1
|
Huang J, Yu S, Luo J, Luo X, Yang J, Wang X. IFN-γ could induce ferroptosis in keloid fibroblasts by inhibiting the expression of serpine2. Cell Death Discov 2025; 11:217. [PMID: 40324981 PMCID: PMC12053758 DOI: 10.1038/s41420-025-02401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/14/2025] [Accepted: 03/17/2025] [Indexed: 05/07/2025] Open
Abstract
Keloids are common pathological scars resulting from previous trauma or inflammation. Interferon-gamma (IFN-γ) has shown significant therapeutic effects when used alone or in combination with other agents. While IFN-γ has been found to regulate ferroptosis in tumor cells, its ability to regulate ferroptosis in keloid fibroblasts (KFs) is unclear. Here, we have demonstrated a direct causal relationship between IFN-γ levels and ferroptosis in KFs. To explore the intrinsic mechanism, we performed genome-wide RNA and proteomics sequencing and found that serpine2 was the most significantly downregulated gene in KFs after exogenous overexpression of IFN-γ. Serpine2, which belongs to a family of serine protease inhibitors, has been shown to play an important role in fibrotic diseases. Therefore, we hypothesized that serpine2 is a downstream gene in the regulation of ferroptosis in KFs by IFN-γ. Our results showed that serpine2 overexpression promotes collagen synthesis, which in turn promotes the proliferation, migration, and invasive functions of KFs. We further demonstrated that serpine2 overexpression promoted system Xc- transporter expression, cystine uptake, and glutathione synthesis, enhanced GPX4 activity; and inhibited reactive oxygen species generation. This resulted in a reduction in intracellular lipid peroxidation and the levels of its metabolite malondialdehyde, as well as inhibited ferroptosis in KFs. IFN-γ reversed these effects of serpine2 overexpression. These results were largely confirmed in in vivo keloid models too. These findings imply that IFN-γ not only directly induces ferroptosis in KFs but also enhances their sensitivity to ferroptosis by inhibiting the synthesis of SLC7A11 and SLC3A2 through downregulation of serpine2. In summary, we suggest that the serpine2-system Xc- axis is a promising therapeutic target for the treatment of keloids.
Collapse
Affiliation(s)
- Jingyan Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shun Yu
- The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jing Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xusong Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xiuxia Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Beer SA, Went M, Mills C, Wood C, Sud A, Allan JM, Houlston R, Kaiser MF. Mendelian randomization of immune cell phenotypes to discover potential drug targets for B-cell malignancy. Blood Cancer J 2025; 15:62. [PMID: 40199857 PMCID: PMC11979003 DOI: 10.1038/s41408-025-01277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
Although treatment options for B-cell malignancies have expanded, many patients continue to face limited response rates, highlighting an urgent need for new therapeutic targets. To prioritize candidate drug targets for B-cell malignancies, we employed Mendelian Randomization to estimate potentially causal relationships between 445 immune cell traits and six B-cell cancers: follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), Hodgkin lymphoma (HL), marginal zone lymphoma (MZL), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM), totaling 22,922 cases and 394,204 controls. 163 traits showed a suggestive association with at least one B-cell malignancy (P < 0.05), with 34 traits being significant after correction for multiple testing (P < 2 × 10-4). By integrating findings with observational data and clinical trial evidence to support drug target candidacy, 24 cell surface markers were identified as druggable targets. In addition to established therapeutic targets such as CD3, CD20 and CD38, our analysis highlights BAFF-R and CD39 in HL, CD25 in MM, CD27 in CLL, CD80/86 in DLBCL, and CCR2 in FL and MZL as promising candidates for therapeutic inhibition. Our findings provide further support for the potential of human genetics to guide the identification of drug targets and address a productivity-limiting step.
Collapse
Affiliation(s)
- Sina A Beer
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.
| | - Molly Went
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Charlie Mills
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Codie Wood
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James M Allan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Martin F Kaiser
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| |
Collapse
|
3
|
Bonolo de Campos C, McCabe CE, Bruins LA, O'Brien DR, Brown S, Tschumper RC, Allmer C, Zhu YX, Rabe KG, Parikh SA, Kay NE, Yan H, Cerhan JR, Allan JN, Furman RR, Weinberg JB, Brander DM, Jelinek DF, Chesi M, Slager SL, Braggio E. Genomic characterization of chronic lymphocytic leukemia in patients of African ancestry. Blood Cancer J 2025; 15:14. [PMID: 39910036 PMCID: PMC11799526 DOI: 10.1038/s41408-024-01207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 02/07/2025] Open
Abstract
Despite the considerable effort to characterize the genomic landscape of chronic lymphocytic leukemia (CLL), published data have been almost exclusively derived from patients of European Ancestry (EA), with significant underrepresentation of minorities, including patients of African Ancestry (AA). To begin to address this gap, we evaluated whether differences exist in the genetic and transcriptomic features of 157 AA and 440 EA individuals diagnosed with CLL. We sequenced 59 putative driver genes and found an increased frequency of high-impact mutations in AA CLL, including genes of the DNA damage repair (DDR) pathway. Telomere erosion was also increased in AA CLL, amplifying the notion of increased genomic instability in AA CLL. Furthermore, we found transcription enrichment of the Tumor Necrosis Factor-alpha (TNFα) Signaling via NF-κB pathway in AA CLL compared to EA CLL, suggesting that tumor promoting inflammation plays an important role in AA CLL. In summary, these results suggest that genomic instability and NF-kB activation is more prevalent in AA CLL than EA CLL.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/ethnology
- Female
- Male
- Genomic Instability
- Middle Aged
- Aged
- Genomics/methods
- NF-kappa B/metabolism
- NF-kappa B/genetics
- Mutation
- Black People/genetics
- White People/genetics
- Aged, 80 and over
- Black or African American/genetics
Collapse
Affiliation(s)
| | - Chantal E McCabe
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Laura A Bruins
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Daniel R O'Brien
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Sochilt Brown
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Cristine Allmer
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Yuan Xiao Zhu
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Kari G Rabe
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | | | - Neil E Kay
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Huihuang Yan
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - James R Cerhan
- Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - John N Allan
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Richard R Furman
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, USA
| | - J Brice Weinberg
- Divisions of Hematology and Hematologic Malignancies & Cellular Therapy & VA Medical Center, Durham, NC, USA
| | - Danielle M Brander
- Division of Hematologic Malignancy and Cellular Therapy, Duke Cancer Institute, Durham, NC, USA
| | | | - Marta Chesi
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Susan L Slager
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA.
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| | - Esteban Braggio
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA.
| |
Collapse
|
4
|
Gholami M, Asouri M, Ahmadi AA. Genetic Variants and Haplotype Structures in the CASC Gene Family to Predict Cancer Risk: A Bioinformatics Study. Health Sci Rep 2024; 7:e70228. [PMID: 39640032 PMCID: PMC11618408 DOI: 10.1002/hsr2.70228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/01/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Background and Aims The cancer susceptibility (CASC) gene family of long noncoding RNAs (lncRNAs) plays an important role in cancer. The aim of this study was to identify genetic variants and haplotype structures of CASC genes associated with cancer risk. Methods Genome-wide association studies (GWAS) significant variants (p ≤ 5 × 10-8) on CASC family genes were identified from the GWAS Catalog-EMBL-EBI, and then cancer-associated variants on CASC genes were extracted. These variants were functionally analyzed, including lncRNA:miRNA binding sites, Regulomedb scores, and eQTL. The 1000 Genome Project genotyping data Phase III were used to identify haplotypic blocks. Finally, the genes associated with them were examined for expression and gene-gene correlation analyses using OncoDB. Results There were six haplotypic blocks in four genes. The GC, TA, and AGAC haplotypes are located in the CASC8 gene and increase the risk of prostate cancer, breast cancer, and colorectal cancer, respectively. The CA haplotype in the CASC15 gene increases the risk of neuroblastoma, AA haplotype in the CASC16 gene increases the risk of breast cancer, and ACGATG haplotype in the CASC17 gene increases the risk of prostate cancer (p ≤ 5 × 10-8). Their genes are interrelated and their expression is increased in these cancers. The rs2294214 is associated with skin cancer and has positive effects on five CASC15:miRNA binding sites. The rs3803662 is located in CASC16:miRNA binding sites, which has positive effects on hsa-miR-4475 and hsa-miR-7845-5p and negative effects on hsa-miR-4524a-3p and hsa-miR-4524b-3p. Conclusion These haplotypic structures and lncRNA:miRNA:SNP interactions on CASC family lncRNAs reveal novel genetic associations between CASC genes and various cancers.
Collapse
Affiliation(s)
- Morteza Gholami
- Department of ParamedicineAmol School of Paramedicine, Mazandaran University of Medical SciencesSariIran
- Metabolic Disorders Research CenterEndocrinology and Metabolism Molecular‐Cellular Sciences Institute, Tehran University of Medical SciencesTehranIran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Mohsen Asouri
- Department of ParamedicineAmol School of Paramedicine, Mazandaran University of Medical SciencesSariIran
| | | |
Collapse
|
5
|
Willis TW, Gkrania-Klotsas E, Wareham NJ, McKinney EF, Lyons PA, Smith KGC, Wallace C. Leveraging pleiotropy identifies common-variant associations with selective IgA deficiency. Clin Immunol 2024; 268:110356. [PMID: 39241920 DOI: 10.1016/j.clim.2024.110356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Selective IgA deficiency (SIgAD) is the most common inborn error of immunity (IEI). Unlike many IEIs, evidence of a role for highly penetrant rare variants in SIgAD is lacking. Previous SIgAD studies have had limited power to identify common variants due to their small sample size. We overcame this problem first through meta-analysis of two existing GWAS. This identified four novel common-variant associations and enrichment of SIgAD-associated variants in genes linked to Mendelian IEIs. SIgAD showed evidence of shared genetic architecture with serum IgA and a number of immune-mediated diseases. We leveraged this pleiotropy through the conditional false discovery rate procedure, conditioning our SIgAD meta-analysis on large GWAS of asthma and rheumatoid arthritis, and our own meta-analysis of serum IgA. This identified an additional 18 variants, increasing the number of known SIgAD-associated variants to 27 and strengthening the evidence for a polygenic, common-variant aetiology for SIgAD.
Collapse
Affiliation(s)
- Thomas W Willis
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK.
| | - Effrossyni Gkrania-Klotsas
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK; Department of Infectious Diseases, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Nicholas J Wareham
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Eoin F McKinney
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kenneth G C Smith
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Chris Wallace
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Liu A, Genovese G, Zhao Y, Pirinen M, Zekavat SM, Kentistou KA, Yang Z, Yu K, Vlasschaert C, Liu X, Brown DW, Hudjashov G, Gorman BR, Dennis J, Zhou W, Momozawa Y, Pyarajan S, Tuzov V, Pajuste FD, Aavikko M, Sipilä TP, Ghazal A, Huang WY, Freedman ND, Song L, Gardner EJ, Sankaran VG, Palotie A, Ollila HM, Tukiainen T, Chanock SJ, Mägi R, Natarajan P, Daly MJ, Bick A, McCarroll SA, Terao C, Loh PR, Ganna A, Perry JRB, Machiela MJ. Genetic drivers and cellular selection of female mosaic X chromosome loss. Nature 2024; 631:134-141. [PMID: 38867047 DOI: 10.1038/s41586-024-07533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Mosaic loss of the X chromosome (mLOX) is the most common clonal somatic alteration in leukocytes of female individuals1,2, but little is known about its genetic determinants or phenotypic consequences. Here, to address this, we used data from 883,574 female participants across 8 biobanks; 12% of participants exhibited detectable mLOX in approximately 2% of leukocytes. Female participants with mLOX had an increased risk of myeloid and lymphoid leukaemias. Genetic analyses identified 56 common variants associated with mLOX, implicating genes with roles in chromosomal missegregation, cancer predisposition and autoimmune diseases. Exome-sequence analyses identified rare missense variants in FBXO10 that confer a twofold increased risk of mLOX. Only a small fraction of associations was shared with mosaic Y chromosome loss, suggesting that distinct biological processes drive formation and clonal expansion of sex chromosome missegregation. Allelic shift analyses identified X chromosome alleles that are preferentially retained in mLOX, demonstrating variation at many loci under cellular selection. A polygenic score including 44 allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Our results support a model in which germline variants predispose female individuals to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of clonal expansion.
Collapse
Affiliation(s)
- Aoxing Liu
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Yajie Zhao
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Seyedeh M Zekavat
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Katherine A Kentistou
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Zhiyu Yang
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Derek W Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| | - Georgi Hudjashov
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Bryan R Gorman
- Center for Data and Computational Sciences (C-DACS), VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valdislav Tuzov
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fanny-Dhelia Pajuste
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mervi Aavikko
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Timo P Sipilä
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Awaisa Ghazal
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Eugene J Gardner
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Vijay G Sankaran
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hanna M Ollila
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Taru Tukiainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Pradeep Natarajan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Mark J Daly
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexander Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Steven A McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Po-Ru Loh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Andrea Ganna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - John R B Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
7
|
Turk A, Čeh E, Calin GA, Kunej T. Multiple omics levels of chronic lymphocytic leukemia. Cell Death Discov 2024; 10:293. [PMID: 38906881 PMCID: PMC11192936 DOI: 10.1038/s41420-024-02068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a lymphoproliferative malignancy characterized by the proliferation of functionally mature but incompetent B cells. It is the most prevalent type of leukemia in Western populations, accounting for approximately 25% of new leukemia cases. While recent advances, such as ibrutinib and venetoclax treatment have improved patient outlook, aggressive forms of CLL such as Richter transformation still pose a significant challenge. This discrepancy may be due to the heterogeneity of factors contributing to CLL development at multiple -omics levels. However, information on the omics of CLL is fragmented, hindering multi-omics-based research into potential treatment options. To address this, we aggregated and presented a selection of important aspects of various omics levels of the disease in this review. The purpose of the present literature analysis is to portray examples of CLL studies from different omics levels, including genomics, epigenomics, transcriptomics, epitranscriptomics, proteomics, epiproteomics, metabolomics, glycomics and lipidomics, as well as those identified by multi-omics approaches. The review includes the list of 102 CLL-associated genes with relevant genomics information. While single-omics studies yield substantial and useful data, they omit a significant level of complex biological interplay present in the disease. As multi-omics studies integrate several different layers of data, they may be better suited for complex diseases such as CLL and have thus far yielded promising results. Future multi-omics studies may assist clinicians in improved treatment choices based on CLL subtypes as well as allow the identification of novel biomarkers and targets for treatments.
Collapse
Grants
- R01 CA222007 NCI NIH HHS
- R01 GM122775 NIGMS NIH HHS
- P4-0220 Javna Agencija za Raziskovalno Dejavnost RS (Slovenian Research Agency)
- R01 CA182905 NCI NIH HHS
- P50 CA127001 NCI NIH HHS
- Dr. Calin is the Felix L. Haas Endowed Professor in Basic Science. Work in G.A.C.’s laboratory is supported by NCI grants 1R01 CA182905-01 and 1R01CA222007-01A1, NIGMS grant 1R01GM122775-01, DoD Idea Award W81XWH-21-1-0030, a Team DOD grant in Gastric Cancer W81XWH-21-1-0715, a Chronic Lymphocytic Leukemia Moonshot Flagship project, a CLL Global Research Foundation 2019 grant, a CLL Global Research Foundation 2020 grant, a CLL Global Research Foundation 2022 grant, The G. Harold & Leila Y. Mathers Foundation, two grants from Torrey Coast Foundation, an Institutional Research Grant and Development Grant associated with the Brain SPORE 2P50CA127001.
Collapse
Affiliation(s)
- Aleksander Turk
- Clinical Institute of Genomic Medicine, University Clinical Centre Ljubljana, Ljubljana, Slovenia
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Čeh
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - George A Calin
- Department of Translational Molecular Pathology, Division of Pathology, MD Anderson Cancer Center, University of Texas, Houston, TX, 77030, USA.
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Sud A, Parry EM, Wu CJ. The molecular map of CLL and Richter's syndrome. Semin Hematol 2024; 61:73-82. [PMID: 38368146 PMCID: PMC11653080 DOI: 10.1053/j.seminhematol.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/19/2024]
Abstract
Clonal expansion of B-cells, from the early stages of monoclonal B-cell lymphocytosis through to chronic lymphocytic leukemia (CLL), and then in some cases to Richter's syndrome (RS) provides a comprehensive model of cancer evolution, notable for the marked morphological transformation and distinct clinical phenotypes. High-throughput sequencing of large cohorts of patients and single-cell studies have generated a molecular map of CLL and more recently, of RS, yielding fundamental insights into these diseases and of clonal evolution. A selection of CLL driver genes have been functionally interrogated to yield novel insights into the biology of CLL. Such findings have the potential to impact patient care through risk stratification, treatment selection and drug discovery. However, this molecular map remains incomplete, with extant questions concerning the origin of the B-cell clone, the role of the TME, inter- and intra-compartmental heterogeneity and of therapeutic resistance mechanisms. Through the application of multi-modal single-cell technologies across tissues, disease states and clinical contexts, these questions can now be addressed with the answers holding great promise of generating translatable knowledge to improve patient care.
