1
|
Hazart D, Moulzir M, Delhomme B, Oheim M, Ricard C. Imaging the enteric nervous system. Front Neuroanat 2025; 19:1532900. [PMID: 40145027 PMCID: PMC11937143 DOI: 10.3389/fnana.2025.1532900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
The enteric nervous system (ENS) has garnered increasing scientific interest due to its pivotal role in digestive processes and its involvement in various gastrointestinal and central nervous system (CNS) disorders, including Crohn's disease, Parkinson's disease, and autism. Despite its significance, the ENS remains relatively underexplored by neurobiologists, primarily because its structure and function are less understood compared to the CNS. This review examines both pioneering methodologies that initially revealed the intricate layered structure of the ENS and recent advancements in studying its three-dimensional (3-D) organization, both in fixed samples and at a functional level, ex-vivo or in-vivo. Traditionally, imaging the ENS relied on histological techniques involving sequential tissue sectioning, staining, and microscopic imaging of single sections. However, this method has limitations representing the full complexity of the ENS's 3-D meshwork, which led to the development of more intact preparations, such as whole-mount preparation, as well as the use of volume imaging techniques. Advancements in 3-D imaging, particularly methods like spinning-disk confocal, 2-photon, and light-sheet microscopies, combined with tissue-clearing techniques, have revolutionized our understanding of the ENS's fine structure. These approaches offer detailed views of its cellular architecture, including interactions among various cell types, blood vessels, and lymphatic vessels. They have also enhanced our comprehension of ENS-related pathologies, such as inflammatory bowel disease, Hirschsprung's disease (HSCR), and the ENS's involvement in neurodegenerative disorders like Parkinson's (PD) and Alzheimer's diseases (AD). More recently, 2-photon or confocal in-vivo imaging, combined with transgenic approaches for calcium imaging, or confocal laser endomicroscopy, have opened new avenues for functional studies of the ENS. These methods enable real-time observation of enteric neuronal and glial activity and their interactions. While routinely used in CNS studies, their application to understanding local circuits and signals in the ENS is relatively recent and presents unique challenges, such as accommodating peristaltic movements. Advancements in 3-D in-vivo functional imaging are expected to significantly deepen our understanding of the ENS and its roles in gastrointestinal and neurological diseases, potentially leading to improved diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Doriane Hazart
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
- Doctoral School Brain, Cognition and Behaviour – ED3C - ED 158, Paris, France
| | - Marwa Moulzir
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Brigitte Delhomme
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Martin Oheim
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Clément Ricard
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| |
Collapse
|
2
|
Wang Y, Zhang X, Liu S, Gu Z, Sun Z, Zang Y, Huang X, Wang Y, Wang Q, Lin Q, Liu R, Sun S, Xu H, Wang J, Wu T, Wang Y, Li Y, Li H, Tang Z, Qu Y, Wu L, Hu X, Guo X, Wang F, Zhou L, He D, Qi H, Xu H, Chu C. Bi-directional communication between intrinsic enteric neurons and ILC2s inhibits host defense against helminth infection. Immunity 2025; 58:465-480.e8. [PMID: 39889704 DOI: 10.1016/j.immuni.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/18/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
Emerging studies reveal that neurotransmitters and neuropeptides play critical roles in regulating anti-helminth immune responses, hinting at the potential of intrinsic enteric neurons (iENs) in orchestrating intestinal immunity. Whether and how iENs are activated during infection and the potential neuroimmune interactions involved remain poorly defined. Here, we found that helminth infection activated a subset of iENs. Single-nucleus RNA sequencing (snRNA-seq) of iENs revealed alterations in the transcriptional profile of interleukin (IL)-13R+ intrinsic primary afferent neurons (IPANs), including the upregulation of the neuropeptide β-calcitonin gene-related peptide (CGRP). Using genetic mouse models and engineered viral tools, we demonstrated that group 2 innate lymphoid cell (ILC2)-derived IL-13 was required to activate iENs via the IL-13R, leading to iEN production of β-CGRP, which subsequently inhibited ILC2 responses and anti-helminth immunity. Together, these results reveal a previously unrecognized bi-directional neuroimmune crosstalk in the intestine between a subset of iENs and ILC2s, which influences pathogen clearance.
Collapse
Affiliation(s)
- Yinsheng Wang
- Fudan University, Shanghai 200433, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Xiaoyu Zhang
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Shaorui Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Zhijie Gu
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zijia Sun
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yang Zang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Xiaobao Huang
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yi Wang
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Qiang Wang
- Shanghai Immune Therapy Institute, Shanghai Jiaotong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
| | - Qingxia Lin
- Shanghai Immune Therapy Institute, Shanghai Jiaotong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
| | - Ruichao Liu
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Suhua Sun
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Changping Laboratory, Beijing 102206, China
| | - Hongkai Xu
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Jiali Wang
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tao Wu
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yu Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Hui Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Zirun Tang
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Yifan Qu
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Li Wu
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Hu
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; The State Key Laboratory of Membrane Biology, Beijing 100084, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Fang Wang
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510060, China
| | - Lei Zhou
- Shanghai Immune Therapy Institute, Shanghai Jiaotong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
| | - Danyang He
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Hai Qi
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Changping Laboratory, Beijing 102206, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Heping Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China.
| | - Coco Chu
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China; State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
3
|
Jiang L, Yang J, Gao X, Huang J, Liu Q, Fu L. In vivo imaging of vagal-induced myenteric plexus responses in gastrointestinal tract with an optical window. Nat Commun 2024; 15:8123. [PMID: 39285207 PMCID: PMC11405534 DOI: 10.1038/s41467-024-52397-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024] Open
Abstract
The vagus nerve (VN) extensively innervates the gastric enteric nervous system (ENS), but its influence on gastric ENS functionality and motility in vivo remains unclear due to technical challenges. Here we describe a method for stable, long-term observation of gastric ENS activity and muscle dynamics at cellular resolution, which can also be extended to intestinal applications. This method involves ENS-specific labeling and the implantation of an abdominal wall window for optical recording in male mice. In vivo calcium imaging reveals a linear relationship between vagal stimulation frequency and myenteric neuron activation in gastric antrum. Furthermore, the motility of gastric antrum is significantly enhanced and shows a positive correlation with the intensity and number of activated myenteric neurons. While vagal stimulation also activates proximal colonic myenteric neurons, this activation is not frequency-dependent and does not induce proximal colonic motility. The method and results provide important insights into VN-ENS interactions in vivo, advancing our understanding of gastrointestinal motility regulation.
Collapse
Affiliation(s)
- Longjie Jiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiujuan Gao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiangfeng Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Liu
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, China.
- School of Physics and Optoelectronics Engineering, Hainan University, Haikou, Hainan, China.
- Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Nagahawatte ND, Avci R, Cheng LK. High-resolution mapping of gastric slow wave uncoupling induced by glucagon. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039181 DOI: 10.1109/embc53108.2024.10782810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Gastrointestinal (GI) motility is in part governed by the rhythmic myoelectrical waves of the GI tract, also known as slow waves. Disordered slow wave rhythms and patterns are associated with functional motility disorders. Various drugs have been used to simulate disease states to develop and investigate the efficacy of novel therapies for treating GI disorders. Slow wave dysrhythmias associated with GI conditions are commonly characterized based on their frequency, but this metric has also been shown to be unreliable. This study induced slow wave dysrhythmias in the stomach and quantified the slow wave spatial response using high resolution mapping techniques (128 electrodes at 5 mm inter-electrode spacing). Glucagon (0.0125 mg/kg) was infused to induce hyperglycemia in pigs (n=6, 42.8 ± 8.1 kg). The resultant slow wave dysrhythmias were mapped and quantified by determining the frequency of slow wave activity and the prevalence of regions of uncoupled activity compared to the baseline recordings. At baseline, slow waves were fully entrained and propagated at a regular frequency of 3.4 ± 1.0 cycles per minute (cpm) with no presence of disordered activity. However, after the infusion of glucagon, slow wave activity was uncoupled in 3.2 - 10.9 % of the mapped region, with slow waves occurring during every alternate slow wave cycle compared to other regions. Therefore, slow wave activity in regular and uncoupled regions occurred in a 2:1 frequency ratio in the ranges between 2.1 - 3.1 cpm and 1.0 - 1.6 cpm. The findings highlighted the importance of high-resolution mapping techniques to define electrical dysrhythmias of the stomach which otherwise would have been undetected with a few sparse electrodes due to spatial aliasing. This study defined the response of gastric slow wave activity resulting from glucagon-induced hyperglycemia for the first time in pigs. In the future, the developed framework can be used to simulate disease states and assess the effectiveness of novel therapies such as pacing in treating GI disorders.
Collapse
|
5
|
Nagahawatte ND, Avci R, Paskaranandavadivel N, Cheng LK. High-energy pacing inhibits slow-wave dysrhythmias in the small intestine. Am J Physiol Gastrointest Liver Physiol 2024; 326:G676-G686. [PMID: 38591131 DOI: 10.1152/ajpgi.00254.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
The motility of the gastrointestinal tract is coordinated in part by rhythmic slow waves, and disrupted slow-wave patterns are linked to functional motility disorders. At present, there are no treatment strategies that primarily target slow-wave activity. This study assessed the use of pacing to suppress glucagon-induced slow-wave dysrhythmias in the small intestine. Slow waves in the jejunum were mapped in vivo using a high-resolution surface-contact electrode array in pigs (n = 7). Glucagon was intravenously administered to induce hyperglycemia. Slow-wave propagation patterns were categorized into antegrade, retrograde, collision, pacemaker, and uncoupled activity. Slow-wave characteristics such as period, amplitude, and speed were also quantified. Postglucagon infusion, pacing was applied at 4 mA and 8 mA and the resulting slow waves were quantified spatiotemporally. Antegrade propagation was dominant throughout all stages with a prevalence of 55 ± 38% at baseline. However, glucagon infusion resulted in a substantial and significant increase in uncoupled slow waves from 10 ± 8% to 30 ± 12% (P = 0.004) without significantly altering the prevalence of other slow-wave patterns. Slow-wave frequency, amplitude, and speed remained unchanged. Pacing, particularly at 8 mA, significantly suppressed dysrhythmic slow-wave patterns and achieved more effective spatial entrainment (85%) compared with 4 mA (46%, P = 0.039). This study defined the effect of glucagon on jejunal slow waves and identified uncoupling as a key dysrhythmia signature. Pacing effectively entrained rhythmic activity and suppressed dysrhythmias, highlighting the potential of pacing for gastrointestinal disorders associated with slow-wave abnormalities.NEW & NOTEWORTHY Glucagon was infused in pigs to induce hyperglycemia and the resulting slow-wave response in the intact jejunum was defined in high resolution for the first time. Subsequently, with pacing, the glucagon-induced dysrhythmias were suppressed and spatially entrained for the first time with a success rate of 85%. The ability to suppress slow-wave dysrhythmias through pacing is promising in treating motility disorders that are associated with intestinal dysrhythmias.
