1
|
Yilmaz S, Kanis B, Hogers RA, Benito-Vaquerizo S, Kahnt J, Glatter T, Dronsella B, Erb TJ, Suarez-Diez M, Claassens NJ. System-level characterization of engineered and evolved formatotrophic E. coli strains. Synth Syst Biotechnol 2025; 10:650-666. [PMID: 40166614 PMCID: PMC11957790 DOI: 10.1016/j.synbio.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/15/2025] [Accepted: 03/02/2025] [Indexed: 04/02/2025] Open
Abstract
One-carbon compounds, such as formate, are promising and sustainable feedstocks for microbial bioproduction of fuels and chemicals. Growth of Escherichia coli on formate was recently achieved by introducing the reductive glycine pathway (rGlyP) into its genome, which is theoretically the most energy-efficient aerobic formate assimilation pathway. While adaptive laboratory evolution was used to enhance the growth rate and biomass yield significantly, still the best performing formatotrophic E. coli strain did not approach the theoretical optimal biomass yield of the rGlyP. In this study, we investigated these previously engineered formatotrophic E. coli strains to find out why the biomass yield was sub-optimal and how it may be improved. Through a combination of metabolic modelling, genomic and proteomic analysis, we identified several potential metabolic bottlenecks and future targets for optimization. This study also reveals further insights in the evolutionary mutations and related changes in proteome allocation that supported the already substantially improved growth of formatotrophic E. coli strains. This systems-level analysis provides key insights to realize high-yield, fast growing formatotrophic strains for future bioproduction.
Collapse
Affiliation(s)
- Suzan Yilmaz
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| | - Boas Kanis
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
| | - Rensco A.H. Hogers
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
| | - Sara Benito-Vaquerizo
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jörg Kahnt
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Beau Dronsella
- Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tobias J. Erb
- Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology, Marburg, Germany
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
| | - Nico J. Claassens
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
2
|
Zeng F, Liu Y, Liu D, Li Y, Xu W, Li Y, Zhang H, Liu Y, Wang H, Lu F. Enhancing alkaline protease production in Bacillus amyloliquefaciens via surfactin-mediated mechanisms and metabolic engineering. BIORESOURCE TECHNOLOGY 2025; 433:132702. [PMID: 40398566 DOI: 10.1016/j.biortech.2025.132702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/05/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
Bacillus amyloliquefaciens exhibits significant efficacy in the production of alkaline protease. Identifying the factors that trigger alkaline protease overproduction during the fermentation process provides valuable insights for enhancing the performance of alkaline protease-producing strains. Transcriptomic analysis revealed that quorum sensing (QS) plays a crucial role in regulating alkaline protease production. Fermentation experiments demonstrated that the addition of exogenous surfactin, a key QS signaling molecule, enhanced alkaline protease production. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis indicated that the positive effects of surfactin are associated with carbon catabolite repression (CCR), QS, and the regulation of global nitrogen metabolism. Based on these findings, rational genetic modifications, including the deletion of the rapF and kinC genes, were performed, led to a 91.1 % increase in alkaline protease production and a 15 h reduction in fermentation time. This study not only provides insights into the molecular mechanisms of surfactin-mediated alkaline protease overproduction but also offers valuable strategies for improving the industrial performance of alkaline protease-producing strains.
Collapse
Affiliation(s)
- Fang Zeng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yujuan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Dunzhi Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yuqiang Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Weizhou Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Huitu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hongbin Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
3
|
Tafrishi A, Alva T, Chartron J, Wheeldon I. Ribo-seq guided design of enhanced protein secretion in Komagataellaphaffii. Metab Eng 2025; 91:228-241. [PMID: 40315981 DOI: 10.1016/j.ymben.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/12/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
The production of recombinant proteins requires the precise coordination of various biological processes, including protein synthesis, folding, trafficking, and secretion. The overproduction of a heterologous protein can impose various bottlenecks on these networks. Identifying and alleviating these bottlenecks can guide strain engineering efforts to enhance protein production. The methylotrophic yeast Komagataella phaffii is used for its high capacity to produce recombinant proteins. Here, we use ribosome profiling to identify bottlenecks in protein secretion during heterologous expression of human serum albumin (HSA). Validation of this analysis showed that the knockout of non-essential genes whose gene products target the ER, through co- and post-translational mechanisms, and have high ribosome utilization can increase production of a heterologous protein, HSA. A triple knockout in co-translationally translocated carbohydrate and acetate transporter Gal2p, cell wall maintenance protein Ydr134cp, and the post-translationally translocated cell wall protein Aoa65896.1 increased HSA production by 35 %. This data-driven strain engineering approach uses cell-level information to identify gene targets for phenotype improvement. This specific case identifies hits and creates strains with improved HSA production, with Ribo-seq and bioinformatic analysis to identify non-essential ER targeted proteins that are high ribosome utilizers.
Collapse
Affiliation(s)
- Aida Tafrishi
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Troy Alva
- Bioengineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Justin Chartron
- Bioengineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA; Center for Industrial Biotechnology, University of California-Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
4
|
Soriano-Peña EY, Luna-Bulbarela A, Cristiano-Fajardo SA, Galindo E, Serrano-Carreón L. Modulation of the Sporulation Dynamics in the Plant-Probiotic Bacillus velezensis 83 via Carbon and Quorum-Sensing Metabolites. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10482-w. [PMID: 40009330 DOI: 10.1007/s12602-025-10482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Spore-forming Bacilli, such as the plant-associated Bacillus velezensis strains, are widely used as probiotics, known for their safety and substantial health benefits for both animal and plant species. Through differentiation pathways mediated by quorum-sensing metabolites (QSMs), these bacteria develop multiple isogenic subpopulations with distinct phenotypes and ecological functions, including motile cells, matrix-producing/cannibalistic cells, competent cells, spores, and others. However, the heterogeneity in Bacillus populations is a significant limitation for the development of spore-based probiotics, as nutrients supplied during fermentation are consumed through non-target pathways. One of these pathways is the generation of overflow metabolites (OMs), including acetoin and 2,3-butanediol. This study elucidates, using a 23 full factorial experimental design, the individual effects of OMs, QSMs, and their interactions on the sporulation dynamics and subpopulation distribution of B. velezensis 83. The results showed that OMs play a relevant role as external reserves of carbon and energy during in vitro nutrient limitation scenarios, significantly affecting sporulation dynamics. OMs improve sporulation efficiency and reduce cell autolysis, but they also decrease cellular synchronization and extend the period of spore formation. Although QSMs significantly increase sporulation synchronization, the desynchronization caused by OMs cannot be mitigated even with the addition of autoinducer QSM pro-sporulation molecules, including competence and sporulation stimulating factor "CSF" and cyclic lipopeptides. Indeed, the interaction effect between OMs and QSMs displays antagonism on sporulation efficiency. Modulating the levels of OMs and QSMs is a potential strategy for regulating the distribution of subpopulations within Bacillus cultures.
Collapse
Affiliation(s)
- Esmeralda Yazmín Soriano-Peña
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, C.P.62210, Cuernavaca, Morelos, México
| | - Agustín Luna-Bulbarela
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, C.P.62210, Cuernavaca, Morelos, México
| | - Sergio Andrés Cristiano-Fajardo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, C.P.62210, Cuernavaca, Morelos, México
| | - Enrique Galindo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, C.P.62210, Cuernavaca, Morelos, México.
| | - Leobardo Serrano-Carreón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, C.P.62210, Cuernavaca, Morelos, México.
| |
Collapse
|
5
|
Patil BL, Gopalkrishna AM, G M SK, R U. Molecular characterization of an endophytic strain of Bacillus subtilis with plant growth-promoting properties from a wild relative of papaya. J Appl Microbiol 2025; 136:lxaf010. [PMID: 39777499 DOI: 10.1093/jambio/lxaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
AIM Bacillus subtilis is usually found in soil, and their biocontrol and plant growth-promoting capabilities are being explored more recently than ever. However, knowledge about metabolite production and genome composition of endophytic B. subtilis from seeds is limited. In the present study, B. subtilis EVCu15 strain isolated from the seeds of Vasconcellea cundinamarcensis (mountain papaya) was subjected to whole genome sequencing and detailed molecular and functional characterization. METHODS AND RESULTS Whole genome sequencing and sequence analysis of the endophytic bacterium from mountain papaya seed revealed that the bacterium was B. subtilis, strain EVCu15. The genomic sequence had more than 98% nucleotide similarity with two published whole genome sequences of B. subtilis strains. Some of the important secondary metabolite gene clusters involved in production of bioactive compounds such as surfactin, fengycin, plipastatin, bacillibactin, bacillaene, subtilomycin, subtilosin A, and bacilysin were identified from the whole genome sequence analysis. Genes encoding several plant growth-promoting metabolites, mostly involved in the nutrient metabolism, were identified in the bacterial genome. These included factors coding for nitrogen, phosphorus, iron, sulfur, potassium, and trehalose metabolism. Genes involved in auxin, riboflavin, acetoin biosynthesis, ACC deaminase activity, and xylan degradation were also identified. Proteomic analysis confirmed the biosynthesis and release of several bioactive secondary metabolites in the endophytic B. subtilis strain EVCu15. Liquid chromatography-mass spectrometry-based profiling for hormones and vitamins identified extracellular secretion of several important plant growth-promoting compounds such as IAA, salicylic acid, zeatin, vitamin D1, D2, E, K1, and pyridoxine. The in vitro and in vivo studies with the endophytic B. subtilis against various plant pathogenic fungi showed moderate to high levels of resistance. The B. subtilis EVCu15 compared to B. amyloliquefaciens showed better control over the root-knot nematode Meloidogyne incognita, in terms of egg hatching inhibition and the mortality of J2 juveniles. CONCLUSION Overall, this study underscores the biocontrol and plant growth-promoting potential of B. subtilis EVCu15, an endophyte isolated from mountain papaya seeds. Genomic analysis revealed a significant proportion of genes linked to biocontrol and plant growth promotion, corroborating its efficacy against M. incognita and various plant pathogens in vitro and in greenhouse studies. Furthermore, the bacterium's ability to produce diverse bioactive compounds, including proteins, hormones, and vitamins, was confirmed, highlighting its complex interactions within the plant system.
Collapse
Affiliation(s)
- Basavaprabhu L Patil
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, Karnataka, India
| | - Amulya M Gopalkrishna
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, Karnataka, India
| | - Sandeep Kumar G M
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, Karnataka, India
| | - Umamaheswari R
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, Karnataka, India
| |
Collapse
|
6
|
Bi X, Cheng Y, Lv X, Liu Y, Li J, Du G, Chen J, Liu L. A Multi-Omics, Machine Learning-Aware, Genome-Wide Metabolic Model of Bacillus Subtilis Refines the Gene Expression and Cell Growth Prediction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408705. [PMID: 39287062 PMCID: PMC11558093 DOI: 10.1002/advs.202408705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Indexed: 09/19/2024]
Abstract
Given the extensive heterogeneity and variability, understanding cellular functions and regulatory mechanisms through the analysis of multi-omics datasets becomes extremely challenging. Here, a comprehensive modeling framework of multi-omics machine learning and metabolic network models are proposed that covers various cellular biological processes across multiple scales. This model on an extensive normalized compendium of Bacillus subtilis is validated, which encompasses gene expression data from environmental perturbations, transcriptional regulation, signal transduction, protein translation, and growth measurements. Comparison with high-throughput experimental data shows that EM_iBsu1209-ME, constructed on this basis, can accurately predict the expression of 605 genes and the synthesis of 23 metabolites under different conditions. This study paves the way for the construction of comprehensive biological databases and high-performance multi-omics metabolic models to achieve accurate predictive analysis in exploring complex mechanisms of cell genotypes and phenotypes.
Collapse
Affiliation(s)
- Xinyu Bi
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan UniversityWuxi214122China
- Science Center for Future FoodsMinistry of EducationJiangnan UniversityWuxi214122China
| | - Yang Cheng
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan UniversityWuxi214122China
- Science Center for Future FoodsMinistry of EducationJiangnan UniversityWuxi214122China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan UniversityWuxi214122China
- Science Center for Future FoodsMinistry of EducationJiangnan UniversityWuxi214122China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan UniversityWuxi214122China
- Science Center for Future FoodsMinistry of EducationJiangnan UniversityWuxi214122China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan UniversityWuxi214122China
- Science Center for Future FoodsMinistry of EducationJiangnan UniversityWuxi214122China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan UniversityWuxi214122China
- Science Center for Future FoodsMinistry of EducationJiangnan UniversityWuxi214122China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan UniversityWuxi214122China
- Science Center for Future FoodsMinistry of EducationJiangnan UniversityWuxi214122China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan UniversityWuxi214122China
- Science Center for Future FoodsMinistry of EducationJiangnan UniversityWuxi214122China
| |
Collapse
|
7
|
Pospíšil J, Sax A, Hubálek M, Krásný L, Vohradský J. Whole proteome analysis of germinating and outgrowing Bacillus subtilis 168. Proteomics 2024; 24:e2400031. [PMID: 39044338 DOI: 10.1002/pmic.202400031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/21/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
In this study, we present a high-resolution dataset and bioinformatic analysis of the proteome of Bacillus subtilis 168 trp+ (BSB1) during germination and spore outgrowth. Samples were collected at 14 different time points (ranging from 0 to 130 min) in three biological replicates after spore inoculation into germination medium. A total of 2191 proteins were identified and categorized based on their expression kinetics. We observed four distinct clusters that were analyzed for functional categories and KEGG pathways annotations. The examination of newly synthesized proteins between successive time points revealed significant changes, particularly within the first 50 min. The dataset provides an information base that can be used for modeling purposes and inspire the design of new experiments.
