction of Tregs and a host response outcome with immunological tolerance features. In this context, dendritic cells (DCs) appear as potential determinants of host response switch, since RANKL imprint a tolerogenic phenotype in DCs, described to be involved in both Tregs and immunological tolerance generation. The tolerance state systemically and locally suppresses the development of exacerbated and pathogenic responses and contributes to lesions stability. However, immunological tolerance break by comorbidities or dysbiosis could explain lesions relapse toward activity. Therefore, this article will provide a critical review of the current knowledge concerning periodontal and periapical lesions activity and the underlying molecular mechanisms associated with the host response. Further studies are required to unravel the role of immunological responsiveness or tolerance in the determination of lesion status, as well as the potential cooperative and/or inhibitory interplay among effector cells and their impact on RANKL/OPG balance and lesion outcome.
Collapse
Affiliation(s)
- F Cavalla
- Department of Conservative Dentistry, School of Dentistry, University of Chile, Santiago, Chile
| | - A Letra
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry, Houston, TX, USA.,Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry, Houston, TX, USA.,Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - R M Silva
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry, Houston, TX, USA.,Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA.,Department of Endodontics, University of Texas Health Science Center School of Dentistry, Houston, TX, USA
| | - G P Garlet
- OSTEOimmunology Laboratory, Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University-FOB/USP, Bauru, SP, Brazil
| |
Collapse
|
15
|
Wang H, Lu CH, Ho PC. Metabolic adaptation orchestrates tissue context-dependent behavior in regulatory T cells. Immunol Rev 2020; 295:126-139. [PMID: 32147869 DOI: 10.1111/imr.12844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
Abstract
The diverse distribution and functions of regulatory T cells (Tregs) ensure tissue and immune homeostasis; however, it remains unclear which factors can guide distribution, local differentiation, and tissue context-specific behavior in Tregs. Although the emerging concept that Tregs could re-adjust their transcriptome based on their habitations is supported by recent findings, the underlying mechanisms that reprogram transcriptome in Tregs are unknown. In the past decade, metabolic machineries have been revealed as a new regulatory circuit, known as immunometabolic regulation, to orchestrate activation, differentiation, and functions in a variety of immune cells, including Tregs. Given that systemic and local alterations of nutrient availability and metabolite profile associate with perturbation of Treg abundance and functions, it highlights that immunometabolic regulation may be one of the mechanisms that orchestrate tissue context-specific regulation in Tregs. The understanding on how metabolic program instructs Tregs in peripheral tissues not only represents a critical opportunity to delineate a new avenue in Treg biology but also provides a unique window to harness Treg-targeting approaches for treating cancer and autoimmunity with minimizing side effects. This review will highlight the metabolic features on guiding Treg formation and function in a disease-oriented perspective and aim to pave the foundation for future studies.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Chun-Hao Lu
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
16
|
Bettini M, Scavuzzo MA, Liu B, Kolawole E, Guo L, Evavold BD, Borowiak M, Bettini ML. A Critical Insulin TCR Contact Residue Selects High-Affinity and Pathogenic Insulin-Specific T Cells. Diabetes 2020; 69:392-400. [PMID: 31836691 PMCID: PMC7034183 DOI: 10.2337/db19-0821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/08/2019] [Indexed: 02/05/2023]
Abstract
Type 1 diabetes is an autoimmune-mediated disease that culminates in the targeted destruction of insulin-producing β-cells. CD4 responses in NOD mice are dominated by insulin epitope B:9-23 (InsB9-23) specificity, and mutation of the key T-cell receptor (TCR) contact residue within the epitope prevents diabetes development. However, it is not clear how insulin self-antigen controls the selection of autoimmune and regulatory T cells (Tregs). Here we demonstrate that mutation of insulin epitope results in escape of highly pathogenic T cells. We observe an increase in antigen reactivity, clonality, and pathogenicity of insulin-specific T cells that develop in the absence of cognate antigen. Using a single TCR system, we demonstrate that Treg development is greatly diminished in mice with the Y16A mutant epitope. Collectively, these results suggest that the tyrosine residue at position 16 is necessary to constrain TCR reactivity for InsB9-23 by both limiting the development of pathogenic T cells and supporting the selection of Tregs.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Forkhead Transcription Factors/metabolism
- Insulin/genetics
- Insulin/immunology
- Mice
- Mice, Inbred NOD
- Mutation
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Maria Bettini
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX
| | - Baoyu Liu
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Elizabeth Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Lin Guo
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Malgorzata Borowiak
- McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Matthew L Bettini
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| |
Collapse
|
17
|
Abstract
Foxp3-expressing CD4+ regulatory T (Treg) cells play key roles in the prevention of autoimmunity and the maintenance of immune homeostasis and represent a major barrier to the induction of robust antitumor immune responses. Thus, a clear understanding of the mechanisms coordinating Treg cell differentiation is crucial for understanding numerous facets of health and disease and for developing approaches to modulate Treg cells for clinical benefit. Here, we discuss current knowledge of the signals that coordinate Treg cell development, the antigen-presenting cell types that direct Treg cell selection, and the nature of endogenous Treg cell ligands, focusing on evidence from studies in mice. We also highlight recent advances in this area and identify key unanswered questions.
Collapse
Affiliation(s)
- Peter A Savage
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - David E J Klawon
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Christine H Miller
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| |
Collapse
|
18
|
Nakajima A, Habu S, Kasai M, Okumura K, Ishikawa D, Shibuya T, Kobayashi O, Osada T, Ohkusa T, Watanabe S, Nagahara A. Impact of maternal dietary gut microbial metabolites on an offspring's systemic immune response in mouse models. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 39:33-38. [PMID: 32328398 PMCID: PMC7162694 DOI: 10.12938/bmfh.19-013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
The gut microbiota has a great impact on the host immune systems. Recent evidence suggests that the maternal gut microbiota affects the immune systems of offspring. Metabolites produced by
the gut microbiota play crucial roles in the immune system. Previous studies have also revealed that metabolites such as short-chain fatty acids (SCFAs) and the aryl hydrocarbon receptor
(AhR) ligands are involved in host health and diseases. Great progress has been made in understanding the roles of diet-derived SCFAs in the offspring’s immune system. The findings to date
raise the possibility that maternal dietary soluble fiber intake may play a role in the development of the offspring’s systemic immune response. In this review, we summarize the present
knowledge and discuss future therapeutic possibilities for using dietary soluble fiber intake against inflammatory diseases.
