1
|
Yu Q, Ye S, Chen M, Sun P, Weng N. A novel function for exosomes in depression. Life Sci 2025; 369:123558. [PMID: 40089099 DOI: 10.1016/j.lfs.2025.123558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/01/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Exosomes are a class of extracellular vesicles that encompass a diverse array of bioactive molecules, including proteins, lipids, mRNA, and microRNA(miRNA). Virtually all cell types release exosomes under both physiological and pathological conditions. In addition to electrical and chemical signals, exosomes are an alternative route of signaling between cells in the brain. In the brain, they are involved in processes such as synaptic plasticity, neuronal stress response, intercellular communication, and neurogenesis. A number of studies have shown that exosomes regulate the occurrence and development of depression by participating in the regulation of hypothalamic-pituitary-adrenal axis, brain-derived neurotrophic factor, immune inflammatory response and other mechanisms, showing that they may become potential biological agents for the diagnosis and treatment of depression. In addition, exosomes have the ability to easily cross the blood-brain barrier, making them ideal drug or molecular delivery tools for the central nervous system. Engineered exosomes have good brain targeting ability, and their research in central nervous system diseases has begun to emerge. However, the molecular pathways involved in the pathogenesis of depression remain unknown, and further studies are needed to fully understand the role of exosomes in the development or improvement of depression. Therefore, in this review, we mainly focus on the diagnostic performance and therapeutic effect of exosomes in depression, and explore the advantages of exosomes as biomarkers and gene delivery vectors for depression.
Collapse
Affiliation(s)
- Qingying Yu
- School of Pharmacy, Shandong University of Chinese Medicine, Jinan 250000, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Shuyi Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Mengxue Chen
- Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, China.
| | - Ning Weng
- Department of Chinese Medicine, Shandong Mental Health Center, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Li L, Zheng Z, Lan W, Tang N, Zhang D, Ling J, Wu Y, Yang P, Fu L, Liu J, Zhang J, Yu P, Huang T. Role of Exosomes in Cardiovascular Disease: A Key Regulator of Intercellular Communication in Cardiomyocytes. ACS OMEGA 2025; 10:18145-18169. [PMID: 40385188 PMCID: PMC12079207 DOI: 10.1021/acsomega.4c11423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/27/2025] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
In the cardiovascular system, different types of cardiovascular cells can secrete specific exosomes and participate in the maintenance of cardiovascular function and the occurrence and development of diseases. Exosomes carry biologically active substances such as proteins and nucleic acids from cells of origin and can be used as biomarkers for disease diagnosis and prognosis assessment. In addition, exosome-mediated intercellular communication plays a key role in the occurrence and development of cardiovascular diseases and has become a potential therapeutic target. This article emphasizes the importance of understanding the mechanism of exosomes in cardiovascular diseases and systematically details the current understanding of exosomes as regulators of intercellular communication in cardiomyocytes, providing a basis for future research and therapeutic intervention.
Collapse
Affiliation(s)
- Liuxin Li
- Department of Endocrinology and Metabolism, second Affiliated Hospital
of Nanchang University, Nanchang, People’s Republic of China, The second Clinical Medical College, Nanchang University, Nanchang 330006, Republic of China
| | - Zhidong Zheng
- Department of Endocrinology and Metabolism, second Affiliated Hospital
of Nanchang University, Nanchang, People’s Republic of China, The second Clinical Medical College, Nanchang University, Nanchang 330006, Republic of China
| | - Wenyu Lan
- The
Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Nan Tang
- The
Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Deju Zhang
- Food
and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 0000, Hong Kong
| | - Jitao Ling
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Yuting Wu
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Pingping Yang
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Linhua Fu
- Department
of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Jianping Liu
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Jing Zhang
- Department
of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical
College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Peng Yu
- Department
of Metabolism and Endocrinology, The Second
Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Tieqiu Huang
- Department
of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| |
Collapse
|
3
|
Tao K, Tao K, Wang J. The potential mechanisms of extracellular vesicles in transfusion-related adverse reactions: Recent advances. Transfus Clin Biol 2025; 32:205-227. [PMID: 40180029 DOI: 10.1016/j.tracli.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Blood transfusion is an irreplaceable clinical treatment. Blood components are differentiated and stored according to specific guidelines. Storage temperatures and times vary depending on the blood component, but they all release extracellular vesicles (EVs) during storage. Although blood transfusions can be life-saving, they can also cause many adverse transfusion reactions, among which the effects of EVs are of increasing interest to researchers. EVs are submicron particles that vary in size, composition, and surface biomarkers, are encapsulated by a lipid bilayer, and are not capable of self-replication. EVs released by blood cells are important contributors to pathophysiologic states through proinflammatory, coagulant, and immunosuppressive effects, which in turn promote or inhibit the associated disease phenotype. Therefore, this review explores the potential mechanisms of hematopoietic-derived EVs in transfusion-associated adverse reactions and discusses the potential of the latest proteomics tools to be applied to the analysis of EVs in the field of transfusion medicine with a view to reducing the risk of blood transfusion.
Collapse
Affiliation(s)
- Keyi Tao
- Panzhihua University, Panzhihua 617000 Sichuan, China
| | - Keran Tao
- Institute of Medicine and Nursing, Hubei University of Medicine, Shiyan 442000 Hubei, China
| | - Jing Wang
- Southwest Medical University, Luzhou 646000 Sichuan, China; Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000 China.
| |
Collapse
|
4
|
Nouri M, Nasiri F, Sharif S, Abbaszadegan MR. Unraveling extracellular vesicle DNA: Biogenesis, functions, and clinical implications. Pathol Res Pract 2025; 269:155937. [PMID: 40199015 DOI: 10.1016/j.prp.2025.155937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Extracellular Vesicles (EVs) have emerged as essential carriers of molecular biomarkers and mediators of intercellular communication. While previous studies have predominantly focused on EV proteins, lipids, and RNA, the role of EV-derived DNA (EV-DNA) remains relatively unexplored. Understanding EV-DNA is crucial, given its association with nearly all EV populations. This review aims to comprehensively summarize existing EV-DNA research, emphasizing its functional significance and potential as a disease biomarker. By bridging the gap in our understanding, we shed light on the origins, structure, localization, and distribution of EV-DNA. We analyze a wide range of studies, investigating EV-DNA across various pathological conditions. Our review encompasses experimental methods, theoretical approaches, and clinical observations, providing a holistic view of EV-DNA research. We discuss the biogenesis mechanisms of different EV subtypes, the available isolation methods for these subtypes, and consider their origins and variability under different conditions. EV-DNA exhibits remarkable stability and reflects genomic alterations, making it a promising candidate for liquid biopsy applications. From cancer diagnostics to treatment monitoring, EV-DNA holds significant potential. The findings underscore the importance of EV-DNA as an innovative biomarker. As research continues, EV-DNA may revolutionize disease detection, prognosis, and therapeutic strategies.
Collapse
Affiliation(s)
- Mehraneh Nouri
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fateme Nasiri
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Sharif
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Chen T, Wei Y, Kang J, Zhang D, Ye J, Sun X, Hong M, Zhang W, Wu H, Ding Z, Fei G. ADAR1-HNRNPL-Mediated CircCANX Decline Promotes Autophagy in Chronic Obstructive Pulmonary Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414211. [PMID: 40091520 PMCID: PMC12079403 DOI: 10.1002/advs.202414211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is a characteristic chronic airway inflammatory disease that worsens over time, however, there are currently limited clinical therapeutics to suspend its progression. Circular RNAs (circRNAs), which have emerged as functional regulators in various diseases, including COPD, may server as new pharmacological targets in COPD. Here, it is identified a nuclear circRNA, circCANX, that is preferentially decreased in COPD. The linear splicing of CANX pre-mRNA, enhanced by the ADAR1-HNRNPL interaction, is responsible for the circCANX decline. Clinically, the higher circCANX expression is associated with a worse lung function index of FEV1/FVC among patients with COPD. CircCANX suppresses autophagy and stress granule (SG) formation to strengthen inflammation of COPD in vivo and in vitro. Mechanistically, circCANX recruits the tumor suppressor protein P53 (P53) mRNA and RNA helicase upstream frameshift 1 (UPF1) to form a ternary complex, which mediates P53 mRNA degradation through nonsense-mediated mRNA decay (NMD) process. Together, this study reveals an important circCANX-mediated regulatory mechanism in COPD, and provides new insights into the potential of circRNA-based drug and biomarker development for COPD.
Collapse
Affiliation(s)
- Ting‐Ting Chen
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Yuan‐Yuan Wei
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Jia‐Ying Kang
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Da‐Wei Zhang
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Jing‐Jing Ye
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Xi‐Shi Sun
- Emergency Medicine CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdong Province524000China
| | - Mei Hong
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Wen‐Ting Zhang
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Hui‐Mei Wu
- Department of Geriatric Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
| | - Zhen‐Xing Ding
- Department of Emergency MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
| | - Guang‐He Fei
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| |
Collapse
|
6
|
Amponsah PS, Storchová Z. The proteostasis burden of aneuploidy. Biol Chem 2025:hsz-2024-0163. [PMID: 40221883 DOI: 10.1515/hsz-2024-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
Aneuploidy refers to chromosome number abnormality that is not an exact multiple of the haploid chromosome set. Aneuploidy has largely negative consequences in cells and organisms, manifested as so-called aneuploidy-associated stresses. A major consequence of aneuploidy is proteotoxic stress due to abnormal protein expression from imbalanced chromosome numbers. Recent advances have improved our understanding of the nature of the proteostasis imbalance caused by aneuploidy and highlighted their relevance with respect to organellar homeostasis, dosage compensation, or mechanisms employed by cells to mitigate the detrimental stress. In this review, we highlight the recent findings and outline questions to be addressed in future research.