Collapse
Affiliation(s)
- Jiří Pospíšil
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Alice Sax
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Jiří Vohradský
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| |
Collapse
|
8
|
Dorsch A, Förschner F, Ravandeh M, da Silva Brito WA, Saadati F, Delcea M, Wende K, Bekeschus S. Nanoplastic Size and Surface Chemistry Dictate Decoration by Human Saliva Proteins. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25977-25993. [PMID: 38741563 DOI: 10.1021/acsami.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Environmental pollution with plastic polymers has become a global problem, leaving no continent and habitat unaffected. Plastic waste is broken down into smaller parts by environmental factors, which generate micro- and nanoplastic particles (MNPPs), ultimately ending up in the human food chain. Before entering the human body, MNPPs make their first contact with saliva in the human mouth. However, it is unknown what proteins attach to plastic particles and whether such protein corona formation is affected by the particle's biophysical properties. To this end, we employed polystyrene MNPPs of two different sizes and three different charges and incubated them individually with saliva donated by healthy human volunteers. Particle zeta potential and size analyses were performed using dynamic light scattering complemented by nanoliquid chromatography high-resolution mass spectrometry (nLC/HRMS) to qualitatively and quantitatively reveal the protein soft and hard corona for each particle type. Notably, protein profiles and relative quantities were dictated by plastic particle size and charge, which in turn affected their hydrodynamic size, polydispersity, and zeta potential. Strikingly, we provide evidence of the latter to be dynamic processes depending on exposure times. Smaller particles seemed to be more reactive with the surrounding proteins, and cultures of the particles with five different cell lines (HeLa, HEK293, A549, HepG2, and HaCaT) indicated protein corona effects on cellular metabolic activity and genotoxicity. In summary, our data suggest nanoplastic size and surface chemistry dictate the decoration by human saliva proteins, with important implications for MNPP uptake in humans.
Collapse
Affiliation(s)
- Anna Dorsch
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Fritz Förschner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Mehdi Ravandeh
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Walison Augusto da Silva Brito
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86057-970, Brazil
| | - Fariba Saadati
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Mihaela Delcea
- Biophysical Chemistry Department, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department of Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| |
Collapse
|
9
|
Beidler I, Steinke N, Schulze T, Sidhu C, Bartosik D, Zühlke MK, Martin LT, Krull J, Dutschei T, Ferrero-Bordera B, Rielicke J, Kale V, Sura T, Trautwein-Schult A, Kirstein IV, Wiltshire KH, Teeling H, Becher D, Bengtsson MM, Hehemann JH, Bornscheuer UT, Amann RI, Schweder T. Alpha-glucans from bacterial necromass indicate an intra-population loop within the marine carbon cycle. Nat Commun 2024; 15:4048. [PMID: 38744821 PMCID: PMC11093988 DOI: 10.1038/s41467-024-48301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Phytoplankton blooms provoke bacterioplankton blooms, from which bacterial biomass (necromass) is released via increased zooplankton grazing and viral lysis. While bacterial consumption of algal biomass during blooms is well-studied, little is known about the concurrent recycling of these substantial amounts of bacterial necromass. We demonstrate that bacterial biomass, such as bacterial alpha-glucan storage polysaccharides, generated from the consumption of algal organic matter, is reused and thus itself a major bacterial carbon source in vitro and during a diatom-dominated bloom. We highlight conserved enzymes and binding proteins of dominant bloom-responder clades that are presumably involved in the recycling of bacterial alpha-glucan by members of the bacterial community. We furthermore demonstrate that the corresponding protein machineries can be specifically induced by extracted alpha-glucan-rich bacterial polysaccharide extracts. This recycling of bacterial necromass likely constitutes a large-scale intra-population energy conservation mechanism that keeps substantial amounts of carbon in a dedicated part of the microbial loop.
Collapse
Affiliation(s)
- Irena Beidler
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany
| | - Nicola Steinke
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359, Bremen, Germany
| | - Tim Schulze
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany
| | - Chandni Sidhu
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Daniel Bartosik
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany
- Institute of Marine Biotechnology, 17489, Greifswald, Germany
| | - Marie-Katherin Zühlke
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany
| | - Laura Torres Martin
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany
| | - Joris Krull
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Theresa Dutschei
- Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Borja Ferrero-Bordera
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Julia Rielicke
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Vaikhari Kale
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Thomas Sura
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Anke Trautwein-Schult
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Inga V Kirstein
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, 27483, Helgoland, Germany
| | - Karen H Wiltshire
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, 27483, Helgoland, Germany
| | - Hanno Teeling
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Dörte Becher
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Mia Maria Bengtsson
- Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359, Bremen, Germany
| | - Uwe T Bornscheuer
- Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Rudolf I Amann
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany.
- Institute of Marine Biotechnology, 17489, Greifswald, Germany.
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, 27483, Helgoland, Germany.
| |
Collapse
|
10
|
Ferrero-Bordera B, Bartel J, van Dijl JM, Becher D, Maaß S. From the outer space to the inner cell: deconvoluting the complexity of Bacillus subtilis disulfide stress responses by redox state and absolute abundance quantification of extracellular, membrane, and cytosolic proteins. Microbiol Spectr 2024; 12:e0261623. [PMID: 38358275 PMCID: PMC10986503 DOI: 10.1128/spectrum.02616-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Understanding cellular mechanisms of stress management relies on omics data as a valuable resource. However, the lack of absolute quantitative data on protein abundances remains a significant limitation, particularly when comparing protein abundances across different cell compartments. In this study, we aimed to gain deeper insights into the proteomic responses of the Gram-positive model bacterium Bacillus subtilis to disulfide stress. We determined proteome-wide absolute abundances, focusing on different sub-cellular locations (cytosol and membrane) as well as the extracellular medium, and combined these data with redox state determination. To quantify secreted proteins in the culture medium, we developed a simple and straightforward protocol for the absolute quantification of extracellular proteins in bacteria. We concentrated extracellular proteins, which are highly diluted in the medium, using StrataClean beads along with a set of standard proteins to determine the extent of the concentration step. The resulting data set provides new insights into protein abundances in different sub-cellular compartments and the extracellular medium, along with a comprehensive proteome-wide redox state determination. Our study offers a quantitative understanding of disulfide stress management, protein production, and secretion in B. subtilis. IMPORTANCE Stress responses play a crucial role in bacterial survival and adaptation. The ability to quantitatively measure protein abundances and redox states in different cellular compartments and the extracellular environment is essential for understanding stress management mechanisms. In this study, we addressed the knowledge gap regarding absolute quantification of extracellular proteins and compared protein concentrations in various sub-cellular locations and in the extracellular medium under disulfide stress conditions. Our findings provide valuable insights into the protein production and secretion dynamics of B. subtilis, shedding light on its stress response strategies. Furthermore, the developed protocol for absolute quantification of extracellular proteins in bacteria presents a practical and efficient approach for future studies in the field. Overall, this research contributes to the quantitative understanding of stress management mechanisms and protein dynamics in B. subtilis, which can be used to enhance bacterial stress tolerance and protein-based biotechnological applications.
Collapse
Affiliation(s)
- Borja Ferrero-Bordera
- Department of Microbial Proteomics, University of Greifswald, Centre of Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| | - Jürgen Bartel
- Department of Microbial Proteomics, University of Greifswald, Centre of Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dörte Becher
- Department of Microbial Proteomics, University of Greifswald, Centre of Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| | - Sandra Maaß
- Department of Microbial Proteomics, University of Greifswald, Centre of Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| |
Collapse
|
11
|
Wang B, van der Kloet F, Kes MBMJ, Luirink J, Hamoen LW. Improving gene set enrichment analysis (GSEA) by using regulation directionality. Microbiol Spectr 2024; 12:e0345623. [PMID: 38294221 PMCID: PMC10913524 DOI: 10.1128/spectrum.03456-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
To infer the biological meaning from transcriptome data, it is useful to focus on genes that are regulated by the same regulator, i.e., regulons. Unfortunately, current gene set enrichment analysis (GSEA) tools do not consider whether a gene is activated or repressed by a regulator. This distinction is crucial when analyzing regulons since a regulator can work as an activator of certain genes and as a repressor of other genes, yet both sets of genes belong to the same regulon. Therefore, simply averaging expression differences of the genes of such a regulon will not properly reflect the activity of the regulator. What makes it more complicated is the fact that many genes are regulated by different transcription factors, and current transcriptome analysis tools are unable to indicate which regulator is most likely responsible for the observed expression difference of a gene. To address these challenges, we developed the gene set enrichment analysis program GINtool. Additional features of GINtool are novel graphical representations to facilitate the visualization of gene set analyses of transcriptome data, the possibility to include functional categories as gene sets for analysis, and the option to analyze expression differences within operons, which is useful when analyzing prokaryotic transcriptome and also proteome data.IMPORTANCEMeasuring the activity of all genes in cells is a common way to elucidate the function and regulation of genes. These transcriptome analyses produce large amounts of data since genomes contain thousands of genes. The analysis of these large data sets is challenging. Therefore, we developed a new software tool called GINtool that can facilitate the analysis of transcriptome data by using prior knowledge of gene sets controlled by the same regulator, the so-called regulons. An important novelty of GINtool is that it can take into account the directionality of gene regulation in these analyses, i.e., whether a gene is activated or repressed, which is crucial to assess whether a regulon or functional category is affected. GINtool also includes new graphical methods to facilitate the visual inspection of regulation events in transcriptome data sets. These and additional analysis methods included in GINtool make it a powerful software tool to analyze transcriptome data.
Collapse
Affiliation(s)
- Biwen Wang
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Frans van der Kloet
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Mariah B. M. J. Kes
- Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Joen Luirink
- Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Leendert W. Hamoen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Naveed M, Wen S, Chan MWH, Wang F, Aslam S, Yin X, Xu B, Ullah A. Expression of BSN314 lysozyme genes in Escherichia coli BL21: a study to demonstrate microbicidal and disintegarting potential of the cloned lysozyme. Braz J Microbiol 2024; 55:215-233. [PMID: 38146050 PMCID: PMC10920529 DOI: 10.1007/s42770-023-01219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023] Open
Abstract
This study is an extension of our previous studies in which the lysozyme was isolated and purified from Bacillus subtilis BSN314 (Naveed et al., 2022; Naveed et al., 2023). In this study, the lysozyme genes were cloned into the E. coli BL21. For the expression of lysozyme in E. coli BL21, two target genes, Lyz-1 and Lyz-2, were ligated into the modified vector pET28a to generate pET28a-Lyz1 and pET28a-Lyz2, respectively. To increase the production rate of the enzyme, 0.5-mM concentration of IPTG was added to the culture media and incubated at 37 °C and 220 rpm for 24 h. Lyz1 was identified as N-acetylmuramoyl-L-alanine amidase and Lyz2 as D-alanyl-D-alanine carboxypeptidase. They were purified by multi-step methodology (ammonium sulfate, precipitation, dialysis, and ultrafiltration), and antimicrobial activity was determined. For Lyz1, the lowest MIC/MBC (0.25 μg/mL; with highest ZOI = 22 mm) were recorded against Micrococcus luteus, whereas the highest MIC/MBC with lowest ZOI were measured against Salmonella typhimurium (2.50 μg /mL; with ZOI = 10 mm). As compared with Aspergillus oryzae (MIC/MFC; 3.00 μg/mL), a higher concentration of lysozyme was required to control the growth of Saccharomyces cerevisiae (MIC/MFC; 50 μg/mL). Atomic force microscopy (AFM) was used to analyze the disintegrating effect of Lyz1 on the cells of selected Gram-positive bacteria, Gram-negative bacteria, and yeast. The AFM results showed that, as compared to Gram-negative bacteria, a lower concentration of lysozyme (Lyz1) was required to disintegrate the cell of Gram-positive bacteria.
Collapse
Affiliation(s)
- Muhammad Naveed
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Sai Wen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Malik Wajid Hussain Chan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China.
| | - Fenghuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China.
| | - Sadar Aslam
- Department of Zoology, University of Baltistan, Skardu, Pakistan
| | - Xian Yin
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Baocai Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Asad Ullah
- Food and Marine Resources Research Center, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, 75280, Pakistan
| |
Collapse
|
13
|
Raju S, Botts SR, Blaser MC, Abdul-Samad M, Prajapati K, Khosraviani N, Ho TWW, Breda LC, Ching C, Galant NJ, Fiddes L, Wu R, Clift CL, Pham T, Lee WL, Singh SA, Aikawa E, Fish JE, Howe KL. Directional Endothelial Communication by Polarized Extracellular Vesicle Release. Circ Res 2024; 134:269-289. [PMID: 38174557 PMCID: PMC10826926 DOI: 10.1161/circresaha.123.322993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Extracellular vesicles (EVs) contain bioactive cargo including miRNAs and proteins that are released by cells during cell-cell communication. Endothelial cells (ECs) form the innermost lining of all blood vessels, interfacing with cells in the circulation and vascular wall. It is unknown whether ECs release EVs capable of governing recipient cells within these 2 separate compartments. Given their boundary location, we propose ECs use bidirectional release of distinct EV cargo in quiescent (healthy) and activated (atheroprone) states to communicate with cells within the circulation and blood vessel wall. METHODS EVs were isolated from primary human aortic ECs (plate and transwell grown; ±IL [interleukin]-1β activation), quantified, visualized, and analyzed by miRNA transcriptomics and proteomics. Apical and basolateral EC-EV release was determined by miRNA transfer, total internal reflection fluorescence and electron microscopy. Vascular reprogramming (RNA sequencing) and functional assays were performed on primary human monocytes or smooth muscle cells±EC-EVs. RESULTS Activated ECs increased EV release, with miRNA and protein cargo related to atherosclerosis. EV-treated monocytes and smooth muscle cells revealed activated EC-EV altered pathways that were proinflammatory and atherogenic. ECs released more EVs apically, which increased with activation. Apical and basolateral EV cargo contained distinct transcriptomes and proteomes that were altered by EC activation. Notably, activated basolateral EC-EVs displayed greater changes in the EV secretome, with pathways specific to atherosclerosis. In silico analysis determined compartment-specific cargo released by the apical and basolateral surfaces of ECs can reprogram monocytes and smooth muscle cells, respectively, with functional assays and in vivo imaging supporting this concept. CONCLUSIONS Demonstrating that ECs are capable of polarized EV cargo loading and directional EV secretion reveals a novel paradigm for endothelial communication, which may ultimately enhance the design of endothelial-based therapeutics for cardiovascular diseases such as atherosclerosis where ECs are persistently activated.
