1
|
Yang R, Xie L, Wang R, Li Y, Lu Y, Liu B, Dai S, Zheng S, Dong K, Dong R. Integration of single-nuclei and spatial transcriptomics to decipher tumor phenotype predictive of relapse-free survival in Wilms tumor. Front Immunol 2025; 16:1539897. [PMID: 40098972 PMCID: PMC11911335 DOI: 10.3389/fimmu.2025.1539897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Background Wilms tumor (WT) is the most common childhood renal malignancy, with recurrence linked to poor prognosis. Identifying the molecular features of tumor phenotypes that drive recurrence and discovering novel targets are crucial for improving treatment strategies and enhancing patient outcomes. Methods Single-nuclei RNA sequencing (snRNA-seq), spatial transcriptomics (ST), bulk RNA-seq, and mutation/copy number data were curated from public databases. The Seurat package was used to process snRNA-seq and ST data. Scissor analysis was applied to identify tumor subpopulations associated with poor relapse-free survival (RFS). Univariate Cox and LASSO analyses were utilized to reduce features. A prognostic ensemble machine learning model was developed. Immunohistochemistry was used to validate the expression of key features in tumor tissues. The CellChat and Commot package was utilized to infer cellular interactions. The PERCEPTION computational pipeline was used to predict the response of tumor cells to chemotherapy and targeted therapies. Results By integrating snRNA-seq and bulk RNA-seq data, we identified a subtype of Scissor+ tumor cells associated with poor RFS, predominantly derived from cap mesenchyme-like blastemal and fibroblast-like tumor subgroups. These cells displayed nephron progenitor signatures and cancer stem cell markers. A prognostic ensemble machine learning model was constructed based on the Scissor+ tumor signature to accurately predict patient RFS. TGFA was identified as the most significant feature in this model and validated by immunohistochemistry. Cellular communication analysis revealed strong associations between Scissor+ tumor cells and cancer-associated fibroblasts (CAFs) through IGF, SLIT, FGF, and PDGF pathways. ST data revealed that Scissor+ tumor cells were primarily located in immune-desert niche surrounded by CAFs. Despite reduced responsiveness to conventional chemotherapy, Scissor+ tumor cells were sensitive to EGFR inhibitors, providing insights into clinical intervention strategies for WT patients at high risk of recurrence. Conclusion This study identified a relapse-associated tumor subtype resembling nephron progenitor cells, residing in immune-desert niches through interactions with CAFs. The proposed prognostic model could accurately identify patients at high risk of relapse, offering a promising method for clinical risk stratification. Targeting these cells with EGFR inhibitors, in combination with conventional chemotherapy, may provide a potential therapeutic strategy for WT patients.
Collapse
Affiliation(s)
- Ran Yang
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
- Children’s Hospital of Fudan University (Xiamen Branch), Xiamen Children’s Hospital, Xiamen Key Laboratory of Pediatric General Surgery Diseases, Xiamen, China
| | - Lulu Xie
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Rui Wang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Li
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Yifei Lu
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Baihui Liu
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Shuyang Dai
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
- Children’s Hospital of Fudan University (Xiamen Branch), Xiamen Children’s Hospital, Xiamen Key Laboratory of Pediatric General Surgery Diseases, Xiamen, China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
- Children’s Hospital of Fudan University (Xiamen Branch), Xiamen Children’s Hospital, Xiamen Key Laboratory of Pediatric General Surgery Diseases, Xiamen, China
| | - Rui Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
- Children’s Hospital of Fudan University (Xiamen Branch), Xiamen Children’s Hospital, Xiamen Key Laboratory of Pediatric General Surgery Diseases, Xiamen, China
| |
Collapse
|
2
|
Tang L, Peng S, Zhuang X, He Y, Song Y, Nie H, Zheng C, Pan Z, Lam AK, He M, Shi X, Li B, Xu WW. Tumor Metastasis: Mechanistic Insights and Therapeutic Intervention. MEDCOMM – ONCOLOGY 2025; 4. [DOI: 10.1002/mog2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/04/2025]
Abstract
ABSTRACTMetastasis remains a leading cause of cancer‐related deaths, defined by a complex, multi‐step process in which tumor cells spread and form secondary growths in distant tissues. Despite substantial progress in understanding metastasis, the molecular mechanisms driving this process and the development of effective therapies remain incompletely understood. Elucidating the molecular pathways governing metastasis is essential for the discovery of innovative therapeutic targets. The rapid advancements in sequencing technologies and the expansion of biological databases have significantly deepened our understanding of the molecular drivers of metastasis and associated drug resistance. This review focuses on the molecular drivers of metastasis, particularly the roles of genetic mutations, epigenetic changes, and post‐translational modifications in metastasis progression. We also examine how the tumor microenvironment influences metastatic behavior and explore emerging therapeutic strategies, including targeted therapies and immunotherapies. Finally, we discuss future research directions, stressing the importance of novel treatment approaches and personalized strategies to overcome metastasis and improve patient outcomes. By integrating contemporary insights into the molecular basis of metastasis and therapeutic innovation, this review provides a comprehensive framework to guide future research and clinical advancements in metastatic cancer.
Collapse
Affiliation(s)
- Lin Tang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Shao‐Cong Peng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Xiao‐Wan Zhuang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Yan He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Yu‐Xiang Song
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Hao Nie
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Can‐Can Zheng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Zhen‐Yu Pan
- Department of Radiation Oncology, The Affiliated Huizhou Hospital Guangzhou Medical University Huizhou China
| | - Alfred King‐Yin Lam
- Cancer Molecular Pathology and Griffith Medical School Griffith University Gold Coast Queensland Australia
| | - Ming‐Liang He
- Department of Biomedical Sciences City University of Hong Kong Hong Kong China
| | - Xing‐Yuan Shi
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Bin Li
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Wen Wen Xu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| |
Collapse
|
3
|
Fan G, Dai L, Xie T, Li L, Tang L, Han X, Shi Y. Spatial analyses revealed CXCL5 and SLC6A14 as the markers of microvascular invasion in intrahepatic cholangiocarcinoma. Hepatol Commun 2025; 9:e0597. [PMID: 39670859 PMCID: PMC11637745 DOI: 10.1097/hc9.0000000000000597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/09/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Microvascular invasion (MVI) is a critical prognostic factor in intrahepatic cholangiocarcinoma (ICC), strongly associated with postoperative recurrence. However, the phenotypic features and spatial organization of MVI remain inadequately understood. METHODS We performed a spatial transcriptomic analysis on 29,632 spots from six ICC samples, manually delineating MVI clusters using the cloupe software. Key biomarkers were identified and validated in an independent cohort of 135 ICC patients. Functional and survival analyses were conducted to assess clinical relevance, and cell-cell communication pathways were investigated. RESULTS MVI regions exhibited heightened proliferation, angiogenesis, and epithelial-mesenchymal transition, driven by increased expression of transcription factors SOX10, ZEB1, and SNAI2. CXCL5 and SLC6A14 were identified as potential MVI biomarkers and showed high expression in tumor-invasive areas. Serum CXCL5 demonstrated strong predictive power for vascular invasion (AUC = 0.92) and intrahepatic metastasis (AUC = 0.96). High expression of both CXCL5 and SLC6A14 was associated with the worst survival outcomes. MVI regions were enriched with immunosuppressive MRC1+ macrophages and exhibited elevated immune checkpoint expression, including HAVCR2 and TIGHT, indicative of immune resistance. Cell-cell communication analysis revealed CXCL5-CXCR2 and LGALS9-HAVCR2 as key ligand-receptor pairs contributing to the immunosuppressive microenvironment. CONCLUSIONS This study identifies CXCL5 and SLC6A14 as key biomarkers of MVI, highlighting their roles in tumor proliferation, immune resistance, and poor clinical outcomes. These findings provide valuable insights into the spatial organization of MVI and its contribution to ICC progression, offering potential therapeutic targets.
Collapse
Affiliation(s)
- Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Chaoyang District, Beijing, China
| | - Liyuan Dai
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Chaoyang District, Beijing, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Chaoyang District, Beijing, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Chaoyang District, Beijing, China
| | - Xiaohong Han
- Department of Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Chaoyang District, Beijing, China
| |
Collapse
|
4
|
Wu N, Cai J, Jiang J, Lin Y, Wang X, Zhang W, Kang M, Zhang P. Biomarkers of lymph node metastasis in esophageal cancer. Front Immunol 2024; 15:1457612. [PMID: 39399490 PMCID: PMC11466839 DOI: 10.3389/fimmu.2024.1457612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Esophageal cancer (EC) is among the most aggressive malignancies, ranking as the seventh most prevalent malignant tumor worldwide. Lymph node metastasis (LNM) indicates localized spread of cancer and often correlates with a poorer prognosis, emphasizing the necessity for neoadjuvant systemic therapy before surgery. However, accurate identification of LNM in EC presents challenges due to the lack of satisfactory diagnostic techniques. Imaging techniques, including ultrasound and computerized tomography scans, have low sensitivity and accuracy in assessing LNM. Additionally, the existing serological detection lacks precise biomarkers. The intricate and not fully understood molecular processes involved in LNM of EC contribute to current detective limitations. Recent research has shown potential in using various molecules, circulating tumor cells (CTCs), and changes in the microbiota to identify LNM in individuals with EC. Through summarizing potential biomarkers associated with LNM in EC and organizing the underlying mechanisms involved, this review aims to provide insights that facilitate biomarker development, enhance our understanding of the underlying mechanisms, and ultimately address the diagnostic challenges of LNM in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital,
Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital,
Fuzhou, China
| |
Collapse
|
5
|
Chen S, Liao C, Hu H, Liao J, Chen Z, Li S, Zeng X, Peng B, Shen S, Li D, Li S, Lai J, Peng S, Xie Y, Kuang M. Hypoxia-driven tumor stromal remodeling and immunosuppressive microenvironment in scirrhous HCC. Hepatology 2024; 79:780-797. [PMID: 37725755 DOI: 10.1097/hep.0000000000000599] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND AND AIMS Scirrhous HCC (SHCC) is one of the unique subtypes of HCC, characterized by abundant fibrous stroma in the tumor microenvironment. However, the molecular traits of SHCC remain unclear, which is essential to develop specialized therapeutic approaches for SHCC. APPROACH AND RESULTS We presented an integrative analysis containing single-cell RNA-sequencing, whole-exome sequencing, and bulk RNA-sequencing in SHCC and usual HCC samples from 134 patients to delineate genomic features, transcriptomic profiles, and stromal immune microenvironment of SHCC. Multiplexed immunofluorescence staining, flow cytometry, and functional experiments were performed for validation. Here, we identified SHCC presented with less genomic heterogeneity while possessing a unique transcriptomic profile different from usual HCC. Insulin-like growth factor 2 was significantly upregulated in SHCC tumor cells compared to usual HCC, and could serve as a potential diagnostic biomarker for SHCC. Significant tumor stromal remodeling and hypoxia were observed in SHCC with enrichment of matrix cancer-associated fibroblasts and upregulation of hypoxic pathways. Insulin-like growth factor 2 was identified as a key mediator in shaping the hypoxic stromal microenvironment of SHCC. Under this microenvironment, SHCC exhibited an immunosuppressive niche correlated to enhanced VEGFA signaling activity, where CD4 + T cells and CD8 + T cells were dysfunctional. Furthermore, we found that another hypoxic-related molecule SPP1 from SHCC tumor cells suppressed the function of dendritic cells via the SPP1-CD44 axis, which also probably hindered the activation of T cells. CONCLUSION We uncovered the genomic characteristics of SHCC, and revealed a hypoxia-driven tumor stroma remodeling and immunosuppressive microenvironment in SHCC.