Collapse
Affiliation(s)
- Amit Sud
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Department of Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Erin M Parry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
9
|
Eichhorst B, Ten Hacken E. Special issue on chronic lymphocytic leukemia: Prognostication and therapeutic options introductory editorial. Semin Hematol 2024; 61:69-72. [PMID: 38599948 DOI: 10.1053/j.seminhematol.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Affiliation(s)
- Barbara Eichhorst
- Department for Internal Medicine and Center für Integrated Oncology Aachen, Bonn, Cologne, Duesseldorf, University of Cologne, Cologne, Germany.
| | - Elisa Ten Hacken
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY.
| |
Collapse
|
10
|
Haycock PC, Borges MC, Burrows K, Lemaitre RN, Harrison S, Burgess S, Chang X, Westra J, Khankari NK, Tsilidis KK, Gaunt T, Hemani G, Zheng J, Truong T, O’Mara TA, Spurdle AB, Law MH, Slager SL, Birmann BM, Saberi Hosnijeh F, Mariosa D, Amos CI, Hung RJ, Zheng W, Gunter MJ, Davey Smith G, Relton C, Martin RM. Design and quality control of large-scale two-sample Mendelian randomization studies. Int J Epidemiol 2023; 52:1498-1521. [PMID: 38587501 PMCID: PMC10555669 DOI: 10.1093/ije/dyad018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/10/2023] [Indexed: 03/27/2024] Open
Abstract
Background Mendelian randomization (MR) studies are susceptible to metadata errors (e.g. incorrect specification of the effect allele column) and other analytical issues that can introduce substantial bias into analyses. We developed a quality control (QC) pipeline for the Fatty Acids in Cancer Mendelian Randomization Collaboration (FAMRC) that can be used to identify and correct for such errors. Methods We collated summary association statistics from fatty acid and cancer genome-wide association studies (GWAS) and subjected the collated data to a comprehensive QC pipeline. We identified metadata errors through comparison of study-specific statistics to external reference data sets (the National Human Genome Research Institute-European Bioinformatics Institute GWAS catalogue and 1000 genome super populations) and other analytical issues through comparison of reported to expected genetic effect sizes. Comparisons were based on three sets of genetic variants: (i) GWAS hits for fatty acids, (ii) GWAS hits for cancer and (iii) a 1000 genomes reference set. Results We collated summary data from 6 fatty acid and 54 cancer GWAS. Metadata errors and analytical issues with the potential to introduce substantial bias were identified in seven studies (11.6%). After resolving metadata errors and analytical issues, we created a data set of 219 842 genetic associations with 90 cancer types, generated in analyses of 566 665 cancer cases and 1 622 374 controls. Conclusions In this large MR collaboration, 11.6% of included studies were affected by a substantial metadata error or analytical issue. By increasing the integrity of collated summary data prior to their analysis, our protocol can be used to increase the reliability of downstream MR analyses. Our pipeline is available to other researchers via the CheckSumStats package (https://github.com/MRCIEU/CheckSumStats).
Collapse
Affiliation(s)
- Philip C Haycock
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Sean Harrison
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Xuling Chang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat—National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Jason Westra
- Department of Mathematics, Statistics, and Computer Science, Dordt College, Sioux Center, IA, USA
| | - Nikhil K Khankari
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kostas K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Tom Gaunt
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Therese Truong
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESP, Villejuif, France
| | - Tracy A O’Mara
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, Faculty of Health Sciences, University of Queensland, Brisbane, Australia
| | - Amanda B Spurdle
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, Faculty of Health Sciences, University of Queensland, Brisbane, Australia
| | - Matthew H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Susan L Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Brenda M Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Daniela Mariosa
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - Christopher I Amos
- Dan L Duncan Comprehensive Cancer Center Baylor College of Medicine, Houston, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health and University of Toronto, Toronto, Canada
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Caroline Relton
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Richard M Martin
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, UK
| |
Collapse
|
11
|
Ji X, Hong J, Yang W, Yao M, Wang J, Jiang G, Wang Y, Li C, Lin J, Mou H, Li C, Li S, Chen Y, Shi M, Wang W, Lu F, Wu H, Zhao X, Qi Y, Yan S. GSTP1-mediated S-glutathionylation of Pik3r1 is a redox hub that inhibits osteoclastogenesis through regulating autophagic flux. Redox Biol 2023; 61:102635. [PMID: 36870110 PMCID: PMC9995948 DOI: 10.1016/j.redox.2023.102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/11/2023] [Indexed: 03/03/2023] Open
Abstract
Glutathione S-transferase P1(GSTP1) is known for its transferase and detoxification activity. Based on disease-phenotype genetic associations, we found that GSTP1 might be associated with bone mineral density through Mendelian randomization analysis. Therefore, this study was performed both in vitro cellular and in vivo mouse model to determine how GSTP1 affects bone homeostasis. In our research, GSTP1 was revealed to upregulate the S-glutathionylation level of Pik3r1 through Cys498 and Cys670, thereby decreasing its phosphorylation, further controlling the alteration of autophagic flux via the Pik3r1-AKT-mTOR axis, and lastly altering osteoclast formation in vitro. In addition, knockdown and overexpression of GSTP1 in vivo also altered bone loss outcomes in the OVX mice model. In general, this study identified a new mechanism by which GSTP1 regulates osteoclastogenesis, and it is evident that the cell fate of osteoclasts is controlled by GSTP1-mediated S-glutathionylation via a redox-autophagy cascade.
Collapse
Affiliation(s)
- Xiaoxiao Ji
- Department of Orthopedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, PR China; Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Jianqiao Hong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Weinan Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Minjun Yao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Jie Wang
- Department of Orthopedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Guangyao Jiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Yibo Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Congsun Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Jiyan Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Chaozhong Li
- College of Computer Science, Sichuan University, Chengdu, PR China
| | - Sihao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Yazhou Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Minming Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Wei Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Fei Lu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
| | - Haobo Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
| | - Xiang Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
| | - Yiying Qi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
| | - Shigui Yan
- Department of Orthopedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, PR China; Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
| |
Collapse
|
12
|
Cabrera-Serrano AJ, Sánchez-Maldonado JM, ter Horst R, Macauda A, García-Martín P, Benavente Y, Landi S, Clay-Gilmour A, Niazi Y, Espinet B, Rodríguez-Sevilla JJ, Pérez EM, Maffei R, Blanco G, Giaccherini M, Cerhan JR, Marasca R, López-Nevot MÁ, Chen-Liang T, Thomsen H, Gámez I, Campa D, Moreno V, de Sanjosé S, Marcos-Gragera R, García-Álvarez M, Dierssen-Sotos T, Jerez A, Butrym A, Norman AD, Luppi M, Slager SL, Hemminki K, Li Y, Berndt SI, Casabonne D, Alcoceba M, Puiggros A, Netea MG, Försti A, Canzian F, Sainz J. Do GWAS-Identified Risk Variants for Chronic Lymphocytic Leukemia Influence Overall Patient Survival and Disease Progression? Int J Mol Sci 2023; 24:8005. [PMID: 37175717 PMCID: PMC10178669 DOI: 10.3390/ijms24098005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia among adults worldwide. Although genome-wide association studies (GWAS) have uncovered the germline genetic component underlying CLL susceptibility, the potential use of GWAS-identified risk variants to predict disease progression and patient survival remains unexplored. Here, we evaluated whether 41 GWAS-identified risk variants for CLL could influence overall survival (OS) and disease progression, defined as time to first treatment (TTFT) in a cohort of 1039 CLL cases ascertained through the CRuCIAL consortium. Although this is the largest study assessing the effect of GWAS-identified susceptibility variants for CLL on OS, we only found a weak association of ten single nucleotide polymorphisms (SNPs) with OS (p < 0.05) that did not remain significant after correction for multiple testing. In line with these results, polygenic risk scores (PRSs) built with these SNPs in the CRuCIAL cohort showed a modest association with OS and a low capacity to predict patient survival, with an area under the receiver operating characteristic curve (AUROC) of 0.57. Similarly, seven SNPs were associated with TTFT (p < 0.05); however, these did not reach the multiple testing significance threshold, and the meta-analysis with previous published data did not confirm any of the associations. As expected, PRSs built with these SNPs showed reduced accuracy in prediction of disease progression (AUROC = 0.62). These results suggest that susceptibility variants for CLL do not impact overall survival and disease progression in CLL patients.
Collapse
Affiliation(s)
- Antonio José Cabrera-Serrano
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain
| | - José Manuel Sánchez-Maldonado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain
| | - Rob ter Horst
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria;
| | - Angelica Macauda
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.M.); (F.C.)
| | | | - Yolanda Benavente
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (Y.B.); (V.M.); (S.d.S.); (D.C.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Barcelona, 08908 Barcelona, Spain; (R.M.-G.); (T.D.-S.)
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Stefano Landi
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (S.L.); (M.G.); (D.C.)
| | - Alyssa Clay-Gilmour
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Greenville, SC 29208, USA;
| | - Yasmeen Niazi
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (Y.N.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
| | - Blanca Espinet
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (B.E.); (G.B.); (A.P.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | | | - Eva María Pérez
- Hospital Campus de la Salud, PTS, 18016 Granada, Spain; (P.G.-M.); (E.M.P.)
| | - Rossana Maffei
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (R.M.); (R.M.); (M.L.)
| | - Gonzalo Blanco
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (B.E.); (G.B.); (A.P.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Matteo Giaccherini
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (S.L.); (M.G.); (D.C.)
| | - James R. Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (J.R.C.); (A.D.N.)
| | - Roberto Marasca
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (R.M.); (R.M.); (M.L.)
| | | | - Tzu Chen-Liang
- Hematology Department, Morales Meseguer University Hospital, 30008 Murcia, Spain; (T.C.-L.); (I.G.)
| | | | - Irene Gámez
- Hematology Department, Morales Meseguer University Hospital, 30008 Murcia, Spain; (T.C.-L.); (I.G.)
| | - Daniele Campa
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (S.L.); (M.G.); (D.C.)
| | - Víctor Moreno
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (Y.B.); (V.M.); (S.d.S.); (D.C.)
- Cancer Prevention and Control Program, Unit of Biomarkers and Susceptibility, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology, 08907 Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 Barcelona, Spain
| | - Silvia de Sanjosé
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (Y.B.); (V.M.); (S.d.S.); (D.C.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Barcelona, 08908 Barcelona, Spain; (R.M.-G.); (T.D.-S.)
| | - Rafael Marcos-Gragera
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Barcelona, 08908 Barcelona, Spain; (R.M.-G.); (T.D.-S.)
- Epidemiology Unit and Girona Cancer Registry, Oncology Coordination Plan, Department of Health, Autonomous Government of Catalonia, Catalan Institute of Oncology, Girona Biomedical Research Institute (IdiBGi), 17190 Girona, Spain
- Department of Nursing, Universitat de Girona, 17007 Girona, Spain
- Josep Carreras Leukemia Research Institute, 08916 Girona, Spain
| | - María García-Álvarez
- Department of Hematology, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain; (M.G.-Á.); (M.A.)
| | - Trinidad Dierssen-Sotos
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Barcelona, 08908 Barcelona, Spain; (R.M.-G.); (T.D.-S.)
- Faculty of Medicine, University of Cantabria, 39011 Santander, Spain
| | - Andrés Jerez
- Department of Hematology, Experimental Hematology Unit, Vall d’Hebron Institute of Oncology (VHIO), University Hospital Vall d’Hebron, 08035 Barcelona, Spain;
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Medical University of Wrocław, 50-556 Wrocław, Poland;
| | - Aaron D. Norman
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (J.R.C.); (A.D.N.)
| | - Mario Luppi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (R.M.); (R.M.); (M.L.)
| | - Susan L. Slager
- Division of Computational Genomics, Mayo Clinic, Rochester, MN 85054, USA;
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kari Hemminki
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (Y.L.); (M.G.N.)
- Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA;
| | - Delphine Casabonne
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (Y.B.); (V.M.); (S.d.S.); (D.C.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Barcelona, 08908 Barcelona, Spain; (R.M.-G.); (T.D.-S.)
| | - Miguel Alcoceba
- Department of Hematology, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain; (M.G.-Á.); (M.A.)
| | - Anna Puiggros
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (B.E.); (G.B.); (A.P.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (Y.L.); (M.G.N.)
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Asta Försti
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (Y.N.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.M.); (F.C.)
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Barcelona, 08908 Barcelona, Spain; (R.M.-G.); (T.D.-S.)
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada (UGR), 18012 Granada, Spain
| |
Collapse
|
13
|
Kleinstern G, Slager SL. The inherited genetic contribution and polygenic risk score for risk of CLL and MBL: a narrative review. Leuk Lymphoma 2023; 64:788-798. [PMID: 36576061 PMCID: PMC10121840 DOI: 10.1080/10428194.2022.2157215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a neoplasm of B-cells in the blood and monoclonal B-cell lymphocytosis (MBL) is a precursor state to CLL. This narrative review provides an overview of the genetic studies that identified 43 common variants associated with risk of CLL among individuals of European ancestry. Emerging studies found that ∼50% of these variants are associated with MBL risk. Moreover, the polygenic risk score (PRS) calculated from these CLL variants has been shown to be a robust predictor for both CLL and MBL risk among European ancestry individuals but a weak predictor among African ancestry individuals. By summarizing these genetic studies, we conclude that additional studies are needed in other race/ethnic populations to identify race-specific susceptibility variants, that functional studies are needed to validate the biological mechanisms of the variants, and that the clinical utility of the PRS is limited until preventive strategies for CLL are developed.
Collapse
Affiliation(s)
- Geffen Kleinstern
- School of Public Health, University of Haifa, Haifa, Israel
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Susan L Slager
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Kulis M, Martin-Subero JI. Integrative epigenomics in chronic lymphocytic leukaemia: Biological insights and clinical applications. Br J Haematol 2023; 200:280-290. [PMID: 36121003 DOI: 10.1111/bjh.18465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 01/21/2023]
Abstract
Chronic lymphocytic leukaemia (CLL) is not only characterised by driver genetic alterations but by extensive epigenetic changes. Over the last decade, epigenomic studies have described the DNA methylome, chromatin accessibility, histone modifications and the three-dimensional (3D) genome architecture of CLL. Beyond its regulatory role, the DNA methylome contains imprints of the cellular origin and proliferative history of CLL cells. These two aspects are strong independent prognostic factors. Integrative analyses of chromatin marks have uncovered novel regulatory elements and altered transcription factor networks as non-genetic means mediating gene deregulation in CLL. Additionally, CLL cells display a disease-specific pattern of 3D genome interactions. From the technological perspective, we are currently witnessing a transition from bulk omics to single-cell analyses. This review aims at summarising the major findings from the epigenomics field as well as providing a prospect of the present and future of single-cell analyses in CLL.
Collapse
Affiliation(s)
- Marta Kulis
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Jose Ignacio Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Departamento de Fundamentos Clínicos, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
15
|
Zhang S, Li P, Wu P, Yang L, Liu X, Liu J, Zhang Y, Zeng J. Predictors of response of rituximab in rheumatoid arthritis by weighted gene co-expression network analysis. Clin Rheumatol 2023; 42:529-538. [PMID: 36374432 DOI: 10.1007/s10067-022-06438-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of this study was to identify a biomarker that can predict the efficacy of rituximab (RTX) in the treatment of rheumatoid arthritis (RA) patients. METHODS Utilized weighted gene co-expression network analysis (WGCNA) and LASSO regression analysis of whole blood transcriptome data (GSE15316 and GSE37107) related to RTX treatment for RA from the GEO database, the critical modules, and key genes related to the efficacy of RTX treatment for RA were found. The biological functions were further explored through enrichment analysis. The area under the ROC curve (AUC) was validated using the GSE54629 dataset. RESULTS WGCNA screened 71 genes for a dark turquoise module that were correlated with the efficacy of RTX treatment for RA (r = 0.42, P < 0.05). Through the calculation of gene significance (GS) and module membership (MM), 12 important genes were identified; in addition, 21 important genes were screened by the LASSO regression model; two key genes were obtained from the intersection between the important genes. Then, BANK1 (AUC = 0.704, P < 0.05) was identified as a potential biomarker to predict the efficacy of RTX treatment for RA by ROC curve evaluation of the treatment and validation groups. BANK1 gene expression was significantly decreased after RTX treatment, and a statistically significant difference was found (log FC = - 2.08, P < 0.05). Immune cell infiltration analysis revealed that the infiltration of CD4 + T cell memory subset was increased in the group with high BANK1 expression, and a statistically significant difference was found (P < 0.05). CONCLUSIONS BANK1 can be used as a potential biomarker to predict the response of RTX treatment in RA patients. Key Points • Identifying the hub genes BANK1 as a potential biomarker to predict the response of RTX treatment in RA patients and confirming it in validation data. • Using the WGCNA approach and LASSO analyses to identify the BANK1 in a data set consisting of two GEO data merged and assessing the correlations between BANK1 and immune infiltration by CIBERSORT algorithm.