Collapse
Affiliation(s)
- Prince Saforo Amponsah
- Group Proteostasis and Genomic Stability, RPTU Kaiserslautern-Landau, Paul-Ehrlich-Straße 24, D-67663 Kaiserslautern, Germany
- Department of Molecular Genetics, RPTU Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| | - Zuzana Storchová
- Department of Molecular Genetics, RPTU Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| |
Collapse
|
7
|
Jiang Y, Li J, Wang T, Gu X, Li X, Liu Z, Yue W, Li M. VIPAS39 confers ferroptosis resistance in epithelial ovarian cancer through exporting ACSL4. EBioMedicine 2025; 114:105646. [PMID: 40088627 PMCID: PMC11957506 DOI: 10.1016/j.ebiom.2025.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/11/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND The high mortality rate associated with epithelial ovarian cancer (EOC) is primarily due to recurrence and chemoresistance, underscoring the urgent need for innovative therapeutic approaches that leverage newly identified vulnerabilities in cancer cells. While conventional chemotherapies induce apoptosis by targeting DNA or mitotic machinery, ferroptosis represents a new distinct form of programmed cell death characterised by the accumulation of lipid peroxides. METHODS The sensitivity of different EOC cell lines to ferroptosis inducers was evaluated using cell viability assays and lipid peroxidation measurements. Live-cell imaging with the pH-sensitive CD63-pHuji reporter was performed to track the extracellular export of acyl-CoA synthetase long-chain family member 4 (ACSL4) via exosomes. The upstream regulator of ACSL4 were identified through immunoprecipitation-mass spectrometry (IP-MS) and validated using protein binding assays. Finally, cell-derived xenograft (CDX) and patient-derived xenograft (PDX) models were utilised to evaluate the therapeutic potential overcoming ferroptosis resistance. FINDINGS In this study, we found that interferon (IFN)-γ combined with arachidonic acid (AA), which are endogenous ferroptosis inducers, could initiate ferroptosis in most EOC cells. However, some EOC cells displayed significant resistance. Contrary to the typical increase in ACSL4 protein observed in ferroptosis-sensitive cells, resistant EOC cells exhibited surprisingly low levels of this pro-ferroptotic lipid metabolic protein. Intriguingly, this reduction is attributed to the exosomal expulsion of ACSL4 protein, revealing a distinct cellular mechanism to evade ferroptosis. We further identified VIPAS39 as a pivotal regulator in sorting ACSL4 into late endosomes, thereby facilitating their subsequent release as exosomes. Notably, targeting VIPAS39 not only overcomes the resistance to ferroptotic cell death but also markedly suppresses tumour growth. INTERPRETATION Our findings uncover the crucial role of VIPAS39 in ferroptosis evasion by facilitating the exporting of ACSL4 protein via exosomes, highlighting VIPAS39 as a promising target for ferroptosis-based anti-cancer therapy. FUNDING Funded by Beijing Municipal Natural Science Foundation (Key program Z220011), National Natural Science Foundation of China (NSFC) (T2225006, T2488301, 82272948), Peking University Medicine Youth Science and Technology Innovation 'Sail Plan' Project Type B Medical Interdisciplinary Seed Fund (71006Y3171), GuangDong Basic and Applied Basic Research Foundation (2021A1515110820), and the special fund of the National Clinical Key Speciality Construction Program, P. R. China (2023).
Collapse
Affiliation(s)
- Yuening Jiang
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Jie Li
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Tianzhen Wang
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Xiaoyang Gu
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Xinyu Li
- Department of Animal Science, College of Animal Science, Hebei North University, Zhangjiakou, Hebei Province, China; Department of Gynecology and Obstetrics, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhaofei Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Wei Yue
- Interdisciplinary Eye Research Institute (EYE-X Institute) Bengbu Medical University, Bengbu, Anhui, 233030, China.
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China; Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
8
|
Qin Q, Wang Y, Yan S, Qu G, Li Y, Zhang C, Bai Y, Wang D, Luo S, Li B, Han Y, Chen W, Zhen Q, Sun L. Study on the Correlation Between Double-Stranded DNA and Systemic Lupus Erythematosus. Exp Dermatol 2025; 34:e70102. [PMID: 40243281 DOI: 10.1111/exd.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/01/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
Circulating cell-free DNA (cfDNA) is a large molecule that plays a central role in the pathogenesis of SLE. It is the target antigen of autoantibodies and the main component of immune complexes. Due to the large differences in the content of cfDNA detected in different studies, cfDNA cannot be used as a strong diagnostic basis for SLE at present. As an active component of cfDNA, the correlation between double-stranded DNA (dsDNA) and SLE has not been fully studied. The detection of dsDNA may provide a more accurate diagnosis and treatment basis for SLE, and the in-depth study of SLE patients is helpful to further understand the pathogenesis of SLE. Blood samples were collected from 173 SLE patients and 2970 healthy controls. The concentration of serum dsDNA was determined by fluorescence quantitative method. Propensity score matching (PSM) method was used to match 444 healthy controls and 148 SLE patients according to age and gender. Serum dsDNA levels were compared between SLE patients and matched healthy controls. At the same time, blood exosomes were extracted to explore the correlation between serum dsDNA and exosome dsDNA. As demonstrated herein, serum dsDNA levels in SLE patients were shown to be considerably higher than in healthy controls. Meanwhile, In SLE patients, serum dsDNA level was correlated with season and other clinical indicators, but not with temperature and ultraviolet. Additionally, a statistically significant connection between serum and exosome dsDNA was discovered. We also found that the gene encoding the dsDNA receptor was upregulated. The presented data suggest that detection of dsDNA is promising as a rapid and simple tool for assessing disease progression in SLE, which can help physicians and patients in disease management. The mechanism of elevated dsDNA in SLE patients requires more research.
Collapse
Affiliation(s)
- Qin Qin
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Yirui Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Sihao Yan
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Guangbo Qu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Yuanyuan Li
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Chang Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Yuanming Bai
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Daiyue Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Sihan Luo
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Bao Li
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Comprehensive Lab, College of Basic Medicine, Anhui Medical University, Hefei, China
| | - Yang Han
- North China University of Science and Technology Affiliated Hospital, Thangshan, China
- Health Science Center, North China University of Science and Technology, Tangshan, China
- Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan, China
| | - Weiwei Chen
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Qi Zhen
- North China University of Science and Technology Affiliated Hospital, Thangshan, China
- Health Science Center, North China University of Science and Technology, Tangshan, China
- Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan, China
| | - Liangdan Sun
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
- Health Science Center, North China University of Science and Technology, Tangshan, China
- Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan, China
| |
Collapse
|
9
|
Hu F, Gong W, Song B, Zhang S. Colorectal cancer cell-derived extracellular vesicles trigger macrophage production of IL6 through activating STING signaling to drive metastasis. FASEB J 2025; 39:e70474. [PMID: 40100063 DOI: 10.1096/fj.202402757rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Emerging evidence shows that extracellular vesicles (EVs)-mediated cargo shuttling between different kinds of cells constantly occurs in the tumor microenvironment, leading to the progression of a variety of cancers, but the biological role of DNA enriched in EVs has not been fully elucidated. Here, nuclear chromatin-originated DNA fragments were identified in human serum-derived EVs and exhibited a mild increase in the colorectal cancer patient group, unveiling their potential as a biomarker for cancer diagnosis. Molecular experiments showed that chromatin and mitochondrial DNA fragments adhered to the outer membrane of EVs were released from colorectal cancer cells and transported into macrophages where they stimulated STING signaling cascades, resulting in enhanced STAT1 phosphorylation and IL6 production. Further experiments revealed that STAT1 functioned as a potential IL6 transcription regulator through directly locating at its promoter regions to facilitate IL6 expression in macrophages. In the tumor microenvironment, the accumulated IL6 released by macrophages, in turn, provoked colorectal cancer cell epithelial to mesenchymal transition (EMT) through activating IL6R/STAT3 signaling. Our findings highlighted the importance of DNA carried by EVs in shaping the tumor environment and revealed their potential as a clinical diagnostic biomarker for colorectal cancer.
Collapse
Affiliation(s)
- Fangqi Hu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Weipeng Gong
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Bao Song
- Shandong Provincial Key Laboratory of Precision Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University Affiliated Tumor Hospital, Jinan, People's Republic of China
| | - Song Zhang
- Shandong Provincial Key Laboratory of Precision Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University Affiliated Tumor Hospital, Jinan, People's Republic of China
| |
Collapse
|
10
|
Semeradtova A, Liegertova M, Herma R, Capkova M, Brignole C, Del Zotto G. Extracellular vesicles in cancer´s communication: messages we can read and how to answer. Mol Cancer 2025; 24:86. [PMID: 40108630 PMCID: PMC11921637 DOI: 10.1186/s12943-025-02282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Extracellular vesicles (EVs) are emerging as critical mediators of intercellular communication in the tumor microenvironment (TME), profoundly influencing cancer progression. These nano-sized vesicles, released by both tumor and stromal cells, carry a diverse cargo of proteins, nucleic acids, and lipids, reflecting the dynamic cellular landscape and mediating intricate interactions between cells. This review provides a comprehensive overview of the biogenesis, composition, and functional roles of EVs in cancer, highlighting their significance in both basic research and clinical applications. We discuss how cancer cells manipulate EV biogenesis pathways to produce vesicles enriched with pro-tumorigenic molecules, explore the specific contributions of EVs to key hallmarks of cancer, such as angiogenesis, metastasis, and immune evasion, emphasizing their role in shaping TME and driving therapeutic resistance. Concurrently, we submit recent knowledge on how the cargo of EVs can serve as a valuable source of biomarkers for minimally invasive liquid biopsies, and its therapeutic potential, particularly as targeted drug delivery vehicles and immunomodulatory agents, showcasing their promise for enhancing the efficacy and safety of cancer treatments. By deciphering the intricate messages carried by EVs, we can gain a deeper understanding of cancer biology and develop more effective strategies for early detection, targeted therapy, and immunotherapy, paving the way for a new era of personalized and precise cancer medicine with the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Alena Semeradtova
- Institute of Photonics and Electronics of the CAS, Chaberská 1014/57, Prague, 182 51, Czech Republic.
| | - Michaela Liegertova
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, Ústí Nad Labem, 40096, Czech Republic
| | - Regina Herma
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, Ústí Nad Labem, 40096, Czech Republic
| | - Magdalena Capkova
- Institute of Photonics and Electronics of the CAS, Chaberská 1014/57, Prague, 182 51, Czech Republic
| | - Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy.
| | - Genny Del Zotto
- Core Facilities, Department of Research and Diagnostics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy.