Collapse
Affiliation(s)
- Shuling Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Changyi Liao
- Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huanjing Hu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Junbin Liao
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zebin Chen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shuang Li
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xuezhen Zeng
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bo Peng
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shunli Shen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Dongming Li
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shaoqiang Li
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jiaming Lai
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Sui Peng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
6
|
Tian Y, Han W, Fu L, Zhang J, Zhou X. IGF2 is upregulated by its antisense RNA to potentiate pancreatic cancer progression. Funct Integr Genomics 2023; 23:348. [PMID: 38036690 DOI: 10.1007/s10142-023-01277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
Pancreatic cancer is a deadly cancer. More and more long noncoding RNAs (lncRNAs) have received confirmation to be dysregulated in tumors and exert the regulatory function. Studies have suggested that lncRNA insulin-like growth factor 2 antisense RNA (IGF2-AS) participates in the development of some cancers. Thus, we attempted to clarify its function in pancreatic cancer. Reverse-transcription quantitative polymerase chain reaction was applied for testing IGF2-AS expression in pancreatic cancer cells. Colony formation and Transwell wound experiments were applied for determining cell proliferative, migratory, and invasive capabilities. The alteration of epithelial-mesenchymal transition (EMT)-related gene level was tested via western blot. The mice model was established for measuring the tumor growth and metastasis. RIP validated the interaction of RNAs. IGF2-AS displays high expression in pancreatic cancer cells. IGF2-AS depletion repressed PC cell proliferative, migratory, invasive capabilities, and EMT process. Furthermore, pancreatic cancer tumor growth and metastasis were also inhibited by IGF2-AS depletion. Additionally, IGF2-AS positively regulated IGF2 level via recruiting HNRNPC. IGF2 overexpression counteracted the functions of IGF2-AS deficiency on pancreatic cancer cell behaviors. Moreover, IGF2R deletion was found to inhibit the positive effect of IGF2 on pancreatic cancer progression. IGF2-AS potentiates pancreatic cancer cell proliferation, tumor growth, and metastasis by recruiting HNRNPC via the IGF2-IGF2R regulatory pathway. These discoveries might offer a novel insight for treatment of PC, which may facilitate targeted therapies of PC in clinical practice.
Collapse
Affiliation(s)
- Yuan Tian
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315100, China
| | - Wenwen Han
- Department of Emergency, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315100, China
| | - Long Fu
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315100, China
| | - Jing Zhang
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315100, China
| | - Xinhua Zhou
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315100, China.
| |
Collapse
|
7
|
Boo HJ, Min HY, Hwang SJ, Lee HJ, Lee JW, Oh SR, Park CS, Park JS, Lee YM, Lee HY. The tobacco-specific carcinogen NNK induces pulmonary tumorigenesis via nAChR/Src/STAT3-mediated activation of the renin-angiotensin system and IGF-1R signaling. Exp Mol Med 2023; 55:1131-1144. [PMID: 37258578 PMCID: PMC10317988 DOI: 10.1038/s12276-023-00994-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 06/02/2023] Open
Abstract
The renin-angiotensin (RA) system has been implicated in lung tumorigenesis without detailed mechanistic elucidation. Here, we demonstrate that exposure to the representative tobacco-specific carcinogen nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) promotes lung tumorigenesis through deregulation of the pulmonary RA system. Mechanistically, NNK binding to the nicotinic acetylcholine receptor (nAChR) induces Src-mediated signal transducer and activator of transcription 3 (STAT3) activation, resulting in transcriptional upregulation of angiotensinogen (AGT) and subsequent induction of the angiotensin II (AngII) receptor type 1 (AGTR1) signaling pathway. In parallel, NNK concurrently increases insulin-like growth factor 2 (IGF2) production and activation of IGF-1R/insulin receptor (IR) signaling via a two-step pathway involving transcriptional upregulation of IGF2 through STAT3 activation and enhanced secretion from intracellular storage through AngII/AGTR1/PLC-intervened calcium release. NNK-mediated crosstalk between IGF-1R/IR and AGTR1 signaling promoted tumorigenic activity in lung epithelial and stromal cells. Lung tumorigenesis caused by NNK exposure or alveolar type 2 cell-specific Src activation was suppressed by heterozygous Agt knockout or clinically available inhibitors of the nAChR/Src or AngII/AGTR1 pathways. These results demonstrate that NNK-induced stimulation of the lung RA system leads to IGF2-mediated IGF-1R/IR signaling activation in lung epithelial and stromal cells, resulting in lung tumorigenesis in smokers.
Collapse
Affiliation(s)
- Hye-Jin Boo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Histology, College of Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hye-Young Min
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Su Jung Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Choon-Sik Park
- Soonchunhyang University Bucheon Hospital, Bucheon, Gyeonggi-do, 14584, Republic of Korea
| | - Jong-Sook Park
- Soonchunhyang University Bucheon Hospital, Bucheon, Gyeonggi-do, 14584, Republic of Korea
| | - You Mie Lee
- Vessel-Organ Interaction Research Center (VOICE, MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ho-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
He JZ, Chen Y, Zeng FM, Huang QF, Zhang HF, Wang SH, Yu SX, Pang XX, Liu Y, Xu XE, Wu JY, Shen WJ, Li ZY, Li EM, Xu LY. Spatial analysis of stromal signatures identifies invasive front carcinoma-associated fibroblasts as suppressors of anti-tumor immune response in esophageal cancer. J Exp Clin Cancer Res 2023; 42:136. [PMID: 37254126 DOI: 10.1186/s13046-023-02697-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Increasing evidence indicates that the tumor microenvironment (TME) is a crucial determinant of cancer progression. However, the clinical and pathobiological significance of stromal signatures in the TME, as a complex dynamic entity, is still unclear in esophageal squamous cell carcinoma (ESCC). METHODS Herein, we used single-cell transcriptome sequencing data, imaging mass cytometry (IMC) and multiplex immunofluorescence staining to characterize the stromal signatures in ESCC and evaluate their prognostic values in this aggressive disease. An automated quantitative pathology imaging system determined the locations of the lamina propria, stroma, and invasive front. Subsequently, IMC spatial analyses further uncovered spatial interaction and distribution. Additionally, bioinformatics analysis was performed to explore the TME remodeling mechanism in ESCC. To define a new molecular prognostic model, we calculated the risk score of each patient based on their TME signatures and pTNM stages. RESULTS We demonstrate that the presence of fibroblasts at the tumor invasive front was associated with the invasive depth and poor prognosis. Furthermore, the amount of α-smooth muscle actin (α-SMA)+ fibroblasts at the tumor invasive front positively correlated with the number of macrophages (MØs), but negatively correlated with that of tumor-infiltrating granzyme B+ immune cells, and CD4+ and CD8+ T cells. Spatial analyses uncovered a significant spatial interaction between α-SMA+ fibroblasts and CD163+ MØs in the TME, which resulted in spatially exclusive interactions to anti-tumor immune cells. We further validated the laminin and collagen signaling network contributions to TME remodeling. Moreover, compared with pTNM staging, a molecular prognostic model, based on expression of α-SMA+ fibroblasts at the invasive front, and CD163+ MØs, showed higher accuracy in predicting survival or recurrence in ESCC patients. Regression analysis confirmed this model is an independent predictor for survival, which also identifies a high-risk group of ESCC patients that can benefit from adjuvant therapy. CONCLUSIONS Our newly defined biomarker signature may serve as a complement for current clinical risk stratification approaches and provide potential therapeutic targets for reversing the fibroblast-mediated immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Jian-Zhong He
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, People's Republic of China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Pathology, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan Province, China
| | - Fa-Min Zeng
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, People's Republic of China
| | - Qing-Feng Huang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Hai-Feng Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Shao-Hong Wang
- Departments of Pathology, Shantou Central Hospital, Shantou, 515041, Guangdong, People's Republic of China
| | - Shuai-Xia Yu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Pathology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Xiao-Xiao Pang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Ye Liu
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, People's Republic of China
| | - Xiu-E Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Jian-Yi Wu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Wen-Jun Shen
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
- Department of Bioinformatics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
| | - Zhan-Yu Li
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, People's Republic of China.
| | - En-Min Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
| | - Li-Yan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
- Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Liao L, He Y, Li SJ, Yu XM, Liu ZC, Liang YY, Yang H, Yang J, Zhang GG, Deng CM, Wei X, Zhu YD, Xu TY, Zheng CC, Cheng C, Li A, Li ZG, Liu JB, Li B. Lysine 2-hydroxyisobutyrylation of NAT10 promotes cancer metastasis in an ac4C-dependent manner. Cell Res 2023; 33:355-371. [PMID: 36882514 PMCID: PMC10156899 DOI: 10.1038/s41422-023-00793-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
Posttranslational modifications add tremendous complexity to proteomes; however, gaps remain in knowledge regarding the function and regulatory mechanism of newly discovered lysine acylation modifications. Here, we compared a panel of non-histone lysine acylation patterns in metastasis models and clinical samples, and focused on 2-hydroxyisobutyrylation (Khib) due to its significant upregulation in cancer metastases. By the integration of systemic Khib proteome profiling in 20 paired primary esophageal tumor and metastatic tumor tissues with CRISPR/Cas9 functional screening, we identified N-acetyltransferase 10 (NAT10) as a substrate for Khib modification. We further showed that Khib modification at lysine 823 in NAT10 functionally contribute to metastasis. Mechanistically, NAT10 Khib modification enhances its interaction with deubiquitinase USP39, resulting in increased NAT10 protein stability. NAT10 in turn promotes metastasis by increasing NOTCH3 mRNA stability in an N4-acetylcytidine-dependent manner. Furthermore, we discovered a lead compound #7586-3507 that inhibited NAT10 Khib modification and showed efficacy in tumor models in vivo at a low concentration. Together, our findings bridge newly identified lysine acylation modifications with RNA modifications, thus providing novel insights into epigenetic regulation in human cancer. We propose that pharmacological inhibition of NAT10 K823 Khib modification constitutes a potential anti-metastasis strategy.
Collapse
Affiliation(s)
- Long Liao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Yan He
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Shu-Jun Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xiao-Mei Yu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zhi-Chao Liu
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Yao Liang
- Key Laboratory of CNS Regeneration, Ministry of Education, Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Han Yang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jing Yang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Guo-Geng Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Chun-Miao Deng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xian Wei
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yi-Dong Zhu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Tao-Yang Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Can-Can Zheng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chao Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ang Li
- Key Laboratory of CNS Regeneration, Ministry of Education, Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Zhi-Gang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Bao Liu
- Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, and School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bin Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Cheng SH, Chiou HYC, Wang JW, Lin MH. Reciprocal Regulation of Cancer-Associated Fibroblasts and Tumor Microenvironment in Gastrointestinal Cancer: Implications for Cancer Dormancy. Cancers (Basel) 2023; 15:2513. [PMID: 37173977 PMCID: PMC10177044 DOI: 10.3390/cancers15092513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Gastrointestinal (GI) cancers remain a major cause of cancer-related deaths worldwide. Despite the progress made in current treatments, patients with GI cancers still have high recurrence rates after initial treatment. Cancer dormancy, which involves the entry and escape of cancer cells from dormancy, is linked to treatment resistance, metastasis, and disease relapse. Recently, the role of the tumor microenvironment (TME) in disease progression and treatment has received increasing attention. The crosstalk between cancer-associated fibroblasts (CAF)-secreted cytokines/chemokines and other TME components, for example, extracellular matrix remodeling and immunomodulatory functions, play crucial roles in tumorigenesis. While there is limited direct evidence of a relationship between CAFs and cancer cell dormancy, this review explores the potential of CAF-secreted cytokines/chemokines to either promote cancer cell dormancy or awaken dormant cancer cells under different conditions, and the therapeutic strategies that may be applicable. By understanding the interactions between cytokines/chemokines released by CAFs and the TME, and their impact on the entry/escape of cancer dormancy, researchers may develop new strategies to reduce the risk of therapeutic relapse in patients with GI cancers.
Collapse
Affiliation(s)
- Shih-Hsuan Cheng
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsin-Ying Clair Chiou
- Teaching and Research Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jiunn-Wei Wang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Hong Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
11
|
IGF2: A Role in Metastasis and Tumor Evasion from Immune Surveillance? Biomedicines 2023; 11:biomedicines11010229. [PMID: 36672737 PMCID: PMC9855361 DOI: 10.3390/biomedicines11010229] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Insulin-like growth factor 2 (IGF2) is upregulated in both childhood and adult malignancies. Its overexpression is associated with resistance to chemotherapy and worse prognosis. However, our understanding of its physiological and pathological role is lagging behind what we know about IGF1. Dysregulation of the expression and function of IGF2 receptors, insulin receptor isoform A (IR-A), insulin growth factor receptor 1 (IGF1R), and their downstream signaling effectors drive cancer initiation and progression. The involvement of IGF2 in carcinogenesis depends on its ability to link high energy intake, increase cell proliferation, and suppress apoptosis to cancer risk, and this is likely the key mechanism bridging insulin resistance to cancer. New aspects are emerging regarding the role of IGF2 in promoting cancer metastasis by promoting evasion from immune destruction. This review provides a perspective on IGF2 and an update on recent research findings. Specifically, we focus on studies providing compelling evidence that IGF2 is not only a major factor in primary tumor development, but it also plays a crucial role in cancer spread, immune evasion, and resistance to therapies. Further studies are needed in order to find new therapeutic approaches to target IGF2 action.