Collapse
Affiliation(s)
- Akihito Nakajima
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sonoko Habu
- Atopic Research Center, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masataka Kasai
- Atopic Research Center, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ko Okumura
- Atopic Research Center, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Dai Ishikawa
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomoyoshi Shibuya
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Osamu Kobayashi
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Taro Osada
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Toshifumi Ohkusa
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sumio Watanabe
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
19
|
Zhang P, Liu RT, Du T, Yang CL, Liu YD, Ge MR, Zhang M, Li XL, Li H, Dou YC, Duan RS. Exosomes derived from statin-modified bone marrow dendritic cells increase thymus-derived natural regulatory T cells in experimental autoimmune myasthenia gravis. J Neuroinflammation 2019; 16:202. [PMID: 31679515 PMCID: PMC6825716 DOI: 10.1186/s12974-019-1587-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The thymus plays an essential role in the pathogenesis of myasthenia gravis (MG). In patients with MG, natural regulatory T cells (nTreg), a subpopulation of T cells that maintain tolerance to self-antigens, are severely impaired in the thymuses. In our previous study, upregulated nTreg cells were observed in the thymuses of rats in experimental autoimmune myasthenia gravis after treatment with exosomes derived from statin-modified dendritic cells (statin-Dex). METHODS We evaluated the effects of exosomes on surface co-stimulation markers and Aire expression of different kinds of thymic stromal cells, including cTEC, mTEC, and tDCs, in EAMG rats. The isolated exosomes were examined by western blot and DLS. Immunofluorescence was used to track the exosomes in the thymus. Flow cytometry and western blot were used to analyze the expression of co-stimulatory molecules and Aire in vivo and in vitro. RESULTS We confirmed the effects of statin-Dex in inducing Foxp3+ nTreg cells and found that both statin-Dex and DMSO-Dex could upregulate CD40 but only statin-Dex increased Aire expression in thymic stromal cells in vivo. Furthermore, we found that the role of statin-Dex and DMSO-Dex in the induction of Foxp3+ nTreg cells was dependent on epithelial cells in vitro. CONCLUSIONS We demonstrated that statin-Dex increased expression of Aire in the thymus, which may further promote the Foxp3 expression in the thymus. These findings may provide a new strategy for the treatment of myasthenia gravis.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Ru-Tao Liu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Tong Du
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Chun-Lin Yang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Yu-Dong Liu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Meng-Ru Ge
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Min Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Xiao-Li Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Heng Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Ying-Chun Dou
- College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355 People’s Republic of China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
- Department of Neurology, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 People’s Republic of China
| |
Collapse
|
20
|
Alvarez C, Monasterio G, Cavalla F, Córdova LA, Hernández M, Heymann D, Garlet GP, Sorsa T, Pärnänen P, Lee HM, Golub LM, Vernal R, Kantarci A. Osteoimmunology of Oral and Maxillofacial Diseases: Translational Applications Based on Biological Mechanisms. Front Immunol 2019; 10:1664. [PMID: 31379856 PMCID: PMC6657671 DOI: 10.3389/fimmu.2019.01664] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/03/2019] [Indexed: 12/23/2022] Open
Abstract
The maxillofacial skeleton is highly dynamic and requires a constant equilibrium between the bone resorption and bone formation. The field of osteoimmunology explores the interactions between bone metabolism and the immune response, providing a context to study the complex cellular and molecular networks involved in oro-maxillofacial osteolytic diseases. In this review, we present a framework for understanding the potential mechanisms underlying the immuno-pathobiology in etiologically-diverse diseases that affect the oral and maxillofacial region and share bone destruction as their common clinical outcome. These otherwise different pathologies share similar inflammatory pathways mediated by central cellular players, such as macrophages, T and B cells, that promote the differentiation and activation of osteoclasts, ineffective or insufficient bone apposition by osteoblasts, and the continuous production of osteoclastogenic signals by immune and local stromal cells. We also present the potential translational applications of this knowledge based on the biological mechanisms involved in the inflammation-induced bone destruction. Such applications can be the development of immune-based therapies that promote bone healing/regeneration, the identification of host-derived inflammatory/collagenolytic biomarkers as diagnostics tools, the assessment of links between oral and systemic diseases; and the characterization of genetic polymorphisms in immune or bone-related genes that will help diagnosis of susceptible individuals.
Collapse
Affiliation(s)
- Carla Alvarez
- Forsyth Institute, Cambridge, MA, United States
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Franco Cavalla
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Luis A. Córdova
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, San Jose's Hospital and Clínica Las Condes, Universidad de Chile, Santiago, Chile
| | - Marcela Hernández
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Dominique Heymann
- INSERM, UMR 1232, LabCT, CRCINA, Institut de Cancérologie de l'Ouest, Université de Nantes, Université d'Angers, Saint-Herblain, France
| | - Gustavo P. Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Department of Oral Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Pirjo Pärnänen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Lorne M. Golub
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | | |
Collapse
|
21
|
Hu M, Eviston D, Hsu P, Mariño E, Chidgey A, Santner-Nanan B, Wong K, Richards JL, Yap YA, Collier F, Quinton A, Joung S, Peek M, Benzie R, Macia L, Wilson D, Ponsonby AL, Tang MLK, O'Hely M, Daly NL, Mackay CR, Dahlstrom JE, Vuillermin P, Nanan R. Decreased maternal serum acetate and impaired fetal thymic and regulatory T cell development in preeclampsia. Nat Commun 2019; 10:3031. [PMID: 31292453 PMCID: PMC6620275 DOI: 10.1038/s41467-019-10703-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 05/23/2019] [Indexed: 12/27/2022] Open
Abstract
Maternal immune dysregulation seems to affect fetal or postnatal immune development. Preeclampsia is a pregnancy-associated disorder with an immune basis and is linked to atopic disorders in offspring. Here we show reduction of fetal thymic size, altered thymic architecture and reduced fetal thymic regulatory T (Treg) cell output in preeclamptic pregnancies, which persists up to 4 years of age in human offspring. In germ-free mice, fetal thymic CD4+ T cell and Treg cell development are compromised, but rescued by maternal supplementation with the intestinal bacterial metabolite short chain fatty acid (SCFA) acetate, which induces upregulation of the autoimmune regulator (AIRE), known to contribute to Treg cell generation. In our human cohorts, low maternal serum acetate is associated with subsequent preeclampsia, and correlates with serum acetate in the fetus. These findings suggest a potential role of acetate in the pathogenesis of preeclampsia and immune development in offspring.
Collapse
Affiliation(s)
- Mingjing Hu
- Charles Perkins Centre Nepean, The University of Sydney, Penrith, 2750, NSW, Australia
- Sydney Medical School Nepean, The University of Sydney, Penrith, 2750, NSW, Australia
| | - David Eviston
- Sydney Medical School Nepean, The University of Sydney, Penrith, 2750, NSW, Australia
| | - Peter Hsu
- Discipline of Paediatrics and Child Health, Sydney Medical School, The University of Sydney, Sydney, 2006, NSW, Australia
- Department of Allergy and Immunology, The Children's Hospital at Westmead, Sydney, 2145, NSW, Australia
| | - Eliana Mariño
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Ann Chidgey
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Brigitte Santner-Nanan
- Charles Perkins Centre Nepean, The University of Sydney, Penrith, 2750, NSW, Australia
- Sydney Medical School Nepean, The University of Sydney, Penrith, 2750, NSW, Australia
| | - Kahlia Wong
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - James L Richards
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Yu Anne Yap
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Fiona Collier
- Deakin University, Geelong, 3220, VIC, Australia
- Barwon Health, Geelong, 3220, VIC, Australia
- Murdoch Children's Research Institute, Parkville, 3052, VIC, Australia
| | - Ann Quinton
- Sydney Medical School Nepean, The University of Sydney, Penrith, 2750, NSW, Australia
- School of Health, Medical and Applied Science, Central Queensland University, Sydney, 2000, NSW, Australia
| | - Steven Joung
- Sydney Medical School Nepean, The University of Sydney, Penrith, 2750, NSW, Australia
- Nepean Hospital, Penrith, 2750, NSW, Australia
| | - Michael Peek
- Sydney Medical School Nepean, The University of Sydney, Penrith, 2750, NSW, Australia
- ANU Medical School, College of Health and Medicine, The Australian National University, Canberra, 0200, ACT, Australia
| | - Ron Benzie
- Nepean Hospital, Penrith, 2750, NSW, Australia
- Discipline of Obstetrics, Gynaecology and Neonatology, Sydney Medical School Nepean, The University of Sydney, Penrith, 2750, NSW, Australia
| | - Laurence Macia
- Department of Pathology, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney, 2006, NSW, Australia
| | - David Wilson
- Centre for Molecular Therapeutics, AITHM, James Cook University, Cairns, 4814, QLD, Australia
| | - Ann-Louise Ponsonby
- Murdoch Children's Research Institute, Parkville, 3052, VIC, Australia
- National Centre for Epidemiology and Population Health, Research School of Population Health, College of Health and Medicine, The Australian National University, Canberra, 0200, ACT, Australia
| | - Mimi L K Tang
- Murdoch Children's Research Institute, Parkville, 3052, VIC, Australia
- The Royal Children's Hospital, Parkville, Melbourne, 3052, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3010, VIC, Australia
| | - Martin O'Hely
- Deakin University, Geelong, 3220, VIC, Australia
- Murdoch Children's Research Institute, Parkville, 3052, VIC, Australia
| | - Norelle L Daly
- Centre for Molecular Therapeutics, AITHM, James Cook University, Cairns, 4814, QLD, Australia
| | - Charles R Mackay
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Jane E Dahlstrom
- Anatomical Pathology, ACT Pathology, Canberra Hospital and ANU Medical School, College of Health and Medicine, The Australian National University, Canberra, 0200, ACT, Australia
| | - Peter Vuillermin
- Deakin University, Geelong, 3220, VIC, Australia
- Barwon Health, Geelong, 3220, VIC, Australia
- Murdoch Children's Research Institute, Parkville, 3052, VIC, Australia
- Centre for Food and Allergy Research, Parkville, 3052, VIC, Australia
| | - Ralph Nanan
- Charles Perkins Centre Nepean, The University of Sydney, Penrith, 2750, NSW, Australia.
