1
|
Schmitt C, Gasparini J, Moullec H, Walch L, Leroux-Coyau M, Leloup J. Local, environmental and trace metal effects on gut microbiota diversity in urban feral pigeons. ENVIRONMENTAL RESEARCH 2025; 273:121263. [PMID: 40024502 DOI: 10.1016/j.envres.2025.121263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Nowadays, understanding the biotic responses to the enhanced urbanization need to encompass not the only the physiological and phenotypic features but also the related microbiota of wildlife animals. One of main threats in urban ecosystems is the chemical pollution. Thus, we have explored whether the cloacal microbiota of feral pigeons (Columba livia) is impacted by both their geographical foraging area, and metal exposure in an urban context. First, pigeons were captured in 4 specific areas of Paris (France) and placed in captivity. By applying a 16SrRNA metabarcoding approach, we observed that the gut microbiota diversity was structured according to the capture sites, with strong variation of Actinobacteria, Bacilli and Clostridia, that could be linked to the granivorous or low-protein diets. Subsequently, we experimentally exposed these pigeons to zinc and/or lead (two-factor cross design) during 90 days in a non-urban environment, but no impact on the composition nor diversity of pigeon gut microbiota, has been observed after 45 and 90 days of metal exposures. However, the composition and diversity significantly differed from the microbiota at the capture period, with the emergence of taxa belonging to Corynebacterium and Bifidobacterium in captive conditions. These data highlight a strong impact of the lifestyles (captivity in non-urban environment) on the gut microbiota composition. In parallel, we hypothesized that the diet and the local environment might have smoothed the impact of the metal exposure for pigeons that could quickly change the structure of their gut microbiota. Our findings shed light on the effects of urban pollution and environment on bird communities, that can be extended to their gut microbiota causing potential additive or synergic negative effects to host organisms and populations.
Collapse
Affiliation(s)
- Clarence Schmitt
- Sorbonne Université, Univ Paris-Cité, Univ Paris-Est, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement de Paris, IEES Paris, F-75005, Paris, France
| | - Julien Gasparini
- Sorbonne Université, Univ Paris-Cité, Univ Paris-Est, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement de Paris, IEES Paris, F-75005, Paris, France
| | - Héloïse Moullec
- Sorbonne Université, Univ Paris-Cité, Univ Paris-Est, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement de Paris, IEES Paris, F-75005, Paris, France; Department of Biology, University of Turku, Turku, Finland
| | - Laurence Walch
- Sorbonne Université, Univ Paris-Cité, Univ Paris-Est, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement de Paris, IEES Paris, F-75005, Paris, France
| | - Mathieu Leroux-Coyau
- Sorbonne Université, Univ Paris-Cité, Univ Paris-Est, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement de Paris, IEES Paris, F-75005, Paris, France
| | - Julie Leloup
- Sorbonne Université, Univ Paris-Cité, Univ Paris-Est, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement de Paris, IEES Paris, F-75005, Paris, France.
| |
Collapse
|
2
|
Kang X, Shao M, Jiang J, He L, Lu Y, Song J, Xu J, Fan Z. The Gut Microbiome of the Asiatic Toad ( Bufo gargarizans) Reflects Environmental Changes and Human Activities. Ecol Evol 2025; 15:e71394. [PMID: 40342698 PMCID: PMC12058643 DOI: 10.1002/ece3.71394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/26/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025] Open
Abstract
Amphibians are extremely sensitive to environmental changes, and their gut microbiome may have different responses to environmental changes. Here, metagenomic sequencing was used to investigate the intestinal microbiota of the Asiatic toad (Bufo gargarizans) from three different habitats (city areas, transition areas, and wild areas) of Sichuan Province, China. The results showed that Proteobacteria, Firmicutes, and Fusobacteria were the main bacteria in the gut of B. gargarizans. There were significant differences in the composition and function of the gut microbiome among the samples from the three different habitats. Enterobacteriaceae showed significant changes in the three habitats and occupied a high relative abundance in the city areas, especially for Citrobacter. Especially, antibiotic resistance genes (ARGs) and virulence factors (VFs) were significantly increased in city areas. We performed de novo assembly of the metagenome-assembled genomes (MAGs). In total, 322 nonredundant MAGs were reconstructed, 304 of which might be potential novel genomes. Among the 13 species-level genome bins (SGBs) belonging to Enterobacteriaceae, the one belonging to Citrobacter portucalensis annotated the most types of ARGs and VFs. Phylogenetic and functional analyses of the assembled C. portucalensis MAG and public genome data were carried out, suggesting that it may play a potential role in intestinal diseases in amphibians. Our study revealed the differences in the gut microbiome of B. gargarizans across different habitats and suggests that amphibian intestinal microbiota could serve as environmental indicators to reflect environmental changes and human activities. The reconstructed MAGs expanded our understanding of the gut microbiota in amphibians, which may serve as a substantial reservoir for microbiome resources.
Collapse
Affiliation(s)
- Xuena Kang
- Key Laboratory of Bioresources and Ecoenvironment, Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life SciencesSichuan UniversityChengduChina
| | - Meiying Shao
- West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Jiyang Jiang
- Key Laboratory of Bioresources and Ecoenvironment, Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Lewei He
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life SciencesSichuan UniversityChengduChina
| | - Yunwei Lu
- Key Laboratory of Bioresources and Ecoenvironment, Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Jiarong Song
- Key Laboratory of Bioresources and Ecoenvironment, Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Jue Xu
- West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment, Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
3
|
Ptatscheck C, Schulte L, Berger J, Caspers BA. Top-down effects of fire salamander larvae (Salamandra salamandra) on benthic organisms differs between habitat types. Sci Rep 2025; 15:13047. [PMID: 40240418 PMCID: PMC12003822 DOI: 10.1038/s41598-025-97458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Fire salamander larvae are top predators in limnic habitats and feed on a wide spectrum of prey. For our study, we hypothesized that the larvae have a top-down effect on meiofauna, but that this effect varies depending on the habitat the larvae originate from. Therefore, we collected larvae from ponds and streams and placed them individually into microcosms with sediment and benthos. After either one week or two weeks, we removed the larvae and counted the number of nematodes, oligochaetes, and rotifers. Already after week one, the abundance of meiofauna was significantly reduced, as was their biomass. Nematodes were more strongly reduced by pond larvae during this week, while oligochaetes were primarily affected by stream larvae but not by pond larvae, regardless of the sampling time. The rotifers were reduced by larvae from both habitats, but only during the first week and not during the second week. Our findings suggest that fire salamander larvae not only have a top-down effect on pelagic or macrobenthic organisms, as often described in other studies, but can also shape the community of small endobenthic organisms. Depending on habitat-specific adaptations in feeding behavior, morphology, or physiology, these effects can vary.
Collapse
Affiliation(s)
- Christoph Ptatscheck
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany.
| | - Laura Schulte
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany
| | - Jonathan Berger
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany
| | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany
- JICE, Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Bielefeld, Germany
| |
Collapse
|
4
|
Degregori S, Wang X, Kommala A, Schulhof N, Moradi S, MacDonald A, Eblen K, Jukovich S, Smith E, Kelleher E, Suzuki K, Hall Z, Knight R, Amato KR. Comparative gut microbiome research through the lens of ecology: theoretical considerations and best practices. Biol Rev Camb Philos Soc 2025; 100:748-763. [PMID: 39530277 PMCID: PMC11885713 DOI: 10.1111/brv.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Comparative approaches in animal gut microbiome research have revealed patterns of phylosymbiosis, dietary and physiological convergences, and environment-host interactions. However, most large-scale comparative studies, especially those that are highly cited, have focused on mammals, and efforts to integrate comparative approaches with existing ecological frameworks are lacking. While mammals serve as useful model organisms, developing generalised principles of how animal gut microbiomes are shaped and how these microbiomes interact bidirectionally with host ecology and evolution requires a more complete sampling of the animal kingdom. Here, we provide an overview of what past comparative studies have taught us about the gut microbiome, and how community ecology theory may help resolve certain contradictions in comparative gut microbiome research. We explore whether certain hypotheses are supported across clades, and how the disproportionate focus on mammals has introduced potential bias into gut microbiome theory. We then introduce a methodological solution by which public gut microbiome data of understudied hosts can be compiled and analysed in a comparative context. Our aggregation and analysis of 179 studies shows that generating data sets with rich host diversity is possible with public data and that key gut microbes associated with mammals are widespread across the animal kingdom. We also show the effects that sample size and taxonomic rank have on comparative gut microbiome studies and that results of multivariate analyses can vary significantly with these two parameters. While challenges remain in developing a universal model of the animal gut microbiome, we show that existing ecological frameworks can help bring us one step closer to integrating the gut microbiome into animal ecology and evolution.
Collapse
Affiliation(s)
- Samuel Degregori
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Xiaolin Wang
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Akhil Kommala
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Noah Schulhof
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Sadaf Moradi
- Department of Ecology and Evolutionary BiologyUniversity of California621 Young Drive SouthLos AngelesCA90095USA
| | - Allison MacDonald
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Kaitlin Eblen
- Department of Ecology and Evolutionary BiologyUniversity of California621 Young Drive SouthLos AngelesCA90095USA
| | - Sophia Jukovich
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Emma Smith
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Emily Kelleher
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Kota Suzuki
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Zoey Hall
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Rob Knight
- Department of PediatricsUniversity of CaliforniaSan DiegoLa JollaCA92093USA
| | - Katherine Ryan Amato
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| |
Collapse
|
5
|
Wang Z, Wang Y, He Z, Wu S, Wang S, Zhao N, Zhu W, Jiang J, Wang S. Research Status and Prospect of Amphibian Symbiotic Microbiota. Animals (Basel) 2025; 15:934. [PMID: 40218328 PMCID: PMC11987896 DOI: 10.3390/ani15070934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Amphibians are the most severely threatened vertebrate group in terms of biodiversity. The microbiota that coexist in a mutualistic relationship with amphibians play a crucial role in shaping their health status, reproductive efficiency, and environmental adaptability. Understanding the relationship between amphibians and microbiota is vital for elucidating the causes of amphibian diseases and developing effective prevention and control techniques, which in turn is significant for enhancing the effectiveness of amphibian diversity conservation. The main findings of this article are as follows: Firstly, it provides an overview of the systematic assessment and analysis methods regarding the importance of amphibians and their symbiotic microbiota, detailing the primary research techniques currently employed. Secondly, it discusses the impacts of environmental and biological factors on the characteristics of amphibian symbiotic microbial communities, including dimensions such as altitude, temperature fluctuations, and host dietary habits. Finally, the future directions of research on amphibian symbiotic microbiota are examined, with five recommendations presented: (1) Establish a comprehensive sample library and database of amphibians and their symbiotic microbiota to create a solid foundation for scientific research. (2) Explore the coevolutionary paths between amphibians and symbiotic microbiota to clarify the dynamic evolutionary patterns and principles of their interactions. (3) Strengthen research on specific areas of amphibians, especially the microbial communities in the oral cavity and cloaca. (4) Enhance research on the symbiotic microbiota of the Gymnophiona. (5) Strengthen international cooperation to build cross-border research platforms and jointly promote the rapid development of global amphibian symbiotic microbiology. This article summarizes the current research progress on the interaction between amphibians and their symbiotic microbiota (not necessarily mutualistic). It discusses the conservation of amphibian biodiversity from the perspective of their symbiotic microbial communities and provides a forward-looking analysis of future research directions. It aims to provide rich background information for understanding the complexity of this symbiotic system, while also having significant value in enhancing the effectiveness of amphibian biodiversity conservation.
Collapse
Affiliation(s)
- Ziyi Wang
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (Z.W.); (Y.W.); (Z.H.); (S.W.); (S.W.); (N.Z.)
| | - Yuting Wang
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (Z.W.); (Y.W.); (Z.H.); (S.W.); (S.W.); (N.Z.)
| | - Zhirong He
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (Z.W.); (Y.W.); (Z.H.); (S.W.); (S.W.); (N.Z.)
| | - Siyu Wu
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (Z.W.); (Y.W.); (Z.H.); (S.W.); (S.W.); (N.Z.)
| | - Suyue Wang
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (Z.W.); (Y.W.); (Z.H.); (S.W.); (S.W.); (N.Z.)
| | - Na Zhao
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (Z.W.); (Y.W.); (Z.H.); (S.W.); (S.W.); (N.Z.)
| | - Wei Zhu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
| | - Supen Wang
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (Z.W.); (Y.W.); (Z.H.); (S.W.); (S.W.); (N.Z.)
| |
Collapse
|
6
|
Han XY, Guo P, Fan QR, Zhou QB, Xu MD, Long XZ, Cui LY, Tong Q. Synergistic toxicity of cadmium and triadimefon on the microbiota and health of Rana dybowskii tadpoles. Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110092. [PMID: 39617313 DOI: 10.1016/j.cbpc.2024.110092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/09/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
The skin and gut microbiota are crucial to amphibians. Triadimefon (TF), a widely used triazole fungicide, controls crop diseases and regulates growth, with uncertain effects on amphibian microbiota. Contamination, typically involving mixed chemicals at low concentrations, including cadmium (Cd) and TF, may detrimentally affect amphibian growth, survival, and microbiota health in both the skin and gut, but few research has examined these consequences. This research examines the impact of Cd and TF on Rana dybowskii tadpoles, focusing on survival, body mass, and microbiome changes over 28 days across four groups: control, Cd, TF, and Cd + TF groups. Results showed significant reductions in survival and body mass in Cd and TF-treated groups, with the combination group being the most affected. Microbiota analysis revealed significant dysbiosis in both gut and skin microbiomes under pollutant stress, with a marked microbiota and a shift in dominant microbial communities. Function prediction analysis based on the microbiome composition highlighted significant differences across various biological pathways, including metabolism, immune system, environmental adaptation, and disease resistance. These alterations suggest that pollutant exposure compromises the tadpoles' ability to maintain homeostasis and resist pathogens. In conclusion, this study reveals the detrimental effects of Cd and TF on the survival, growth, and microbiomes of R. dybowskii tadpoles, indicating significant environmental and health risks.