Collapse
Affiliation(s)
- Nipuni D Nagahawatte
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Recep Avci
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Surgery, Vanderbilt University, Nashville, Tennessee, United States
- Riddet Institute Centre of Research Excellence, Palmerston North, New Zealand
| |
Collapse
|
6
|
Zhang P, Zhu B, Du P, Travas-Sejdic J. Electrochemical and Electrical Biosensors for Wearable and Implantable Electronics Based on Conducting Polymers and Carbon-Based Materials. Chem Rev 2024; 124:722-767. [PMID: 38157565 DOI: 10.1021/acs.chemrev.3c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Bioelectronic devices are designed to translate biological information into electrical signals and vice versa, thereby bridging the gap between the living biological world and electronic systems. Among different types of bioelectronics devices, wearable and implantable biosensors are particularly important as they offer access to the physiological and biochemical activities of tissues and organs, which is significant in diagnosing and researching various medical conditions. Organic conducting and semiconducting materials, including conducting polymers (CPs) and graphene and carbon nanotubes (CNTs), are some of the most promising candidates for wearable and implantable biosensors. Their unique electrical, electrochemical, and mechanical properties bring new possibilities to bioelectronics that could not be realized by utilizing metals- or silicon-based analogues. The use of organic- and carbon-based conductors in the development of wearable and implantable biosensors has emerged as a rapidly growing research field, with remarkable progress being made in recent years. The use of such materials addresses the issue of mismatched properties between biological tissues and electronic devices, as well as the improvement in the accuracy and fidelity of the transferred information. In this review, we highlight the most recent advances in this field and provide insights into organic and carbon-based (semi)conducting materials' properties and relate these to their applications in wearable/implantable biosensors. We also provide a perspective on the promising potential and exciting future developments of wearable/implantable biosensors.
Collapse
Affiliation(s)
- Peikai Zhang
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Bicheng Zhu
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
7
|
Barth BB, Redington ER, Gautam N, Pelot NA, Grill WM. Calcium image analysis in the moving gut. Neurogastroenterol Motil 2023; 35:e14678. [PMID: 37736662 PMCID: PMC10999186 DOI: 10.1111/nmo.14678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND The neural control of gastrointestinal muscle relies on circuit activity whose underlying motifs remain limited by small-sample calcium imaging recordings confounded by motion artifact, paralytics, and muscle dissections. We present a sequence of resources to register images from moving preparations and identify out-of-focus events in widefield fluorescent microscopy. METHODS Our algorithm uses piecewise rigid registration with pathfinding to correct movements associated with smooth muscle contractions. We developed methods to identify loss-of-focus events and to simulate calcium activity to evaluate registration. KEY RESULTS By combining our methods with principal component analysis, we found populations of neurons exhibit distinct activity patterns in response to distinct stimuli consistent with hypothesized roles. The image analysis pipeline makes deeper insights possible by capturing concurrently calcium dynamics from more neurons in larger fields of view. We provide access to the source code for our algorithms and make experimental and technical recommendations to increase data quality in calcium imaging experiments. CONCLUSIONS These methods make feasible large population, robust calcium imaging recordings and permit more sophisticated network analyses and insights into neural activity patterns in the gut.
Collapse
Affiliation(s)
- Bradley B. Barth
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Emily R. Redington
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
- Current employment Regeneron Pharmaceuticals, Inc. Contributions to this article were made as an employee of Duke University and the views expressed do not necessarily represent the views of Regeneron Pharmaceuticals Inc
| | - Nitisha Gautam
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Nicole A. Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Warren M. Grill
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| |
Collapse
|
8
|
Luo J, Chen Z, Castellano D, Bao B, Han W, Li J, Kim G, An D, Lu W, Wu C. Lipids regulate peripheral serotonin release via gut CD1d. Immunity 2023; 56:1533-1547.e7. [PMID: 37354904 PMCID: PMC10527042 DOI: 10.1016/j.immuni.2023.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/04/2023] [Accepted: 06/01/2023] [Indexed: 06/26/2023]
Abstract
The crosstalk between the immune and neuroendocrine systems is critical for intestinal homeostasis and gut-brain communications. However, it remains unclear how immune cells participate in gut sensation of hormones and neurotransmitters release in response to environmental cues, such as self-lipids and microbial lipids. We show here that lipid-mediated engagement of invariant natural killer T (iNKT) cells with enterochromaffin (EC) cells, a subset of intestinal epithelial cells, promoted peripheral serotonin (5-HT) release via a CD1d-dependent manner, regulating gut motility and hemostasis. We also demonstrated that inhibitory sphingolipids from symbiotic microbe Bacteroides fragilis represses 5-HT release. Mechanistically, CD1d ligation on EC cells transduced a signal and restrained potassium conductance through activation of protein tyrosine kinase Pyk2, leading to calcium influx and 5-HT secretion. Together, our data reveal that by engaging with iNKT cells, gut chemosensory cells selectively perceive lipid antigens via CD1d to control 5-HT release, modulating intestinal and systemic homeostasis.
Collapse
Affiliation(s)
- Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Bin Bao
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Jian Li
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Girak Kim
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Dingding An
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
9
|
Ye T, Yang Y, Bai J, Wu FY, Zhang L, Meng LY, Lan Y. The mechanical, optical, and thermal properties of graphene influencing its pre-clinical use in treating neurological diseases. Front Neurosci 2023; 17:1162493. [PMID: 37360172 PMCID: PMC10288862 DOI: 10.3389/fnins.2023.1162493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Rapid progress in nanotechnology has advanced fundamental neuroscience and innovative treatment using combined diagnostic and therapeutic applications. The atomic scale tunability of nanomaterials, which can interact with biological systems, has attracted interest in emerging multidisciplinary fields. Graphene, a two-dimensional nanocarbon, has gained increasing attention in neuroscience due to its unique honeycomb structure and functional properties. Hydrophobic planar sheets of graphene can be effectively loaded with aromatic molecules to produce a defect-free and stable dispersion. The optical and thermal properties of graphene make it suitable for biosensing and bioimaging applications. In addition, graphene and its derivatives functionalized with tailored bioactive molecules can cross the blood-brain barrier for drug delivery, substantially improving their biological property. Therefore, graphene-based materials have promising potential for possible application in neuroscience. Herein, we aimed to summarize the important properties of graphene materials required for their application in neuroscience, the interaction between graphene-based materials and various cells in the central and peripheral nervous systems, and their potential clinical applications in recording electrodes, drug delivery, treatment, and as nerve scaffolds for neurological diseases. Finally, we offer insights into the prospects and limitations to aid graphene development in neuroscience research and nanotherapeutics that can be used clinically.
Collapse
Affiliation(s)
- Ting Ye
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
- Interdisciplinary Program of Biological Functional Molecules, College of Intergration Science, Yanbian University, Yanji, Jilin, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yi Yang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Jin Bai
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Feng-Ying Wu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
- Interdisciplinary Program of Biological Functional Molecules, College of Intergration Science, Yanbian University, Yanji, Jilin, China
| | - Lu Zhang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Long-Yue Meng
- Department of Environmental Science, Department of Chemistry, Yanbian University, Yanji, Jilin, China
| | - Yan Lan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
10
|
Zhao S, Zhang T, Tong W. Application of optogenetics in the study of gastrointestinal motility: A mini review. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2023; 16. [DOI: 10.1142/s1793545822300130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Disorders of gastrointestinal (GI) motility are associated with various symptoms such as nausea, vomiting, and constipation. However, the underlying causes of impaired GI motility remain unclear, which has led to variation in the efficacy of therapies to treat GI dysfunction. Optogenetics is a novel approach through which target cells can be precisely controlled by light and has shown great potential in GI motility research. Here, we summarized recent studies of GI motility patterns utilizing optogenetic devices and focused on the ability of opsins, which are genetically expressed in different types of cells in the gut, to regulate the excitability of target cells. We hope that our review of recent findings regarding optogenetic control of GI cells broadens the scope of application for optogenetics in GI motility studies.
Collapse
Affiliation(s)
- Song Zhao
- Department of General Surgery, Gastric and Colorectal Surgery Division, Army Medical Center (Daping Hospital), Army Medical University Chongqing, P. R. China
| | - Ting Zhang
- Department of General Surgery, The 983th Hospital of Joint Logistic Support Force of People’s Liberation Army, Tianjin, P. R. China
| | - Weidong Tong
- Department of General Surgery, Gastric and Colorectal Surgery Division, Army Medical Center (Daping Hospital), Army Medical University Chongqing, P. R. China
| |
Collapse
|
11
|
Hazart D, Delhomme B, Oheim M, Ricard C. Label-free, fast, 2-photon volume imaging of the organization of neurons and glia in the enteric nervous system. Front Neuroanat 2023; 16:1070062. [PMID: 36844894 PMCID: PMC9948619 DOI: 10.3389/fnana.2022.1070062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/19/2022] [Indexed: 02/11/2023] Open
Abstract
The enteric nervous system (ENS), sometimes referred to as a "second brain" is a quasi-autonomous nervous system, made up of interconnected plexuses organized in a mesh-like network lining the gastrointestinal tract. Originally described as an actor in the regulation of digestion, bowel contraction, and intestinal secretion, the implications of the ENS in various central neuropathologies has recently been demonstrated. However, with a few exceptions, the morphology and pathologic alterations of the ENS have mostly been studied on thin sections of the intestinal wall or, alternatively, in dissected explants. Precious information on the three-dimensional (3-D) architecture and connectivity is hence lost. Here, we propose the fast, label-free 3-D imaging of the ENS, based on intrinsic signals. We used a custom, fast tissue-clearing protocol based on a high refractive-index aqueous solution to increase the imaging depth and allow us the detection of faint signals and we characterized the autofluorescence (AF) from the various cellular and sub-cellular components of the ENS. Validation by immunofluorescence and spectral recordings complete this groundwork. Then, we demonstrate the rapid acquisition of detailed 3-D image stacks from unlabeled mouse ileum and colon, across the whole intestinal wall and including both the myenteric and submucosal enteric nervous plexuses using a new spinning-disk two-photon (2P) microscope. The combination of fast clearing (less than 15 min for 73% transparency), AF detection and rapid volume imaging [less than 1 min for the acquisition of a z-stack of 100 planes (150*150 μm) at sub-300-nm spatial resolution] opens up the possibility for new applications in fundamental and clinical research.