Collapse
|
12
|
Yan D, Cui D, Zhu Y, Chan CKW, Choi CHJ, Liu T, Lee NP, Law S, Tsao SW, Ma S, Cheung ALM. M6PR- and EphB4-Rich Exosomes Secreted by Serglycin-Overexpressing Esophageal Cancer Cells Promote Cancer Progression. Int J Biol Sci 2023; 19:625-640. [PMID: 36632458 PMCID: PMC9830512 DOI: 10.7150/ijbs.79875] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/13/2022] [Indexed: 01/04/2023] Open
Abstract
Accumulating evidence shows that exosomes participate in cancer progression. However, the functions of cancer cell exosome-transmitted proteins are rarely studied. Previously, we reported that serglycin (SRGN) overexpression promotes invasion and metastasis of esophageal squamous cell carcinoma (ESCC) cells. Here, we investigated the paracrine effects of exosomes from SRGN-overexpressing ESCC cells (SRGN Exo) on ESCC cell invasion and tumor angiogenesis, and used mass spectrometry to identify exosomal proteins involved. Cation-dependent mannose-6-phosphate receptor (M6PR) and ephrin type-B receptor 4 (EphB4) were pronouncedly upregulated in SRGN Exo. Upregulated exosomal M6PR mediated the pro-angiogenic effects of SRGN Exo both in vitro and in vivo, while augmented exosomal EphB4 mediated the pro-invasive effect of SRGN Exo on ESCC cells in vitro. In addition, in vitro studies showed that manipulation of M6PR expression affected the viability and migration of ESCC cells. Both M6PR and EphB4 expression levels were positively correlated with that of SRGN in the serum of patients with ESCC. High level of serum M6PR was associated with poor overall survival rates. Taken together, this study presents the first proof that exosomal M6PR and EphB4 play essential roles in tumor angiogenesis and malignancy, and that serum M6PR is a novel prognostic marker for ESCC patients.
Collapse
Affiliation(s)
- Dongdong Yan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Di Cui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Yun Zhu
- Center for Clinical Big Data and Analytics, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cecilia Ka Wing Chan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Tengfei Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Nikki P.Y. Lee
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Simon Law
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Annie Lai Man Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,✉ Corresponding author: Annie L.M. Cheung, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China. Phone: 852-3917-9293; Fax: 852-2817-0857; E-mail:
| |
Collapse
|
13
|
Clemente-González C, Carnero A. Role of the Hypoxic-Secretome in Seed and Soil Metastatic Preparation. Cancers (Basel) 2022; 14:5930. [PMID: 36497411 PMCID: PMC9738438 DOI: 10.3390/cancers14235930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
During tumor growth, the delivery of oxygen to cells is impaired due to aberrant or absent vasculature. This causes an adaptative response that activates the expression of genes that control several essential processes, such as glycolysis, neovascularization, immune suppression, and the cancer stemness phenotype, leading to increased metastasis and resistance to therapy. Hypoxic tumor cells also respond to an altered hypoxic microenvironment by secreting vesicles, factors, cytokines and nucleic acids that modify not only the immediate microenvironment but also organs at distant sites, allowing or facilitating the attachment and growth of tumor cells and contributing to metastasis. Hypoxia induces the release of molecules of different biochemical natures, either secreted or inside extracellular vesicles, and both tumor cells and stromal cells are involved in this process. The mechanisms by which these signals that can modify the premetastatic niche are sent from the primary tumor site include changes in the extracellular matrix, recruitment and activation of different stromal cells and immune or nonimmune cells, metabolic reprogramming, and molecular signaling network rewiring. In this review, we will discuss how hypoxia might alter the premetastatic niche through different signaling molecules.
Collapse
Affiliation(s)
- Cynthia Clemente-González
- Instituto de Biomedicina de Sevilla (IBIS), Consejo Superior de Investigaciones Científicas, Hospital Universitario Virgen del Rocío (HUVR), Universidad de Sevilla, 41013 Seville, Spain
- CIBERONC (Centro de Investigación Biomédica en Red Cáncer), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Consejo Superior de Investigaciones Científicas, Hospital Universitario Virgen del Rocío (HUVR), Universidad de Sevilla, 41013 Seville, Spain
- CIBERONC (Centro de Investigación Biomédica en Red Cáncer), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
14
|
Qiu H, Zhang X, Qi J, Zhang J, Tong Y, Li L, Fu L, Qin YR, Guan X, Zhang L. Identification and characterization of FGFR2+ hematopoietic stem cell-derived fibrocytes as precursors of cancer-associated fibroblasts induced by esophageal squamous cell carcinoma. J Exp Clin Cancer Res 2022; 41:240. [PMID: 35941662 PMCID: PMC9358838 DOI: 10.1186/s13046-022-02435-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022] Open
Abstract
Background Cancer-associated fibroblast (CAF) is an ideal target for cancer treatment. Recent studies have focused on eliminating CAFs and their effects by targeting their markers or blocking individual CAF-secreted factors. However, these strategies have been limited by their specificity for targeting CAFs and effectiveness in blocking widespread influence of CAFs. To optimize CAF-targeted therapeutic strategies, we tried to explore the molecular mechanisms of CAF generation in this study. Methods Using FGFR2 as a tracing marker, we identified a novel origin of CAFs in esophageal squamous cell carcinoma (ESCC). Furthermore, we successfully isolated CAF precursors from peripheral blood of ESCC patients and explored the mechanisms underlying their expansion, recruitment, and differentiation via RNA-sequencing and bioinformatics analysis. The mechanisms were further verified by using different models both in vitro and in vivo. Results We found that FGFR2+ hematopoietic stem cell (HSC)-derived fibrocytes could be induced by ESCC cells, recruited into tumor xenografts, and differentiated into functional CAFs. They were mobilized by cancer-secreted FGF2 and recruited into tumor sites via the CXCL12/CXCR4 axis. Moreover, they differentiated into CAFs through the activation of YAP-TEAD complex, which is triggered by directly contracting with tumor cells. FGF2 and CXCR4 neutralizing antibodies could effectively block the mobilization and recruitment process of FGFR2+ CAFs. The YAP-TEAD complex-based mechanism hold promise for locally activation of genetically encoded therapeutic payloads at tumor sites. Conclusions We identified a novel CAF origin and systematically studied the process of mobilization, recruitment, and maturation of CAFs in ESCC under the guidance of tumor cells. These findings give rise to new approaches that target CAFs before their incorporation into tumor stroma and use CAF-precursors as cellular vehicles to target tumor cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02435-w.
Collapse
|
15
|
Tang Z, Wu S, Zhao P, Wang H, Ni D, Li H, Jiang X, Wu Y, Meng Y, Yao Z, Cai W, Bu W. Chemical Factory-Guaranteed Enhanced Chemodynamic Therapy for Orthotopic Liver Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201232. [PMID: 35712774 PMCID: PMC9376848 DOI: 10.1002/advs.202201232] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Indexed: 05/05/2023]
Abstract
In the field of nanomedicine, there is a tendency of matching designed nanomaterials with a suitable type of orthotopic cancer model, not just a casual subcutaneous one. Under this condition, knowing the specific features of the chosen cancer model is the priority, then introducing a proper therapy strategy using designed nanomaterials. Here, the Fenton chemistry is combined with zinc peroxide nanoparticles in the treatment of orthotopic liver cancer which has a "chemical factory" including that liver is the main place for iron storage, metabolism, and also the main metabolic sites for the majority of ingested substances, guaranteeing customized and enhanced chemodynamic therapy and normal liver cells protection as well. The good results in vitro and in vivo can set an inspiring example for exploring and utilizing suitable nanomaterials in corresponding cancer models, ensuring well-fitness of nanomaterials for disease and satisfactory therapeutic effect.
Collapse
Affiliation(s)
- Zhongmin Tang
- Tongji University Cancer CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
- Departments of Radiology, Medical Physics, Materials Science & EngineeringPharmaceutical SciencesUniversity of Wisconsin − MadisonMadisonWI53705USA
| | - Shiman Wu
- Department of RadiologyHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200438P. R. China
| | - Han Wang
- Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| | - Dalong Ni
- Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200438P. R. China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200438P. R. China
| | - Yelin Wu
- Tongji University Cancer CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
| | - Yun Meng
- Tongji University Cancer CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
| | - Zhenwei Yao
- Department of RadiologyHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Weibo Cai
- Departments of Radiology, Medical Physics, Materials Science & EngineeringPharmaceutical SciencesUniversity of Wisconsin − MadisonMadisonWI53705USA
| | - Wenbo Bu
- Tongji University Cancer CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200438P. R. China
| |
Collapse
|
16
|
Kumar D, Das M, Oberg A, Sahoo D, Wu P, Sauceda C, Jih L, Ellies LG, Langiewicz MT, Sen S, Webster NJG. Hepatocyte Deletion of IGF2 Prevents DNA Damage and Tumor Formation in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105120. [PMID: 35615981 PMCID: PMC9313545 DOI: 10.1002/advs.202105120] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/18/2022] [Indexed: 05/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Serine-arginine rich splicing factor 3 (SRSF3) plays a critical role in hepatocyte function and its loss in mice promotes chronic liver damage and leads to HCC. Hepatocyte-specific SRSF3 knockout mice (SKO mice) also overexpress insulin-like growth factor 2 (IGF2). In the present study, double deletion of Igf2 and Srsf3 (DKO mice) prevents hepatic fibrosis and inflammation, and completely prevents tumor formation, and is associated with decreased proliferation, apoptosis and DNA damage, and restored DNA repair enzyme expression. This is confirmed in vitro, where IGF2 treatment of HepG2 hepatoma cells decreases DNA repair enzyme expression and causes DNA damage. Tumors from the SKO mice also show mutational signatures consistent with homologous recombination and mismatch repair defects. Analysis of frozen human samples shows that SRSF3 protein is decreased sixfold in HCC compared to normal liver tissue but SRSF3 mRNA is increased. Looking at public TCGA data, HCC patients having high SRSF3 mRNA expression show poor survival, as do patients with alterations in known SRSF3-dependent splicing events. The results indicate that IGF2 overexpression in conjunction with reduced SRSF3 splicing activity could be a major cause of DNA damage and driver of liver cancer.
