1
|
Wang J, Dong Y, Zheng X, Ma H, Huang M, Fu D, Liu J, Yin Q. Host Factors Modulate Virus-Induced IFN Production via Pattern Recognition Receptors. J Inflamm Res 2024; 17:3737-3752. [PMID: 38882189 PMCID: PMC11180453 DOI: 10.2147/jir.s455035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Innate immunity is the first line of defense in the human body, and it plays an important role in defending against viral infection. Viruses are identified by different pattern-recognition receptors (PRRs) that activate the mitochondrial antiviral signaling protein (MAVS) or transmembrane protein 173 (STING), which trigger multiple signaling cascades that cause nuclear factor-κB (NF-κB) and interferon regulatory factor 3 (IRF3) to produce inflammatory factors and interferons (IFNs). PRRs play a pivotal role as the first step in pathogen induction of interferon production. Interferon elicits antiviral activity by inducing the transcription of hundreds of IFN-stimulated genes (ISGs) via the janus kinase (JAK) - signal transducer and activator of transcription (STAT) pathway. An increasing number of studies have shown that environmental, pathogen and host factors regulate the IFN signaling pathway. Here, we summarize the mechanisms of host factor modulation in IFN production via pattern recognition receptors. These regulatory mechanisms maintain interferon levels in a normal state and clear viruses without inducing autoimmune disease.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Yirui Dong
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Xuewei Zheng
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Haodi Ma
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Mengjiao Huang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Dongliao Fu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Jiangbo Liu
- Department of General Surgery, First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Qinan Yin
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People's Republic of China
| |
Collapse
|
2
|
Yao X, Zhong L, Wang M, Wang M, Han Y, Wang Y, Zhou J, Song J, Li Y, Xu Y. Up-regulated lncRNA CYLD as a ceRNA of miR-2383 facilitates bovine viral diarrhea virus replication by promoting CYLD expression to counteract RIG-I-mediated type-I IFN production. Int J Biol Macromol 2023; 253:127351. [PMID: 37839600 DOI: 10.1016/j.ijbiomac.2023.127351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/17/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Bovine viral diarrhea virus (BVDV) is one of the most important pathogens of cattle, causing numerous economic losses to the cattle industry. To date, many potential mechanisms of BVDV evading or subverting innate immunity are still unknown. In this study, an lnc-CYLD/miR-2383/CYLD axis involved in BVDV-host interactions was screened from RNA-seq-based co-expression networks analysis of long noncoding RNAs, microRNAs and mRNAs in BVDV-infected bovine cells, and underlying mechanisms of lnc-CYLD/miR-2383/CYLD axis regulating BVDV replication were explored. Results showed that BVDV-induced up-regulation of the lnc-CYLD competed for binding to the miR-2383, and then promoted CYLD expression, thereby inhibiting RIG-I-mediated type-I interferon (IFN) production, which was subsequently confirmed by treatment with lnc-CYLD overexpression and miR-2383 inhibitor. However, miR-2383 transfection and small interfering RNA-mediated lnc-CYLD knockdown inhibited CYLD expression and enhanced RIG-I-mediated type-I IFN production, inhibiting BVDV replication. In addition, interaction relationship between lnc-CYLD and miR-2383, and colocalization relationship of lnc-CYLD, miR-2383 and CYLD were confirmed by dual-luciferase assay and in situ hybridization assay. Conclusively, up-regulation of the lnc-CYLD as a competing endogenous RNA binds to the miR-2383 to reduce inhibitory effect of the miR-2383 on the CYLD expression, playing an important role in counteracting type-I IFN-dependent antiviral immunity to facilitate BVDV replication.
Collapse
Affiliation(s)
- Xin Yao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China; Key Laboratory for Animal Disease Control and Pharmaceutical Development of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Linhan Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Mengmeng Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Mei Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yanyan Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yixin Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jiaying Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jingge Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yuan Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China.
| | - Yigang Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China; Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
3
|
Gareev I, de Jesus Encarnacion Ramirez M, Goncharov E, Ivliev D, Shumadalova A, Ilyasova T, Wang C. MiRNAs and lncRNAs in the regulation of innate immune signaling. Noncoding RNA Res 2023; 8:534-541. [PMID: 37564295 PMCID: PMC10410465 DOI: 10.1016/j.ncrna.2023.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
The detection and defense against foreign agents and pathogens by the innate immune system is a crucial mechanism in the body. A comprehensive understanding of the signaling mechanisms involved in innate immunity is essential for developing effective diagnostic tools and therapies for infectious diseases. Innate immune response is a complex process involving recognition of pathogens through receptors, activation of signaling pathways, and cytokine production, which are all crucial for deploying appropriate countermeasures. Non-coding RNAs (ncRNAs) are vital regulators of the immune response during infections, mediating the body's defense mechanisms. However, an overactive immune response can lead to tissue damage, and maintaining immune homeostasis is a complex process in which ncRNAs play a significant role. Recent studies have identified microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as key players in controlling gene expression in innate immune pathways, thereby participating in antiviral defenses, tumor immunity, and autoimmune diseases. MiRNAs act by regulating host defense mechanisms against viruses, bacteria, and fungi by targeting mRNA at the post-transcriptional level, while lncRNAs function as competing RNAs, blocking the binding of miRNAs to mRNA. This review provides an overview of the regulatory role of miRNAs and lncRNAs in innate immunity and its mechanisms, as well as highlights potential future research directions, including the expression and maturation of new ncRNAs and the conservation of ncRNAs in evolution.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Manuel de Jesus Encarnacion Ramirez
- Department of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Evgeniy Goncharov
- Traumatology and Orthopedics Center, Central Clinical Hospital of the Russian Academy of Sciences, 117593, Moscow, Russia
| | - Denis Ivliev
- Department of Neurosurgery, Smolensk State Medical University of the Ministry of Health of the Russian Federation, Smolensk, Russia
| | - Alina Shumadalova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Chunlei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
4
|
Zheng J, Shi W, Yang Z, Chen J, Qi A, Yang Y, Deng Y, Yang D, Song N, Song B, Luo D. RIG-I-like receptors: Molecular mechanism of activation and signaling. Adv Immunol 2023; 158:1-74. [PMID: 37453753 DOI: 10.1016/bs.ai.2023.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
During RNA viral infection, RIG-I-like receptors (RLRs) recognize the intracellular pathogenic RNA species derived from viral replication and activate antiviral innate immune response by stimulating type 1 interferon expression. Three RLR members, namely, RIG-I, MDA5, and LGP2 are homologous and belong to a subgroup of superfamily 2 Helicase/ATPase that is preferably activated by double-stranded RNA. RLRs are significantly different in gene architecture, RNA ligand preference, activation, and molecular functions. As switchable macromolecular sensors, RLRs' activities are tightly regulated by RNA ligands, ATP, posttranslational modifications, and cellular cofactors. We provide a comprehensive review of the structure and function of the RLRs and summarize the molecular understanding of sensing and signaling events during the RLR activation process. The key roles RLR signaling play in both anti-infection and immune disease conditions highlight the therapeutic potential in targeting this important molecular pathway.