Collapse
Affiliation(s)
- Doriane Hazart
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Brigitte Delhomme
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | | | | |
Collapse
|
12
|
Senarathna J, Kovler M, Prasad A, Bhargava A, Thakor N, Sodhi CP, Hackam DJ, Pathak AP. In vivo phenotyping of the microvasculature in necrotizing enterocolitis with multicontrast optical imaging. Microcirculation 2022; 29:e12768. [PMID: 35593520 PMCID: PMC9633336 DOI: 10.1111/micc.12768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/11/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Necrotizing enterocolitis (NEC) is the most prevalent gastrointestinal emergency in premature infants and is characterized by a dysfunctional gut microcirculation. Therefore, there is a dire need for in vivo methods to characterize NEC-induced changes in the structure and function of the gut microcirculation, that is, its vascular phenotype. Since in vivo gut imaging methods are often slow and employ a single-contrast mechanism, we developed a rapid multicontrast imaging technique and a novel analyses pipeline for phenotyping the gut microcirculation. METHODS Using an experimental NEC model, we acquired in vivo images of the gut microvasculature and blood flow over a 5000 × 7000 μm2 field of view at 5 μm resolution via the following two endogenous contrast mechanisms: intrinsic optical signals and laser speckles. Next, we transformed intestinal images into rectilinear "flat maps," and delineated 1A/V gut microvessels and their perfusion territories as "intestinal vascular units" (IVUs). Employing IVUs, we quantified and visualized NEC-induced changes to the gut vascular phenotype. RESULTS In vivo imaging required 60-100 s per animal. Relative to the healthy gut, NEC intestines showed a significant overall decrease (i.e. 64-72%) in perfusion, accompanied by vasoconstriction (i.e. 9-12%) and a reduction in perfusion entropy (19%)within sections of the vascular bed. CONCLUSIONS Multicontrast imaging coupled with IVU-based in vivo vascular phenotyping is a powerful new tool for elucidating NEC pathogenesis.
Collapse
Affiliation(s)
- Janaka Senarathna
- Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Mark Kovler
- Department of Genetic MedicineThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA,Department of SurgeryThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ayush Prasad
- Department of BiophysicsThe Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Akanksha Bhargava
- Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Nitish V. Thakor
- Department of Biomedical EngineeringThe Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Chhinder P. Sodhi
- Department of Genetic MedicineThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA,Department of SurgeryThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA,Department of Cell BiologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - David J. Hackam
- Department of Genetic MedicineThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA,Department of SurgeryThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA,Department of Cell BiologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Arvind P. Pathak
- Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA,Department of Biomedical EngineeringThe Johns Hopkins UniversityBaltimoreMarylandUSA,Department of OncologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA,Department of Sidney Kimmel Comprehensive Cancer CenterThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
13
|
Drumm BT, Cobine CA, Baker SA. Insights on gastrointestinal motility through the use of optogenetic sensors and actuators. J Physiol 2022; 600:3031-3052. [PMID: 35596741 DOI: 10.1113/jp281930] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/13/2022] [Indexed: 11/08/2022] Open
Abstract
The muscularis of the gastrointestinal (GI) tract consists of smooth muscle cells (SMCs) and various populations of interstitial cells of Cajal (ICC), platelet-derived growth factor receptor α+ (PDGFRα+ ) cells, as well as excitatory and inhibitory enteric motor nerves. SMCs, ICC and PDGFRα+ cells form an electrically coupled syncytium, which together with inputs from the enteric nervous system (ENS) regulate GI motility. Early studies evaluating Ca2+ signalling behaviours in the GI tract relied upon indiscriminate loading of tissues with Ca2+ dyes. These methods lacked the means to study activity in specific cells of interest without encountering contamination from other cells within the preparation. Development of mice expressing optogenetic sensors (GCaMP, RCaMP) has allowed visualization of Ca2+ signalling behaviours in a cell specific manner. Additionally, availability of mice expressing optogenetic modulators (channelrhodopsins or halorhodospins) has allowed manipulation of specific signalling pathways using light. GCaMP expressing animals have been used to characterize Ca2+ signalling behaviours of distinct classes of ICC and SMCs throughout the GI musculature. These findings illustrate how Ca2+ signalling in ICC is fundamental in GI muscles, contributing to tone in sphincters, pacemaker activity in rhythmic muscles and relaying enteric signals to SMCs. Animals that express channelrhodopsin in specific neuronal populations have been used to map neural circuitry and to examine post junctional neural effects on GI motility. Thus, optogenetic approaches provide a novel means to examine the contribution of specific cell types to the regulation of motility patterns within complex multi-cellular systems. Abstract Figure Legends Optogenetic activators and sensors can be used to investigate the complex multi-cellular nature of the gastrointestinal (GI tract). Optogenetic activators that are activated by light such as channelrhodopsins (ChR2), OptoXR and halorhodopsinss (HR) proteins can be genetically encoded into specific cell types. This can be used to directly activate or silence specific GI cells such as various classes of enteric neurons, smooth muscle cells (SMC) or interstitial cells, such as interstitial cells of Cajal (ICC). Optogenetic sensors that are activated by different wavelengths of light such as green calmodulin fusion protein (GCaMP) and red CaMP (RCaMP) make high resolution of sub-cellular Ca2+ signalling possible within intact tissues of specific cell types. These tools can provide unparalleled insight into mechanisms underlying GI motility and innervation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland.,Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Caroline A Cobine
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Salah A Baker
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
14
|
Eicher AK, Kechele DO, Sundaram N, Berns HM, Poling HM, Haines LE, Sanchez JG, Kishimoto K, Krishnamurthy M, Han L, Zorn AM, Helmrath MA, Wells JM. Functional human gastrointestinal organoids can be engineered from three primary germ layers derived separately from pluripotent stem cells. Cell Stem Cell 2022; 29:36-51.e6. [PMID: 34856121 PMCID: PMC8741755 DOI: 10.1016/j.stem.2021.10.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/22/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023]
Abstract
Human organoid model systems lack important cell types that, in the embryo, are incorporated into organ tissues during development. We developed an organoid assembly approach starting with cells from the three primary germ layers-enteric neuroglial, mesenchymal, and epithelial precursors-that were derived separately from human pluripotent stem cells (PSCs). From these three cell types, we generated human antral and fundic gastric tissue containing differentiated glands surrounded by layers of smooth muscle containing functional enteric neurons that controlled contractions of the engineered antral tissue. Using this experimental system, we show that human enteric neural crest cells (ENCCs) promote mesenchyme development and glandular morphogenesis of antral stomach organoids. Moreover, ENCCs can act directly on the foregut to promote a posterior fate, resulting in organoids with a Brunner's gland phenotype. Thus, germ layer components that are derived separately from PSCs can be used for tissue engineering to generate complex human organoids.
Collapse
Affiliation(s)
- Alexandra K. Eicher
- College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA,Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Daniel O. Kechele
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Nambirajan Sundaram
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - H. Matthew Berns
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Holly M. Poling
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Lauren E. Haines
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - J. Guillermo Sanchez
- College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA,Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Keishi Kishimoto
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA,CuSTOM-RIKEN BDR Collaborative Laboratory, CCHMC, Cincinnati, OH, 45229, USA,Laboratory for Lung Development, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Mansa Krishnamurthy
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Endocrinology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Lu Han
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Aaron M. Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Michael A. Helmrath
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - James M. Wells
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA,Division of Endocrinology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA,Lead Contact and Corresponding Author,Corresponding Author’s:
| |
Collapse
|
15
|
Meerschaert KA, Davis BM, Smith-Edwards KM. New Insights on Extrinsic Innervation of the Enteric Nervous System and Non-neuronal Cell Types That Influence Colon Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:133-139. [PMID: 36587153 DOI: 10.1007/978-3-031-05843-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The enteric nervous system not only innervates the colon to execute various functions in a semi-autonomous manner but also receives neural input from three extrinsic sources, (1) vagal, (2) thoracolumbar (splanchnic), and (3) lumbosacral (pelvic) pathways, that permit bidirectional communication between the colon and central nervous system. Extrinsic pathways signal sensory input via afferent fibers, as well as motor autonomic output via parasympathetic or sympathetic efferent fibers, but the shared and unique roles for each pathway in executing sensory-motor control of colon function have not been well understood. Here, we describe the recently developed approaches that have provided new insights into the diverse mechanisms utilized by extrinsic pathways to influence colon functions related to visceral sensation, motility, and inflammation. Based on the cumulative results from anatomical, molecular, and functional studies, we propose pathway-specific functions for vagal, thoracolumbar, and lumbosacral innervation of the colon.
Collapse
Affiliation(s)
| | - Brian M Davis
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
16
|
Vanden Berghe P, Fung C. Optical Approaches to Understanding Enteric Circuits Along the Radial Axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:71-79. [PMID: 36587147 DOI: 10.1007/978-3-031-05843-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The gastrointestinal tract operates in a highly dynamic environment. The gut is typically exposed to continually changing and highly convoluted luminal compositions comprising not only ingested content but also a multitude of resident microbes and microbial factors. It is therefore critical that the gut is capable of distinguishing between nutritious components from noxious substances. This is facilitated by specialized cellular sensory machinery that are in place in the intestinal epithelium and the ENS. However, the specific chemosensory processes and enteric neuronal pathways that enable the gut to discern and respond appropriately to different chemicals remain unclear. A major hurdle in studying the neural processing of luminal information has been the complex spatial organization of the mucosal structures and their innervation along the radial axis. Much of our current knowledge of enteric neuronal responses to luminal stimuli stems from studies that used semi-dissected guinea pig small intestine preparations with the mucosa and submucosa removed in one-half in order to record electrical activity from exposed myenteric neurons or in the circular muscle. Building on this, we ultimately strive to work towards integrated systems with all the gut layers intact. With advanced microscopy techniques including multiphoton intravital imaging, together with transgenic technologies utilizing cell-type specific activity-dependent reporters, we stand in good stead for studying the ENS in more intact preparations and even in live animals. In this chapter, we highlight recent contributions to the knowledge of sensory gut innervation by the developing and mature ENS. We also revisit established work examining the functional connectivity between the myenteric and submucosal plexus, and discuss the methodologies that can help advance our understanding of the enteric circuitry and signaling along the mucosa-serosa axis.