Collapse
Affiliation(s)
- Xiao-Yun Han
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Peng Guo
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Qiu-Ru Fan
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Qing-Bo Zhou
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Ming-da Xu
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xin-Zhou Long
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Li-Yong Cui
- Jiamusi Branch of Heilongjiang Academy of Forestry Sciences, Jiamusi 154002, China
| | - Qing Tong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China; Jiamusi Branch of Heilongjiang Academy of Forestry Sciences, Jiamusi 154002, China.
| |
Collapse
|
7
|
Zhou J, Liu Z, Wang S, Li J, Zhang L, Liao Z. A novel framework unveiling the importance of heterogeneous selection and drift on the community structure of symbiotic microbial indicator taxa across altitudinal gradients in amphibians. Microbiol Spectr 2025; 13:e0419223. [PMID: 39772705 PMCID: PMC11792505 DOI: 10.1128/spectrum.04192-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/08/2024] [Indexed: 01/11/2025] Open
Abstract
Existing analytical frameworks for community assembly have a noticeable knowledge gap, lacking a comprehensive assessment of the relative contributions of individual or grouped microbial distinct sampling units (DSUs) and distinct taxonomic units (DTUs) to each mechanism. Here, we propose a comprehensive framework for identifying DTUs/DSUs that remarkably contribute to the various mechanisms sustaining microbial community structure. Amphibian symbiotic microbes along an altitudinal gradient from Sichuan Province, China, were employed to examine the proposed statistical framework. In different altitude groups, we found that heterogeneous selection governed the community structure of symbiotic microbes across DSUs, while stochastic processes tended to increase with altitude. For DTUs at phylum and family levels, drift emerged as the dominant mechanism driving the community structure in the most symbiotic microbial taxa, while heterogeneous selection governs the most dominant or indicator taxa. Notably, the relative contribution of heterogeneous selection was significantly positively correlated with the relative abundance and niche breadth of taxa, and negatively correlated with drift. We also detected that community assembly processes remarkably regulate the structure of symbiotic microbial communities and their correlation with environmental variables. Altogether, our modeling framework is a robust and valuable tool that further enlarges our insight into microbiota community assembly. IMPORTANCE Distinguishing the drivers regulating microbial community assembly is essential in microbial ecology. We propose a novel modeling framework to partition the relative contributions of each individual or group of microbial DSUs and DTUs into different underpinning mechanisms. An empirical study on amphibian symbiotic microbes notably enlarges insight into community assembly patterns in the herpetological symbiotic ecosystem and demonstrates that the proposed statistical framework is an informative and sturdy tool to quantify microbial assembly processes at both levels of DSUs and DTUs. More importantly, our proposed modeling framework can provide in-depth insights into microbiota community assembly within the intricate tripartite host-environment-microbe relationship.
Collapse
Affiliation(s)
- Jin Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhidong Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Sishuo Wang
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Lin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Ziyan Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
8
|
Yu W, Yang J, Teng LW, Zhao XL, Zhu ZY, Cui S, Du WG, Liu ZS, Zeng ZG. Reciprocal translocation experiments reveal gut microbiome plasticity and host specificity in a Qinghai-Xizang Plateau lizard. Zool Res 2025; 46:139-151. [PMID: 39846192 PMCID: PMC11891006 DOI: 10.24272/j.issn.2095-8137.2024.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/20/2025] [Indexed: 01/24/2025] Open
Abstract
Animal adaptation to environmental challenges is a complex process involving intricate interactions between the host genotype and gut microbiome composition. The gut microbiome, highly responsive to external environmental factors, plays a crucial role in host adaptability and may facilitate local adaptation within species. Concurrently, the genetic background of host populations influences gut microbiome composition, highlighting the bidirectional relationship between host and microbiome. Despite this, our understanding of gut microbiome plasticity and its role in host adaptability remains limited, particularly in reptiles. To clarify this issue, we conducted a reciprocal translocation experiment with gravid females of the Qinghai toad-headed lizards ( Phrynocephalus vlangalii) between high-altitude (2 600 m a.s.l.) and superhigh-altitude (3 600 m a.s.l.) environments on Dangjin Mountain of the Qinghai-Xizang Plateau, China. One year later, we assessed the phenotypes and gut microbiomes of their offspring. Results revealed significant plasticity in gut microbiome diversity and structure in response to contrasting elevations. High-altitude conditions increased diversity, and maternal effects appeared to enable high-altitude lizards to maintain elevated diversity when exposed to superhigh-altitude environments. Additionally, superhigh-altitude lizards displayed distinct gut microbiome structures with notable host specificity, potentially linked to their lower growth rates. Overall, these findings underscore the importance of the gut microbiome in facilitating reptilian adaptation to rapid environmental changes across altitudinal gradients. Furthermore, this study provides critical insights into microbial mechanisms underpinning local adaptation and adaptative plasticity, offering a foundation for future research on host-microbiome interactions in evolutionary and ecological contexts.
Collapse
Affiliation(s)
- Wei Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Wei Teng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, Heilongjiang 150040, China
| | - Xiao-Long Zhao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Shanghai Institute of Wildlife Epidemics, East China Normal University, Shanghai 200241, China
| | - Ze-Yu Zhu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Cui
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen-Sheng Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, Heilongjiang 150040, China. E-mail:
| | - Zhi-Gao Zeng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. E-mail:
| |
Collapse
|
9
|
Li K, Li J, Luo S, Chai L. Cogrowth advantage: Intestinal microbiota analysis of Bufo gargarizans and Rana chensinensis. Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111764. [PMID: 39396615 DOI: 10.1016/j.cbpa.2024.111764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Intestinal microbiota has profound effects on host health and adaptation to environmental changes. Bufo gargarizans and Rana chensinensis coexist in the same habitat and have been paid much attention to economically because of their medicinal value. To date, no comparison of differences between single and mixed populations has been made. In our study, differences in the structure and function of the intestinal microbial of B. gargarizans and R. chensinensis in environments of single-species and mixed-species growth were investigated by high-throughput sequencing. Our results suggest that the cogrowth of B. gargarizans and R. chensinensis could lead to the decrease of the abundance of pathogenic bacteria (Bosea) and the introduction or increase of beneficial bacteria (Kaistia, Cetobacterium and Erysipelatoclostridium). The Tax4Fun-based functional predictions revealed that the level of pathways involved in the metabolism of R. chensinensis in mixed-species aquaria is greatly up-regulated. This study provides useful information for ecologists, ecosystem policy makers and wildlife conservationists to promote more effective conservation measures.
Collapse
Affiliation(s)
- Kaiyue Li
- School of Water and Environment, Chang' an University, Xi'an 710054, China; College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jiayi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Shuangyan Luo
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang' an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang' an University, Xi'an 710054, China.
| |
Collapse
|
10
|
Wang Y, Liu Y, Xu Z, Chai L, Wang H. Variation in the sensitivity of intestine and skin of Bufo gargarizans and Rana chensinensis tadpoles in relation to zinc exposure. CHEMOSPHERE 2024; 363:142874. [PMID: 39019178 DOI: 10.1016/j.chemosphere.2024.142874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/06/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Zinc (Zn) contaminants in the aquatic environment have an intricate impact on amphibians. Amphibian gut and skin microbiota are participated in regulating their normal physiological functions. Here, we investigated the effects of Zn on the gut and skin tissues and microbiota of Bufo gargarizans and Rana chensinensis tadpoles using histological methods and 16S rRNA sequencing technology. Our results showed a decrease in the height of enterocytes and skin epithelial cells after Zn treatment. Furthermore, Zn exposure elicited alterations in the composition and structure of the gut and skin microbiota at the phylum and genus levels in Bufo gargarizans and Rana chensinensis tadpoles. The feature predictions revealed an elevation in the abundance of potentially pathogenic bacteria and stress-tolerant bacteria in the gut and skin of both tadpoles after zinc exposure. We also speculated that microbiota from various species and organs exhibit varying degrees of sensitivity to zinc based on the functional predictions results. In the context of increasing environmental pollution and the global amphibians decline, our research enriches the current understanding of effects of zinc on amphibian microbiota and provides new framework for artificial breeding and amphibian conservation.
Collapse
Affiliation(s)
- Yaxi Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| | - Ying Liu
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhangying Xu
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710062, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
11
|
Zhang J, Song P, Jiang F, Zhang T. Exploring the population interaction of Przewalski's gazelle ( Procapra przewalskii) based on the variations in gut microbiota across diverse geographic populations. Front Microbiol 2024; 15:1439554. [PMID: 39234536 PMCID: PMC11371741 DOI: 10.3389/fmicb.2024.1439554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
The differences in gut microbiota among different populations, to a certain extent, reflect the degree of interaction between individuals within populations. To assess the interaction levels among several small populations of Przewalski's gazelle (Procapra przewalskii) (n = 105, from seven different regions) based on differences in gut microbiota, we used the closely related Tibetan gazelle (P. picticaudata) (n = 52, from seven different regions) as a control. We then compared the gut microbial communities between different populations of the two species using high-throughput sequencing of the 16S rRNA gene. The results showed that within a 100 km geographical distance, the intergroup differences in relative abundance of dominant bacteria, α-diversity, β-diversity, and functional metabolism abundance were higher or significantly higher in Przewalski's gazelle (narrowly distributed species) compared to the Tibetan gazelle (widely distributed species). Additionally, the proportion of shared OTUs between groups in Przewalski's gazelle was significantly lower than in Tibetan gazelle (p < 0.05). Additionally, neutral community model results also showed lower dispersal limitation in the Tibetan gazelle compared to Przewalski's gazelle. Therefore, based on the above results, we comprehensively speculate that the spatial interaction degree of Przewalski's gazelle in different habitat patches is relatively low. This study, starting from the perspective of gut microbiota, adopts a non-genetic perspective or method to assess whether there is, or to what extent there is, close interaction between species populations.
Collapse
Affiliation(s)
- Jingjie Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Jiang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|
12
|
Khan I, Bu R, Ali Z, Iqbal MS, Shi H, Ding L, Hong M. Metagenomics Analysis Reveals the Composition and Functional Differences of Fecal Microbiota in Wild, Farm, and Released Chinese Three-Keeled Pond Turtles ( Mauremys reevesii). Animals (Basel) 2024; 14:1750. [PMID: 38929370 PMCID: PMC11201187 DOI: 10.3390/ani14121750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The intestine of living organisms harbors different microbiota associated with the biological functioning and health of the host and influences the process of ecological adaptation. Here, we studied the intestinal microbiota's composition and functional differences using 16S rRNA and metagenomic analysis in the wild, farm, and released Chinese three-keeled pond turtle (Mauremys reevesii). At the phylum level, Bacteroidota dominated, followed by Firmicutes, Fusobacteriota, and Actinobacteriota in the wild group, but Chloroflexi was more abundant in the farm and released groups. Moreover, Chryseobacterium, Acinetobacter, Comamonas, Sphingobacterium, and Rhodobacter were abundant in the released and farm cohorts, respectively. Cetobacterium, Paraclostridium, Lysobacter, and Leucobacter showed an abundance in the wild group. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed that the relative abundance of most pathways was significantly higher in the wild turtles (carbohydrate metabolism, lipid metabolism, metabolism of cofactors, and vitamins). The comprehensive antibiotic resistance database (CARD) showed that the antibiotic resistance gene (ARG) subtype macB was the most abundant in the farm turtle group, while tetA was higher in the wild turtles, and srpYmcr was higher in the released group. Our findings shed light on the association between the intestinal microbiota of M. reevesii and its habitats and could be useful for tracking habitats to protect and conserve this endangered species.