Collapse
Affiliation(s)
- Shan Zhang
- Rheumatology and Immunology Department, Affiliated Hospital of Guizhou Medical University, Yunyan District, 28 Guiyi Street, Guiyang, 550004, Guizhou, China
| | - Peiting Li
- Rheumatology and Immunology Department, Affiliated Hospital of Guizhou Medical University, Yunyan District, 28 Guiyi Street, Guiyang, 550004, Guizhou, China
| | - Pengjia Wu
- Rheumatology and Immunology Department, Affiliated Hospital of Guizhou Medical University, Yunyan District, 28 Guiyi Street, Guiyang, 550004, Guizhou, China
| | - Lei Yang
- Rheumatology and Immunology Department, Affiliated Hospital of Guizhou Medical University, Yunyan District, 28 Guiyi Street, Guiyang, 550004, Guizhou, China
| | - Xiaoxia Liu
- Rheumatology and Immunology Department, Affiliated Hospital of Guizhou Medical University, Yunyan District, 28 Guiyi Street, Guiyang, 550004, Guizhou, China
| | - Jun Liu
- Rheumatology and Immunology Department, Affiliated Hospital of Guizhou Medical University, Yunyan District, 28 Guiyi Street, Guiyang, 550004, Guizhou, China
| | - Yong Zhang
- Rheumatology and Immunology Department, Affiliated Hospital of Guizhou Medical University, Yunyan District, 28 Guiyi Street, Guiyang, 550004, Guizhou, China
| | - Jiashun Zeng
- Rheumatology and Immunology Department, Affiliated Hospital of Guizhou Medical University, Yunyan District, 28 Guiyi Street, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
16
|
Machiela MJ, Huang WY, Wong W, Berndt SI, Sampson J, De Almeida J, Abubakar M, Hislop J, Chen KL, Dagnall C, Diaz-Mayoral N, Ferrell M, Furr M, Gonzalez A, Hicks B, Hubbard AK, Hutchinson A, Jiang K, Jones K, Liu J, Loftfield E, Loukissas J, Mabie J, Merkle S, Miller E, Minasian LM, Nordgren E, Park B, Pinsky P, Riley T, Sandoval L, Saxena N, Vogt A, Wang J, Williams C, Wright P, Yeager M, Zhu B, Zhu C, Chanock SJ, Garcia-Closas M, Freedman ND. GWAS Explorer: an open-source tool to explore, visualize, and access GWAS summary statistics in the PLCO Atlas. Sci Data 2023; 10:25. [PMID: 36635305 PMCID: PMC9837135 DOI: 10.1038/s41597-022-01921-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial is a prospective cohort study of nearly 155,000 U.S. volunteers aged 55-74 at enrollment in 1993-2001. We developed the PLCO Atlas Project, a large resource for multi-trait genome-wide association studies (GWAS), by genotyping participants with available DNA and genomic consent. Genotyping on high-density arrays and imputation was performed, and GWAS were conducted using a custom semi-automated pipeline. Association summary statistics were generated from a total of 110,562 participants of European, African and Asian ancestry. Application programming interfaces (APIs) and open-source software development kits (SKDs) enable exploring, visualizing and open data access through the PLCO Atlas GWAS Explorer website, promoting Findable, Accessible, Interoperable, and Re-usable (FAIR) principles. Currently the GWAS Explorer hosts association data for 90 traits and >78,000,000 genomic markers, focusing on cancer and cancer-related phenotypes. New traits will be posted as association data becomes available. The PLCO Atlas is a FAIR resource of high-quality genetic and phenotypic data with many potential reuse opportunities for cancer research and genetic epidemiology.
Collapse
Affiliation(s)
- Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA.
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Wendy Wong
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Joshua Sampson
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Jonas De Almeida
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Mustapha Abubakar
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Jada Hislop
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Kai-Ling Chen
- Essential Software Inc., Center for Biomedical Informatics and Information Technology, NCI, Rockville, USA
| | - Casey Dagnall
- Cancer Genomics Research Laboratory, DCEG, NCI, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Rockville, USA
| | - Norma Diaz-Mayoral
- BioProcessing and Trial Logistics Laboratory, FNLCR, Leidos Biomedical Research, Inc. Division of Cancer Prevention, NCI, NIH, Rockville, USA
| | - Mary Ferrell
- NCI at Frederick Central Repository, American Type Culture Collection, Rockville, USA
| | - Michael Furr
- Information Management Services, Inc., Danbury, USA
| | - Alex Gonzalez
- NCI at Frederick Central Repository, American Type Culture Collection, Rockville, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, DCEG, NCI, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Rockville, USA
| | - Aubrey K Hubbard
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, DCEG, NCI, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Rockville, USA
| | - Kevin Jiang
- Essential Software Inc., Center for Biomedical Informatics and Information Technology, NCI, Rockville, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, DCEG, NCI, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Rockville, USA
| | - Jia Liu
- Cancer Genomics Research Laboratory, DCEG, NCI, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Rockville, USA
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Jennifer Loukissas
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Jerome Mabie
- Information Management Services, Inc., Danbury, USA
| | | | - Eric Miller
- Division of Cancer Prevention, NCI, NIH, Rockville, USA
| | | | - Ellen Nordgren
- NCI at Frederick Central Repository, American Type Culture Collection, Rockville, USA
| | - Brian Park
- Essential Software Inc., Center for Biomedical Informatics and Information Technology, NCI, Rockville, USA
| | - Paul Pinsky
- Division of Cancer Prevention, NCI, NIH, Rockville, USA
| | - Thomas Riley
- Information Management Services, Inc., Danbury, USA
| | - Lorena Sandoval
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Neeraj Saxena
- Division of Cancer Prevention, NCI, NIH, Rockville, USA
| | - Aurelie Vogt
- Cancer Genomics Research Laboratory, DCEG, NCI, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Rockville, USA
| | - Jiahui Wang
- Cancer Genomics Research Laboratory, DCEG, NCI, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Rockville, USA
| | | | | | - Meredith Yeager
- Cancer Genomics Research Laboratory, DCEG, NCI, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Rockville, USA
| | - Bin Zhu
- Cancer Genomics Research Laboratory, DCEG, NCI, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Rockville, USA
| | - Claire Zhu
- Division of Cancer Prevention, NCI, NIH, Rockville, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| |
Collapse
|
17
|
Zhang Q, Gao Y, Lin S, Goldin LR, Wang Y, Stevenson H, Edelman DC, Killian K, Marti G, Meltzer PS, Xiang S, Caporaso NE. Genome-wide DNA methylation profiling in chronic lymphocytic leukaemia. Front Genet 2023; 13:1056043. [PMID: 36712882 PMCID: PMC9873975 DOI: 10.3389/fgene.2022.1056043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background: DNA methylation aberrations are widespread among the malignant B lymphocytes of patients with chronic lymphocytic leukaemia (CLL), suggesting that DNA methylation might contribute to the pathogenesis of CLL. Aim: We aimed to explore the differentially methylated positions (DMPs) associated with CLL and screen the differentially methylated and expressed genes (DMEGs) by combining public databases. We aimed to observe the direction of each DMEG in CLL based on the DMPs in the promoter and the body region respectively to narrow down DMEGs. We also aimed to explore the methylation heterogeneity of CLL subgroups and the effect of B cells maturation on CLL. Methods: In this population-based case control study, we reported a genome-wide DNA methylation association study using the Infinium HumanMethylation450 BeadChip, profiling the DNA methylation of CD19+ B Cells from 48 CLL cases and 28 healthy controls. By integrating methylation data and expression data from public databases, gene sets were jointly screened, and then the relationship between methylation sites in promoter and body region and expression of each gene was explored. In addition, support vector machine (SVM) classification algorithm was used to identify subgroups of CLL cases based on methylation pattern, and the effect of B-cell differentiation related methylation sites on CLL-related sites was observed. Results: We identified 34,797 DMPs related to CLL across the genome, most of which were hypomethylated; the majority were located in gene body regions. By combining these DMPs with published DNA methylation and RNA sequencing data, we detected 26,244 replicated DMPs associated with 1,130 genes whose expression were significantly different in CLL cases. Among these DMEGs, nine low expressed DMEGs were selected with hypermethylated in promoter and hypomethylated in body region, and 83 high expressed DMEGs were selected with both hypomethylated in promoter and body region. The 48 CLL cases were divided into 3 subgroups based on methylation site by SVM algorithm. Over 92% of CpGs associated with B cell subtypes were found in CLL-related DMPs. Conclusion: The DNA methylation pattern was altered across the genome in CLL patients. The methylation of ZAP70, FMOD, and ADAMTS17 was significantly different between CLL cases and controls. Further studies are warranted to confirm our findings and identify the underlying mechanisms through which these methylation markers are associated with CLL.
Collapse
Affiliation(s)
- Qiuyi Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China,Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States,*Correspondence: Ying Gao,
| | - Shuchun Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lynn R. Goldin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yonghong Wang
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Holly Stevenson
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Daniel C. Edelman
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Keith Killian
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gerald Marti
- Lymphoid Malignancies Section, Hematology Branch, NHLBI, National Institutes of Health, Bethesda, MD, United States
| | - Paul S. Meltzer
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Song Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
18
|
Berndt SI, Vijai J, Benavente Y, Camp NJ, Nieters A, Wang Z, Smedby KE, Kleinstern G, Hjalgrim H, Besson C, Skibola CF, Morton LM, Brooks-Wilson AR, Teras LR, Breeze C, Arias J, Adami HO, Albanes D, Anderson KC, Ansell SM, Bassig B, Becker N, Bhatti P, Birmann BM, Boffetta P, Bracci PM, Brennan P, Brown EE, Burdett L, Cannon-Albright LA, Chang ET, Chiu BCH, Chung CC, Clavel J, Cocco P, Colditz G, Conde L, Conti DV, Cox DG, Curtin K, Casabonne D, De Vivo I, Diepstra A, Diver WR, Dogan A, Edlund CK, Foretova L, Fraumeni JF, Gabbas A, Ghesquières H, Giles GG, Glaser S, Glenn M, Glimelius B, Gu J, Habermann TM, Haiman CA, Haioun C, Hofmann JN, Holford TR, Holly EA, Hutchinson A, Izhar A, Jackson RD, Jarrett RF, Kaaks R, Kane E, Kolonel LN, Kong Y, Kraft P, Kricker A, Lake A, Lan Q, Lawrence C, Li D, Liebow M, Link BK, Magnani C, Maynadie M, McKay J, Melbye M, Miligi L, Milne RL, Molina TJ, Monnereau A, Montalvan R, North KE, Novak AJ, Onel K, Purdue MP, Rand KA, Riboli E, Riby J, Roman E, Salles G, Sborov DW, Severson RK, Shanafelt TD, Smith MT, Smith A, et alBerndt SI, Vijai J, Benavente Y, Camp NJ, Nieters A, Wang Z, Smedby KE, Kleinstern G, Hjalgrim H, Besson C, Skibola CF, Morton LM, Brooks-Wilson AR, Teras LR, Breeze C, Arias J, Adami HO, Albanes D, Anderson KC, Ansell SM, Bassig B, Becker N, Bhatti P, Birmann BM, Boffetta P, Bracci PM, Brennan P, Brown EE, Burdett L, Cannon-Albright LA, Chang ET, Chiu BCH, Chung CC, Clavel J, Cocco P, Colditz G, Conde L, Conti DV, Cox DG, Curtin K, Casabonne D, De Vivo I, Diepstra A, Diver WR, Dogan A, Edlund CK, Foretova L, Fraumeni JF, Gabbas A, Ghesquières H, Giles GG, Glaser S, Glenn M, Glimelius B, Gu J, Habermann TM, Haiman CA, Haioun C, Hofmann JN, Holford TR, Holly EA, Hutchinson A, Izhar A, Jackson RD, Jarrett RF, Kaaks R, Kane E, Kolonel LN, Kong Y, Kraft P, Kricker A, Lake A, Lan Q, Lawrence C, Li D, Liebow M, Link BK, Magnani C, Maynadie M, McKay J, Melbye M, Miligi L, Milne RL, Molina TJ, Monnereau A, Montalvan R, North KE, Novak AJ, Onel K, Purdue MP, Rand KA, Riboli E, Riby J, Roman E, Salles G, Sborov DW, Severson RK, Shanafelt TD, Smith MT, Smith A, Song KW, Song L, Southey MC, Spinelli JJ, Staines A, Stephens D, Sutherland HJ, Tkachuk K, Thompson CA, Tilly H, Tinker LF, Travis RC, Turner J, Vachon CM, Vajdic CM, Van Den Berg A, Van Den Berg DJ, Vermeulen RCH, Vineis P, Wang SS, Weiderpass E, Weiner GJ, Weinstein S, Doo NW, Ye Y, Yeager M, Yu K, Zeleniuch-Jacquotte A, Zhang Y, Zheng T, Ziv E, Sampson J, Chatterjee N, Offit K, Cozen W, Wu X, Cerhan JR, Chanock SJ, Slager SL, Rothman N. Distinct germline genetic susceptibility profiles identified for common non-Hodgkin lymphoma subtypes. Leukemia 2022; 36:2835-2844. [PMID: 36273105 PMCID: PMC10337695 DOI: 10.1038/s41375-022-01711-0] [Show More Authors] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
Lymphoma risk is elevated for relatives with common non-Hodgkin lymphoma (NHL) subtypes, suggesting shared genetic susceptibility across subtypes. To evaluate the extent of mutual heritability among NHL subtypes and discover novel loci shared among subtypes, we analyzed data from eight genome-wide association studies within the InterLymph Consortium, including 10,629 cases and 9505 controls. We utilized Association analysis based on SubSETs (ASSET) to discover loci for subsets of NHL subtypes and evaluated shared heritability across the genome using Genome-wide Complex Trait Analysis (GCTA) and polygenic risk scores. We discovered 17 genome-wide significant loci (P < 5 × 10-8) for subsets of NHL subtypes, including a novel locus at 10q23.33 (HHEX) (P = 3.27 × 10-9). Most subset associations were driven primarily by only one subtype. Genome-wide genetic correlations between pairs of subtypes varied broadly from 0.20 to 0.86, suggesting substantial heterogeneity in the extent of shared heritability among subtypes. Polygenic risk score analyses of established loci for different lymphoid malignancies identified strong associations with some NHL subtypes (P < 5 × 10-8), but weak or null associations with others. Although our analyses suggest partially shared heritability and biological pathways, they reveal substantial heterogeneity among NHL subtypes with each having its own distinct germline genetic architecture.
Collapse
Affiliation(s)
- Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA.
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yolanda Benavente
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alexandra Nieters
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Karin E Smedby
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | | | - Henrik Hjalgrim
- Department of Epidemiology Research, Division of Health Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark
- Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | - Caroline Besson
- Centre Hospitalier de Versailles, Le Chesnay, France
- Université Paris-Saclay, UVSQ, Inserm, Équipe "Exposome et Hérédité", CESP, Villejuif, France
| | - Christine F Skibola
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lindsay M Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Angela R Brooks-Wilson
- Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Charles Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Joshua Arias
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Hans-Olov Adami
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Institute of Health and Society, Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Stephen M Ansell
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bryan Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Nikolaus Becker
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany
| | - Parveen Bhatti
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brenda M Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, 11794, NY, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, 41026, Italy
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Elizabeth E Brown
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Laurie Burdett
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MA, USA
| | - Lisa A Cannon-Albright
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Ellen T Chang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Center for Health Sciences, Exponent, Inc., Menlo Park, CA, USA
| | - Brian C H Chiu
- Department of Public Health Sciences University of Chicago, Chicago, IL, USA
| | - Charles C Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Jacqueline Clavel
- CRESS, UMR1153, INSERM, Villejuif, France
- Université de Paris-Cité, Villejuif, France
| | - Pierluigi Cocco
- Centre for Occupational and Environmental Health, Division of Population Science, Health Services Research & Primary Care, University of Manchester, Manchester, United Kingdom
| | - Graham Colditz
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Lucia Conde
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London, United Kingdom
| | - David V Conti
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David G Cox
- INSERM U1052, Cancer Research Center of Lyon, Centre Léon Bérard, Lyon, France
| | - Karen Curtin
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Delphine Casabonne
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - W Ryan Diver
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Ahmet Dogan
- Departments of Laboratory Medicine and Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher K Edlund
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Joseph F Fraumeni
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Attilio Gabbas
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Monserrato, Cagliari, Italy
| | - Hervé Ghesquières
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre Benite, France
- CIRI, Centre International de Recherche en Infectiologie, Team Lymphoma Immuno-Biology, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VC, Australia
| | - Sally Glaser
- Cancer Prevention Institute of California, Fremont, CA, USA
- Stanford Cancer Institute, Stanford, CA, USA
| | - Martha Glenn
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jian Gu
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Christopher A Haiman
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Corinne Haioun
- Lymphoid Malignancies Unit, Henri Mondor Hospital and University Paris Est, Créteil, France
| | - Jonathan N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Theodore R Holford
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Elizabeth A Holly
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MA, USA
| | - Aalin Izhar
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, OH, USA
| | - Ruth F Jarrett
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Rudolph Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany
| | - Eleanor Kane
- Department of Health Sciences, University of York, York, United Kingdom
| | - Laurence N Kolonel
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Yinfei Kong
- Information Systems and Decision Sciences, California State University, Fullerton, Fullerton, CA, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Anne Kricker
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
| | - Annette Lake
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | | | - Dalin Li
- F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mark Liebow
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Brian K Link
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Corrado Magnani
- CPO-Piemonte and Unit of Medical Statistics and Epidemiology, Department Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Marc Maynadie
- INSERM U1231, EA 4184, Registre des Hémopathies Malignes de Côte d'Or, University of Burgundy and Dijon University Hospital, Dijon, France
| | - James McKay
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Mads Melbye
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Jebsen Center for Genetic epidemiology, NTNU, Trondheim, Norway
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Genetics, Stanford University Medical School, Stanford, CA, USA
| | - Lucia Miligi
- Environmental and Occupational Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Florence, Italy
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VC, Australia
| | - Thierry J Molina
- Department of Pathology, APHP, Necker and Robert Debré, Université Paris Cité, Institut Imagine, INSERM U1163, Paris, France
| | - Alain Monnereau
- CRESS, UMR1153, INSERM, Villejuif, France
- Registre des hémopathies malignes de la Gironde, Institut Bergonié, Bordeaux, Cedex, France
| | | | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne J Novak
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kenan Onel
- Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Hempstead, New York, NY, USA
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Kristin A Rand
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elio Riboli
- School of Public Health, Imperial College London, London, United Kingdom
| | - Jacques Riby
- Department of Epidemiology, School of Public Health and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, CA, USA
| | - Eve Roman
- Department of Health Sciences, University of York, York, United Kingdom
| | - Gilles Salles
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Douglas W Sborov
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Richard K Severson
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, MI, USA
| | - Tait D Shanafelt
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, CA, USA
| | - Alexandra Smith
- Department of Health Sciences, University of York, York, United Kingdom
| | - Kevin W Song
- Leukemia/Bone Marrow Transplantation Program, BC Cancer Agency, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lei Song
- Center for Cancer Research, National Cancer Institute, Frederick, MA, USA
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VC, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, VC, 3010, Australia
| | - John J Spinelli
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Anthony Staines
- School of Nursing, Psychotherapy and Community Health, Dublin City University, Dublin, Ireland
| | - Deborah Stephens
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Heather J Sutherland
- Leukemia/Bone Marrow Transplantation Program, BC Cancer Agency, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kaitlyn Tkachuk
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Hervé Tilly
- Centre Henri Becquerel, Université de Rouen, Rouen, France
| | - Lesley F Tinker
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ruth C Travis
- Cancer Epidemiology Unit, University of Oxford, Oxford, United Kingdom
| | - Jenny Turner
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Department of Histopathology, Douglass Hanly Moir Pathology, Sydney, NSW, Australia
| | - Celine M Vachon
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Claire M Vajdic
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Anke Van Den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - David J Van Den Berg
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Human Genetics Foundation, Turin, Italy
| | - Sophia S Wang
- Division of Health Analytics, City of Hope Beckman Research Institute, Duarte, CA, USA
| | | | - George J Weiner
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Stephanie Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Nicole Wong Doo
- Concord Clinical School, University of Sydney, Concord, NSW, Australia
| | - Yuanqing Ye
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MA, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University School of Medicine, New York, NY, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, USA
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Tongzhang Zheng
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Elad Ziv
- Division of General Internal Medicine, Department of Medicine, Institute of Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Joshua Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MA, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MA, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wendy Cozen
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Xifeng Wu
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA
| | - James R Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Susan L Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| |
Collapse
|
19
|
Luo J, Craver A, Bahl K, Stepniak L, Moore K, King J, Zhang Y, Aschebrook-Kilfoy B. Etiology of non-Hodgkin lymphoma: A review from epidemiologic studies. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:226-234. [PMID: 39036553 PMCID: PMC11256700 DOI: 10.1016/j.jncc.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/20/2022] [Accepted: 08/07/2022] [Indexed: 11/24/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) contributes to significant cancer burden and mortality globally. In recent years, much insight into the causes of NHL has been gained by evaluating global differences through international collaboration and data pooling. NHL comprises different subtypes that are known to behave differently, exhibit different prognoses, and start in distinct cell types (B-cell, T-cell, and NK-cell, predominantly), and there is increasing evidence that NHL subtypes have different etiologies. Classification of NHL can be complex, with varying subtype frequencies, and is a consideration when evaluating geographic differences. Because of this, international pooling of well-executed epidemiologic studies has conferred power to evaluate NHL by subtype and confidence with minimal misclassification. Given the decreasing burden in some regions while cases rise in Asia, and especially China, this report focuses on a review of the established etiology of NHL from the epidemiologic literature in recent decades, highlighting work from China. Topics covered include demographic patterns and genetic determinants including family history of NHL, as well as infection and immunosuppression, lifestyle, environment, and certain occupational exposures contributing to increased disease risk.