- Sydney Medical School Nepean, The University of Sydney, Penrith, 2750, NSW, Australia.
| |
Collapse
|
22
|
Sobacchi C, Menale C, Villa A. The RANKL-RANK Axis: A Bone to Thymus Round Trip. Front Immunol 2019; 10:629. [PMID: 30984193 PMCID: PMC6450200 DOI: 10.3389/fimmu.2019.00629] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
The identification of Receptor activator of nuclear factor kappa B ligand (RANKL) and its cognate receptor Receptor activator of nuclear factor kappa B (RANK) during a search for novel tumor necrosis factor receptor (TNFR) superfamily members has dramatically changed the scenario of bone biology by providing the functional and biochemical proof that RANKL signaling via RANK is the master factor for osteoclastogenesis. In parallel, two independent studies reported the identification of mouse RANKL on activated T cells and of a ligand for osteoprotegerin on a murine bone marrow-derived stromal cell line. After these seminal findings, accumulating data indicated RANKL and RANK not only as essential players for the development and activation of osteoclasts, but also for the correct differentiation of medullary thymic epithelial cells (mTECs) that act as mediators of the central tolerance process by which self-reactive T cells are eliminated while regulatory T cells are generated. In light of the RANKL-RANK multi-task function, an antibody targeting this pathway, denosumab, is now commonly used in the therapy of bone loss diseases including chronic inflammatory bone disorders and osteolytic bone metastases; furthermore, preclinical data support the therapeutic application of denosumab in the framework of a broader spectrum of tumors. Here, we discuss advances in cellular and molecular mechanisms elicited by RANKL-RANK pathway in the bone and thymus, and the extent to which its inhibition or augmentation can be translated in the clinical arena.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Ciro Menale
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Anna Villa
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
23
|
Ulinastatin mediates suppression of regulatory T cells through TLR4/NF-κB signaling pathway in murine sepsis. Int Immunopharmacol 2018; 64:411-423. [PMID: 30261464 DOI: 10.1016/j.intimp.2018.09.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 12/29/2022]
Abstract
CD4+CD25+ regulatory T cells (Tregs) play an essential role in the suppression of the immune response and prevention of autoimmune reactions. The activation of TLR4, which provides a critical link between the innate and adaptive immune systems, has been implicated in regulating the function of Tregs. Ulinastatin (UTI) is a broad-spectrum protease inhibitor that has been shown to modulate innate immunity and pro-inflammatory signaling in sepsis. In addition, there are reports that UTI may modulate the functional activity of Tregs to influence the inflammatory response in infectious disease. In the present study, we investigated the effect of UTI on the activity of Tregs, which was assessed by measuring the survival and inflammatory responses of mice with cecal ligation and puncture (CLP)-induced sepsis. In addition, we further explored the cellular and molecular mechanisms involved in these effects. The results showed that UTI could enhance survival and attenuate inflammatory responses during CLP-induced sepsis. Moreover, sepsis-induced increases in the quantity and activity of Tregs were attenuated under UTI treatment, but not in TLR4-/- mice. We also found that the functional changes in Tregs could be attributed to the TLR4/NF-κB signaling pathway. Collectively, our results indicated that UTI could ameliorate inflammatory damage by modulating the quantity and function of Tregs via the TLR4/NF-κB signaling pathway. Our study provides theoretical and experimental evidence for the administration of UTI in the treatment of sepsis and other acute critical illnesses.
Collapse
|
24
|
Lau CI, Yánez DC, Solanki A, Papaioannou E, Saldaña JI, Crompton T. Foxa1 and Foxa2 in thymic epithelial cells (TEC) regulate medullary TEC and regulatory T-cell maturation. J Autoimmun 2018; 93:131-138. [PMID: 30061015 PMCID: PMC6119767 DOI: 10.1016/j.jaut.2018.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/11/2018] [Accepted: 07/15/2018] [Indexed: 11/25/2022]
Abstract
The Foxa1 and Foxa2 transcription factors are essential for mouse development. Here we show that they are expressed in thymic epithelial cells (TEC) where they regulate TEC development and function, with important consequences for T-cell development. TEC are essential for T-cell differentiation, lineage decisions and repertoire selection. Conditional deletion of Foxa1 and Foxa2 from murine TEC led to a smaller thymus with a greater proportion of TEC and a greater ratio of medullary to cortical TEC. Cell-surface MHCI expression was increased on cortical TEC in the conditional Foxa1Foxa2 knockout thymus, and MHCII expression was reduced on both cortical and medullary TEC populations. These changes in TEC differentiation and MHC expression led to a significant reduction in thymocyte numbers, reduced positive selection of CD4+CD8+ cells to the CD4 lineage, and increased CD8 cell differentiation. Conditional deletion of Foxa1 and Foxa2 from TEC also caused an increase in the medullary TEC population, and increased expression of Aire, but lower cell surface MHCII expression on Aire-expressing mTEC, and increased production of regulatory T-cells. Thus, Foxa1 and Foxa2 in TEC promote positive selection of CD4SP T-cells and modulate regulatory T-cell production and activity, of importance to autoimmunity.
Collapse
Affiliation(s)
- Ching-In Lau
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Diana C Yánez
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Anisha Solanki
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Eleftheria Papaioannou
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - José Ignacio Saldaña
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; School of Health, Sport and Bioscience, University of East London, Water Lane, London E15 4LZ, UK
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
25
|
Paiola M, Knigge T, Duflot A, Pinto PIS, Farcy E, Monsinjon T. Oestrogen, an evolutionary conserved regulator of T cell differentiation and immune tolerance in jawed vertebrates? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:48-61. [PMID: 29408048 DOI: 10.1016/j.dci.2018.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
In teleosts, as in mammals, the immune system is tightly regulated by sexual steroid hormones, such as oestrogens. We investigated the effects of 17β-oestradiol on the expression of several genes related to T cell development and resulting T cell subpopulations in sea bass, Dicentrarchus labrax, for a primary lymphoid organ, the thymus, and two secondary lymphoid organs, the head-kidney and the spleen. In parallel, the oxidative burst capacity was assessed in leucocytes of the secondary lymphoid organs. Apoptosis- and proliferation-related genes, indicative of B and T cell clonal selection and lymphoid progenitor activity, were not affected by elevated oestrogen-levels. Sex-related oestrogen-responsiveness in T cell and antigen-presenting cell markers was observed, the expression of which was differentially induced by oestrogen-exposure in the three lymphoid organs. Remarkably, in the spleen, oestrogen increased regulatory T cell-related gene expression was associated with a decrease in oxidative burst capacity. To the best of our knowledge, this study indicates for the first time that physiological levels of oestrogen are likely to promote immune tolerance by modulating thymic function (i.e., T cell development and output) and peripheral T cells in teleosts, similar to previously reported oestrogenic effects in mammals.