Collapse
Affiliation(s)
- Jie Zheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Wenjia Shi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ziqun Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jin Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ao Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yulin Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dongyuan Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ning Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bin Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
5
|
Depierreux DM, Altenburg AF, Soday L, Fletcher-Etherington A, Antrobus R, Ferguson BJ, Weekes MP, Smith GL. Selective modulation of cell surface proteins during vaccinia infection: A resource for identifying viral immune evasion strategies. PLoS Pathog 2022; 18:e1010612. [PMID: 35727847 PMCID: PMC9307158 DOI: 10.1371/journal.ppat.1010612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/22/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
The interaction between immune cells and virus-infected targets involves multiple plasma membrane (PM) proteins. A systematic study of PM protein modulation by vaccinia virus (VACV), the paradigm of host regulation, has the potential to reveal not only novel viral immune evasion mechanisms, but also novel factors critical in host immunity. Here, >1000 PM proteins were quantified throughout VACV infection, revealing selective downregulation of known T and NK cell ligands including HLA-C, downregulation of cytokine receptors including IFNAR2, IL-6ST and IL-10RB, and rapid inhibition of expression of certain protocadherins and ephrins, candidate activating immune ligands. Downregulation of most PM proteins occurred via a proteasome-independent mechanism. Upregulated proteins included a decoy receptor for TRAIL. Twenty VACV-encoded PM proteins were identified, of which five were not recognised previously as such. Collectively, this dataset constitutes a valuable resource for future studies on antiviral immunity, host-pathogen interaction, poxvirus biology, vector-based vaccine design and oncolytic therapy. Vaccinia virus (VACV) is the vaccine used to eradicate smallpox and an excellent model for studying host-pathogen interactions. Many VACV-mediated immune evasion strategies are known, however how immune cells recognise VACV-infected cells is incompletely understood because of the complexity of surface proteins regulating such interactions. Here, a systematic study of proteins on the cell surface at different times during infection with VACV is presented. This shows not only the precise nature and kinetics of appearance of VACV proteins, but also the selective alteration of cellular surface proteins. The latter thereby identified potential novel immune evasion strategies and host proteins regulating immune activation. Comprehensive comparisons with published datasets provided further insight into mechanisms used to regulate surface protein expression. Such comparisons also identified proteins that are targeted by both VACV and human cytomegalovirus (HCMV), and which are therefore likely to represent host proteins regulating immune recognition and activation. Collectively, this work provides a valuable resource for studying viral immune evasion mechanisms and novel host proteins critical in host immunity.
Collapse
Affiliation(s)
| | | | - Lior Soday
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
| | | | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
| | | | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
- * E-mail: (MPW); (GLS)
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, United Kingdom
- * E-mail: (MPW); (GLS)
| |
Collapse
|
6
|
Cai X, Zhou Z, Zhu J, Liu X, Ouyang G, Wang J, Li Z, Li X, Zha H, Zhu C, Rong F, Tang J, Liao Q, Chen X, Xiao W. Opposing effects of deubiquitinase OTUD3 in innate immunity against RNA and DNA viruses. Cell Rep 2022; 39:110920. [PMID: 35675783 DOI: 10.1016/j.celrep.2022.110920] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/29/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Retinoic acid-inducible-I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and cyclic GMP-AMP synthase (cGAS) genes encode essential cytosolic receptors mediating antiviral immunity against viruses. Here, we show that OTUD3 has opposing role in response to RNA and DNA virus infection by removing distinct types of RIG-I/MDA5 and cGAS polyubiquitination. OTUD3 binds to RIG-I and MDA5 and removes K63-linked ubiquitination. This serves to reduce the binding of RIG-I and MDA5 to viral RNA and the downstream adaptor MAVS, leading to the suppression of the RNA virus-triggered innate antiviral responses. Meanwhile, OTUD3 associates with cGAS and targets at Lys279 to deubiquitinate K48-linked ubiquitination, resulting in the enhancement of cGAS protein stability and DNA-binding ability. As a result, Otud3-deficient mice and zebrafish are more resistant to RNA virus infection but are more susceptible to DNA virus infection. These findings demonstrate that OTUD3 limits RNA virus-triggered innate immunity but promotes DNA virus-triggered innate immunity.
Collapse
Affiliation(s)
- Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Ziwen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junji Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huangyuan Zha
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fangjing Rong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinghua Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P. R. China; Hubei Hongshan Laboratory, Wuhan 430070, P. R. China.
| |
Collapse
|
7
|
Shen Q, Wu X, Zhang Z, Zhang D, Yang S, Xing D. Gamma frequency light flicker regulates amyloid precursor protein trafficking for reducing β-amyloid load in Alzheimer's disease model. Aging Cell 2022; 21:e13573. [PMID: 35199454 PMCID: PMC8920449 DOI: 10.1111/acel.13573] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 11/28/2022] Open
Abstract
Inducing gamma oscillations with non‐invasive light flicker has been reported to impact Alzheimer's disease‐related pathology. However, it is unclear which signaling pathways are involved in reducing amyloid load. Here, we found that gamma frequency light flicker increased anchoring of amyloid precursor protein (APP) to the plasma membrane for non‐amyloidogenic processing, and then physically interacted with KCC2, a neuron‐specific K+‐Cl− cotransporter, suggesting that it is essential to maintain surface GABAA receptor α1 levels and reduce β‐amyloid (Aβ) production. Stimulation with such light flicker limited KCC2 internalization and subsequent degradation via both tyrosine phosphorylation and ubiquitination, leading to an increase in surface‐KCC2 levels. Specifically, PKC‐dependent phosphorylation of APP on a serine residue was induced by gamma frequency light flicker, which was responsible for maintaining plasma membrane levels of full‐length APP, leading to its reduced trafficking to endosomes and inhibiting the β‐secretase cleavage pathway. The activated PKC from the gamma frequency light flicker subsequently phosphorylated serine of KCC2 and stabilized it onto the cell surface, which contributed to the upregulation of surface GABAA receptor α1 levels. Together, these data indicate that enhancement of APP trafficking to the plasma membrane via light flicker plays a critical modulatory role in reduction of Aβ load in Alzheimer's disease.
Collapse
Affiliation(s)
- Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science South China Normal University Guangzhou China
- College of Biophotonics South China Normal University Guangzhou China
| | - Xiaolei Wu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science South China Normal University Guangzhou China
- College of Biophotonics South China Normal University Guangzhou China
| | - Zhan Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science South China Normal University Guangzhou China
- College of Biophotonics South China Normal University Guangzhou China
| | - Di Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science South China Normal University Guangzhou China
- College of Biophotonics South China Normal University Guangzhou China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science South China Normal University Guangzhou China
- College of Biophotonics South China Normal University Guangzhou China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science South China Normal University Guangzhou China
- College of Biophotonics South China Normal University Guangzhou China
| |
Collapse
|
8
|
Jia J, Fu J, Tang H. Activation and Evasion of RLR Signaling by DNA Virus Infection. Front Microbiol 2022; 12:804511. [PMID: 34987495 PMCID: PMC8721196 DOI: 10.3389/fmicb.2021.804511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Antiviral innate immune response triggered by nucleic acid recognition plays an extremely important role in controlling viral infections. The initiation of antiviral immune response against RNA viruses through ligand recognition of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) was extensively studied. RLR’s role in DNA virus infection, which is less known, is increasing attention. Here, we review the research progress of the ligand recognition of RLRs during the DNA virus infection process and the viral evasion mechanism from host immune responses.