Collapse
Affiliation(s)
- Ijaz Khan
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| | - Rongping Bu
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou 535000, China
| | - Zeeshan Ali
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| | - Muhammad Shahid Iqbal
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| | - Haitao Shi
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| | - Li Ding
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| | - Meiling Hong
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| |
Collapse
|
13
|
Dong WJ, Xu MD, Yang XW, Yang XM, Long XZ, Han XY, Cui LY, Tong Q. Rice straw ash and amphibian health: A deep dive into microbiota changes and potential ecological consequences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171651. [PMID: 38490417 DOI: 10.1016/j.scitotenv.2024.171651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Rice straw is burned as a result of agricultural practices and technical limitations, generating significant volumes of ash that might have environmental and ecological consequences; however, the effects on organisms have not been researched. Amphibians depend on their gut and skin microbiomes. Ash exposure may cause inflammation and changes in microbial diversity and function in frogs' skin and gut microbiota due to its chemical composition and physical presence, but the implications remain unclear. Rana dybowskii were exposed to five aqueous extracts of ashes (AEA) concentrations for 30 days to study survival, metal concentrations, and microbial diversity, analyzing the microbiota of the cutaneous and gut microbiota using Illumina sequencing. Dominant elements in ash: K > Ca > Mg > Na > Al > Fe. In AEA, K > Na > Ca > Mg > As > Cu. Increased AEA concentrations significantly reduced frog survival. Skin microbiota alpha diversity varied significantly among all treatment groups, but not gut microbiota. Skin microbiota differed significantly across treatments via Bray-Curtis and weighted UniFrac; gut microbiota was only affected by Bray-Curtis. Skin microbiota varied significantly with AEA levels in Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes, while the gut microbiota's dominant phyla, Firmicutes, Bacteroidetes, and Proteobacteria, remained consistent across all groups. Lastly, the functional prediction showed that the skin microbiota had big differences in how it worked and looked, which were linked to different health and environmental adaptation pathways. The gut microbiota, on the other hand, had smaller differences. In conclusion, AEA exposure affects R. dybowskii survival and skin microbiota diversity, indicating potential health and ecological impacts, with less effect on gut microbiota.
Collapse
Affiliation(s)
- Wen-Jing Dong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Ming-da Xu
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xue-Wen Yang
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xiu-Mei Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Zhou Long
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xiao-Yun Han
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Li-Yong Cui
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Qing Tong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
14
|
Schulte L, Oswald P, Mühlenhaupt M, Ossendorf E, Kruse S, Kaiser S, Caspers BA. Stress response of fire salamander larvae differs between habitat types. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231304. [PMID: 38577214 PMCID: PMC10987980 DOI: 10.1098/rsos.231304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/12/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
The larvae of the European fire salamander (Salamandra salamandra) can inhabit two different habitats: streams and ponds. Streams are characterized by lower predation risks and higher food availability. Thus, ponds are considered a less suitable habitat. To investigate the differential impacts of these two habitats on larval physiology, we measured the stress response of larvae. After successfully validating the measure of water-borne corticosterone release rates in fire salamander larvae, we measured the baseline and stress-induced corticosterone of 64 larvae from ponds and streams in the field. We found that larvae in ponds have a higher baseline and stress-induced corticosterone levels. Additionally, we performed a reciprocal transplant experiment (RTE) and tested whether larvae can adapt their stress responses to changing habitats. After two weeks, we did not find an increase in corticosterone levels when comparing stress-induced corticosterone values with baseline corticosterone values in larvae transferred into ponds, irrespective of their habitat of origin. However, larvae transferred into streams still exhibited an increase in the stress-induced corticosterone response in comparison with the baseline values. These results show that non-invasive hormone measurements can provide information on the habitat quality and potential adaptation and thus emphasize the potential for its use in conservation efforts.
Collapse
Affiliation(s)
- Laura Schulte
- Behavioural Ecology Department, Bielefeld University, Bielefeld33615, Germany
| | - Pia Oswald
- Behavioural Ecology Department, Bielefeld University, Bielefeld33615, Germany
| | - Max Mühlenhaupt
- Behavioural Ecology Department, Bielefeld University, Bielefeld33615, Germany
| | - Edith Ossendorf
- Institute for Neuro- and Behavioural Biology, University of Münster, Münster48149, Germany
| | - Sabine Kruse
- Institute for Neuro- and Behavioural Biology, University of Münster, Münster48149, Germany
| | - Sylvia Kaiser
- Institute for Neuro- and Behavioural Biology, University of Münster, Münster48149, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany
| | - Barbara A. Caspers
- Behavioural Ecology Department, Bielefeld University, Bielefeld33615, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany
| |
Collapse
|
15
|
Vargas-Gastélum L, Romer AS, Ghotbi M, Dallas JW, Alexander NR, Moe KC, McPhail KL, Neuhaus GF, Shadmani L, Spatafora JW, Stajich JE, Tabima JF, Walker DM. Herptile gut microbiomes: a natural system to study multi-kingdom interactions between filamentous fungi and bacteria. mSphere 2024; 9:e0047523. [PMID: 38349154 PMCID: PMC10964425 DOI: 10.1128/msphere.00475-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/10/2024] [Indexed: 03/27/2024] Open
Abstract
Reptiles and amphibians (herptiles) are some of the most endangered and threatened species on the planet and numerous conservation strategies are being implemented with the goal of ensuring species recovery. Little is known, however, about the gut microbiome of wild herptiles and how it relates to the health of these populations. Here, we report results from the gut microbiome characterization of both a broad survey of herptiles, and the correlation between the fungus Basidiobolus, and the bacterial community supported by a deeper, more intensive sampling of Plethodon glutinosus, known as slimy salamanders. We demonstrate that bacterial communities sampled from frogs, lizards, and salamanders are structured by the host taxonomy and that Basidiobolus is a common and natural component of these wild gut microbiomes. Intensive sampling of multiple hosts across the ecoregions of Tennessee revealed that geography and host:geography interactions are strong predictors of distinct Basidiobolus operational taxonomic units present within a given host. Co-occurrence analyses of Basidiobolus and bacterial community diversity support a correlation and interaction between Basidiobolus and bacteria, suggesting that Basidiobolus may play a role in structuring the bacterial community. We further the hypothesis that this interaction is advanced by unique specialized metabolism originating from horizontal gene transfer from bacteria to Basidiobolus and demonstrate that Basidiobolus is capable of producing a diversity of specialized metabolites including small cyclic peptides.IMPORTANCEThis work significantly advances our understanding of biodiversity and microbial interactions in herptile microbiomes, the role that fungi play as a structural and functional members of herptile gut microbiomes, and the chemical functions that structure microbiome phenotypes. We also provide an important observational system of how the gut microbiome represents a unique environment that selects for novel metabolic functions through horizontal gene transfer between fungi and bacteria. Such studies are needed to better understand the complexity of gut microbiomes in nature and will inform conservation strategies for threatened species of herpetofauna.
Collapse
Affiliation(s)
- Lluvia Vargas-Gastélum
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Alexander S. Romer
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| | - Marjan Ghotbi
- Research Division 3, Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Jason W. Dallas
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| | - N. Reed Alexander
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| | - Kylie C. Moe
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| | - Kerry L. McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - George F. Neuhaus
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Leila Shadmani
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Joseph W. Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
- Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Javier F. Tabima
- Department of Biology, Clark University, Worcester, Massachusetts, USA
| | - Donald M. Walker
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| |
Collapse
|
16
|
Bertoldo G, Broccanello C, Tondello A, Cappellozza S, Saviane A, Kovitvadhi A, Concheri G, Cullere M, Stevanato P, Zotte AD, Squartini A. Determining the hierarchical order by which intestinal tract, administered diet, and individual relay can shape the gut microbiome of fattening quails. PLoS One 2024; 19:e0298321. [PMID: 38512802 PMCID: PMC10956773 DOI: 10.1371/journal.pone.0298321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/18/2024] [Indexed: 03/23/2024] Open
Abstract
A bacterial metabarcoding approach was used to compare the microbiome composition of caecal and faecal samples from fattening Japanese quails (Coturnix coturnix japonica) fed three different diet regimes. The tested feedstuffs included (1) a commercial diet for fattening quails, (2) a commercial diet containing 12% full-fat silkworm (Bombyx mori) pupae meal, and (3) a commercial diet containing 12% defatted silkworm pupae meal. The aim of the experiment was to verify the relative effect of three variables (diet type, gut tract comparing caecum to rectum, and individual animal) in determining the level of bacterial community dissimilarity to rank the relevance of each of the three factors in affecting and shaping community composition. To infer such ranking, the communities resulting from the high-throughput sequencing from each sample were used to calculate the Bray-Curtis distances in all the pairwise combinations, whereby identical communities would score 0 and totally different ones would yield the maximum distance, equal to 1. The results indicated that the main driver of divergence was the gut tract, as distances between caecal and faecal samples were higher on average, irrespective of diet composition, which scored second in rank, and of whether they had been sampled from the same individual, which was the least effective factor. Simpson's species diversity indexes was not significantly different when comparing tracts or diets, while community evenness was reduced in full-fat silkworm diet-fed animals. The identities of the differentially displayed taxa that were statistically significant as a function of gut tract and diet regimen are discussed in light of their known physiological and functional traits.
Collapse
Affiliation(s)
- Giovanni Bertoldo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Padova, Italy
| | - Chiara Broccanello
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Padova, Italy
| | - Alessandra Tondello
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Padova, Italy
| | - Silvia Cappellozza
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Sericulture Laboratory of Padua, Padova, Italy
| | - Alessio Saviane
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Sericulture Laboratory of Padua, Padova, Italy
| | - Attawit Kovitvadhi
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Giuseppe Concheri
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Padova, Italy
| | - Marco Cullere
- Department of Animal Medicine, Production and Health, MAPS, University of Padova, Padova, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Padova, Italy
| | - Antonella Dalle Zotte
- Department of Animal Medicine, Production and Health, MAPS, University of Padova, Padova, Italy
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Padova, Italy
| |
Collapse
|
17
|
Scholier T, Lavrinienko A, Kallio ER, Watts PC, Mappes T. Effects of past and present habitat on the gut microbiota of a wild rodent. Proc Biol Sci 2024; 291:20232531. [PMID: 38320610 PMCID: PMC10846943 DOI: 10.1098/rspb.2023.2531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
The response of the gut microbiota to changes in the host environment can be influenced by both the host's past and present habitats. To quantify their contributions for two different life stages, we studied the gut microbiota of wild bank voles (Clethrionomys glareolus) by performing a reciprocal transfer experiment with adults and their newborn offspring between urban and rural forests in a boreal ecosystem. Here, we show that the post-transfer gut microbiota in adults did not shift to resemble the post-transfer gut microbiota of animals 'native' to the present habitat. Instead, their gut microbiota appear to be structured by both their past and present habitat, with some features of the adult gut microbiota still determined by the past living environment (e.g. alpha diversity, compositional turnover). By contrast, we did not find evidence of the maternal past habitat (maternal effects) affecting the post-transfer gut microbiota of the juvenile offspring, and only a weak effect of the present habitat. Our results show that both the contemporary living environment and the past environment of the host organism can structure the gut microbiota communities, especially in adult individuals. These data are relevant for decision-making in the field of conservation and wildlife translocations.
Collapse
Affiliation(s)
- Tiffany Scholier
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Anton Lavrinienko
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
- Laboratory of Food Systems Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich 8092, Switzerland
| | - Eva R. Kallio
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Phillip C. Watts
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| |
Collapse
|
18
|
Brunetti AE, Lyra ML, Monteiro JPC, Zurano JP, Baldo D, Haddad CFB, Moeller AH. Convergence of gut microbiota in myrmecophagous amphibians. Proc Biol Sci 2023; 290:20232223. [PMID: 37964521 PMCID: PMC10646458 DOI: 10.1098/rspb.2023.2223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Abstract
The gut microbiome composition of terrestrial vertebrates is known to converge in response to common specialized dietary strategies, like leaf-eating (folivory) or ant- and termite-eating (myrmecophagy). To date, such convergence has been studied in mammals and birds, but has been neglected in amphibians. Here, we analysed 15 anuran species (frogs and toads) representing five Neotropical families and demonstrated the compositional convergence of the gut microbiomes of distantly related myrmecophagous species. Specifically, we found that the gut microbial communities of bufonids and microhylids, which have independently evolved myrmecophagy, were significantly more similar than expected based on their hosts' evolutionary divergence. Conversely, we found that gut microbiome composition was significantly associated with host evolutionary history in some cases. For instance, the microbiome composition of Xenohyla truncata, one of the few known amphibians that eat fruits, was not different from those of closely related tree frogs with an arthropod generalist diet. Bacterial taxa overrepresented in myrmecophagous species relative to other host families include Paludibacter, Treponema, and Rikenellaceae, suggesting diet-mediated selection and prey-to-predator transmission likely driving the observed compositional convergence. This study provides a basis for examining the roles of the gut microbiome in host tolerance and sequestration of toxic alkaloids from ants and termites.
Collapse
Affiliation(s)
- Andrés E. Brunetti
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (IBS, UNaM-CONICET), Posadas, Misiones 3300, Argentina
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Mariana L. Lyra
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Juliane P. C. Monteiro
- Departamento de Biodiversidade e Centro de Aquicultura da UNESP (CAUNESP), Instituto de Biociências, UNESP-Universidade Estadual Paulista, Rio Claro, SP 13506-900, Brazil
| | - Juan P. Zurano
- Instituto de Biología Subtropical (IBS, UNaM-CONICET), Puerto Iguazú, Misiones 3370, Argentina
| | - Diego Baldo
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (IBS, UNaM-CONICET), Posadas, Misiones 3300, Argentina
| | - Celio F. B. Haddad
- Departamento de Biodiversidade e Centro de Aquicultura da UNESP (CAUNESP), Instituto de Biociências, UNESP-Universidade Estadual Paulista, Rio Claro, SP 13506-900, Brazil
| | - Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
19
|
Leonhardt F, Keller A, Arranz Aveces C, Ernst R. From Alien Species to Alien Communities: Host- and Habitat-Associated Microbiomes in an Alien Amphibian. MICROBIAL ECOLOGY 2023; 86:2373-2385. [PMID: 37233803 PMCID: PMC10640505 DOI: 10.1007/s00248-023-02227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
Alien species can host diverse microbial communities. These associated microbiomes may be important in the invasion process and their analysis requires a holistic community-based approach. We analysed the skin and gut microbiome of Eleutherodactylus johnstonei from native range populations in St Lucia and exotic range populations in Guadeloupe, Colombia, and European greenhouses along with their respective environmental microbial reservoir through a 16S metabarcoding approach. We show that amphibian-associated and environmental microbial communities can be considered as meta-communities that interact in the assembly process. High proportions of bacteria can disperse between frogs and environment, while respective abundances are rather determined by niche effects driven by the microbial community source and spatial environmental properties. Environmental transmissions appeared to have higher relevance for skin than for gut microbiome composition and variation. We encourage further experimental studies to assess the implications of turnover in amphibian-associated microbial communities and potentially invasive microbiota in the context of invasion success and impacts. Within this novel framework of "nested invasions," (meta-)community ecology thinking can complement and widen the traditional perspective on biological invasions.