Collapse
Affiliation(s)
- Sneha Raju
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (S.R., S.R.B., M.A.-S., K.P., N.K., L.C.D.B., C.C., R.W., J.E.F., K.L.H.)
- Institute of Medical Science (S.R., S.R.B., C.C., J.E.F., K.L.H.), University of Toronto, Toronto, ON, Canada
- Faculty of Medicine (S.R., S.R.B., L.F., K.L.H.), University of Toronto, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada (S.R., K.L.H.)
| | - Steven R. Botts
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (S.R., S.R.B., M.A.-S., K.P., N.K., L.C.D.B., C.C., R.W., J.E.F., K.L.H.)
- Institute of Medical Science (S.R., S.R.B., C.C., J.E.F., K.L.H.), University of Toronto, Toronto, ON, Canada
- Faculty of Medicine (S.R., S.R.B., L.F., K.L.H.), University of Toronto, Toronto, ON, Canada
| | - Mark C. Blaser
- Cardiovascular Division, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences (M.C.B., C.L.C., T.P., S.A.S., E.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Majed Abdul-Samad
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (S.R., S.R.B., M.A.-S., K.P., N.K., L.C.D.B., C.C., R.W., J.E.F., K.L.H.)
- Department of Laboratory Medicine and Pathobiology (M.A.-S., N.K., R.W., J.E.F.), University of Toronto, Toronto, ON, Canada
| | - Kamalben Prajapati
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (S.R., S.R.B., M.A.-S., K.P., N.K., L.C.D.B., C.C., R.W., J.E.F., K.L.H.)
| | - Negar Khosraviani
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (S.R., S.R.B., M.A.-S., K.P., N.K., L.C.D.B., C.C., R.W., J.E.F., K.L.H.)
- Department of Laboratory Medicine and Pathobiology (M.A.-S., N.K., R.W., J.E.F.), University of Toronto, Toronto, ON, Canada
| | - Tse Wing Winnie Ho
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada (T.W.W.H., W.L.L.)
| | - Leandro C.D. Breda
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (S.R., S.R.B., M.A.-S., K.P., N.K., L.C.D.B., C.C., R.W., J.E.F., K.L.H.)
| | - Crizza Ching
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (S.R., S.R.B., M.A.-S., K.P., N.K., L.C.D.B., C.C., R.W., J.E.F., K.L.H.)
- Institute of Medical Science (S.R., S.R.B., C.C., J.E.F., K.L.H.), University of Toronto, Toronto, ON, Canada
| | | | - Lindsey Fiddes
- Faculty of Medicine (S.R., S.R.B., L.F., K.L.H.), University of Toronto, Toronto, ON, Canada
| | - Ruilin Wu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (S.R., S.R.B., M.A.-S., K.P., N.K., L.C.D.B., C.C., R.W., J.E.F., K.L.H.)
- Department of Laboratory Medicine and Pathobiology (M.A.-S., N.K., R.W., J.E.F.), University of Toronto, Toronto, ON, Canada
| | - Cassandra L. Clift
- Cardiovascular Division, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences (M.C.B., C.L.C., T.P., S.A.S., E.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Tan Pham
- Cardiovascular Division, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences (M.C.B., C.L.C., T.P., S.A.S., E.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Warren L. Lee
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada (T.W.W.H., W.L.L.)
| | - Sasha A. Singh
- Cardiovascular Division, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences (M.C.B., C.L.C., T.P., S.A.S., E.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine (S.A.S., E.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Elena Aikawa
- Cardiovascular Division, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences (M.C.B., C.L.C., T.P., S.A.S., E.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine (S.A.S., E.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (S.R., S.R.B., M.A.-S., K.P., N.K., L.C.D.B., C.C., R.W., J.E.F., K.L.H.)
- Institute of Medical Science (S.R., S.R.B., C.C., J.E.F., K.L.H.), University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology (M.A.-S., N.K., R.W., J.E.F.), University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, ON, Canada (J.E.F., K.L.H.)
| | - Kathryn L. Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (S.R., S.R.B., M.A.-S., K.P., N.K., L.C.D.B., C.C., R.W., J.E.F., K.L.H.)
- Institute of Medical Science (S.R., S.R.B., C.C., J.E.F., K.L.H.), University of Toronto, Toronto, ON, Canada
- Faculty of Medicine (S.R., S.R.B., L.F., K.L.H.), University of Toronto, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada (S.R., K.L.H.)
- Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, ON, Canada (J.E.F., K.L.H.)
| |
Collapse
|
14
|
Takishita Y, Subramanian S, Souleimanov A, Smith DL. Interactive effects of Pseudomonas entomophila strain 23S and Clavibacter michiganensis subsp. michiganensis on proteome and anti-Cmm compound production. J Proteomics 2023; 289:105006. [PMID: 37717723 DOI: 10.1016/j.jprot.2023.105006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Pseudomonas entomophila strain 23S is an effective biocontrol bacterium for tomato bacterial canker caused by Clavibacter michiganensis subsp. michiganensis (Cmm); it produces an inhibitory compound affecting the growth of Cmm. In this study, the interactions between pure cultures of P. entomophila 23S and Cmm were investigated. First, the population dynamics of each bacterium during the interaction was determined using the selective media. Second, the amount of anti-Cmm compound produced by P. entomophila 23S in the presence of Cmm was quantified using HPLC. Lastly, a label-free shotgun proteomics study of P. entomophila 23S, Cmm, and a co-culture was conducted to understand the effects of the interaction of each bacterium at the proteomic level. Compared with the pure culture grown, the total number of proteins decreased in the interaction for both bacteria. P. entomophila 23S secreted stress-related proteins, such as chaperonins, peptidases, ABC-transporters and elongation factors. The bacterium also produced more proteins related with purine, pyrimidine, carbon and nitrogen metabolisms in the presence of Cmm. The population enumeration study revealed that the Cmm population declined dramatically during the interaction, while the population of P. entomophila 23S maintained. The quantification of anti-Cmm compound indicated that P. entomophila 23S produced significantly higher amount of anti-Cmm compound when it was cultured with Cmm. Overall, the study suggested that P. entomophila 23S, although is cidal to Cmm, was also negatively affected by the presence of Cmm, while trying to adapt to the stress condition, and that such an environment favored increased production of the anti-Cmm compound by P. entomophila 23S. SIGNIFICANCE: Pseudomonas entomophila strain 23S is an effective biocontrol bacterium for tomato bacterial canker caused by Clavibacter michiganensis subsp. michiganensis (Cmm); it produces an inhibitory compound affecting the growth of Cmm. In this study, secreted proteome of pure cultures of P. entomophila 23S and Cmm, and also of a co-culture was first time identified. Furthermore, the study found that P. entomophila strain 23S produced significantly higher amount of anti-Cmm compound when the bacterium was grown together with Cmm. Co-culture enhancing anti-Cmm compound production by P. entomophila 23S is useful information, particularly from a commercial point of view of biocontrol application, and for scale-up of anti-Cmm compound production.
Collapse
Affiliation(s)
- Yoko Takishita
- Department of Plant Science, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Sowmyalakshmi Subramanian
- Department of Plant Science, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Alfred Souleimanov
- Department of Plant Science, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Donald L Smith
- Department of Plant Science, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
15
|
Buchmann D, Schwabe M, Weiss R, Kuss AW, Schaufler K, Schlüter R, Rödiger S, Guenther S, Schultze N. Natural phenolic compounds as biofilm inhibitors of multidrug-resistant Escherichia coli - the role of similar biological processes despite structural diversity. Front Microbiol 2023; 14:1232039. [PMID: 37731930 PMCID: PMC10507321 DOI: 10.3389/fmicb.2023.1232039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2023] [Indexed: 09/22/2023] Open
Abstract
Multidrug-resistant gram-negative pathogens such as Escherichia coli have become increasingly difficult to treat and therefore alternative treatment options are needed. Targeting virulence factors like biofilm formation could be one such option. Inhibition of biofilm-related structures like curli and cellulose formation in E. coli has been shown for different phenolic natural compounds like epigallocatechin gallate. This study demonstrates this effect for other structurally unrelated phenolics, namely octyl gallate, scutellarein and wedelolactone. To verify whether these structurally different compounds influence identical pathways of biofilm formation in E. coli a broad comparative RNA-sequencing approach was chosen with additional RT-qPCR to gain initial insights into the pathways affected at the transcriptomic level. Bioinformatical analysis of the RNA-Seq data was performed using DESeq2, BioCyc and KEGG Mapper. The comparative bioinformatics analysis on the pathways revealed that, irrespective of their structure, all compounds mainly influenced similar biological processes. These pathways included bacterial motility, chemotaxis, biofilm formation as well as metabolic processes like arginine biosynthesis and tricarboxylic acid cycle. Overall, this work provides the first insights into the potential mechanisms of action of novel phenolic biofilm inhibitors and highlights the complex regulatory processes of biofilm formation in E. coli.
Collapse
Affiliation(s)
- David Buchmann
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Michael Schwabe
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Romano Weiss
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Andreas W. Kuss
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Katharina Schaufler
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Sebastian Guenther
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Nadin Schultze
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
16
|
Dutschei T, Beidler I, Bartosik D, Seeßelberg JM, Teune M, Bäumgen M, Ferreira SQ, Heldmann J, Nagel F, Krull J, Berndt L, Methling K, Hein M, Becher D, Langer P, Delcea M, Lalk M, Lammers M, Höhne M, Hehemann JH, Schweder T, Bornscheuer UT. Marine Bacteroidetes enzymatically digest xylans from terrestrial plants. Environ Microbiol 2023; 25:1713-1727. [PMID: 37121608 DOI: 10.1111/1462-2920.16390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
Marine Bacteroidetes that degrade polysaccharides contribute to carbon cycling in the ocean. Organic matter, including glycans from terrestrial plants, might enter the oceans through rivers. Whether marine bacteria degrade structurally related glycans from diverse sources including terrestrial plants and marine algae was previously unknown. We show that the marine bacterium Flavimarina sp. Hel_I_48 encodes two polysaccharide utilization loci (PULs) which degrade xylans from terrestrial plants and marine algae. Biochemical experiments revealed activity and specificity of the encoded xylanases and associated enzymes of these PULs. Proteomics indicated that these genomic regions respond to glucuronoxylans and arabinoxylans. Substrate specificities of key enzymes suggest dedicated metabolic pathways for xylan utilization. Some of the xylanases were active on different xylans with the conserved β-1,4-linked xylose main chain. Enzyme activity was consistent with growth curves showing Flavimarina sp. Hel_I_48 uses structurally different xylans. The observed abundance of related xylan-degrading enzyme repertoires in genomes of other marine Bacteroidetes indicates similar activities are common in the ocean. The here presented data show that certain marine bacteria are genetically and biochemically variable enough to access parts of structurally diverse xylans from terrestrial plants as well as from marine algal sources.
Collapse
Affiliation(s)
- Theresa Dutschei
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Irena Beidler
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Daniel Bartosik
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology e.V., Greifswald, Germany
| | - Julia-Maria Seeßelberg
- Department of Protein Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Michelle Teune
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Marcus Bäumgen
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Soraia Querido Ferreira
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Julia Heldmann
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Felix Nagel
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Joris Krull
- Institute of Marine Biotechnology e.V., Greifswald, Germany
- Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Leona Berndt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Karen Methling
- Department of Cellular Biochemistry and Metabolomics, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Martin Hein
- Department of Organic Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Peter Langer
- Department of Organic Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Mihaela Delcea
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Michael Lalk
- Department of Cellular Biochemistry and Metabolomics, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Michael Lammers
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Matthias Höhne
- Department of Protein Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Jan-Hendrik Hehemann
- Institute of Marine Biotechnology e.V., Greifswald, Germany
- Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Thomas Schweder
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology e.V., Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| |
Collapse
|
17
|
Moeller FU, Herbold CW, Schintlmeister A, Mooshammer M, Motti C, Glasl B, Kitzinger K, Behnam F, Watzka M, Schweder T, Albertsen M, Richter A, Webster NS, Wagner M. Taurine as a key intermediate for host-symbiont interaction in the tropical sponge Ianthella basta. THE ISME JOURNAL 2023; 17:1208-1223. [PMID: 37188915 PMCID: PMC10356861 DOI: 10.1038/s41396-023-01420-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Marine sponges are critical components of marine benthic fauna assemblages, where their filter-feeding and reef-building capabilities provide bentho-pelagic coupling and crucial habitat. As potentially the oldest representation of a metazoan-microbe symbiosis, they also harbor dense, diverse, and species-specific communities of microbes, which are increasingly recognized for their contributions to dissolved organic matter (DOM) processing. Recent omics-based studies of marine sponge microbiomes have proposed numerous pathways of dissolved metabolite exchange between the host and symbionts within the context of the surrounding environment, but few studies have sought to experimentally interrogate these pathways. By using a combination of metaproteogenomics and laboratory incubations coupled with isotope-based functional assays, we showed that the dominant gammaproteobacterial symbiont, 'Candidatus Taurinisymbion ianthellae', residing in the marine sponge, Ianthella basta, expresses a pathway for the import and dissimilation of taurine, a ubiquitously occurring sulfonate metabolite in marine sponges. 'Candidatus Taurinisymbion ianthellae' incorporates taurine-derived carbon and nitrogen while, at the same time, oxidizing the dissimilated sulfite into sulfate for export. Furthermore, we found that taurine-derived ammonia is exported by the symbiont for immediate oxidation by the dominant ammonia-oxidizing thaumarchaeal symbiont, 'Candidatus Nitrosospongia ianthellae'. Metaproteogenomic analyses also suggest that 'Candidatus Taurinisymbion ianthellae' imports DMSP and possesses both pathways for DMSP demethylation and cleavage, enabling it to use this compound as a carbon and sulfur source for biomass, as well as for energy conservation. These results highlight the important role of biogenic sulfur compounds in the interplay between Ianthella basta and its microbial symbionts.