Collapse
Affiliation(s)
- Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.
| | - Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Chen Y, Xu J, Chen Y. Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients 2021; 13:nu13062099. [PMID: 34205336 PMCID: PMC8234057 DOI: 10.3390/nu13062099] [Citation(s) in RCA: 375] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence indicates that gut microbiota is important in the regulation of brain activity and cognitive functions. Microbes mediate communication among the metabolic, peripheral immune, and central nervous systems via the microbiota–gut–brain axis. However, it is not well understood how the gut microbiome and neurons in the brain mutually interact or how these interactions affect normal brain functioning and cognition. We summarize the mechanisms whereby the gut microbiota regulate the production, transportation, and functioning of neurotransmitters. We also discuss how microbiome dysbiosis affects cognitive function, especially in neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.
Collapse
Affiliation(s)
- Yijing Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (Y.C.); (J.X.)
| | - Jinying Xu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (Y.C.); (J.X.)
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (Y.C.); (J.X.)
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen 518057, China
- Correspondence: ; Tel.: +86-755-26925498
| |
Collapse
|
18
|
Garrett A, Rakhilin N, Wang N, McKey J, Cofer G, Anderson RB, Capel B, Johnson GA, Shen X. Mapping the peripheral nervous system in the whole mouse via compressed sensing tractography. J Neural Eng 2021; 18. [PMID: 33979784 DOI: 10.1088/1741-2552/ac0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/12/2021] [Indexed: 11/12/2022]
Abstract
Objective.The peripheral nervous system (PNS) connects the central nervous system with the rest of the body to regulate many physiological functions and is therapeutically targeted to treat diseases such as epilepsy, depression, intestinal dysmotility, chronic pain, and more. However, we still lack understanding of PNS innervation in most organs because the large span, diffuse nature, and small terminal nerve bundle fibers have precluded whole-organism, high resolution mapping of the PNS. We sought to produce a comprehensive peripheral nerve atlas for use in future interrogation of neural circuitry and selection of targets for neuromodulation.Approach.We used diffusion tensor magnetic resonance imaging (DT-MRI) with high-speed compressed sensing to generate a tractogram of the whole mouse PNS. The tractography generated from the DT-MRI data is validated using lightsheet microscopy on optically cleared, antibody stained tissue.Main results.Herein we demonstrate the first comprehensive PNS tractography in a whole mouse. Using this technique, we scanned the whole mouse in 28 h and mapped PNS innervation and fiber network in multiple organs including heart, lung, liver, kidneys, stomach, intestines, and bladder at 70µm resolution. This whole-body PNS tractography map has provided unparalleled information; for example, it delineates the innervation along the gastrointestinal tract by multiple sacral levels and by the vagal nerves. The map enabled a quantitative tractogram that revealed relative innervation of the major organs by each vertebral foramen as well as the vagus nerve.Significance.This novel high-resolution nerve atlas provides a potential roadmap for future neuromodulation therapies and other investigations into the neural circuits which drive homeostasis and disease throughout the body.
Collapse
Affiliation(s)
- Aliesha Garrett
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States of America
| | - Nikolai Rakhilin
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States of America
| | - Nian Wang
- Duke Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Jennifer McKey
- Department of Cell Biology, School of Medicine, Duke University, Durham, NC, United States of America
| | - Gary Cofer
- Duke Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Robert Bj Anderson
- Duke Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Blanche Capel
- Department of Cell Biology, School of Medicine, Duke University, Durham, NC, United States of America
| | - G Allan Johnson
- Duke Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States of America
| |
Collapse
|
19
|
Huang Q, Garrett A, Bose S, Blocker S, Rios AC, Clevers H, Shen X. The frontier of live tissue imaging across space and time. Cell Stem Cell 2021; 28:603-622. [PMID: 33798422 PMCID: PMC8034393 DOI: 10.1016/j.stem.2021.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
What you see is what you get-imaging techniques have long been essential for visualization and understanding of tissue development, homeostasis, and regeneration, which are driven by stem cell self-renewal and differentiation. Advances in molecular and tissue modeling techniques in the last decade are providing new imaging modalities to explore tissue heterogeneity and plasticity. Here we describe current state-of-the-art imaging modalities for tissue research at multiple scales, with a focus on explaining key tradeoffs such as spatial resolution, penetration depth, capture time/frequency, and moieties. We explore emerging tissue modeling and molecular tools that improve resolution, specificity, and throughput.
Collapse
Affiliation(s)
- Qiang Huang
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004 Shaanxi, China; Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Aliesha Garrett
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Shree Bose
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Stephanie Blocker
- Center for In Vitro Microscopy, Duke University, Durham, NC 27708, USA
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584, the Netherlands; Department of Cancer Research, Oncode Institute, Hubrecht Institute-KNAW Utrecht, Utrecht 3584, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584, the Netherlands; Department of Cancer Research, Oncode Institute, Hubrecht Institute-KNAW Utrecht, Utrecht 3584, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Utrecht 3584, the Netherlands
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
20
|
Shahriari D, Rosenfeld D, Anikeeva P. Emerging Frontier of Peripheral Nerve and Organ Interfaces. Neuron 2020; 108:270-285. [PMID: 33120023 DOI: 10.1016/j.neuron.2020.09.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023]
Abstract
The development of new tools to interface with the nervous system, empowered by advances in electronics and materials science, has transformed neuroscience and is informing therapies for neurological and mental conditions. Although the vast majority of neural engineering research has focused on advancing tools to study the brain, understanding the peripheral nervous system and other organs can similarly benefit from these technologies. To realize this vision, the neural interface technologies need to address the biophysical, mechanical, and chemical challenges posed by the peripheral nerves and organs. In this Perspective, we discuss design considerations and recent technological advances to modulate electrical signaling outside the central nervous system. The innovations in bioelectronics borne out of interdisciplinary collaborations between biologists and physical scientists may not only advance fundamental study of peripheral (neuro)physiology but also empower clinical interventions for conditions including neurological, gastrointestinal, and immune dysfunction.
Collapse
Affiliation(s)
- Dena Shahriari
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dekel Rosenfeld
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
21
|
Bares AJ, Mejooli MA, Pender MA, Leddon SA, Tilley S, Lin K, Dong J, Kim M, Fowell DJ, Nishimura N, Schaffer CB. Hyperspectral multiphoton microscopy for in vivo visualization of multiple, spectrally overlapped fluorescent labels. OPTICA 2020; 7:1587-1601. [PMID: 33928182 PMCID: PMC8081374 DOI: 10.1364/optica.389982] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/30/2020] [Indexed: 05/17/2023]
Abstract
The insensitivity of multiphoton microscopy to optical scattering enables high-resolution, high-contrast imaging deep into tissue, including in live animals. Scattering does, however, severely limit the use of spectral dispersion techniques to improve spectral resolution. In practice, this limited spectral resolution together with the need for multiple excitation wavelengths to excite different fluorophores limits multiphoton microscopy to imaging a few, spectrally-distinct fluorescent labels at a time, restricting the complexity of biological processes that can be studied. Here, we demonstrate a hyperspectral multiphoton microscope that utilizes three different wavelength excitation sources together with multiplexed fluorescence emission detection using angle-tuned bandpass filters. This microscope maintains scattering insensitivity, while providing high enough spectral resolution on the emitted fluorescence and capitalizing on the wavelength-dependent nonlinear excitation of fluorescent dyes to enable clean separation of multiple, spectrally overlapping labels, in vivo. We demonstrated the utility of this instrument for spectral separation of closely-overlapped fluorophores in samples containing ten different colors of fluorescent beads, live cells expressing up to seven different fluorescent protein fusion constructs, and in multiple in vivo preparations in mouse cortex and inflamed skin with up to eight different cell types or tissue structures distinguished.
Collapse
Affiliation(s)
- Amanda J. Bares
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Menansili A. Mejooli
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell A. Pender
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Scott A. Leddon
- Center for Vaccine Biology and Immunology, Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven Tilley
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Karen Lin
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jingyuan Dong
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minsoo Kim
- Center for Vaccine Biology and Immunology, Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Deborah J. Fowell
- Center for Vaccine Biology and Immunology, Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nozomi Nishimura
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Chris B. Schaffer
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
22
|
Chen Z, Luo J, Li J, Kim G, Stewart A, Urban JF, Huang Y, Chen S, Wu LG, Chesler A, Trinchieri G, Li W, Wu C. Interleukin-33 Promotes Serotonin Release from Enterochromaffin Cells for Intestinal Homeostasis. Immunity 2020; 54:151-163.e6. [PMID: 33220232 DOI: 10.1016/j.immuni.2020.10.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/13/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
The gastrointestinal tract is known as the largest endocrine organ that encounters and integrates various immune stimulations and neuronal responses due to constant environmental challenges. Enterochromaffin (EC) cells, which function as chemosensors on the gut epithelium, are known to translate environmental cues into serotonin (5-HT) production, contributing to intestinal physiology. However, how immune signals participate in gut sensation and neuroendocrine response remains unclear. Interleukin-33 (IL-33) acts as an alarmin cytokine by alerting the system of potential environmental stresses. We here demonstrate that IL-33 induced instantaneous peristaltic movement and facilitated Trichuris muris expulsion. We found that IL-33 could be sensed by EC cells, inducing release of 5-HT. IL-33-mediated 5-HT release activated enteric neurons, subsequently promoting gut motility. Mechanistically, IL-33 triggered calcium influx via a non-canonical signaling pathway specifically in EC cells to induce 5-HT secretion. Our data establish an immune-neuroendocrine axis in calibrating rapid 5-HT release for intestinal homeostasis.
Collapse
Affiliation(s)
- Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jian Li
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Girak Kim
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Andy Stewart
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Joseph F Urban
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, MD, USA
| | - Yuefeng Huang
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Shan Chen
- Retinal Neurophysiology Section, National Eye Institute, NIH, Bethesda, MD, USA
| | - Ling-Gang Wu
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Alexander Chesler
- Sensory Cells and Circuits Section, National Center for Complementary and Integrative Health, NIH, Bethesda, MD, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, NIH, Bethesda, MD, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
23
|
Fung C, Vanden Berghe P. Functional circuits and signal processing in the enteric nervous system. Cell Mol Life Sci 2020; 77:4505-4522. [PMID: 32424438 PMCID: PMC7599184 DOI: 10.1007/s00018-020-03543-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/13/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
The enteric nervous system (ENS) is an extensive network comprising millions of neurons and glial cells contained within the wall of the gastrointestinal tract. The major functions of the ENS that have been most studied include the regulation of local gut motility, secretion, and blood flow. Other areas that have been gaining increased attention include its interaction with the immune system, with the gut microbiota and its involvement in the gut-brain axis, and neuro-epithelial interactions. Thus, the enteric circuitry plays a central role in intestinal homeostasis, and this becomes particularly evident when there are faults in its wiring such as in neurodevelopmental or neurodegenerative disorders. In this review, we first focus on the current knowledge on the cellular composition of enteric circuits. We then further discuss how enteric circuits detect and process external information, how these signals may be modulated by physiological and pathophysiological factors, and finally, how outputs are generated for integrated gut function.