Collapse
Affiliation(s)
- Jiajun Luo
- Institute for Population and Precision Health, University of Chicago, Chicago, United States of America
- Comprehensive Cancer Center, University of Chicago, Chicago, United States of America
| | - Andrew Craver
- Institute for Population and Precision Health, University of Chicago, Chicago, United States of America
| | - Kendall Bahl
- Institute for Population and Precision Health, University of Chicago, Chicago, United States of America
| | - Liz Stepniak
- Institute for Population and Precision Health, University of Chicago, Chicago, United States of America
| | - Kayla Moore
- Institute for Population and Precision Health, University of Chicago, Chicago, United States of America
| | - Jaime King
- Institute for Population and Precision Health, University of Chicago, Chicago, United States of America
| | - Yawei Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Briseis Aschebrook-Kilfoy
- Institute for Population and Precision Health, University of Chicago, Chicago, United States of America
- Comprehensive Cancer Center, University of Chicago, Chicago, United States of America
- Department of Public Health Sciences, University of Chicago, Chicago, United States of America
| |
Collapse
|
20
|
Corpas M, Megy K, Metastasio A, Lehmann E. Implementation of individualised polygenic risk score analysis: a test case of a family of four. BMC Med Genomics 2022; 15:207. [PMID: 36192731 PMCID: PMC9531350 DOI: 10.1186/s12920-022-01331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Polygenic risk scores (PRS) have been widely applied in research studies, showing how population groups can be stratified into risk categories for many common conditions. As healthcare systems consider applying PRS to keep their populations healthy, little work has been carried out demonstrating their implementation at an individual level. CASE PRESENTATION We performed a systematic curation of PRS sources from established data repositories, selecting 15 phenotypes, comprising an excess of 37 million SNPs related to cancer, cardiovascular, metabolic and autoimmune diseases. We tested selected phenotypes using whole genome sequencing data for a family of four related individuals. Individual risk scores were given percentile values based upon reference distributions among 1000 Genomes Iberians, Europeans, or all samples. Over 96 billion allele effects were calculated in order to obtain the PRS for each of the individuals analysed here. CONCLUSIONS Our results highlight the need for further standardisation in the way PRS are developed and shared, the importance of individual risk assessment rather than the assumption of inherited averages, and the challenges currently posed when translating PRS into risk metrics.
Collapse
Affiliation(s)
- Manuel Corpas
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK.
- Institute of Continuing Education, University of Cambridge, Cambridge, UK.
- Facultad de Ciencias de La Salud, Universidad Internacional de La Rioja, Madrid, Spain.
| | - Karyn Megy
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK
- Department of Haematology, University of Cambridge & NHS Blood and Transplant, Cambridge, UK
| | - Antonio Metastasio
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK
- Camden and Islington NHS Foundation Trust, London, UK
| | - Edmund Lehmann
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK
| |
Collapse
|
21
|
Song J, Huang F, Chen L, Feng K, Jian F, Huang T, Cai YD. Identification of methylation signatures associated with CAR T cell in B-cell acute lymphoblastic leukemia and non-hodgkin’s lymphoma. Front Oncol 2022; 12:976262. [PMID: 36033519 PMCID: PMC9402909 DOI: 10.3389/fonc.2022.976262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
CD19-targeted CAR T cell immunotherapy has exceptional efficacy for the treatment of B-cell malignancies. B-cell acute lymphocytic leukemia and non-Hodgkin’s lymphoma are two common B-cell malignancies with high recurrence rate and are refractory to cure. Although CAR T-cell immunotherapy overcomes the limitations of conventional treatments for such malignancies, failure of treatment and tumor recurrence remain common. In this study, we searched for important methylation signatures to differentiate CAR-transduced and untransduced T cells from patients with acute lymphoblastic leukemia and non-Hodgkin’s lymphoma. First, we used three feature ranking methods, namely, Monte Carlo feature selection, light gradient boosting machine, and least absolute shrinkage and selection operator, to rank all methylation features in order of their importance. Then, the incremental feature selection method was adopted to construct efficient classifiers and filter the optimal feature subsets. Some important methylated genes, namely, SERPINB6, ANK1, PDCD5, DAPK2, and DNAJB6, were identified. Furthermore, the classification rules for distinguishing different classes were established, which can precisely describe the role of methylation features in the classification. Overall, we applied advanced machine learning approaches to the high-throughput data, investigating the mechanism of CAR T cells to establish the theoretical foundation for modifying CAR T cells.
Collapse
Affiliation(s)
- Jiwei Song
- College of Life Science, Changchun Sci-Tech University, Shuangyang, China
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Fangfang Jian
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| |
Collapse
|
22
|
Role of Polygenic Risk Score in Cancer Precision Medicine of Non-European Populations: A Systematic Review. Curr Oncol 2022; 29:5517-5530. [PMID: 36005174 PMCID: PMC9406904 DOI: 10.3390/curroncol29080436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
The development of new screening methods and diagnostic tests for traits, common diseases, and cancer is linked to the advent of precision genomic medicine, in which health care is individually adjusted based on a person’s lifestyle, environmental influences, and genetic variants. Based on genome-wide association study (GWAS) analysis, rapid and continuing progress in the discovery of relevant single nucleotide polymorphisms (SNPs) for traits or complex diseases has increased interest in the potential application of genetic risk models for routine health practice. The polygenic risk score (PRS) estimates an individual’s genetic risk of a trait or disease, calculated by employing a weighted sum of allele counts combined with non-genetic variables. However, 98.38% of PRS records held in public databases relate to the European population. Therefore, PRSs for multiethnic populations are urgently needed. We performed a systematic review to discuss the role of polygenic risk scores in advancing precision medicine for different cancer types in multiethnic non-European populations.
Collapse
|
23
|
García-Martín P, Díez AM, Maldonado JMS, Serrano AJC, Ter Horst R, Benavente Y, Landi S, Macauda A, Clay-Gilmour A, Hernández-Mohedo F, Niazi Y, González-Sierra P, Espinet B, Rodríguez-Sevilla JJ, Maffei R, Blanco G, Giaccherini M, Puiggros A, Cerhan J, Marasca R, Cañadas-Garre M, López-Nevot MÁ, Chen-Liang T, Thomsen H, Gámez I, Moreno V, Marcos-Gragera R, García-Álvarez M, Llorca J, Jerez A, Berndt S, Butrym A, Norman AD, Casabonne D, Luppi M, Slager SL, Hemminki K, Li Y, Alcoceba M, Campa D, Canzian F, de Sanjosé S, Försti A, Netea MG, Jurado M, Sainz J. Validation and functional characterization of GWAS-identified variants for chronic lymphocytic leukemia: a CRuCIAL study. Blood Cancer J 2022; 12:79. [PMID: 35581176 PMCID: PMC9114372 DOI: 10.1038/s41408-022-00676-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 02/08/2023] Open
Affiliation(s)
| | - Ana Moñiz Díez
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, Granada, Spain
- Hematology department, Virgen de las Nieves University Hospital, Granada, Spain
- Instituto de Investigación Biosanitaria IBs.Granada, Granada, Spain
| | - José Manuel Sánchez Maldonado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, Granada, Spain
- Hematology department, Virgen de las Nieves University Hospital, Granada, Spain
- Instituto de Investigación Biosanitaria IBs.Granada, Granada, Spain
| | - Antonio José Cabrera Serrano
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, Granada, Spain
- Hematology department, Virgen de las Nieves University Hospital, Granada, Spain
- Instituto de Investigación Biosanitaria IBs.Granada, Granada, Spain
| | - Rob Ter Horst
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Yolanda Benavente
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) and University of Barcelona, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Angelica Macauda
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alyssa Clay-Gilmour
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Greenville, SC, USA
| | - Francisca Hernández-Mohedo
- Hematology department, Virgen de las Nieves University Hospital, Granada, Spain
- Instituto de Investigación Biosanitaria IBs.Granada, Granada, Spain
| | - Yasmeen Niazi
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Pedro González-Sierra
- Hematology department, Virgen de las Nieves University Hospital, Granada, Spain
- Instituto de Investigación Biosanitaria IBs.Granada, Granada, Spain
| | - Blanca Espinet
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | | | - Rossana Maffei
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Gonzalo Blanco
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | | | - Anna Puiggros
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - James Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Roberto Marasca
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Marisa Cañadas-Garre
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, Granada, Spain
- Hematology department, Virgen de las Nieves University Hospital, Granada, Spain
- Instituto de Investigación Biosanitaria IBs.Granada, Granada, Spain
| | | | - Tzu Chen-Liang
- Hematology Department, Morales Meseguer University Hospital, Murcia, Spain
| | | | - Irene Gámez
- Hematology Department, Morales Meseguer University Hospital, Murcia, Spain
| | - Víctor Moreno
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, IDIBELL, Catalan Institute of Oncology; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Rafael Marcos-Gragera
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Epidemiology Unit and Girona Cancer Registry, Oncology Coordination Plan, Department of Health, Autonomous Government of Catalonia, Catalan Institute of Oncology, Girona Biomedical Research Institute (IdiBGi), and Universitat de Girona, Girona, Spain
- Josep Carreras Leukemia Research Institute, Girona, Spain
| | - María García-Álvarez
- Department of Hematology, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Javier Llorca
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- University of Cantabria, Santander, Spain
| | - Andrés Jerez
- Hematology Department, Morales Meseguer University Hospital, Murcia, Spain
| | - Sonja Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Aaron D Norman
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Delphine Casabonne
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) and University of Barcelona, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mario Luppi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Susan L Slager
- Division of Computational Genomics, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Kari Hemminki
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605, Pilsen, Czech Republic
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | | | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Silvia de Sanjosé
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) and University of Barcelona, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Asta Försti
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115, Bonn, Germany
| | - Manuel Jurado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, Granada, Spain
- Hematology department, Virgen de las Nieves University Hospital, Granada, Spain
- Instituto de Investigación Biosanitaria IBs.Granada, Granada, Spain
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, Granada, Spain.
- Hematology department, Virgen de las Nieves University Hospital, Granada, Spain.
- Instituto de Investigación Biosanitaria IBs.Granada, Granada, Spain.
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada (UGR), Granada, Spain.
| |
Collapse
|
24
|
Wang SS, Vajdic CM, Linet MS, Slager SL, Voutsinas J, Nieters A, Casabonne D, Cerhan JR, Cozen W, Alarcón G, Martínez-Maza O, Brown EE, Bracci PM, Turner J, Hjalgrim H, Bhatti P, Zhang Y, Birmann BM, Flowers CR, Paltiel O, Holly EA, Kane E, Weisenburger DD, Maynadié M, Cocco P, Foretova L, Breen EC, Lan Q, Brooks-Wilson A, De Roos AJ, Smith MT, Roman E, Boffetta P, Kricker A, Zheng T, Skibola CF, Clavel J, Monnereau A, Chanock SJ, Rothman N, Benavente Y, Hartge P, Smedby KE. B-Cell NHL Subtype Risk Associated with Autoimmune Conditions and PRS. Cancer Epidemiol Biomarkers Prev 2022; 31:1103-1110. [PMID: 35244686 PMCID: PMC9081255 DOI: 10.1158/1055-9965.epi-21-0875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/02/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND A previous International Lymphoma Epidemiology (InterLymph) Consortium evaluation of joint associations between five immune gene variants and autoimmune conditions reported interactions between B-cell response-mediated autoimmune conditions and the rs1800629 genotype on risk of B-cell non-Hodgkin lymphoma (NHL) subtypes. Here, we extend that evaluation using NHL subtype-specific polygenic risk scores (PRS) constructed from loci identified in genome-wide association studies of three common B-cell NHL subtypes. METHODS In a pooled analysis of NHL cases and controls of Caucasian descent from 14 participating InterLymph studies, we evaluated joint associations between B-cell-mediated autoimmune conditions and tertile (T) of PRS for risk of diffuse large B-cell lymphoma (DLBCL; n = 1,914), follicular lymphoma (n = 1,733), and marginal zone lymphoma (MZL; n = 407), using unconditional logistic regression. RESULTS We demonstrated a positive association of DLBCL PRS with DLBCL risk [T2 vs. T1: OR = 1.24; 95% confidence interval (CI), 1.08-1.43; T3 vs. T1: OR = 1.81; 95% CI, 1.59-2.07; P-trend (Ptrend) < 0.0001]. DLBCL risk also increased with increasing PRS tertile among those with an autoimmune condition, being highest for those with a B-cell-mediated autoimmune condition and a T3 PRS [OR = 6.46 vs. no autoimmune condition and a T1 PRS, Ptrend < 0.0001, P-interaction (Pinteraction) = 0.49]. Follicular lymphoma and MZL risk demonstrated no evidence of joint associations or significant Pinteraction. CONCLUSIONS Our results suggest that PRS constructed from currently known subtype-specific loci may not necessarily capture biological pathways shared with autoimmune conditions. IMPACT Targeted genetic (PRS) screening among population subsets with autoimmune conditions may offer opportunities for identifying those at highest risk for (and early detection from) DLBCL.