Collapse
Affiliation(s)
- Junli Jia
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Jiangan Fu
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Huamin Tang
- Department of Immunology, Nanjing Medical University, Nanjing, China.,Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Long S, Yang L, Dang W, Xin S, Jiang M, Zhang W, Li J, Wang Y, Zhang S, Lu J. Cellular Deubiquitylating Enzyme: A Regulatory Factor of Antiviral Innate Immunity. Front Microbiol 2021; 12:805223. [PMID: 34966378 PMCID: PMC8710732 DOI: 10.3389/fmicb.2021.805223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Deubiquitylating enzymes (DUBs) are proteases that crack the ubiquitin code from ubiquitylated substrates to reverse the fate of substrate proteins. Recently, DUBs have been found to mediate various cellular biological functions, including antiviral innate immune response mediated by pattern-recognition receptors (PRRs) and NLR Family pyrin domain containing 3 (NLRP3) inflammasomes. So far, many DUBs have been identified to exert a distinct function in fine-tuning antiviral innate immunity and are utilized by viruses for immune evasion. Here, the recent advances in the regulation of antiviral responses by DUBs are reviewed. We also discussed the DUBs-mediated interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and antiviral innate immunity. The understanding of the mechanisms on antiviral innate immunity regulated by DUBs may provide therapeutic opportunities for viral infection.
Collapse
Affiliation(s)
- Sijing Long
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Li Yang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wei Dang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Mingjuan Jiang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wentao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Li
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yiwei Wang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Senmiao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
10
|
Palacios-Rápalo SN, De Jesús-González LA, Cordero-Rivera CD, Farfan-Morales CN, Osuna-Ramos JF, Martínez-Mier G, Quistián-Galván J, Muñoz-Pérez A, Bernal-Dolores V, del Ángel RM, Reyes-Ruiz JM. Cholesterol-Rich Lipid Rafts as Platforms for SARS-CoV-2 Entry. Front Immunol 2021; 12:796855. [PMID: 34975904 PMCID: PMC8719300 DOI: 10.3389/fimmu.2021.796855] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Since its appearance, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), the causal agent of Coronavirus Disease 2019 (COVID-19), represents a global problem for human health that involves the host lipid homeostasis. Regarding, lipid rafts are functional membrane microdomains with highly and tightly packed lipid molecules. These regions enriched in sphingolipids and cholesterol recruit and concentrate several receptors and molecules involved in pathogen recognition and cellular signaling. Cholesterol-rich lipid rafts have multiple functions for viral replication; however, their role in SARS-CoV-2 infection remains unclear. In this review, we discussed the novel evidence on the cholesterol-rich lipid rafts as a platform for SARS-CoV-2 entry, where receptors such as the angiotensin-converting enzyme-2 (ACE-2), heparan sulfate proteoglycans (HSPGs), human Toll-like receptors (TLRs), transmembrane serine proteases (TMPRSS), CD-147 and HDL-scavenger receptor B type 1 (SR-B1) are recruited for their interaction with the viral spike protein. FDA-approved drugs such as statins, metformin, hydroxychloroquine, and cyclodextrins (methyl-β-cyclodextrin) can disrupt cholesterol-rich lipid rafts to regulate key molecules in the immune signaling pathways triggered by SARS-CoV-2 infection. Taken together, better knowledge on cholesterol-rich lipid rafts in the SARS-CoV-2-host interactions will provide valuable insights into pathogenesis and the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Gustavo Martínez-Mier
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Judith Quistián-Galván
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Armando Muñoz-Pérez
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Víctor Bernal-Dolores
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Rosa María del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| |
Collapse
|
11
|
Zhang N, Zhu H, Li Z, Dong E. A novel β 2-AR agonist, Higenamine, induces β-arrestin-biased signaling. SCIENCE CHINA-LIFE SCIENCES 2021; 65:1357-1368. [PMID: 34783996 DOI: 10.1007/s11427-021-2008-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/12/2021] [Indexed: 12/11/2022]
Abstract
The biased ligands in G protein-coupled receptors (GPCRs) have opened new avenues for developing safer and more effective drugs. However, the identification of such biased ligands as drug candidates is highly desirable. Here, we report that Higenamine, a compound isolated from a Chinese herb, functions as a novel β-arrestin-biased ligand of the β2-adrenergic receptor (β2-AR). The radioligand binding assays demonstrated that Higenamine was the ligand of β2-AR. Higenamine induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), which can be blocked by propranolol, an inhibitor of β2-AR. The Gi protein inhibitor, pertussis toxin, had no effect on the phosphorylation of ERK1/2 induced by Higenamine. Furthermore, Higenamine induced ERK1/2 phosphorylation through transactivation of Epithelial growth factor receptor (EGFR). We also found that Higenamine-induced-ERK1/2 phosphorylation is dependent on β-arrestin1/2, and HG inhibits Doxorubicin-induced cardiomyocyte apoptosis. Our results identify Higenamine as a novel biased ligand via the β-arrestin-dependent pathway. These findings give us a better understanding of Higenamine's potential role in designing diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Nana Zhang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines; Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines; Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Cardiovascular Receptors Research, Beijing, China. .,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, 100191, China.
| | - Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Cardiovascular Receptors Research, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, 100191, China
| |
Collapse
|
12
|
Contribution of Syndecans to the Cellular Entry of SARS-CoV-2. Int J Mol Sci 2021; 22:ijms22105336. [PMID: 34069441 PMCID: PMC8159090 DOI: 10.3390/ijms22105336] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/13/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel emerging pathogen causing an unprecedented pandemic in 21st century medicine. Due to the significant health and economic burden of the current SARS-CoV-2 outbreak, there is a huge unmet medical need for novel interventions effectively blocking SARS-CoV-2 infection. Unknown details of SARS-CoV-2 cellular biology hamper the development of potent and highly specific SARS-CoV-2 therapeutics. Angiotensin-converting enzyme-2 (ACE2) has been reported to be the primary receptor for SARS-CoV-2 cellular entry. However, emerging scientific evidence suggests the involvement of additional membrane proteins, such as heparan sulfate proteoglycans, in SARS-CoV-2 internalization. Here, we report that syndecans, the evolutionarily conserved family of transmembrane proteoglycans, facilitate the cellular entry of SARS-CoV-2. Among syndecans, the lung abundant syndecan-4 was the most efficient in mediating SARS-CoV-2 uptake. The S1 subunit of the SARS-CoV-2 spike protein plays a dominant role in the virus's interactions with syndecans. Besides the polyanionic heparan sulfate chains, other parts of the syndecan ectodomain, such as the cell-binding domain, also contribute to the interaction with SARS-CoV-2. During virus internalization, syndecans colocalize with ACE2, suggesting a jointly shared internalization pathway. Both ACE2 and syndecan inhibitors exhibited significant efficacy in reducing the cellular entry of SARS-CoV-2, thus supporting the complex nature of internalization. Data obtained on syndecan specific in vitro assays present syndecans as novel cellular targets of SARS-CoV-2 and offer molecularly precise yet simple strategies to overcome the complex nature of SARS-CoV-2 infection.