Collapse
Affiliation(s)
- Franziska Leonhardt
- Faculty of Biology, Technical University of Dresden, 01062, Dresden, Germany.
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Königsbrücker Landstraße 159, 01109, Dresden, Germany.
| | - Alexander Keller
- Faculty of Biology, Ludwig-Maximilians-University of Munich, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Clara Arranz Aveces
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70173, Stuttgart, Germany
| | - Raffael Ernst
- Faculty of Biology, Technical University of Dresden, 01062, Dresden, Germany.
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Königsbrücker Landstraße 159, 01109, Dresden, Germany.
| |
Collapse
|
20
|
Koziol A, Odriozola I, Leonard A, Eisenhofer R, San José C, Aizpurua O, Alberdi A. Mammals show distinct functional gut microbiome dynamics to identical series of environmental stressors. mBio 2023; 14:e0160623. [PMID: 37650630 PMCID: PMC10653949 DOI: 10.1128/mbio.01606-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE In our manuscript, we report the first interspecific comparative study about the plasticity of the gut microbiota. We conducted a captivity experiment that exposed wild-captured mammals to a series of environmental challenges over 45 days. We characterized their gut microbial communities using genome-resolved metagenomics and modeled how the taxonomic, phylogenetic, and functional microbial dynamics varied across a series of disturbances in both species. Our results indicate that the intrinsic properties (e.g., diversity and functional redundancy) of microbial communities coupled with physiological attributes (e.g., thermal plasticity) of hosts shape the taxonomic, phylogenetic, and functional response of gut microbiomes to environmental stressors, which might influence their contribution to the acclimation and adaptation capacity of animal hosts.
Collapse
Affiliation(s)
- Adam Koziol
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Iñaki Odriozola
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Aoife Leonard
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Raphael Eisenhofer
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Carlos San José
- Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
| | - Ostaizka Aizpurua
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Santos B, Martins FMS, Sabino-Pinto J, Licata F, Crottini A. Skin and gut microbiomes of tadpoles vary differently with host and water environment: a short-term experiment using 16S metabarcoding. Sci Rep 2023; 13:16321. [PMID: 37770544 PMCID: PMC10539280 DOI: 10.1038/s41598-023-43340-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/22/2023] [Indexed: 09/30/2023] Open
Abstract
The host-microbiome community is influenced by several host and environmental factors. In order to disentangle the individual effects of host and environment, we performed a laboratory experiment to assess the effects of the exposure to different water sources on the skin and gut microbiome of two amphibian species (Pelophylax perezi and Bufo spinosus). We observed that the bacterial communities greatly varied with water environment and host identity. Tadpoles of B. spinosus collected from a waterbody with poorer bacterial diversity exhibited a more diverse skin and gut microbiome after exposed to a richer water source. Tadpoles of P. perezi, originally collected from a richer water environment, exhibited less marked alterations in diversity patterns independently of the water source but showed alterations in gut composition. These results highlight that environment alterations, such as the water source, combined with the host effect, impact the microbiome of amphibian species in different ways; the population history (e.g., previous water environment and habitat) of the host species may also influence future alterations on tadpole microbiome.
Collapse
Affiliation(s)
- Bárbara Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
| | - Filipa M S Martins
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Joana Sabino-Pinto
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Fulvio Licata
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal
| |
Collapse
|
22
|
Su HY, Hussain B, Hsu BM, Lee KH, Mao YC, Chiang LC, Chen JS. Bacterial community analysis identifies Klebsiella pneumoniae as a native symbiotic bacterium in the newborn Protobothrops mucrosquamatus. BMC Microbiol 2023; 23:213. [PMID: 37553640 PMCID: PMC10408043 DOI: 10.1186/s12866-023-02936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The study of the native microbiome of organisms is crucial. The connection between the native microbiome and the host affects the formation of the innate immune system and the organism's growth. However, the native microbiome of newborn venomous snakes has not been reported. Therefore, we aimed to determine the oral and skin microbiomes of newborn Protobothrops mucrosquamatus. RESULTS We performed 16 S full-length sequencing on 14 samples collected from 7 newborn P. mucrosquamatus individuals, specifically targeting their oral and skin microbiomes. In terms of the oral and skin microbiome, the main species were Klebsiella pneumoniae lineages. According to subspecies/species analysis, the proportion from highest to lowest was K. quasipneumoniae subsp. similipneumoniae, K. pneumoniae subsp. pneumoniae, and K. pneumoniae subsp. rhinoscleromatis. These three bacteria accounted for 62.5% and 85% of the skin and oral activity, respectively. The oral microbiome of newborn P. mucrosquamatus did not comprise common bacteria found in snakebite wounds or oral cultures in adult snakes. Therefore, the source of other microbiomes in the oral cavities of adult snakes may be the environment or prey. Functional Annotation of the Prokaryotic Taxa analysis showed that the skin/oral native microbiome metabolism was related to fermentation and human infection owing to the dominance of K. pneumoniae lineages. The characteristics of K. pneumoniae may impact the development of venom in venomous snakes. CONCLUSION The results of the native microbiome in the oral cavity and skin of newborn P. mucrosquamatus demonstrated that the habitat environment and prey capture may affect the composition of bacteria in adult snakes. We hypothesized that the native microbiome influences newborn venomous snakes and that K. pneumoniae lineages related to citrate fermentation may play a role in venom growth. However, further verification of this is required.
Collapse
Affiliation(s)
- Hung-Yuan Su
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Kuo-Hsin Lee
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Emergency Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung City, Taiwan
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Defense Medical Centre, Taipei, Taiwan
| | - Liao-Chun Chiang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- Department of Biology and Anatomy, National Defense Medical Centre, Taipei, Taiwan.
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan.
| |
Collapse
|
23
|
Fieschi-Méric L, van Leeuwen P, Denoël M, Lesbarrères D. Encouraging news for in situ conservation: Translocation of salamander larvae has limited impacts on their skin microbiota. Mol Ecol 2023. [PMID: 36872055 DOI: 10.1111/mec.16914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/07/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
The key role of symbiotic skin bacteria communities in amphibian resistance to emerging pathogens is well recognized, but factors leading to their dysbiosis are not fully understood. In particular, the potential effects of population translocations on the composition and diversity of hosts' skin microbiota have received little attention, although such transfers are widely carried out as a strategy for amphibian conservation. To characterize the potential reorganization of the microbiota over such a sudden environmental change, we conducted a common-garden experiment simulating reciprocal translocations of yellow-spotted salamander larvae across three lakes. We sequenced skin microbiota samples collected before and 15 days after the transfer. Using a database of antifungal isolates, we identified symbionts with known function against the pathogen Batrachochytrium dendrobatidis, a major driver of amphibian declines. Our results indicate an important reorganization of bacterial assemblages throughout ontogeny, with strong changes in composition, diversity and structure of the skin microbiota in both control and translocated individuals over the 15 days of monitoring. Unexpectedly, the diversity and community structure of the microbiota were not significantly affected by the translocation event, thus suggesting a strong resilience of skin bacterial communities to environmental change-at least across the time-window studied here. A few phylotypes were more abundant in the microbiota of translocated larvae, but no differences were found among pathogen-inhibiting symbionts. Taken together, our results support amphibian translocations as a promising strategy for this endangered animal class, with limited impact on their skin microbiota.
Collapse
Affiliation(s)
- Léa Fieschi-Méric
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), Université de Liège, Liège, Belgium.,Biology Department, Laurentian University, Sudbury, Ontario, Canada
| | - Pauline van Leeuwen
- Biology Department, Laurentian University, Sudbury, Ontario, Canada.,Conservation Genetics Laboratory, University de Liège, Liège, Belgium
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), Université de Liège, Liège, Belgium
| | - David Lesbarrères
- Biology Department, Laurentian University, Sudbury, Ontario, Canada.,Environment and Climate Change Canada, Ottawa, Ontario, Canada
| |
Collapse
|
24
|
Neha SA, Salazar-Bravo J. Fine-scale spatial variation shape fecal microbiome diversity and composition in black-tailed prairie dogs (Cynomys ludovicianus). BMC Microbiol 2023; 23:51. [PMID: 36858951 PMCID: PMC9979494 DOI: 10.1186/s12866-023-02778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/19/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Host associated gut microbiota are important in understanding the coevolution of host-microbe, and how they may help wildlife populations to adapt to rapid environmental changes. Mammalian gut microbiota composition and diversity may be affected by a variety of factors including geographic variation, seasonal variation in diet, habitat disturbance, environmental conditions, age, and sex. However, there have been few studies that examined how ecological and environmental factors influence gut microbiota composition in animals' natural environments. In this study, we explore how host habitat, geographical location and environmental factors affect the fecal microbiota of Cynomys ludovicianus at a small spatial scale. We collected fecal samples from five geographically distinct locations in the Texas Panhandle classified as urban and rural areas and analyzed them using high throughput 16S rRNA gene amplicon sequencing. RESULTS The results showed that microbiota of these fecal samples was largely dominated by the phylum Bacteroidetes. Fecal microbiome diversity and composition differed significantly across sampling sites and habitats. Prairie dogs inhabiting urban areas showed reduced fecal diversity due to more homogenous environment and, likely, anthropogenic disturbance. Urban prairie dog colonies displayed greater phylogenetic variation among replicates than those in rural habitats. Differentially abundant analysis revealed that bacterial species pathogenic to humans and animals were highly abundant in urban areas which indicates that host health and fitness might be negatively affected. Random forest models identified Alistipes shahii as the important species driving the changes in fecal microbiome composition. Despite the effects of habitat and geographic location of host, we found a strong correlation with environmental factors and that- average maximum temperature was the best predictor of prairie dog fecal microbial diversity. CONCLUSIONS Our findings suggest that reduction in alpha diversity in conjunction with greater dispersion in beta diversity could be indicative of declining host health in urban areas; this information may, in turn, help determine future conservation efforts. Moreover, several bacterial species pathogenic to humans and other animals were enriched in prairie dog colonies near urban areas, which may in turn adversely affect host phenotype and fitness.
Collapse
Affiliation(s)
- Sufia Akter Neha
- International Center for Arid and Semi-Arid Land Studies, Texas Tech University, Lubbock, TX, 79409, USA.
- Department of Biological Sciences, Texas Tech University, Lubbock, 79409, USA.
| | - Jorge Salazar-Bravo
- International Center for Arid and Semi-Arid Land Studies, Texas Tech University, Lubbock, TX, 79409, USA
- Department of Biological Sciences, Texas Tech University, Lubbock, 79409, USA
| |
Collapse
|
25
|
Wang Q, Wang H, Lv M, Wang X, Chen L. Sulfamethoxazole degradation by Aeromonas caviae and co-metabolism by the mixed bacteria. CHEMOSPHERE 2023; 317:137882. [PMID: 36657578 DOI: 10.1016/j.chemosphere.2023.137882] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/16/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Sulfamethoxazole (SMX) is a frequently detected antibiotic in the environment and has attracted much attention. Aeromonas caviae strain GLB-10 was isolated, which could degrade SMX to Aniline and 3-Amino-5-methylisoxazole. Compared to the single bacteria, the mixed bacteria including stain GLB-10, Vibrio diabolicus strain L2-2, Zobellella taiwanensis, Microbacterium testaceum, Methylobacterium, etc, had an ultrahigh degradation efficiency to SMX, with 250 mg/L SMX being degraded in 3 days. In addition to bioproducts of single bacteria, SMX bioproducts by the mixed bacteria also included acetanilide and hydroquinone which were not detected in the single bacteria. The SMX degradation mechanism of the mixed bacteria was more complicated including acetylation, sulfur reduction 4S pathway, and ipso-hydrolysis. The molecular mechanism of the mixed bacteria degrading SMX was also investigated, revealing that the resistance mechanism related to protein outer membrane protein and catalase peroxidase were overexpressed, meanwhile, 6-hydroxynicotinate 3-monooxygenase and ammonia monooxygenase might be the key proteins in SMX degradation. The mixed bacteria could efficiently degrade SMX in different real environments including tap water, river water, artificial lake water, estuary, and, marine water, and have very great research value in bacterial co-metabolism and biodegradation of sulfonamides antibiotics in the environment.