Collapse
Affiliation(s)
- Florian U Moeller
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Maria Mooshammer
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Cherie Motti
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Bettina Glasl
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Katharina Kitzinger
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Faris Behnam
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Margarete Watzka
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Thomas Schweder
- Institute of Marine Biotechnology e.V., Greifswald, Germany
- Institute of Pharmacy, Pharmaceutical Biotechnology, University of Greifswald, Greifswald, Germany
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, St Lucia, QLD, Australia
- Australian Antarctic Division, Kingston, TAS, Australia
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
18
|
Beidler I, Robb CS, Vidal-Melgosa S, Zühlke MK, Bartosik D, Solanki V, Markert S, Becher D, Schweder T, Hehemann JH. Marine bacteroidetes use a conserved enzymatic cascade to digest diatom β-mannan. THE ISME JOURNAL 2023; 17:276-285. [PMID: 36411326 PMCID: PMC9860051 DOI: 10.1038/s41396-022-01342-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022]
Abstract
The polysaccharide β-mannan, which is common in terrestrial plants but unknown in microalgae, was recently detected during diatom blooms. We identified a β-mannan polysaccharide utilization locus (PUL) in the genome of the marine flavobacterium Muricauda sp. MAR_2010_75. Proteomics showed β-mannan induced translation of 22 proteins encoded within the PUL. Biochemical and structural analyses deduced the enzymatic cascade for β-mannan utilization. A conserved GH26 β-mannanase with endo-activity depolymerized the β-mannan. Consistent with the biochemistry, X-ray crystallography showed the typical TIM-barrel fold of related enzymes found in terrestrial β-mannan degraders. Structural and biochemical analyses of a second GH26 allowed the prediction of an exo-activity on shorter manno-gluco oligosaccharides. Further analysis demonstrated exo-α-1,6-galactosidase- and endo-β-1,4-glucanase activity of the PUL-encoded GH27 and GH5_26, respectively, indicating the target substrate is a galactoglucomannan. Epitope deletion assays with mannanases as analytic tools indicate the presence of β-mannan in the diatoms Coscinodiscus wailesii and Chaetoceros affinis. Mannanases from the PUL were active on diatom β-mannan and polysaccharide extracts sampled during a microalgal bloom at the North Sea. Together these results demonstrate that marine microorganisms use a conserved enzymatic cascade to degrade β-mannans of marine and terrestrial origin and that this metabolic pathway plays a role in marine carbon cycling.
Collapse
Affiliation(s)
- Irena Beidler
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, 17489, Greifswald, Germany
| | - Craig S Robb
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359, Bremen, Germany
| | - Silvia Vidal-Melgosa
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359, Bremen, Germany
| | - Marie-Katherin Zühlke
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, 17489, Greifswald, Germany
- Institute of Marine Biotechnology, 17489, Greifswald, Germany
| | - Daniel Bartosik
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, 17489, Greifswald, Germany
- Institute of Marine Biotechnology, 17489, Greifswald, Germany
| | - Vipul Solanki
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359, Bremen, Germany
| | - Stephanie Markert
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, 17489, Greifswald, Germany
- Institute of Marine Biotechnology, 17489, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University Greifswald, 17489, Greifswald, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, 17489, Greifswald, Germany.
- Institute of Marine Biotechnology, 17489, Greifswald, Germany.
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany.
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359, Bremen, Germany.
| |
Collapse
|
19
|
Naveed M, Wang Y, Yin X, Chan MWH, Aslam S, Wang F, Xu B, Ullah A. Purification, Characterization and Bactericidal Action of Lysozyme, Isolated from Bacillus subtillis BSN314: A Disintegrating Effect of Lysozyme on Gram-Positive and Gram-Negative Bacteria. Molecules 2023; 28:1058. [PMID: 36770725 PMCID: PMC9919333 DOI: 10.3390/molecules28031058] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
In the present study, lysozyme was purified by the following multi-step methodology: salt (ammonium sulfate) precipitation, dialysis, and ultrafiltration. The lysozyme potential was measured by enzymatic activity after each purification step. However, after ultrafiltration, the resulting material was considered extra purified. It was concentrated in an ultrafiltration centrifuge tube, and the resulting protein/lysozyme was used to determine its bactericidal potential against five bacterial strains, including three gram-positive (Bacillus subtilis 168, Micrococcus luteus, and Bacillus cereus) and two gram-negative (Salmonella typhimurium and Pseudomonas aeruginosa) strains. The results of ZOI and MIC/MBC showed that lysozyme had a higher antimicrobial activity against gram-positive than gram-negative bacterial strains. The results of the antibacterial activity of lysozyme were compared with those of ciprofloxacin (antibiotic). For this purpose, two indices were applied in the present study: antimicrobial index (AMI) and percent activity index (PAI). It was found that the purified lysozyme had a higher antibacterial activity against Bacillus cereus (AMI/PAI; 1.01/101) and Bacillus subtilis 168 (AMI/PAI; 1.03/103), compared to the antibiotic (ciprofloxacin) used in this study. Atomic force microscopy (AFM) was used to determine the bactericidal action of the lysozyme on the bacterial cell. The purified protein was further processed by gel column chromatography and the eluate was collected, its enzymatic activity was 21.93 U/mL, while the eluate was processed by native-PAGE. By this analysis, the un-denatured protein with enzymatic activity of 40.9 U/mL was obtained. This step shows that the protein (lysozyme) has an even higher enzymatic potential. To determine the specific peptides (in lysozyme) that may cause the bactericidal potential and cell lytic/enzymatic activity, the isolated protein (lysozyme) was further processed by the SDS-PAGE technique. SDS-PAGE analysis revealed different bands with sizes of 34 kDa, 24 kDa, and 10 kDa, respectively. To determine the chemical composition of the peptides, the bands (from SDS-PAGE) were cut, enzymatically digested, desalted, and analyzed by LC-MS (liquid chromatography-mass spectrometry). LC-MS analysis showed that the purified lysozyme had the following composition: the number of proteins in the sample was 56, the number of peptides was 124, and the number of PSMs (peptide spectrum matches) was 309. Among them, two peptides related to lysozyme and bactericidal activities were identified as: A0A1Q9G213 (N-acetylmuramoyl-L-alanine amidase) and A0A1Q9FRD3 (D-alanyl-D-alanine carboxypeptidase). The corresponding protein sequence and nucleic acid sequence were determined by comparison with the database.
Collapse
Affiliation(s)
- Muhammad Naveed
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yadong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xian Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Malik Wajid Hussain Chan
- Department of Chemistry, Faculty of Science, Federal Urdu University of Arts, Science and Technology, Campus Gulshan-e-Iqbal, Karachi 75300, Pakistan
| | - Sadar Aslam
- Department of Biological Science, University of Baltistan, Skardu 16400, Pakistan
| | - Fenghuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Baocai Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Asad Ullah
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Food and Marine Resources Research Center, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi 75280, Pakistan
| |
Collapse
|
20
|
Shao M, Chen Y, Gong Q, Miao S, Li C, Sun Y, Qin D, Guo X, Yan X, Cheng P, Yu G. Biocontrol endophytes Bacillus subtilis R31 influence the quality, transcriptome and metabolome of sweet corn. PeerJ 2023; 11:e14967. [PMID: 36883062 PMCID: PMC9985898 DOI: 10.7717/peerj.14967] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
During colonization of soil and plants, biocontrol bacteria can effectively regulate the physiological metabolism of plants and induce disease resistance. To illustrate the influence of Bacillus subtilis R31 on the quality, transcriptome and metabolome of sweet corn, field studies were conducted at a corn experimental base in Zhuhai City. The results show that, after application of B. subtilis R31, sweet corn was more fruitful, with a 18.3 cm ear length, 5.0 cm ear diameter, 0.4 bald head, 403.9 g fresh weight of single bud, 272.0 g net weight of single ear, and 16.5 kernels sweetness. Combined transcriptomic and metabolomic analyses indicate that differentially expressed genes related to plant-pathogen interactions, MAPK signaling pathway-plant, phenylpropanoid biosynthesis, and flavonoid biosynthesis were significantly enriched. Moreover, the 110 upregulated DAMs were mainly involved in the flavonoid biosynthesis and flavone and flavonol biosynthesis pathways. Our study provides a foundation for investigating the molecular mechanisms by which biocontrol bacteria enhance crop nutrition and taste through biological means or genetic engineering at the molecular level.
Collapse
Affiliation(s)
- Mingwei Shao
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guanghzou, China.,Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangdong, China
| | - Yanhong Chen
- Zhuhai Modern Agriculture Development Center, Zhuhai, China
| | - Qingyou Gong
- Zhuhai Modern Agriculture Development Center, Zhuhai, China
| | - Shuang Miao
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guanghzou, China.,Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangdong, China
| | - Chunji Li
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guanghzou, China.,Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangdong, China
| | - Yunhao Sun
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guanghzou, China.,Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangdong, China
| | - Di Qin
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guanghzou, China.,Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangdong, China
| | - Xiaojian Guo
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guanghzou, China.,Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangdong, China
| | - Xun Yan
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guanghzou, China.,Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangdong, China
| | - Ping Cheng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guanghzou, China.,Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangdong, China
| | - Guohui Yu
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guanghzou, China.,Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangdong, China
| |
Collapse
|
21
|
Martino F, Varadarajan NM, Perestrelo AR, Hejret V, Durikova H, Vukic D, Horvath V, Cavalieri F, Caruso F, Albihlal WS, Gerber AP, O'Connell MA, Vanacova S, Pagliari S, Forte G. The mechanical regulation of RNA binding protein hnRNPC in the failing heart. Sci Transl Med 2022; 14:eabo5715. [PMID: 36417487 DOI: 10.1126/scitranslmed.abo5715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cardiac pathologies are characterized by intense remodeling of the extracellular matrix (ECM) that eventually leads to heart failure. Cardiomyocytes respond to the ensuing biomechanical stress by reexpressing fetal contractile proteins via transcriptional and posttranscriptional processes, such as alternative splicing (AS). Here, we demonstrate that the heterogeneous nuclear ribonucleoprotein C (hnRNPC) is up-regulated and relocates to the sarcomeric Z-disc upon ECM pathological remodeling. We show that this is an active site of localized translation, where the ribonucleoprotein associates with the translation machinery. Alterations in hnRNPC expression, phosphorylation, and localization can be mechanically determined and affect the AS of mRNAs involved in mechanotransduction and cardiovascular diseases, including Hippo pathway effector Yes-associated protein 1. We propose that cardiac ECM remodeling serves as a switch in RNA metabolism by affecting an associated regulatory protein of the spliceosome apparatus. These findings offer new insights on the mechanism of mRNA homeostatic mechanoregulation in pathological conditions.
Collapse
Affiliation(s)
- Fabiana Martino
- International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691 Brno, Czech Republic.,Faculty of Medicine, Department of Biology, Masaryk University, CZ-62500 Brno, Czech Republic.,Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic.,Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Nandan Mysore Varadarajan
- Central European Institute of Technology (CEITEC), Masaryk University, CZ-62500 Brno, Czech Republic
| | - Ana Rubina Perestrelo
- International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Vaclav Hejret
- Central European Institute of Technology (CEITEC), Masaryk University, CZ-62500 Brno, Czech Republic.,National Centre for Biomolecular Research, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Helena Durikova
- International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Dragana Vukic
- Central European Institute of Technology (CEITEC), Masaryk University, CZ-62500 Brno, Czech Republic
| | - Vladimir Horvath
- International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691 Brno, Czech Republic.,Centre for Cardiovascular and Transplant Surgery, CZ-60200 Brno, Czech Republic
| | - Francesca Cavalieri
- Department of Chemical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.,Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, 00133 Rome, Italy
| | - Frank Caruso
- Centre for Cardiovascular and Transplant Surgery, CZ-60200 Brno, Czech Republic
| | | | - André P Gerber
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Mary A O'Connell
- Central European Institute of Technology (CEITEC), Masaryk University, CZ-62500 Brno, Czech Republic
| | - Stepanka Vanacova
- Central European Institute of Technology (CEITEC), Masaryk University, CZ-62500 Brno, Czech Republic
| | - Stefania Pagliari
- International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691 Brno, Czech Republic.,Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic
| | - Giancarlo Forte
- International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691 Brno, Czech Republic.,Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic.,School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
22
|
Möller J, Bodenschatz M, Sangal V, Hofmann J, Burkovski A. Multi-Omics of Corynebacterium Pseudotuberculosis 12CS0282 and an In Silico Reverse Vaccinology Approach Reveal Novel Vaccine and Drug Targets. Proteomes 2022; 10:proteomes10040039. [PMID: 36548458 PMCID: PMC9784263 DOI: 10.3390/proteomes10040039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Corynebacterium pseudotuberculosis is an important animal pathogen, which is also able to infect humans. An optimal treatment of infections with this pathogen is not available today and consequently, more research is necessary to understand the infection process. Here, we present a combined -omics and bioinformatics approach to characterize C. pseudotuberculosis 12CS0282. The genome sequence of strain 12CS0282 was determined, analyzed in comparison with the available 130 C. pseudotuberculosis sequences and used as a basis for proteome analyses. In a reverse vaccinology approach, putative vaccine and drug targets for 12CS0208 were identified. Mass spectrometry analyses revealed the presence of multiple virulence factors even without host contact. In macrophage interaction studies, C. pseudotuberculosis 12CS0282 was highly resistant against human phagocytes and even multiplied within human THP-1 cells. Taken together, the data indicate a high pathogenic potential of the strain.