Collapse
|
13
|
Chiang C, Dvorkin S, Chiang JJ, Potter RB, Gack MU. The Small t Antigen of JC Virus Antagonizes RIG-I-Mediated Innate Immunity by Inhibiting TRIM25's RNA Binding Ability. mBio 2021; 12:e00620-21. [PMID: 33849980 PMCID: PMC8092259 DOI: 10.1128/mbio.00620-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
JC polyomavirus (JCV), a DNA virus that leads to persistent infection in humans, is the causative agent of progressive multifocal leukoencephalopathy, a lethal brain disease that affects immunocompromised individuals. Almost nothing is currently known about how JCV infection is controlled by the innate immune response and, further, whether JCV has evolved mechanisms to antagonize antiviral immunity. Here, we show that the innate immune sensors retinoic acid-inducible gene I (RIG-I) and cGMP-AMP synthase (cGAS) control JCV replication in human astrocytes. We further identify that the small t antigen (tAg) of JCV functions as an interferon (IFN) antagonist by suppressing RIG-I-mediated signal transduction. JCV tAg interacts with the E3 ubiquitin ligase TRIM25, thereby preventing its ability to bind RNA and to induce the K63-linked ubiquitination of RIG-I, which is known to facilitate RIG-I-mediated cytokine responses. Antagonism of RIG-I K63-linked ubiquitination and antiviral signaling is also conserved in the tAg of the related polyomavirus BK virus (BKV). These findings highlight how JCV and BKV manipulate a key innate surveillance pathway, which may stimulate research into designing novel therapies.IMPORTANCE The innate immune response is the first line of defense against viral pathogens, and in turn, many viruses have evolved strategies to evade detection by the host's innate immune surveillance machinery. Investigation of the interplay between viruses and the innate immune response provides valuable insight into potential therapeutic targets against viral infectious diseases. JC polyomavirus (JCV) is associated with a lifelong, persistent infection that can cause a rare neurodegenerative disease, called progressive multifocal leukoencephalopathy, in individuals that are immunosuppressed. The molecular mechanisms of JCV infection and persistence are not well understood, and very little is currently known about the relevance of innate immunity for the control of JCV replication. Here, we define the intracellular innate immune sensors responsible for controlling JCV infection and also demonstrate a novel mechanism by which a JCV-encoded protein acts as an antagonist of the type I interferon-mediated innate immune response.
Collapse
Affiliation(s)
- Cindy Chiang
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Steve Dvorkin
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Jessica J Chiang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel B Potter
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
14
|
Liu H, Zhang J, Xu X, Lu S, Yang D, Xie C, Jia M, Zhang W, Jin L, Wang X, Shen X, Li F, Wang W, Bao X, Li S, Zhu M, Wang W, Wang Y, Huang Z, Teng H. SARM1 promotes neuroinflammation and inhibits neural regeneration after spinal cord injury through NF-κB signaling. Am J Cancer Res 2021; 11:4187-4206. [PMID: 33754056 PMCID: PMC7977471 DOI: 10.7150/thno.49054] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/17/2021] [Indexed: 12/18/2022] Open
Abstract
Axonal degeneration is a common pathological feature in many acute and chronic neurological diseases such as spinal cord injury (SCI). SARM1 (sterile alpha and TIR motif-containing 1), the fifth TLR (Toll-like receptor) adaptor, has diverse functions in the immune and nervous systems, and recently has been identified as a key mediator of Wallerian degeneration (WD). However, the detailed functions of SARM1 after SCI still remain unclear. Methods: Modified Allen's method was used to establish a contusion model of SCI in mice. Furthermore, to address the function of SARM1 after SCI, conditional knockout (CKO) mice in the central nervous system (CNS), SARM1Nestin-CKO mice, and SARM1GFAP-CKO mice were successfully generated by Nestin-Cre and GFAP-Cre transgenic mice crossed with SARM1flox/flox mice, respectively. Immunostaining, Hematoxylin-Eosin (HE) staining, Nissl staining and behavioral test assays such as footprint and Basso Mouse Scale (BMS) scoring were used to examine the roles of SARM1 pathway in SCI based on these conditional knockout mice. Drugs such as FK866, an inhibitor of SARM1, and apoptozole, an inhibitor of heat shock protein 70 (HSP70), were used to further explore the molecular mechanism of SARM1 in neural regeneration after SCI. Results: We found that SARM1 was upregulated in neurons and astrocytes at early stage after SCI. SARM1Nestin-CKO and SARM1GFAP-CKO mice displayed normal development of the spinal cords and motor function. Interestingly, conditional deletion of SARM1 in neurons and astrocytes promoted the functional recovery of behavior performance after SCI. Mechanistically, conditional deletion of SARM1 in neurons and astrocytes promoted neuronal regeneration at intermediate phase after SCI, and reduced neuroinflammation at SCI early phase through downregulation of NF-κB signaling after SCI, which may be due to upregulation of HSP70. Finally, FK866, an inhibitor of SARM1, reduced the neuroinflammation and promoted the neuronal regeneration after SCI. Conclusion: Our results indicate that SARM1-mediated prodegenerative pathway and neuroinflammation promotes the pathological progress of SCI and anti-SARM1 therapeutics are viable and promising approaches for preserving neuronal function after SCI.
Collapse
|
15
|
The Role of Ubiquitination in NF-κB Signaling during Virus Infection. Viruses 2021; 13:v13020145. [PMID: 33498196 PMCID: PMC7908985 DOI: 10.3390/v13020145] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
The nuclear factor κB (NF-κB) family are the master transcription factors that control cell proliferation, apoptosis, the expression of interferons and proinflammatory factors, and viral infection. During viral infection, host innate immune system senses viral products, such as viral nucleic acids, to activate innate defense pathways, including the NF-κB signaling axis, thereby inhibiting viral infection. In these NF-κB signaling pathways, diverse types of ubiquitination have been shown to participate in different steps of the signal cascades. Recent advances find that viruses also modulate the ubiquitination in NF-κB signaling pathways to activate viral gene expression or inhibit host NF-κB activation and inflammation, thereby facilitating viral infection. Understanding the role of ubiquitination in NF-κB signaling during viral infection will advance our knowledge of regulatory mechanisms of NF-κB signaling and pave the avenue for potential antiviral therapeutics. Thus, here we systematically review the ubiquitination in NF-κB signaling, delineate how viruses modulate the NF-κB signaling via ubiquitination and discuss the potential future directions.