| |
Collapse
|
11
|
Wang J, Shao F, Yu QX, Ye L, Wusiman D, Wu R, Tuo Z, Wang Z, Li D, Cho WC, Wei W, Feng D. The Common Hallmarks and Interconnected Pathways of Aging, Circadian Rhythms, and Cancer: Implications for Therapeutic Strategies. RESEARCH (WASHINGTON, D.C.) 2025; 8:0612. [PMID: 40046513 PMCID: PMC11880593 DOI: 10.34133/research.0612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 03/17/2025]
Abstract
The intricate relationship between cancer, circadian rhythms, and aging is increasingly recognized as a critical factor in understanding the mechanisms underlying tumorigenesis and cancer progression. Aging is a well-established primary risk factor for cancer, while disruptions in circadian rhythms are intricately associated with the tumorigenesis and progression of various tumors. Moreover, aging itself disrupts circadian rhythms, leading to physiological changes that may accelerate cancer development. Despite these connections, the specific interplay between these processes and their collective impact on cancer remains inadequately explored in the literature. In this review, we systematically explore the physiological mechanisms of circadian rhythms and their influence on cancer development. We discuss how core circadian genes impact tumor risk and prognosis, highlighting the shared hallmarks of cancer and aging such as genomic instability, cellular senescence, and chronic inflammation. Furthermore, we examine the interplay between circadian rhythms and aging, focusing on how this crosstalk contributes to tumorigenesis, tumor proliferation, and apoptosis, as well as the impact on cellular metabolism and genomic stability. By elucidating the common pathways linking aging, circadian rhythms, and cancer, this review provides new insights into the pathophysiology of cancer and identifies potential therapeutic strategies. We propose that targeting the circadian regulation of cancer hallmarks could pave the way for novel treatments, including chronotherapy and antiaging interventions, which may offer important benefits in the clinical management of cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Fanglin Shao
- Department of Rehabilitation,
The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qing Xin Yu
- Department of Pathology,
Ningbo Clinical Pathology Diagnosis Center, Ningbo, Zhejiang 315211, China
- Department of Pathology,
Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, China
| | - Luxia Ye
- Department of Public Research Platform,
Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47906, USA
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Zhouting Tuo
- Department of Urological Surgery, Daping Hospital, Army Medical Center of PLA,
Army Medical University, Chongqing, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - William C. Cho
- Department of Clinical Oncology,
Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
- Division of Surgery and Interventional Science,
University College London, London W1W 7TS, UK
| |
Collapse
|
12
|
Zhou L, Wu Z, Yi X, Xie D, Wang J, Wu W. Serum starvation induces cytosolic DNA trafficking via exosome and autophagy-lysosome pathway in microglia. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119905. [PMID: 39880132 DOI: 10.1016/j.bbamcr.2025.119905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
The imbalance of microglial homeostasis is highly associated with age-related neurological diseases, where cytosolic endogenous DNA is also likely to be found. As the main medium for storing biological information, endogenous DNA could be localized to cellular compartments normally free of DNA when cells are stimulated. However, the intracellular trafficking of endogenous DNA remains unidentified. In this study, we demonstrated that nuclear DNA (nDNA) and mitochondrial DNA (mtDNA), as the components of endogenous DNA, undergo different intracellular trafficking under conditions of microglial homeostasis imbalance induced by serum starvation. Upon detecting various components of endogenous DNA in the cytoplasmic and extracellular microglia, we found that cytosolic nDNA primarily exists in a free form and undergoes degradation through the autophagy-lysosome pathway. In contrast, cytosolic mtDNA predominantly exists in a membrane-wrapped form and is trafficked through both exosome and autophagy-lysosome pathways, with the exosome pathway serving as the primary one. When the autophagy-lysosome pathway was inhibited, there was an increase in exosomes. More importantly, the inhibition of the autophagy-lysosome pathway resulted in enhanced trafficking of mtDNA through the exosome pathway. These findings unveiled the crosstalk between these two pathways in the trafficking of microglial cytosolic DNA and thus provide new insights into intervening in age-related neurological diseases.
Collapse
Affiliation(s)
- Liyan Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zilong Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoqing Yi
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Dongxue Xie
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jufen Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenhe Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
13
|
Ghanam J, Lichá K, Chetty VK, Pour OA, Reinhardt D, Tamášová B, Hoyer P, Lötvall J, Thakur BK. Unravelling the Significance of Extracellular Vesicle-Associated DNA in Cancer Biology and Its Potential Clinical Applications. J Extracell Vesicles 2025; 14:e70047. [PMID: 40091452 PMCID: PMC11911540 DOI: 10.1002/jev2.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Extracellular vesicles (EVs) play a key role in cell-to-cell communication and have drawn significant attention due to their potential clinical applications. However, much remains to be understood about the biology of EV-associated DNA (EV-DNA). EV-DNA is actively released by both normal and malignant cells and consists of diverse fragments with varying structures. Because EV-DNA spans the entire genome of cells from which it originates, it continues to be attractive as a biomarker for cancer diagnosis and monitoring. Further, EV-DNA delivery can alter the function of recipient cells by interfering with cytoplasmic DNA sensor pathways. This review explores the biology and significance of EV-DNA, including its topology and fragmentomics features, modality of association with EVs, packaging mechanisms, and potential functions. It also emphasizes the specificity of vesicular DNA in identifying genetic and epigenetic changes in cancer. Additionally, it delves into the impact of EV-DNA on cellular behaviour and its potential use as a therapeutic target in cancer. The review discusses new insights into EV-DNA biology and provides perspectives and alternatives to address the challenges and concerns for future EV-DNA studies.
Collapse
Affiliation(s)
- Jamal Ghanam
- Department of Pediatrics IIIUniversity Hospital EssenEssenGermany
| | - Kristína Lichá
- Department of Pediatrics IIIUniversity Hospital EssenEssenGermany
- Institute of Molecular Biomedicine, Faculty of MedicineComenius UniversityBratislavaSlovakia
| | | | | | | | - Barbora Tamášová
- Institute of Molecular Biomedicine, Faculty of MedicineComenius UniversityBratislavaSlovakia
| | - Peter Hoyer
- Department of Pediatrics IIUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | | |
Collapse
|
14
|
Moras B, Sissi C. Unravelling the Regulatory Roles of lncRNAs in Melanoma: From Mechanistic Insights to Target Selection. Int J Mol Sci 2025; 26:2126. [PMID: 40076754 PMCID: PMC11900516 DOI: 10.3390/ijms26052126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Melanoma is the deadliest form of skin cancer, and its treatment poses significant challenges due to its aggressive nature and resistance to conventional therapies. Long non-coding RNAs (lncRNAs) represent a new frontier in the search for suitable targets to control melanoma progression and invasiveness. Indeed, lncRNAs exploit a wide range of regulatory functions along chromatin remodeling, gene transcription, post-transcription, transduction, and post-transduction to ultimately tune multiple cellular processes. The understanding of this intricate and flexible regulatory network orchestrated by lncRNAs in pathological conditions can strategically support the rational identification of promising targets, ultimately speeding up the setup of new therapeutics to integrate the currently available approaches. Here, the most recent findings on lncRNAs involved in melanoma will be analyzed. In particular, the functional links between their mechanisms of action and some frequently underestimated features, like their different subcellular localizations, will be highlighted.
Collapse
Affiliation(s)
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
| |
Collapse
|
15
|
Kuang L, Wu L, Li Y. Extracellular vesicles in tumor immunity: mechanisms and novel insights. Mol Cancer 2025; 24:45. [PMID: 39953480 PMCID: PMC11829561 DOI: 10.1186/s12943-025-02233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/14/2025] [Indexed: 02/17/2025] Open
Abstract
Extracellular vesicles (EVs), nanoscale vesicles secreted by cells, have attracted considerable attention in recent years due to their role in tumor immunomodulation. These vesicles facilitate intercellular communication by transporting proteins, nucleic acids, and other biologically active substances, and they exhibit a dual role in tumor development and immune evasion mechanisms. Specifically, EVs can assist tumor cells in evading immune surveillance and attack by impairing immune cell function or modulating immunosuppressive pathways, thereby promoting tumor progression and metastasis. Conversely, they can also transport and release immunomodulatory factors that stimulate the activation and regulation of the immune system, enhancing the body's capacity to combat malignant diseases. This dual functionality of EVs presents promising avenues and targets for tumor immunotherapy. By examining the biological characteristics of EVs and their influence on tumor immunity, novel therapeutic strategies can be developed to improve the efficacy and relevance of cancer treatment. This review delineates the complex role of EVs in tumor immunomodulation and explores their potential implications for cancer therapeutic approaches, aiming to establish a theoretical foundation and provide practical insights for the advancement of future EVs-based cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Liwen Kuang
- School of Medicine, Chongqing University, Chongqing, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongsheng Li
- School of Medicine, Chongqing University, Chongqing, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
16
|
Jin Y, Sun G, Chen B, Feng S, Tang M, Wang H, Zhang Y, Wang Y, An Y, Xiao Y, Liu Z, Liu P, Tian Z, Yin H, Zhang S, Luan X. Delivering miR-23b-3p by small extracellular vesicles to promote cell senescence and aberrant lipid metabolism. BMC Biol 2025; 23:41. [PMID: 39934790 PMCID: PMC11817603 DOI: 10.1186/s12915-025-02143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Aging is a natural process that affects the majority of organs within the organism. The liver, however, plays a pivotal role in maintaining the organism's homeostasis due to its robust regenerative and metabolic capabilities. Nevertheless, the liver also undergoes the effects of aging, which can result in a range of metabolic disorders. The function of extracellular vesicles and the signals they convey represent a significant area of interest within the field of ageing research. However, research on liver ageing from the perspective of EVs remains relatively limited. RESULTS In the present study, we extracted liver tissue small extracellular vesicles (sEVs) of mice at different ages and performed transcriptome and proteome analyses to investigate the senescence-associated secretory phenotype (SASP) and mechanisms. sEVs in the older group were rich in miR-23b-3p, which was abundant in the sEVs of induced aging cells and promoted cell senescence by targeting TNF alpha induced protein 3 (Tnfaip3). After injecting adeno-associated virus (AAV) expressing miR-23b-3p into mice, the liver of mice in the experimental group displayed a more evident inflammatory response than that in the control group. Additionally, we found elevated miR-23b-3p in blood-derived-sEVs from patients with familial hypercholesterolemia. CONCLUSIONS Our findings suggest that miR-23b-3p plays a pivotal role in liver aging and is associated with abnormal lipid metabolism. The upregulation of miR-23b-3p in liver EVs may serve as a potential biomarker for aging and metabolic disorders. Targeting miR-23b-3p could provide new therapeutic strategies for ameliorating age-related liver dysfunction and associated metabolic abnormalities.
Collapse
Affiliation(s)
- Ye Jin
- Rare Disease Medical Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
- Center for Digital Medicine and Artificial Intelligence, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Gaoge Sun
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Binxian Chen
- Rare Disease Medical Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Siqin Feng
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Muyun Tang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Hui Wang
- Department of Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuan Wang
- Echo Biotech Co., Ltd, Beijing, 102627, China
| | - Yang An
- GemPharmatech Co., Ltd, Nanjing, 210000, China
| | - Yu Xiao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China
| | - Zihan Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Peng Liu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Zhuang Tian
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Shuyang Zhang
- Rare Disease Medical Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
- School of Medicine, Tsinghua University, Beijing, 100084, China.