Collapse
Affiliation(s)
- Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.
| |
Collapse
|
24
|
Johnson AC, Louwies T, Ligon CO, Greenwood-Van Meerveld B. Enlightening the frontiers of neurogastroenterology through optogenetics. Am J Physiol Gastrointest Liver Physiol 2020; 319:G391-G399. [PMID: 32755304 PMCID: PMC7717115 DOI: 10.1152/ajpgi.00384.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neurogastroenterology refers to the study of the extrinsic and intrinsic nervous system circuits controlling the gastrointestinal (GI) tract. Over the past 5-10 yr there has been an explosion in novel methodologies, technologies and approaches that offer great promise to advance our understanding of the basic mechanisms underlying GI function in health and disease. This review focuses on the use of optogenetics combined with electrophysiology in the field of neurogastroenterology. We discuss how these technologies and tools are currently being used to explore the brain-gut axis and debate the future research potential and limitations of these techniques. Taken together, we consider that the use of these technologies will enable researchers to answer important questions in neurogastroenterology through fundamental research. The answers to those questions will shorten the path from basic discovery to new treatments for patient populations with disorders of the brain-gut axis affecting the GI tract such as irritable bowel syndrome (IBS), functional dyspepsia, achalasia, and delayed gastric emptying.
Collapse
Affiliation(s)
- Anthony C. Johnson
- 1Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma,2Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma,3Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tijs Louwies
- 1Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Casey O. Ligon
- 1Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Beverley Greenwood-Van Meerveld
- 1Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma,2Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma,4Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
25
|
Santosa SM, Guo K, Yamakawa M, Ivakhnitskaia E, Chawla N, Nguyen T, Han KY, Ema M, Rosenblatt MI, Chang JH, Azar DT. Simultaneous fluorescence imaging of distinct nerve and blood vessel patterns in dual Thy1-YFP and Flt1-DsRed transgenic mice. Angiogenesis 2020; 23:459-477. [PMID: 32372335 DOI: 10.1007/s10456-020-09724-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 02/08/2023]
Abstract
Blood vessels and nerve tissues are critical to the development and functionality of many vital organs. However, little is currently known about their interdependency during development and after injury. In this study, dual fluorescence transgenic reporter mice were utilized to observe blood vessels and nervous tissues in organs postnatally. Thy1-YFP and Flt1-DsRed (TYFD) mice were interbred to achieve dual fluorescence in the offspring, with Thy1-YFP yellow fluorescence expressed primarily in nerves, and Flt1-DsRed fluorescence expressed selectively in blood vessels. Using this dual fluorescent mouse strain, we were able to visualize the networks of nervous and vascular tissue simultaneously in various organ systems both in the physiological state and after injury. Using ex vivo high-resolution imaging in this dual fluorescent strain, we characterized the organizational patterns of both nervous and vascular systems in a diverse set of organs and tissues. In the cornea, we also observed the dynamic patterns of nerve and blood vessel networks following epithelial debridement injury. These findings highlight the versatility of this dual fluorescent strain for characterizing the relationship between nerve and blood vessel growth and organization.
Collapse
Affiliation(s)
- Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Kai Guo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Evguenia Ivakhnitskaia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Neeraj Chawla
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Tara Nguyen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
26
|
Huang Q, Cohen MA, Alsina FC, Devlin G, Garrett A, McKey J, Havlik P, Rakhilin N, Wang E, Xiang K, Mathews P, Wang L, Bock C, Ruthig V, Wang Y, Negrete M, Wong CW, Murthy PKL, Zhang S, Daniel AR, Kirsch DG, Kang Y, Capel B, Asokan A, Silver DL, Jaenisch R, Shen X. Intravital imaging of mouse embryos. Science 2020; 368:181-186. [PMID: 32273467 PMCID: PMC7646360 DOI: 10.1126/science.aba0210] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
Abstract
Embryonic development is a complex process that is unamenable to direct observation. In this study, we implanted a window to the mouse uterus to visualize the developing embryo from embryonic day 9.5 to birth. This removable intravital window allowed manipulation and high-resolution imaging. In live mouse embryos, we observed transient neurotransmission and early vascularization of neural crest cell (NCC)-derived perivascular cells in the brain, autophagy in the retina, viral gene delivery, and chemical diffusion through the placenta. We combined the imaging window with in utero electroporation to label and track cell division and movement within embryos and observed that clusters of mouse NCC-derived cells expanded in interspecies chimeras, whereas adjacent human donor NCC-derived cells shrank. This technique can be combined with various tissue manipulation and microscopy methods to study the processes of development at unprecedented spatiotemporal resolution.
Collapse
Affiliation(s)
- Qiang Huang
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Malkiel A Cohen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Fernando C Alsina
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Garth Devlin
- Department of Surgery, School of Medicine, Duke University, Durham, NC, USA
| | - Aliesha Garrett
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Jennifer McKey
- Department of Cell Biology, School of Medicine, Duke University, Durham, NC, USA
| | - Patrick Havlik
- Department of Surgery, School of Medicine, Duke University, Durham, NC, USA
| | - Nikolai Rakhilin
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Ergang Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Kun Xiang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Parker Mathews
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | - Lihua Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Cheryl Bock
- Duke Cancer Institute, School of Medicine, Duke University, Durham, NC, USA
| | - Victor Ruthig
- Department of Cell Biology, School of Medicine, Duke University, Durham, NC, USA
| | - Yi Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Marcos Negrete
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Chi Wut Wong
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Preetish K L Murthy
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Shupei Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Andrea R Daniel
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | - Blanche Capel
- Department of Cell Biology, School of Medicine, Duke University, Durham, NC, USA
| | - Aravind Asokan
- Department of Surgery, School of Medicine, Duke University, Durham, NC, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
27
|
Abstract
Intravital microscopy is a powerful technique to observe dynamic processes with single-cell resolution in live animals. No intravital window has been developed for imaging the colon due to its anatomic location and motility, although the colon is a key organ where the majority of microbiota reside and common diseases such as inflammatory bowel disease, functional gastrointestinal disorders, and colon cancer occur. Here we describe an intravital murine colonic window with a stabilizing ferromagnetic scaffold for chronic imaging, minimizing motion artifacts while maximizing long-term survival by preventing colonic obstruction. Using this setup, we image fluorescently-labeled stem cells, bacteria, and immune cells in live animal colons. Furthermore, we image nerve activity via calcium imaging in real time to demonstrate that electrical sacral nerve stimulation can activate colonic enteric neurons. The simple implantable apparatus enables visualization of live processes in the colon, which will open the window to a broad range of studies. Performing intravital imaging of the colon in mouse models is challenging due to the colon’s anatomic location and motility. Here, the authors develop a murine colonic window for intravital chronic imaging that maximises long-term animal survival and minimises motion artefacts.
Collapse
|
28
|
Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904765. [PMID: 31538370 DOI: 10.1002/adma.201904765] [Citation(s) in RCA: 557] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/26/2019] [Indexed: 05/17/2023]
Abstract
Recent progress in electronic skin or e-skin research is broadly reviewed, focusing on technologies needed in three main applications: skin-attachable electronics, robotics, and prosthetics. First, since e-skin will be exposed to prolonged stresses of various kinds and needs to be conformally adhered to irregularly shaped surfaces, materials with intrinsic stretchability and self-healing properties are of great importance. Second, tactile sensing capability such as the detection of pressure, strain, slip, force vector, and temperature are important for health monitoring in skin attachable devices, and to enable object manipulation and detection of surrounding environment for robotics and prosthetics. For skin attachable devices, chemical and electrophysiological sensing and wireless signal communication are of high significance to fully gauge the state of health of users and to ensure user comfort. For robotics and prosthetics, large-area integration on 3D surfaces in a facile and scalable manner is critical. Furthermore, new signal processing strategies using neuromorphic devices are needed to efficiently process tactile information in a parallel and low power manner. For prosthetics, neural interfacing electrodes are of high importance. These topics are discussed, focusing on progress, current challenges, and future prospects.
Collapse
Affiliation(s)
- Jun Chang Yang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jaewan Mun
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305-5025, USA
| | - Se Young Kwon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seongjun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305-5025, USA
| | - Steve Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
29
|
Abstract
The microbiome is proving to be increasingly important for human brain functioning. A series of recent studies have shown that the microbiome influences the central nervous system in various ways, and consequently acts on the psychological well-being of the individual by mediating, among others, the reactions of stress and anxiety. From a specifically neuroethical point of view, according to some scholars, the particular composition of the microbiome-qua microbial community-can have consequences on the traditional idea of human individuality. Another neuroethical aspect concerns the reception of this new knowledge in relation to clinical applications. In fact, attention to the balance of the microbiome-which includes eating behavior, the use of psychobiotics and, in the treatment of certain diseases, the use of fecal microbiota transplantation-may be limited or even prevented by a biased negative attitude. This attitude derives from a prejudice related to everything that has to do with the organic processing of food and, in general, with the human stomach and intestine: the latter have traditionally been regarded as low, dirty, contaminated and opposed to what belongs to the mind and the brain. This biased attitude can lead one to fail to adequately consider the new anthropological conceptions related to the microbiome, resulting in a state of health, both physical and psychological, inferior to what one might have by paying the right attention to the knowledge available today. Shifting from the ubiquitous high-low metaphor (which is synonymous with superior-inferior) to an inside-outside metaphor can thus be a neuroethical strategy to achieve a new and unbiased reception of the discoveries related to the microbiome.