Collapse
|
16
|
Ning X, Sun L. Systematic Identification and Analysis of Circular RNAs of Japanese Flounder ( Paralichthys olivaceus) in Response to Vibrio anguillarum Infection. Genes (Basel) 2021; 12:genes12010100. [PMID: 33467444 PMCID: PMC7830906 DOI: 10.3390/genes12010100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
Circular RNA (circRNA) is a new class of non-coding RNA that is structured into a closed loop without polyadenylation. Recent studies showed that circRNAs are involved in the host immune response to pathogen infection. Japanese flounder (Paralichthys olivaceus), an important economical marine fish cultured in north Asia, is affected by Vibrio anguillarum, a pathogenic bacterium that can infect a large number of fish. In this study, we systematically explored the circRNAs in the spleen of V. anguillarum-infected flounder at different infection time points. A total of 6581 circRNAs were identified, 148 of which showed differential expression patterns after V. anguillarum infection and were named DEcirs. Most of the DEcirs were strongly time-specific. The parental genes of the DEcirs were identified and functionally classified into diverse pathways, including immune-related pathways. Among the immune-related DEcirs, seven were predicted to sponge 18 targeted miRNAs that were differentially expressed during V. anguillarum infection (named DETmiRs). Further analysis showed that the DEcirs and their corresponding DETmiRs intertwined into complicated immune related networks. These results indicate that in flounder, circRNAs are regulated by V. anguillarum and form interactive networks with mRNAs and miRNAs that likely play important roles in the immune defense against pathogen infection.
Collapse
Affiliation(s)
- Xianhui Ning
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-532-82898829
| |
Collapse
|
17
|
Refolo G, Vescovo T, Piacentini M, Fimia GM, Ciccosanti F. Mitochondrial Interactome: A Focus on Antiviral Signaling Pathways. Front Cell Dev Biol 2020; 8:8. [PMID: 32117959 PMCID: PMC7033419 DOI: 10.3389/fcell.2020.00008] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/10/2020] [Indexed: 01/10/2023] Open
Abstract
In the last years, proteomics has represented a valuable approach to elucidate key aspects in the regulation of type I/III interferons (IFNs) and autophagy, two main processes involved in the response to viral infection, to unveil the molecular strategies that viruses have evolved to counteract these processes. Besides their main metabolic roles, mitochondria are well recognized as pivotal organelles in controlling signaling pathways essential to restrain viral infections. In particular, a major role in antiviral defense is played by mitochondrial antiviral signaling (MAVS) protein, an adaptor protein that coordinates the activation of IFN inducing pathways and autophagy at the mitochondrial level. Here, we provide an overview of how mass spectrometry-based studies of protein–protein interactions and post-translational modifications (PTMs) have fostered our understanding of the molecular mechanisms that control the mitochondria-mediated antiviral immunity.
Collapse
Affiliation(s)
- Giulia Refolo
- Lazzaro Spallanzani, National Institute for Infectious Diseases - IRCCS, Rome, Italy
| | - Tiziana Vescovo
- Lazzaro Spallanzani, National Institute for Infectious Diseases - IRCCS, Rome, Italy
| | - Mauro Piacentini
- Lazzaro Spallanzani, National Institute for Infectious Diseases - IRCCS, Rome, Italy.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Gian Maria Fimia
- Lazzaro Spallanzani, National Institute for Infectious Diseases - IRCCS, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Fabiola Ciccosanti
- Lazzaro Spallanzani, National Institute for Infectious Diseases - IRCCS, Rome, Italy
| |
Collapse
|
18
|
Tao X, Chu B, Xin D, Li L, Sun Q. USP27X negatively regulates antiviral signaling by deubiquitinating RIG-I. PLoS Pathog 2020; 16:e1008293. [PMID: 32027733 PMCID: PMC7029883 DOI: 10.1371/journal.ppat.1008293] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 02/19/2020] [Accepted: 12/23/2019] [Indexed: 12/22/2022] Open
Abstract
RIG-I plays important roles in pathogen sensing and activation of antiviral innate immune responses in response to RNA viruses. RIG-I-mediated signaling must be precisely controlled to maintain innate immune signaling homeostasis. Previous studies demonstrated that lysine 63 (K63)-linked polyubiquitination of RIG-I is vital for its activation, but the mechanisms through which RIG-I is deubiquitinated to control innate immune responses are not well understood. Here we identified USP27X as a negative regulator of antiviral signaling in response to RNA viruses through siRNA library screening. Further functional studies indicated that USP27X negatively modulated RIG-I-mediated antiviral signaling in a deubiquitinase-dependent manner. Mechanistically, we found that USP27X removed K63-linked polyubiquitin chains from RIG-I to negatively modulate type I interferon signaling. Collectively, these studies uncover a novel negative regulatory role of USP27X in targeting RIG-I to balance innate immune responses.
Collapse
Affiliation(s)
- Xinyue Tao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Bei Chu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Di Xin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lin Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Syndecan-4 Inhibits the Development of Pulmonary Fibrosis by Attenuating TGF-β Signaling. Int J Mol Sci 2019; 20:ijms20204989. [PMID: 31600983 PMCID: PMC6834137 DOI: 10.3390/ijms20204989] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
Syndecan-4 is a transmembrane heparan sulfate proteoglycan expressed in a variety of cells, and its heparan sulfate glycosaminoglycan side chains bind to several proteins exhibiting various biological roles. The authors have previously demonstrated syndecan-4′s critical roles in pulmonary inflammation. In the current study, however, its role in pulmonary fibrosis was evaluated. Wild-type and syndecan-4-deficient mice were injected with bleomycin, and several parameters of inflammation and fibrosis were analyzed. The mRNA expression of collagen and α-smooth muscle action (α-SMA) in lung tissues, as well as the histopathological lung fibrosis score and collagen content in lung tissues, were significantly higher in the syndecan-4-deficient mice. However, the total cell count and cell differentiation in bronchoalveolar lavage fluid were equivalent between the wild-type and syndecan-4-deficient mice. Although there was no difference in the TGF-β expression in lung tissues between the wild-type and syndecan-4-deficient mice, significantly more activation of Smad3 in lung tissues was observed in the syndecan-4-deficient mice compared to the wild-type mice. Furthermore, in the in vitro experiments using lung fibroblasts, the co-incubation of syndecan-4 significantly inhibited TGF-β-induced Smad3 activation, collagen and α-SMA upregulation. Moreover, syndecan-4 knock-down by siRNA increased TGF-β-induced Smad3 activation and upregulated collagen and α-SMA expression. These findings showed that syndecan-4 inhibits the development of pulmonary fibrosis, at least in part, through attenuating TGF-β signaling.