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Xiaodong Luan
- Rare Disease Medical Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
- Center for Drug Research and Evaluation, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
17
|
Sun Q, Weng RX, Li YC, Jia SM, Ma CT, Zhang HH, Tang Y, Li R, Xu GY. Potentiation of visualized exosomal miR-1306-3p from primary sensory neurons contributes to chronic visceral pain via spinal P2X3 receptors. Pain 2025:00006396-990000000-00814. [PMID: 39907482 DOI: 10.1097/j.pain.0000000000003537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025]
Abstract
ABSTRACT Exosomes served as "communicators" to exchange information among different cells in the nervous system. Our previous study demonstrated that the enhanced spinal synaptic transmission contributed to chronic visceral pain in irritable bowel syndrome. However, the underlying mechanism of primary sensory neuron (PSN)-derived exosomes on spinal transmission remains unclear. In this study, an exosome visualization method was established to specifically track exosomes derived from PSNs in CD63-GFPf/+ (green fluorescent protein) mice. Neonatal maternal deprivation (NMD) was adopted to induce chronic visceral pain in CD63-GFPf/+ male mice. The exosome visualization technology demonstrated that NMD increased visible PSN-derived exosomes in the spinal dorsal horn, enhanced spinal synaptic transmission, and led to visceral pain in CD63-GFPf/+ male mice. The PSN-derived exosomal miR-1306-3p sorted from spinal dorsal horn activated P2X3R, enhanced spinal synaptic transmission, and led to visceral pain in NMD mice. Moreover, upregulation of Rab27a in dorsal root ganglia mediated the increased release of PSN-derived exosomes, and intrathecal injection of siR-Rab27a reduced visible PSN-derived exosomes in spinal cord, suppressed spinal synaptic transmission, and alleviated visceral pain in NMD mice. This and future studies would reveal the detailed mechanisms of PSN-derived exosomes and provide a potential target for clinical treatment of chronic visceral pain in patients with irritable bowel syndrome.
Collapse
Affiliation(s)
- Qian Sun
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Rui-Xia Weng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Yong-Chang Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Shu-Man Jia
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Chun-Tao Ma
- Department of Gastroenterology, Suzhou Xiangcheng People's Hospital, Suzhou, P. R. China
| | - Hong-Hong Zhang
- Department of Endocrinology, the Second Affiliated Hospital, Soochow University, Suzhou, P. R. China
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Guang-Yin Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| |
Collapse
|
18
|
Saadh MJ, Allela OQB, Kareem RA, Ballal S, Chahar M, Saini S, Prasad GVS, Sameer HN, Hamad AK, Athab ZH, Adil M. The role of exosomal non-coding RNAs in the breast cancer tumor microenvironment. Funct Integr Genomics 2025; 25:32. [PMID: 39891771 DOI: 10.1007/s10142-025-01531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
The leading form of cancer affecting females globally is breast cancer, characterized by an unregulated growth of cells within the breast. Therefore, examining breast tissue is crucial in accurately identifying and treating this disease. Exosomes are very small enclosures bounded by a layer of cells and produced by a variety of cells present in the cancerous tissue surroundings. They play a crucial role in several biological functions in cancerous tumors. These exosomes carry non-coding RNAs (ncRNAs) and are discharged into the TME, where they are instrumental in the development and advancement of tumors. Additionally, the ncRNAs enclosed in exosomes act as significant mediators of communication within cells. Consequently, there is limited comprehension regarding the precise roles and targets of exosomal RNA in regulation, as research in this area is still in its preliminary phases. This piece provides a comprehensive overview of the latest studies on exosomes, delving into their impact on the behavior of cancer cells and immune cells. Moreover, it presents a compilation of the diverse forms of non-coding RNA molecules found in exosomes released by both cancerous and supportive cells, including circular RNAs, microRNAs, and long non-coding RNAs. Current research has proven the noteworthy influence that non-coding RNA molecules have on the progression, proliferation, drug resistance, and immune responses of breast cancer cells.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, 11831, Amman, Jordan
| | | | | | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Suman Saini
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, 140307, Mohali, Punjab, India
| | - G V Siva Prasad
- Department of Basic Sciences and Humanities, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, 64001, Dhi Qar, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy college, Al-Farahidi University, 00964, Baghdad, Iraq
| |
Collapse
|
19
|
Kögel D, Temme A, Aigner A. Recent advances in development and delivery of non-viral nucleic acid therapeutics for brain tumor therapy. Pharmacol Ther 2025; 266:108762. [PMID: 39603349 DOI: 10.1016/j.pharmthera.2024.108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
High grade gliomas (HGG) are a group of CNS tumors refractory to currently existing therapies, which routinely leads to early recurrence and a dismal prognosis. Recent advancements in nucleic acid-based therapy using a wide variety of different molecular targets and non-viral nanocarrier systems suggest that this approach holds significant potential to meet the urgent demand for improved therapeutic options for the treatment of these tumors. This review provides a comprehensive and up-to-date overview on the current landscape and progress of preclinical and clinical developments in this rapidly evolving and exciting field of research, including optimized nanocarrier delivery systems, promising therapeutic targets and tailor-made therapeutic strategies for individualized HGG patient treatment.
Collapse
Affiliation(s)
- Donat Kögel
- Department of Neurosurgery, Experimental Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt am Main, Germany; German Cancer Research Center DKFZ, Heidelberg, Germany.
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Site Leipzig, Leipzig, Germany
| |
Collapse
|
20
|
Pauwels J, Van de Steene T, Van de Velde J, De Muyer F, De Pauw D, Baeke F, Eyckerman S, Gevaert K. Filter-Aided Extracellular Vesicle Enrichment (FAEVEr) for Proteomics. Mol Cell Proteomics 2025; 24:100907. [PMID: 39842778 PMCID: PMC11872570 DOI: 10.1016/j.mcpro.2025.100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
Extracellular vesicles (EVs), membrane-delimited nanovesicles that are secreted by cells into the extracellular environment, are gaining substantial interest due to their involvement in cellular homeostasis and their contribution to disease pathology. The latter in particular has led to an exponential increase in interest in EVs as they are considered to be circulating packages containing potential biomarkers and are also a possible biological means to deliver drugs in a cell-specific manner. However, several challenges hamper straightforward proteome analysis of EVs as they are generally low abundant and reside in complex biological matrices. These matrices typically contain abundant proteins at concentrations that vastly exceed the concentrations of proteins found in the EV proteome. Therefore, extensive EV isolation and purification protocols are imperative and many have been developed, including (density) ultracentrifugation, size-exclusion, and precipitation methods. Here, we describe filter-aided extracellular vesicle enrichment (FAEVEr) as an approach based on 300 kDa molecular weight cutoff filtration that allows the processing of multiple samples in parallel within a reasonable time frame and at moderate cost. We demonstrate that FAEVEr is capable of quantitatively retaining EV particles on filters, while allowing extensive washing with the mild detergent Tween-20 to remove interfering non-EV proteins. The retained particles are directly lysed on the filter for a complete recovery of the EV protein cargo toward proteome analysis. Here, we validate and optimize FAEVEr on recombinant EV material and apply it on conditioned medium as well as on complex bovine serum, human plasma, and urine. Our results indicate that EVs isolated from MCF7 cells cultured with or without serum have a drastic different proteome because of nutrient deprivation.
Collapse
Affiliation(s)
- Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Tessa Van de Steene
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jana Van de Velde
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Freya De Muyer
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Danaë De Pauw
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Femke Baeke
- Ghent University Expertise Center for Transmission Electron Microscopy and VIB BioImaging Core, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, VIB Center for Inflammation Research, Ghent, Belgium
| | - Sven Eyckerman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
21
|
Yu L, Guo Q, Li Y, Mao M, Liu Z, Li T, Wang L, Zhang X. CHMP4C promotes pancreatic cancer progression by inhibiting necroptosis via the RIPK1/RIPK3/MLKL pathway. J Adv Res 2025:S2090-1232(25)00058-X. [PMID: 39870301 DOI: 10.1016/j.jare.2025.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025] Open
Abstract
INTRODUCTION Pancreatic cancer (PC) cannot currently be completely cured and has a poor prognosis. Necroptosis is a distinct form of regulated cell death that differs from both necrosis and apoptosis. Understanding the role of necroptosis during PC progression would open new avenues for targeted therapy. OBJECTIVES The purpose of this study is to examine the impact of necroptosis on the progression of PC and related mechanisms. METHODS RNA sequencing was performed to identify necroptosis-related genes that are differentially expressed in PC tissues. The biological functions of CHMP4C and its necroptosis effects were determined in vitro and in vivo. RNA immunoprecipitation, MeRIP-qPCR, Co-immunoprecipitation assays were conducted to evaluate the interaction among CHMP4C, YBX1 and caspase-8 mRNA. Extracellular vesicles were isolated using the differential ultracentrifugation method. The expression of CHMP4C, p-MLKL and CD117 were detected on a PC tissue microarray using multiplex immunofluorescence staining. RESULTS CHMP4C was significantly overexpressed in PC cells and tissues. It promoted cell growth and suppressed necroptosis of PC cells in both in vivo and in vitro settings. Mechanistically, CHMP4C interacted with YBX1 to mediate m5C modification of caspase-8 mRNA, resulting in increased caspase-8 expression and inhibition of RIPK1/RIPK3/MLKL pathway phosphorylation. Furthermore, CHMP4C promoted extracellular exocytosis of p-MLKL to further suppress necroptosis. Additionally, PC cells used CHMP4C within extracellular vesicles to recruit and stimulate mast cells (MCs), which in turn promoted PC cell proliferation. In PC tissues, the expression of CHMP4C showed a negative correlation with p-MLKL and a positive association with CD117. High expression levels of CHMP4C in patients were associated with poorer overall survival outcomes. CONCLUSIONS CHMP4C promotes PC progression by inhibiting necroptosis, which has potential as a biomarker and therapeutic target in PC.
Collapse
Affiliation(s)
- Longchen Yu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China
| | - Qining Guo
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China
| | - Yaping Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China
| | - Mai Mao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China
| | - Zhenping Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China
| | - Tingting Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China
| | - Lei Wang
- Department of Orthodontics, Qilu Hospital of Shandong University, Jinan 250012 China.