Collapse
|
30
|
Smith-Edwards KM, Najjar SA, Edwards BS, Howard MJ, Albers KM, Davis BM. Extrinsic Primary Afferent Neurons Link Visceral Pain to Colon Motility Through a Spinal Reflex in Mice. Gastroenterology 2019; 157:522-536.e2. [PMID: 31075226 PMCID: PMC6995031 DOI: 10.1053/j.gastro.2019.04.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/08/2019] [Accepted: 04/22/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Proper colon function requires signals from extrinsic primary afferent neurons (ExPANs) located in spinal ganglia. Most ExPANs express the vanilloid receptor TRPV1, and a dense plexus of TRPV1-positive fibers is found around myenteric neurons. Capsaicin, a TRPV1 agonist, can initiate activity in myenteric neurons and produce muscle contraction. ExPANs might therefore form motility-regulating synapses onto myenteric neurons. ExPANs mediate visceral pain, and myenteric neurons mediate colon motility, so we investigated communication between ExPANs and myenteric neurons and the circuits by which ExPANs modulate colon function. METHODS In live mice and colon tissues that express a transgene encoding the calcium indicator GCaMP, we visualized levels of activity in myenteric neurons during smooth muscle contractions induced by application of capsaicin, direct colon stimulation, stimulation of ExPANs, or stimulation of preganglionic parasympathetic neuron (PPN) axons. To localize central targets of ExPANs, we optogenetically activated TRPV1-expressing ExPANs in live mice and then quantified Fos immunoreactivity to identify activated spinal neurons. RESULTS Focal electrical stimulation of mouse colon produced phased-locked calcium signals in myenteric neurons and produced colon contractions. Stimulation of the L6 ventral root, which contains PPN axons, also produced myenteric activation and contractions that were comparable to those of direct colon stimulation. Surprisingly, capsaicin application to the isolated L6 dorsal root ganglia, which produced robust calcium signals in neurons throughout the ganglion, did not activate myenteric neurons. Electrical activation of the ganglia, which activated even more neurons than capsaicin, did not produce myenteric activation or contractions unless the spinal cord was intact, indicating that a complete afferent-to-efferent (PPN) circuit was necessary for ExPANs to regulate myenteric neurons. In TRPV1-channel rhodopsin-2 mice, light activation of ExPANs induced a pain-like visceromotor response and expression of Fos in spinal PPN neurons. CONCLUSIONS In mice, ExPANs regulate myenteric neuron activity and smooth muscle contraction via a parasympathetic spinal circuit, linking sensation and pain to motility.
Collapse
Affiliation(s)
- Kristen M. Smith-Edwards
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania,Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sarah A. Najjar
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania,Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian S. Edwards
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania,Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Kathryn M. Albers
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania,Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian M. Davis
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania,Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Walsh KT, Zemper AE. The Enteric Nervous System for Epithelial Researchers: Basic Anatomy, Techniques, and Interactions With the Epithelium. Cell Mol Gastroenterol Hepatol 2019; 8:369-378. [PMID: 31108231 PMCID: PMC6718943 DOI: 10.1016/j.jcmgh.2019.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 02/08/2023]
Abstract
The intestinal epithelium does not function in isolation, but interacts with many components including the Enteric Nervous System (ENS). Understanding ENS and intestinal epithelium interactions requires multidisciplinary approaches to uncover cells involved, mechanisms used, and the ultimate influence on intestinal physiology. This review is intended to serve as a reference for epithelial biologists interested in studying these interactions. With this in mind, this review aims to summarize the basic anatomy of the epithelium and ENS, mechanisms by which they interact, and techniques used to study these interactions. We highlight in vitro, ex vivo and in vivo techniques. Additionally, ENS influence on epithelial proliferation and gene expression within stem and differentiated cells as well as gastrointestinal cancer are discussed.
Collapse
Key Words
- 5-ht, 5-hydroxytryptamine
- 5-ht3r, 5-hydroxytryptamine 3 receptor
- ach, acetylcholine
- aitc, allyl isothicyanate
- cpi, crypt proliferation index
- eec, enteroendocrine cell
- ens, enteric nervous system
- gi, gastrointestinal
- hio, human intestinal organoid
- isc, intestinal stem cell
- lgr5, leucine-rich repeat–containing g protein–coupled receptor
- ne, norepinephrine
- ngf, nerve growth factor
- si, small intestine
- ta, transit-amplifying
Collapse
Affiliation(s)
- Kathleen T. Walsh
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon,Institute of Neuroscience, University of Oregon, Eugene, Oregon,Department of Biology, University of Oregon, Eugene, Oregon
| | - Anne E. Zemper
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon,Department of Biology, University of Oregon, Eugene, Oregon,Correspondence Address correspondence to: Anne E. Zemper, PhD, University of Oregon, 218 Streisinger Hall, 1370 Franklin Boulevard, Eugene, Oregon 97401. fax: (541) 346–6056.
| |
Collapse
|
32
|
Spencer NJ, Hibberd T, Feng J, Hu H. Optogenetic control of the enteric nervous system and gastrointestinal transit. Expert Rev Gastroenterol Hepatol 2019; 13:281-284. [PMID: 30791770 PMCID: PMC6719318 DOI: 10.1080/17474124.2019.1581061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There are limited effective therapies available for improving gastrointestinal (GI) transit in mammals with intractable or chronic constipation. Current therapeutics to improve GI-transit usually require oral ingestion of therapeutic drugs, such as the serotonin receptor agonist prucalopride. However, most receptors are distributed all over the body and unsurprisingly drugs like prucalopride stimulate multiple organs, often leading to unwanted side effects. There is a desperate need in the community to improve GI-transit selectively without effects on other organs. Areas covered: We performed a systematic review of the literature on Pubmed and report significant technical advances in optogenetic control of the GI-tract. We discuss recent demonstrations that optogenetics can be used to potently control the activity of subsets of enteric neurons. Special focus is made of the first recent demonstration that wireless optogenetics can be used to stimulate the colon in conscious, freely-moving, untethered mice causing a significant increase in fecal pellet output. This is a significant technical breakthrough with a major therapeutic potential application to improve GI-transit. Expert opinion: The ability to selectively stimulate the ENS to modulate GI-transit in live mammals using light, avoids the need for oral consumption of any drugs and side effects; by stimulating only the GI-tract.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Bedford Park, Australia
| | - Tim Hibberd
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Bedford Park, Australia
| | - Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
33
|
Park S, Loke G, Fink Y, Anikeeva P. Flexible fiber-based optoelectronics for neural interfaces. Chem Soc Rev 2019; 48:1826-1852. [PMID: 30815657 DOI: 10.1039/c8cs00710a] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurological and psychiatric conditions pose an increasing socioeconomic burden on our aging society. Our ability to understand and treat these conditions relies on the development of reliable tools to study the dynamics of the underlying neural circuits. Despite significant progress in approaches and devices to sense and modulate neural activity, further refinement is required on the spatiotemporal resolution, cell-type selectivity, and long-term stability of neural interfaces. Guided by the principles of neural transduction and by the materials properties of the neural tissue, recent advances in neural interrogation approaches rely on flexible and multifunctional devices. Among these approaches, multimaterial fibers have emerged as integrated tools for sensing and delivering of multiple signals to and from the neural tissue. Fiber-based neural probes are produced by thermal drawing process, which is the manufacturing approach used in optical fiber fabrication. This technology allows straightforward incorporation of multiple functional components into microstructured fibers at the level of their macroscale models, preforms, with a wide range of geometries. Here we will introduce the multimaterial fiber technology, its applications in engineering fields, and its adoption for the design of multifunctional and flexible neural interfaces. We will discuss examples of fiber-based neural probes tailored to the electrophysiological recording, optical neuromodulation, and delivery of drugs and genes into the rodent brain and spinal cord, as well as their emerging use for studies of nerve growth and repair.
Collapse
Affiliation(s)
- Seongjun Park
- School of Engineering, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
34
|
Confocal and multiphoton calcium imaging of the enteric nervous system in anesthetized mice. Neurosci Res 2019; 151:53-60. [PMID: 30790590 DOI: 10.1016/j.neures.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/19/2022]
Abstract
Most imaging studies of the enteric nervous system (ENS) that regulates the function of the gastrointestinal tract are so far performed using preparations isolated from animals, thus hindering the understanding of the ENS function in vivo. Here we report a method for imaging the ENS cellular network activity in living mice using a new transgenic mouse line that co-expresses G-CaMP6 and mCherry in the ENS combined with the suction-mediated stabilization of intestinal movements. With confocal or two-photon imaging, our method can visualize spontaneous and pharmacologically-evoked ENS network activity in living animals at cellular and subcellular resolutions, demonstrating the potential usefulness for studies of the ENS function in health and disease.
Collapse
|
35
|
Chesné J, Cardoso V, Veiga-Fernandes H. Neuro-immune regulation of mucosal physiology. Mucosal Immunol 2019; 12:10-20. [PMID: 30089849 DOI: 10.1038/s41385-018-0063-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Mucosal barriers constitute major body surfaces that are in constant contact with the external environment. Mucosal sites are densely populated by a myriad of distinct neurons and immune cell types that sense, integrate and respond to multiple environmental cues. In the recent past, neuro-immune interactions have been reported to play central roles in mucosal health and disease, including chronic inflammatory conditions, allergy and infectious diseases. Discrete neuro-immune cell units act as building blocks of this bidirectional multi-tissue cross-talk, ensuring mucosal tissue health and integrity. Herein, we will focus on reciprocal neuro-immune interactions in the airways and intestine. Such neuro-immune cross-talk maximizes sensing and integration of environmental aggressions, which can be considered an important paradigm shift in our current views of mucosal physiology and immune regulation.
Collapse
Affiliation(s)
- Julie Chesné
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038, Lisboa, Portugal
| | - Vânia Cardoso
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038, Lisboa, Portugal
| | | |
Collapse
|
36
|
Wu F, Yu P, Mao L. Analytical and Quantitative in Vivo Monitoring of Brain Neurochemistry by Electrochemical and Imaging Approaches. ACS OMEGA 2018; 3:13267-13274. [PMID: 30411032 PMCID: PMC6217607 DOI: 10.1021/acsomega.8b02055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/02/2018] [Indexed: 05/27/2023]
Abstract
Quantitative monitoring of brain neurochemistry is aimed at an accurate measurement of chemical basal levels and dynamics defining neuronal activities. Analytical tools must be endowed with high selectivity, sensitivity, and spatiotemporal resolution to tackle this task. On one hand, in vivo electroanalysis combined with miniature electrodes has evolved into a minimally invasive method for probing transient events during neural communication and metabolism. On the other hand, noninvasive imaging techniques have been widely adopted in visualizing the neural structure and processes within a population of neurons in two or three dimensions. This perspective will give a concise review of the inspiring frontiers at the interface of neurochemistry and electrochemistry (microvoltammetry, nanoamperometry, galvanic redox potentiometry and ion transport-based sensing) or imaging (super-resolution single nanotube tracking, deep multiphoton microscopy, and free animal imaging). Potential opportunities with these methods and their combinations for multimodal brain analysis will be discussed, intending to draw a brief picture for future neuroscience research.