Collapse
Affiliation(s)
- Deepak Kumar
- Research and Development ServiceVA San Diego Healthcare SystemSan DiegoCA92161USA
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Manasi Das
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Alexis Oberg
- Research and Development ServiceVA San Diego Healthcare SystemSan DiegoCA92161USA
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Debashis Sahoo
- Division of Genome Information Sciences, Department of PediatricsUniversity of California San DiegoLa JollaCA92093USA
| | - Panyisha Wu
- Research and Development ServiceVA San Diego Healthcare SystemSan DiegoCA92161USA
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Consuelo Sauceda
- Research and Development ServiceVA San Diego Healthcare SystemSan DiegoCA92161USA
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Lily Jih
- Research and Development ServiceVA San Diego Healthcare SystemSan DiegoCA92161USA
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Lesley G. Ellies
- Division of Cancer Biology Research, Department of PathologyUniversity of California San DiegoLa JollaCA92093USA
- Moores Cancer CenterUniversity of California San DiegoLa JollaCA92093USA
| | - Magda T. Langiewicz
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Supriya Sen
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Nicholas J. G. Webster
- Research and Development ServiceVA San Diego Healthcare SystemSan DiegoCA92161USA
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
- Moores Cancer CenterUniversity of California San DiegoLa JollaCA92093USA
| |
Collapse
|
17
|
Li H, Wu M, Zhao X. Role of chemokine systems in cancer and inflammatory diseases. MedComm (Beijing) 2022; 3:e147. [PMID: 35702353 PMCID: PMC9175564 DOI: 10.1002/mco2.147] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a large family of small secreted proteins that have fundamental roles in organ development, normal physiology, and immune responses upon binding to their corresponding receptors. The primary functions of chemokines are to coordinate and recruit immune cells to and from tissues and to participate in regulating interactions between immune cells. In addition to the generally recognized antimicrobial immunity, the chemokine/chemokine receptor axis also exerts a tumorigenic function in many different cancer models and is involved in the formation of immunosuppressive and protective tumor microenvironment (TME), making them potential prognostic markers for various hematologic and solid tumors. In fact, apart from its vital role in tumors, almost all inflammatory diseases involve chemokines and their receptors in one way or another. Modulating the expression of chemokines and/or their corresponding receptors on tumor cells or immune cells provides the basis for the exploitation of new drugs for clinical evaluation in the treatment of related diseases. Here, we summarize recent advances of chemokine systems in protumor and antitumor immune responses and discuss the prevailing understanding of how the chemokine system operates in inflammatory diseases. In this review, we also emphatically highlight the complexity of the chemokine system and explore its potential to guide the treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| |
Collapse
|
18
|
Zhu Y, Li F, Wan Y, Liang H, Li S, Peng B, Shao L, Xu Y, Jiang D. Cancer-Secreted Exosomal MiR-620 Inhibits ESCC Aerobic Glycolysis via FOXM1/HER2 Pathway and Promotes Metastasis. Front Oncol 2022; 12:756109. [PMID: 35651785 PMCID: PMC9148961 DOI: 10.3389/fonc.2022.756109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a leading cause of cancer death worldwide. MicroRNAs (MiRNAs) have been reported to regulate cell functions through exosomes. Through the Gene Expression Omnibus (GEO) database, miR-620 was selected as a serum miRNA highly expressed in ESCC, but its detailed role in ESCC has not been explored. Tumor-secreted miRNAs have been reported to promote cancer metastasis through reprogramming the aerobic glycolysis of lung fibroblasts. Therefore, we intended to verify whether exosomal miR-620 secreted in ESCC cells may regulate the aerobic glycolysis of lung fibroblasts. Methods The effect of miR-620 on the aerobic glycolysis of ESCC cells was firstly verified through bioinformatics prediction and mechanism assays. Exosomes secreted from ESCC cells was detected, and the influence of exosomal miR-620 in regulating the aerobic glycolysis of lung fibroblasts was then verified both in vitro and in vivo. Results MiR-620 inhibited ESCC malignancy and suppressed the aerobic glycolysis of ESCC cells via targeting Forkhead box M1 (FOXM1) and human epidermal growth factor receptor 2 (HER2). Moreover, exosomal miR-620 was highly secreted in ESCC and could regulate HFL1 aerobic glycolysis via FOXM1/HER2 signaling. Furthermore, exosomal miR-620 could promote ESCC metastasis by reprogramming the aerobic glycolysis of lung fibroblasts (HFL1). Conclusion Exosomal miR-620 secreted by ESCC cells inhibited the aerobic glycolysis via FOXM1/HER2 axis and promoted cancer metastasis.
Collapse
Affiliation(s)
- Yanbo Zhu
- Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fang Li
- Department of Human Anatomy and Histology & Embryology, The School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yilong Wan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hansi Liang
- Jiangsu Institute of Clinical Immunology, Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Si Li
- Clinical Medicine Major, Soochow University Medical College, Suzhou, China
| | - Bo Peng
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liqun Shao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunyun Xu
- Childrens’ Hospital Affiliated to Soochow University, Institute of Pediatrics, Suzhou, China
- *Correspondence: Dong Jiang, ; Yunyun Xu,
| | - Dong Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Dong Jiang, ; Yunyun Xu,
| |
Collapse
|
19
|
Rodrigues-Junior DM, Tsirigoti C, Lim SK, Heldin CH, Moustakas A. Extracellular Vesicles and Transforming Growth Factor β Signaling in Cancer. Front Cell Dev Biol 2022; 10:849938. [PMID: 35493080 PMCID: PMC9043557 DOI: 10.3389/fcell.2022.849938] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Complexity in mechanisms that drive cancer development and progression is exemplified by the transforming growth factor β (TGF-β) signaling pathway, which suppresses early-stage hyperplasia, yet assists aggressive tumors to achieve metastasis. Of note, several molecules, including mRNAs, non-coding RNAs, and proteins known to be associated with the TGF-β pathway have been reported as constituents in the cargo of extracellular vesicles (EVs). EVs are secreted vesicles delimited by a lipid bilayer and play critical functions in intercellular communication, including regulation of the tumor microenvironment and cancer development. Thus, this review aims at summarizing the impact of EVs on TGF-β signaling by focusing on mechanisms by which EV cargo can influence tumorigenesis, metastatic spread, immune evasion and response to anti-cancer treatment. Moreover, we emphasize the potential of TGF-β-related molecules present in circulating EVs as useful biomarkers of prognosis, diagnosis, and prediction of response to treatment in cancer patients.
Collapse
Affiliation(s)
| | - Chrysoula Tsirigoti
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (A*-STAR), Singapore, Singapore
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- *Correspondence: Aristidis Moustakas,
| |
Collapse
|
20
|
Liu QW, He Y, Xu WW. Molecular functions and therapeutic applications of exosomal noncoding RNAs in cancer. Exp Mol Med 2022; 54:216-225. [PMID: 35352001 PMCID: PMC8980040 DOI: 10.1038/s12276-022-00744-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/24/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer is one of the most difficult diseases in human society. Therefore, it is urgent for us to understand its pathogenesis and improve the cure rate. Exosomes are nanoscale membrane vesicles formed by a variety of cells through endocytosis. As a new means of intercellular information exchange, exosomes have attracted much attention. Noncoding RNAs exist in various cell compartments and participate in a variety of cellular reactions; in particular, they can be detected in exosomes bound to lipoproteins and free circulating molecules. Increasing evidence has suggested the potential roles of exosomal noncoding RNAs in the progression of tumors. Herein, we present a comprehensive update on the biological functions of exosomal noncoding RNAs in the development of cancer. Specifically, we mainly focus on the effects of exosomal noncoding RNAs, including microRNAs, circular RNAs, long noncoding RNAs, small nuclear RNAs, and small nucleolar RNAs, on tumor growth, metastasis, angiogenesis, and chemoresistance. Moreover, we outline the current clinical implications concerning exosomal noncoding RNAs in cancer treatment.
Collapse
Affiliation(s)
- Qin-Wen Liu
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Yan He
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Wen Wen Xu
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
21
|
Ding JH, Xiao Y, Zhao S, Xu Y, Xiao YL, Shao ZM, Jiang YZ, Di GH. Integrated analysis reveals the molecular features of fibrosis in triple-negative breast cancer. Mol Ther Oncolytics 2022; 24:624-635. [PMID: 35284626 PMCID: PMC8898759 DOI: 10.1016/j.omto.2022.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer. High fibrosis, marked by increased collagen fibers, is widespread in TNBC and correlated with tumor progression. However, the molecular features of fibrosis and why it results in a poor prognosis remain poorly understood. Based on multiomics datasets of TNBC, we evaluated the pathological fibrosis grade of 344 samples for further analysis. Genomic, transcriptomic, and immune changes were analyzed among different subgroups of fibrosis. High fibrosis was an independent adverse prognosis predictor and had interactions with low stromal tumor-infiltrating lymphocytes. Genomic analysis identified copy number gains of 6p22.2-6p22.1 (TRIM27) and 20q13.33 (CDH4) as genomic hallmarks of tumors with high fibrosis. Transcriptome analysis revealed the transforming growth factor-beta pathway and hypoxia pathway were key pro-oncogenic pathways in tumors with high fibrosis. Moreover, we systematically evaluate the relationship between fibrosis and different kinds of immune and stromal cells. Tumors with high fibrosis were characterized by an immunosuppressive tumor microenvironment with limited immune cell infiltration and increased fibroblasts. This study proposes new insight into the genomic and transcriptomic alterations potentially driving fibrosis. Moreover, fibrosis is related to an immunosuppressive tumor microenvironment that contributes to the poor prognosis.
Collapse
Affiliation(s)
- Jia-Han Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Shen Zhao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Ying Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Gen-Hong Di
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
22
|
Zheng C, Yu X, Liang Y, Zhu Y, He Y, Liao L, Wang D, Yang Y, Yin X, Li A, He Q, Li B. Targeting PFKL with penfluridol inhibits glycolysis and suppresses esophageal cancer tumorigenesis in an AMPK/FOXO3a/BIM-dependent manner. Acta Pharm Sin B 2022; 12:1271-1287. [PMID: 35530161 PMCID: PMC9069409 DOI: 10.1016/j.apsb.2021.09.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
As one of the hallmarks of cancer, metabolic reprogramming leads to cancer progression, and targeting glycolytic enzymes could be useful strategies for cancer therapy. By screening a small molecule library consisting of 1320 FDA-approved drugs, we found that penfluridol, an antipsychotic drug used to treat schizophrenia, could inhibit glycolysis and induce apoptosis in esophageal squamous cell carcinoma (ESCC). Gene profiling and Ingenuity Pathway Analysis suggested the important role of AMPK in action mechanism of penfluridol. By using drug affinity responsive target stability (DARTS) technology and proteomics, we identified phosphofructokinase, liver type (PFKL), a key enzyme in glycolysis, as a direct target of penfluridol. Penfluridol could not exhibit its anticancer property in PFKL-deficient cancer cells, illustrating that PFKL is essential for the bioactivity of penfluridol. High PFKL expression is correlated with advanced stages and poor survival of ESCC patients, and silencing of PFKL significantly suppressed tumor growth. Mechanistically, direct binding of penfluridol and PFKL inhibits glucose consumption, lactate and ATP production, leads to nuclear translocation of FOXO3a and subsequent transcriptional activation of BIM in an AMPK-dependent manner. Taken together, PFKL is a potential prognostic biomarker and therapeutic target in ESCC, and penfluridol may be a new therapeutic option for management of this lethal disease.
Collapse
|
23
|
Chen SH, Xu DD, Zhou PJ, Wang Y, Liu QY, Ren Z, Liu Z, Wang X, Huang HQ, Xue X, Wang Y, Wang YF. Combination treatment with sorafenib and wh‑4 additively suppresses the proliferation of liver cancer cells. Exp Ther Med 2022; 23:232. [PMID: 35222709 PMCID: PMC8815050 DOI: 10.3892/etm.2022.11156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/06/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Su-Hong Chen
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Dan-Dan Xu
- College of Biotechnology, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, P.R. China
| | - Peng-Jun Zhou
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yao Wang
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qiu-Ying Liu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zhe Ren
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zhong Liu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xia Wang
- College of Biotechnology, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, P.R. China
| | - Hui-Qing Huang
- College of Biotechnology, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, P.R. China
| | - Xue Xue
- College of Biotechnology, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, P.R. China
| | - Ying Wang
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, P.R. China
| | - Yi-Fei Wang
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
24
|
Li M, Wang X, Wang Y, Bao S, Chang Q, Liu L, Zhang S, Sun L. Strategies for Remodeling the Tumor Microenvironment Using Active Ingredients of Ginseng-A Promising Approach for Cancer Therapy. Front Pharmacol 2022; 12:797634. [PMID: 35002732 PMCID: PMC8727883 DOI: 10.3389/fphar.2021.797634] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
The tumor microenvironment (TME) plays a key role in promoting the initiation and progression of tumors, leading to chemoradiotherapy resistance and immunotherapy failure. Targeting of the TME is a novel anti-tumor therapeutic approach and is currently a focus of anti-tumor research. Panax ginseng C. A. Meyer (ginseng), an ingredient of well-known traditional Asia medicines, exerts beneficial anti-tumor effects and can regulate the TME. Here, we present a systematic review that describes the current status of research efforts to elucidate the functions and mechanisms of ginseng active components (including ginsenosides and ginseng polysaccharides) for achieving TME regulation. Ginsenosides have variety effects on TME, such as Rg3, Rd and Rk3 can inhibit tumor angiogenesis; Rg3, Rh2 and M4 can regulate the function of immune cells; Rg3, Rd and Rg5 can restrain the stemness of cancer stem cells. Ginseng polysaccharides (such as red ginseng acidic polysaccharides and polysaccharides extracted from ginseng berry and ginseng leaves) can regulate TME mainly by stimulating immune cells. In addition, we propose a potential mechanistic link between ginseng-associated restoration of gut microbiota and the tumor immune microenvironment. Finally, we describe recent advances for improving ginseng efficacy, including the development of a nano-drug delivery system. Taken together, this review provides novel perspectives on potential applications for ginseng active ingredients as anti-cancer adjuvants that achieve anti-cancer effects by reshaping the tumor microenvironment.