Collapse
Affiliation(s)
- Qiaoning Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hongdan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
26
|
Chai L, Wang H, Li X, Wang H. Comparison of the characteristics of gut microbiota response to lead in Bufo gargarizans tadpole at different developmental stages. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20907-20922. [PMID: 36261638 DOI: 10.1007/s11356-022-23671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
In amphibians, lead (Pb) exposure could alter the composition and structure of gut microbiota, but changes involving microbiota of several successive phases following Pb exposure have been less studied. In the present study, we compared the effects of Pb exposure on morphological parameters and gut microbiota of Bufo gargarizans at Gosner stage (Gs) 33, Gs36, and Gs42. Our results showed that total length (TL), snout-vent length (SVL), and body wet weight (TW) of B. gargarizans at Gs33, as well as TL and SVL at Gs42, were significantly increased after Pb exposure. In addition, high-throughput sequencing analysis indicated that gut microbiota has distinct responses to Pb exposure at different developmental stages. The diversity of gut microbiota was significantly reduced under Pb exposure at Gs33, while it was significantly increased at Gs42. In terms of community composition, Spirochaetota, Armatimonadota, and Patescibacteria appeared in the control groups at Gs42, but not after Pb treatment. Furthermore, functional prediction indicated that the relative abundance of metabolism pathway was significantly decreased at Gs33 and Gs36, and significantly increased at Gs42. Our results fill an important knowledge gap and provide comparative information on the gut microbiota of tadpoles at different developmental stages following Pb exposure.
Collapse
Affiliation(s)
- Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710062, China
| | - Hemei Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyi Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
27
|
Evariste L, Mouchet F, Pinelli E, Flahaut E, Gauthier L, Barret M. Gut microbiota impairment following graphene oxide exposure is associated to physiological alterations in Xenopus laevis tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159515. [PMID: 36270377 DOI: 10.1016/j.scitotenv.2022.159515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Graphene-based nanomaterials such as graphene oxide (GO) possess unique properties triggering high expectations for the development of technological applications. Thus, GO is likely to be released in aquatic ecosystems. It is essential to evaluate its ecotoxicological potential to ensure a safe use of these nanomaterials. In amphibians, previous studies highlighted X. laevis tadpole growth inhibitions together with metabolic disturbances and genotoxic effects following GO exposure. As GO is known to exert bactericidal effects whereas the gut microbiota constitutes a compartment involved in host homeostasis regulation, it is important to determine if this microbial compartment constitutes a toxicological pathway involved in known GO-induced host physiological impairments. This study investigates the potential link between gut microbial communities and host physiological alterations. For this purpose, X. laevis tadpoles were exposed during 12 days to GO. Growth rate was monitored every 2 days and genotoxicity was assessed through enumeration of micronucleated erythrocytes. Genomic DNA was also extracted from the whole intestine to quantify gut bacteria and to analyze the community composition. GO exposure led to a dose dependent growth inhibition and genotoxic effects were detected following exposure to low doses. A transient decrease of the total bacteria was noticed with a persistent shift in the gut microbiota structure in exposed animals. Genotoxic effects were associated to gut microbiota remodeling characterized by an increase of the relative abundance of Bacteroides fragilis. The growth inhibitory effects would be associated to a shift in the Firmicutes/Bacteroidetes ratio while metagenome inference suggested changes in metabolic pathways and upregulation of detoxification processes. This work indicates that the gut microbiota compartment is a biological compartment of interest as it is integrative of host physiological alterations and should be considered for ecotoxicological studies as structural or functional impairments could lead to later life host fitness loss.
Collapse
Affiliation(s)
- Lauris Evariste
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Florence Mouchet
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Eric Pinelli
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Laury Gauthier
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Maialen Barret
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
28
|
Song X, Zhai Y, Song J, Zhang J, Li X. The structural discrepancy between the small and large gut microbiota of Asiatic toad (Bufo gargarizans) during hibernation. Folia Microbiol (Praha) 2023:10.1007/s12223-023-01031-5. [PMID: 36637770 DOI: 10.1007/s12223-023-01031-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/01/2023] [Indexed: 01/14/2023]
Abstract
Hibernating amphibians are suitable for the research on the adaptation of gut microbiota to long-term fasting and cold stresses. However, the previous studies mainly focus on the large or whole gut microbiota but not the small gut microbiota. To test the structural discrepancy between the small and large gut microbiota during hibernation, we performed two independent batches of 16S rRNA gene amplicon sequencing to profile the small and large gut microbiota of hibernating Asiatic toad (Bufo gargarizans) from two wild populations. Both batches of data revealed that Proteobacteria, Bacteroidetes, and Firmicutes were the three most dominant phyla in the small and large gut microbiota. Three core OTUs with 100% occurrence in all gut microbiotas were annotated as Pseudomonas. A significant structural discrepancy was detected between the small and large gut microbiota. For instance, Proteobacteria assembled in the small intestine with a higher proportion than it did in the large intestine, but Bacteroidetes and Firmicutes assembled in the large intestine with a higher proportion than they did in the small intestine. The large gut microbiota exhibited higher diversity than the small gut microbiota. Nevertheless, a severe batch effect existed in the structural analysis of the gut microbiotas. The large gut microbiota showed a better resistance to the batch effect than the small gut microbiota did. This study provides preliminary evidence that microbes assemble in the small and large intestines of amphibians with discrepant patterns during hibernation.
Collapse
Affiliation(s)
- Xiaowei Song
- College of Software Engineering, Chengdu University of Information and Technology, Chengdu, Sichuan, China. .,College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, Henan, China. .,CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China.
| | - Yuanyuan Zhai
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, Henan, China
| | - Jinghan Song
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, Henan, China
| | - Jingwei Zhang
- Hospital of Xinyang Normal University, Xinyang Normal University, Henan, Xinyang, China
| | - Xiangzhen Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Shimwell C, Atkinson L, Graham MR, Murdoch B. A first molecular characterization of the scorpion telson microbiota of Hadrurus arizonensis and Smeringurus mesaensis. PLoS One 2023; 18:e0277303. [PMID: 36649362 PMCID: PMC9844838 DOI: 10.1371/journal.pone.0277303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/24/2022] [Indexed: 01/18/2023] Open
Abstract
Scorpions represent an ancient lineage of arachnids that have radiated across the globe and are incredibly resilient-since some thrive in harsh environments and can exist on minimal and intermittent feedings. Given the emerging importance of microbiomes to an organism's health, it is intriguing to suggest that the long-term success of the scorpion bauplan may be linked to the microbiome. Little is known about scorpion microbiomes, and what is known, concentrates on the gut. The microbiome is not limited to the gut, rather it can be found within tissues, fluids and on external surfaces. We tested whether the scorpion telson, the venom-producing organ, of two species, Smeringurus mesaensis and Hadrurus arizonensis, contain bacteria. We isolated telson DNA from each species, amplified bacterial 16S rRNA genes, and identified the collection of bacteria present within each scorpion species. Our results show for the first time that telsons of non-buthid scorpion species do indeed contain bacteria. Interestingly, each scorpion species has a phylogenetically unique telson microbiome including Mollicutes symbionts. This study may change how we view scorpion biology and their venoms.
Collapse
Affiliation(s)
- Christopher Shimwell
- Department of Biology, Eastern Connecticut State University, Willimantic, CT, United States of America
| | - Lauren Atkinson
- Department of Biology, Eastern Connecticut State University, Willimantic, CT, United States of America
| | - Matthew R. Graham
- Department of Biology, Eastern Connecticut State University, Willimantic, CT, United States of America
| | - Barbara Murdoch
- Department of Biology, Eastern Connecticut State University, Willimantic, CT, United States of America
- * E-mail:
| |
Collapse
|
30
|
Vasconcelos DS, Harris DJ, Damas-Moreira I, Pereira A, Xavier R. Factors shaping the gut microbiome of five species of lizards from different habitats. PeerJ 2023; 11:e15146. [PMID: 37187519 PMCID: PMC10178224 DOI: 10.7717/peerj.15146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/09/2023] [Indexed: 05/17/2023] Open
Abstract
Background Host-gut microbiota interactions are complex and can have a profound impact on the ecology and evolution of both counterparts. Several host traits such as systematics, diet and social behavior, and external factors such as prey availability and local environment are known to influence the composition and diversity of the gut microbiota. Methods In this study, we investigate the influence of systematics, sex, host size, and locality/habitat on gut microbiota diversity in five lizard species from two different sites in Portugal: Podarcis bocagei and Podarcis lusitanicus, living in syntopy in a rural area in northern Portugal (Moledo); the invasive Podarcis siculus and the native Podarcis virescens, living in sympatry in an urbanized environment (Lisbon); and the invasive Teira dugesii also living in an urban area (Lisbon). We also infer the potential microbial transmission occurring between species living in sympatry and syntopy. To achieve these goals, we use a metabarcoding approach to characterize the bacterial communities from the cloaca of lizards, sequencing the V4 region of the 16S rRNA. Results Habitat/locality was an important factor explaining differences in gut bacterial composition and structure, with species from urbanized environments having higher bacterial diversity. Host systematics (i.e., species) influenced gut bacterial community structure only in lizards from the urbanized environment. We also detected a significant positive correlation between lizard size and gut bacterial alpha-diversity in the invasive species P. siculus, which could be due to its higher exploratory behavior. Moreover, estimates of bacterial transmission indicate that P. siculus may have acquired a high proportion of local microbiota after its introduction. These findings confirm that a diverse array of host and environmental factors can influence lizards' gut microbiota.
Collapse
Affiliation(s)
- Diana S. Vasconcelos
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão da Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO - Campus de Vairão, Vairão, Portugal
| | - D. James Harris
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão da Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO - Campus de Vairão, Vairão, Portugal
| | | | - Ana Pereira
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão da Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO - Campus de Vairão, Vairão, Portugal
| | - Raquel Xavier
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão da Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO - Campus de Vairão, Vairão, Portugal
| |
Collapse
|
31
|
Fieschi-Méric L, Van Leeuwen P, Hopkins K, Bournonville M, Denoël M, Lesbarrères D. Strong restructuration of skin microbiota during captivity challenges ex-situ conservation of amphibians. Front Microbiol 2023; 14:1111018. [PMID: 36891392 PMCID: PMC9986596 DOI: 10.3389/fmicb.2023.1111018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
In response to the current worldwide amphibian extinction crisis, conservation instances have encouraged the establishment of ex-situ collections for endangered species. The resulting assurance populations are managed under strict biosecure protocols, often involving artificial cycles of temperature and humidity to induce active and overwintering phases, which likely affect the bacterial symbionts living on the amphibian skin. However, the skin microbiota is an important first line of defense against pathogens that can cause amphibian declines, such as the chytrid Batrachochytrium dendrobatidis (Bd). Determining whether current husbandry practices for assurance populations might deplete amphibians from their symbionts is therefore essential to conservation success. Here, we characterize the effect of the transitions from the wild to captivity, and between aquatic and overwintering phases, on the skin microbiota of two newt species. While our results confirm differential selectivity of skin microbiota between species, they underscore that captivity and phase-shifts similarly affect their community structure. More specifically, the translocation ex-situ is associated with rapid impoverishment, decrease in alpha diversity and strong species turnover of bacterial communities. Shifts between active and overwintering phases also cause changes in the diversity and composition of the microbiota, and on the prevalence of Bd-inhibitory phylotypes. Altogether, our results suggest that current husbandry practices strongly restructure the amphibian skin microbiota. Although it remains to be determined whether these changes are reversible or have deleterious effects on their hosts, we discuss methods to limit microbial diversity loss ex-situ and emphasize the importance of integrating bacterial communities to applied amphibian conservation.
Collapse
Affiliation(s)
- Léa Fieschi-Méric
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), Université de Liège, Liège, Belgium.,Biology Department, Laurentian University, Sudbury, ON, Canada
| | | | - Kevin Hopkins
- Institute of Zoology, Zoological Society of London (ZSL), London, United Kingdom
| | - Marie Bournonville
- Aquarium-Muséum de l'Université de Liège, Freshwater and OCeanic science Unit of reSearch (FOCUS), Liège, Belgium
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), Université de Liège, Liège, Belgium
| | - David Lesbarrères
- Biology Department, Laurentian University, Sudbury, ON, Canada.,Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada
| |
Collapse
|
32
|
Feng J, Zhu W, Jiang J, Zhao C, Sun Z, Jiang W, Luo Q, Zhao T. Reintroduction modifies the intraspecific variations of symbiotic microbes in captive bred Chinese giant salamander. Front Microbiol 2022; 13:1062604. [PMID: 36532427 PMCID: PMC9751345 DOI: 10.3389/fmicb.2022.1062604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/14/2022] [Indexed: 09/11/2024] Open
Abstract
Microorganisms play as fundamental contributors to maintain hosts' fitness, which can be shaped by external environment. Moreover, symbiotic microbiome also varied within species (e.g., between sexes and developmental stages). However, we still need more studies to quantify whether the intraspecific variation patterns of symbiotic microbes can be modified with the change of environment. The Chinese giant salamander (CGS; Andrias davidianus) is a Critically Endangered species. Despite quantitative captive bred individuals were released to rebuild wild populations, the effectiveness is limited. More importantly, no studies have revealed the adaptation of released CGSs to the complex field conditions. In the present study, we explored whether reintroduction can reshape the intraspecific variations of symbiotic microbiota in captive bred CGSs using high-throughput amplicon sequencing of the16S rRNA gene. We found no significant difference of symbiotic microbiome in captive bred males and females, but released males and females differed significantly in skin microbiome. Juveniles had higher diversity of microbial symbiont than adults in hatchery, but lower diversity in field. Moreover, dominant bacterial taxa differed between juveniles and adults in both hatchery and field. Importantly, this symbiotic microbiome variations within species can be modified (alpha and beta diversity, and community composition) when captive bred individuals were released to the field. Overall, we observed a lower alpha diversity and higher relative abundance of Chryseobacterium, Plesiomonas, and Acinetobacter in the bacterial community of captive bred individuals. Instead, higher alpha diversity of symbiotic microbiota and higher relative abundance of S24-7 and Lactobacillus was detected in released individuals. These modifications may associate with the change of living environment, as well as the specific behavior within CGSs (e.g., movement patterns and foraging activities). Future studies can incorporate other approaches (e.g., blood physiology) to better evaluate the growth and health of reintroduced CGSs.