Collapse
Affiliation(s)
- Matthieu Paiola
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Thomas Knigge
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Aurélie Duflot
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Patricia I S Pinto
- Laboratory of Comparative Endocrinology and Integrative Biology, CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Emilie Farcy
- Montpellier University, UMR MARBEC (UM, CNRS, Ifremer, IRD), 34095 Montpellier, France
| | - Tiphaine Monsinjon
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France.
| |
Collapse
|
26
|
Dai X, Hua L, Chen Y, Wang J, Li J, Wu F, Zhang Y, Su J, Wu Z, Liang C. Mechanisms in hypertension and target organ damage: Is the role of the thymus key? (Review). Int J Mol Med 2018; 42:3-12. [PMID: 29620247 PMCID: PMC5979885 DOI: 10.3892/ijmm.2018.3605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/27/2018] [Indexed: 12/23/2022] Open
Abstract
A variety of cells and cytokines have been shown to be involved in the whole process of hypertension. Data from experimental and clinical studies on hypertension have confirmed the key roles of immune cells and inflammation in the process. Dysfunction of the thymus, which modulates the development and maturation of lymphocytes, has been shown to be associated with the severity of hypertension. Furthermore, gradual atrophy, functional decline or loss of the thymus has been revealed to be associated with aging. The restoration or enhancement of thymus function via upregulation in the expression of thymus transcription factors forkhead box N1 or thymus transplantation may provide an option to halt or reverse the pathological process of hypertension. Therefore, the thymus may be key in hypertension and associated target organ damage, and may provide a novel treatment strategy for the clinical management of patients with hypertension in addition to different commercial drugs. The purpose of this review is to summarize and discuss the advances in our understanding of the impact of thymus function on hypertension from data from animal and human studies, and the potential mechanisms.
Collapse
Affiliation(s)
| | | | | | - Jiamei Wang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jingyi Li
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Feng Wu
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yanda Zhang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jiyuan Su
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Zonggui Wu
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Chun Liang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
27
|
Francisconi C, Vieira A, Azevedo M, Tabanez A, Fonseca A, Trombone A, Letra A, Silva R, Sfeir C, Little S, Garlet G. RANKL Triggers Treg-Mediated Immunoregulation in Inflammatory Osteolysis. J Dent Res 2018; 97:917-927. [PMID: 29499125 PMCID: PMC6728554 DOI: 10.1177/0022034518759302] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The chronic inflammatory immune response triggered by the infection of the tooth root canal system results in the local upregulation of RANKL, resulting in periapical bone loss. While RANKL has a well-characterized role in the control of bone homeostasis/pathology, it can play important roles in the regulation of the immune system, although its possible immunoregulatory role in infectious inflammatory osteolytic conditions remains largely unknown. Here, we used a mouse model of infectious inflammatory periapical lesions subjected to continuous or transitory anti-RANKL inhibition, followed by the analysis of lesion outcome and multiple host response parameters. Anti-RANKL administration resulted in arrest of bone loss but interfered in the natural immunoregulation of the lesions observed in the untreated group. RANKL inhibition resulted in an unremitting proinflammatory response, persistent high proinflammatory and effector CD4 response, decreased regulatory T-cell (Treg) migration, and lower levels of Treg-related cytokines IL-10 and TGFb. Anti-RANKL blockade impaired the immunoregulatory process only in early disease stages, while the late administration of anti-RANKL did not interfere with the stablished immunoregulation. The impaired immunoregulation due to RANKL inhibition is characterized by increased delayed-type hypersensitivity in vivo and T-cell proliferation in vitro to the infecting bacteria, which mimic the effects of Treg inhibition, reinforcing a possible influence of RANKL on Treg-mediated suppressive response. The adoptive transfer of CD4+FOXp3+ Tregs to mice receiving anti-RANKL therapy restored the immunoregulatory capacity, attenuating the inflammatory response in the lesions, reestablishing normal T-cell response in vivo and in vitro, and preventing lesion relapse upon anti-RANKL therapy cessation. Therefore, while RANKL inhibition efficiently limited the periapical bone loss, it promoted an unremitting host inflammatory response by interfering with Treg activity, suggesting that this classic osteoclastogenic mediator plays a role in immunoregulation.
Collapse
Affiliation(s)
- C.F. Francisconi
- Department of Biological Sciences,
School of Dentistry of Bauru, University of São Paulo, Bauru, Brazil
| | - A.E. Vieira
- Institute of Biological Sciences and
Health, Federal University of Alagoas, Maceió, Brazil
| | - M.C.S. Azevedo
- Department of Biological Sciences,
School of Dentistry of Bauru, University of São Paulo, Bauru, Brazil
| | - A.P. Tabanez
- Department of Biological Sciences,
School of Dentistry of Bauru, University of São Paulo, Bauru, Brazil
| | - A.C. Fonseca
- Department of Biological Sciences,
School of Dentistry of Bauru, University of São Paulo, Bauru, Brazil
| | | | - A. Letra
- Department of Endodontics, School of
Dentistry, University of Texas Health Science Center at Houston, Houston, TX,
USA
- Department of Diagnostic and Biomedical
Sciences and Center for Craniofacial Research, University of Texas Health Science
Center at Houston, Houston, Texas, USA
| | - R.M. Silva
- Department of Endodontics, School of
Dentistry, University of Texas Health Science Center at Houston, Houston, TX,
USA
| | - C.S. Sfeir
- Center for Craniofacial Regeneration,
University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative
Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Periodontics and
Preventive Dentistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - S.R. Little
- Center for Craniofacial Regeneration,
University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative
Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemical and Petroleum
Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University
of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering,
University of Pittsburgh, Pittsburgh, PA, USA
| | - G.P. Garlet
- Department of Biological Sciences,
School of Dentistry of Bauru, University of São Paulo, Bauru, Brazil
| |
Collapse
|
28
|
Legrand JMD, Roy E, Baz B, Mukhopadhyay P, Wong HY, Ram R, Morahan G, Walker G, Khosrotehrani K. Genetic variation in the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway affects contact hypersensitivity responses. J Allergy Clin Immunol 2018; 142:981-984.e7. [PMID: 29753814 DOI: 10.1016/j.jaci.2018.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/17/2018] [Accepted: 04/20/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Julien M D Legrand
- UQ Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, Australia
| | - Edwige Roy
- UQ Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, Australia
| | - Batoul Baz
- UQ Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, Australia
| | | | - Ho Yi Wong
- UQ Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, Australia
| | - Ramesh Ram
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, Australia
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, Australia
| | - Graeme Walker
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kiarash Khosrotehrani
- UQ Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, Australia.
| |
Collapse
|
29
|
Perry JSA, Russler-Germain EV, Zhou YW, Purtha W, Cooper ML, Choi J, Schroeder MA, Salazar V, Egawa T, Lee BC, Abumrad NA, Kim BS, Anderson MS, DiPersio JF, Hsieh CS. Transfer of Cell-Surface Antigens by Scavenger Receptor CD36 Promotes Thymic Regulatory T Cell Receptor Repertoire Development and Allo-tolerance. Immunity 2018; 48:923-936.e4. [PMID: 29752065 DOI: 10.1016/j.immuni.2018.04.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 12/31/2017] [Accepted: 04/05/2018] [Indexed: 11/18/2022]
Abstract
The development of T cell tolerance in the thymus requires the presentation of host proteins by multiple antigen-presenting cell (APC) types. However, the importance of transferring host antigens from transcription factor AIRE-dependent medullary thymic epithelial cells (mTECs) to bone marrow (BM) APCs is unknown. We report that antigen was primarily transferred from mTECs to CD8α+ dendritic cells (DCs) and showed that CD36, a scavenger receptor selectively expressed on CD8α+ DCs, mediated the transfer of cell-surface, but not cytoplasmic, antigens. The absence of CD8α+ DCs or CD36 altered thymic T cell selection, as evidenced by TCR repertoire analysis and the loss of allo-tolerance in murine allogeneic BM transplantation (allo-BMT) studies. Decreases in these DCs and CD36 expression in peripheral blood of human allo-BMT patients correlated with graft-versus-host disease. Our findings suggest that CD36 facilitates transfer of mTEC-derived cell-surface antigen on CD8α+ DCs to promote tolerance to host antigens during homeostasis and allo-BMT.