Collapse
Affiliation(s)
- Fei Wu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- University
of CAS, Beijing 100049, China
- CAS
Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- University
of CAS, Beijing 100049, China
- CAS
Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- University
of CAS, Beijing 100049, China
- CAS
Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| |
Collapse
|
37
|
Kaelberer MM, Buchanan KL, Klein ME, Barth BB, Montoya MM, Shen X, Bohórquez DV. A gut-brain neural circuit for nutrient sensory transduction. Science 2018; 361:361/6408/eaat5236. [PMID: 30237325 DOI: 10.1126/science.aat5236] [Citation(s) in RCA: 566] [Impact Index Per Article: 80.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022]
Abstract
The brain is thought to sense gut stimuli only via the passive release of hormones. This is because no connection has been described between the vagus and the putative gut epithelial sensor cell-the enteroendocrine cell. However, these electrically excitable cells contain several features of epithelial transducers. Using a mouse model, we found that enteroendocrine cells synapse with vagal neurons to transduce gut luminal signals in milliseconds by using glutamate as a neurotransmitter. These synaptically connected enteroendocrine cells are referred to henceforth as neuropod cells. The neuroepithelial circuit they form connects the intestinal lumen to the brainstem in one synapse, opening a physical conduit for the brain to sense gut stimuli with the temporal precision and topographical resolution of a synapse.
Collapse
Affiliation(s)
| | | | | | - Bradley B Barth
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Marcia M Montoya
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Diego V Bohórquez
- Department of Medicine, Duke University, Durham, NC, USA. .,Department of Neurobiology, Duke University, Durham, NC, USA.,Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
38
|
Opportunities and Challenges for Single-Unit Recordings from Enteric Neurons in Awake Animals. MICROMACHINES 2018; 9:mi9090428. [PMID: 30424361 PMCID: PMC6187697 DOI: 10.3390/mi9090428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 12/18/2022]
Abstract
Advanced electrode designs have made single-unit neural recordings commonplace in modern neuroscience research. However, single-unit resolution remains out of reach for the intrinsic neurons of the gastrointestinal system. Single-unit recordings of the enteric (gut) nervous system have been conducted in anesthetized animal models and excised tissue, but there is a large physiological gap between awake and anesthetized animals, particularly for the enteric nervous system. Here, we describe the opportunity for advancing enteric neuroscience offered by single-unit recording capabilities in awake animals. We highlight the primary challenges to microelectrodes in the gastrointestinal system including structural, physiological, and signal quality challenges, and we provide design criteria recommendations for enteric microelectrodes.
Collapse
|
39
|
Hibberd TJ, Feng J, Luo J, Yang P, Samineni VK, Gereau RW, Kelley N, Hu H, Spencer NJ. Optogenetic Induction of Colonic Motility in Mice. Gastroenterology 2018; 155:514-528.e6. [PMID: 29782847 PMCID: PMC6715392 DOI: 10.1053/j.gastro.2018.05.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/12/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND & AIMS Strategies are needed to increase gastrointestinal transit without systemic pharmacologic agents. We investigated whether optogenetics, focal application of light to control enteric nervous system excitability, could be used to evoke propagating contractions and increase colonic transit in mice. METHODS We generated transgenic mice with Cre-mediated expression of light-sensitive channelrhodopsin-2 (ChR2) in calretinin neurons (CAL-ChR2 Cre+ mice); Cre- littermates served as controls. Colonic myenteric neurons were analyzed by immunohistochemistry, patch-clamp, and calcium imaging studies. Motility was assessed by mechanical, electrophysiological, and video recording in vitro and by fecal output in vivo. RESULTS In isolated colons, focal light stimulation of calretinin enteric neurons evoked classic polarized motor reflexes (50/58 stimulations), followed by premature anterograde propagating contractions (39/58 stimulations). Light stimulation could evoke motility from sites along the entire colon. These effects were prevented by neural blockade with tetrodotoxin (n = 2), and did not occur in control mice (n = 5). Light stimulation of proximal colon increased the proportion of natural fecal pellets expelled over 15 minutes in vitro (75% ± 17% vs 32% ± 8% for controls) (P < .05). In vivo, activation of wireless light-emitting diodes implanted onto the colon wall significantly increased hourly fecal pellet output in conscious, freely moving mice (4.2 ± 0.4 vs 1.3 ± 0.3 in controls) (P < .001). CONCLUSIONS In studies of mice, we found that focal activation of a subset of enteric neurons can increase motility of the entire colon in vitro, and fecal output in vivo. Optogenetic control of enteric neurons might therefore be used to modify gut motility.
Collapse
Affiliation(s)
- Timothy J Hibberd
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Australia
| | - Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Jialie Luo
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Pu Yang
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Vijay K Samineni
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Robert W Gereau
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Nigel Kelley
- SA Biomedical Engineering, SA Health, Government of South Australia, Australia
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St Louis, Missouri.
| | - Nick J Spencer
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, Australia.
| |
Collapse
|
40
|
Intestinal crypts recover rapidly from focal damage with coordinated motion of stem cells that is impaired by aging. Sci Rep 2018; 8:10989. [PMID: 30030455 PMCID: PMC6054609 DOI: 10.1038/s41598-018-29230-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 07/03/2018] [Indexed: 12/16/2022] Open
Abstract
Despite the continuous renewal and turnover of the small intestinal epithelium, the intestinal crypt maintains a 'soccer ball-like', alternating pattern of stem and Paneth cells at the base of the crypt. To study the robustness of the alternating pattern, we used intravital two-photon microscopy in mice with fluorescently-labeled Lgr5+ intestinal stem cells and precisely perturbed the mosaic pattern with femtosecond laser ablation. Ablation of one to three cells initiated rapid motion of crypt cells that restored the alternation in the pattern within about two hours with only the rearrangement of pre-existing cells, without any cell division. Crypt cells then performed a coordinated dilation of the crypt lumen, which resulted in peristalsis-like motion that forced damaged cells out of the crypt. Crypt cell motion was reduced with inhibition of the ROCK pathway and attenuated with old age, and both resulted in incomplete pattern recovery. This suggests that in addition to proliferation and self-renewal, motility of stem cells is critical for maintaining homeostasis. Reduction of this newly-identified behavior of stem cells could contribute to disease and age-related changes.
Collapse
|
41
|
Wellman SM, Eles JR, Ludwig KA, Seymour JP, Michelson NJ, McFadden WE, Vazquez AL, Kozai TDY. A Materials Roadmap to Functional Neural Interface Design. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1701269. [PMID: 29805350 PMCID: PMC5963731 DOI: 10.1002/adfm.201701269] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Advancement in neurotechnologies for electrophysiology, neurochemical sensing, neuromodulation, and optogenetics are revolutionizing scientific understanding of the brain while enabling treatments, cures, and preventative measures for a variety of neurological disorders. The grand challenge in neural interface engineering is to seamlessly integrate the interface between neurobiology and engineered technology, to record from and modulate neurons over chronic timescales. However, the biological inflammatory response to implants, neural degeneration, and long-term material stability diminish the quality of interface overtime. Recent advances in functional materials have been aimed at engineering solutions for chronic neural interfaces. Yet, the development and deployment of neural interfaces designed from novel materials have introduced new challenges that have largely avoided being addressed. Many engineering efforts that solely focus on optimizing individual probe design parameters, such as softness or flexibility, downplay critical multi-dimensional interactions between different physical properties of the device that contribute to overall performance and biocompatibility. Moreover, the use of these new materials present substantial new difficulties that must be addressed before regulatory approval for use in human patients will be achievable. In this review, the interdependence of different electrode components are highlighted to demonstrate the current materials-based challenges facing the field of neural interface engineering.
Collapse
Affiliation(s)
- Steven M Wellman
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - James R Eles
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Kip A Ludwig
- Department of Neurologic Surgery, 200 First St. SW, Rochester, MN 55905
| | - John P Seymour
- Electrical & Computer Engineering, 1301 Beal Ave., 2227 EECS, Ann Arbor, MI 48109
| | - Nicholas J Michelson
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - William E McFadden
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Alberto L Vazquez
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Takashi D Y Kozai
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| |
Collapse
|
42
|
Boesmans W, Hao MM, Vanden Berghe P. Optogenetic and chemogenetic techniques for neurogastroenterology. Nat Rev Gastroenterol Hepatol 2018; 15:21-38. [PMID: 29184183 DOI: 10.1038/nrgastro.2017.151] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optogenetics and chemogenetics comprise a wide variety of applications in which genetically encoded actuators and indicators are used to modulate and monitor activity with high cellular specificity. Over the past 10 years, development of these genetically encoded tools has contributed tremendously to our understanding of integrated physiology. In concert with the continued refinement of probes, strategies to target transgene expression to specific cell types have also made much progress in the past 20 years. In addition, the successful implementation of optogenetic and chemogenetic techniques thrives thanks to ongoing advances in live imaging microscopy and optical technology. Although innovation of optogenetic and chemogenetic methods has been primarily driven by researchers studying the central nervous system, these techniques also hold great promise to boost research in neurogastroenterology. In this Review, we describe the different classes of tools that are currently available and give an overview of the strategies to target them to specific cell types in the gut wall. We discuss the possibilities and limitations of optogenetic and chemogenetic technology in the gut and provide an overview of their current use, with a focus on the enteric nervous system. Furthermore, we suggest some experiments that can advance our understanding of how the intrinsic and extrinsic neural networks of the gut control gastrointestinal function.
Collapse
Affiliation(s)
- Werend Boesmans
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium.,Department of Pathology, Maastricht University Medical Center, P. Debeijelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Marlene M Hao
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium
| |
Collapse
|
43
|
Wang W. Optogenetic manipulation of ENS - The brain in the gut. Life Sci 2017; 192:18-25. [PMID: 29155296 DOI: 10.1016/j.lfs.2017.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/25/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Optogenetics has emerged as an important tool in neuroscience, especially in central nervous system research. It allows for the study of the brain's highly complex network with high temporal and spatial resolution. The enteric nervous system (ENS), the brain in the gut, plays critical roles for life. Although advanced progress has been made, the neural circuits of the ENS remain only partly understood because the appropriate research tools are lacking. In this review, I highlight the potential application of optogenetics in ENS research. Firstly, I describe the development of optogenetics with focusing on its three main components. I discuss the applications in vitro and in vivo, and summarize current findings in the ENS research field obtained by optogenetics. Finally, the challenges for the application of optogenetics to the ENS research will be discussed.