Collapse
Affiliation(s)
- Mo Li
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China.,Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xin Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ying Wang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shunchao Bao
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Qing Chang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Linlin Liu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Shuai Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
25
|
Tan XP, He Y, Huang YN, Zheng CC, Li JQ, Liu QW, He ML, Li B, Xu WW. Lomerizine 2HCl inhibits cell proliferation and induces protective autophagy in colorectal cancer via the PI3K/Akt/mTOR signaling pathway. MedComm (Beijing) 2021; 2:453-466. [PMID: 34766155 PMCID: PMC8554656 DOI: 10.1002/mco2.83] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 01/22/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies currently. Despite advances in drug development, the survival and response rates in CRC patients are still poor. In our previous study, a library comprised of 1056 bioactive compounds was used for screening of drugs that could suppress CRC. Lomerizine 2HCl, which is an approved prophylactic drug for migraines, was selected for our studies. The results of in vitro and in vivo assays suggested that lomerizine 2HCl suppresses cell growth and promotes apoptosis in CRC cells. Moreover, lomerizine 2HCl inhibits cell migration and invasion of CRC. RNA sequencing analysis and Western blotting confirmed that lomerizine 2HCl can inhibit cell growth, migration, and invasion through PI3K/AKT/mTOR signaling pathway and induces protective autophagy in CRC. Meanwhile, autophagy inhibition by 3‐methyladenine (3‐MA) increases lomerizine 2HCl‐induced cell apoptosis. Taken together, these results imply that lomerizine 2HCl is a potential anticancer agent, and the combination of lomerizine 2HCl and autophagy inhibitors may serve as a novel strategy to increase the antitumor efficacy of agents in the treatment of CRC.
Collapse
Affiliation(s)
- Xiang-Peng Tan
- MOE Key Laboratory of Tumor Molecular Biology National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology and The First Affiliated Hospital of Jinan University Jinan University Guangzhou China
| | - Yan He
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou China
| | - Yun-Na Huang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou China
| | - Can-Can Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou China
| | - Jun-Qi Li
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou China
| | - Qin-Wen Liu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou China
| | - Ming-Liang He
- Department of Biomedical Sciences City University of Hong Kong Hong Kong China
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou China
| | - Wen-Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou China
| |
Collapse
|
26
|
Dong Q, Liu X, Cheng K, Sheng J, Kong J, Liu T. Pre-metastatic Niche Formation in Different Organs Induced by Tumor Extracellular Vesicles. Front Cell Dev Biol 2021; 9:733627. [PMID: 34616739 PMCID: PMC8489591 DOI: 10.3389/fcell.2021.733627] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
Primary tumors selectively modify the microenvironment of distant organs such as the lung, liver, brain, bone marrow, and lymph nodes to facilitate metastasis. This supportive metastatic microenvironment in distant organs was termed the pre-metastatic niche (PMN) that is characterized by increased vascular permeability, extracellular matrix remodeling, bone marrow-derived cells recruitment, angiogenesis, and immunosuppression. Extracellular vesicles (EVs) are a group of cell-derived membranous structures that carry various functional molecules. EVs play a critical role in PMN formation by delivering their cargos to recipient cells in target organs. We provide an overview of the characteristics of the PMN in different organs promoted by cancer EVs and the underlying mechanisms in this review.
Collapse
Affiliation(s)
- Qi Dong
- Department of Basic Science of Stomatology, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.,Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Xue Liu
- Department of Basic Science of Stomatology, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Ke Cheng
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Jiahao Sheng
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Jing Kong
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Tingjiao Liu
- Department of Basic Science of Stomatology, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Wang Y, Zhang J, Li YJ, Yu NN, Liu WT, Liang JZ, Xu WW, Sun ZH, Li B, He QY. MEST promotes lung cancer invasion and metastasis by interacting with VCP to activate NF-κB signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:301. [PMID: 34560900 PMCID: PMC8464132 DOI: 10.1186/s13046-021-02107-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022]
Abstract
Background Cell invasion is a hallmark of metastatic cancer, leading to unfavorable clinical outcomes. In this study, we established two highly invasive lung cancer cell models (A549-i8 and H1299-i8) and identified mesoderm-specific transcript (MEST) as a novel invasive regulator of lung cancer. We aim to characterize its biological function and clinical significance in lung cancer metastasis. Methods Transwell invasion assay was performed to establish high-invasive lung cancer cell model. Immunohistochemistry (IHC) was used to detect MEST expression in tumor tissues. Mass spectrometry and bioinformatic analyses were used to identify MEST-regulated proteins and binding partners. Co-immunoprecipitation assay was performed to detect the interaction of MEST and VCP. The biological functions of MEST were investigated in vitro and in vivo. Immunofluorescence staining was conducted to explore the colocalization of MEST and VCP. Results MEST overexpression promoted metastasis of lung cancer cells in vivo and in vitro by activating NF-κB signaling. MEST increased the interaction between VCP and IκBα, which accelerated IκBα degradation and NF-κB activation. Such acceleration was abrogated by VCP silencing, indicating that MEST is an upstream activator of the VCP/IκBα/NF-κB signaling pathway. Furthermore, high expressions of MEST and VCP were associated with poor survival of lung cancer patients. Conclusion Collectively, these results demonstrate that MEST plays an important role in driving invasion and metastasis of lung cancer by interacting with VCP to coordinate the IκBα/NF-κB pathway. Targeting the MEST/VCP/IκBα/NF-κB signaling pathway may be a promising strategy to treat lung cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02107-1.
Collapse
Affiliation(s)
- Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jing Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yang-Jia Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Nan-Nan Yu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wan-Ting Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jun-Ze Liang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou, 510632, China
| | - Zheng-Hua Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
28
|
Cui D, Cheung ALM. Roles of microRNAs in tumorigenesis and metastasis of esophageal squamous cell carcinoma. World J Clin Oncol 2021; 12:609-622. [PMID: 34513596 PMCID: PMC8394161 DOI: 10.5306/wjco.v12.i8.609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/11/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the major subtype of esophageal cancer that is prevalent in Eastern Asia. Despite recent advances in therapy, the outcome of ESCC patients is still dismal. MicroRNAs (miRNAs) are non-coding RNAs which can negatively modulate gene expression at the post-transcriptional level. The involvement and roles of miRNAs have become one of the hot topics of cancer research in recent years. In ESCC, genetic variations within miRNA coding genes were found to have distinct epidemiological significance in different populations. Dysregulated expression of several miRNAs was reported to be associated with therapeutic response. Functionally, miRNAs can act either in an oncogenic or a tumor-suppressive manner during tumorigenesis of ESCC by interrupting signaling pathways associated with cell proliferation, metabolism, cancer stemness, and resistance to chemo- or radiotherapy. Moreover, miRNAs modulate metastasis of ESCC by targeting genes that regulate cytoskeleton dynamics, extracellular matrix remodeling, epithelial-mesenchymal transition, and tumor microenvironment. Most importantly, mounting evidence suggests that inhibiting oncogenic miRNAs or restoring the loss of tumor-suppressive miRNAs has therapeutic potential in the treatment of ESCC. Here, we review and discuss recent studies on the significance, biological functions, and therapeutic potential of miRNAs in tumorigenesis and metastasis of ESCC.
Collapse
Affiliation(s)
- Di Cui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Annie LM Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
29
|
Fang L, Che Y, Zhang C, Huang J, Lei Y, Lu Z, Sun N, He J. LAMC1 upregulation via TGFβ induces inflammatory cancer-associated fibroblasts in esophageal squamous cell carcinoma via NF-κB-CXCL1-STAT3. Mol Oncol 2021; 15:3125-3146. [PMID: 34218518 PMCID: PMC8564640 DOI: 10.1002/1878-0261.13053] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/28/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
Cancer‐associated fibroblasts (CAF) are a heterogeneous cell population within the tumor microenvironment,and play an important role in tumor development. By regulating the heterogeneity of CAF, transforming growth factor β (TGFβ) influences tumor development. Here, we explored oncogenes regulated by TGFβ1 that are also involved in signaling pathways and interactions within the tumor microenvironment. We analyzed sequencing data of The Cancer Genome Atlas (TCGA) and our own previously established RNA microarray data (GSE53625), as well as esophageal squamous cell carcinoma (ESCC) cell lines with or without TGFβ1 stimulation. We then focused on laminin subunit gamma 1 (LAMC1), which was overexpressed in ESCC cells, affecting patient prognosis, which could be upregulated by TGFβ1 through the synergistic activation of SMAD family member 4 (SMAD4) and SP1. LAMC1 directly promoted the proliferation and migration of tumor cells, mainly via Akt–NFκB–MMP9/14 signaling. Additionally, LAMC1 promoted CXCL1 secretion, which stimulated the formation of inflammatory CAF (iCAF) through CXCR2–pSTAT3. Inflammatory CAF promoted tumor progression. In summary, we identified the dual mechanism by which the upregulation of LAMC1 by TGFβ in tumor cells not only promotes ESCC proliferation and migration, but also indirectly induces carcinogenesis by stimulating CXCL1 secretion to promote the formation of iCAF. This finding suggests that LAMC1 could be a potential therapeutic target and prognostic marker for ESCC.
Collapse
Affiliation(s)
- Lingling Fang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Che
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianbing Huang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyuan Lei
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiliang Lu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Wei Y, Lu W, Yu Y, Zhai Y, Guo H, Yang S, Zhao C, Zhang Y, Liu J, Liu Y, Fei J, Shi J. miR-29c&b2 encourage extramedullary infiltration resulting in the poor prognosis of acute myeloid leukemia. Oncogene 2021; 40:3434-3448. [PMID: 33888868 DOI: 10.1038/s41388-021-01775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
Extramedullary infiltration (EMI), as a concomitant symptom of acute myeloid leukemia (AML), is associated with low complete remission and poor prognosis in AML. However, the mechanism of EMI remains indistinct. Clinical trials showed that increased miR-29s were associated with a poor overall survival in AML [14]. Nevertheless, they were proved to work as tumor suppressor genes by encouraging apoptosis and inhibiting proliferation in vitro. These contradictory results led us to the hypothesis that miR-29s may play a notable role in the prognosis of AML rather than leukemogenesis. Thus, we explored the specimens of AML patients and addressed this issue into miR-29c&b2 knockout mice. As a result, a poor overall survival and invasive blast cells were observed in high miR-29c&b2-expression patients, and the wildtype mice presented a shorter survival with heavier leukemia infiltration in extramedullary organs. Subsequently, we found that the miR-29c&b2 inside leukemia cells promoted EMI, but not the one in the microenvironment. The analysis of signal pathway revealed that miR-29c&b2 could target HMG-box transcription factor 1 (Hbp1) directly, then reduced Hbp1 bound to the promoter of non-muscle myosin IIB (Myh10) as a transcript inhibitor. Thus, increased Myh10 encouraged the migration of leukemia cells. Accordingly, AML patients with EMI were confirmed to have high miR-29c&b2 and MYH10 with low HBP1. Therefore, we identify that miR-29c&b2 contribute to the poor prognosis of AML patients by promoting EMI, and related genes analyses are prospectively feasible in assessment of AML outcome.
Collapse
Affiliation(s)
- Yanyu Wei
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Lu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yehua Yu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanmei Zhai
- Department of Hematology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hezhou Guo
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shaoxin Yang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chong Zhao
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanjie Zhang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiali Liu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuhui Liu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, China. .,Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China.
| | - Jun Shi
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
31
|
LncRNA MALAT1 promotes gastric cancer progression via inhibiting autophagic flux and inducing fibroblast activation. Cell Death Dis 2021; 12:368. [PMID: 33824303 PMCID: PMC8024309 DOI: 10.1038/s41419-021-03645-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022]
Abstract
Autophagy defection contributes to inflammation dysregulation, which plays an important role in gastric cancer (GC) progression. Various studies have demonstrated that long noncoding RNA could function as novel regulators of autophagy. Previously, long noncoding RNA MALAT1 was reported upregulated in GC cells and could positively regulate autophagy in various cancers. Here, we for the first time found that MALAT1 could promote interleukin-6 (IL-6) secretion in GC cells by blocking autophagic flux. Moreover, IL-6 induced by MALAT1 could activate normal to cancer-associated fibroblast conversion. The interaction between GC cells and cancer-associated fibroblasts in the tumour microenvironment could facilitate cancer progression. Mechanistically, MALAT1 overexpression destabilized the PTEN mRNA in GC cells by competitively interacting with the RNA-binding protein ELAVL1 to activate the AKT/mTOR pathway for impairing autophagic flux. As a consequence of autophagy inhibition, SQSTM1 accumulation promotes NF-κB translocation to elevate IL-6 expression. Overall, these results demonstrated that intercellular interaction between GC cells and fibroblasts was mediated by autophagy inhibition caused by increased MALAT1 that promotes GC progression, providing novel prevention and therapeutic strategies for GC.