Collapse
MESH Headings
- Animals
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Bone Marrow Transplantation
- CD36 Antigens/genetics
- CD36 Antigens/immunology
- CD36 Antigens/metabolism
- CD8 Antigens/immunology
- CD8 Antigens/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Epithelial Cells/immunology
- Epithelial Cells/metabolism
- Immune Tolerance/immunology
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transplantation, Homologous
Collapse
Affiliation(s)
- Justin S A Perry
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emilie V Russler-Germain
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - You W Zhou
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Whitney Purtha
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94131, USA
| | - Matthew L Cooper
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jaebok Choi
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark A Schroeder
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vanessa Salazar
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Byeong-Chel Lee
- University of Pittsburgh Cancer Institute and Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian S Kim
- Department of Medicine, Division of Dermatology and the Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark S Anderson
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94131, USA
| | - John F DiPersio
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Shi H, Yu F, Mao Y, Ju Q, Wu Y, Bai W, Wang P, Xu R, Jiang M, Shi J. EphA2 chimeric antigen receptor-modified T cells for the immunotherapy of esophageal squamous cell carcinoma. J Thorac Dis 2018; 10:2779-2788. [PMID: 29997940 DOI: 10.21037/jtd.2018.04.91] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background It is urgent to explore an effective potential therapeutic strategy for ESCC. In recent years, cell-based cancer immunotherapy has become a potentially close for carcinoma therapy. Chimeric antigen receptor (CAR) T cell technology is a kind of adoptive cell therapy technique which has been developed rapidly. We sought to obtain EphA2.CAR-T cell and revealed the ability of EphA2.CAR-T cells to kill esophageal squamous cell carcinoma (ESCC) cells in vitro. Methods Firstly, the expression and location of EphA2 in ESCC tissues and cells was tested by immunohistochemistry staining and Western blot. Secondly, the second generation of EphA2.CAR was constructed via molecular biology technology, and transduced into T cells to obtain the EphA2.CAR-T cell. The transduction efficacies were assessed using flow cytometry (FCM). Thirdly, the effect of cell killing of EphA2.CAR-T cell on ESCC cells in vitro was detected by co-culture experiments. The productions of cytokines (TNF-α and IFN-γ) by EphA2.CAR-T cell after co-culture with ESCC cells were analyzed by ELISA assay. Results The expression of EphA2 was significantly upregulated in ESCC tissues and cells (P<0.05). EphA2 was expressed on the membrane of ESCC cells, so it could be served as tumor-associated surface antigens (TAA) of CAR for ESCC treatment. The EphA2.CAR-T cell was obtained successfully, and its' transduction efficacies was 61.4% by FCM. The ability of cell killing of EphA2.CAR-T cell was better than that of T cells (P<0.01), and demonstrated a dose-dependent cell killing. The results of ELISA assay showed that the levels of TNF-α and IFN-γ in EphA2.CAR-T cells were notably raised compared with T cells (P<0.05). Conclusions We firstly constructed the second generation of EphA2.CAR and established EphA2.CAR-T cells. The EphA2.CAR-T cells showed a dose-dependent cell killing of ESCC cells, and promoted the production of cytokines in vitro. These findings open a new way for treatment of ESCC by immunotherapy in the future.
Collapse
Affiliation(s)
- Hui Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Feng Yu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yinting Mao
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Qianqian Ju
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yingcheng Wu
- Medical College, Nantong University, Nantong 226001, China
| | - Wen Bai
- Medical College, Nantong University, Nantong 226001, China
| | - Peiwen Wang
- Medical College, Nantong University, Nantong 226001, China
| | - Ran Xu
- Medical College, Nantong University, Nantong 226001, China
| | - Maorong Jiang
- Laboratory Animals Center, Nantong University, Nantong 226001, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
31
|
Garg G, Nikolouli E, Hardtke-Wolenski M, Toker A, Ohkura N, Beckstette M, Miyao T, Geffers R, Floess S, Gerdes N, Lutgens E, Osterloh A, Hori S, Sakaguchi S, Jaeckel E, Huehn J. Unique properties of thymic antigen-presenting cells promote epigenetic imprinting of alloantigen-specific regulatory T cells. Oncotarget 2018; 8:35542-35557. [PMID: 28415767 PMCID: PMC5482597 DOI: 10.18632/oncotarget.16221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/03/2017] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) are potential immunotherapeutic candidates to induce transplantation tolerance. However, stability of Tregs still remains contentious and may potentially restrict their clinical use. Recent work suggested that epigenetic imprinting of Foxp3 and other Treg-specific signature genes is crucial for stabilization of immunosuppressive properties of Foxp3+ Tregs, and that these events are initiated already during early stages of thymic Treg development. However, the mechanisms governing this process remain largely unknown. Here we demonstrate that thymic antigen-presenting cells (APCs), including thymic dendritic cells (t-DCs) and medullary thymic epithelial cells (mTECs), can induce a more pronounced demethylation of Foxp3 and other Treg-specific epigenetic signature genes in developing Tregs when compared to splenic DCs (sp-DCs). Transcriptomic profiling of APCs revealed differential expression of secreted factors and costimulatory molecules, however neither addition of conditioned media nor interference with costimulatory signals affected Foxp3 induction by thymic APCs in vitro. Importantly, when tested in vivo both mTEC- and t-DC-generated alloantigen-specific Tregs displayed significantly higher efficacy in prolonging skin allograft acceptance when compared to Tregs generated by sp-DCs. Our results draw attention to unique properties of thymic APCs in initiating commitment towards stable and functional Tregs, a finding that could be highly beneficial in clinical immunotherapy.
Collapse
Affiliation(s)
- Garima Garg
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eirini Nikolouli
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology, Endocrinology, Hannover Medical School, Hannover, Germany
| | - Aras Toker
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Naganari Ohkura
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Michael Beckstette
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Takahisa Miyao
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Norbert Gerdes
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany.,Division of Cardiology, Pulmonology, and Vascular Medicine Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Esther Lutgens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany.,Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, AZ, Amsterdam, The Netherlands
| | - Anke Osterloh
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Shohei Hori
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Shimon Sakaguchi
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology, Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
32
|
Abstract
Regulatory T (Treg) cells are a distinct subset of CD4+ T cells. Instead of triggering adaptive immunity, they suppress immune responses. Small numbers of Treg cells reside within lymphoid organs and peripheral tissues, but their contribution to immune tolerance is so significant that defects in Treg cell function cause catastrophic immune disorders. Since they were first discovered 20 years ago, efforts have been made to understand the differences in developmental processes between Treg cells and conventional T cells that determine the ultimate fate of the overall T-cell population. Transcription factor Foxp3 is crucial for Treg cell differentiation, but it is not the whole story. Owing to recent advances in Treg cell research, we are now on the verge of appreciating the comprehensive mechanisms underlying Treg cell generation. Here, we discuss major discoveries, active study topics and remaining questions regarding Treg cell development.