Collapse
Affiliation(s)
- Jens Möller
- Microbiology Division, Department of Biology, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Mona Bodenschatz
- Microbiology Division, Department of Biology, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Jörg Hofmann
- Biochemistry Division, Department of Biology, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Andreas Burkovski
- Microbiology Division, Department of Biology, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-28086
| |
Collapse
|
23
|
Dutschei T, Zühlke MK, Welsch N, Eisenack T, Hilkmann M, Krull J, Stühle C, Brott S, Dürwald A, Reisky L, Hehemann JH, Becher D, Schweder T, Bornscheuer UT. Metabolic engineering enables Bacillus licheniformis to grow on the marine polysaccharide ulvan. Microb Cell Fact 2022; 21:207. [PMID: 36217189 PMCID: PMC9549685 DOI: 10.1186/s12934-022-01931-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background Marine algae are responsible for half of the global primary production, converting carbon dioxide into organic compounds like carbohydrates. Particularly in eutrophic waters, they can grow into massive algal blooms. This polysaccharide rich biomass represents a cheap and abundant renewable carbon source. In nature, the diverse group of polysaccharides is decomposed by highly specialized microbial catabolic systems. We elucidated the complete degradation pathway of the green algae-specific polysaccharide ulvan in previous studies using a toolbox of enzymes discovered in the marine flavobacterium Formosa agariphila and recombinantly expressed in Escherichia coli. Results In this study we show that ulvan from algal biomass can be used as feedstock for a biotechnological production strain using recombinantly expressed carbohydrate-active enzymes. We demonstrate that Bacillus licheniformis is able to grow on ulvan-derived xylose-containing oligosaccharides. Comparative growth experiments with different ulvan hydrolysates and physiological proteogenomic analyses indicated that analogues of the F. agariphila ulvan lyase and an unsaturated β-glucuronylhydrolase are missing in B. licheniformis. We reveal that the heterologous expression of these two marine enzymes in B. licheniformis enables an efficient conversion of the algal polysaccharide ulvan as carbon and energy source. Conclusion Our data demonstrate the physiological capability of the industrially relevant bacterium B. licheniformis to grow on ulvan. We present a metabolic engineering strategy to enable ulvan-based biorefinery processes using this bacterial cell factory. With this study, we provide a stepping stone for the development of future bioprocesses with Bacillus using the abundant marine renewable carbon source ulvan. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01931-0.
Collapse
Affiliation(s)
- Theresa Dutschei
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Marie-Katherin Zühlke
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17487, Greifswald, Germany.,Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany
| | - Norma Welsch
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17487, Greifswald, Germany.,Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany
| | - Tom Eisenack
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17487, Greifswald, Germany
| | - Maximilian Hilkmann
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17487, Greifswald, Germany.,Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany
| | - Joris Krull
- Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany.,Max Planck-Institute for Marine Microbiology, 28359, Bremen, Germany.,Center for Marine Environmental Sciences (MARUM), University of Bremen, 28359, Bremen, Germany
| | - Carlo Stühle
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Stefan Brott
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Alexandra Dürwald
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17487, Greifswald, Germany
| | - Lukas Reisky
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Jan-Hendrik Hehemann
- Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany.,Max Planck-Institute for Marine Microbiology, 28359, Bremen, Germany.,Center for Marine Environmental Sciences (MARUM), University of Bremen, 28359, Bremen, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute for Microbiology, University of Greifswald, 17487, Greifswald, Germany
| | - Thomas Schweder
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17487, Greifswald, Germany. .,Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany.
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany. .,Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany.
| |
Collapse
|
24
|
Geissler AS, Poulsen LD, Doncheva NT, Anthon C, Seemann SE, González-Tortuero E, Breüner A, Jensen LJ, Hjort C, Vinther J, Gorodkin J. The impact of PrsA over-expression on the Bacillus subtilis transcriptome during fed-batch fermentation of alpha-amylase production. Front Microbiol 2022; 13:909493. [PMID: 35992681 PMCID: PMC9386232 DOI: 10.3389/fmicb.2022.909493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The production of the alpha-amylase (AMY) enzyme in Bacillus subtilis at a high rate leads to the accumulation of unfolded AMY, which causes secretion stress. The over-expression of the PrsA chaperone aids enzyme folding and reduces stress. To identify affected pathways and potential mechanisms involved in the reduced growth, we analyzed the transcriptomic differences during fed-batch fermentation between a PrsA over-expressing strain and control in a time-series RNA-seq experiment. We observe transcription in 542 unannotated regions, of which 234 had significant changes in expression levels between the samples. Moreover, 1,791 protein-coding sequences, 80 non-coding genes, and 20 riboswitches overlapping UTR regions of coding genes had significant changes in expression. We identified putatively regulated biological processes via gene-set over-representation analysis of the differentially expressed genes; overall, the analysis suggests that the PrsA over-expression affects ATP biosynthesis activity, amino acid metabolism, and cell wall stability. The investigation of the protein interaction network points to a potential impact on cell motility signaling. We discuss the impact of these highlighted mechanisms for reducing secretion stress or detrimental aspects of PrsA over-expression during AMY production.
Collapse
Affiliation(s)
- Adrian S. Geissler
- Department of Veterinary and Animal Sciences, Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Line D. Poulsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nadezhda T. Doncheva
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Christian Anthon
- Department of Veterinary and Animal Sciences, Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Stefan E. Seemann
- Department of Veterinary and Animal Sciences, Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Enrique González-Tortuero
- Department of Veterinary and Animal Sciences, Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Lars J. Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Jeppe Vinther
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gorodkin
- Department of Veterinary and Animal Sciences, Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Kutnu M, İşlerel ET, Tunçbağ N, Özcengiz G. Comparative biological network analysis for differentially expressed proteins as a function of bacilysin biosynthesis in Bacillus subtilis. Integr Biol (Camb) 2022; 14:99-110. [PMID: 35901454 DOI: 10.1093/intbio/zyac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/07/2021] [Accepted: 01/05/2022] [Indexed: 06/15/2023]
Abstract
The Gram-positive bacterium Bacillus subtilis produces a diverse range of secondary metabolites with different structures and activities. Among them, bacilysin is an enzymatically synthesized dipeptide that consists of L-alanine and L-anticapsin. Previous research by our group has suggested bacilysin's role as a pleiotropic molecule in its producer, B. subtilis PY79. However, the nature of protein interactions in the absence of bacilysin has not been defined. In the present work, we constructed a protein-protein interaction subnetwork by using Omics Integrator based on our recent comparative proteomics data obtained from a bacilysin-silenced strain, OGU1. Functional enrichment analyses on the resulting networks pointed to certain putatively perturbed pathways such as citrate cycle, quorum sensing and secondary metabolite biosynthesis. Various molecules, which were absent from the experimental data, were included in the final network. We believe that this study can guide further experiments in the identification and confirmation of protein-protein interactions in B. subtilis.
Collapse
Affiliation(s)
- Meltem Kutnu
- Department of Biological Sciences/Molecular Biology and Genetics, Middle East Technical University, Ankara 06800, Turkey
| | - Elif Tekin İşlerel
- Department of Biological Sciences/Molecular Biology and Genetics, Middle East Technical University, Ankara 06800, Turkey
- Department of Medical Microbiology, Faculty of Medicine, Maltepe University, Istanbul 34857, Turkey
| | - Nurcan Tunçbağ
- Department of Chemical and Biological Engineering, Koc University, Istanbul 34450, Turkey
| | - Gülay Özcengiz
- Department of Biological Sciences/Molecular Biology and Genetics, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
26
|
Ge Z, Yuan P, Chen L, Chen J, Shen D, She Z, Lu Y. New Global Insights on the Regulation of the Biphasic Life Cycle and Virulence Via ClpP-Dependent Proteolysis in Legionella pneumophila. Mol Cell Proteomics 2022; 21:100233. [PMID: 35427813 PMCID: PMC9112007 DOI: 10.1016/j.mcpro.2022.100233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/17/2022] [Accepted: 04/07/2022] [Indexed: 01/11/2023] Open
Abstract
Legionella pneumophila, an environmental bacterium that parasitizes protozoa, causes Legionnaires’ disease in humans that is characterized by severe pneumonia. This bacterium adopts a distinct biphasic life cycle consisting of a nonvirulent replicative phase and a virulent transmissive phase in response to different environmental conditions. Hence, the timely and fine-tuned expression of growth and virulence factors in a life cycle–dependent manner is crucial for survival and replication. Here, we report that the completion of the biphasic life cycle and bacterial pathogenesis is greatly dependent on the protein homeostasis regulated by caseinolytic protease P (ClpP)-dependent proteolysis. We characterized the ClpP-dependent dynamic profiles of the regulatory and substrate proteins during the biphasic life cycle of L. pneumophila using proteomic approaches and discovered that ClpP-dependent proteolysis specifically and conditionally degraded the substrate proteins, thereby directly playing a regulatory role or indirectly controlling cellular events via the regulatory proteins. We further observed that ClpP-dependent proteolysis is required to monitor the abundance of fatty acid biosynthesis–related protein Lpg0102/Lpg0361/Lpg0362 and SpoT for the normal regulation of L. pneumophila differentiation. We also found that the control of the biphasic life cycle and bacterial virulence is independent. Furthermore, the ClpP-dependent proteolysis of Dot/Icm (defect in organelle trafficking/intracellular multiplication) type IVB secretion system and effector proteins at a specific phase of the life cycle is essential for bacterial pathogenesis. Therefore, our findings provide novel insights on ClpP-dependent proteolysis, which spans a broad physiological spectrum involving key metabolic pathways that regulate the transition of the biphasic life cycle and bacterial virulence of L. pneumophila, facilitating adaptation to aquatic and intracellular niches. ClpP is the major determinant of biphasic life cycle–dependent protein turnover. ClpP-dependent proteolysis monitors SpoT abundance for cellular differentiation. ClpP-dependent regulation of life cycle and bacterial virulence is independent. ClpP-dependent proteolysis of T4BSS and effector proteins is vital for virulence.
Collapse
Affiliation(s)
- Zhenhuang Ge
- School of Chemistry, Sun Yat-sen University, Guangzhou, China; School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China
| | - Peibo Yuan
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lingming Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junyi Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China
| | - Dong Shen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
27
|
Yang H, Liu W, Song S, Bai L, Nie Y, Bai Y, Zhang G. Proteogenomics Integrating Reveal a Complex Network, Alternative Splicing, Hub Genes Regulating Heart Maturation. Genes (Basel) 2022; 13:genes13020250. [PMID: 35205300 PMCID: PMC8872128 DOI: 10.3390/genes13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/01/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Heart maturation is an essentially biological process for neonatal heart transition to adult heart, thus illustrating the mechanism of heart maturation may be helpful to explore postnatal heart development and cardiac cardiomyopathy. This study combined proteomic analysis based on isobaric tags for relative and absolute quantitation (iTRAQ) and transcriptome analysis based on RNA sequencing to detect the proteins and genes associated with heart maturation in mice. The proteogenomics integrating analysis identified 254 genes/proteins as commonly differentially expressed between neonatal and adult hearts. Functional and pathway analysis demonstrated that these identified genes/proteins contribute to heart maturation mainly by regulating mRNA processing and energy metabolism. Genome-wide alternative splicing (AS) analysis showed that some important sarcomere and energy-associated genes undergo different AS events. Through the Cytoscape plug-in CytoHubba, a total of 23 hub genes were found and further confirmed by RT-qPCR. Next, we verified that the most up-regulated hub gene, Ogdhl, plays an essential role in heart maturation by detecting energy metabolism phenotype changes in the Ogdhl-interfering cardiomyocytes. Together, we revealed a complex gene network, AS genes and patterns, and candidate hub genes controlling heart maturation by proteome and transcriptome combination analysis.
Collapse
Affiliation(s)
- Huijun Yang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Weijing Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; (W.L.); (S.S.); (L.B.); (Y.N.)
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; (W.L.); (S.S.); (L.B.); (Y.N.)
| | - Lina Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; (W.L.); (S.S.); (L.B.); (Y.N.)