Collapse
|
32
|
Zhang W, Wang H, Sun M, Deng X, Wu X, Ma Y, Li M, Shuoa SM, You Q, Miao L. CXCL5/CXCR2 axis in tumor microenvironment as potential diagnostic biomarker and therapeutic target. Cancer Commun (Lond) 2021; 40:69-80. [PMID: 32237072 PMCID: PMC7163794 DOI: 10.1002/cac2.12010] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
The components of the tumor microenvironment (TME) in solid tumors, especially chemokines, are currently attracting much attention from scientists. C-X-C motif chemokine ligand 5 (CXCL5) is one of the important chemokines in TME. Overexpression of CXCL5 is closely related to the survival time, recurrence and metastasis of cancer patients. In TME, CXCL5 binds to its receptors, such as C-X-C motif chemokine receptor 2 (CXCR2), to participate in the recruitment of immune cells and promote angiogenesis, tumor growth, and metastasis. The CXCL5/CXCR2 axis can act as a bridge between tumor cells and host cells in TME. Blocking the transmission of CXCL5/CXCR2 signals can increase the sensitivity and effectiveness of immunotherapy and slow down tumor progression. CXCL5 and CXCR2 are also regarded as biomarkers for predicting prognosis and molecular targets for customizing the treatment. In this review, we summarized the current literature regarding the biological functions and clinical significance of CXCL5/CXCR2 axis in TME. The possibility to use CXCL5 and CXCR2 as potential prognostic biomarkers and therapeutic targets in cancer is also discussed.
Collapse
Affiliation(s)
- Wen Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| | - Huishan Wang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| | - Mingyang Sun
- Department of Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| | - Xueting Deng
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| | - Xueru Wu
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| | - Yilan Ma
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| | - Mengjing Li
- Department of Biotherapy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| | - Said Maisam Shuoa
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| | - Qiang You
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China.,Department of Biotherapy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| | - Lin Miao
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| |
Collapse
|
33
|
Abstract
Secretory proteins in tumor tissues are important components of the tumor microenvironment. Secretory proteins act on tumor cells or stromal cells or mediate interactions between tumor cells and stromal cells, thereby affecting tumor progression and clinical treatment efficacy. In this paper, recent research advances in secretory proteins in malignant tumors are reviewed.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiajie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
34
|
Hu HF, Xu WW, Zhang WX, Yan X, Li YJ, Li B, He QY. Identification of miR-515-3p and its targets, vimentin and MMP3, as a key regulatory mechanism in esophageal cancer metastasis: functional and clinical significance. Signal Transduct Target Ther 2020; 5:271. [PMID: 33243974 PMCID: PMC7693265 DOI: 10.1038/s41392-020-00275-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023] Open
Abstract
Metastasis is the main factor of treatment failure in cancer patients, but the underlying mechanism remains to be elucidated and effective new treatment strategies are urgently needed. This study aims to explore novel key metastasis-related microRNAs (miRNAs) in esophageal squamous cell carcinoma (ESCC). By comparing miRNA profiles of the highly metastatic ESCC cell sublines, we established through serial in vivo selection with the parental cells, we found that the expression level of miR-515-3p was lower in ESCC tumor tissues than adjacent normal tissues, further decreased in metastatic tumors, and moreover, markedly associated with advanced stage, metastasis and patient survival. The in vitro and in vivo assays suggested that miR-515-3p could increase the expression of the epithelial markers as well as decrease the expression of the mesenchymal markers, and more importantly, suppress invasion and metastasis of ESCC cells. Mechanistically, we revealed that miR-515-3p directly regulated vimentin and matrix metalloproteinase-3 (MMP3) expression by binding to the coding sequence and 3'untranslated region, respectively. In addition, the data from whole-genome methylation sequencing and methylation-specific PCR indicated that the CpG island within miR-515-3p promoter was markedly hypermethylated in ESCC cell lines and ESCC tumor tissues, which may lead to deregulation of miR-515-3p expression in ESCC. Furthermore, our preclinical experiment provides solid evidence that systemic delivery of miR-515-3p oligonucleotide obviously suppressed the metastasis of ESCC cells in nude mice. Taken together, this study demonstrates that miR-515-3p suppresses tumor metastasis and thus represents a promising prognostic biomarker and therapeutic strategy in ESCC.
Collapse
Affiliation(s)
- Hui-Fang Hu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Wen Wen Xu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine and MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wei-Xia Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Xin Yan
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Yang-Jia Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Bin Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| |
Collapse
|
35
|
Lien MY, Chang AC, Tsai HC, Tsai MH, Hua CH, Cheng SP, Wang SW, Tang CH. Monocyte Chemoattractant Protein 1 Promotes VEGF-A Expression in OSCC by Activating ILK and MEK1/2 Signaling and Downregulating miR-29c. Front Oncol 2020; 10:592415. [PMID: 33330077 PMCID: PMC7729166 DOI: 10.3389/fonc.2020.592415] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive tumor that has a poor prognosis, with high levels of local invasion and lymph node metastasis. Vascular endothelial growth factor A (VEGF-A) plays essential roles in OSCC tumor angiogenesis and metastasis. Monocyte chemoattractant protein-1 (MCP-1, CCL2) is implicated in various inflammatory conditions and pathological processes, including oral cancer. The existing evidence has failed to confirm any correlation between MCP-1 or VEGF-A expression and OSCC angiogenesis. In this study, high expression levels of MCP-1 and VEGF-A were positively correlated with disease stage in patients with OSCC. In oral cancer cells, MCP-1 increased VEGF-A expression and subsequently promoted angiogenesis; miR-29c mimic reversed MCP-1 activity. We also found that MCP-1 modulated VEGF-A expression and angiogenesis through CCR2/ILK/MEK1/2 signaling. Ex vivo results of the chick embryo chorioallantoic membrane (CAM) assay revealed the angiogenic qualities of MCP-1, with increased numbers of visible blood vessel branches. Our data suggest that MCP-1 is a new molecular therapeutic target for the inhibition of angiogenesis and metastasis in OSCC.
Collapse
Affiliation(s)
- Ming-Yu Lien
- School of Medicine, China Medical University, Taichung, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - An-Chen Chang
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Hsiao-Chi Tsai
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ming-Hsui Tsai
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Otolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Hung Hua
- Department of Otolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Ping Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,College of Pharmacy, Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
36
|
Xu WW, Huang Z, Liao L, Zhang Q, Li J, Zheng C, He Y, Luo T, Wang Y, Hu H, Zuo Q, Chen W, Yang Q, Zhao J, Qin Y, Xu L, Li E, Liao H, Li B, He Q. Direct Targeting of CREB1 with Imperatorin Inhibits TGF β2-ERK Signaling to Suppress Esophageal Cancer Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000925. [PMID: 32832354 PMCID: PMC7435243 DOI: 10.1002/advs.202000925] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/31/2020] [Indexed: 02/05/2023]
Abstract
Metastasis accounts for 90% of cancer death worldwide, and effective therapeutic strategies are lacking. The aim of this work is to identify the key drivers in tumor metastasis and screen therapeutics for treatment of esophageal squamous cell carcinoma (ESCC). Gene Ontology analysis of The Cancer Genome Atlas (TCGA) gene expression datasets of ESCC patients with or without lympy metastasis identifies that TGFβ2 is highly enriched in the pathways essential for tumor metastasis and upregulates in the metastatic ESCC tumors. High TGFβ2 expression in ESCC correlates with metastasis and patient survival, and functionally contributes to tumor metastasis via activating extracellular signal-regulated kinases (ERK) signaling. By screening of a library consisting of 429 bioactive compounds, imperatorin is verified as a novel TGFβ2 inhibitor, with robustly suppressive effect on tumor metastasis in multiple mice models. Mechanistically, direct binding of imperatorin and CREB1 inhibits phosphorylation, nuclear translocation of CREB1, and its interaction with TGFβ2 promoter, represses TGFβ2 expression and fibroblasts-secreted CCL2, and then inactivates ERK signaling to block cancer invasion and abrogates the paracrine effects of fibroblasts on tumor angiogenesis and metastasis. Overall, the findings suggest the use of TGFβ2 as a diagnostic and prognostic biomarker and therapeutic target in ESCC, and supports the potential of imperatorin as a novel therapeutic strategy for cancer metastasis.
Collapse
Affiliation(s)
- Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering MedicineNational Engineering Research Center of Genetic MedicineInstitute of BiomedicineCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Zhi‐Hao Huang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Long Liao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Qi‐Hua Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Jun‐Qi Li
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering MedicineNational Engineering Research Center of Genetic MedicineInstitute of BiomedicineCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Can‐Can Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yan He
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering MedicineNational Engineering Research Center of Genetic MedicineInstitute of BiomedicineCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Ting‐Ting Luo
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering MedicineNational Engineering Research Center of Genetic MedicineInstitute of BiomedicineCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Hui‐Fang Hu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Qian Zuo
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Wen‐You Chen
- Department of Thoracic SurgeryFirst Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Qing‐Sheng Yang
- Department of Thoracic SurgeryFirst Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Jian‐Fu Zhao
- Department of Clinical OncologyFirst Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Yan‐Ru Qin
- State Key Laboratory of Esophageal Cancer Prevention and TreatmentDepartment of Clinical OncologyFirst Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Li‐Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical College22 Xinling RoadShantouGuangdongChina
| | - En‐Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical College22 Xinling RoadShantouGuangdongChina
| | - Hua‐Xin Liao
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering MedicineNational Engineering Research Center of Genetic MedicineInstitute of BiomedicineCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Qing‐Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| |
Collapse
|
37
|
Wang Y, Ren S, Wang Z, Wang Z, Zhu N, Cai D, Ye Z, Ruan J. Chemokines in bone-metastatic breast cancer: Therapeutic opportunities. Int Immunopharmacol 2020; 87:106815. [PMID: 32711376 DOI: 10.1016/j.intimp.2020.106815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Due to non-response to chemotherapy, incomplete surgical resection, and resistance to checkpoint inhibitors, breast cancer with bone metastasis is notoriously difficult to cure. Therefore, the development of novel, efficient strategies to tackle bone metastasis of breast cancer is urgently needed. Chemokines, which induce directed migration of immune cells and act as guide molecules between diverse cells and tissues, are small proteins indispensable in immunity. These complex chemokine networks play pro-tumor roles or anti-tumor roles when produced by breast cancer cells in the tumor microenvironment. Additionally, chemokines have diverse roles when secreted by various immune cells in the tumor microenvironment of breast cancer, which can be roughly divided into immunosuppressive effects and immunostimulatory effects. Recently, targeting chemokine networks has been shown to have potential for use in treatment of metastatic malignancies, including bone-metastatic breast cancer. In this review, we focus on the role of chemokines networks in the biology of breast cancer and metastasis to the bone. We also discuss the therapeutic opportunities and future prospects of targeting chemokine networks, in combination with other current standard therapies, for the treatment of bone-metastatic breast cancer.