Collapse
|
20
|
Identification and Classification of Hubs in microRNA Target Gene Networks in Human Neural Stem/Progenitor Cells following Japanese Encephalitis Virus Infection. mSphere 2019; 4:4/5/e00588-19. [PMID: 31578247 PMCID: PMC6796970 DOI: 10.1128/msphere.00588-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RNA viruses are known to modulate host microRNA (miRNA) machinery for their own benefit. Japanese encephalitis virus (JEV), a neurotropic RNA virus, has been reported to manipulate several miRNAs in neurons or microglia. However, no report indicates a complete sketch of the miRNA profile of neural stem/progenitor cells (NSPCs), hence the focus of our current study. We used an miRNA array of 84 miRNAs in uninfected and JEV-infected human neuronal progenitor cells and primary neural precursor cells isolated from aborted fetuses. Severalfold downregulation of hsa-miR-9-5p, hsa-miR-22-3p, hsa-miR-124-3p, and hsa-miR-132-3p was found postinfection in both of the cell types compared to the uninfected cells. Subsequently, we screened for the target genes of these miRNAs and looked for the biological pathways that were significantly regulated by the genes. The target genes involved in two or more pathways were sorted out. Protein-protein interaction (PPI) networks of the miRNA target genes were formed based on their interaction patterns. A binary adjacency matrix for each gene network was prepared. Different modules or communities were identified in those networks by community detection algorithms. Mathematically, we identified the hub genes by analyzing their degree centrality and participation coefficient in the network. The hub genes were classified as either provincial (P < 0.4) or connector (P > 0.4) hubs. We validated the expression of hub genes in both cell line and primary cells through qRT-PCR after JEV infection and respective miR mimic transfection. Taken together, our findings highlight the importance of specific target gene networks of miRNAs affected by JEV infection in NSPCs.IMPORTANCE JEV damages the neural stem/progenitor cell population of the mammalian brain. However, JEV-induced alteration in the miRNA expression pattern of the cell population remains an open question, hence warranting our present study. In this study, we specifically address the downregulation of four miRNAs, and we prepared a protein-protein interaction network of miRNA target genes. We identified two types of hub genes in the PPI network, namely, connector hubs and provincial hubs. These two types of miRNA target hub genes critically influence the participation strength in the networks and thereby significantly impact up- and downregulation in several key biological pathways. Computational analysis of the PPI networks identifies key protein interactions and hubs in those modules, which opens up the possibility of precise identification and classification of host factors for viral infection in NSPCs.
Collapse
|
21
|
Shi P, Su Y, Li R, Liang Z, Dong S, Huang J. PEDV nsp16 negatively regulates innate immunity to promote viral proliferation. Virus Res 2019; 265:57-66. [PMID: 30849413 PMCID: PMC7114654 DOI: 10.1016/j.virusres.2019.03.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 11/06/2022]
Abstract
Type-I IFNs (IFN-I) provide a key mediator of innate antiviral response during virus proliferation. Porcine epidemic diarrhea virus (PEDV), which causes diarrhea in swine of all ages, is a worldwide-distributed alphacoronavirus with economic importance. Here, we screened PEDV RNA modification enzymes involved in regulating antiviral response. Whereas the PEDV nsp13 barely regulates type I IFN, inflammatory cytokines (IL-6, TNF-a) and MHCII, nsp16 and nsp14 (to a lesser extent) down-regulate these antiviral effectors. Importantly, we found nsp16 KDKE tetrad appears to play a key role in interferon inhibition by mutating the D129 catalytic residue. Mechanistically, nsp16 down-regulates the activities of RIG-I and MDA5 mediated IFN-β and ISRE. In turn, the mRNA levels of IFIT family members (IFIT1, IFIT2, IFIT3) was inhibited in cells overexpressing nsp16. In addition, nsp10 enhanced the inhibitory effect of nsp16 on IFN-β. Altogether these results indicate PEDV nsp16 negatively regulates innate immunity to promote viral proliferation. Findings from this study provides novel perspective to advance the understanding in the pathogenesis of PEDV.
Collapse
Affiliation(s)
- Peidian Shi
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Yanxin Su
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Ruiqiao Li
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Zhixuan Liang
- Tianjin Center of Animal Disease Preventive and Control, Tianjin, China
| | | | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
22
|
Zhang L, Wei N, Cui Y, Hong Z, Liu X, Wang Q, Li S, Liu H, Yu H, Cai Y, Wang Q, Zhu J, Meng W, Chen Z, Wang C. The deubiquitinase CYLD is a specific checkpoint of the STING antiviral signaling pathway. PLoS Pathog 2018; 14:e1007435. [PMID: 30388174 PMCID: PMC6235404 DOI: 10.1371/journal.ppat.1007435] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/14/2018] [Accepted: 10/24/2018] [Indexed: 01/05/2023] Open
Abstract
Stimulator of interferon genes (STING) is critical for cytosolic DNA-triggered innate immunity. STING is modified by several types of polyubiquitin chains. Here, we report that the deubiquitinase CYLD sustains STING signaling by stabilizing the STING protein. CYLD deficiency promoted the K48-linked polyubiquitination and degradation of STING, attenuating the induction of IRF3-responsive genes after HSV-1 infection or the transfection of DNA ligands. Additionally, CYLD knockout mice were more susceptible to HSV-1 infection than their wild-type (WT) littermates. Mechanistically, STING translocated from the ER to the Golgi upon HSV-1 stimulation; CYLD partially accumulated with STING and interacted selectively with K48-linked polyubiquitin chains on STING, specifically removing the K48-linked polyubiquitin chains from STING and ultimately boosting the innate antiviral response. Our study reveals that CYLD is a novel checkpoint in the cGAS-STING signaling pathway and sheds new light on the dynamic regulation of STING activity by ubiquitination.
Collapse
Affiliation(s)
- Lele Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ning Wei
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, China
| | - Ye Cui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ze Hong
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, China
| | - Xing Liu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Senlin Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Heng Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huansha Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yanni Cai
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Quanyi Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, China
| | - Juanjuan Zhu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, China
| | - Wei Meng
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, China
| | - Zhengjun Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- * E-mail: (ZC); (CW)
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, China
- * E-mail: (ZC); (CW)
| |
Collapse
|
23
|
Takahashi I, Yamada S, Nata K. Effects of heparan sulfate proteoglycan syndecan-4 on the insulin secretory response in a mouse pancreatic β-cell line, MIN6. Mol Cell Endocrinol 2018; 470:142-150. [PMID: 29042251 DOI: 10.1016/j.mce.2017.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/04/2017] [Accepted: 10/13/2017] [Indexed: 01/03/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) comprise a core protein to which extracellular glycosaminoglycan chains are attached. Syndecan-4, one of the major HS-containing core proteins, is distributed on the cell surface, where they interact with various protein ligands and regulate a wide range of biological activities. Here, we propose that the core protein of HSPGs is involved in the insulin secretory response. To investigate the participation of HSPGs in the insulin-secretion mechanism, MIN6 cells, a mouse pancreatic β-cell line, were subcloned. The subcloned MIN6 cells were selected based on their insulin secretory response, the expression of HS and core proteins. The results from these screening experiments indicated that only syndecan-4-expressing subclones are able to secrete insulin in response to glucose. Silencing of syndecan-4 reduced glucose-induced insulin secretion, whereas the overexpression of syndecan-4 increased the insulin secretory response. These data indicate that the HSPG syndecan-4 plays important role(s) in the insulin secretory response.
Collapse
Affiliation(s)
- Iwao Takahashi
- Department of Medical Biochemistry, School of Pharmacy, Iwate Medical University, Yahaba 028-3603, Japan.
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan.
| | - Koji Nata
- Department of Medical Biochemistry, School of Pharmacy, Iwate Medical University, Yahaba 028-3603, Japan.
| |
Collapse
|
24
|
Xin D, Gu H, Liu E, Sun Q. Parkin negatively regulates the antiviral signaling pathway by targeting TRAF3 for degradation. J Biol Chem 2018; 293:11996-12010. [PMID: 29903906 DOI: 10.1074/jbc.ra117.001201] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/30/2018] [Indexed: 11/06/2022] Open
Abstract
Chronic neuroinflammation is a characteristic of Parkinson's disease (PD). Previous investigations have shown that Parkin gene mutations are related to the early-onset recessive form of PD and isolated juvenile-onset PD. Further, Parkin plays important roles in mitochondrial quality control and cytokine-induced cell death. However, whether Parkin regulates other cellular events is still largely unknown. In this study, we performed overexpression and knockout experiments and found that Parkin negatively regulates antiviral immune responses against RNA and DNA viruses. Mechanistically, we show that Parkin interacts with tumor necrosis factor receptor-associated factor 3 (TRAF3) to regulate stability of TRAF3 protein by promoting Lys48-linked ubiquitination. Our findings suggest that Parkin plays a novel role in innate immune signaling by targeting TRAF3 for degradation and maintaining the balance of innate antiviral immunity.