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; (W.L.); (S.S.); (L.B.); (Y.N.)
| | - Yongping Bai
- Department of Geriatric Medicine, Xiangya Hospital, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China;
| | - Guogang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China;
- Correspondence:
| |
Collapse
|
28
|
Naveed M, Tianying H, Wang F, Yin X, Chan MWH, Ullah A, Xu B, Aslam S, Ali N, Abbas Q, Hussain I, Khan A, Khan AM. Isolation of lysozyme producing Bacillus subtilis Strains, identification of the new strain Bacillus subtilis BSN314 with the highest enzyme production capacity and optimization of culture conditions for maximum lysozyme production. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
29
|
Almeida N, Rodriguez J, Pla Parada I, Perez-Riverol Y, Woldmar N, Kim Y, Oskolas H, Betancourt L, Valdés JG, Sahlin KB, Pizzatti L, Szasz AM, Kárpáti S, Appelqvist R, Malm J, B. Domont G, C. S. Nogueira F, Marko-Varga G, Sanchez A. Mapping the Melanoma Plasma Proteome (MPP) Using Single-Shot Proteomics Interfaced with the WiMT Database. Cancers (Basel) 2021; 13:6224. [PMID: 34944842 PMCID: PMC8699267 DOI: 10.3390/cancers13246224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022] Open
Abstract
Plasma analysis by mass spectrometry-based proteomics remains a challenge due to its large dynamic range of 10 orders in magnitude. We created a methodology for protein identification known as Wise MS Transfer (WiMT). Melanoma plasma samples from biobank archives were directly analyzed using simple sample preparation. WiMT is based on MS1 features between several MS runs together with custom protein databases for ID generation. This entails a multi-level dynamic protein database with different immunodepletion strategies by applying single-shot proteomics. The highest number of melanoma plasma proteins from undepleted and unfractionated plasma was reported, mapping >1200 proteins from >10,000 protein sequences with confirmed significance scoring. Of these, more than 660 proteins were annotated by WiMT from the resulting ~5800 protein sequences. We could verify 4000 proteins by MS1t analysis from HeLA extracts. The WiMT platform provided an output in which 12 previously well-known candidate markers were identified. We also identified low-abundant proteins with functions related to (i) cell signaling, (ii) immune system regulators, and (iii) proteins regulating folding, sorting, and degradation, as well as (iv) vesicular transport proteins. WiMT holds the potential for use in large-scale screening studies with simple sample preparation, and can lead to the discovery of novel proteins with key melanoma disease functions.
Collapse
Affiliation(s)
- Natália Almeida
- Laboratory of Proteomics/LADETEC, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil;
- Proteomics Unit, Institute of Chemistry, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, BMC D13, 22184 Lund, Sweden; (N.W.); (K.B.S.); (G.M.-V.)
| | - Jimmy Rodriguez
- Division of Chemistry I, Department of Biochemistry and Biophysics, Karolinska Institute, 17165 Stockholm, Sweden;
| | - Indira Pla Parada
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502 Malmö, Sweden; (I.P.P.); (J.M.)
| | - Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK;
| | - Nicole Woldmar
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, BMC D13, 22184 Lund, Sweden; (N.W.); (K.B.S.); (G.M.-V.)
- Laboratory of Molecular Biology and Blood Proteomics—LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil;
| | - Yonghyo Kim
- Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden; (H.O.); (L.B.); (J.G.V.); (R.A.)
| | - Henriett Oskolas
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden; (H.O.); (L.B.); (J.G.V.); (R.A.)
| | - Lazaro Betancourt
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden; (H.O.); (L.B.); (J.G.V.); (R.A.)
| | - Jeovanis Gil Valdés
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden; (H.O.); (L.B.); (J.G.V.); (R.A.)
| | - K. Barbara Sahlin
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, BMC D13, 22184 Lund, Sweden; (N.W.); (K.B.S.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502 Malmö, Sweden; (I.P.P.); (J.M.)
| | - Luciana Pizzatti
- Laboratory of Molecular Biology and Blood Proteomics—LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil;
| | | | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary;
| | - Roger Appelqvist
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden; (H.O.); (L.B.); (J.G.V.); (R.A.)
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502 Malmö, Sweden; (I.P.P.); (J.M.)
| | - Gilberto B. Domont
- Proteomics Unit, Institute of Chemistry, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Fábio C. S. Nogueira
- Laboratory of Proteomics/LADETEC, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil;
- Proteomics Unit, Institute of Chemistry, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, BMC D13, 22184 Lund, Sweden; (N.W.); (K.B.S.); (G.M.-V.)
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo 160-0023, Japan
| | - Aniel Sanchez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502 Malmö, Sweden; (I.P.P.); (J.M.)
| |
Collapse
|
30
|
The Membrane Proteome of Spores and Vegetative Cells of the Food-Borne Pathogen Bacillus cereus. Int J Mol Sci 2021; 22:ijms222212475. [PMID: 34830357 PMCID: PMC8624511 DOI: 10.3390/ijms222212475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Membrane proteins are fascinating since they play an important role in diverse cellular functions and constitute many drug targets. Membrane proteins are challenging to analyze. The spore, the most resistant form of known life, harbors a compressed inner membrane. This membrane acts not only as a barrier for undesired molecules but also as a scaffold for proteins involved in signal transduction and the transport of metabolites during spore germination and subsequent vegetative growth. In this study, we adapted a membrane enrichment method to study the membrane proteome of spores and cells of the food-borne pathogen Bacillus cereus using quantitative proteomics. Using bioinformatics filtering we identify and quantify 498 vegetative cell membrane proteins and 244 spore inner membrane proteins. Comparison of vegetative and spore membrane proteins showed there were 54 spore membrane-specific and 308 cell membrane-specific proteins. Functional characterization of these proteins showed that the cell membrane proteome has a far larger number of transporters, receptors and proteins related to cell division and motility. This was also reflected in the much higher expression level of many of these proteins in the cellular membrane for those proteins that were in common with the spore inner membrane. The spore inner membrane had specific expression of several germinant receptors and spore-specific proteins, but also seemed to show a preference towards the use of simple carbohydrates like glucose and fructose owing to only expressing transporters for these. These results show the differences in membrane proteome composition and show us the specific proteins necessary in the inner membrane of a dormant spore of this toxigenic spore-forming bacterium to survive adverse conditions.
Collapse
|
31
|
Goff JL, Wang Y, Boyanov MI, Yu Q, Kemner KM, Fein JB, Yee N. Tellurite Adsorption onto Bacterial Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10378-10386. [PMID: 34279081 DOI: 10.1021/acs.est.1c01001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tellurium (Te) is an emerging contaminant and its chemical transformation in the environment is strongly influenced by microbial processes. In this study, we investigated the adsorption of tellurite [Te(IV), TeO32-] onto the common soil bacterium Bacillus subtilis. Thiol-blocking experiments were carried out to investigate the role of cell surface sulfhydryl sites in tellurite binding, and extended X-ray absorption fine structure (EXAFS) spectroscopy was performed to determine the chemical speciation of the adsorbed tellurite. The results indicate that tellurite reacts with sulfhydryl functional groups in the extracellular polymeric substances (EPS) produced by B. subtilis. Upon binding to sulfhydryl sites in the EPS, the Te changes from Te-O bonds to Te-S coordination. Further analysis of the surface-associated molecules shows that the EPS of B. subtilis contain proteins. Removal of the proteinaceous EPS dramatically decreases tellurite adsorption and the sulfhydryl surface site concentration. These findings indicate that sulfhydryl binding in EPS plays a key role in tellurite adsorption on bacterial surfaces.
Collapse
Affiliation(s)
- Jennifer L Goff
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Yuwei Wang
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Maxim I Boyanov
- Bulgarian Academy of Sciences, Institute of Chemical Engineering, Sofia 1113, Bulgaria
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Qiang Yu
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jeremy B Fein
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Nathan Yee
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, New Jersey 08854, United States
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
32
|
Appelbaum M, Schweder T. Metabolic Engineering of
Bacillus
– New Tools, Strains, and Concepts. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Metabolic Labeling of Clostridioides difficile Proteins. Methods Mol Biol 2021. [PMID: 33950497 DOI: 10.1007/978-1-0716-1024-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The introduction of stable isotopes in vivo via metabolic labeling approaches (SILAC or 15N-labeling) allows, after combination of differentially treated labeled and unlabeled cells or protein extracts, for correction of protein quantification errors implemented during elaborated sample preparation workflows. The SILAC-based approach uses heavy arginine and lysine to incorporate the label into bacterial strains and cell lines, whereas 15N-metabolic labeling is achieved by cultivation in 15N-salt containing media. In case of Clostridioides difficile, the lack in arginine and lysine auxotrophy as well as the Stickland dominated metabolism makes metabolic labeling challenging. Here, a step-by-step guideline for the metabolic labeling of C. difficile is described, which combines cultivation in liquid 15N-substituted medium followed by cultivation steps on solid 15N-substituted medium. The described procedure results in a label incorporation rate higher than 97%. Cells prepared by the following method can be used as standard for relative quantification approaches of, e.g., the membrane or surface proteome of C. difficile.
Collapse
|
34
|
Möller J, Nosratabadi F, Musella L, Hofmann J, Burkovski A. Corynebacterium diphtheriae Proteome Adaptation to Cell Culture Medium and Serum. Proteomes 2021; 9:proteomes9010014. [PMID: 33805816 PMCID: PMC8005964 DOI: 10.3390/proteomes9010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/03/2022] Open
Abstract
Host-pathogen interactions are often studied in vitro using primary or immortal cell lines. This set-up avoids ethical problems of animal testing and has the additional advantage of lower costs. However, the influence of cell culture media on bacterial growth and metabolism is not considered or investigated in most cases. To address this question growth and proteome adaptation of Corynebacterium diphtheriae strain ISS3319 were investigated in this study. Bacteria were cultured in standard growth medium, cell culture medium, and fetal calf serum. Mass spectrometric analyses and label-free protein quantification hint at an increased bacterial pathogenicity when grown in cell culture medium as well as an influence of the growth medium on the cell envelope.
Collapse
Affiliation(s)
- Jens Möller
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (F.N.); (L.M.); (A.B.)
- Correspondence: ; Tel.: +49-9131-85-28802
| | - Fatemeh Nosratabadi
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (F.N.); (L.M.); (A.B.)
| | - Luca Musella
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (F.N.); (L.M.); (A.B.)
| | - Jörg Hofmann
- Biochemistry Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Andreas Burkovski
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (F.N.); (L.M.); (A.B.)
| |
Collapse
|
35
|
Proteomic Characterization of Synaptosomes from Human Substantia Nigra Indicates Altered Mitochondrial Translation in Parkinson's Disease. Cells 2020; 9:cells9122580. [PMID: 33276480 PMCID: PMC7761546 DOI: 10.3390/cells9122580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022] Open
Abstract
The pathological hallmark of Parkinson's disease (PD) is the loss of neuromelanin-containing dopaminergic neurons within the substantia nigra pars compacta (SNpc). Additionally, numerous studies indicate an altered synaptic function during disease progression. To gain new insights into the molecular processes underlying the alteration of synaptic function in PD, a proteomic study was performed. Therefore, synaptosomes were isolated by density gradient centrifugation from SNpc tissue of individuals at advanced PD stages (N = 5) as well as control subjects free of pathology (N = 5) followed by mass spectrometry-based analysis. In total, 362 proteins were identified and assigned to the synaptosomal core proteome. This core proteome comprised all proteins expressed within the synapses without regard to data analysis software, gender, age, or disease. The differential analysis between control subjects and PD cases revealed that CD9 antigen was overrepresented and fourteen proteins, among them Thymidine kinase 2 (TK2), mitochondrial, 39S ribosomal protein L37, neurolysin, and Methionine-tRNA ligase (MARS2) were underrepresented in PD suggesting an alteration in mitochondrial translation within synaptosomes.
Collapse
|
36
|
Droste J, Ortseifen V, Schaffert L, Persicke M, Schneiker-Bekel S, Pühler A, Kalinowski J. The expression of the acarbose biosynthesis gene cluster in Actinoplanes sp. SE50/110 is dependent on the growth phase. BMC Genomics 2020; 21:818. [PMID: 33225887 PMCID: PMC7682106 DOI: 10.1186/s12864-020-07194-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/26/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Actinoplanes sp. SE50/110 is the natural producer of the diabetes mellitus drug acarbose, which is highly produced during the growth phase and ceases during the stationary phase. In previous works, the growth-dependency of acarbose formation was assumed to be caused by a decreasing transcription of the acarbose biosynthesis genes during transition and stationary growth phase. RESULTS In this study, transcriptomic data using RNA-seq and state-of-the-art proteomic data from seven time points of controlled bioreactor cultivations were used to analyze expression dynamics during growth of Actinoplanes sp. SE50/110. A hierarchical cluster analysis revealed co-regulated genes, which display similar transcription dynamics over the cultivation time. Aside from an expected metabolic switch from primary to secondary metabolism during transition phase, we observed a continuously decreasing transcript abundance of all acarbose biosynthetic genes from the early growth phase until stationary phase, with the strongest decrease for the monocistronically transcribed genes acbA, acbB, acbD and acbE. Our data confirm a similar trend for acb gene transcription and acarbose formation rate. Surprisingly, the proteome dynamics does not follow the respective transcription for all acb genes. This suggests different protein stabilities or post-transcriptional regulation of the Acb proteins, which in turn could indicate bottlenecks in the acarbose biosynthesis. Furthermore, several genes are co-expressed with the acb gene cluster over the course of the cultivation, including eleven transcriptional regulators (e.g. ACSP50_0424), two sigma factors (ACSP50_0644, ACSP50_6006) and further genes, which have not previously been in focus of acarbose research in Actinoplanes sp. SE50/110. CONCLUSION In conclusion, we have demonstrated, that a genome wide transcriptome and proteome analysis in a high temporal resolution is well suited to study the acarbose biosynthesis and the transcriptional and post-transcriptional regulation thereof.