Collapse
Affiliation(s)
| | - Shihong Ren
- First People's Hospital of Wenling, Wenling, China
| | - Zhan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zenan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Zhu
- Hebei North University, Zhangjiakou, China
| | | | - Zhaoming Ye
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | | |
Collapse
|
38
|
Echinatin suppresses esophageal cancer tumor growth and invasion through inducing AKT/mTOR-dependent autophagy and apoptosis. Cell Death Dis 2020; 11:524. [PMID: 32655130 PMCID: PMC7354992 DOI: 10.1038/s41419-020-2730-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors with poor survival. It is urgent to search for new efficient drugs with good stability and safety for clinical therapy. This study aims to identify potential anticancer drugs from a compound library consisting of 429 natural products. Echinatin, a compound isolated from the Chinese herb Glycyrrhiza uralensis Fisch, was found to markedly induce apoptosis and inhibit proliferation and colony-formation ability in ESCC. Confocal fluorescence microscopy data showed that echinatin significantly induced autophagy in ESCC cells, and autophagy inhibitor bafilomycinA1 attenuated the suppressive effects of echinatin on cell viability and apoptosis. Mechanistically, RNA sequencing coupled with bioinformatics analysis and a series of functional assays revealed that echinatin induced apoptosis and autophagy through inactivation of AKT/mTOR signaling pathway, whereas constitutive activation of AKT significantly abrogated these effects. Furthermore, we demonstrated that echinatin had a significant antitumor effect in the tumor xenograft model and markedly suppressed cell migration and invasion abilities of ESCC cells in a dose-dependent manner. Our findings provide the first evidence that echinatin could be a novel therapeutic strategy for treating ESCC.
Collapse
|
39
|
Dorr MM, Guignard R, Auger FA, Rochette PJ. The use of tissue-engineered skin to demonstrate the negative effect of CXCL5 on epidermal ultraviolet radiation-induced cyclobutane pyrimidine dimer repair efficiency. Br J Dermatol 2020; 184:123-132. [PMID: 32271940 DOI: 10.1111/bjd.19117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Ultraviolet radiation (UVR) is responsible for keratinocyte cancers through the induction of mutagenic cyclobutane pyrimidine dimers (CPDs). Many factors influence CPD repair in epidermal keratinocytes, and a better understanding of those factors might lead to prevention strategies against skin cancer. OBJECTIVES To evaluate the impact of dermal components on epidermal CPD repair efficiency and to investigate potential factors responsible for the dermal-epidermal crosstalk modulating UVR-induced DNA damage repair in keratinocytes. METHODS A model of self-assembled tissue-engineered skin containing human primary keratinocytes and fibroblasts was used in this study. RESULTS We showed that CPD repair in keratinocytes is positively influenced by the presence of a dermis. We investigated the secretome and found that the cytokine CXCL5 is virtually absent from the culture medium of reconstructed skin, compared with media from fibroblasts and keratinocytes alone. By modulating CXCL5 levels in culture media of keratinocytes, we have shown that CXCL5 is an inhibitor of CPD repair. CONCLUSIONS This work outlines the impact of the secreted dermal components on epidermal UVR-induced DNA damage repair and sheds light on a novel role of CXCL5 in CPD repair.
Collapse
Affiliation(s)
- M M Dorr
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval - LOEX, Québec, QC, Canada
| | - R Guignard
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval - LOEX, Québec, QC, Canada
| | - F A Auger
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval - LOEX, Québec, QC, Canada
| | - P J Rochette
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval - LOEX, Québec, QC, Canada.,Université Laval, Faculté de Médecine, Département d'Ophtalmologie, Université Laval, Québec, QC, Canada
| |
Collapse
|
40
|
Zhang W, Ruan J, Zhou D, Han X, Zhang Y, Wang W, Ouyang M. Predicting worse survival for newly diagnosed T cell lymphoma based on the decreased baseline CD16-/CD16 + monocyte ratio. Sci Rep 2020; 10:7757. [PMID: 32385351 PMCID: PMC7211003 DOI: 10.1038/s41598-020-64579-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/17/2020] [Indexed: 01/13/2023] Open
Abstract
T cell non-Hodgkin lymphoma (T-NHL) is highly invasive and heterogeneous without accurate prognosis prediction. We proposed peripheral CD16-/CD16 + monocytes the additional indicators for T-NHL prognosis. We prospectively recruited 31 T-NHL patients without previous treatment. The CD16-/CD16 + monocyte ratio before chemotherapy was calculated and regular follow up was performed to calculate prognostic prediction value. Tumor associated macrophages (TAM) in tumor tissue were counted and transcriptome sequencing of CD16- and CD16 + monocytes was applied to explore potential mechanisms. We found that T-NHL patients had higher ratio of total monocytes especially the CD16 + monocytes along with a decreased ratio of CD16-/CD16 + monocytes, compared to the health control. The 1-year overall survival rate was 0.492 and 0.755 for CD16- monocyte/CD16 + monocyte ratio of <11 and ≥11(p < 0.05), respectively. The peripheral CD16-/CD16 + monocyte ratio was significantly relevant with the pathological CD68/CD206 macrophage ratio. The differently expressed genes in CD16- and CD16 + monocytes from T-NHL patients were mainly involved in signaling molecules related to tumor microenvironment. Pro-tumor genes were identified in monocyte subsets especially in CD16 + monocytes. In conclusion, the ratio of peripheral CD16-/CD16 + monocyte helps to stratify the prognosis of T-NHL. The relatively increased CD16 + monocytes may contribute to the pro-tumor microenvironment of T-NHL.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hematology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Jing Ruan
- Department of Hematology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Daobin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Xiao Han
- Department of Hematology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yan Zhang
- Department of Hematology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Wei Wang
- Department of Hematology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Mingqi Ouyang
- Department of Hematology, Peking Union Medical College Hospital, Beijing, 100730, China
| |
Collapse
|
41
|
Panahipour L, Biasi MD, Bokor TS, Thajer A, Haiden N, Gruber R. Milk lactoperoxidase decreases ID1 and ID3 expression in human oral squamous cell carcinoma cell lines. Sci Rep 2020; 10:5836. [PMID: 32246075 PMCID: PMC7125221 DOI: 10.1038/s41598-020-62390-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 03/12/2020] [Indexed: 01/07/2023] Open
Abstract
Milk consumption may modify the risk of squamous cell carcinoma. The role of milk to modulate the gene expression in oral squamous cell carcinoma cells has not been investigated so far. Here, HSC2 oral squamous carcinoma cells were exposed to an aqueous fraction of human milk and a whole-genome array was performed. Among the genes that were significantly reduced by human and cow milk were the DNA-binding protein inhibitor 1 (ID1), ID3 and Distal-Less Homeobox 2 (DLX2) in HSC2 cells. Also, in TR146 oral squamous carcinoma cells, there was a tendency towards a decreased gene expression. Upon size fractionation, lactoperoxidase but not lactoferrin and osteopontin was identified to reduce ID1 and ID3 in HSC2 cells. Dairy products and hypoallergenic infant formula failed to decrease the respective genes. These data suggest that milk can reduce the expression of transcription factors in oral squamous carcinoma cells.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Maria De Biasi
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Theresa Sophia Bokor
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Alexandra Thajer
- Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Nadja Haiden
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria. .,Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland. .,Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1200, Vienna, Austria.
| |
Collapse
|
42
|
Zheng X, Li C, Yu K, Shi S, Chen H, Qian Y, Mei Z. Aquaporin-9, Mediated by IGF2, Suppresses Liver Cancer Stem Cell Properties via Augmenting ROS/β-Catenin/FOXO3a Signaling. Mol Cancer Res 2020; 18:992-1003. [PMID: 32229502 DOI: 10.1158/1541-7786.mcr-19-1180] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/31/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022]
Abstract
Liver cancer stem cells (LCSCs) play a critical role in hepatocellular carcinoma (HCC) by virtue of their aggressive behavior and association with poor prognoses. Aquaporin-9 (AQP9) is a transmembrane protein that transports water and reportedly transports H2O2. Recent studies have shown that AQP9 expression has a negative effect on HCC cell invasion by inhibiting the epithelial-to-mesenchymal transition. However, the role of AQP9 in LCSCs remains obscure. We performed spheroid formation assay and flow cytometric analysis to investigate LCSCs stemness. CD133+ and CD133- cells were isolated by flow cytometry. Real-time quantitative PCR (qRT-PCR), Western blot analysis, and immunofluorescence assay were used to estimate gene expression. The protein association of β-catenin with TCF4 and the interaction of β-catenin with FOXO3a were detected by immunoprecipitation (IP). Here, we found that AQP9 was preferentially decreased in LCSCs. Upregulated AQP9 significantly suppressed LCSCs stemness. In contrast, the inhibition of AQP9 had the opposite effect. Mechanistically, AQP9 was shown to be downregulated by insulin-like growth factor 2 (IGF2), which was widely reported to contribute to maintaining CSCs stemness. Furthermore, AQP9 overexpression was found to result in reactive oxygen species (ROS) accumulation, which inhibited β-catenin activity by attenuating the interaction of β-catenin with TCF4 while concurrently enhancing the association of β-catenin with FOXO3a, ultimately inhibiting LCSCs stemness. Our study implies that stimulation of the AQP9 signaling axis may be a novel preventive and/or therapeutic approach for eliminating LCSCs. IMPLICATIONS: Our findings demonstrate that AQP9 signaling axis may be a novel preventive and/or therapeutic approach for eliminating LCSCs.
Collapse
Affiliation(s)
- Xi Zheng
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.,Department of Gastroenterology, Chongqing General Hospital, University of Chinese Academy of Sciences CGH, UCAS, Chongqing, China
| | - Chuanfei Li
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Keqi Yu
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shasha Shi
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongyu Chen
- Department of Gastroenterology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yanzhi Qian
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhechuan Mei
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
43
|
Xue W, Ton H, Zhang J, Xie T, Chen X, Zhou B, Guo Y, Fang J, Wang S, Zhang W. Patient‑derived orthotopic xenograft glioma models fail to replicate the magnetic resonance imaging features of the original patient tumor. Oncol Rep 2020; 43:1619-1629. [PMID: 32323818 PMCID: PMC7107810 DOI: 10.3892/or.2020.7538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Patient-derived orthotopic glioma xenograft models are important platforms used for pre-clinical research of glioma. In the present study, the diagnostic ability of magnetic resonance imaging (MRI) was examined with regard to the identification of biomarkers obtained from patient-derived glioma xenografts and human tumors. Conventional MRI, diffusion weighted imaging and dynamic contrast-enhanced (DCE)-MRI were used to analyze seven pairs of high grade gliomas with their corresponding xenografts obtained from non-obese diabetic-severe-combined immunodeficiency nude mice. Tumor samples were collected for transcriptome sequencing and histopathological staining, and differentially expressed genes were screened between the original tumors and the corresponding xenografts. Gene Ontology (GO) analysis was performed to predict the functions of these genes. In 6 cases of xenografts with diffuse growth, the degree of enhancement was significantly lower compared with the original tumors. Histopathological staining indicated that the microvascular area and microvascular diameter of the xenografts were significantly lower compared with the original tumors (P=0.009 and P=0.007, respectively). In one case, there was evidence of nodular tumor growth in the mouse. Both MRI and histopathological staining showed a clear demarcation between the transplanted tumors and the normal brain tissues. The relative apparent diffusion coefficient values of the 7 cases examined were significantly higher compared with the corresponding original tumors (P=0.001) and transfer coefficient values derived from DCE-MRI of the tumor area was significantly lower compared with the original tumors (P=0.016). GO analysis indicated that the expression levels of extracellular matrix-associated genes, angiogenesis-associated genes and immune function-associated genes in the original tumors were higher compared with the corresponding xenografts. In conclusion, the data demonstrated that the MRI features of patient-derived xenograft glioma models in mice were different compared with those of the original patient tumors. Differential gene expression may underlie the differences noted in the MRI features between original tumors and corresponding xenografts. The results of the present study highlight the precautions that should be taken when extrapolating data from patient-derived xenograft studies, and their applicability to humans.