Collapse
Affiliation(s)
- Wonyong Lee
- Department of Life Science, Sogang University, Mapo-gu, Seoul 04107, Korea
| | - Gap Ryol Lee
- Department of Life Science, Sogang University, Mapo-gu, Seoul 04107, Korea
| |
Collapse
|
33
|
Abstract
About two decades ago, cloning of the autoimmune regulator (AIRE) gene materialized one of the most important actors on the scene of self-tolerance. Thymic transcription of genes encoding tissue-specific antigens (ts-ags) is activated by AIRE protein and embodies the essence of thymic self-representation. Pathogenic AIRE variants cause the autoimmune polyglandular syndrome type 1, which is a rare and complex disease that is gaining attention in research on autoimmunity. The animal models of disease, although not identically reproducing the human picture, supply fundamental information on mechanisms and extent of AIRE action: thanks to its multidomain structure, AIRE localizes to chromatin enclosing the target genes, binds to histones, and offers an anchorage to multimolecular complexes involved in initiation and post-initiation events of gene transcription. In addition, AIRE enhances mRNA diversity by favoring alternative mRNA splicing. Once synthesized, ts-ags are presented to, and cause deletion of the self-reactive thymocyte clones. However, AIRE function is not restricted to the activation of gene transcription. AIRE would control presentation and transfer of self-antigens for thymic cellular interplay: such mechanism is aimed at increasing the likelihood of engagement of the thymocytes that carry the corresponding T-cell receptors. Another fundamental role of AIRE in promoting self-tolerance is related to the development of thymocyte anergy, as thymic self-representation shapes at the same time the repertoire of regulatory T cells. Finally, AIRE seems to replicate its action in the secondary lymphoid organs, albeit the cell lineage detaining such property has not been fully characterized. Delineation of AIRE functions adds interesting data to the knowledge of the mechanisms of self-tolerance and introduces exciting perspectives of therapeutic interventions against the related diseases.
Collapse
Affiliation(s)
- Roberto Perniola
- Department of Pediatrics, Neonatal Intensive Care, Vito Fazzi Regional Hospital, Lecce, Italy
| |
Collapse
|
34
|
Koh AS, Miller EL, Buenrostro JD, Moskowitz DM, Wang J, Greenleaf WJ, Chang HY, Crabtree GR. Rapid chromatin repression by Aire provides precise control of immune tolerance. Nat Immunol 2018; 19:162-172. [PMID: 29335648 PMCID: PMC6049828 DOI: 10.1038/s41590-017-0032-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/07/2017] [Indexed: 01/23/2023]
Abstract
Aire mediates the expression of tissue-specific antigens in thymic epithelial cells to promote tolerance against self-reactive T lymphocytes. However, the mechanism that allows expression of tissue-specific genes at levels that prevent harm is unknown. Here we show that Brg1 generates accessibility at tissue-specific loci to impose central tolerance. We found that Aire has an intrinsic repressive function that restricts chromatin accessibility and opposes Brg1 across the genome. Aire exerted this repressive influence within minutes after recruitment to chromatin and restrained the amplitude of active transcription. Disease-causing mutations that impair Aire-induced activation also impair the protein's repressive function, which indicates dual roles for Aire. Together, Brg1 and Aire fine-tune the expression of tissue-specific genes at levels that prevent toxicity yet promote immune tolerance.
Collapse
Affiliation(s)
- Andrew S Koh
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Erik L Miller
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason D Buenrostro
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Society of Fellows, Harvard University, Cambridge, MA, USA
| | - David M Moskowitz
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jing Wang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - William J Greenleaf
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerburg Biohub, San Francisco, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
35
|
Huo F, Li D, Zhao B, Luo Y, Zhao B, Zou X, Li Y, Yang W. Deficiency of autoimmune regulator impairs the immune tolerance effect of bone marrow-derived dendritic cells in mice. Autoimmunity 2018; 51:10-17. [PMID: 29297233 DOI: 10.1080/08916934.2017.1422124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/23/2017] [Indexed: 10/18/2022]
Abstract
As a transcription factor, autoimmune regulator (Aire) participates in thymic negative selection and maintains immune tolerance mainly by regulating the ectopic expression of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs). Aire is also expressed in dendritic cells (DCs). DCs are professional antigen-presenting cells (APCs) that affect the differentiation of T cells toward distinct subpopulations and participate in the immune response and tolerance, thereby playing an important role in maintaining homeostasis. To determine the role of Aire in maintaining immune tolerance by bone marrow-derived dendritic cells (BMDCs), in the present study we utilized Aire-knockout mice to examine the changes of maturation status and TRAs expression on BMDCs, additionally investigate the differentiation of CD4+ T cells. The results showed that expression of costimulatory molecule and major histocompatibility complex class II (MHC-II) molecule was increased and expression of various TRAs was decreased in BMDCs from Aire-knockout mice. Aire deficiency reduced the differentiation of naïve CD4+ T cells into type 2T helper (Th2) cells and regulatory T cells (Tregs) but enhanced the differentiation of naïve CD4+ T cells into Th1 cells, Th17 cells, and follicular helper T (Tfh) cells. The results demonstrate that Aire expressed by BMDCs plays an important role in the maintenance of homeostasis by regulating TRA expression and the differentiation of T cell subsets.
Collapse
Affiliation(s)
- Feifei Huo
- a Department of Immunology, College of Basic Medical Sciences , Jilin University , Changchun , Jilin , China
- b Department of Intensive Care Unit , First Hospital, Jilin University , Changchun , Jilin , China
| | - Dongbei Li
- c College of Life Science and Technology , Xinxiang Medical University , Xinxiang , Henan , China
| | - Bo Zhao
- a Department of Immunology, College of Basic Medical Sciences , Jilin University , Changchun , Jilin , China
| | - Yadong Luo
- a Department of Immunology, College of Basic Medical Sciences , Jilin University , Changchun , Jilin , China
| | - Bingjie Zhao
- a Department of Immunology, College of Basic Medical Sciences , Jilin University , Changchun , Jilin , China
| | - Xueyang Zou
- a Department of Immunology, College of Basic Medical Sciences , Jilin University , Changchun , Jilin , China
| | - Yi Li
- a Department of Immunology, College of Basic Medical Sciences , Jilin University , Changchun , Jilin , China
| | - Wei Yang
- a Department of Immunology, College of Basic Medical Sciences , Jilin University , Changchun , Jilin , China
| |
Collapse
|
36
|
Dai X, Zhang D, Wang C, Wu Z, Liang C. The Pivotal Role of Thymus in Atherosclerosis Mediated by Immune and Inflammatory Response. Int J Med Sci 2018; 15:1555-1563. [PMID: 30443178 PMCID: PMC6216065 DOI: 10.7150/ijms.27238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/06/2018] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis is one kind of chronic inflammatory disease, in which multiple types of immune cells or factors are involved. Data from experimental and clinical studies on atherosclerosis have confirmed the key roles of immune cells and inflammation in such process. The thymus as a key organ in T lymphocyte ontogenesis has an important role in optimizing immune system function throughout the life, and dysfunction of thymus has been proved to be associated with severity of atherosclerosis. Based on previous research, we begin with the hypothesis that low density lipoprotein or cholesterol reduces the expression of the thymus transcription factor Foxn1 via low density lipoprotein receptors on the membrane surface and low density lipoprotein receptor related proteins on the cell surface, which cause the thymus function decline or degradation. The imbalance of T cell subgroups and the decrease of naive T cells due to thymus dysfunction cause the increase or decrease in the secretion of various inflammatory factors, which in turn aggravates or inhibits atherosclerosis progression and cardiovascular events. Hence, thymus may be the pivotal role in coronary heart disease mediated by atherosclerosis and cardiovascular events and it can imply a novel treatment strategy for the clinical management of patients with atherosclerosis in addition to different commercial drugs. Modulation of immune system by inducing thymus function may be a therapeutic approach for the prevention of atherosclerosis. Purpose of this review is to summarize and discuss the recent advances about the impact of thymus function on atherosclerosis by the data from animal or human studies and the potential mechanisms.