Collapse
Affiliation(s)
- Sophia S. Wang
- Division of Health Analytics, Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Monrovia, California
| | - Claire M. Vajdic
- Centre for Big Data Research in Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Martha S. Linet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Susan L. Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Jenna Voutsinas
- Division of Health Analytics, Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Monrovia, California
| | - Alexandra Nieters
- The Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Delphine Casabonne
- Unit of Infections and Cancer, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program – Epibell, IDIBELL, Institut Català d’ Oncologia/IDIBELL, Barcelona, Spain
- The Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - James R. Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Wendy Cozen
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, California
| | - Graciela Alarcón
- Division of Clinical Immunology and Rheumatology, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Otoniel Martínez-Maza
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
| | - Elizabeth E. Brown
- Department of Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Paige M. Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Jennifer Turner
- Department of Histopathology, Douglass Hanly Moir Pathology, Sydney, New South Wales, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Henrik Hjalgrim
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Parveen Bhatti
- British Columbia Cancer Research Center, Vancouver, British Columbia, Canada
| | - Yawei Zhang
- Department of Cancer Prevention and Control at the National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Brenda M. Birmann
- Channing Division of Network Medicine, Department of Medicine Research, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Ora Paltiel
- Department of Hematology, The Hebrew University-Hadassah Braun School of Public Health and Community Medicine, Hadassah University Medical Center, Jerusalem, Israel
| | - Elizabeth A. Holly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Eleanor Kane
- Department of Health Sciences, University of York, York, United Kingdom
| | | | - Marc Maynadié
- Registry of Hematological Malignancies of Cote d'Or, INSERM U1231, Burgundy University and University Hospital, Dijon, France (Maynadie)
| | - Pierluigi Cocco
- Occupational Health Section, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Elizabeth Crabb Breen
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Angela Brooks-Wilson
- Department of Biomedical Physiology and Kinesiology, Faculty of Science, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Anneclaire J. De Roos
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California
| | - Eve Roman
- Department of Health Sciences, University of York, York, United Kingdom
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Anne Kricker
- Sydney School of Public Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island
| | | | - Jacqueline Clavel
- Centre of Research in Epidemiology and Statistics (CRESS), UMR1153, INSERM, Université de Paris, Paris, France
| | - Alain Monnereau
- Centre of Research in Epidemiology and Statistics (CRESS), UMR1153, INSERM, Université de Paris, Paris, France
- Registre des Hémopathies Malignes de la Gironde, Institut Bergonié, University of Bordeaux, Inserm, Team EPICENE, UMR 1219, Paris, France
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Yolanda Benavente
- Unit of Infections and Cancer, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program – Epibell, IDIBELL, Institut Català d’ Oncologia/IDIBELL, Barcelona, Spain
- The Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Patricia Hartge
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Karin E. Smedby
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Meiotic drive in chronic lymphocytic leukemia compared with other malignant blood disorders. Sci Rep 2022; 12:6138. [PMID: 35413962 PMCID: PMC9005523 DOI: 10.1038/s41598-022-09602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/22/2022] [Indexed: 11/12/2022] Open
Abstract
The heredity of the malignant blood disorders, leukemias, lymphomas and myeloma, has so far been largely unknown. The present study comprises genealogical investigations of one hundred and twelve Scandinavian families with unrelated parents and two or more cases of malignant blood disease. For comparison, one large family with related family members and three hundred and forty-one cases of malignant blood disease from the Faroese population was included. The inheritance is non-Mendelian, a combination of genomic parental imprinting and feto-maternal microchimerism. There is significantly more segregation in maternal than in paternal lines, predominance of mother-daughter combinations in maternal lines, and father-son combinations in paternal lines. Chronic lymphocytic leukemia is the most frequent diagnosis in the family material, and chronic lymphocytic leukemia has a transgenerational segregation that is unique in that inheritance of susceptibility to chronic lymphocytic leukemia is predominant in males of paternal lines. Male offspring with chronic lymphocytic leukemia in paternal lines have a birth-order effect, which is manifest by the fact that there are significantly more male patients late in the sibling line. In addition, there is contravariation in chronic lymphocytic leukemia, i.e. lower occurrence than expected in relation to other diagnoses, interpreted in such a way that chronic lymphocytic leukemia remains isolated in the pedigree in relation to other diagnoses of malignant blood disease. Another non-Mendelian function appears in the form of anticipation, i.e. increased intensity of malignancy down through the generations and a lower age at onset of disease than otherwise seen in cases from the Cancer Registers, in acute lymphoblastic leukemia, for example. It is discussed that this non-Mendelian segregation seems to spread the susceptibility genes depending on the gender of the parents and not equally to all children in the sibling line, with some remaining unaffected by susceptibility i.e. "healthy and unaffected", due to a birth order effect. In addition, anticipation is regarded as a non-Mendelian mechanism that can amplify, «preserve» these vital susceptibility genes in the family. Perhaps this segregation also results in a sorting of the susceptibility, as the percentage of follicular lymphoma and diffuse large B-cell lymphoma is lower in the family material than in an unselected material. Although leukemias, lymphomas and myelomas are potentially fatal diseases, this non-Mendelian distribution and amplification hardly play any quantitative role in the survival of Homo sapiens, because these diseases mostly occur after fertile age.
Collapse
|
26
|
Nicolò A, Linder AT, Jumaa H, Maity PC. The Determinants of B Cell Receptor Signaling as Prototype Molecular Biomarkers of Leukemia. Front Oncol 2022; 11:771669. [PMID: 34993136 PMCID: PMC8724047 DOI: 10.3389/fonc.2021.771669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
Advanced genome-wide association studies (GWAS) identified several transforming mutations in susceptible loci which are recognized as valuable prognostic markers in chronic lymphocytic leukemia (CLL) and B cell lymphoma (BCL). Alongside, robust genetic manipulations facilitated the generation of preclinical mouse models to validate mutations associated with poor prognosis and refractory B cell malignancies. Taken together, these studies identified new prognostic markers that could achieve characteristics of precision biomarkers for molecular diagnosis. On the contrary, the idea of augmented B cell antigen receptor (BCR) signaling as a transforming cue has somewhat receded despite the efficacy of Btk and Syk inhibitors. Recent studies from several research groups pointed out that acquired mutations in BCR components serve as faithful biomarkers, which become important for precision diagnostics and therapy, due to their relevant role in augmented BCR signaling and CLL pathogenesis. For example, we showed that expression of a single point mutated immunoglobulin light chain (LC) recombined through the variable gene segment IGLV3-21, named IGLV3-21R110, marks severe CLL cases. In this perspective, we summarize the molecular mechanisms fine-tuning B cell transformation, focusing on immunoglobulin point mutations and recurrent mutations in tumor suppressors. We present a stochastic model for gain-of-autonomous BCR signaling and subsequent neoplastic transformation. Of note, additional mutational analyses on immunoglobulin heavy chain (HC) derived from non-subset #2 CLL IGLV3-21R110 cases endorses our perspective. Altogether, we propose a model of malignant transformation in which the augmented BCR signaling creates a conducive platform for the appearance of transforming mutations.
Collapse
Affiliation(s)
| | | | - Hassan Jumaa
- Institute of Immunology, Ulm University, Ulm, Germany
| | | |
Collapse
|
27
|
Polygenic risk score and risk of monoclonal B-cell lymphocytosis in caucasians and risk of chronic lymphocytic leukemia (CLL) in African Americans. Leukemia 2022; 36:119-125. [PMID: 34285341 PMCID: PMC8727288 DOI: 10.1038/s41375-021-01344-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Monoclonal B-cell lymphocytosis (MBL) is a precursor to CLL. Other than age, sex, and CLL family-history, little is known about factors associated with MBL risk. A polygenic-risk-score (PRS) of 41 CLL-susceptibility variants has been found to be associated with CLL risk among individuals of European-ancestry(EA). Here, we evaluate these variants, the PRS, and environmental factors for MBL risk. We also evaluate these variants and the CLL-PRS among African-American (AA) and EA-CLL cases and controls. Our study included 560 EA MBLs, 869 CLLs (696 EA/173 AA), and 2866 controls (2631 EA/235 AA). We used logistic regression, adjusting for age and sex, to estimate odds ratios (OR) and 95% confidence intervals within each race. We found significant associations with MBL risk among 21 of 41 variants and with the CLL-PRS (OR = 1.86, P = 1.9 × 10-29, c-statistic = 0.72). Little evidence of any association between MBL risk and environmental factors was observed. We observed significant associations of the CLL-PRS with EA-CLL risk (OR = 2.53, P = 4.0 × 10-63, c-statistic = 0.77) and AA-CLL risk (OR = 1.76, P = 5.1 × 10-5, c-statistic = 0.62). Inherited genetic factors and not environmental are associated with MBL risk. In particular, the CLL-PRS is a strong predictor for both risk of MBL and EA-CLL, but less so for AA-CLL supporting the need for further work in this population.
Collapse
|
28
|
Lee JK. Hygiene Hypothesis as the Etiology of Kawasaki Disease: Dysregulation of Early B Cell Development. Int J Mol Sci 2021; 22:ijms222212334. [PMID: 34830213 PMCID: PMC8622879 DOI: 10.3390/ijms222212334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Kawasaki disease (KD) is an acute systemic vasculitis that occurs predominantly in children under 5 years of age. Despite much study, the etiology of KD remains unknown. However, epidemiological and immunological data support the hygiene hypothesis as a possible etiology. It is thought that more sterile or clean modern living environments due to increased use of sanitizing agents, antibiotics, and formula feeding result in a lack of immunological challenges, leading to defective or dysregulated B cell development, accompanied by low IgG and high IgE levels. A lack of B cell immunity may increase sensitivity to unknown environmental triggers that are nonpathogenic in healthy individuals. Genetic studies of KD show that all of the KD susceptibility genes identified by genome-wide association studies are involved in B cell development and function, particularly in early B cell development (from the pro-B to pre-B cell stage). The fact that intravenous immunoglobulin is an effective therapy for KD supports this hypothesis. In this review, I discuss clinical, epidemiological, immunological, and genetic studies showing that the etiopathogenesis of KD in infants and toddlers can be explained by the hygiene hypothesis, and particularly by defects or dysregulation during early B cell development.
Collapse
Affiliation(s)
- Jong-Keuk Lee
- Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
29
|
Yan H, Tian S, Kleinstern G, Wang Z, Lee JH, Boddicker NJ, Cerhan JR, Kay NE, Braggio E, Slager SL. Chronic lymphocytic leukemia (CLL) risk is mediated by multiple enhancer variants within CLL risk loci. Hum Mol Genet 2021; 29:2761-2774. [PMID: 32744316 DOI: 10.1093/hmg/ddaa165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/02/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries. It has a strong genetic basis, showing a ~ 8-fold increased risk of CLL in first-degree relatives. Genome-wide association studies (GWAS) have identified 41 risk variants across 41 loci. However, for a majority of the loci, the functional variants and the mechanisms underlying their causal roles remain undefined. Here, we examined the genetic and epigenetic features associated with 12 index variants, along with any correlated (r2 ≥ 0.5) variants, at the CLL risk loci located outside of gene promoters. Based on publicly available ChIP-seq and chromatin accessibility data as well as our own ChIP-seq data from CLL patients, we identified six candidate functional variants at six loci and at least two candidate functional variants at each of the remaining six loci. The functional variants are predominantly located within enhancers or super-enhancers, including bi-directionally transcribed enhancers, which are often restricted to immune cell types. Furthermore, we found that, at 78% of the functional variants, the alternative alleles altered the transcription factor binding motifs or histone modifications, indicating the involvement of these variants in the change of local chromatin state. Finally, the enhancers carrying functional variants physically interacted with genes enriched in the type I interferon signaling pathway, apoptosis, or TP53 network that are known to play key roles in CLL. These results support the regulatory roles for inherited noncoding variants in the pathogenesis of CLL.
Collapse
Affiliation(s)
- Huihuang Yan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Shulan Tian
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Geffen Kleinstern
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhiquan Wang
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeong-Heon Lee
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - James R Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Neil E Kay
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Esteban Braggio
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Susan L Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
30
|
Roessner PM, Llaó Cid L, Lupar E, Roider T, Bordas M, Schifflers C, Arseni L, Gaupel AC, Kilpert F, Krötschel M, Arnold SJ, Sellner L, Colomer D, Stilgenbauer S, Dietrich S, Lichter P, Izcue A, Seiffert M. EOMES and IL-10 regulate antitumor activity of T regulatory type 1 CD4 + T cells in chronic lymphocytic leukemia. Leukemia 2021; 35:2311-2324. [PMID: 33526861 PMCID: PMC8324479 DOI: 10.1038/s41375-021-01136-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/19/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
The transcription factor eomesodermin (EOMES) promotes interleukin (IL)-10 expression in CD4+ T cells, which has been linked to immunosuppressive and cytotoxic activities. We detected cytotoxic, programmed cell death protein-1 (PD-1) and EOMES co-expressing CD4+ T cells in lymph nodes (LNs) of patients with chronic lymphocytic leukemia (CLL) or diffuse large B-cell lymphoma. Transcriptome and flow cytometry analyses revealed that EOMES does not only drive IL-10 expression, but rather controls a unique transcriptional signature in CD4+ T cells, that is enriched in genes typical for T regulatory type 1 (TR1) cells. The TR1 cell identity of these CD4+ T cells was supported by their expression of interferon gamma and IL-10, as well as inhibitory receptors including PD-1. TR1 cells with cytotoxic capacity accumulate also in Eµ-TCL1 mice that develop CLL-like disease. Whereas wild-type CD4+ T cells control TCL1 leukemia development after adoptive transfer in leukopenic Rag2-/- mice, EOMES-deficient CD4+ T cells failed to do so. We further show that TR1 cell-mediated control of TCL1 leukemia requires IL-10 receptor (IL-10R) signaling, as Il10rb-deficient CD4+ T cells showed impaired antileukemia activity. Altogether, our data demonstrate that EOMES is indispensable for the development of IL-10-expressing, cytotoxic TR1 cells, which accumulate in LNs of CLL patients and control TCL1 leukemia in mice in an IL-10R-dependent manner.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Cell Differentiation
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Interferon-gamma
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/prevention & control
- Mice
- Mice, Inbred C57BL
- Prognosis
- Signal Transduction
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Regulatory/immunology
- Th1 Cells/immunology
- Transcriptome
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Philipp M Roessner
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura Llaó Cid
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ekaterina Lupar
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Cellzome, Heidelberg, Germany
| | - Tobias Roider
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Marie Bordas
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Christoph Schifflers
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cell Biology Research Unit (URBC)-Namur Research Institute of Life Science (Narilis), University of Namur, Namur, Belgium
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lavinia Arseni
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ann-Christin Gaupel
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Kilpert
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Essen University Hospital, Institute of Human Genetics, Genome Informatics, Essen, Germany
| | - Marit Krötschel
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- BioMed X Institute, Heidelberg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Leopold Sellner
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematopathology Unit, Hospital Clinic, CIBERONC, Barcelona, Spain
| | | | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Izcue
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
- Institute of Molecular Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
31
|
Moore A, Machiela MJ, Machado M, Wang SS, Kane E, Slager SL, Zhou W, Carrington M, Lan Q, Milne RL, Birmann BM, Adami HO, Albanes D, Arslan AA, Becker N, Benavente Y, Bisanzi S, Boffetta P, Bracci PM, Brennan P, Brooks-Wilson AR, Canzian F, Caporaso N, Clavel J, Cocco P, Conde L, Cox DG, Cozen W, Curtin K, De Vivo I, de Sanjose S, Foretova L, Gapstur SM, Ghesquières H, Giles GG, Glenn M, Glimelius B, Gao C, Habermann TM, Hjalgrim H, Jackson RD, Liebow M, Link BK, Maynadie M, McKay J, Melbye M, Miligi L, Molina TJ, Monnereau A, Nieters A, North KE, Offit K, Patel AV, Piro S, Ravichandran V, Riboli E, Salles G, Severson RK, Skibola CF, Smedby KE, Southey MC, Spinelli JJ, Staines A, Stewart C, Teras LR, Tinker LF, Travis RC, Vajdic CM, Vermeulen RCH, Vijai J, Weiderpass E, Weinstein S, Doo NW, Zhang Y, Zheng T, Chanock SJ, Rothman N, Cerhan JR, Dean M, Camp NJ, Yeager M, Berndt SI. Genome-wide homozygosity and risk of four non-Hodgkin lymphoma subtypes. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2021; 5:200-217. [PMID: 34622145 PMCID: PMC8494431 DOI: 10.20517/jtgg.2021.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIM Recessive genetic variation is thought to play a role in non-Hodgkin lymphoma (NHL) etiology. Runs of homozygosity (ROH), defined based on long, continuous segments of homozygous SNPs, can be used to estimate both measured and unmeasured recessive genetic variation. We sought to examine genome-wide homozygosity and NHL risk. METHODS We used data from eight genome-wide association studies of four common NHL subtypes: 3061 chronic lymphocytic leukemia (CLL), 3814 diffuse large B-cell lymphoma (DLBCL), 2784 follicular lymphoma (FL), and 808 marginal zone lymphoma (MZL) cases, as well as 9374 controls. We examined the effect of homozygous variation on risk by: (1) estimating the fraction of the autosome containing runs of homozygosity (FROH); (2) calculating an inbreeding coefficient derived from the correlation among uniting gametes (F3); and (3) examining specific autosomal regions containing ROH. For each, we calculated beta coefficients and standard errors using logistic regression and combined estimates across studies using random-effects meta-analysis. RESULTS We discovered positive associations between FROH and CLL (β = 21.1, SE = 4.41, P = 1.6 × 10-6) and FL (β = 11.4, SE = 5.82, P = 0.02) but not DLBCL (P = 1.0) or MZL (P = 0.91). For F3, we observed an association with CLL (β = 27.5, SE = 6.51, P = 2.4 × 10-5). We did not find evidence of associations with specific ROH, suggesting that the associations observed with FROH and F3 for CLL and FL risk were not driven by a single region of homozygosity. CONCLUSION Our findings support the role of recessive genetic variation in the etiology of CLL and FL; additional research is needed to identify the specific loci associated with NHL risk.