Collapse
Affiliation(s)
- Jianyi Feng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunlin Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zijian Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Wansheng Jiang
- Hunan Engineering Laboratory for Chinese Giant Salamander's Resource Protection and Comprehensive Utilization, and Key Laboratory of Hunan Forest and Chemical Industry Engineering, Jishou University, Zhangjiajie, China
| | - Qinghua Luo
- Hunan Engineering Laboratory for Chinese Giant Salamander's Resource Protection and Comprehensive Utilization, and Key Laboratory of Hunan Forest and Chemical Industry Engineering, Jishou University, Zhangjiajie, China
| | - Tian Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
33
|
Härer A, Rennison DJ. Quantifying (non)parallelism of gut microbial community change using multivariate vector analysis. Ecol Evol 2022; 12:e9674. [PMID: 36590339 PMCID: PMC9797641 DOI: 10.1002/ece3.9674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/30/2022] Open
Abstract
Parallel evolution of phenotypic traits is regarded as strong evidence for natural selection and has been studied extensively in a variety of taxa. However, we have limited knowledge of whether parallel evolution of host organisms is accompanied by parallel changes of their associated microbial communities (i.e., microbiotas), which are crucial for their hosts' ecology and evolution. Determining the extent of microbiota parallelism in nature can improve our ability to identify the factors that are associated with (putatively adaptive) shifts in microbial communities. While it has been emphasized that (non)parallel evolution is better considered as a quantitative continuum rather than a binary phenomenon, quantitative approaches have rarely been used to study microbiota parallelism. We advocate using multivariate vector analysis (i.e., phenotypic change vector analysis) to quantify direction and magnitude of microbiota changes and discuss the applicability of this approach for studying parallelism, and we compiled an R package for multivariate vector analysis of microbial communities ('multivarvector'). We exemplify its use by reanalyzing gut microbiota data from multiple fish species that exhibit parallel shifts in trophic ecology. We found that multivariate vector analysis results were largely consistent with other statistical methods, parallelism estimates were not affected by the taxonomic level at which the microbiota is studied, and parallelism might be stronger for gut microbiota function compared to taxonomic composition. This approach provides an analytical framework for quantitative comparisons across host lineages, thereby providing the potential to advance our capacity to predict microbiota changes. Hence, we emphasize that the development and application of quantitative measures, such as multivariate vector analysis, should be further explored in microbiota research in order to better understand the role of microbiota dynamics during their hosts' adaptive evolution, particularly in settings of parallel evolution.
Collapse
Affiliation(s)
- Andreas Härer
- School of Biological Sciences, Department of Ecology, Behavior, & EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Diana J. Rennison
- School of Biological Sciences, Department of Ecology, Behavior, & EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
34
|
Brix KV, De Boeck G, Baken S, Fort DJ. Adverse Outcome Pathways for Chronic Copper Toxicity to Fish and Amphibians. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2911-2927. [PMID: 36148934 PMCID: PMC9828004 DOI: 10.1002/etc.5483] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 09/15/2022] [Indexed: 05/28/2023]
Abstract
In the present review, we synthesize information on the mechanisms of chronic copper (Cu) toxicity using an adverse outcome pathway framework and identify three primary pathways for chronic Cu toxicity: disruption of sodium homeostasis, effects on bioenergetics, and oxidative stress. Unlike acute Cu toxicity, disruption of sodium homeostasis is not a driving mechanism of chronic toxicity, but compensatory responses in this pathway contribute to effects on organism bioenergetics. Effects on bioenergetics clearly contribute to chronic Cu toxicity with impacts at multiple lower levels of biological organization. However, quantitatively translating these impacts into effects on apical endpoints such as growth, amphibian metamorphosis, and reproduction remains elusive and requires further study. Copper-induced oxidative stress occurs in most tissues of aquatic vertebrates and is clearly a significant driver of chronic Cu toxicity. Although antioxidant responses and capacities differ among tissues, there is no clear indication that specific tissues are more sensitive than others to oxidative stress. Oxidative stress leads to increased apoptosis and cellular damage in multiple tissues, including some that contribute to bioenergetic effects. This also includes oxidative damage to tissues involved in neuroendocrine axes and this damage likely alters the normal function of these tissues. Importantly, Cu-induced changes in hormone concentrations and gene expression in endocrine-mediated pathways such as reproductive steroidogenesis and amphibian metamorphosis are likely the result of oxidative stress-induced tissue damage and not endocrine disruption. Overall, we conclude that oxidative stress is likely the primary driver of chronic Cu toxicity in aquatic vertebrates, with bioenergetic effects and compensatory response to disruption of sodium homeostasis contributing to some degree to observed effects on apical endpoints. Environ Toxicol Chem 2022;41:2911-2927. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kevin V. Brix
- EcoToxMiamiFloridaUSA
- Rosenstiel School of Marine, Atmospheric, and Earth Sciences, Department of Marine Biology and EcologyUniversity of MiamiMiamiFloridaUSA
| | | | | | | |
Collapse
|
35
|
Liu X, Fan Y, Mo T, Chen Q, Chen W. Comparative Study of the Gut Microbiota Community between the Farmed and Wild Mastacembelus armatus (Zig-Zag Eel). Metabolites 2022; 12:metabo12121193. [PMID: 36557231 PMCID: PMC9781078 DOI: 10.3390/metabo12121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Cultivated and wild fish of the same species may exhibit different characteristics, such as in their flavor, growth and development. In some wild fish species, reproductive functions may even be retarded when wild individuals are moved into cultivated conditions. The gut microbiota may be one of the reasons for these phenomena as they have been reported to play an important role in host growth and development, as well as in normal reproductive functioning. Here, we used Mastacembelus armatus (zig-zag eel), a freshwater fish which shows anormal reproductive function in cultivated conditions, as a model to comparatively study the diversity, structure and function of gut microbiota in cultivated and wild groups by analyzing the 16S rRNA sequence of each group's microbiota. The results showed that Proteobacteria and Firmicutes were the dominant phyla in the gut microbiota of wild (accounting for 45.8% and 20.3% of the total number of Proteobacteria and Firmicutes, respectively) and farmed (accounting for 21.4% and 75.6% of the total number of Proteobacteria and Firmicutes, respectively) zig-zag eel. Wild zig-zag eels (Shannon = 3.56; Chao = 583.08; Ace = 579.18) had significantly higher alpha diversity than those in cultivated populations (Shannon = 2.09; Chao = 85.45; Ace = 86.14). A significant difference in the community structure of the gut microbiota was found between wild and cultivated populations. The wild zig-zag eel showed a high abundance of functional pathways in metabolism, genetic information processing and organismal system function. These results suggested that the diversity and function of gut microbiota in zig-zag eel were correlated with their diet and habitat conditions, which indicated that the management of cultivated populations should mimic the wild diet and habitat to improve the productivity and quality of farmed zig-zag eel.
Collapse
|
36
|
Zhang S, Huang J, Wang Q, You M, Xia X. Changes in the Host Gut Microbiota during Parasitization by Parasitic Wasp Cotesia vestalis. INSECTS 2022; 13:760. [PMID: 36135461 PMCID: PMC9506224 DOI: 10.3390/insects13090760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Parasites attack the host insects and possibly impact the host-gut microbiota, which leads to provision of a suitable host environment for parasites' development. However, little is known about whether and how the parasitic wasp Cotesia vestalis alters the gut microbiota of the host Plutella xylostella. In this study, 16S rDNA microbial profiling, combined with a traditional isolation and culture method, were used to assess changes in the bacterial microbiome of parasitized and non-parasitized hosts at different developmental stages of C. vestalis larvae. Parasitization affected both the diversity and structure of the host-gut microbiota, with a significant reduction in richness on the sixth day post parasitization (6 DPP) and significant differences in bacterial structure between parasitized and non-parasitized hosts on the third day. The bacterial abundance of host-gut microbiota changed significantly as the parasitization progressed, resulting in alteration of potential functional contribution. Notably, the relative abundance of the predominant family Enterobacteriaceae was significantly decreased on the third day post-parasitization. In addition, the results of traditional isolation and culture of bacteria indicated differences in the bacterial composition between the three DPP and CK3 groups, as with 16S microbial profiling. These findings shed light on the interaction between a parasitic wasp and gut bacteria in the host insect during parasitization.
Collapse
Affiliation(s)
- Shuaiqi Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Jieling Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Qiuping Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| |
Collapse
|
37
|
Rocha FP, Ronque MUV, Lyra ML, Bacci M, Oliveira PS. Habitat and Host Species Drive the Structure of Bacterial Communities of Two Neotropical Trap-Jaw Odontomachus Ants : Habitat and Host Species Drive the Structure of Bacterial Communities of Two Neotropical Trap-Jaw Odontomachus Ants. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02064-y. [PMID: 35802173 DOI: 10.1007/s00248-022-02064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Ants have long been known for their associations with other taxa, including macroscopic fungi and symbiotic bacteria. Recently, many ant species have had the composition and function of their bacterial communities investigated. Due to its behavioral and ecological diversity, the subfamily Ponerinae deserves more attention regarding its associated microbiota. Here, we used the V4 region of the 16S rRNA gene to characterize the bacterial communities of Odontomachus chelifer (ground-nesting) and Odontomachus hastatus (arboreal), two ponerine trap-jaw species commonly found in the Brazilian savanna ("Cerrado") and Atlantic rainforest. We investigated habitat effects (O. chelifer in the Cerrado and the Atlantic rainforest) and species-specific effects (both species in the Atlantic rainforest) on the bacterial communities' structure (composition and abundance) in two different body parts: cuticle and gaster. Bacterial communities differed in all populations studied. Cuticular communities were more diverse, while gaster communities presented variants common to other ants, including Wolbachia and Candidatus Tokpelaia hoelldoblerii. Odontomachus chelifer populations presented different communities in both body parts, highlighting the influence of habitat type. In the Atlantic rainforest, the outcome depended on the body part targeted. Cuticular communities were similar between species, reinforcing the habitat effect on bacterial communities, which are mainly composed of environmentally acquired taxa. Gaster communities, however, differed between the two Odontomachus species, suggesting species-specific effects and selective filters. Unclassified Firmicutes and uncultured Rhizobiales variants are the main components accounting for the observed differences. Our study indicates that both host species and habitat act synergistically, but to different degrees, to shape the bacterial communities in these Odontomachus species.
Collapse
Affiliation(s)
- Felipe P Rocha
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, 13083-862, Brazil
- The University of Hong Kong, Pokfulam Road, Hong Kong Island, SAR, Hong Kong
| | - Mariane U V Ronque
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, 13083-862, Brazil
- Universidade Estadual do Norte do Paraná, Ciências Biológicas, Cornélio Procópio, PR, Brazil
| | - Mariana L Lyra
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista - Campus Rio Claro, Rio Claro, SP, 13506-900, Brazil
- New York University Abu Dhabi, Saadiyat Island, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Maurício Bacci
- Centro de Estudos de Insetos Sociais, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista - Campus Rio Claro, Rio Claro, SP, 13506-900, Brazil
| | - Paulo S Oliveira
- Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, SP, 13083-862, Brazil.
| |
Collapse
|
38
|
Tang S, Li Y, Huang C, Yan S, Li Y, Chen Z, Wu Z. Comparison of Gut Microbiota Diversity Between Captive and Wild Tokay Gecko (Gekko gecko). Front Microbiol 2022; 13:897923. [PMID: 35783386 PMCID: PMC9248866 DOI: 10.3389/fmicb.2022.897923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
Captive animals and wild animals may exhibit different characteristics due to the heterogeneity of their living environments. The gut microbiota play an important role in the digestion and absorption, energy metabolism, immune regulation, and physiological health of the host. However, information about the gut microbiota of captive and wild Gekko gecko is currently limited. To determine the difference in gut microbiota community composition, diversity, and structure between captive and wild geckos, we used the Illumina miseq platform to conduct high-throughput sequencing and bioinformatics analysis of the v3–v4 hypervariable region of 16S rRNA in 54 gecko samples. Our results showed that Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria were the dominant gut microbiota phyla of the gecko. The dominant genera comprised mainly Pseudomonas, Burkholderia-caballeronia-paraburkholderia, Ralstonia, Romboutsia, and Bacteroides. Captive geckos had significantly higher alpha diversity and potential pathogenic bacteria than wild populations. Moreover, significant differences in beta diversity of gut microbiota were observed between two populations. Functional prediction analysis showed that the relative abundance of functional pathways of wild geckos was more higher in metabolism, genetic information processing and organismal system function than those in captive geckos. Total length significantly affected gut microbial community (R2 = 0.4527, p = 0.001) and explained 10.45% of the total variation for gut microbial community variance between two groups. These results may be related to differences in diet and living environment between two populations, suggesting that the management of captive populations should mimic wild environments to the greatest extent possible to reduce the impact on their gut microbiota.