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China.
| |
Collapse
|
22
|
Han J, Xu K, Xu T, Song Q, Duan T, Yang J. The functional regulation between extracellular vesicles and the DNA damage responses. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025; 795:108532. [PMID: 39828141 DOI: 10.1016/j.mrrev.2025.108532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The DNA damage response (DDR) is a crucial regulatory mechanism for the survival of organisms, and irregularity of DDR may contribute to the development of various diseases, including tumors, making it is a prominent topic in therapeutic research. Extracellular vesicles (EVs), as important mediators of intercellular communication, have been extensively studied in recent years. Notably, an increasing number of studies have revealed a strong connection between DDR and EVs. On one hand, DNA damage affects the release of EVs and their compositional content; on the other hand, EVs can dictate cell survival or death by modulating DDR in both the parental and the recipient cells. This review outlines current progress in the inter-regulatory relationship between EVs and DDR, with special emphasis on the effects of EVs derived from various sources on DDR in recipient cells. In addition, the potential applications of EVs in research and tumor therapy are discussed.
Collapse
Affiliation(s)
- Jinyi Han
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Kexin Xu
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Ting Xu
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Qin Song
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Ting Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jun Yang
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China; Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research, The Affiliated Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
23
|
Russo L, Babboni S, Andreassi MG, Daher J, Canale P, Del Turco S, Basta G. Treating Metabolic Dysregulation and Senescence by Caloric Restriction: Killing Two Birds with One Stone? Antioxidants (Basel) 2025; 14:99. [PMID: 39857433 PMCID: PMC11763027 DOI: 10.3390/antiox14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Cellular senescence is a state of permanent cell cycle arrest accompanied by metabolic activity and characteristic phenotypic changes. This process is crucial for developing age-related diseases, where excessive calorie intake accelerates metabolic dysfunction and aging. Overnutrition disturbs key metabolic pathways, including insulin/insulin-like growth factor signaling (IIS), the mammalian target of rapamycin (mTOR), and AMP-activated protein kinase. The dysregulation of these pathways contributes to insulin resistance, impaired autophagy, exacerbated oxidative stress, and mitochondrial dysfunction, further enhancing cellular senescence and systemic metabolic derangements. On the other hand, dysfunctional endothelial cells and adipocytes contribute to systemic inflammation, reduced nitric oxide production, and altered lipid metabolism. Numerous factors, including extracellular vesicles, mediate pathological communication between the vascular system and adipose tissue, amplifying metabolic imbalances. Meanwhile, caloric restriction (CR) emerges as a potent intervention to counteract overnutrition effects, improve mitochondrial function, reduce oxidative stress, and restore metabolic balance. CR modulates pathways such as IIS, mTOR, and sirtuins, enhancing glucose and lipid metabolism, reducing inflammation, and promoting autophagy. CR can extend the health span and mitigate age-related diseases by delaying cellular senescence and improving healthy endothelial-adipocyte interactions. This review highlights the crosstalk between endothelial cells and adipocytes, emphasizing CR potential in counteracting overnutrition-induced senescence and restoring vascular homeostasis.
Collapse
Affiliation(s)
- Lara Russo
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Serena Babboni
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Maria Grazia Andreassi
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Jalil Daher
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, El-Koura 100, Lebanon;
| | - Paola Canale
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Serena Del Turco
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Giuseppina Basta
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| |
Collapse
|
24
|
Li W, Yu Z, Xu S, Li Z, Xia W. Extracellular Vesicles in the Aging Male Reproductive System: Progresses and Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:375-394. [PMID: 40301265 DOI: 10.1007/978-3-031-82990-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Extracellular vesicles (EVs) serve as crucial mediators of intercellular communication in spermatogenesis, steroidogenesis, and age-related pathophysiological processes within the male reproductive system. These EVs exhibit promising prospects for disease diagnosis and therapeutic administration. This review explores the impact of advanced paternal age on male fertility and testosterone decline, shedding light on the underlying mechanisms. It highlights the decline in semen quality, DNA damage, and alterations in sperm miRNA profiles associated with aging. The interplay between oxidative stress and antioxidants crucially regulates male reproductive aging. Currently, most studies focus on Sertoli cell-derived EVs, while understanding of Leydig cell-derived vesicles remains limited. Multi-omics integration will enhance the understanding of male reproductive aging and guide personalized interventions, revealing potential biomarkers and targets in the future.
Collapse
Affiliation(s)
- Wenbo Li
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Depart. of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Depart. of ART, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziwen Yu
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Shuai Xu
- Depart. of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Depart. of ART, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Li
- Depart. of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Depart. of ART, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Bengbu Hospital of Shanghai General Hospital (The Second Affiliated Hospital of Bengbu Medical University), Bengbu, Anhui, China.
| | - Weiliang Xia
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
25
|
Burrello J, Goi J, Burrello A, Vacchi E, Rendon-Angel A, Lazzarini E, Bianco G, Limongelli V, Vassalli G, Cereda CW, Monticone S, Mulatero P, Bussolati B, Alimonti A, Camici GG, Melli G, Osto E, Pedrazzini G, Lucio B. Age- and sex-related variations in extracellular vesicle profiling for the assessment of cardiovascular risk: the EVaging index. NPJ AGING 2024; 10:63. [PMID: 39702460 DOI: 10.1038/s41514-024-00189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
Extracellular vesicles (EVs) offer valuable diagnostic and prognostic insights for cardiovascular (CV) diseases, but the influence of age-related chronic inflammation ("inflammaging") and sex differences on EV profiles linked to CV risk remains unclear. This study aimed to use EV profiling to predict age and stratify patients by CV risk. We developed an EVaging index by analyzing surface antigen profiles of serum EVs from 625 participants, aged 20 to 94 years, across varying CV risk groups. The EVaging index was associated with age in healthy individuals and distinguished CV risk profiles in patients, correlating with CV outcomes and likelihood of fatal CV events according to the European Society of Cardiology (ESC) SCORE, and reflecting age-associated comorbidities. While changes in disease-related EV fingerprint adds complexity in CV patients, EV profiling may help assess biological aging and CV risk, emphasizing EVs' roles in inflammaging.
Collapse
Affiliation(s)
- Jacopo Burrello
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Jessica Goi
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alessio Burrello
- Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy
| | - Elena Vacchi
- Neurodegenerative Diseases Group, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Azucena Rendon-Angel
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Edoardo Lazzarini
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Giovanni Bianco
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Vittorio Limongelli
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Giuseppe Vassalli
- Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
- Cellular and Molecular Cardiology Laboratory, Cardiocentro Ticino Institute, Bellinzona, Switzerland
| | - Carlo W Cereda
- Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Silvia Monticone
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | | | - Andrea Alimonti
- Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Giorgia Melli
- Neurodegenerative Diseases Group, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Elena Osto
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
- Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Giovanni Pedrazzini
- Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
- Division of Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale Lugano Switzerland, Zurich, Switzerland
| | - Barile Lucio
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
- Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland.
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland.
| |
Collapse
|
26
|
Hejazian SM, Hejazian SS, Mostafavi SM, Hosseiniyan SM, Montazersaheb S, Ardalan M, Zununi Vahed S, Barzegari A. Targeting cellular senescence in kidney diseases and aging: A focus on mesenchymal stem cells and their paracrine factors. Cell Commun Signal 2024; 22:609. [PMID: 39696575 DOI: 10.1186/s12964-024-01968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Cellular senescence is a phenomenon distinguished by the halting of cellular division, typically triggered by DNA injury or numerous stress-inducing factors. Cellular senescence is implicated in various pathological and physiological processes and is a hallmark of aging. The presence of accumulated senescent cells, whether transiently (acute senescence) or persistently (chronic senescence) plays a dual role in various conditions such as natural kidney aging and different kidney disorders. Elevations in senescent cells and senescence-associated secretory phenotype (SASP) levels correlate with decreased kidney function, kidney ailments, and age-related conditions. Strategies involving senotherapeutic agents like senolytics, senomorphics, and senoinflammation have been devised to specifically target senescent cells. Mesenchymal stem cells (MSCs) and their secreted factors may also offer alternative approaches for anti-senescence interventions. The MSC-derived secretome compromises significant therapeutic benefits in kidney diseases by facilitating tissue repair via anti-inflammatory, anti-fibrosis, anti-apoptotic, and pro-angiogenesis effects, thereby improving kidney function and mitigating disease progression. Moreover, by promoting the clearance of senescent cells or modulating their secretory profiles, MSCs could potentially reverse some age-related declines in kidney function.This review article intends to shed light on the present discoveries concerning the role of cellular senescence in kidney aging and diseases. Furthermore, it outlines the role of senotherapeutics utilized to alleviate kidney damage and aging. It also highlights the possible impact of MSCs secretome on mitigating kidney injury and prolonging lifespan across various models of kidney diseases as a novel senotherapy.
Collapse
Affiliation(s)
| | - Seyyed Sina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyedeh Mina Mostafavi
- Ayatollah Taleghani Hospital, Research Development Unit, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Constanzo J, Pouget JP. Extracellular vesicles role in radio(nuclide)therapy. JOURNAL OF RADIATION RESEARCH 2024; 65:i6-i14. [PMID: 39679885 DOI: 10.1093/jrr/rrae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/03/2024] [Indexed: 12/17/2024]
Abstract
Conventional radiation therapy can restore the ability of cells to undergo immunogenic cell death. Recent preclinical studies suggest that targeted radionuclide therapy, which delivers radiation to tumors at a continuous low dose rate, also stimulates the immune system and offers a promising approach for overcoming resistance to immune checkpoint inhibitors. In this context, we examined the growing body of preclinical and clinical findings showing that the immune system can be activated by the release of extracellular vesicles from irradiated cells, contributing to the antitumor immunity.
Collapse
Affiliation(s)
- J Constanzo
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Équipe Labellisée Ligue Contre le Cancer, 208 rue des apothicaires, 34298 Montpellier, France
| | - J-P Pouget
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Équipe Labellisée Ligue Contre le Cancer, 208 rue des apothicaires, 34298 Montpellier, France
| |
Collapse
|
28
|
Fang J, Rao X, Wang C, Wang Y, Wu C, Zhou R. Role of exosomes in modulating non-small cell lung cancer radiosensitivity. Front Pharmacol 2024; 15:1471476. [PMID: 39737074 PMCID: PMC11683128 DOI: 10.3389/fphar.2024.1471476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) constitutes a significant proportion of lung cancer cases, and despite advancements in treatment modalities, radiotherapy resistance remains a substantial hurdle in effective cancer management. Exosomes, which are small vesicles secreted by cells, have emerged as pivotal players in intercellular communication and influence various biological processes, including cancer progression and the response to therapy. This review discusses the intricate role of exosomes in the modulation of NSCLC radiosensitivity. The paper focuses on NSCLC and highlights how tumor-derived exosomes contribute to radioresistance by enhancing DNA repair, modulating immune responses, and altering the tumor microenvironment. We further explore the potential of mesenchymal stem cell-derived exosomes to overcome radiotherapy resistance and their potential as biomarkers for predicting therapeutic outcomes. Understanding the mechanisms by which exosomes affect radiotherapy can provide new avenues for enhancing treatment efficacy and improving the survival rates of patients with NSCLC.