Collapse
Affiliation(s)
- Amy Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Moara Machado
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Sophia S Wang
- Division of Health Analytics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Eleanor Kane
- Department of Health Sciences, University of York, York YO10 5DD, UK
| | - Susan L Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MD 20877, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, National Cancer Institute, Bethesda, MD 20892, USA
- Ragon Institute of MGH, Cambridge, MA 02139, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria 3800, Australia
| | - Brenda M Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hans-Olov Adami
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17176, Sweden
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Institute of Health and Society, Clinical Effectiveness Research Group, University of Oslo, Oslo 0315, Norway
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Alan A Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016, USA
- Department of Population Health, New York University School of Medicine, New York, NY 10016, USA
- Perlmutter Comprehensive Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Nikolaus Becker
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg 69120, Germany
| | - Yolanda Benavente
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Barcelona 08036, Spain
| | - Simonetta Bisanzi
- Regional Cancer Prevention Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence 50139, Italy
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 41026, Italy
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94118, USA
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon 69372, France
| | - Angela R Brooks-Wilson
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia V5Z1L3, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jacqueline Clavel
- Center of Research in Epidemiology and Statistics Sorbonne Paris Cité (CRESS), UMR1153, INSERM, Villejuif 75004, France
| | - Pierluigi Cocco
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Lucia Conde
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - David G Cox
- INSERM U1052, Cancer Research Center of Lyon, Centre Léon Bérard, Lyon 69008, France
| | - Wendy Cozen
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, USC Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Karen Curtin
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Silvia de Sanjose
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Barcelona 08036, Spain
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno 656 53, Czech Republic
| | - Susan M Gapstur
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA
| | - Hervè Ghesquières
- Department of Hematology, Centre Léon Bérard, Lyon 69008, France
- INSERM U1052, Cancer Research Center of Lyon, Lyon-1 University, Pierre-Bénite Cedex 69008, France
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria 3800, Australia
| | - Martha Glenn
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75105, Sweden
| | - Chi Gao
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Henrik Hjalgrim
- Department of Epidemiology Research, Division of Health Surveillance and Research, Statens Serum Institut, Copenhagen 2300, Denmark
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, OH 43210, USA
| | - Mark Liebow
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian K Link
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Marc Maynadie
- U1231, Registre des Hémopathies Malignes de Côte d'Or, University of Burgundy and Dijon University Hospital, Dijon 21070, France
| | - James McKay
- International Agency for Research on Cancer (IARC), Lyon 69372, France
| | - Mads Melbye
- Department of Epidemiology Research, Division of Health Surveillance and Research, Statens Serum Institut, Copenhagen 2300, Denmark
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lucia Miligi
- Environmental and Occupational Epidemiology Branch-Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence 50139, Italy
| | - Thierry J Molina
- Department of Pathology, AP-HP, Necker Enfants Malades, Université Paris Descartes, EA 7324, Sorbonne Paris Cité 75015, France
| | - Alain Monnereau
- Center of Research in Epidemiology and Statistics Sorbonne Paris Cité (CRESS), UMR1153, INSERM, Villejuif 75004, France
- Registre des Hémopathies Malignes de la Gironde, Institut Bergonié, Bordeaux Cedex 33076, France
| | - Alexandra Nieters
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Baden-Württemberg 79108, Germany
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA
| | - Sara Piro
- Environmental and Occupational Epidemiology Branch-Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence 50139, Italy
| | - Vignesh Ravichandran
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elio Riboli
- School of Public Health, Imperial College London, London W2 1PG, UK
| | - Gilles Salles
- INSERM U1052, Cancer Research Center of Lyon, Lyon-1 University, Pierre-Bénite Cedex 69008, France
- Department of Hematology, Hospices Civils de Lyon, Pierre Benite Cedex 69495, France
- Department of Hematology, Université Lyon-1, Pierre Benite Cedex 69495, France
| | - Richard K Severson
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Christine F Skibola
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Karin E Smedby
- Department of Medicine, Solna, Karolinska Institutet, Stockholm 17176, Sweden
- Hematology Center, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Melissa C Southey
- Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - John J Spinelli
- Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia V5Z1L3, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | - Anthony Staines
- School of Nursing, Psychotherapy and Community Health, Dublin City University, Dublin 9, Ireland
| | - Carolyn Stewart
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA
| | - Lesley F Tinker
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98117, USA
| | - Ruth C Travis
- Cancer Epidemiology Unit, University of Oxford, Oxford OX3 7LF, UK
| | - Claire M Vajdic
- Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Stephanie Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Nicole Wong Doo
- Concord Clinical School, University of Sydney, Concord, New South Wales 2139, Australia
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - Tongzhang Zheng
- Department of Epidemiology, Brown University, Providence, RI 02903, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - James R Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MD 20877, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Waller RG, Klein RJ, Vijai J, McKay JD, Clay-Gilmour A, Wei X, Madsen MJ, Sborov DW, Curtin K, Slager SL, Offit K, Vachon CM, Lipkin SM, Dumontet C, Camp NJ. Sequencing at lymphoid neoplasm susceptibility loci maps six myeloma risk genes. Hum Mol Genet 2021; 30:1142-1153. [PMID: 33751038 PMCID: PMC8188404 DOI: 10.1093/hmg/ddab066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/14/2022] Open
Abstract
Inherited genetic risk factors play a role in multiple myeloma (MM), yet considerable missing heritability exists. Rare risk variants at genome-wide association study (GWAS) loci are a new avenue to explore. Pleiotropy between lymphoid neoplasms (LNs) has been suggested in family history and genetic studies, but no studies have interrogated sequencing for pleiotropic genes or rare risk variants. Sequencing genetically enriched cases can help discover rarer variants. We analyzed exome sequencing in familial or early-onset MM cases to identify rare, functionally relevant variants near GWAS loci for a range of LNs. A total of 149 distinct and significant LN GWAS loci have been published. We identified six recurrent, rare, potentially deleterious variants within 5 kb of significant GWAS single nucleotide polymorphisms in 75 MM cases. Mutations were observed in BTNL2, EOMES, TNFRSF13B, IRF8, ACOXL and TSPAN32. All six genes replicated in an independent set of 255 early-onset MM or familial MM or precursor cases. Expansion of our analyses to the full length of these six genes resulted in a list of 39 rare and deleterious variants, seven of which segregated in MM families. Three genes also had significant rare variant burden in 733 sporadic MM cases compared with 935 control individuals: IRF8 (P = 1.0 × 10-6), EOMES (P = 6.0 × 10-6) and BTNL2 (P = 2.1 × 10-3). Together, our results implicate six genes in MM risk, provide support for genetic pleiotropy between LN subtypes and demonstrate the utility of sequencing genetically enriched cases to identify functionally relevant variants near GWAS loci.
Collapse
MESH Headings
- Acyl-CoA Oxidase/genetics
- Butyrophilins/genetics
- Female
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Hodgkin Disease/genetics
- Hodgkin Disease/pathology
- Humans
- Interferon Regulatory Factors/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocytes/pathology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Multiple Myeloma/genetics
- Multiple Myeloma/pathology
- Polymorphism, Single Nucleotide/genetics
- Risk Factors
- T-Box Domain Proteins/genetics
- Tetraspanins/genetics
- Transmembrane Activator and CAML Interactor Protein/genetics
- Exome Sequencing
Collapse
Affiliation(s)
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute for Data Science and Genomic Technology, New York, NY 10029-5674, USA
| | - Joseph Vijai
- Department of Medicine, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - James D McKay
- Genetic Cancer Susceptibility, International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Alyssa Clay-Gilmour
- Department of Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Xiaomu Wei
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michael J Madsen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Douglas W Sborov
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Karen Curtin
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Susan L Slager
- Department of Health Sciences, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Kenneth Offit
- Department of Medicine, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Celine M Vachon
- Department of Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven M Lipkin
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Charles Dumontet
- INSERM 1052, CNRS 5286, University of Lyon, 69361 Lyon Cedex 07, France
| | - Nicola J Camp
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
33
|
Gómez Hernández G, Morell M, Alarcón-Riquelme ME. The Role of BANK1 in B Cell Signaling and Disease. Cells 2021; 10:cells10051184. [PMID: 34066164 PMCID: PMC8151866 DOI: 10.3390/cells10051184] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 01/03/2023] Open
Abstract
The B cell scaffold protein with ankyrin repeats (BANK1) is expressed primarily in B cells and with multiple but discrete roles in B cell signaling, including B cell receptor signaling, CD40-related signaling, and Toll-like receptor (TLR) signaling. The gene for BANK1, located in chromosome 4, has been found to contain genetic variants that are associated with several autoimmune diseases and also other complex phenotypes, in particular, with systemic lupus erythematosus. Common genetic variants are associated with changes in BANK1 expression in B cells, while rare variants modify their capacity to bind efferent effectors during signaling. A BANK1-deficient model has shown the importance of BANK1 during TLR7 and TLR9 signaling and has confirmed its role in the disease. Still, much needs to be done to fully understand the function of BANK1, but the main conclusion is that it may be the link between different signaling functions within the B cells and they may act to synergize the various pathways within a cell. With this review, we hope to enhance the interest in this molecule.
Collapse
Affiliation(s)
- Gonzalo Gómez Hernández
- GENYO, Center for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Government, PTS, 18016 Granada, Spain; (G.G.H.); (M.M.)
| | - María Morell
- GENYO, Center for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Government, PTS, 18016 Granada, Spain; (G.G.H.); (M.M.)
| | - Marta E. Alarcón-Riquelme
- GENYO, Center for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Government, PTS, 18016 Granada, Spain; (G.G.H.); (M.M.)
- Department of Environmental Medicine, Karolinska Institutet, 17167 Solna, Sweden
- Correspondence:
| |
Collapse
|
34
|
Slager SL, Lanasa MC, Marti GE, Achenbach SJ, Camp NJ, Abbasi F, Kay NE, Vachon CM, Cerhan JR, Johnston JB, Call TG, Rabe KG, Kleinstern G, Boddicker NJ, Norman AD, Parikh SA, Leis JF, Banerji V, Brander DM, Glenn M, Ferrajoli A, Curtin K, Braggio E, Shanafelt TD, McMaster ML, Weinberg JB, Hanson CA, Caporaso NE. Natural history of monoclonal B-cell lymphocytosis among relatives in CLL families. Blood 2021; 137:2046-2056. [PMID: 33512457 PMCID: PMC8057266 DOI: 10.1182/blood.2020006322] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/14/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic lymphocytic lymphoma (CLL) has one of the highest familial risks among cancers. Monoclonal B-cell lymphocytosis (MBL), the precursor to CLL, has a higher prevalence (13%-18%) in families with 2 or more members with CLL compared with the general population (5%-12%). Although, the rate of progression to CLL for high-count MBLs (clonal B-cell count ≥500/µL) is ∼1% to 5%/y, no low-count MBLs have been reported to progress to date. We report the incidence and natural history of MBL in relatives from CLL families. In 310 CLL families, we screened 1045 relatives for MBL using highly sensitive flow cytometry and prospectively followed 449 of them. MBL incidence was directly age- and sex-adjusted to the 2010 US population. CLL cumulative incidence was estimated using Kaplan-Meier survival curves. At baseline, the prevalence of MBL was 22% (235/1045 relatives). After a median follow-up of 8.1 years among 449 relatives, 12 individuals progressed to CLL with a 5-year cumulative incidence of 1.8%. When considering just the 139 relatives with low-count MBL, the 5-year cumulative incidence increased to 5.7%. Finally, 264 had no MBL at baseline, of whom 60 individuals subsequently developed MBL (2 high-count and 58 low-count MBLs) with an age- and sex-adjusted incidence of 3.5% after a median of 6 years of follow-up. In a screening cohort of relatives from CLL families, we reported progression from normal-count to low-count MBL to high-count MBL to CLL, demonstrating that low-count MBL precedes progression to CLL. We estimated a 1.1% annual rate of progression from low-count MBL, which is in excess of that in the general population.
Collapse
Affiliation(s)
- Susan L Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Mark C Lanasa
- Department of Medicine, Duke University, Duke Cancer Institute, Durham, NC
| | - Gerald E Marti
- Lymphoid Malignancies Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sara J Achenbach
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Nicola J Camp
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Fatima Abbasi
- Center for Biologics Research and Evaluation, Food and Drug Administration, Silver Springs, MD
| | - Neil E Kay
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Celine M Vachon
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - James R Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - James B Johnston
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Timothy G Call
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Kari G Rabe
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | | | | | - Aaron D Norman
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Sameer A Parikh
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Jose F Leis
- Department of Hematology and Oncology, Mayo Clinic, Phoenix, AZ
| | - Versha Banerji
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Danielle M Brander
- Department of Medicine, Duke University, Duke Cancer Institute, Durham, NC
| | - Martha Glenn
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Alessandra Ferrajoli
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Karen Curtin
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Esteban Braggio
- Department of Hematology and Oncology, Mayo Clinic, Phoenix, AZ
| | - Tait D Shanafelt
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Mary L McMaster
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - J Brice Weinberg
- Department of Medicine, Duke University, Duke Cancer Institute, Durham, NC
- Department of Immunology, Duke University Medical Center, Durham, NC
- Durham Veterans Affairs Medical Center, Durham, NC; and
| | - Curtis A Hanson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
35
|
Klaric L, Gisby JS, Papadaki A, Muckian MD, Macdonald-Dunlop E, Zhao JH, Tokolyi A, Persyn E, Pairo-Castineira E, Morris AP, Kalnapenkis A, Richmond A, Landini A, Hedman ÅK, Prins B, Zanetti D, Wheeler E, Kooperberg C, Yao C, Petrie JR, Fu J, Folkersen L, Walker M, Magnusson M, Eriksson N, Mattsson-Carlgren N, Timmers PRHJ, Hwang SJ, Enroth S, Gustafsson S, Vosa U, Chen Y, Siegbahn A, Reiner A, Johansson Å, Thorand B, Gigante B, Hayward C, Herder C, Gieger C, Langenberg C, Levy D, Zhernakova DV, Smith JG, Campbell H, Sundstrom J, Danesh J, Michaëlsson K, Suhre K, Lind L, Wallentin L, Padyukov L, Landén M, Wareham NJ, Göteson A, Hansson O, Eriksson P, Strawbridge RJ, Assimes TL, Esko T, Gyllensten U, Baillie JK, Paul DS, Joshi PK, Butterworth AS, Mälarstig A, Pirastu N, Wilson JF, Peters JE. Mendelian randomisation identifies alternative splicing of the FAS death receptor as a mediator of severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.04.01.21254789. [PMID: 33851187 PMCID: PMC8043484 DOI: 10.1101/2021.04.01.21254789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Severe COVID-19 is characterised by immunopathology and epithelial injury. Proteomic studies have identified circulating proteins that are biomarkers of severe COVID-19, but cannot distinguish correlation from causation. To address this, we performed Mendelian randomisation (MR) to identify proteins that mediate severe COVID-19. Using protein quantitative trait loci (pQTL) data from the SCALLOP consortium, involving meta-analysis of up to 26,494 individuals, and COVID-19 genome-wide association data from the Host Genetics Initiative, we performed MR for 157 COVID-19 severity protein biomarkers. We identified significant MR results for five proteins: FAS, TNFRSF10A, CCL2, EPHB4 and LGALS9. Further evaluation of these candidates using sensitivity analyses and colocalization testing provided strong evidence to implicate the apoptosis-associated cytokine receptor FAS as a causal mediator of severe COVID-19. This effect was specific to severe disease. Using RNA-seq data from 4,778 individuals, we demonstrate that the pQTL at the FAS locus results from genetically influenced alternate splicing causing skipping of exon 6. We show that the risk allele for very severe COVID-19 increases the proportion of transcripts lacking exon 6, and thereby increases soluble FAS. Soluble FAS acts as a decoy receptor for FAS-ligand, inhibiting apoptosis induced through membrane-bound FAS. In summary, we demonstrate a novel genetic mechanism that contributes to risk of severe of COVID-19, highlighting a pathway that may be a promising therapeutic target.
Collapse
Affiliation(s)
- Lucija Klaric
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Jack S Gisby
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Artemis Papadaki
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Marisa D Muckian
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, UK
| | - Erin Macdonald-Dunlop
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, UK
| | - Jing Hua Zhao
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Alex Tokolyi
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Elodie Persyn
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Erola Pairo-Castineira
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | | | - Anne Richmond
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Arianna Landini
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, UK
| | - Åsa K Hedman
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Pfizer Worldwide Research, Development and Medical, Sweden
| | - Bram Prins
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Daniela Zanetti
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Eleanor Wheeler
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chen Yao
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, Framingham, MA, USA
| | - John R Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Mark Walker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Martin Magnusson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Sweden
- Hypertension in Africa Research Team (HART), North West University, Potchefstroom, South Africa
| | - Niclas Eriksson
- Uppsala Clinical Research Center (UCR), Uppsala University, Uppsala, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Sweden
| | - Paul R H J Timmers
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, UK
| | - Shih-Jen Hwang
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | | | - Urmo Vosa
- Institute of Genomics, University of Tartu, 51010, Estonia
| | - Yan Chen
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Siegbahn
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Alexander Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Bruna Gigante
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, München-Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitäts Medizin Berlin, Germany
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Daria V Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, Russia
| | - J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University
- Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Sweden
- Lund University Diabetes Center, Lund University, Lund, Sweden
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, UK
| | - Johan Sundstrom
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Karl Michaëlsson
- Department of Surgical Sciences, Unit of Medical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Wallentin
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Leonid Padyukov
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Andreas Göteson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Per Eriksson
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Rona J Strawbridge
- Institute of Health and Wellbeing, College of Medicine, Veterinary and Life Sciences, University of Glasgow, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Themistocles L Assimes
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto VA Healthcare System, Palo Alto, CA, USA
| | - Tonu Esko
- Institute of Genomics, University of Tartu, 51010, Estonia
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - J Kenneth Baillie
- Intensive Care Unit, Royal Infirmary of Edinburgh, 54 Little France Drive, Edinburgh, EH16 5SA, UK
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Dirk S Paul
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, Addenbrookes Hospital, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Anders Mälarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pfizer Worldwide Research, Development and Medical, Sweden
| | - Nicola Pirastu
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, UK
| | - James F Wilson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, UK
| | - James E Peters
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Besson C, Moore A, Wu W, Vajdic CM, de Sanjose S, Camp NJ, Smedby KE, Shanafelt TD, Morton LM, Brewer JD, Zablotska L, Engels EA, Cerhan JR, Slager SL, Han J, Berndt SI. Common genetic polymorphisms contribute to the association between chronic lymphocytic leukaemia and non-melanoma skin cancer. Int J Epidemiol 2021; 50:1325-1334. [PMID: 33748835 DOI: 10.1093/ije/dyab042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Epidemiological studies have demonstrated a positive association between chronic lymphocytic leukaemia (CLL) and non-melanoma skin cancer (NMSC). We hypothesized that shared genetic risk factors between CLL and NMSC could contribute to the association observed between these diseases. METHODS We examined the association between (i) established NMSC susceptibility loci and CLL risk in a meta-analysis including 3100 CLL cases and 7667 controls and (ii) established CLL loci and NMSC risk in a study of 4242 basal cell carcinoma (BCC) cases, 825 squamous cell carcinoma (SCC) cases and 12802 controls. Polygenic risk scores (PRS) for CLL, BCC and SCC were constructed using established loci. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Higher CLL-PRS was associated with increased BCC risk (OR4th-quartile-vs-1st-quartile = 1.13, 95% CI: 1.02-1.24, Ptrend = 0.009), even after removing the shared 6p25.3 locus. No association was observed with BCC-PRS and CLL risk (Ptrend = 0.68). These findings support a contributory role for CLL in BCC risk, but not for BCC in CLL risk. Increased CLL risk was observed with higher SCC-PRS (OR4th-quartile-vs-1st-quartile = 1.22, 95% CI: 1.08-1.38, Ptrend = 1.36 × 10-5), which was driven by shared genetic susceptibility at the 6p25.3 locus. CONCLUSION These findings highlight the role of pleiotropy regarding the pathogenesis of CLL and NMSC and shows that a single pleiotropic locus, 6p25.3, drives the observed association between genetic susceptibility to SCC and increased CLL risk. The study also provides evidence that genetic susceptibility for CLL increases BCC risk.