Collapse
Affiliation(s)
- Julian Droste
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Sequenz 1, Bielefeld, 33615, Germany
| | - Vera Ortseifen
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany
| | - Lena Schaffert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Sequenz 1, Bielefeld, 33615, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Sequenz 1, Bielefeld, 33615, Germany
| | - Susanne Schneiker-Bekel
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany
| | - Alfred Pühler
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Sequenz 1, Bielefeld, 33615, Germany.
| |
Collapse
|
37
|
Bhadra-Lobo S, Kim MK, Lun DS. Assessment of transcriptomic constraint-based methods for central carbon flux inference. PLoS One 2020; 15:e0238689. [PMID: 32903284 PMCID: PMC7480874 DOI: 10.1371/journal.pone.0238689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/21/2020] [Indexed: 11/18/2022] Open
Abstract
MOTIVATION Determining intracellular metabolic flux through isotope labeling techniques such as 13C metabolic flux analysis (13C-MFA) incurs significant cost and effort. Previous studies have shown transcriptomic data coupled with constraint-based metabolic modeling can determine intracellular fluxes that correlate highly with 13C-MFA measured fluxes and can achieve higher accuracy than constraint-based metabolic modeling alone. These studies, however, used validation data limited to E. coli and S. cerevisiae grown on glucose, with significantly similar flux distribution for central metabolism. It is unclear whether those results apply to more diverse metabolisms, and therefore further, extensive validation is needed. RESULTS In this paper, we formed a dataset of transcriptomic data coupled with corresponding 13C-MFA flux data for 21 experimental conditions in different unicellular organisms grown on varying carbon substrates and conditions. Three computational flux-balance analysis (FBA) methods were comparatively assessed. The results show when uptake rates of carbon sources and key metabolites are known, transcriptomic data provides no significant advantage over constraint-based metabolic modeling (average correlation coefficients, transcriptomic E-Flux2 0.725 and SPOT 0.650 vs non-transcriptomic pFBA 0.768). When uptake rates are unknown, however, predictions obtained utilizing transcriptomic data are generally good and significantly better than those obtained using constraint-based metabolic modeling alone (E-Flux2 0.385 and SPOT 0.583 vs pFBA 0.237). Thus, transcriptomic data coupled with constraint-based metabolic modeling is a promising method to obtain intracellular flux estimates in microorganisms, particularly in cases where uptake rates of key metabolites cannot be easily determined, such as for growth in complex media or in vivo conditions.
Collapse
Affiliation(s)
- Siddharth Bhadra-Lobo
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States of America
- * E-mail:
| | - Min Kyung Kim
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States of America
| | - Desmond S. Lun
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States of America
- Department of Computer Science, Rutgers, The State University of New Jersey, Camden, NJ, United States of America
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| |
Collapse
|
38
|
Bartel J, Varadarajan AR, Sura T, Ahrens CH, Maaß S, Becher D. Optimized Proteomics Workflow for the Detection of Small Proteins. J Proteome Res 2020; 19:4004-4018. [DOI: 10.1021/acs.jproteome.0c00286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jürgen Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, D-17489 Greifswald, Germany
| | - Adithi R. Varadarajan
- Agroscope, Research Group Molecular Diagnostics, Genomics & Bioinformatics and SIB Swiss Institute of Bioinformatics, CH-8820 Wädenswil, Switzerland
| | - Thomas Sura
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, D-17489 Greifswald, Germany
| | - Christian H. Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics & Bioinformatics and SIB Swiss Institute of Bioinformatics, CH-8820 Wädenswil, Switzerland
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, D-17489 Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, D-17489 Greifswald, Germany
| |
Collapse
|
39
|
Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S, Becher D, Fernandez-Guerra A, Liebeke M, Schweder T, Polz MF, Hehemann JH. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol 2020; 5:1026-1039. [PMID: 32451471 DOI: 10.1038/s41564-020-0720-2] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Brown algae are important players in the global carbon cycle by fixing carbon dioxide into 1 Gt of biomass annually, yet the fate of fucoidan-their major cell wall polysaccharide-remains poorly understood. Microbial degradation of fucoidans is slower than that of other polysaccharides, suggesting that fucoidans are more recalcitrant and may sequester carbon in the ocean. This may be due to the complex, branched and highly sulfated structure of fucoidans, which also varies among species of brown algae. Here, we show that 'Lentimonas' sp. CC4, belonging to the Verrucomicrobia, acquired a remarkably complex machinery for the degradation of six different fucoidans. The strain accumulated 284 putative fucoidanases, including glycoside hydrolases, sulfatases and carbohydrate esterases, which are primarily located on a 0.89-megabase pair plasmid. Proteomics reveals that these enzymes assemble into substrate-specific pathways requiring about 100 enzymes per fucoidan from different species of brown algae. These enzymes depolymerize fucoidan into fucose, which is metabolized in a proteome-costly bacterial microcompartment that spatially constrains the metabolism of the toxic intermediate lactaldehyde. Marine metagenomes and microbial genomes show that Verrucomicrobia including 'Lentimonas' are abundant and highly specialized degraders of fucoidans and other complex polysaccharides. Overall, the complexity of the pathways underscores why fucoidans are probably recalcitrant and more slowly degraded, since only highly specialized organisms can effectively degrade them in the ocean.
Collapse
Affiliation(s)
- Andreas Sichert
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Center for Marine Environmental Sciences, MARUM, University of Bremen, Bremen, Germany
| | - Christopher H Corzett
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Frank Unfried
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Stephanie Markert
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Dörte Becher
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Antonio Fernandez-Guerra
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Center for Marine Environmental Sciences, MARUM, University of Bremen, Bremen, Germany
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- Center for Marine Environmental Sciences, MARUM, University of Bremen, Bremen, Germany.
| |
Collapse
|
40
|
The ETFL formulation allows multi-omics integration in thermodynamics-compliant metabolism and expression models. Nat Commun 2020; 11:30. [PMID: 31937763 PMCID: PMC6959363 DOI: 10.1038/s41467-019-13818-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/28/2019] [Indexed: 11/09/2022] Open
Abstract
Systems biology has long been interested in models capturing both metabolism and expression in a cell. We propose here an implementation of the metabolism and expression model formalism (ME-models), which we call ETFL, for Expression and Thermodynamics Flux models. ETFL is a hierarchical model formulation, from metabolism to RNA synthesis, that allows simulating thermodynamics-compliant intracellular fluxes as well as enzyme and mRNA concentration levels. ETFL formulates a mixed-integer linear problem (MILP) that enables both relative and absolute metabolite, protein, and mRNA concentration integration. ETFL is compatible with standard MILP solvers and does not require a non-linear solver, unlike the previous state of the art. It also accounts for growth-dependent parameters, such as relative protein or mRNA content. We present ETFL along with its validation using results obtained from a well-characterized E. coli model. We show that ETFL is able to reproduce proteome-limited growth. We also subject it to several analyses, including the prediction of feasible mRNA and enzyme concentrations and gene essentiality. Accounting for the effects of genetic expression in genome-scale metabolic models is challenging. Here, the authors introduce a model formulation that efficiently simulates thermodynamic-compliant fluxes, enzyme and mRNA concentration levels, allowing omics integration and broad analysis of in silico cellular physiology.
Collapse
|
41
|
Moeller FU, Webster NS, Herbold CW, Behnam F, Domman D, Albertsen M, Mooshammer M, Markert S, Turaev D, Becher D, Rattei T, Schweder T, Richter A, Watzka M, Nielsen PH, Wagner M. Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge Ianthella basta. Environ Microbiol 2019; 21:3831-3854. [PMID: 31271506 PMCID: PMC6790972 DOI: 10.1111/1462-2920.14732] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
Abstract
Marine sponges represent one of the few eukaryotic groups that frequently harbour symbiotic members of the Thaumarchaeota, which are important chemoautotrophic ammonia-oxidizers in many environments. However, in most studies, direct demonstration of ammonia-oxidation by these archaea within sponges is lacking, and little is known about sponge-specific adaptations of ammonia-oxidizing archaea (AOA). Here, we characterized the thaumarchaeal symbiont of the marine sponge Ianthella basta using metaproteogenomics, fluorescence in situ hybridization, qPCR and isotope-based functional assays. 'Candidatus Nitrosospongia ianthellae' is only distantly related to cultured AOA. It is an abundant symbiont that is solely responsible for nitrite formation from ammonia in I. basta that surprisingly does not harbour nitrite-oxidizing microbes. Furthermore, this AOA is equipped with an expanded set of extracellular subtilisin-like proteases, a metalloprotease unique among archaea, as well as a putative branched-chain amino acid ABC transporter. This repertoire is strongly indicative of a mixotrophic lifestyle and is (with slight variations) also found in other sponge-associated, but not in free-living AOA. We predict that this feature as well as an expanded and unique set of secreted serpins (protease inhibitors), a unique array of eukaryotic-like proteins, and a DNA-phosporothioation system, represent important adaptations of AOA to life within these ancient filter-feeding animals.
Collapse
Affiliation(s)
- Florian U. Moeller
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Nicole S. Webster
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular BiosciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Craig W. Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Faris Behnam
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Daryl Domman
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg University9220AalborgDenmark
| | - Maria Mooshammer
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Stephanie Markert
- Institute of Marine Biotechnology e.VGreifswaldGermany
- Institute of Pharmacy, Pharmaceutical BiotechnologyUniversity of GreifswaldGreifswaldGermany
| | - Dmitrij Turaev
- Centre for Microbiology and Environmental Systems Science, Division of Computational Systems BiologyUniversity of ViennaAustria
| | - Dörte Becher
- Institute of Microbiology, Microbial ProteomicsUniversity of GreifswaldGreifswaldGermany
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, Division of Computational Systems BiologyUniversity of ViennaAustria
| | - Thomas Schweder
- Institute of Marine Biotechnology e.VGreifswaldGermany
- Institute of Pharmacy, Pharmaceutical BiotechnologyUniversity of GreifswaldGreifswaldGermany
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem ResearchUniversity of ViennaAustria
| | - Margarete Watzka
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem ResearchUniversity of ViennaAustria
| | - Per Halkjaer Nielsen
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg University9220AalborgDenmark
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg University9220AalborgDenmark
| |
Collapse
|
42
|
Avello M, Davis KP, Grossman AD. Identification, characterization and benefits of an exclusion system in an integrative and conjugative element of Bacillus subtilis. Mol Microbiol 2019; 112:1066-1082. [PMID: 31361051 PMCID: PMC6827876 DOI: 10.1111/mmi.14359] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2019] [Indexed: 01/09/2023]
Abstract
Integrative and conjugative elements (ICEs) are mobile genetic elements that transfer from cell to cell by conjugation (like plasmids) and integrate into the chromosomes of bacterial hosts (like lysogenic phages or transposons). ICEs are prevalent in bacterial chromosomes and play a major role in bacterial evolution by promoting horizontal gene transfer. Exclusion prevents the redundant transfer of conjugative elements into host cells that already contain a copy of the element. Exclusion has been characterized mostly for conjugative elements of Gram-negative bacteria. Here, we report the identification and characterization of an exclusion mechanism in ICEBs1 from the Gram-positive bacterium Bacillus subtilis. We found that cells containing ICEBs1 inhibit the activity of the ICEBs1-encoded conjugation machinery in other cells. This inhibition (exclusion) was specific to the cognate conjugation machinery and the ICEBs1 gene yddJ was both necessary and sufficient to mediate exclusion by recipient cells. Through a mutagenesis and enrichment screen, we identified exclusion-resistant mutations in the ICEBs1 gene conG. Using genes from a heterologous but related ICE, we found that the exclusion specificity was determined by ConG and YddJ. Finally, we found that under conditions that support conjugation, exclusion provides a selective advantage to the element and its host cells.
Collapse
Affiliation(s)
| | | | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
43
|
Quesada-Ganuza A, Antelo-Varela M, Mouritzen JC, Bartel J, Becher D, Gjermansen M, Hallin PF, Appel KF, Kilstrup M, Rasmussen MD, Nielsen AK. Identification and optimization of PrsA in Bacillus subtilis for improved yield of amylase. Microb Cell Fact 2019; 18:158. [PMID: 31530286 PMCID: PMC6749698 DOI: 10.1186/s12934-019-1203-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022] Open
Abstract
Background PrsA is an extracytoplasmic folding catalyst essential in Bacillus subtilis. Overexpression of the native PrsA from B. subtilis has repeatedly lead to increased amylase yields. Nevertheless, little is known about how the overexpression of heterologous PrsAs can affect amylase secretion. Results In this study, the final yield of five extracellular alpha-amylases was increased by heterologous PrsA co-expression up to 2.5 fold. The effect of the overexpression of heterologous PrsAs on alpha-amylase secretion is specific to the co-expressed alpha-amylase. Co-expression of a heterologous PrsA can significantly reduce the secretion stress response. Engineering of the B. licheniformis PrsA lead to a further increase in amylase secretion and reduced secretion stress. Conclusions In this work we show how heterologous PrsA overexpression can give a better result on heterologous amylase secretion than the native PrsA, and that PrsA homologs show a variety of specificity towards different alpha-amylases. We also demonstrate that on top of increasing amylase yield, a good PrsA–amylase pairing can lower the secretion stress response of B. subtilis. Finally, we present a new recombinant PrsA variant with increased performance in both supporting amylase secretion and lowering secretion stress.