Collapse
Affiliation(s)
- Xianliang Dai
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.,Department of Cardiology, 101 Hospital of PLA, Wuxi, Jiangsu province 214041, China
| | - Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Chaoqun Wang
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.,Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zonggui Wu
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Chun Liang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
37
|
Cédile O, Jørgensen LØ, Frank I, Wlodarczyk A, Owens T. The chemokine receptor CCR2 maintains plasmacytoid dendritic cell homeostasis. Immunol Lett 2017; 192:72-78. [DOI: 10.1016/j.imlet.2017.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/04/2017] [Accepted: 10/24/2017] [Indexed: 12/24/2022]
|
38
|
Nakajima A, Kaga N, Nakanishi Y, Ohno H, Miyamoto J, Kimura I, Hori S, Sasaki T, Hiramatsu K, Okumura K, Miyake S, Habu S, Watanabe S. Maternal High Fiber Diet during Pregnancy and Lactation Influences Regulatory T Cell Differentiation in Offspring in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:3516-3524. [PMID: 29021375 DOI: 10.4049/jimmunol.1700248] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2023]
Abstract
Short-chain fatty acids (SCFAs), the end products of dietary fiber, influence the immune system. Moreover, during pregnancy the maternal microbiome has a great impact on the development of the offspring's immune system. However, the exact mechanisms by which maternal SCFAs during pregnancy and lactation influence the immune system of offspring are not fully understood. We investigated the molecular mechanisms underlying regulatory T cell (Treg) differentiation in offspring regulated by a maternal high fiber diet (HFD). Plasma levels of SCFAs in offspring from HFD-fed mice were higher than in those from no fiber diet-fed mice. Consequently, the offspring from HFD-fed mice had higher frequencies of thymic Treg (tTreg) and peripheral Tregs We found that the offspring of HFD-fed mice exhibited higher autoimmune regulator (Aire) expression, a transcription factor expressed in the thymic microenvironment, suggesting SCFAs promote tTreg differentiation through increased Aire expression. Notably, the receptor for butyrate, G protein-coupled receptor 41 (GPR41), is highly expressed in the thymic microenvironment and Aire expression is not increased by stimulation with butyrate in GPR41-deficient mice. Our studies highlight the significance of SCFAs produced by a maternal HFD for Treg differentiation in the thymus of offspring. Given that Aire expression is associated with the induction of tTregs, the maternal microbiome influences Treg differentiation in the thymus of offspring through GPR41-mediated Aire expression.
Collapse
Affiliation(s)
- Akihito Nakajima
- Department of Gastroenterology, School of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Naoko Kaga
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center, School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yumiko Nakanishi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Science, Yokohama 230-0045, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Science, Yokohama 230-0045, Japan
| | - Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Shohei Hori
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Science, Yokohama 230-0045, Japan
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Takashi Sasaki
- Department of Bacteriology, School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Keiichi Hiramatsu
- Department of Bacteriology, School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ko Okumura
- Atopic Research Center, School of Medicine, Juntendo University, Tokyo 113-8421, Japan; and
| | - Sachiko Miyake
- Department of Immunology, School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Sonoko Habu
- Atopic Research Center, School of Medicine, Juntendo University, Tokyo 113-8421, Japan; and
| | - Sumio Watanabe
- Department of Gastroenterology, School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
39
|
Yan F, Mo X, Liu J, Ye S, Zeng X, Chen D. Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling (Review). Mol Med Rep 2017; 16:7175-7184. [PMID: 28944829 PMCID: PMC5865843 DOI: 10.3892/mmr.2017.7525] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/12/2017] [Indexed: 01/08/2023] Open
Abstract
The thymus is critical in establishing and maintaining the appropriate microenvironment for promoting the development and selection of T cells. The function and structure of the thymus gland has been extensively studied, particularly as the thymus serves an important physiological role in the lymphatic system. Numerous studies have investigated the morphological features of thymic involution. Recently, research attention has increasingly been focused on thymic proteins as targets for drug intervention. Omics approaches have yielded novel insights into the thymus and possible drug targets. The present review addresses the signaling and transcriptional functions of the thymus, including the molecular mechanisms underlying the regulatory functions of T cells and their role in the immune system. In addition, the levels of cytokines secreted in the thymus have a significant effect on thymic functions, including thymocyte migration and development, thymic atrophy and thymic recovery. Furthermore, the regulation and molecular mechanisms of stress-mediated thymic atrophy and involution were investigated, with particular emphasis on thymic function as a potential target for drug development and discovery using proteomics.
Collapse
Affiliation(s)
- Fenggen Yan
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Xiumei Mo
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Junfeng Liu
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Siqi Ye
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Xing Zeng
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Dacan Chen
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
40
|
Breed ER, Lee ST, Hogquist KA. Directing T cell fate: How thymic antigen presenting cells coordinate thymocyte selection. Semin Cell Dev Biol 2017; 84:2-10. [PMID: 28800929 DOI: 10.1016/j.semcdb.2017.07.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/30/2017] [Accepted: 07/30/2017] [Indexed: 01/02/2023]
Abstract
The development of a self-tolerant and effective T cell receptor repertoire is dependent on interactions coordinated by various antigen presenting cells (APC) within the thymus. T cell receptor-self-peptide-MHC interactions are essential for determining T cell fate, however different cytokine and co-stimulatory signals provided by the diverse APCs within the thymus are also critical. Here, we outline the different localization and functional capabilities of thymic APCs. We also discuss how these distinct APCs work collectively to facilitate the establishment of a diverse T cell receptor repertoire that is tolerant to an array of different self-antigens.
Collapse
Affiliation(s)
- Elise R Breed
- The Center for Immunology, Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA
| | - S Thera Lee
- The Center for Immunology, Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kristin A Hogquist
- The Center for Immunology, Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
41
|
Dong Y, Li H, Li Y, Liu Y, Chen H, Xu P, Zhao T, He W. The role of regulatory T cells in thymectomy-induced autoimmune ovarian disease. Am J Reprod Immunol 2017; 78. [PMID: 28660639 DOI: 10.1111/aji.12683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
- Yajun Dong
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Hongmei Li
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Yuyan Li
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Yonggang Liu
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Huiling Chen
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Pingping Xu
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Tingting Zhao
- Institute of Immunology; Third Military Medical University; Chongqing China
| | - Wei He
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| |
Collapse
|
42
|
Pan Y, Fang H, Lu F, Pan M, Chen F, Xiong P, Yao Y, Huang H. Ulinastatin ameliorates tissue damage of severe acute pancreatitis through modulating regulatory T cells. J Inflamm (Lond) 2017; 14:7. [PMID: 28344516 PMCID: PMC5360080 DOI: 10.1186/s12950-017-0154-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/14/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Ulinastatin or urinary trypsin inhibitor (UTI) has been shown to ameliorate the inflammatory response induced by experimental severe acute pancreatitis (SAP) and hence reduce the mortality, however the mechanism of its action remains incompletely understood. We have investigated the effect of ulinastatin on regulatory T-cells (Tregs) in an established rat model of SAP. METHODS We established a rat SAP model by injecting 5% Na-taurocholate into the pancreatic duct and treated the SAP rats with ulinastatin with different dose level (5000, 10000, 30000 U/kg) through intraperitoneal injection at 0, 6 and 12 h. RESULTS We showed that the tissue damage of pancreas and the mortality of the SAP rats were significantly reduced by ulinastatin. We also showed that in the SAP rats the frequencies of CD4+ T cells and Tregs, as well as the expressions of TGF-β1, CTLA-4, and Foxp3 were decreased in the SAP animals while IL-1β, IL-10 and TNF-α were significantly increased. Treatment with ulinastatin up-regulated the proportion of Tregs in CD4+ T cells and the expression of IL-10, Foxp3 and CTLA-4 in the SAP rats in a dose dependence fashion, while down-regulating the levels of L-1β and TNF-α, myeloperoxidase (MPO) activity. CONCLUSIONS Our findings suggest that ulinastatin alleviates inflammatory response and tissue damage in SAP rats by increasing the proportion of Tregs. Our study provides a new mechanism for the beneficial effect of ulinastatin in SAP rat model.