Collapse
Affiliation(s)
- Caroline Besson
- Service d'hématologie et Oncologie, Centre Hospitalier de Versailles, Le Chesnay; Université Paris-Saclay, UVSQ, Inserm, Équipe "Exposome et Hérédité", CESP, 94805, Villejuif, France
| | - Amy Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wenting Wu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, USA
| | - Claire M Vajdic
- Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Karin E Smedby
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Tait D Shanafelt
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lindsay M Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jerry D Brewer
- Department of Dermatology, Mayo Clinic, Rochester, MN, USA
| | - Lydia Zablotska
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Eric A Engels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - James R Cerhan
- Service d'hématologie et Oncologie, Centre Hospitalier de Versailles, Le Chesnay; Université Paris-Saclay, UVSQ, Inserm, Équipe "Exposome et Hérédité", CESP, 94805, Villejuif, France
| | - Susan L Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jiali Han
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
37
|
Llaó-Cid L, Roessner PM, Chapaprieta V, Öztürk S, Roider T, Bordas M, Izcue A, Colomer D, Dietrich S, Stilgenbauer S, Hanna B, Martín-Subero JI, Seiffert M. EOMES is essential for antitumor activity of CD8 + T cells in chronic lymphocytic leukemia. Leukemia 2021; 35:3152-3162. [PMID: 33731848 PMCID: PMC8550953 DOI: 10.1038/s41375-021-01198-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/30/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
Genome-wide association studies identified a single-nucleotide polymorphism (SNP) affecting the transcription factor Eomesodermin (EOMES) associated with a significantly increased risk to develop chronic lymphocytic leukemia (CLL). Epigenetic analyses, RNA sequencing, and flow cytometry revealed that EOMES is not expressed in CLL cells, but in CD8+ T cells for which EOMES is a known master regulator. We thus hypothesized that the increased CLL risk associated with the EOMES SNP might be explained by its negative impact on CD8+ T-cell-mediated immune control of CLL. Flow cytometry analyses revealed a higher EOMES expression in CD8+ T cells of CLL patients compared to healthy individuals, and an accumulation of PD-1+ EOMES+ CD8+ T cells in lymph nodes rather than blood or bone marrow in CLL. This was in line with an observed expansion of EOMES+ CD8+ T cells in the spleen of leukemic Eµ-TCL1 mice. As EOMES expression was highest in CD8+ T cells that express inhibitory receptors, an involvement of EOMES in T-cell exhaustion and dysfunction seems likely. Interestingly, Eomes-deficiency in CD8+ T cells resulted in their impaired expansion associated with decreased CLL control in mice. Overall, these observations suggest that EOMES is essential for CD8+ T-cell expansion and/or maintenance, and therefore involved in adaptive immune control of CLL.
Collapse
Affiliation(s)
- Laura Llaó-Cid
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Philipp M Roessner
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vicente Chapaprieta
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Selcen Öztürk
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Roider
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Marie Bordas
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ana Izcue
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany.,Institute of Molecular Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Hematopathology Section, Hospital Clinic, Barcelona, Spain.,Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, University of Ulm, Ulm, Germany.,Department of Internal Medicine I, Saarland University, Homburg, Germany
| | - Bola Hanna
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - José Ignacio Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
38
|
Abstract
Patients with chronic lymphocytic leukemia can be divided into three categories: those who are minimally affected by the problem, often never requiring therapy; those that initially follow an indolent course but subsequently progress and require therapy; and those that from the point of diagnosis exhibit an aggressive disease necessitating treatment. Likewise, such patients pass through three phases: development of the disease, diagnosis, and need for therapy. Finally, the leukemic clones of all patients appear to require continuous input from the exterior, most often through membrane receptors, to allow them to survive and grow. This review is presented according to the temporal course that the disease follows, focusing on those external influences from the tissue microenvironment (TME) that support the time lines as well as those internal influences that are inherited or develop as genetic and epigenetic changes occurring over the time line. Regarding the former, special emphasis is placed on the input provided via the B-cell receptor for antigen and the C-X-C-motif chemokine receptor-4 and the therapeutic agents that block these inputs. Regarding the latter, prominence is laid upon inherited susceptibility genes and the genetic and epigenetic abnormalities that lead to the developmental and progression of the disease.
Collapse
MESH Headings
- Disease Progression
- Humans
- Immunotherapy
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Mutation
- PAX5 Transcription Factor/metabolism
- Receptors, Antigen, B-Cell
- Signal Transduction
- Tumor Microenvironment
Collapse
Affiliation(s)
- Nicholas Chiorazzi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York 11030, USA
| | - Shih-Shih Chen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York 11030, USA
| | - Kanti R Rai
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11549, USA
| |
Collapse
|
39
|
Lin WY, Fordham SE, Sunter N, Elstob C, Rahman T, Willmore E, Shepherd C, Strathdee G, Mainou-Fowler T, Piddock R, Mearns H, Barrow T, Houlston RS, Marr H, Wallis J, Summerfield G, Marshall S, Pettitt A, Pepper C, Fegan C, Forconi F, Dyer MJS, Jayne S, Sellors A, Schuh A, Robbe P, Oscier D, Bailey J, Rais S, Bentley A, Cawkwell L, Evans P, Hillmen P, Pratt G, Allsup DJ, Allan JM. Genome-wide association study identifies risk loci for progressive chronic lymphocytic leukemia. Nat Commun 2021; 12:665. [PMID: 33510140 PMCID: PMC7843618 DOI: 10.1038/s41467-020-20822-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/16/2020] [Indexed: 02/05/2023] Open
Abstract
Prognostication in patients with chronic lymphocytic leukemia (CLL) is challenging due to heterogeneity in clinical course. We hypothesize that constitutional genetic variation affects disease progression and could aid prognostication. Pooling data from seven studies incorporating 842 cases identifies two genomic locations associated with time from diagnosis to treatment, including 10q26.13 (rs736456, hazard ratio (HR) = 1.78, 95% confidence interval (CI) = 1.47-2.15; P = 2.71 × 10-9) and 6p (rs3778076, HR = 1.99, 95% CI = 1.55-2.55; P = 5.08 × 10-8), which are particularly powerful prognostic markers in patients with early stage CLL otherwise characterized by low-risk features. Expression quantitative trait loci analysis identifies putative functional genes implicated in modulating B-cell receptor or innate immune responses, key pathways in CLL pathogenesis. In this work we identify rs736456 and rs3778076 as prognostic in CLL, demonstrating that disease progression is determined by constitutional genetic variation as well as known somatic drivers.
Collapse
Affiliation(s)
- Wei-Yu Lin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah E Fordham
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Nicola Sunter
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Claire Elstob
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Thahira Rahman
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Elaine Willmore
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Colin Shepherd
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Gordon Strathdee
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tryfonia Mainou-Fowler
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rachel Piddock
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hannah Mearns
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Timothy Barrow
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Helen Marr
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne, UK
| | - Jonathan Wallis
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne, UK
| | | | | | | | | | - Christopher Fegan
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Francesco Forconi
- Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton, UK
| | - Martin J S Dyer
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Sandrine Jayne
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - April Sellors
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | | | | | | | - James Bailey
- Hull University Teaching Hospital NHS Trust, Hull, UK
| | - Syed Rais
- Hull University Teaching Hospital NHS Trust, Hull, UK
| | - Alison Bentley
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull, UK
| | | | - Paul Evans
- Haematological Malignancy Diagnostic Service Laboratory, St James' Institute of Oncology, Leeds, UK
| | - Peter Hillmen
- Section of Experimental Haematology, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Guy Pratt
- University of Birmingham, Birmingham, UK
| | - David J Allsup
- Hull University Teaching Hospital NHS Trust, Hull, UK.
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull, UK.
| | - James M Allan
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
40
|
Transcriptome-wide high-throughput mapping of protein-RNA occupancy profiles using POP-seq. Sci Rep 2021; 11:1175. [PMID: 33441968 PMCID: PMC7806670 DOI: 10.1038/s41598-020-80846-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
Interaction between proteins and RNA is critical for post-transcriptional regulatory processes. Existing high throughput methods based on crosslinking of the protein–RNA complexes and poly-A pull down are reported to contribute to biases and are not readily amenable for identifying interaction sites on non poly-A RNAs. We present Protein Occupancy Profile-Sequencing (POP-seq), a phase separation based method in three versions, one of which does not require crosslinking, thus providing unbiased protein occupancy profiles on whole cell transcriptome without the requirement of poly-A pulldown. Our study demonstrates that ~ 68% of the total POP-seq peaks exhibited an overlap with publicly available protein–RNA interaction profiles of 97 RNA binding proteins (RBPs) in K562 cells. We show that POP-seq variants consistently capture protein–RNA interaction sites across a broad range of genes including on transcripts encoding for transcription factors (TFs), RNA-Binding Proteins (RBPs) and long non-coding RNAs (lncRNAs). POP-seq identified peaks exhibited a significant enrichment (p value < 2.2e−16) for GWAS SNPs, phenotypic, clinically relevant germline as well as somatic variants reported in cancer genomes, suggesting the prevalence of uncharacterized genomic variation in protein occupied sites on RNA. We demonstrate that the abundance of POP-seq peaks increases with an increase in expression of lncRNAs, suggesting that highly expressed lncRNA are likely to act as sponges for RBPs, contributing to the rewiring of protein–RNA interaction network in cancer cells. Overall, our data supports POP-seq as a robust and cost-effective method that could be applied to primary tissues for mapping global protein occupancies.
Collapse
|
41
|
Abstract
BACKGROUND The evasion from apoptosis is a common strategy adopted by most tumors, and inhibitors of apoptosis proteins (IAPs) are among the most studied molecular and therapeutic targets. BIRC3 (cellular IAP2) and BIRC5 (survivin) are two of the eight members of the human IAPs family. This family is characterized by the presence of the baculoviral IAP repeat (BIR) domains, involved in protein-protein interactions. In addition to the BIR domains, IAPs also contain other important domains like the C-terminal ubiquitin-conjugating (UBC) domain, the caspase recruitment (CARD) domain and the C-terminal Ring zinc-finger (RING) domain. MAIN BODY BIRC3 and BIRC5 have been characterized in some solid and hematological tumors and are therapeutic targets for the family of drugs called "Smac mimetics". Many evidences point to the pro-survival and antiapoptotic role of BIRC3 in cancer cells, however, not all the data are consistent and the resulting picture is heterogeneous. For instance, BIRC3 genetic inactivation due to deletions or point mutations is consistently associated to shorter progression free survival and poor prognosis in chronic lymphocytic leukemia patients. BIRC3 inactivation has also been associated to chemoimmunotherapy resistance. On the contrary, the progression from low grade gliomas to high grade gliomas is accompanied by BIRC3 expression increase, which bears relevant prognostic consequences. Due to the relationship between BIRC3, MAP3K14 and the non-canonical NF-kB pathway, BIRC3 inactivation bears consequences also on the tumor cells relying on NF-kB pathway to survive. BIRC5, on the contrary, is commonly considered an anti-apoptotic molecule, promoting cell division and tumor progression and it is widely regarded as potential therapeutic target. CONCLUSIONS The present manuscript collects and reviews the most recent literature concerning the role played by BIRC3 and BIRC5 in cancer cells, providing useful information for the choice of the best therapeutic targets.
Collapse
Affiliation(s)
- Raffaele Frazzi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, Reggio Emilia, Italy.
| |
Collapse
|
42
|
Raoufi A, Rahimi Kelarijani B, Ahadi HR, Hassani Derakhshandeh B, Nooroollahzadeh Z, Hajifathali A. Association of MTHFR C677T and A1298C Polymorphisms with Susceptibility to Chronic Lymphocytic Leukemia: A Systematic Review and Meta-Analysis. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:83-92. [PMID: 34178766 PMCID: PMC8213616 DOI: 10.18502/ijph.v50i1.5074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: The relation between methylenetetrahydrofolate reductase)MTHFR(polymorphisms and the risk of developing Chronic lymphocytic leukemia (CLL) is not still clear, while there are reports about the association of MTHFR C677T and A1298C polymorphisms with developing CLL, there are other reports that rolled out the association of MTHFR polymorphisms with developing CLL. Therefore herein we carried out this meta-analysis to clear the association of MTHFR polymorphisms with the risk of CLL, Methods: A comprehensive search was performed through PubMed, Scopus and Embase from inception to Aug 2020. Odds ratios (OR) with their corresponding 95% confidence intervals (CI) for five possible genetic models were calculated. Heterogeneity was evaluated using the Cochran Q test and the I2 statistic. Results: Totals of 1290 cases and 1887 controls for the C677T polymorphism and 1117 cases and 1256 controls for the A1298C polymorphism were included in our analysis. Analyzing the MTHFR C677T and A1298C polymorphisms genotypes showed an association between MTHFR polymorphism at A1298C under Allelic model and the risk of CLL (OR = 1.12, 95% CI = 1.01–1.25), however there was no association between MTHFR polymorphism at MTHFR C677T and risk of CLL. Conclusion: The risk of developing CLL might be associated with MTHFR polymorphism at A1298C under allelic model and not associated with MTHFR polymorphisms at C677T, However, further studies considering other factors such as age, gender, ethnicity, gene-gene interaction and environmental condition are needed to clear the true association of MTHFR polymorphisms with CLL.
Collapse
Affiliation(s)
- Atefeh Raoufi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behdad Rahimi Kelarijani
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Ahadi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Kim JJ, Kim HJ, Yu JJ, Yun SW, Lee KY, Yoon KL, Kil HR, Kim GB, Han MK, Song MS, Lee HD, Jun HO, Ha KS, Hong YM, Jang GY, Lee JK. IgA Levels Are Associated with Coronary Artery Lesions in Kawasaki Disease. Korean Circ J 2021; 51:267-278. [PMID: 33655727 PMCID: PMC7925970 DOI: 10.4070/kcj.2020.0345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 11/11/2022] Open
Abstract
Background and Objectives Kawasaki disease (KD) is an acute systemic vasculitis that affects the coronary arteries. Abnormal immune reactions are thought to contribute to disease pathogenesis. The effect of immunoglobulin (Ig) isotype (IgG, IgA, IgM, and IgE) on inflammatory data and clinical outcomes of patients with KD was examined. Methods Ig levels in 241 patients with KD were measured during the acute, subacute, convalescent, and normal phases of the disease. Results Compared with reference Ig values, IgG, IgA, and IgM levels were significantly higher in the subacute phase, while IgE levels were elevated in 73.9% (178/241) of patients with KD in all clinical phases. However, high IgE levels were not associated with clinical outcomes, including intravenous immunoglobulin unresponsiveness and coronary artery lesions (CALs). Significantly more CALs were observed in the high IgA group than in the normal IgA group (44.7% vs. 20.8%, respectively; p<0.01). In addition, IgA levels in the acute phase (p=0.038) were 2.2-fold higher, and those in the subacute phase were 1.7-fold higher (p <0.001), in the CAL group than in the non-CAL group. IgA concentrations increased along with the size of the coronary artery aneurysm (p <0.001). Furthermore, there was a strong correlation between IgA levels and CAL size (r=0.435, p<0.001), with a high odds ratio of 2.58 (p=0.022). Conclusions High IgA levels in patients with KD are prognostic for the risk of CALs.