Collapse
Affiliation(s)
- Ane Quesada-Ganuza
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark
| | - Minia Antelo-Varela
- Institute for Microbiology, Department of Microbial Proteomics, Ernst-Moritz-Arndt-University Greifswald, F.- Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Jeppe C Mouritzen
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark
| | - Jürgen Bartel
- Institute for Microbiology, Department of Microbial Proteomics, Ernst-Moritz-Arndt-University Greifswald, F.- Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Dörte Becher
- Institute for Microbiology, Department of Microbial Proteomics, Ernst-Moritz-Arndt-University Greifswald, F.- Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Morten Gjermansen
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark
| | - Peter F Hallin
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark
| | - Karen F Appel
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark
| | - Mogens Kilstrup
- Technical University of Denmark, Søltofts Plads, Building 221, Room 204, 2800, Lyngby, Denmark
| | - Michael D Rasmussen
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark
| | - Allan K Nielsen
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark.
| |
Collapse
|
44
|
Biopearling of Interconnected Outer Membrane Vesicle Chains by a Marine Flavobacterium. Appl Environ Microbiol 2019; 85:AEM.00829-19. [PMID: 31324630 DOI: 10.1128/aem.00829-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/06/2019] [Indexed: 01/25/2023] Open
Abstract
Large surface-to-volume ratios provide optimal nutrient uptake conditions for small microorganisms in oligotrophic habitats. The surface area can be increased with appendages. Here, we describe chains of interconnecting vesicles protruding from cells of strain Hel3_A1_48, affiliating with Formosa spp. within the Flavobacteriia and originating from coastal free-living bacterioplankton. The chains were up to 10 μm long and had vesicles emanating from the outer membrane with a single membrane and a size of 80 to 100 nm by 50 to 80 nm. Cells extruded membrane tubes in the exponential phase, whereas vesicle chains dominated on cells in the stationary growth phase. This formation is known as pearling, a physical morphogenic process in which membrane tubes protrude from liposomes and transform into chains of interconnected vesicles. Proteomes of whole-cell membranes and of detached vesicles were dominated by outer membrane proteins, including the type IX secretion system and surface-attached peptidases, glycoside hydrolases, and endonucleases. Fluorescein-labeled laminarin stained the cells and the vesicle chains. Thus, the appendages provide binding domains and degradative enzymes on their surfaces and probably storage volume in the vesicle lumen. Both may contribute to the high abundance of these Formosa-affiliated bacteria during laminarin utilization shortly after spring algal blooms.IMPORTANCE Microorganisms produce membrane vesicles. One synthesis pathway seems to be pearling that describes the physical formation of vesicle chains from phospholipid vesicles via extended tubes. Bacteria with vesicle chains had been observed as well as bacteria with tubes, but pearling was so far not observed. Here, we report the observation of, initially, tubes and then vesicle chains during the growth of a flavobacterium, suggesting biopearling of vesicle chains. The flavobacterium is abundant during spring bacterioplankton blooms developing after algal blooms and has a special set of enzymes for laminarin, the major storage polysaccharide of microalgae. We demonstrated with fluorescently labeled laminarin that the vesicle chains bind laminarin or contain laminarin-derived compounds. Proteomic analyses revealed surface-attached degradative enzymes on the outer membrane vesicles. We conclude that the large surface area and the lumen of vesicle chains may contribute to the ecological success of this marine bacterium.
Collapse
|
45
|
Ben-Moshe S, Shapira Y, Moor AE, Manco R, Veg T, Bahar Halpern K, Itzkovitz S. Spatial sorting enables comprehensive characterization of liver zonation. Nat Metab 2019; 1:899-911. [PMID: 31535084 PMCID: PMC6751089 DOI: 10.1038/s42255-019-0109-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mammalian liver is composed of repeating hexagonal units termed lobules. Spatially resolved single-cell transcriptomics revealed that about half of hepatocyte genes are differentially expressed across the lobule, yet technical limitations impeded reconstructing similar global spatial maps of other hepatocyte features. Here, we show how zonated surface markers can be used to sort hepatocytes from defined lobule zones with high spatial resolution. We apply transcriptomics, miRNA array measurements and mass spectrometry proteomics to reconstruct spatial atlases of multiple zonated features. We demonstrate that protein zonation largely overlaps with mRNA zonation, with the periportal HNF4α as an exception. We identify zonation of miRNAs such as miR-122, and inverse zonation of miRNAs and their hepatocyte target genes, highlighting potential regulation of protein levels through zonated mRNA degradation. Among the targets we find the pericentral Wnt receptors Fzd7 and Fzd8 and the periportal Wnt inhibitors Tcf7l1 and Ctnnbip1. Our approach facilitates reconstructing spatial atlases of multiple cellular features in the liver and other structured tissues.
Collapse
Affiliation(s)
- Shani Ben-Moshe
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yonatan Shapira
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas E Moor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Rita Manco
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Veg
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Bahar Halpern
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
46
|
Antelo-Varela M, Bartel J, Quesada-Ganuza A, Appel K, Bernal-Cabas M, Sura T, Otto A, Rasmussen M, van Dijl JM, Nielsen A, Maaß S, Becher D. Ariadne’s Thread in the Analytical Labyrinth of Membrane Proteins: Integration of Targeted and Shotgun Proteomics for Global Absolute Quantification of Membrane Proteins. Anal Chem 2019; 91:11972-11980. [DOI: 10.1021/acs.analchem.9b02869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minia Antelo-Varela
- Centre of Functional
Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany
| | - Jürgen Bartel
- Centre of Functional
Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany
| | - Ane Quesada-Ganuza
- Research & Technology, Novozymes A/S, Krogshoejvej 36, Bagsværd DK-2880, Denmark
| | - Karen Appel
- Research & Technology, Novozymes A/S, Krogshoejvej 36, Bagsværd DK-2880, Denmark
| | - Margarita Bernal-Cabas
- University Medical
Center Groningen, Department of Medical Microbiology, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700RB Groningen, The Netherlands
| | - Thomas Sura
- Centre of Functional
Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany
| | - Andreas Otto
- Centre of Functional
Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany
| | - Michael Rasmussen
- Research & Technology, Novozymes A/S, Krogshoejvej 36, Bagsværd DK-2880, Denmark
| | - Jan Maarten van Dijl
- University Medical
Center Groningen, Department of Medical Microbiology, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700RB Groningen, The Netherlands
| | - Allan Nielsen
- Research & Technology, Novozymes A/S, Krogshoejvej 36, Bagsværd DK-2880, Denmark
| | - Sandra Maaß
- Centre of Functional
Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany
| | - Dörte Becher
- Centre of Functional
Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany
| |
Collapse
|
47
|
van Gestel J, Ackermann M, Wagner A. Microbial life cycles link global modularity in regulation to mosaic evolution. Nat Ecol Evol 2019; 3:1184-1196. [PMID: 31332330 DOI: 10.1038/s41559-019-0939-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 06/03/2019] [Indexed: 11/09/2022]
Abstract
Microbes are exposed to changing environments, to which they can respond by adopting various lifestyles such as swimming, colony formation or dormancy. These lifestyles are often studied in isolation, thereby giving a fragmented view of the life cycle as a whole. Here, we study lifestyles in the context of this whole. We first use machine learning to reconstruct the expression changes underlying life cycle progression in the bacterium Bacillus subtilis, based on hundreds of previously acquired expression profiles. This yields a timeline that reveals the modular organization of the life cycle. By analysing over 380 Bacillales genomes, we then show that life cycle modularity gives rise to mosaic evolution in which life stages such as motility and sporulation are conserved and lost as discrete units. We postulate that this mosaic conservation pattern results from habitat changes that make these life stages obsolete or detrimental. Indeed, when evolving eight distinct Bacillales strains and species under laboratory conditions that favour colony growth, we observe rapid and parallel losses of the sporulation life stage across species, induced by mutations that affect the same global regulator. We conclude that a life cycle perspective is pivotal to understanding the causes and consequences of modularity in both regulation and evolution.
Collapse
Affiliation(s)
- Jordi van Gestel
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland. .,Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland. .,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland.
| | - Martin Ackermann
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland. .,The Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
48
|
Dunny GM, Hirt H. A new flavor of entry exclusion in ICE elements provides a selective advantage for the element and its host. Mol Microbiol 2019; 112:1061-1065. [PMID: 31278791 DOI: 10.1111/mmi.14342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Entry exclusion has been described in many bacterial conjugation systems, but their molecular mechanisms are not well understood. In the current issue, Avello et al. describe a new exclusion system in the conjugative element ICEBs1. They identify the yddJ gene as the functional exclusion gene and its target as the protein product of the conG gene. They provide evidence for a possible mechanism and for the contribution of the system to reduce fitness costs of ICE expression.
Collapse
Affiliation(s)
- Gary M Dunny
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Helmut Hirt
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
49
|
Reisky L, Préchoux A, Zühlke MK, Bäumgen M, Robb CS, Gerlach N, Roret T, Stanetty C, Larocque R, Michel G, Song T, Markert S, Unfried F, Mihovilovic MD, Trautwein-Schult A, Becher D, Schweder T, Bornscheuer UT, Hehemann JH. A marine bacterial enzymatic cascade degrades the algal polysaccharide ulvan. Nat Chem Biol 2019; 15:803-812. [PMID: 31285597 DOI: 10.1038/s41589-019-0311-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022]
Abstract
Marine seaweeds increasingly grow into extensive algal blooms, which are detrimental to coastal ecosystems, tourism and aquaculture. However, algal biomass is also emerging as a sustainable raw material for the bioeconomy. The potential exploitation of algae is hindered by our limited knowledge of the microbial pathways-and hence the distinct biochemical functions of the enzymes involved-that convert algal polysaccharides into oligo- and monosaccharides. Understanding these processes would be essential, however, for applications such as the fermentation of algal biomass into bioethanol or other value-added compounds. Here, we describe the metabolic pathway that enables the marine flavobacterium Formosa agariphila to degrade ulvan, the main cell wall polysaccharide of bloom-forming Ulva species. The pathway involves 12 biochemically characterized carbohydrate-active enzymes, including two polysaccharide lyases, three sulfatases and seven glycoside hydrolases that sequentially break down ulvan into fermentable monosaccharides. This way, the enzymes turn a previously unexploited renewable into a valuable and ecologically sustainable bioresource.
Collapse
Affiliation(s)
- Lukas Reisky
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Aurélie Préchoux
- Sorbonne Université, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Marie-Katherin Zühlke
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Marcus Bäumgen
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Craig S Robb
- Max Planck-Institute for Marine Microbiology, Bremen, Germany.,University of Bremen, Center for Marine Environmental Sciences, Bremen, Germany
| | - Nadine Gerlach
- Max Planck-Institute for Marine Microbiology, Bremen, Germany.,University of Bremen, Center for Marine Environmental Sciences, Bremen, Germany
| | - Thomas Roret
- Sorbonne Université, CNRS, FR 2424, Station Biologique de Roscoff, Roscoff, France
| | | | - Robert Larocque
- Sorbonne Université, CNRS, FR 2424, Station Biologique de Roscoff, Roscoff, France
| | - Gurvan Michel
- Sorbonne Université, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Tao Song
- Max Planck-Institute for Marine Microbiology, Bremen, Germany.,University of Bremen, Center for Marine Environmental Sciences, Bremen, Germany
| | - Stephanie Markert
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Frank Unfried
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | | | | | - Dörte Becher
- Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany. .,Institute of Marine Biotechnology, Greifswald, Germany.
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany.
| | - Jan-Hendrik Hehemann
- Max Planck-Institute for Marine Microbiology, Bremen, Germany. .,University of Bremen, Center for Marine Environmental Sciences, Bremen, Germany.
| |
Collapse
|
50
|
Graf AC, Leonard A, Schäuble M, Rieckmann LM, Hoyer J, Maass S, Lalk M, Becher D, Pané-Farré J, Riedel K. Virulence Factors Produced by Staphylococcus aureus Biofilms Have a Moonlighting Function Contributing to Biofilm Integrity. Mol Cell Proteomics 2019; 18:1036-1053. [PMID: 30850421 PMCID: PMC6553939 DOI: 10.1074/mcp.ra118.001120] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/19/2019] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is the causative agent of various biofilm-associated infections in humans causing major healthcare problems worldwide. This type of infection is inherently difficult to treat because of a reduced metabolic activity of biofilm-embedded cells and the protective nature of a surrounding extracellular matrix (ECM). However, little is known about S. aureus biofilm physiology and the proteinaceous composition of the ECM. Thus, we cultivated S. aureus biofilms in a flow system and comprehensively profiled intracellular and extracellular (ECM and flow-through (FT)) biofilm proteomes, as well as the extracellular metabolome compared with planktonic cultures. Our analyses revealed the expression of many pathogenicity factors within S. aureus biofilms as indicated by a high abundance of capsule biosynthesis proteins along with various secreted virulence factors, including hemolysins, leukotoxins, and lipases as a part of the ECM. The activity of ECM virulence factors was confirmed in a hemolysis assay and a Galleria mellonella pathogenicity model. In addition, we uncovered a so far unacknowledged moonlighting function of secreted virulence factors and ribosomal proteins trapped in the ECM: namely their contribution to biofilm integrity. Mechanistically, it was revealed that this stabilizing effect is mediated by the strong positive charge of alkaline virulence factors and ribosomal proteins in an acidic ECM environment, which is caused by the release of fermentation products like formate, lactate, and acetate because of oxygen limitation in biofilms. The strong positive charge of these proteins most likely mediates electrostatic interactions with anionic cell surface components, eDNA, and anionic metabolites. In consequence, this leads to strong cell aggregation and biofilm stabilization. Collectively, our study identified a new molecular mechanism during S. aureus biofilm formation and thus significantly widens the understanding of biofilm-associated S. aureus infections - an essential prerequisite for the development of novel antimicrobial therapies.
Collapse
Affiliation(s)
- Alexander C Graf
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Anne Leonard
- §Institute of Biochemistry, Department of Cellular Biochemistry and Metabolomics
| | - Manuel Schäuble
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Lisa M Rieckmann
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Juliane Hoyer
- ¶Institute of Microbiology, Department of Microbial Proteomics; University of Greifswald, Germany
| | - Sandra Maass
- ¶Institute of Microbiology, Department of Microbial Proteomics; University of Greifswald, Germany
| | - Michael Lalk
- §Institute of Biochemistry, Department of Cellular Biochemistry and Metabolomics
| | - Dörte Becher
- ¶Institute of Microbiology, Department of Microbial Proteomics; University of Greifswald, Germany
| | - Jan Pané-Farré
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Katharina Riedel
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology;
| |
Collapse
|