Collapse
Affiliation(s)
- Jincheng Fang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Changjian Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangchenxi Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Chuangyan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| |
Collapse
|
29
|
Wang B, Han J, Elisseeff JH, Demaria M. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat Rev Mol Cell Biol 2024; 25:958-978. [PMID: 38654098 DOI: 10.1038/s41580-024-00727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Cellular senescence is a state of terminal growth arrest associated with the upregulation of different cell cycle inhibitors, mainly p16 and p21, structural and metabolic alterations, chronic DNA damage responses, and a hypersecretory state known as the senescence-associated secretory phenotype (SASP). The SASP is the major mediator of the paracrine effects of senescent cells in their tissue microenvironment and of various local and systemic biological functions. In this Review, we discuss the composition, dynamics and heterogeneity of the SASP as well as the mechanisms underlying its induction and regulation. We describe the various biological properties of the SASP, its beneficial and detrimental effects in different physiological and pathological settings, and its impact on overall health span. Finally, we discuss the use of the SASP as a biomarker and of SASP inhibitors as senomorphic interventions to treat cancer and other age-related conditions.
Collapse
Affiliation(s)
- Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, Netherlands
| | - Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore MD, MD, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore MD, MD, USA
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, Netherlands.
| |
Collapse
|
30
|
Wortzel I, Seo Y, Akano I, Shaashua L, Tobias GC, Hebert J, Kim KA, Kim D, Dror S, Liu Y, Azrak GC, Cioffi M, Johnson KE, Hennika T, Twerski MZ, Kushner A, Math R, Han YD, Han DH, Jung M, Park J, Paik S, Shin JS, Lee MG, Russo MV, Zakheim D, Barnes J, Mehta S, Manova K, Schwartz RE, Thakur BK, Boudreau N, Matei I, Zhang H, Sidoli S, Bromberg J, David Y, Kim HS, Lyden D. Unique structural configuration of EV-DNA primes Kupffer cell-mediated antitumor immunity to prevent metastatic progression. NATURE CANCER 2024; 5:1815-1833. [PMID: 39627554 DOI: 10.1038/s43018-024-00862-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/15/2024] [Indexed: 12/24/2024]
Abstract
Extracellular vesicles (EVs) transport biomolecules that mediate intercellular communication. We previously showed that EVs contain DNA (EV-DNA) representing the entire genome. However, the mechanism of genomic EV-DNA packaging and its role in cancer remain elusive. We now demonstrate that EV-DNA is predominantly localized on the vesicle surface and associated with uniquely modified and cleaved histones. Moreover, a genome-wide clustered regularly interspaced short palindromic repeats knockout screen revealed that immune developmental pathways and genes, including apoptotic peptidase activating factor 1 (APAF1) and neutrophil cytosolic factor 1 (NCF1), regulate EV-DNA packaging. Furthermore, in colorectal cancer models, uptake of EV-DNA by pre-metastatic liver Kupffer cells (KCs) activated DNA damage responses. This activation rewired KC cytokine production and promoted the formation of tertiary lymphoid structures, thereby suppressing liver metastasis. Conversely, loss of APAF1 decreased EV-DNA packaging and promoted liver metastasis. Importantly, colorectal cancer biopsy EV-DNA secretion could serve as a predictive biomarker for postoperative metastasis. Taken together, our findings indicate that uniquely chromatinized EV-DNA induces antitumor immunity.
Collapse
Affiliation(s)
- Inbal Wortzel
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Yura Seo
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 FOUR Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ife Akano
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lee Shaashua
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Gabriel Cardial Tobias
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jakob Hebert
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kyung-A Kim
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 FOUR Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - DooA Kim
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 FOUR Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Shani Dror
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Yanshen Liu
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Griffin Campbell Azrak
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Michele Cioffi
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Kofi Ennu Johnson
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Tammy Hennika
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Meshulam Zisha Twerski
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Alexis Kushner
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Robert Math
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Yoon Dae Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minsun Jung
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Juyeong Park
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 FOUR Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Theragen Bio Co., Ltd, Seongnam-si, Republic of Korea
| | - Soonmyung Paik
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 FOUR Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Theragen Bio Co., Ltd, Seongnam-si, Republic of Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Marco Vincenzo Russo
- Gene Editing and Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Zakheim
- Gene Editing and Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jesse Barnes
- Gene Editing and Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sunjoy Mehta
- Gene Editing and Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katia Manova
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | | | - Nancy Boudreau
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Haiying Zhang
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Jacqueline Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Han Sang Kim
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 FOUR Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
31
|
Rak J. Anti-metastatic extracellular vesicles carrying DNA. NATURE CANCER 2024; 5:1793-1795. [PMID: 39627553 DOI: 10.1038/s43018-024-00829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Affiliation(s)
- Janusz Rak
- McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
32
|
von Zglinicki T. Oxidative stress and cell senescence as drivers of ageing: Chicken and egg. Ageing Res Rev 2024; 102:102558. [PMID: 39454760 DOI: 10.1016/j.arr.2024.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Oxidative stress and cell senescence are both important drivers of ageing and age-associated disease and disability. In vitro, they are closely interconnected in a chicken-and-egg relationship: Not only is oxidative stress an important cause of cell senescence, but senescent cells are also sources of oxidative stress, obscuring cause-effect relationships during the ageing process. We hypothesize that cell senescence is a significant cause of tissue and systemic oxidative stress during ageing. This review aims to critically summarize the available evidence for this hypothesis. After summarizing the cellular feedback mechanisms that make oxidative stress an integral part of the senescent phenotype, it critically reviews the existing evidence for a role of senescent cells as causes of oxidative stress during mammalian ageing in vivo, focussing on results from intervention experiments. It is concluded that while the available data are in agreement with this hypothesis, they are still too scarce to support a robust conclusion.
Collapse
Affiliation(s)
- Thomas von Zglinicki
- Ageing Research Laboratories, Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Health, Newcastle University, UK.
| |
Collapse
|
33
|
Mansfield L, Ramponi V, Gupta K, Stevenson T, Mathew AB, Barinda AJ, Herbstein F, Morsli S. Emerging insights in senescence: pathways from preclinical models to therapeutic innovations. NPJ AGING 2024; 10:53. [PMID: 39578455 PMCID: PMC11584693 DOI: 10.1038/s41514-024-00181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Senescence is a crucial hallmark of ageing and a significant contributor to the pathology of age-related disorders. As committee members of the young International Cell Senescence Association (yICSA), we aim to synthesise recent advancements in the identification, characterisation, and therapeutic targeting of senescence for clinical translation. We explore novel molecular techniques that have enhanced our understanding of senescent cell heterogeneity and their roles in tissue regeneration and pathology. Additionally, we delve into in vivo models of senescence, both non-mammalian and mammalian, to highlight tools available for advancing the contextual understanding of in vivo senescence. Furthermore, we discuss innovative diagnostic tools and senotherapeutic approaches, emphasising their potential for clinical application. Future directions of senescence research are explored, underscoring the need for precise, context-specific senescence classification and the integration of advanced technologies such as machine learning, long-read sequencing, and multifunctional senoprobes and senolytics. The dual role of senescence in promoting tissue homoeostasis and contributing to chronic diseases highlights the complexity of targeting these cells for improved clinical outcomes.
Collapse
Affiliation(s)
- Luke Mansfield
- The Bateson Centre, School of Medicine and Population Health, The University of Sheffield, Western Bank, Sheffield, UK
| | - Valentina Ramponi
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kavya Gupta
- Department of Cellular and Molecular Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Abraham Binoy Mathew
- Department of Developmental Biology and Genetics, Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Agian Jeffilano Barinda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Metabolic, Cardiovascular, and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Florencia Herbstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| | - Samir Morsli
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum Q6A, Stockholm, Sweden.
| |
Collapse
|
34
|
Tsering T, Nadeau A, Rak J, Burnier JV. Analyzing Extracellular Vesicle-associated DNA Using Transmission Electron Microscopy at the Single EV-level. Curr Protoc 2024; 4:e70047. [PMID: 39513551 PMCID: PMC11602948 DOI: 10.1002/cpz1.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Extracellular vesicles (EVs) play an important role in cell-cell communication, carrying bioactive molecules including DNA. EV-associated DNA (EV-DNA) has created enormous interest in the field of biomarkers, particularly related to liquid biopsy. However, its analysis is challenging due to the nanoscale structure of EVs, the low abundance of EV-DNA, and surrounding biogenetic debate. Therefore, novel protocols to enhance the accurate detection of EV-DNA are essential to study its role in normal physiology and disease states. Here, we provide two protocols for confirming the presence of EV-DNA from biological samples. In the first protocol, ultrathin sectioning of EVs is combined with immunogold labeling to detect the presence of double-stranded (ds) DNA within the EV lumen using transmission electron microscopy (TEM). In the second protocol, whole-mount EV immunogold labeling allows detailed morphological analysis of EVs and their surface-associated DNA. Using TEM imaging, we have demonstrated that cancer-cell-derived individual EVs exhibit simultaneous positivity for dsDNA and the EV surface protein tetraspanin 9. We believe that this method can be used to label any proteins of interest inside as well as on the surface of EVs. This can aid in the characterization of single EVs and in the identification and verification of EV-associated biomarkers. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: EV isolation from cell-culture-conditioned medium, EV embedding, ultrathin sectioning, labeling, and imaging Basic Protocol 2: Whole-mount immunolabeling of EV-DNA.