Collapse
Affiliation(s)
- Sanqi Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Yuhui Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Chengming Huang
- Key Laboratory of Animal Ecology and Conservation, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shufa Yan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Yongtai Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Zening Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- Zening Chen,
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- *Correspondence: Zhengjun Wu,
| |
Collapse
|
39
|
Chen S, Holyoak M, Liu H, Bao H, Ma Y, Dou H, Li G, Roberts NJ, Jiang G. Global warming responses of gut microbiota in moose (
Alces alces
) populations with different dispersal patterns. J Zool (1987) 2022. [DOI: 10.1111/jzo.12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- S. Chen
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area Northeast Forestry University Harbin China
- Northeast Asia Biodiversity Research Center Northeast Forestry University Harbin China
| | - M. Holyoak
- Department of Environmental Science and Policy University of California Davis California USA
| | - H. Liu
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area Northeast Forestry University Harbin China
- Northeast Asia Biodiversity Research Center Northeast Forestry University Harbin China
- College of Forestry Hainan University Haikou China
| | - H. Bao
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area Northeast Forestry University Harbin China
- Northeast Asia Biodiversity Research Center Northeast Forestry University Harbin China
| | - Y. Ma
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area Northeast Forestry University Harbin China
- Northeast Asia Biodiversity Research Center Northeast Forestry University Harbin China
- Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - H. Dou
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area Northeast Forestry University Harbin China
- Northeast Asia Biodiversity Research Center Northeast Forestry University Harbin China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization Guangdong Academy of Forestry Guangzhou China
| | - G. Li
- State Key Laboratory of Integrated Pest Management, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - N. J. Roberts
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area Northeast Forestry University Harbin China
- Northeast Asia Biodiversity Research Center Northeast Forestry University Harbin China
| | - G. Jiang
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area Northeast Forestry University Harbin China
- Northeast Asia Biodiversity Research Center Northeast Forestry University Harbin China
| |
Collapse
|
40
|
Zhu W, Zhao C, Feng J, Chang J, Zhu W, Chang L, Liu J, Xie F, Li C, Jiang J, Zhao T. Effects of Habitat River Microbiome on the Symbiotic Microbiota and Multi-Organ Gene Expression of Captive-Bred Chinese Giant Salamander. Front Microbiol 2022; 13:884880. [PMID: 35770173 PMCID: PMC9234736 DOI: 10.3389/fmicb.2022.884880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
The reintroduction of captive-bred individuals is a primary approach to rebuild the wild populations of the Chinese giant salamander (Andrias davidianus), the largest extant amphibian species. However, the complexity of the wild habitat (e.g., diverse microorganisms and potential pathogens) potentially threatens the survival of reintroduced individuals. In this study, fresh (i.e., containing environmental microbiota) or sterilized river sediments (120°C sterilized treatment) were added to the artificial habitats to treat the larvae of the Chinese giant salamander (control group—Cnt: 20 individuals, treatment group 1 with fresh river sediments—T1: 20 individuals, and treatment group 2 with sterilized river sediments—T2: 20 individuals). The main objective of this study was to test whether this procedure could provoke their wild adaptability from the perspective of commensal microbiotas (skin, oral cavity, stomach, and gut) and larvae transcriptomes (skin, spleen, liver, and brain). Our results indicated that the presence of habitat sediments (whether fresh or sterilized) reshaped the oral bacterial community composition. Specifically, Firmicutes decreased dramatically from ~70% to ~20–25% (mainly contributed by Lactobacillaceae), while Proteobacteria increased from ~6% to ~31–36% (mainly contributed by Gammaproteobacteria). Consequently, the proportion of antifungal operational taxonomic units (OTUs) increased, and the function of oral microbiota likely shifted from growth-promoting to pathogen defense. Interestingly, the skin microbiota, rather than the colonization of habitat microbiota, was the major source of the pre-treated oral microbiota. From the host perspective, the transcriptomes of all four organs were changed for treated individuals. Specifically, the proteolysis and apoptosis in the skin were promoted, and the transcription of immune genes was activated in the skin, spleen, and liver. Importantly, more robust immune activation was detected in individuals treated with sterilized sediments. These results suggested that the pathogen defense of captive-bred individuals was improved after being treated, which may benefit their survival in the wild. Taken together, our results suggested that the pre-exposure of captive-bred Chinese giant salamander individuals to habitat sediments could be considered and added into the reintroduction processes to help them better adapt to wild conditions.
Collapse
Affiliation(s)
- Wei Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Chunlin Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianyi Feng
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Jiang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Wenbo Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Liming Chang
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Jiongyu Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Feng Xie
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Cheng Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Jianping Jiang
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
- *Correspondence: Jianping Jiang
| | - Tian Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
- Tian Zhao
| |
Collapse
|
41
|
Chen Z, Chen J, Liu Y, Zhang J, Chen X, Qu Y. Comparative study on gut microbiota in three Anura frogs from a mountain stream. Ecol Evol 2022; 12:e8854. [PMID: 35475186 PMCID: PMC9021931 DOI: 10.1002/ece3.8854] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/25/2022] Open
Abstract
Composition and diversity in gut microbiota are impacted by a wide variety of factors. The similarity of gut microbiota in related or sympatric species has been gaining recent traction. Here, 16S rRNA gene sequencing technology was employed to study the gut microbiota of three sympatric frog species, namely Odorrana tormota, O. graminea, and Amolops wuyiensis. In these three frog species, the most abundant phylum was Proteobacteria, followed by Bacteroidetes, Verrucomicrobia, and Firmicutes. The most abundant family was Burkholderiaceae in three species. The most dominant genera were Burkholderia, Caballeronia, and Paraburkholderia with the highest relative abundance in O. tormota, O. graminea, and A. wuyiensis, respectively. No differences were observed in alpha diversity indexes among the three frog species. However, bacterial similarity of gut microbiota was significantly different between O. tormota and A. wuyiensis and between O. graminea and A. wuyiensis. Metabolism‐related gene function was predominantly enriched in the gut microbiota of the three evaluated frog species. From these findings, that the relative abundance of the gut microbiota and predicted gene functions differed in three species, we conclude that there were significant differences in the gut microbiota of the three species. Similar alpha diversity and interspecific bacterial similarity in the gut might be related to bacterial transmission among the three Anura frogs evaluated in this study.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Life Sciences Henan Normal University Xinxiang Henan China
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province Xinxiang Henan China
| | - Jun‐Qiong Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing Jiangsu China
| | - Yao Liu
- College of Life Sciences Henan Normal University Xinxiang Henan China
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province Xinxiang Henan China
| | - Jie Zhang
- College of Fisheries Henan Normal University Xinxiang Henan China
| | - Xiao‐Hong Chen
- College of Life Sciences Henan Normal University Xinxiang Henan China
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province Xinxiang Henan China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing Jiangsu China
| | - Yan‐Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing Jiangsu China
| |
Collapse
|
42
|
Zhu W, Yang D, Chang L, Zhang M, Zhu L, Jiang J. Animal gut microbiome mediates the effects of antibiotic pollution on an artificial freshwater system. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127968. [PMID: 34894514 DOI: 10.1016/j.jhazmat.2021.127968] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The antibiotic pollution has become an emerging environmental problem worldwide, but the ecological outcomes remain to be elucidated, especially very little is known about the interactions between antibiotics and different ecological elements. In this study, the long-term influences of three representative antibiotics, i.e., tetracycline, erythromycin, and sulfamethoxazole, were investigated focusing on a simplified artificial freshwater system composed of amphibian tadpoles, gut and environmental bacterial and fungi communities, and water parameters. Results demonstrated that antibiotic exposure reduced tadpole's fitness with increased mortality and physiological abnormality, and altered the water quality, particularly the nitrogen homeostasis. Sequential analyses at organism, symbiont, and systematic levels revealed that antibiotics disrupted tadpole metabolome (e.g., tetrahydrobiopterin metabolism) directly by off-target effects. Antibiotics also reshaped the tadpole gut bacterial and fungi diversity and composition, which partly accounted for the tadpole's health condition. Moreover, changes of tadpole gut microbiome (i.e., Cyanobacteria and Basidiomycota OTUs) partly explained the variations of water parameters. In contrast, environmental microbiota and metagenome stayed relatively stable, and didn't contribute to the environmental variations. These results highlighted the pivotal role of gut microbiome in mediating the effects of antibiotics on the host and the environment, which would extend our understanding on the ecological outcomes caused by antibiotic pollution.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu 610041, China
| | - Duoli Yang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu 610041, China; Department of Animal Sciences, University of California Davis, Davis, CA 95616, USA
| | - Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu 610041, China
| | - Meihua Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu 610041, China
| | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu 610041, China
| |
Collapse
|
43
|
Yang B, Cui Z, Ning M, Chen Y, Wu Z, Huang H. Variation in the intestinal microbiota at different developmental stages of Hynobius maoershanensis. Ecol Evol 2022; 12:e8712. [PMID: 35342562 PMCID: PMC8931708 DOI: 10.1002/ece3.8712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 11/11/2022] Open
Abstract
Intestinal microbiota play an important role in the life of amphibians and its composition may vary by developmental stage. In this study, 16S rRNA high-throughput sequencing was used to profile the intestinal microbiota of Hynobius maoershanensis, which exclusively inhabit the Maoer Mountain swamp at an altitude of approximately 2,000 m. We characterized the bacterial composition, structure, and function of the microbiota of H. maoershanensis at different developmental stages. The alpha diversity was not markedly different for the Simpson, Shannon, Ace, and Sobs indices of microbes. The beta diversity revealed that there were age-related differences in the structure of the intestinal microbes of H. maoershanensis, specifically, at the phylum level. Bacteroidetes and Proteobacteria were the dominant bacteria present in the adult stage, and the relative abundance of Bacteroidetes was significantly higher compared with that of tadpoles. Firmicutes and Proteobacteria were the dominant phylum during the tadpole stage and their relative abundance was significantly higher compared with the adult period. Functional analysis revealed that the pathways associated with organismal systems and metabolism were significantly enriched in the adults, whereas human diseases, genetic information processing, and cellular processes were more enriched in the hindlimb bud stage. Human diseases and environmental information processing were more enriched in the forelimb bud stage at KEGG pathway level 1. Possibilities for the observed discrepancies include the adaptation to eating habits and the remodeling of the intestines during development. We speculated that H. maoershanensis adults may be more suitable to a high-fiber diet, whereas the tadpoles are associated with a carnivorous diet. Our study provides evidence of variations in the intestinal microbiota during development in amphibians, highlighting the influence of historical developments on the intestinal microbiota and an increased understanding of the importance of physiological characteristics in shaping the intestinal microbiota of amphibians. These data will help us formulate more effective protection measures for H. maoershanensis.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Zhenzhen Cui
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Meihong Ning
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Yu Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Huayuan Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| |
Collapse
|
44
|
Chen S, Holyoak M, Liu H, Bao H, Ma Y, Dou H, Jiang G. Effects of spatially heterogeneous warming on gut microbiota, nutrition and gene flow of a heat-sensitive ungulate population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150537. [PMID: 34844317 DOI: 10.1016/j.scitotenv.2021.150537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Effects of climate warming on trophic cascades are increasingly reported for large herbivores occupying northern latitudes. During the last 40 years, moose (Alces alces) in northeast China have lost nearly half of their historical distribution through their habitat shifting northwards. There are many possible causes of bottom-up and top-down effects of temperature and for moose in northeast China they are poorly understood. Of particular relevance are the effects of extrinsic environmental factors on gene flow, nutritional adaptions, and gut microbiota that occur as moose populations retreat northwards. We combined molecular biology, nutritional ecology and metagenomics to gain deeper mechanistic insights into the effects of temperature on moose populations. In this study, we revealed that the direction and intensity of gene flow is consistent with global warming driving retreats of moose populations. We interpret this as evidence for the northward movement of moose populations, with cooler northern populations receiving more immigrants and warmer southern populations supplying emigrants. Comparison across latitudes showed that warmer late spring temperatures were associated with plant community composition and facilitated related changes in moose protein and carbohydrate intake through altering forage availability, forage quality and diet composition. Furthermore, these nutrient shifts were accompanied by changes in gut microbial composition and functional pathways related to nutrient metabolism. This study provided insights into mechanisms driving effects of spatial heterogeneous warming on genetic, nutritional and physiological adaptions related to key demographic rates and patterns of survival of heat-sensitive ungulates along a latitude gradient. Understanding such changes helps to identify key habitat areas and plant species to ensure accurate assessment of population status and targeted management of moose populations.