Collapse
Affiliation(s)
- Yu Pan
- General Surgery Department, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001 People’s Republic of China
| | - Haizong Fang
- General Surgery Department, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001 People’s Republic of China
| | - Fengchun Lu
- General Surgery Department, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001 People’s Republic of China
| | - Minggui Pan
- Department of Oncology and Hematology, Kaiser Permanente Medical Center, 710 Lawrence Expressway, Santa Clara, CA 95051 USA
| | - Fei Chen
- General Surgery Department, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001 People’s Republic of China
| | | | - Yi Yao
- General Surgery Department, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001 People’s Republic of China
| | - Heguang Huang
- General Surgery Department, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001 People’s Republic of China
| |
Collapse
|
43
|
Levine AG, Hemmers S, Baptista AP, Schizas M, Faire MB, Moltedo B, Konopacki C, Schmidt-Supprian M, Germain RN, Treuting PM, Rudensky AY. Suppression of lethal autoimmunity by regulatory T cells with a single TCR specificity. J Exp Med 2017; 214:609-622. [PMID: 28130403 PMCID: PMC5339675 DOI: 10.1084/jem.20161318] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/06/2016] [Accepted: 12/23/2016] [Indexed: 12/31/2022] Open
Abstract
Levine et al. investigate the extent to which regulatory T cells with either a monoclonal T cell receptor (TCR) or random TCR repertoire in place of their developmentally selected specificities maintain TCR-dependent gene expression and immunosuppressive function. The regulatory T cell (T reg cell) T cell receptor (TCR) repertoire is highly diverse and skewed toward recognition of self-antigens. TCR expression by T reg cells is continuously required for maintenance of immune tolerance and for a major part of their characteristic gene expression signature; however, it remains unknown to what degree diverse TCR-mediated interactions with cognate self-antigens are required for these processes. In this study, by experimentally switching the T reg cell TCR repertoire to a single T reg cell TCR, we demonstrate that T reg cell function and gene expression can be partially uncoupled from TCR diversity. An induced switch of the T reg cell TCR repertoire to a random repertoire also preserved, albeit to a limited degree, the ability to suppress lymphadenopathy and T helper cell type 2 activation. At the same time, these perturbations of the T reg cell TCR repertoire led to marked immune cell activation, tissue inflammation, and an ultimately severe autoimmunity, indicating the importance of diversity and specificity for optimal T reg cell function.
Collapse
Affiliation(s)
- Andrew G Levine
- Howard Hughes Medical Institute, Immunology Program, Ludwig Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Saskia Hemmers
- Howard Hughes Medical Institute, Immunology Program, Ludwig Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Antonio P Baptista
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Michail Schizas
- Howard Hughes Medical Institute, Immunology Program, Ludwig Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Mehlika B Faire
- Howard Hughes Medical Institute, Immunology Program, Ludwig Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Bruno Moltedo
- Howard Hughes Medical Institute, Immunology Program, Ludwig Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Catherine Konopacki
- Howard Hughes Medical Institute, Immunology Program, Ludwig Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Marc Schmidt-Supprian
- Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, 80333 Munich, Germany
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Piper M Treuting
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA 98195
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute, Immunology Program, Ludwig Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
44
|
Bettini ML, Bettini M. Understanding Autoimmune Diabetes through the Prism of the Tri-Molecular Complex. Front Endocrinol (Lausanne) 2017; 8:351. [PMID: 29312143 PMCID: PMC5735072 DOI: 10.3389/fendo.2017.00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
The strongest susceptibility allele for Type 1 Diabetes (T1D) is human leukocyte antigen (HLA), which supports a central role for T cells as the drivers of autoimmunity. However, the precise mechanisms that allow thymic escape and peripheral activation of beta cell antigen-specific T cells are still largely unknown. Studies performed with the non-obese diabetic (NOD) mouse have challenged several immunological dogmas, and have made the NOD mouse a key experimental system to study the steps of immunodysregulation that lead to autoimmune diabetes. The structural similarities between the NOD I-Ag7 and HLA-DQ8 have revealed the stability of the T cell receptor (TCR)/HLA/peptide tri-molecular complex as an important parameter in the development of autoimmune T cells, as well as afforded insights into the key antigens targeted in T1D. In this review, we will provide a summary of the current understanding with regard to autoimmune T cell development, the significance of the antigens targeted in T1D, and the relationship between TCR affinity and immune regulation.
Collapse
Affiliation(s)
- Matthew L. Bettini
- Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, McNair Medical Institute, Houston, TX, United States
- *Correspondence: Matthew L. Bettini, ; Maria Bettini,
| | - Maria Bettini
- Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, McNair Medical Institute, Houston, TX, United States
- *Correspondence: Matthew L. Bettini, ; Maria Bettini,
| |
Collapse
|
45
|
Kroger CJ, Spidale NA, Wang B, Tisch R. Thymic Dendritic Cell Subsets Display Distinct Efficiencies and Mechanisms of Intercellular MHC Transfer. THE JOURNAL OF IMMUNOLOGY 2016; 198:249-256. [PMID: 27895179 DOI: 10.4049/jimmunol.1601516] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022]
Abstract
Thymic dendritic cells (DC) delete self-antigen-specific thymocytes, and drive development of Foxp3-expressing immunoregulatory T cells. Unlike medullary thymic epithelial cells, which express and present peripheral self-antigen, DC must acquire self-antigen to mediate thymic negative selection. One such mechanism entails the transfer of surface MHC-self peptide complexes from medullary thymic epithelial cells to thymic DC. Despite the importance of thymic DC cross-dressing in negative selection, the factors that regulate the process and the capacity of different thymic DC subsets to acquire MHC and stimulate thymocytes are poorly understood. In this study intercellular MHC transfer by thymic DC subsets was investigated using an MHC-mismatch-based in vitro system. Thymic conventional DC (cDC) subsets signal regulatory protein α (SIRPα+) and CD8α+ readily acquired MHC class I and II from thymic epithelial cells but plasmacytoid DC were less efficient. Intercellular MHC transfer was donor-cell specific; thymic DC readily acquired MHC from TEC plus thymic or splenic DC, whereas thymic or splenic B cells were poor donors. Furthermore DC origin influenced cross-dressing; thymic versus splenic DC exhibited an increased capacity to capture TEC-derived MHC, which correlated with direct expression of EpCAM by DC. Despite similar capacities to acquire MHC-peptide complexes, thymic CD8α+ cDC elicited increased T cell stimulation relative to SIRPα+ cDC. DC cross-dressing was cell-contact dependent and unaffected by lipid raft disruption of donor TEC. Furthermore, blocking PI3K signaling reduced MHC acquisition by thymic CD8α+ cDC and plasmacytoid DC but not SIRPα+ cDC. These findings demonstrate that multiple parameters influence the efficiency of and distinct mechanisms drive intercellular MHC transfer by thymic DC subsets.
Collapse
Affiliation(s)
- Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Nicholas A Spidale
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
46
|
Abstract
The immune system has evolved to defend the organism against an almost infinite number of pathogens in a locally confined and antigen-specific manner while at the same time preserving tolerance to harmless antigens and self. Regulatory T (Treg) cells essentially contribute to an immunoregulatory network preventing excessive immune responses and immunopathology. There is emerging evidence that Treg cells not only operate in secondary lymphoid tissue but also regulate immune responses directly at the site of inflammation. Hence, the classification of Treg cells might need to be further extended by Treg cell subsets that are functionally and phenotypically polarized by their residency. In this review, we discuss recent findings on these tissue-resident Treg cell subsets and how these cells may operate in a tissue- and context-dependent manner.
Collapse
|