Collapse
Affiliation(s)
- Wei Wang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China.
| |
Collapse
|
44
|
Yoo BB, Mazmanian SK. The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity 2017; 46:910-926. [PMID: 28636959 PMCID: PMC5551410 DOI: 10.1016/j.immuni.2017.05.011] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/25/2017] [Accepted: 05/31/2017] [Indexed: 12/16/2022]
Abstract
Interactions between the nervous and immune systems enable the gut to respond to the variety of dietary products that it absorbs, the broad spectrum of pathogens that it encounters, and the diverse microbiome that it harbors. The enteric nervous system (ENS) senses and reacts to the dynamic ecosystem of the gastrointestinal (GI) tract by translating chemical cues from the environment into neuronal impulses that propagate throughout the gut and into other organs in the body, including the central nervous system (CNS). This review will describe the current understanding of the anatomy and physiology of the GI tract by focusing on the ENS and the mucosal immune system. We highlight emerging literature that the ENS is essential for important aspects of microbe-induced immune responses in the gut. Although most basic and applied research in neuroscience has focused on the brain, the proximity of the ENS to the immune system and its interface with the external environment suggest that novel paradigms for nervous system function await discovery.
Collapse
Affiliation(s)
- Bryan B Yoo
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Sarkis K Mazmanian
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
45
|
Anderson M, Zheng Q, Dong X. Investigation of Pain Mechanisms by Calcium Imaging Approaches. Neurosci Bull 2017; 34:194-199. [PMID: 28501905 PMCID: PMC5799123 DOI: 10.1007/s12264-017-0139-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/12/2017] [Indexed: 12/12/2022] Open
Abstract
Due to the complex circuitry and plethora of cell types involved in somatosensation, it is becoming increasingly important to be able to observe cellular activity at the population level. In addition, since cells rely on an intricate variety of extracellular factors, it is important to strive to maintain the physiological environment. Many electrophysiological techniques require the implementation of artificially-produced physiological environments and it can be difficult to assess the activity of many cells simultaneously. Moreover, imaging Ca2+ transients using Ca2+-sensitive dyes often requires in vitro preparations or in vivo injections, which can lead to variable expression levels. With the development of more sensitive genetically-encoded Ca2+ indicators (GECIs) it is now possible to observe changes in Ca2+ transients in large populations of cells at the same time. Recently, groups have used a GECI called GCaMP to address fundamental questions in somatosensation. Researchers can now induce GCaMP expression in the mouse genome using viral or gene knock-in approaches and observe the activity of populations of cells in the pain pathway such as dorsal root ganglia (DRG), spinal neurons, or glia. This approach can be used in vivo and thus maintains the organism’s biological integrity. The implementation of GCaMP imaging has led to many advances in our understanding of somatosensation. Here, we review the current findings in pain research using GCaMP imaging as well as discussing potential methodological considerations.
Collapse
Affiliation(s)
- Michael Anderson
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Qin Zheng
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA. .,Howard Hughes Medical Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
46
|
Kulkarni S, Micci MA, Leser J, Shin C, Tang SC, Fu YY, Liu L, Li Q, Saha M, Li C, Enikolopov G, Becker L, Rakhilin N, Anderson M, Shen X, Dong X, Butte MJ, Song H, Southard-Smith EM, Kapur RP, Bogunovic M, Pasricha PJ. Adult enteric nervous system in health is maintained by a dynamic balance between neuronal apoptosis and neurogenesis. Proc Natl Acad Sci U S A 2017; 114:E3709-E3718. [PMID: 28420791 PMCID: PMC5422809 DOI: 10.1073/pnas.1619406114] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
According to current dogma, there is little or no ongoing neurogenesis in the fully developed adult enteric nervous system. This lack of neurogenesis leaves unanswered the question of how enteric neuronal populations are maintained in adult guts, given previous reports of ongoing neuronal death. Here, we confirm that despite ongoing neuronal cell loss because of apoptosis in the myenteric ganglia of the adult small intestine, total myenteric neuronal numbers remain constant. This observed neuronal homeostasis is maintained by new neurons formed in vivo from dividing precursor cells that are located within myenteric ganglia and express both Nestin and p75NTR, but not the pan-glial marker Sox10. Mutation of the phosphatase and tensin homolog gene in this pool of adult precursors leads to an increase in enteric neuronal number, resulting in ganglioneuromatosis, modeling the corresponding disorder in humans. Taken together, our results show significant turnover and neurogenesis of adult enteric neurons and provide a paradigm for understanding the enteric nervous system in health and disease.
Collapse
Affiliation(s)
- Subhash Kulkarni
- Center for Neurogastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Maria-Adelaide Micci
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555
| | - Jenna Leser
- Center for Neurogastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Changsik Shin
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | | | - Ya-Yuan Fu
- Center for Neurogastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Liansheng Liu
- Center for Neurogastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Qian Li
- Center for Neurogastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Monalee Saha
- Center for Neurogastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Cuiping Li
- Center for Neurogastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Grigori Enikolopov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Center for Developmental Genetics, Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794
| | - Laren Becker
- Division of Gastroenterology, Stanford University School of Medicine, Stanford, CA 94305
| | - Nikolai Rakhilin
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853
| | - Michael Anderson
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Dermatology, Center for Sensory Biology, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205
- Howard Hughes Medical Institute, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Dermatology, Center for Sensory Biology, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205
- Howard Hughes Medical Institute, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Manish J Butte
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Hongjun Song
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Institute for Cellular Engineering, Department of Neurology, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | | | - Raj P Kapur
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA 98105
| | - Milena Bogunovic
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Pankaj J Pasricha
- Center for Neurogastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205;
| |
Collapse
|
47
|
Gulbransen BD. Emerging tools to study enteric neuromuscular function. Am J Physiol Gastrointest Liver Physiol 2017; 312:G420-G426. [PMID: 28280142 PMCID: PMC5451564 DOI: 10.1152/ajpgi.00049.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 01/31/2023]
Abstract
Investigating enteric neuromuscular function poses specific challenges that are not encountered in other systems. The gut has a complex cellular composition, and methods to study diverse multicellular interactions during physiological gut functions have been limited. However, new technologies are emerging in optics, genetics, and bioengineering that greatly expand the capabilities to study integrative functions in the gut. In this mini-review, I discuss several areas where the application of these technologies could benefit ongoing efforts to understand enteric neuromuscular function. I specifically focus on technologies that can be applied to study specific cellular networks and the mechanisms that link activity to function.
Collapse
Affiliation(s)
- Brian D. Gulbransen
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
48
|
Fung C, Boesmans W, Cirillo C, Foong JPP, Bornstein JC, Vanden Berghe P. VPAC Receptor Subtypes Tune Purinergic Neuron-to-Glia Communication in the Murine Submucosal Plexus. Front Cell Neurosci 2017; 11:118. [PMID: 28487635 PMCID: PMC5403822 DOI: 10.3389/fncel.2017.00118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/10/2017] [Indexed: 12/20/2022] Open
Abstract
The enteric nervous system (ENS) situated within the gastrointestinal tract comprises an intricate network of neurons and glia which together regulate intestinal function. The exact neuro-glial circuitry and the signaling molecules involved are yet to be fully elucidated. Vasoactive intestinal peptide (VIP) is one of the main neurotransmitters in the gut, and is important for regulating intestinal secretion and motility. However, the role of VIP and its VPAC receptors within the enteric circuitry is not well understood. We investigated this in the submucosal plexus of mouse jejunum using calcium (Ca2+)-imaging. Local VIP application induced Ca2+-transients primarily in neurons and these were inhibited by VPAC1- and VPAC2-antagonists (PG 99-269 and PG 99-465 respectively). These VIP-evoked neural Ca2+-transients were also inhibited by tetrodotoxin (TTX), indicating that they were secondary to action potential generation. Surprisingly, VIP induced Ca2+-transients in glia in the presence of the VPAC2 antagonist. Further, selective VPAC1 receptor activation with the agonist ([K15, R16, L27]VIP(1-7)/GRF(8-27)) predominantly evoked glial responses. However, VPAC1-immunoreactivity did not colocalize with the glial marker glial fibrillary acidic protein (GFAP). Rather, VPAC1 expression was found on cholinergic submucosal neurons and nerve fibers. This suggests that glial responses observed were secondary to neuronal activation. Trains of electrical stimuli were applied to fiber tracts to induce endogenous VIP release. Delayed glial responses were evoked when the VPAC2 antagonist was present. These findings support the presence of an intrinsic VIP/VPAC-initiated neuron-to-glia signaling pathway. VPAC1 agonist-evoked glial responses were inhibited by purinergic antagonists (PPADS and MRS2179), thus demonstrating the involvement of P2Y1 receptors. Collectively, we showed that neurally-released VIP can activate neurons expressing VPAC1 and/or VPAC2 receptors to modulate purine-release onto glia. Selective VPAC1 activation evokes a glial response, whereas VPAC2 receptors may act to inhibit this response. Thus, we identified a component of an enteric neuron-glia circuit that is fine-tuned by endogenous VIP acting through VPAC1- and VPAC2-mediated pathways.
Collapse
Affiliation(s)
- Candice Fung
- Department of Physiology, The University of MelbourneParkville, VIC, Australia.,Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| | - Werend Boesmans
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| | - Carla Cirillo
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| | - Jaime P P Foong
- Department of Physiology, The University of MelbourneParkville, VIC, Australia
| | - Joel C Bornstein
- Department of Physiology, The University of MelbourneParkville, VIC, Australia
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| |
Collapse
|
49
|
Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nat Commun 2017; 8:14902. [PMID: 28322227 PMCID: PMC5364407 DOI: 10.1038/ncomms14902] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 02/10/2017] [Indexed: 12/12/2022] Open
Abstract
Reliable determination of binding kinetics and affinity of DNA hybridization and single-base mismatches plays an essential role in systems biology, personalized and precision medicine. The standard tools are optical-based sensors that are difficult to operate in low cost and to miniaturize for high-throughput measurement. Biosensors based on nanowire field-effect transistors have been developed, but reliable and cost-effective fabrication remains a challenge. Here, we demonstrate that a graphene single-crystal domain patterned into multiple channels can measure time- and concentration-dependent DNA hybridization kinetics and affinity reliably and sensitively, with a detection limit of 10 pM for DNA. It can distinguish single-base mutations quantitatively in real time. An analytical model is developed to estimate probe density, efficiency of hybridization and the maximum sensor response. The results suggest a promising future for cost-effective, high-throughput screening of drug candidates, genetic variations and disease biomarkers by using an integrated, miniaturized, all-electrical multiplexed, graphene-based DNA array. Monitoring DNA binding and single-base mismatches accurately in real time is difficult, especially for miniaturized devices. Here the authors report a graphene field-effect transistor array capable of reliably measuring DNA hybridization kinetics and affinity at the picomolar level.
Collapse
|
50
|
|