Collapse
Affiliation(s)
- Shiyu Chen
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Marcel Holyoak
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA
| | - Hui Liu
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; College of Forestry, Hainan University, Haikou 570228, China
| | - Heng Bao
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yingjie Ma
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxi Road, Chaoyang, Beijing 100101, China
| | - Hongliang Dou
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Guangshun Jiang
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
45
|
Wang Y, Smith HK, Goossens E, Hertzog L, Bletz MC, Bonte D, Verheyen K, Lens L, Vences M, Pasmans F, Martel A. Diet diversity and environment determine the intestinal microbiome and bacterial pathogen load of fire salamanders. Sci Rep 2021; 11:20493. [PMID: 34650115 PMCID: PMC8516891 DOI: 10.1038/s41598-021-98995-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023] Open
Abstract
Diverse communities of symbiotic microbes inhabit the digestive systems of vertebrates and play a crucial role in animal health, and host diet plays a major role in shaping the composition and diversity of these communities. Here, we characterized diet and gut microbiome of fire salamander populations from three Belgian forests. We carried out DNA metabarcoding on fecal samples, targeting eukaryotic 18S rRNA of potential dietary prey items, and bacterial 16S rRNA of the concomitant gut microbiome. Our results demonstrated an abundance of soft-bodied prey in the diet of fire salamanders, and a significant difference in the diet composition between males and females. This sex-dependent effect on diet was also reflected in the gut microbiome diversity, which is higher in males than female animals. Proximity to human activities was associated with increased intestinal pathogen loads. Collectively, the data supports a relationship between diet, environment and intestinal microbiome in fire salamanders, with potential health implications.
Collapse
Affiliation(s)
- Yu Wang
- grid.5342.00000 0001 2069 7798Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Hannah K. Smith
- grid.5342.00000 0001 2069 7798Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Evy Goossens
- grid.5342.00000 0001 2069 7798Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Lionel Hertzog
- grid.5342.00000 0001 2069 7798Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium ,Thünen Institute for Biodiversity, Bundesallee 68, 38116 Brunswick, Germany
| | - Molly C. Bletz
- grid.6738.a0000 0001 1090 0254Evolutionary Biology Lab, Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, 38106 Brunswick, Germany
| | - Dries Bonte
- grid.5342.00000 0001 2069 7798Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Kris Verheyen
- grid.5342.00000 0001 2069 7798Forest & Nature Lab, Department of Environment, Ghent University, Geraardsberge Steenweg 267, 9090 Gontrode, Belgium
| | - Luc Lens
- grid.5342.00000 0001 2069 7798Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Miguel Vences
- grid.6738.a0000 0001 1090 0254Evolutionary Biology Lab, Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, 38106 Brunswick, Germany
| | - Frank Pasmans
- grid.5342.00000 0001 2069 7798Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - An Martel
- grid.5342.00000 0001 2069 7798Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
46
|
Bi QF, Jin BJ, Zhu D, Jiang YG, Zheng BX, O'Connor P, Yang XR, Richter A, Lin XY, Zhu YG. How can fertilization regimes and durations shape earthworm gut microbiota in a long-term field experiment? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112643. [PMID: 34411817 DOI: 10.1016/j.ecoenv.2021.112643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The positive roles of earthworms on soil functionality has been extensively documented. The capacity of the earthworm gut microbiota on decomposition and nutrient cycling under long-term fertilization in field conditions has rarely been studied. Here, we report the structural, taxonomic, and functional responses of Eisenia foetida and Pheretima guillelmi gut microbiota to different fertilization regimes and durations using 16S rRNA gene-based Illumina sequencing and high-throughput quantitative PCR techniques. Our results revealed that the core gut microbiota, especially the fermentative bacteria were mainly sourced from the soil, but strongly stimulated with species-specificity, potential benefits for the host and soil health. The functional compositions of gut microbiota were altered by fertilization with fertilization duration being more influential than fertilization regimes. Moreover, the combination of organic and inorganic fertilization with the longer duration resulted in a higher richness and connectivity in the gut microbiota, and also their functional potential related to carbon (C), nitrogen, and phosphorus cycling, particularly the labile C decomposition, denitrification, and phosphate mobilization. We also found that long-term inorganic fertilization increased the abundance of pathogenic bacteria in the P. guillelmi gut. This study demonstrates that understanding earthworm gut microbiota can provide insights into how agricultural practices can potentially alter soil ecosystem functions through the interactions between soil and earthworm gut microbiotas.
Collapse
Affiliation(s)
- Qing-Fang Bi
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Bing-Jie Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yu-Gen Jiang
- Fuyang Agricultural Technology Popularization Center, Hangzhou 311400, PR China
| | - Bang-Xiao Zheng
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Lahti 15140, Finland
| | - Patrick O'Connor
- Centre for Global Food and Resources, University of Adelaide, Adelaide 5005, Australia
| | - Xiao-Ru Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Andreas Richter
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Xian-Yong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Yong-Guan Zhu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
47
|
Song X, Zhang J, Song J, Zhai Y. Decisive Effects of Life Stage on the Gut Microbiota Discrepancy Between Two Wild Populations of Hibernating Asiatic Toads ( Bufo gargarizans). Front Microbiol 2021; 12:665849. [PMID: 34413833 PMCID: PMC8369469 DOI: 10.3389/fmicb.2021.665849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Until now, the effects of driving factors on the gut microbiota of amphibians are still mostly confounded. Due to a long-term fasting, hibernating amphibians are ideal experimental materials to explore this question. In this study, we characterized the small intestine microbiota of adult hibernating Asiatic toads (Bufo gargarizans) collected from two geographical populations using 16S rRNA amplicon sequencing technique and evaluated the effects of non-dietary factors (e.g., sex and host genetic background). Proteobacteria (0.9196 ± 0.0892) was characterized as the most dominant phylum in the small gut microbiota of hibernating Asiatic toads, among which five core OTUs were identified and three were classified into Pseudomonas. In view of the coincidence between the dominant KEGG pathways (such as the two-component system) and Pseudomonas, Pseudomonas appeared to be a key adaptor for small gut microbiota during hibernation. Furthermore, we detected a greater discrepancy of gut microbiota between geographical populations than between sexes. Both sex and host genetic background showed a minor effect on the gut microbiota variation. Finally, life stage was determined to be the decisive factor driving the gut microbiota discrepancy between populations. However, a large proportion of the gut microbiota variation (∼70%) could not be explained by the measured deterministic factors (i.e., sex, location, body length, and routine blood indices). Therefore, other factors and/or stochastic processes may play key roles in shaping gut bacterial community of hibernating amphibians.
Collapse
Affiliation(s)
- Xiaowei Song
- College of Life Sciences, Xinyang Normal University, Xinyang, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jingwei Zhang
- Hospital of Xinyang Normal University, Xinyang Normal University, Xinyang, China
| | - Jinghan Song
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Yuanyuan Zhai
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
48
|
Barnes EM, Kutos S, Naghshineh N, Mesko M, You Q, Lewis JD. Assembly of the amphibian microbiome is influenced by the effects of land-use change on environmental reservoirs. Environ Microbiol 2021; 23:4595-4611. [PMID: 34190389 DOI: 10.1111/1462-2920.15653] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023]
Abstract
A growing focus in microbial ecology is understanding how beneficial microbiome function is created and maintained through various assembly mechanisms. This study explores the role of both the environment and disease in regulating the composition of microbial species in the soil and on amphibian hosts. We compared the microbial communities of Plethodon cinereus salamanders along a land-use gradient in the New York metropolitan area and paired these with associated soil cores. Additionally, we characterized the diversity of bacterial and fungal symbionts that putatively inhibit the pathogenic fungus Batrachochytrium dendrobatidis. We predicted that variation in skin microbial community composition would correlate with changes seen in the soil which functions as the regional species pool. We found that salamanders and soil share many microbial taxa but that these two communities exhibit differences in the relative abundances of the bacterial phyla Acidobacteria, Actinobacteria, and Proteobacteria and the fungal phyla Ascomycota and genus Basidiobolus. Microbial community composition varies with changes in land-use associated factors creating site-specific compositions. By employing a quantitative, null-based assembly model, we identified that dispersal limitation, variable selection, and drift guide assembly of microbes onto their skin, creating high dissimilarity between individuals with likely consequences in disease preventative function.
Collapse
Affiliation(s)
- Elle M Barnes
- Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY, 10504, USA.,Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Steve Kutos
- Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY, 10504, USA.,Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Nina Naghshineh
- Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY, 10504, USA.,Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Marissa Mesko
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Qing You
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - J D Lewis
- Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY, 10504, USA.,Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| |
Collapse
|
49
|
Belasen AM, Riolo MA, Bletz MC, Lyra ML, Toledo LF, James TY. Geography, Host Genetics, and Cross-Domain Microbial Networks Structure the Skin Microbiota of Fragmented Brazilian Atlantic Forest Frog Populations. Ecol Evol 2021; 11:9293-9307. [PMID: 34306622 PMCID: PMC8293785 DOI: 10.1002/ece3.7594] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/31/2020] [Accepted: 03/18/2021] [Indexed: 11/09/2022] Open
Abstract
The host-associated microbiome plays a significant role in health. However, the roles of factors such as host genetics and microbial interactions in determining microbiome diversity remain unclear. We examined these factors using amplicon-based sequencing of 175 Thoropa taophora frog skin swabs collected from a naturally fragmented landscape in southeastern Brazil. Specifically, we examined (1) the effects of geography and host genetics on microbiome diversity and structure; (2) the structure of microbial eukaryotic and bacterial co-occurrence networks; and (3) co-occurrence between microeukaryotes with bacterial OTUs known to affect growth of the fungal pathogen Batrachochytrium dendrobatidis (Bd). While bacterial alpha diversity varied by both site type and host MHC IIB genotype, microeukaryotic alpha diversity varied only by site type. However, bacteria and microeukaryote composition showed variation according to both site type and host MHC IIB genotype. Our network analysis showed the highest connectivity when both eukaryotes and bacteria were included, implying that ecological interactions may occur among domains. Lastly, anti-Bd bacteria were not broadly negatively co-associated with the fungal microbiome and were positively associated with potential amphibian parasites. Our findings emphasize the importance of considering both domains in microbiome research and suggest that for effective probiotic strategies for amphibian disease management, considering potential interactions among all members of the microbiome is crucial.
Collapse
Affiliation(s)
- Anat M. Belasen
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMIUSA
| | - Maria A. Riolo
- Center for Complex SystemsUniversity of MichiganAnn ArborMIUSA
| | - Molly C. Bletz
- Department of BiologyUniversity of Massachusetts BostonBostonMAUSA
| | - Mariana L. Lyra
- Instituto de BiociênciasUniversidade Estadual PaulistaRio ClaroBrazil
| | - L. Felipe Toledo
- Laboratório de História Natural de Anfíbios BrasileirosDepartamento de Biologia AnimalInstituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil
| | - Timothy Y. James
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
50
|
Santos B, Bletz MC, Sabino-Pinto J, Cocca W, Fidy JFS, Freeman KL, Kuenzel S, Ndriantsoa S, Noel J, Rakotonanahary T, Vences M, Crottini A. Characterization of the microbiome of the invasive Asian toad in Madagascar across the expansion range and comparison with a native co-occurring species. PeerJ 2021; 9:e11532. [PMID: 34249488 PMCID: PMC8247705 DOI: 10.7717/peerj.11532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
Biological invasions are on the rise, with each invader carrying a plethora of associated microbes. These microbes play important, yet poorly understood, ecological roles that can include assisting the hosts in colonization and adaptation processes or as possible pathogens. Understanding how these communities differ in an invasion scenario may help to understand the host's resilience and adaptability. The Asian common toad, Duttaphrynus melanostictus is an invasive amphibian, which has recently established in Madagascar and is expected to pose numerous threats to the native ecosystems. We characterized the skin and gut bacterial communities of D. melanostictus in Toamasina (Eastern Madagascar), and compared them to those of a co-occurring native frog species, Ptychadena mascareniensis, at three sites where the toad arrived in different years. Microbial composition did not vary among sites, showing that D. melanostictus keeps a stable community across its expansion but significant differences were observed between these two amphibians. Moreover, D. melanostictus had richer and more diverse communities and also harboured a high percentage of total unique taxa (skin: 80%; gut: 52%). These differences may reflect the combination of multiple host-associated factors including microhabitat selection, skin features and dietary preferences.
Collapse
Affiliation(s)
- Bárbara Santos
- Cibio, Research Centre in Biodiversity and Genetic Resources, InBio, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Portugal, Porto, Portugal
| | - Molly C Bletz
- Department of Biology, University of Massachussetts Boston, Boston, MA, USA
| | - Joana Sabino-Pinto
- Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, Germany, Braunschweig, Germany
| | - Walter Cocca
- Cibio, Research Centre in Biodiversity and Genetic Resources, InBio, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Portugal, Porto, Portugal
| | | | - Karen Lm Freeman
- Madagascar Fauna and Flora Group, BP 442, 501 Toamasina, Madagascar, Toamasina, Madagascar
| | - Sven Kuenzel
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Germany, Plön, Germany
| | - Serge Ndriantsoa
- Amphibian Survival Alliance c/o Durrell Wildlife Conservation Trust, Madagascar Programme, Lot II Y 49 J 12 Ampasanimalo, BP 8511 101 Antananarivo, Madagascar, Antananarivo, Madagascar
| | - Jean Noel
- Madagascar Fauna and Flora Group, BP 442, 501 Toamasina, Madagascar, Toamasina, Madagascar
| | - Tsanta Rakotonanahary
- Amphibian Survival Alliance c/o Durrell Wildlife Conservation Trust, Madagascar Programme, Lot II Y 49 J 12 Ampasanimalo, BP 8511 101 Antananarivo, Madagascar, Antananarivo, Madagascar
| | - Miguel Vences
- Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, Germany, Braunschweig, Germany
| | - Angelica Crottini
- Cibio, Research Centre in Biodiversity and Genetic Resources, InBio, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Portugal, Porto, Portugal
| |
Collapse
|