Collapse
Affiliation(s)
- Di Xin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Haiyan Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Enping Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
25
|
Abstract
Pattern recognition receptors (PRRs) survey intra- and extracellular spaces for pathogen-associated molecular patterns (PAMPs) within microbial products of infection. Recognition and binding to cognate PAMP ligand by specific PRRs initiates signaling cascades that culminate in a coordinated intracellular innate immune response designed to control infection. In particular, our immune system has evolved specialized PRRs to discriminate viral nucleic acid from host. These are critical sensors of viral RNA to trigger innate immunity in the vertebrate host. Different families of PRRs of virus infection have been defined and reveal a diversity of PAMP specificity for wide viral pathogen coverage to recognize and extinguish virus infection. In this review, we discuss recent insights in pathogen recognition by the RIG-I-like receptors, related RNA helicases, Toll-like receptors, and other RNA sensor PRRs, to present emerging themes in innate immune signaling during virus infection.
Collapse
Affiliation(s)
- Kwan T Chow
- Center for Innate Immunity and Immune Disease and Department of Immunology, University of Washington, Seattle, Washington 98109, USA; , ,
| | - Michael Gale
- Center for Innate Immunity and Immune Disease and Department of Immunology, University of Washington, Seattle, Washington 98109, USA; , ,
| | - Yueh-Ming Loo
- Center for Innate Immunity and Immune Disease and Department of Immunology, University of Washington, Seattle, Washington 98109, USA; , ,
| |
Collapse
|
26
|
Courtois G, Fauvarque MO. The Many Roles of Ubiquitin in NF-κB Signaling. Biomedicines 2018; 6:E43. [PMID: 29642643 PMCID: PMC6027159 DOI: 10.3390/biomedicines6020043] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
The nuclear factor κB (NF-κB) signaling pathway ubiquitously controls cell growth and survival in basic conditions as well as rapid resetting of cellular functions following environment changes or pathogenic insults. Moreover, its deregulation is frequently observed during cell transformation, chronic inflammation or autoimmunity. Understanding how it is properly regulated therefore is a prerequisite to managing these adverse situations. Over the last years evidence has accumulated showing that ubiquitination is a key process in NF-κB activation and its resolution. Here, we examine the various functions of ubiquitin in NF-κB signaling and more specifically, how it controls signal transduction at the molecular level and impacts in vivo on NF-κB regulated cellular processes.
Collapse
|
27
|
Yin X, Feng L, Ma D, Yin P, Wang X, Hou S, Hao Y, Zhang J, Xin M, Feng J. Roles of astrocytic connexin-43, hemichannels, and gap junctions in oxygen-glucose deprivation/reperfusion injury induced neuroinflammation and the possible regulatory mechanisms of salvianolic acid B and carbenoxolone. J Neuroinflammation 2018; 15:97. [PMID: 29587860 PMCID: PMC5872583 DOI: 10.1186/s12974-018-1127-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/12/2018] [Indexed: 02/07/2023] Open
Abstract
Background Glia-mediated neuroinflammation is related to brain injury exacerbation after cerebral ischemia/reperfusion (I/R) injury. Astrocytic hemichannels or gap junctions, which were mainly formed by connexin-43, have been implicated in I/R damage. However, the exact roles of astrocytic hemichannels and gap junction in neuroinflammatory responses induced by I/R injury remain unknown. Methods Primary cultured astrocytes were subjected to OGD/R injury, an in vitro model of I/R injury. Salvianolic acid B (SalB) or carbenoxolone (CBX) were applied for those astrocytes. Besides, Cx43 mimetic peptides Gap19 or Gap26 were also applied during OGD/R injury; Cx43 protein levels were determined by western blot and cytoimmunofluorescene staining, hemichannel activities by Ethidium bromide uptake and ATP concentration detection, and gap junction intercellular communication (GJIC) permeability by parachute assay. Further, astrocyte-conditioned medium (ACM) was collected and incubated with microglia. Meanwhile, ATP or apyrase were applied to explore the role of ATP during OGD/R injury. Microglial activation, M1/M2 phenotypes, and M1/M2-related cytokines were detected. Also, microglia-conditioned medium (MEM) was collected and incubated with astrocytes to further investigate its influence on astrocytic hemichannel activity and GJIC permeability. Lastly, effects of ACM and MCM on neuronal viability were detected by flow cytometry. Results We found that OGD/R induced abnormally opened hemichannels with increased ATP release and EtBr uptake but reduced GJIC permeability. WB tests showed decreased astrocytic plasma membrane’s Cx43, while showing an increase in cytoplasma. Treating OGD/R-injured microglia with ATP or OGD/R-ACM induced further microglial activation and secondary pro-inflammatory cytokine release, with the M1 phenotype predominating. Conversely, astrocytes incubated with OGD/R-MCM exhibited increased hemichannel opening but reduced GJIC coupling. Both SalB and CBX inhibited abnormal astrocytic hemichannel opening and ATP release and switched the activated microglial phenotype from M1 to M2, thus providing effective neuroprotection. Application of Gap19 or Gap26 showed similar results with CBX. We also found that OGD/R injury caused both plasma membrane p-Cx43(Ser265) and p-Src(Tyr416) significantly upregulated; application of SalB may be inhibiting Src kinase and attenuating Cx43 internalization. Meanwhile, CBX treatment induced obviously downregulation of p-Cx43(Ser368) and p-PKC(Ser729) protein levels in plasma membrane. Conclusions We propose a vicious cycle exists between astrocytic hemichannel and microglial activation after OGD/R injury, which would aggravate neuroinflammatory responses and neuronal damage. Astrocytic Cx43, hemichannels, and GJIC play critical roles in OGD/R injury-induced neuroinflammatory responses; treatment differentially targeting astrocytic Cx43, hemichannels, and GJIC may provide novel avenues for therapeutics during cerebral I/R injury. Electronic supplementary material The online version of this article (10.1186/s12974-018-1127-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiang Yin
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Liangshu Feng
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Di Ma
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Ping Yin
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Xinyu Wang
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Shuai Hou
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Jingdian Zhang
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Meiying Xin
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China.