Collapse
Affiliation(s)
- Wei Xue
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Haipeng Ton
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Junfeng Zhang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Tian Xie
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Xiao Chen
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Bo Zhou
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Yu Guo
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Jingqin Fang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Shunan Wang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Weiguo Zhang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
44
|
Zhuang ST, Cai YJ, Liu HP, Qin Y, Wen JF. LncRNA NEAT1/miR-185-5p/IGF2 axis regulates the invasion and migration of colon cancer. Mol Genet Genomic Med 2020; 8:e1125. [PMID: 32077635 PMCID: PMC7196445 DOI: 10.1002/mgg3.1125] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 12/07/2019] [Accepted: 01/02/2020] [Indexed: 01/02/2023] Open
Abstract
Background Long noncoding RNAs (lncRNA) are important in the growth and metastasis of colon cancer. The objective of this study was to describe the potential role of lncRNA NEAT1 in the progression of colon cancer. Methods Quantitative real‐time polymerase chain reaction was used for detecting NEAT1, miR‐185‐5p, and IGF2 in colon cancer cells and tissues. The potential diagnostic value of NEAT1 in colon cancer was analyzed with the receiver operating characteristic curve. Kaplan–Meier method was applied for evaluating the association between NEAT1 expression and the overall survival of osteosarcoma patients, whereas Transwell assay was introduced to examine the potential invasion and migration of colon cancer cells. In addition, the binding of NEAT1/IGF2 to miR‐185‐5p was confirmed by RNA pull‐down and RNA‐binding protein immunoprecipitation assays and dual‐luciferase reporter gene assay. Finally, rescue experiments were conducted to confirm the role of NEAT1/miR‐185‐5p/IGF2 axis in colon cancer. Results Colon cancer patients with low NEAT1 expression presented with longer overall survival than those with high expression. The migration and invasion of colon cancer cells were considerably promoted by overexpressed NEAT1. Both NEAT1 and IGF2 bound to miR‐185‐5p. Conclusion NEAT1 upregulate IGF2 expression through absorbing miR‐185‐5p to enhances the migration and invasion of colon cancer cells.
Collapse
Affiliation(s)
- Shu-Tong Zhuang
- Department of Gastrointestinal Surgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Yan-Juan Cai
- Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.,Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Hong-Peng Liu
- Department of Gastrointestinal Surgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Ying Qin
- Department of Gastrointestinal Surgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Jian-Feng Wen
- Department of Gastrointestinal Surgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
45
|
Zhao H, Klausen C, Zhu H, Chang H, Li Y, Leung PCK. Bone morphogenetic protein 2 promotes human trophoblast cell invasion and endothelial‐like tube formation through ID1‐mediated upregulation of IGF binding protein‐3. FASEB J 2020; 34:3151-3164. [PMID: 31908038 DOI: 10.1096/fj.201902168rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Hong‐Jin Zhao
- Department of Cardiology Shandong Provincial Hospital affiliated to Shandong University Jinan P.R. China
- Department of Obstetrics and Gynaecology BC Children's Hospital Research Institute University of British Columbia Vancouver BC Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology BC Children's Hospital Research Institute University of British Columbia Vancouver BC Canada
| | - Hua Zhu
- Department of Obstetrics and Gynaecology BC Children's Hospital Research Institute University of British Columbia Vancouver BC Canada
| | - Hsun‐Ming Chang
- Department of Obstetrics and Gynaecology BC Children's Hospital Research Institute University of British Columbia Vancouver BC Canada
| | - Yan Li
- School of Medicine Shandong University Jinan China
- Center for Reproductive Medicine Shandong University Jinan China
- The Key Laboratory of Reproductive Endocrinology Ministry of Education Jinan China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics Jinan China
| | - Peter C. K. Leung
- Department of Obstetrics and Gynaecology BC Children's Hospital Research Institute University of British Columbia Vancouver BC Canada
| |
Collapse
|
46
|
Huang XH, Wang Y, Hong P, Yang J, Zheng CC, Yin XF, Song WB, Xu WW, Li B, He QY. Benzethonium chloride suppresses lung cancer tumorigenesis through inducing p38-mediated cyclin D1 degradation. Am J Cancer Res 2019; 9:2397-2412. [PMID: 31815042 PMCID: PMC6895443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/13/2019] [Indexed: 06/10/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, but effective therapeutics is limited. This study aims to identify novel anticancer strategy from a Food and Drug Administration (FDA)-approved drug library consisting of 528 compounds. Benzethonium Chloride (BZN), a FDA-approved drug for anti-infective, was found to markedly induce apoptosis and inhibit proliferation and colony formation ability of lung cancer cells in dose- and time-dependent manners. BZN also enhanced the sensitivity of lung cancer cells to gefitinib, the first-line treatment strategy for selected lung cancer patients. Furthermore, BZN significantly delayed the growth of tumor xenografts in nude mice by increasing apoptosis and decreasing Ki-67 proliferation index, without obvious toxic effects to the vital organs of animals. Mechanistically, quantitative proteomics coupled with bioinformatics analyses and a series of functional assays demonstrated that BZN induced cell cycle arrest at G1 phase, and this was associated with an increase in p38-mediated phosphorylation at threonine 286 (T286) and accelerated degradation of cyclin D1. Our findings provide the first evidence that BZN could be a promising therapeutic agent in lung cancer treatment.
Collapse
Affiliation(s)
- Xiao-Hui Huang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Yang Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Pan Hong
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Jie Yang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Can-Can Zheng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Xing-Feng Yin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Wen-Bo Song
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Wen Wen Xu
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan UniversityGuangzhou 510632, China
| | - Bin Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| |
Collapse
|
47
|
Bone-marrow-derived cell-released extracellular vesicle miR-92a regulates hepatic pre-metastatic niche in lung cancer. Oncogene 2019; 39:739-753. [PMID: 31558801 DOI: 10.1038/s41388-019-1024-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/29/2019] [Accepted: 05/11/2019] [Indexed: 11/08/2022]
Abstract
Metastatic tumors have been shown to establish a supportive pre-metastatic niche (PMN) in distant organs, which in turn determines disseminated tumor cells' targeting of such organs. PMN is formed through the recruitment of bone-marrow-derived cells (BMDCs); however, the role of BMDCs in PMN formation is not fully understood. On the basis of RNA-seq data and bioinformatic analysis, secretion of extracellular vesicle (EV) miR-92a by BMDCs of lung cancer-bearing mice contributes to the establishment of liver PMN. Both BMDC-derived EVs and miR-92a mimics potentiate the activation of hepatic stellate cells (HSCs), subsequently increasing extracellular matrix (ECM) deposition in mice. Consequently, remodeling of the liver microenvironment enhanced immunosuppressive cell accumulation and cancer cell attachment. EVs miR-92a directly suppressed its target SMAD7, leading to the enhancement of transforming growth factor-β signaling in HSC. Elevated levels of circulating miR-92a are found in the sera of lung cancer patients, and EVs isolated from these patients have a similar ability to increase HSCs activation and ECM protein expression. Our study reveals the sequential steps of liver PMN formation in lung cancer, providing critical mediators that prepare PMN in the liver, and identifies new targets that offer valuable options for diagnosis and therapeutic intervention.
Collapse
|
48
|
Al-Zoughbi W, Hoefler G. Tumor Macroenvironment: An Update. Pathobiology 2019; 87:58-60. [PMID: 31484178 DOI: 10.1159/000502097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/11/2019] [Indexed: 11/19/2022] Open
Abstract
Modes of tumor cell interaction include autocrine stimulation, secretion of paracrine growth factors and inhibitors, as well as interaction with the tumor macroenvironment. This evolving concept in tumor pathobiology describes the interaction of a malignant tumor with its host as an extension and addition to its local interaction with tumor cells and surrounding nontransformed cells, the tumor microenvironment. Angiogenesis, which is considered part of the tumor microenvironment, also allows reciprocal interactions between cancer cells and other organs and systems. Well-known examples of tumor endocrine signaling are the paraneoplastic syndromes. In addition, cachexia, a severe complication of tumor growth, results from the systemic reprogramming of the host metabolism as a result of tumor growth and progression. Moreover, recent reports indicate that cancer cells may secrete factors that might play a role in forming premetastatic niches at distant sites. In addition, cancer cells seem to be able to secrete factors influencing and resetting endogenous circadian organizers. The importance of understanding the whole complex interaction of a malignant tumor and its host - the tumor macroenvironment - is of great importance for the better management and treatment of cancer patients.
Collapse
Affiliation(s)
- Wael Al-Zoughbi
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria,
| |
Collapse
|
49
|
De Vincenzo A, Belli S, Franco P, Telesca M, Iaccarino I, Botti G, Carriero MV, Ranson M, Stoppelli MP. Paracrine recruitment and activation of fibroblasts by c-Myc expressing breast epithelial cells through the IGFs/IGF-1R axis. Int J Cancer 2019; 145:2827-2839. [PMID: 31381136 DOI: 10.1002/ijc.32613] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 06/26/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022]
Abstract
Fibroblasts are among the most abundant stromal cells in the tumor microenvironment (TME), progressively differentiating into activated, motile, myofibroblast-like, protumorigenic cells referred to as Cancer-Associated Fibroblasts (CAFs). To investigate the mechanisms by which epithelial cells direct this transition, the early stages of tumorigenesis were exemplified by indirect cocultures of WI-38 or human primary breast cancer fibroblasts with human mammary epithelial cells expressing an inducible c-Myc oncogene (MCF10A-MycER). After c-Myc activation, the conditioned medium (CM) of MCF10A-MycER cells significantly enhanced fibroblast activation and mobilization. As this was accompanied by decreased insulin-like growth factor binding protein-6 (IGFBP-6) and increased insulin-like growth factor-1 and IGF-II (IGF-I, IGF-II) in the CM, IGFs were investigated as key chemotactic factors. Silencing IGFBP-6 or IGF-I or IGF-II expression in epithelial cells or blocking Insulin-like growth factor 1 receptor (IGF-1R) activity on fibroblasts significantly altered fibroblast mobilization. Exposure of WI-38 fibroblasts to CM from induced MCF10A-MycER cells or to IGF-II upregulated FAK phosphorylation on Tyr397 , as well as the expression of α-smooth muscle actin (α-SMA), features associated with CAF phenotype and increased cell migratory/invasive behavior. In three-dimensional (3D)-organotypic assays, WI-38 or human primary fibroblasts, preactivated with either CM from MCF10A-MycER cells or IGFs, resulted in a permissive TME that enabled nontransformed MCF10A matrix invasion. This effect was abolished by inhibiting IGF-1R activity. Thus, breast epithelial cell oncogenic activation and stromal fibroblast transition to CAFs are linked through the IGFs/IGF-1R axis, which directly promotes TME remodeling and increases tumor invasion.
Collapse
Affiliation(s)
- Anna De Vincenzo
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy
| | - Stefania Belli
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy
| | - Paola Franco
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy
| | - Marialucia Telesca
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy
| | - Ingram Iaccarino
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy.,Hematopathology Section, University Hospital Schleswig-Holstein Campus Kiel, Christian-Albrechts University, Kiel, Germany
| | - Gerardo Botti
- Pathology Unit, IRCCS National Cancer Institute "Fondazione G. Pascale", Naples, Italy
| | - Maria V Carriero
- Department of Experimental Oncology, IRCCS National Cancer Institute "Fondazione G. Pascale", Naples, Italy
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Maria Patrizia Stoppelli
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy
| |
Collapse
|
50
|
Identification of a novel EphB4 phosphodegron regulated by the autocrine IGFII/IR A axis in malignant mesothelioma. Oncogene 2019; 38:5987-6001. [PMID: 31270394 PMCID: PMC8075896 DOI: 10.1038/s41388-019-0854-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/13/2019] [Accepted: 04/28/2019] [Indexed: 11/21/2022]
Abstract
Malignant mesothelioma is a deadly disease with limited therapeutic options. EphB4 is an oncogenic tyrosine kinase receptor expressed in malignant mesothelioma as well as in a variety of cancers. It is involved in tumor microenvironment mediating angiogenesis and invasive cellular effects via both EphrinB2 ligand-dependent and independent mechanisms. The molecular network underlying EphB4 oncogenic effects is still unclear. Here we show that EphB4 expression in malignant mesothelioma cells is markedly decreased upon neutralization of cancer-secreted IGF-II. In particular, we demonstrate that EphB4 protein expression in malignant mesothelioma cells depend upon a degradation rescue mechanism controlled by the autocrine IGF-II-insulin receptor-A specific signaling axis. We show that the regulation of EphB4 expression is linked to a competing post-translational modification of its carboxy-terminal tail via phosphorylation of its tyrosine 987 by the Insulin receptor isoform-A kinase-associated activity in response to the autocrine IGF-II stimuli. Neutralization of this autocrine-induced EphB4-phosphorylation by IGF-II associates with the increased ubiquitination of EphB4 carboxy-terminal tail and with its rapid degradation. We also describe a novel Ubiquitin binding motif in the targeted region as part of the identified EphB4 phosphodegron and provide 3D modeling data supporting a possible model for the acute EphB4 PTM-driven regulation by IGF-II. Altogether, these findings disclose a novel molecular mechanism for the maintenance of EphB4-expression in malignant mesothelioma cells and other IGF-II-secreting cancers (IGF2omas).
Collapse
|