Collapse
Affiliation(s)
- Jae Jung Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Hea Ji Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Jin Yu
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sin Weon Yun
- Department of Pediatrics, Chung-Ang University Hospital, Seoul, Korea
| | - Kyung Yil Lee
- Department of Pediatrics, The Catholic University of Korea, Daejeon St. Mary's Hospital, Daejeon, Korea
| | - Kyung Lim Yoon
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Hong Ryang Kil
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, Korea
| | - Gi Beom Kim
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Myung Ki Han
- Department of Pediatrics, University of Ulsan, Gangneung Asan Hospital, Gangneung, Korea
| | - Min Seob Song
- Department of Pediatrics, Inje University Paik Hospital, Busan, Korea
| | - Hyoung Doo Lee
- Department of Pediatrics, Pusan National University Hospital, Busan, Korea
| | - Hyun Ok Jun
- Department of Pediatrics and Adolescent Medicine, Myongji Hospital, Goyang, Korea
| | - Kee Soo Ha
- Department of Pediatrics, Korea University Guro Hospital, Seoul, Korea
| | - Young Mi Hong
- Department of Pediatrics, Ewha Womans University Hospital, Seoul, Korea
| | - Gi Young Jang
- Department of Pediatrics, Korea University Ansan Hospital, Ansan, Korea
| | - Jong Keuk Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea.
| | | |
Collapse
|
44
|
Chong AHW, Mitchell RE, Hemani G, Davey Smith G, Yolken RH, Richmond RC, Paternoster L. Genetic Analyses of Common Infections in the Avon Longitudinal Study of Parents and Children Cohort. Front Immunol 2021; 12:727457. [PMID: 34804013 PMCID: PMC8599591 DOI: 10.3389/fimmu.2021.727457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
The burden of infections on an individual and public health is profound. Many observational studies have shown a link between infections and the pathogenesis of disease; however a greater understanding of the role of host genetics is essential. Children from the longitudinal birth cohort, the Avon Longitudinal Study of Parents and Children, had 14 antibodies measured in plasma at age 7: Alpha-casein protein, beta-casein protein, cytomegalovirus, Epstein-Barr virus, feline herpes virus, Helicobacter pylori, herpes simplex virus 1, influenza virus subtype H1N1, influenza virus subtype H3N2, measles virus, Saccharomyces cerevisiae, Theiler's virus, Toxoplasma gondii, and SAG1 protein domain, a surface antigen of Toxoplasma gondii measured for greater precision. We performed genome-wide association analyses of antibody levels against these 14 infections (N = 357 - 5010) and identified three genome-wide signals (P < 5×10-8), two associated with measles virus antibodies and one with Toxoplasma gondii antibodies. In an association analysis focused on the human leukocyte antigen (HLA) region of the genome, we further detected 15 HLA alleles at a two-digit resolution and 23 HLA alleles at a four-digit resolution associated with five antibodies, with eight HLA alleles associated with Epstein-Barr virus antibodies showing strong evidence of replication in UK Biobank. We discuss how our findings from antibody levels complement other studies using self-reported phenotypes in understanding the architecture of host genetics related to infections.
Collapse
Affiliation(s)
- Amanda H W Chong
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Ruth E Mitchell
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lavinia Paternoster
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
45
|
Tracking the Genetic Susceptibility Background of B-Cell Non-Hodgkin's Lymphomas from Genome-Wide Association Studies. Int J Mol Sci 2020; 22:ijms22010122. [PMID: 33374413 PMCID: PMC7795678 DOI: 10.3390/ijms22010122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
B-cell non-Hodgkin’s lymphoma (NHL) risk associations had been mainly attributed to family history of the disease, inflammation, and immune components including human leukocyte antigen (HLA) genetic variations. Nevertheless, a broad range of genome-wide association studies (GWAS) have shed light into the identification of several genetic variants presumptively associated with B-cell NHL etiologies, survival or shared genetic risk with other diseases. The present review aims to overview HLA structure and diversity and summarize the evidence of genetic variations, by GWAS, on five NHL subtypes (diffuse large B-cell lymphoma DLBCL, follicular lymphoma FL, chronic lymphocytic leukemia CLL, marginal zone lymphoma MZL, and primary central nervous system lymphoma PCNSL). Evidence indicates that the HLA zygosity status in B-cell NHL might promote immune escape and that genome-wide significance variants can give biological insight but also potential therapeutic markers such as WEE1 in DLBCL. However, additional studies are needed, especially for non-DLBCL, to replicate the associations found to date.
Collapse
|
46
|
Delgado J, Nadeu F, Colomer D, Campo E. Chronic lymphocytic leukemia: from molecular pathogenesis to novel therapeutic strategies. Haematologica 2020; 105:2205-2217. [PMID: 33054046 PMCID: PMC7556519 DOI: 10.3324/haematol.2019.236000] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
Chronic lymphocytic leukemia is a well-defined lymphoid neoplasm with very heterogeneous biological and clinical behavior. The last decade has been remarkably fruitful in novel findings elucidating multiple aspects of the pathogenesis of the disease including mechanisms of genetic susceptibility, insights into the relevance of immunogenetic factors driving the disease, profiling of genomic alterations, epigenetic subtypes, global epigenomic tumor cell reprogramming, modulation of tumor cell and microenvironment interactions, and dynamics of clonal evolution from early steps in monoclonal B cell lymphocytosis to progression and transformation into diffuse large B-cell lymphoma. All this knowledge has offered new perspectives that are being exploited therapeutically with novel target agents and management strategies. In this review we provide an overview of these novel advances and highlight questions and perspectives that need further progress to translate into the clinics the biological knowledge and improve the outcome of the patients.
Collapse
Affiliation(s)
- Julio Delgado
- Department of Hematology, Hospital Clínic, University of Barcelona, Barcelona
- Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Ferran Nadeu
- Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Dolors Colomer
- Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
- Hematopathology Section, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Elias Campo
- Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
- Hematopathology Section, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
47
|
Zhang YD, Hurson AN, Zhang H, Choudhury PP, Easton DF, Milne RL, Simard J, Hall P, Michailidou K, Dennis J, Schmidt MK, Chang-Claude J, Gharahkhani P, Whiteman D, Campbell PT, Hoffmeister M, Jenkins M, Peters U, Hsu L, Gruber SB, Casey G, Schmit SL, O'Mara TA, Spurdle AB, Thompson DJ, Tomlinson I, De Vivo I, Landi MT, Law MH, Iles MM, Demenais F, Kumar R, MacGregor S, Bishop DT, Ward SV, Bondy ML, Houlston R, Wiencke JK, Melin B, Barnholtz-Sloan J, Kinnersley B, Wrensch MR, Amos CI, Hung RJ, Brennan P, McKay J, Caporaso NE, Berndt SI, Birmann BM, Camp NJ, Kraft P, Rothman N, Slager SL, Berchuck A, Pharoah PDP, Sellers TA, Gayther SA, Pearce CL, Goode EL, Schildkraut JM, Moysich KB, Amundadottir LT, Jacobs EJ, Klein AP, Petersen GM, Risch HA, Stolzenberg-Solomon RZ, Wolpin BM, Li D, Eeles RA, Haiman CA, Kote-Jarai Z, Schumacher FR, Al Olama AA, Purdue MP, Scelo G, Dalgaard MD, Greene MH, Grotmol T, Kanetsky PA, McGlynn KA, Nathanson KL, Turnbull C, Wiklund F, Chanock SJ, Chatterjee N, Garcia-Closas M. Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers. Nat Commun 2020; 11:3353. [PMID: 32620889 PMCID: PMC7335068 DOI: 10.1038/s41467-020-16483-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 05/04/2020] [Indexed: 02/08/2023] Open
Abstract
Genome-wide association studies (GWAS) have led to the identification of hundreds of susceptibility loci across cancers, but the impact of further studies remains uncertain. Here we analyse summary-level data from GWAS of European ancestry across fourteen cancer sites to estimate the number of common susceptibility variants (polygenicity) and underlying effect-size distribution. All cancers show a high degree of polygenicity, involving at a minimum of thousands of loci. We project that sample sizes required to explain 80% of GWAS heritability vary from 60,000 cases for testicular to over 1,000,000 cases for lung cancer. The maximum relative risk achievable for subjects at the 99th risk percentile of underlying polygenic risk scores (PRS), compared to average risk, ranges from 12 for testicular to 2.5 for ovarian cancer. We show that PRS have potential for risk stratification for cancers of breast, colon and prostate, but less so for others because of modest heritability and lower incidence.
Collapse
Affiliation(s)
- Yan Dora Zhang
- Department of Statistics and Actuarial Science, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
- Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Amber N Hurson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Haoyu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Parichoy Pal Choudhury
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Douglas F Easton
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Jacques Simard
- Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, QC, Canada
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Kyriaki Michailidou
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Electron Microscopy/Molecular Pathology and The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Joe Dennis
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Puya Gharahkhani
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David Whiteman
- Cancer Control, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen B Gruber
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Graham Casey
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Stephanie L Schmit
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institution, Tampa, FL, USA
| | - Tracy A O'Mara
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Amanda B Spurdle
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Deborah J Thompson
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Ian Tomlinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Matthew H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Mark M Iles
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Florence Demenais
- Université de Paris, UMRS-1124, Institut National de la Santé et de la Recherche Médicale (INSERM), 75006, Paris, France
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - D Timothy Bishop
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Sarah V Ward
- Centre for Genetic Origins of Health and Disease, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Melissa L Bondy
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - John K Wiencke
- Department of Neurological Surgery, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Beatrice Melin
- Department of Radiation Sciences Oncology, Umeå University, Umeå, Sweden
| | - Jill Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Margaret R Wrensch
- Department of Neurological Surgery, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbuaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Paul Brennan
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - James McKay
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Brenda M Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicola J Camp
- Division of Hematology and Hematological Malignancies, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Susan L Slager
- Division of Biomedical Statistics & Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Andrew Berchuck
- Department of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Paul D P Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Thomas A Sellers
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institution, Tampa, FL, USA
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Celeste L Pearce
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Ellen L Goode
- Division of Epidemiology, Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | | | - Kirsten B Moysich
- Division of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eric J Jacobs
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gloria M Petersen
- Division of Epidemiology, Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Harvey A Risch
- Chronic Disease Epidemiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Donghui Li
- Division of Cancer Medicine, GI Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rosalind A Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Christopher A Haiman
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zsofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ali Amin Al Olama
- Strangeways Research Laboratory, Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Ghislaine Scelo
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Marlene D Dalgaard
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Genetics and Epidemiology, National Cancer Institute, Rockville, MD, USA
| | | | - Peter A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institution, Tampa, FL, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Katherine L Nathanson
- Division of Translational Health and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
48
|
Abstract
The purpose of this study was to investigate the relationship between glioma-associated oncogene homolog 1 (GLI1) rs2228226 and rs10783826 polymorphisms and congenital heart disease (CHD) risk in a Chinese Han population.Genotyping for our interested polymorphisms was performed using polymerase chain reaction-restriction fragment length polymorphism in 106 CHD patients and 112 healthy controls. Hardy-Weinberg equilibrium status in the control group was also checked via χ test. Differences in genotype and allele frequencies between the case and control groups were analyzed adopting Chi-Squared test as well, and the relative risk of CHD resulting from GLI1 genetic variants was checked via calculating odds ratio (OR) and 95% confidence interval (95%CI).CC genotype of rs2228226 showed significantly higher frequency in CHD patients than in controls (P = .011), indicating that it increased the disease risk (OR = 3.257, 95%CI = 1.280-8.287). Similarly, C allele of the polymorphism elevated CHD incidence by 1.609 folds, compared with G allele (OR = 1.609, 95%CI = 1.089-2.376). However, rs10783826 was not correlated with the occurrence of CHD.GLI1 rs2228226 polymorphism may be a risk factor for CHD in Chinese Han population, but not rs10783826.
Collapse
|
49
|
Nadeu F, Diaz-Navarro A, Delgado J, Puente XS, Campo E. Genomic and Epigenomic Alterations in Chronic Lymphocytic Leukemia. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:149-177. [PMID: 31977296 DOI: 10.1146/annurev-pathmechdis-012419-032810] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic lymphocytic leukemia is a common disease in Western countries and has heterogeneous clinical behavior. The relevance of the genetic basis of the disease has come to the forefront recently, with genome-wide studies that have provided a comprehensive view of structural variants, somatic mutations, and different layers of epigenetic changes. The mutational landscape is characterized by relatively common copy number alterations, a few mutated genes occurring in 10-15% of cases, and a large number of genes mutated in a small number of cases. The epigenomic profile has revealed a marked reprogramming of regulatory regions in tumor cells compared with normal B cells. All of these alterations are differentially distributed in clinical and biological subsets of the disease, indicating that they may underlie the heterogeneous evolution of the disease. These global studies are revealing the molecular complexity of chronic lymphocytic leukemia and provide new perspectives that have helped to understand its pathogenic mechanisms and improve the clinical management of patients.
Collapse
Affiliation(s)
- Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; , , .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; ,
| | - Ander Diaz-Navarro
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Julio Delgado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; , , .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Hematology Department, Hospital Clinic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; , , .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Hematopathology Section, Laboratory of Pathology, Hospital Clinic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
50
|
Kleinstern G, Camp NJ, Berndt SI, Birmann BM, Nieters A, Bracci PM, McKay JD, Ghesquières H, Lan Q, Hjalgrim H, Benavente Y, Monnereau A, Wang SS, Zhang Y, Purdue MP, Zeleniuch-Jacquotte A, Giles GG, Vermeulen R, Cocco P, Albanes D, Teras LR, Brooks-Wilson AR, Vajdic CM, Kane E, Caporaso NE, Smedby KE, Salles G, Vijai J, Chanock SJ, Skibola CF, Rothman N, Slager SL, Cerhan JR. Lipid Trait Variants and the Risk of Non-Hodgkin Lymphoma Subtypes: A Mendelian Randomization Study. Cancer Epidemiol Biomarkers Prev 2020; 29:1074-1078. [PMID: 32108027 PMCID: PMC7196490 DOI: 10.1158/1055-9965.epi-19-0803] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/08/2019] [Accepted: 02/07/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Lipid traits have been inconsistently linked to risk of non-Hodgkin lymphoma (NHL). We examined the association of genetically predicted lipid traits with risk of diffuse large B-cell lymphoma (DLBCL), chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and marginal zone lymphoma (MZL) using Mendelian randomization (MR) analysis. METHODS Genome-wide association study data from the InterLymph Consortium were available for 2,661 DLBCLs, 2,179 CLLs, 2,142 FLs, 824 MZLs, and 6,221 controls. SNPs associated (P < 5 × 10-8) with high-density lipoprotein (HDL, n = 164), low-density lipoprotein (LDL, n = 137), total cholesterol (TC, n = 161), and triglycerides (TG, n = 123) were used as instrumental variables (IV), explaining 14.6%, 27.7%, 16.8%, and 12.8% of phenotypic variation, respectively. Associations between each lipid trait and NHL subtype were calculated using the MR inverse variance-weighted method, estimating odds ratios (OR) per standard deviation and 95% confidence intervals (CI). RESULTS HDL was positively associated with DLBCL (OR = 1.14; 95% CI, 1.00-1.30) and MZL (OR = 1.09; 95% CI, 1.01-1.18), while TG was inversely associated with MZL risk (OR = 0.90; 95% CI, 0.83-0.99), all at nominal significance (P < 0.05). A positive trend was observed for HDL with FL risk (OR = 1.08; 95% CI, 0.99-1.19; P = 0.087). No associations were noteworthy after adjusting for multiple testing. CONCLUSIONS We did not find evidence of a clear or strong association of these lipid traits with the most common NHL subtypes. While these IVs have been previously linked to other cancers, our findings do not support any causal associations with these NHL subtypes. IMPACT Our results suggest that prior reported inverse associations of lipid traits are not likely to be causal and could represent reverse causality or confounding.
Collapse
MESH Headings
- Causality
- Cholesterol/blood
- Cholesterol/metabolism
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lipid Metabolism/genetics
- Lipoproteins, HDL/blood
- Lipoproteins, HDL/metabolism
- Lipoproteins, LDL/blood
- Lipoproteins, LDL/metabolism
- Lymphoma, B-Cell, Marginal Zone/blood
- Lymphoma, B-Cell, Marginal Zone/epidemiology
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/metabolism
- Lymphoma, Follicular/blood
- Lymphoma, Follicular/epidemiology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/metabolism
- Lymphoma, Large B-Cell, Diffuse/blood
- Lymphoma, Large B-Cell, Diffuse/epidemiology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Mendelian Randomization Analysis
- Odds Ratio
- Polymorphism, Single Nucleotide
- Quantitative Trait Loci
- Risk Factors
- Triglycerides/blood
- Triglycerides/metabolism
Collapse
Affiliation(s)
| | - Nicola J Camp
- Department of Internal Medicine, Huntsman Cancer Institute and University of Utah School of Medicine, Salt Lake City, Utah
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Brenda M Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alexandra Nieters
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - James D McKay
- International Agency for Research on Cancer, Lyon, France
| | - Hervé Ghesquières
- Department of Hematology, Centre Hospitalier Lyon Sud, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Henrik Hjalgrim
- Department of Epidemiology Research, Division of Health Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark
| | - Yolanda Benavente
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unit of Molecular and Genetic Epidemiology in Infections and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Alain Monnereau
- Registre des Hémopathies Malignes de la Gironde, Institut Bergonié, Epidemiology of Childhood and Adolescent Cancers Group, Inserm, Center of Research in Epidemiology and Statistics Sorbonne Paris Cité (CRESS), Paris, France
| | - Sophia S Wang
- City of Hope Beckman Research Institute, Duarte, California
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health and Perlmutter Cancer Center, NYU School of Medicine, New York, New York
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, Monash University, Melbourne, Victoria, Australia
| | - Roel Vermeulen
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pierluigi Cocco
- Department of Medical Sciences and Public Health, Occupational Health Section, University of Cagliari, Monserrato, Italy
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | | | - Angela R Brooks-Wilson
- BC Cancer, Vancouver, and Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Claire M Vajdic
- Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Eleanor Kane
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, Heslington, York, United Kingdom
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Karin E Smedby
- Karolinska Institutet, Division of Clinical Epidemiology, Department of Medicine Solna, Stockholm, Sweden
| | - Gilles Salles
- Department of Hematology, Centre Hospitalier Lyon Sud, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | | | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | | | | |
Collapse
|