Collapse
Affiliation(s)
- Thupten Tsering
- Research Institute of the McGill University Health CentreMontrealQuebecCanada
- Department of PathologyMcGill UniversityMontrealQuebecCanada
| | - Amélie Nadeau
- Research Institute of the McGill University Health CentreMontrealQuebecCanada
- Department of PathologyMcGill UniversityMontrealQuebecCanada
| | - Janusz Rak
- Research Institute of the McGill University Health CentreMontrealQuebecCanada
- Department of Medicine, Division of Experimental MedicineMcGill UniversityMontrealQuebecCanada
| | - Julia V. Burnier
- Research Institute of the McGill University Health CentreMontrealQuebecCanada
- Department of PathologyMcGill UniversityMontrealQuebecCanada
- Gerald Bronfman Department of OncologyMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
35
|
Carpenter MA, Thyagarajan A, Owens M, Annamraju R, Borchers CB, Travers JB, Kemp MG. The acid sphingomyelinase inhibitor imipramine enhances the release of UV photoproduct-containing DNA in small extracellular vesicles in UVB-irradiated human skin. Photochem Photobiol 2024; 100:1894-1901. [PMID: 38433456 DOI: 10.1111/php.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Nucleic acids, lipids, and other cell components can be found within different types of extracellular vesicles (EVs), which include apoptotic bodies (ABs), large extracellular vesicles (LEVs), and small extracellular vesicles (SEVs). Release of LEVs from cells can be reduced by genetic or pharmacological inhibition of the enzyme acid sphinogomyelinase (aSMase), and indeed several studies have demonstrated a role for the clinically approved aSMase inhibitor imipramine in blocking LEV release, including in response to UVB exposure. Given that exposure of keratinocytes to UVB radiation results in the generation of UVR photoproducts in DNA that can subsequently be found in association with ABs and SEVs, we examined how imipramine impacts the release of extracellular DNA containing UVR photoproducts at an early time point after UVR exposure. Using several different model systems, including cultured keratinocytes in vitro, discarded human surgical skin ex vivo, and skin biopsies obtained from treated human subjects, these pilot studies suggest that imipramine treatment stimulates the release of CPD-containing, SEV-associated DNA. These surprising findings indicate that LEV and SEV generation pathways could be linked in UVB-irradiated cells and that imipramine may exacerbate the systemic effects of extracellular UVR-damaged DNA throughout the body.
Collapse
Affiliation(s)
- M Alexandra Carpenter
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Madison Owens
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Risha Annamraju
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Christina B Borchers
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
- Department of Dermatology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
- Dayton VA Medical Center, Dayton, Ohio, USA
| | - Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
- Dayton VA Medical Center, Dayton, Ohio, USA
| |
Collapse
|
36
|
Ye Z, Li G, Lei J. Influencing immunity: role of extracellular vesicles in tumor immune checkpoint dynamics. Exp Mol Med 2024; 56:2365-2381. [PMID: 39528800 PMCID: PMC11612210 DOI: 10.1038/s12276-024-01340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 11/16/2024] Open
Abstract
Immune checkpoint proteins (ICPs) serve as critical regulators of the immune system, ensuring protection against damage due to overly activated immune responses. However, within the tumor environment, excessive ICP activation weakens antitumor immunity. Despite the development of numerous immune checkpoint blockade (ICB) drugs in recent years, their broad application has been inhibited by uncertainties about their clinical efficacy. A thorough understanding of ICP regulation in the tumor microenvironment is essential for advancing the development of more effective and safer ICB therapies. Extracellular vesicles (EVs), which are pivotal mediators of cell-cell communication, have been extensively studied and found to play key roles in the functionality of ICPs. Nonetheless, a comprehensive review summarizing the current knowledge about the crosstalk between EVs and ICPs in the tumor environment is lacking. In this review, we summarize the interactions between EVs and several widely studied ICPs as well as their potential clinical implications, providing a theoretical basis for further investigation of EV-related ICB therapeutic approaches.
Collapse
Affiliation(s)
- Ziyang Ye
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Genpeng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
37
|
Mehrvar A, Akbari M, Khosroshahi EM, Nekavand M, Mokhtari K, Baniasadi M, Aghababaian M, Karimi M, Amiri S, Moazen A, Maghsoudloo M, Alimohammadi M, Rahimzadeh P, Farahani N, Vaghar ME, Entezari M, Hashemi M. The impact of exosomes on bone health: A focus on osteoporosis. Pathol Res Pract 2024; 263:155618. [PMID: 39362132 DOI: 10.1016/j.prp.2024.155618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Osteoporosis is a widespread chronic condition. Although standard treatments are generally effective, they are frequently constrained by side effects and the risk of developing drug resistance. A promising area of research is the investigation of extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, which play a crucial role in bone metabolism. Exosomes, in particular, have shown significant potential in both the diagnosis and treatment of osteoporosis. EVs derived from osteoclasts, osteoblasts, mesenchymal stem cells, and other sources can influence bone metabolism, while exosomes from inflammatory and tumor cells may exacerbate bone loss, highlighting their dual role in osteoporosis pathology. This review offers a comprehensive overview of EV biogenesis, composition, and function in osteoporosis, focusing on their diagnostic and therapeutic potential. We examine the roles of various types of EVs and their cargo-proteins, RNAs, and lipids-in bone metabolism. Additionally, we explore the emerging applications of EVs as biomarkers and therapeutic agents, emphasizing the need for further research to address current challenges and enhance EV-based strategies for managing osteoporosis.
Collapse
Affiliation(s)
- Amir Mehrvar
- Assistant Professor, Department of Orthopedics, Taleghani Hospital Research Development Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadarian Akbari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrandokht Nekavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Midwifery, Faculty of nursing and midwifery, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mojtaba Baniasadi
- Department of Orthopedic Surgery, Isfahan University of Medical Sciences, Isfahan, Iran; MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Aghababaian
- Department of Orthopedic Surgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansour Karimi
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Amiri
- MD, Assistant Professor of Orthopaedic Surgery, Shohadaye Haftom-e-Tir Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Moazen
- Department of Orthopedics, Bone and Joint Reconstruction Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad Eslami Vaghar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of gynecology, Faculty of Medicine, Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
38
|
Iorio R, Petricca S, Di Emidio G, Falone S, Tatone C. Mitochondrial Extracellular Vesicles (mitoEVs): Emerging mediators of cell-to-cell communication in health, aging and age-related diseases. Ageing Res Rev 2024; 101:102522. [PMID: 39369800 DOI: 10.1016/j.arr.2024.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Mitochondria are metabolic and signalling hubs that integrate a plethora of interconnected processes to maintain cell homeostasis. They are also dormant mediators of inflammation and cell death, and with aging damages affecting mitochondria gradually accumulate, resulting in the manifestation of age-associated disorders. In addition to coordinate multiple intracellular functions, mitochondria mediate intercellular and inter-organ cross talk in different physiological and stress conditions. To fulfil this task, mitochondrial signalling has evolved distinct and complex conventional and unconventional routes of horizontal/vertical mitochondrial transfer. In this regard, great interest has been focused on the ability of extracellular vesicles (EVs), such as exosomes and microvesicles, to carry selected mitochondrial cargoes to target cells, in response to internal and external cues. Over the past years, the field of mitochondrial EVs (mitoEVs) has grown exponentially, revealing unexpected heterogeneity of these structures associated with an ever-expanding mitochondrial function, though the full extent of the underlying mechanisms is far from being elucidated. Therefore, emerging subsets of EVs encompass exophers, migrasomes, mitophers, mitovesicles, and mitolysosomes that can act locally or over long-distances to restore mitochondrial homeostasis and cell functionality, or to amplify disease. This review provides a comprehensive overview of our current understanding of the biology and trafficking of MitoEVs in different physiological and pathological conditions. Additionally, a specific focus on the role of mitoEVs in aging and the onset and progression of different age-related diseases is discussed.
Collapse
Affiliation(s)
- Roberto Iorio
- Dept. of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy.
| | - Sabrina Petricca
- Dept. of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy
| | - Giovanna Di Emidio
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy
| | - Stefano Falone
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy
| | - Carla Tatone
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy
| |
Collapse
|
39
|
Guo S, Wang X, Shan D, Xiao Y, Ju L, Zhang Y, Wang G, Qian K. The detection, biological function, and liquid biopsy application of extracellular vesicle-associated DNA. Biomark Res 2024; 12:123. [PMID: 39402599 PMCID: PMC11476736 DOI: 10.1186/s40364-024-00661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Cell-derived extracellular vesicles (EVs), which carry diverse biomolecules such as nucleic acids, proteins, metabolites, and lipids reflecting their cell of origin, are released under both physiological and pathological conditions. EVs have been demonstrated to mediate cell-to-cell communication and serve as biomarkers. EV-associated DNA (EV-DNA) comprises genomic and mitochondrial DNA (i.e., gDNA and mtDNA) fragments. Some studies have revealed that EV-DNA can represent the full nuclear genome and mitochondrial genome of parental cells. Furthermore, DNA fragments loaded into EVs are stable and can be transferred to recipient cells to regulate their biological functions. In this review, we summarized and discussed EV-DNA research advances with an emphasis on EV-DNA detection at the population-EV and single-EV levels, gene transfer-associated biological functions, and clinical applications as biomarkers for disease liquid biopsy. We hope that this review will provide potential directions or guidance for future EV-DNA investigations.
Collapse
Affiliation(s)
- Shan Guo
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xin Wang
- Center for Disease Control and Prevention of Hubei Province, Wuhan, China
| | - Danni Shan
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center, Wuhan University, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Gang Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
40
|
Herbstein F, Sapochnik M, Attorresi A, Pollak C, Senin S, Gonilski‐Pacin D, Ciancio del Giudice N, Fiz M, Elguero B, Fuertes M, Müller L, Theodoropoulou M, Pontel LB, Arzt E. The SASP factor IL-6 sustains cell-autonomous senescent cells via a cGAS-STING-NFκB intracrine senescent noncanonical pathway. Aging Cell 2024; 23:e14258. [PMID: 39012326 PMCID: PMC11464112 DOI: 10.1111/acel.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 07/17/2024] Open
Abstract
Senescent cells produce a Senescence-Associated Secretory Phenotype (SASP) that involves factors with diverse and sometimes contradictory activities. One key SASP factor, interleukin-6 (IL-6), has the potential to amplify cellular senescence in the SASP-producing cells in an autocrine action, while simultaneously inducing proliferation in the neighboring cells. The underlying mechanisms for the contrasting actions remain unclear. We found that the senescence action does not involve IL-6 secretion nor the interaction with the receptor expressed in the membrane but is amplified through an intracrine mechanism. IL-6 sustains intracrine senescence interacting with the intracellular IL-6 receptor located in anterograde traffic specialized structures, with cytosolic DNA, cGAS-STING, and NFκB activation. This pathway triggered by intracellular IL-6 significantly contributes to cell-autonomous induction of senescence and impacts in tumor growth control. Inactivation of IL-6 in somatotrophic senescent cells transforms them into strongly tumorigenic in NOD/SCID mice, while re-expression of IL-6 restores senescence control of tumor growth. The intracrine senescent IL-6 pathway is further evidenced in three human cellular models of therapy-induced senescence. The compartmentalization of the intracellular signaling, in contrast to the paracrine tumorigenic action, provides a pathway for IL-6 to sustain cell-autonomous senescent cells, driving the SASP, and opens new avenues for clinical consideration to senescence-based therapies.