| |
Collapse
|
28
|
Imaizumi T, Hayakari R, Watanabe S, Aizawa T, Matsumiya T, Yoshida H, Tsuruga K, Kawaguchi S, Tanaka H. Cylindromatosis (CYLD), a Deubiquitinase, Attenuates Inflammatory Signaling Pathways by Activating Toll-Like Receptor 3 in Human Mesangial Cells. Kidney Blood Press Res 2017; 42:942-950. [PMID: 29166644 DOI: 10.1159/000485084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/22/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Cylindromatosis (CYLD), a deubiquitinase, negatively regulates nuclear factor-κB in various cells. However, its potential roles in glomerular inflammation remain unclear. Because the activation of the Toll-like receptor 3 (TLR3)/type I interferon (IFN) pathways plays a pivotal role in chronic kidney diseases (CKD), we examined the role of CYLD in the TLR3 signaling in cultured human mesangial cells (MCs). METHODS We stimulated CYLD-silenced MCs with polyinosinic-polycytidylic acid (poly IC), a synthetic analogue of dsRNA, and studied representative TLR3/IFN-β pathways (i.e., TLR3/IFN-β/retinoic acid-inducible gene-I (RIG-I)/CCL5, and TLR3/IFN-β/melanoma differentiation associated gene 5 (MDA5)/CXCL10 axes) using RT-PCR, western blotting, and ELISA. We also used immunofluorescence staining and microscopy to examine mesangial CYLD expression in biopsied specimens from patients with CKD. RESULTS CYLD silencing resulted in an increase of poly IC-induced RIG-I and MDA5 protein levels and increased CCL5 and CXCL10 mRNA and protein expression, but unexpectedly decreased mRNA expressions of RIG-I and MDA5. Interestingly, CYLD silencing did not affect IFN-β or the phosphorylated STAT1 (signal transducers and activator of transcription protein 1). CYLD was highly expressed in biopsied specimens from patients with proliferative lupus nephritis (LN). CONCLUSION CYLD inhibits post-transcriptional regulation of RIG-I and MDA5 expression following TLR3 activation in MCs. CYLD may be involved in the pathogenesis of CKD, especially pathogenesis of LN.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shogo Kawaguchi
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroshi Tanaka
- Department of Pediatrics, Hirosaki, Japan
- Department of School Health Science, Hirosaki University Faculty of Education, Hirosaki, Japan
| |
Collapse
|
29
|
Li CC, Dong HJ, Wang P, Meng W, Chi XJ, Han SC, Ning S, Wang C, Wang XJ. Cellular protein GLTSCR2: A valuable target for the development of broad-spectrum antivirals. Antiviral Res 2017; 142:1-11. [PMID: 28286234 PMCID: PMC7113796 DOI: 10.1016/j.antiviral.2017.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/20/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022]
Abstract
Viral infection induces translocation of the nucleolar protein GLTSCR2 from the nucleus to the cytoplasm, resulting in attenuation of the type I interferon IFN-β. Addressing the role of GLTSCR2 in viral replication, we detect that knocking down GLTSCR2 by shRNAs results in significant suppression of viral replication in mammalian and chicken cells. Injection of chicken embryo with the GLTSCR2-specific shRNA-1370 simultaneously or 24 h prior to infection with Newcastle disease virus (NDV) substantially reduces viral replication in chicken embryo fibroblasts. Injection of shRNA-1370 into chicken embryo also reduces the replication of avian influenza virus (AIV). In contrast, GLTSCR2-derived protein G4-T, forming α-helical dimers, increases replication of seven various DNA and RNA viruses in cells. Our studies reveal that alteration of the function of cellular GLTSCR2 plays a role in supporting viral replication. GLTSCR2 should be seriously considered as a therapeutic target for developing broad spectrum antiviral agents to effectively control viral infection.
Collapse
Affiliation(s)
- Cui-Cui Li
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hui-Jun Dong
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Wang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wen Meng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jing Chi
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Shi-Chong Han
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuo Ning
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chuang Wang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jia Wang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
30
|
Liu Y, Olagnier D, Lin R. Host and Viral Modulation of RIG-I-Mediated Antiviral Immunity. Front Immunol 2017; 7:662. [PMID: 28096803 PMCID: PMC5206486 DOI: 10.3389/fimmu.2016.00662] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022] Open
Abstract
Innate immunity is the first line of defense against invading pathogens. Rapid and efficient detection of pathogen-associated molecular patterns via pattern-recognition receptors is essential for the host to mount defensive and protective responses. Retinoic acid-inducible gene-I (RIG-I) is critical in triggering antiviral and inflammatory responses for the control of viral replication in response to cytoplasmic virus-specific RNA structures. Upon viral RNA recognition, RIG-I recruits the mitochondrial adaptor protein mitochondrial antiviral signaling protein, which leads to a signaling cascade that coordinates the induction of type I interferons (IFNs), as well as a large variety of antiviral interferon-stimulated genes. The RIG-I activation is tightly regulated via various posttranslational modifications for the prevention of aberrant innate immune signaling. By contrast, viruses have evolved mechanisms of evasion, such as sequestrating viral structures from RIG-I detections and targeting receptor or signaling molecules for degradation. These virus–host interactions have broadened our understanding of viral pathogenesis and provided insights into the function of the RIG-I pathway. In this review, we summarize the recent advances regarding RIG-I pathogen recognition and signaling transduction, cell-intrinsic control of RIG-I activation, and the viral antagonism of RIG-I signaling.
Collapse
Affiliation(s)
- Yiliu Liu
- Jewish General Hospital, Lady Davis Institute, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - David Olagnier
- Jewish General Hospital, Lady Davis Institute, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Rongtuan Lin
- Jewish General Hospital, Lady Davis Institute, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
31
|
Chiang C, Gack MU. Post-translational Control of Intracellular Pathogen Sensing Pathways. Trends Immunol 2016; 38:39-52. [PMID: 27863906 PMCID: PMC5580928 DOI: 10.1016/j.it.2016.10.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 01/15/2023]
Abstract
Mammalian cells recognize virus-derived nucleic acids using a defined set of intracellular sensors including the DNA sensors cyclic GMP–AMP (cGAMP) synthase (cGAS) and interferon gamma (IFNγ)-inducible protein 16 (IFI16) as well as viral RNA receptors of the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family. Following innate immune recognition, these sensors launch an immune response that is characterized by the transcriptional upregulation of many antiviral molecules, including proinflammatory cytokines, chemokines, and IFN-stimulated genes. Recent studies have demonstrated that the signal transduction initiated by these sensors is sophisticatedly regulated by post-translational modifications (PTMs) resulting in a robust yet ‘tunable’ cytokine response to maintain immune homeostasis. Here we summarize recent advances in our understanding of how PTMs and regulatory enzymes control the signaling activity of RLRs, cGAS, and IFI16 as well as their proximal adaptor proteins. Positive feedforward regulatory mechanisms serve as an important means of signal amplification to ensure an effective innate immune response. However, negative regulatory circuits are essential for the prevention of premature or overactive proinflammatory responses, which could have harmful consequences for the host organism. Phosphorylation and different types of polyubiquitin chains, particularly K63-linked ubiquitination, are important for fine-tuning signaling initiated by intracellular viral RNA and DNA receptors. Acetylation, glutamylation, and deamidation of innate immune sensors or components in their signaling pathways also dynamically modulate antiviral cytokine induction. Insight into the molecular mechanisms and regulatory enzymes that modulate innate sensing pathways may lead to therapeutics to boost antiviral immunity or dampen proinflammatory/autoimmune responses.
Collapse
Affiliation(s)
- Cindy Chiang
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|