Collapse
Affiliation(s)
- Florencia Herbstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Melanie Sapochnik
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Alejandra Attorresi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Cora Pollak
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Sergio Senin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - David Gonilski‐Pacin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Nicolas Ciancio del Giudice
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Manuel Fiz
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Belén Elguero
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Mariana Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| | - Lara Müller
- Medizinische Klinik und Poliklinik IVLudwig‐Maximilians‐Universität (LMU) MünchenMunichGermany
| | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IVLudwig‐Maximilians‐Universität (LMU) MünchenMunichGermany
| | - Lucas B. Pontel
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Present address:
Josep Carreras Leukaemia Research Institute (IJC)BadalonaSpain
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
41
|
Wang SN, Shi YC, Lin S, He HF. Particulate matter 2.5 accelerates aging: Exploring cellular senescence and age-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116920. [PMID: 39208581 DOI: 10.1016/j.ecoenv.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
42
|
Chauhan V, Kashyap P, Chera JS, Pal A, Patel A, Karanwal S, Badrhan S, Josan F, Solanki S, Bhakat M, Datta TK, Kumar R. Differential abundance of microRNAs in seminal plasma extracellular vesicles (EVs) in Sahiwal cattle bull related to male fertility. Front Cell Dev Biol 2024; 12:1473825. [PMID: 39411484 PMCID: PMC11473417 DOI: 10.3389/fcell.2024.1473825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Sahiwal cattle, known for their high milk yield, are propagated through artificial insemination (AI) using male germplasm, largely contingent on semen quality. Spermatozoa, produced in the testes, carry genetic information and molecular signals essential for successful fertilization. Seminal plasma, in addition to sperm, contains nano-sized lipid-bound extracellular vesicles (SP-EVs) that carry key biomolecules, including fertility-related miRNAs, which are essential for bull fertility. The current study focused on miRNA profiling of SP-EVs from high-fertile (HF) and low-fertile (LF) Sahiwal bulls. SP-EVs were isolated using size exclusion chromatography (SEC) and characterized by dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Western blotting detected the EV-specific protein markers TSG101 and CD63. The DLS analysis showed SP-EV sizes of 170-180 nm in HF and 130-140 nm in LF samples. The NTA revealed particle concentrations of 5.76 × 1010 to 5.86 × 1011 particles/mL in HF and 5.31 × 1010 to 2.70 × 1011 particles/mL in LF groups, with no significant differences in size and concentration between HF and LF. High-throughput miRNA sequencing identified 310 miRNAs in SP-EVs from both groups, with 61 upregulated and 119 downregulated in HF bull. Further analysis identified 41 miRNAs with significant fold changes and p-values, including bta-miR-1246, bta-miR-195, bta-miR-339b, and bta-miR-199b, which were analyzed for target gene prediction. Gene Ontology (GO) and KEGG pathway analyses indicated that these miRNAs target genes involved in transcription regulation, ubiquitin-dependent endoplasmic reticulum-associated degradation (ERAD) pathways, and signalling pathways. Functional exploration revealed that these genes play roles in spermatogenesis, motility, acrosome reactions, and inflammatory responses. qPCR analysis showed that bta-miR-195 had 80% higher expression in HF spermatozoa compared to LF, suggesting its association with fertility status (p < 0.05). In conclusion, this study elucidates the miRNA cargoes in SP-EVs as indicators of Sahiwal bull fertility, highlighting bta-miR-195 as a potential fertility factor among the various miRNAs identified.
Collapse
Affiliation(s)
- Vitika Chauhan
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Poonam Kashyap
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Jatinder Singh Chera
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Ankit Pal
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Aditya Patel
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Seema Karanwal
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Shiva Badrhan
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Fanny Josan
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Subhash Solanki
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Mukesh Bhakat
- Livestock Production and Management Division, ICAR- Central Institute of Research on Goat, Mathura, Uttar Pradesh, India
| | | | - Rakesh Kumar
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| |
Collapse
|
43
|
Aswani BS, Hegde M, Vishwa R, Alqahtani MS, Abbas M, Almubarak HA, Sethi G, Kunnumakkara AB. Tackling exosome and nuclear receptor interaction: an emerging paradigm in the treatment of chronic diseases. Mil Med Res 2024; 11:67. [PMID: 39327610 PMCID: PMC11426102 DOI: 10.1186/s40779-024-00564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/06/2024] [Indexed: 09/28/2024] Open
Abstract
Nuclear receptors (NRs) function as crucial transcription factors in orchestrating essential functions within the realms of development, host defense, and homeostasis of body. NRs have garnered increased attention due to their potential as therapeutic targets, with drugs directed at NRs demonstrating significant efficacy in impeding chronic disease progression. Consequently, these pharmacological agents hold promise for the treatment and management of various diseases. Accumulating evidence emphasizes the regulatory role of exosome-derived microRNAs (miRNAs) in chronic inflammation, disease progression, and therapy resistance, primarily by modulating transcription factors, particularly NRs. By exploiting inflammatory pathways such as protein kinase B (Akt)/mammalian target of rapamycin (mTOR), nuclear factor kappa-B (NF-κB), signal transducer and activator of transcription 3 (STAT3), and Wnt/β-catenin signaling, exosomes and NRs play a pivotal role in the panorama of development, physiology, and pathology. The internalization of exosomes modulates NRs and initiates diverse autocrine or paracrine signaling cascades, influencing various processes in recipient cells such as survival, proliferation, differentiation, metabolism, and cellular defense mechanisms. This comprehensive review meticulously examines the involvement of exosome-mediated NR regulation in the pathogenesis of chronic ailments, including atherosclerosis, cancer, diabetes, liver diseases, and respiratory conditions. Additionally, it elucidates the molecular intricacies of exosome-mediated communication between host and recipient cells via NRs, leading to immunomodulation. Furthermore, it outlines the implications of exosome-modulated NR pathways in the prophylaxis of chronic inflammation, delineates current limitations, and provides insights into future perspectives. This review also presents existing evidence on the role of exosomes and their components in the emergence of therapeutic resistance.
Collapse
Affiliation(s)
- Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, 61421, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
44
|
Lu X, Ren K, Pan L, Liu X. Sheep ( Ovis aries) Milk Exosomal miRNAs Attenuate Dextran Sulfate Sodium-Induced Colitis in Mice via TLR4 and TRAF-1 Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21030-21040. [PMID: 39283309 DOI: 10.1021/acs.jafc.4c05524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Mammalian milk exosomal miRNAs play an important role in maintaining intestinal immune homeostasis and protecting epithelial barrier function, but the specific miRNAs and whether miRNA-mediated mechanisms are responsible for these benefits remain a matter of investigation. This study isolated sheep milk-derived exosomes (sheep MDEs), identifying the enriched miRNAs in sheep MDEs, oar-miR-148a, and oar-let-7b as key components targeting TLR4 and TRAF1, which was validated by a dual-luciferase reporter assay. In dextran sulfate sodium-induced colitis mice, administration of sheep MDEs alleviated colitis symptoms, reduced colonic inflammation, and systemic oxidative stress, as well as significantly increased colonic oar-miR-148a and oar-let-7b while reducing toll-like receptor 4 (TLR4) and TNF-receptor-associated factor 1 (TRAF1) level. Further characterization in TNF-α-challenged Caco-2 cells showed that overexpression of these miRNAs suppressed the TLR4/TRAF1-IκBα-p65 pathway and reduced IL-6 and IL-12 production. These findings indicate that sheep MDEs exert gastrointestinal anti-inflammatory effects through the miRNA-mediated modulation of TLR4 and TRAF1, highlighting their potential in managing colitis.
Collapse
Affiliation(s)
- Xi Lu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Ke Ren
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Lei Pan
- Tangdu Hospital, Air Force Military Medical University, Xi'an 710000, China
| | - Xiaocao Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
45
|
Moldovan N, Verkuijlen S, van der Pol Y, Bosch L, van Weering JRT, Bahce I, Pegtel DM, Mouliere F. Comparison of cell-free and small extracellular-vesicle-associated DNA by sequencing plasma of lung cancer patients. iScience 2024; 27:110742. [PMID: 39262778 PMCID: PMC11389540 DOI: 10.1016/j.isci.2024.110742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/02/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
Blood contains multiple analytes that can be used as liquid biopsy to analyze cancer. Mutations have been detected in DNA associated with small extracellular vesicles (sEVs). The genome-wide composition and structure of sEV DNA remains poorly characterized, and whether sEVs are enriched in tumor signal compared to cell-free DNA (cfDNA) is unclear. Here, using whole-genome sequencing from lung cancer patients we determined that the tumor fraction and heterogeneity are comparable between DNA associated with sEV (<200 nm) and matched plasma cfDNA. sEV DNA, obtained with size-exclusion chromatography, is composed of short ∼150-180 bp fragments and long >1000 bp fragments poor in tumor signal. The structural patterns of sEV DNA are related to plasma cfDNA. Mitochondrial DNA is relatively enriched in the sEV fractions. Our results suggest that DNA associated to sEV (including exosomes) is not preferentially enriched in tumor signal and is less abundant than cfDNA.
Collapse
Affiliation(s)
- Norbert Moldovan
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Sandra Verkuijlen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Ymke van der Pol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Leontien Bosch
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Jan R T van Weering
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Human Genetics and Functional Genomics, Center for Neurogenomics and Cognitive Research, 1081 HV Amsterdam, the Netherlands
| | - Idris Bahce
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonology, Cancer Center Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - D Michiel Pegtel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Florent Mouliere
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, 1081 HV Amsterdam, the Netherlands
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| |
Collapse
|
46
|
Tsering T, Nadeau A, Wu T, Dickinson K, Burnier JV. Extracellular vesicle-associated DNA: ten years since its discovery in human blood. Cell Death Dis 2024; 15:668. [PMID: 39266560 PMCID: PMC11393322 DOI: 10.1038/s41419-024-07003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 09/14/2024]
Abstract
Extracellular vesicles (EVs) have emerged as key players in intercellular communication, facilitating the transfer of crucial cargo between cells. Liquid biopsy, particularly through the isolation of EVs, has unveiled a rich source of potential biomarkers for health and disease, encompassing proteins and nucleic acids. A milestone in this exploration occurred a decade ago with the identification of extracellular vesicle-associated DNA (EV-DNA) in the bloodstream of a patient diagnosed with pancreatic cancer. Subsequent years have witnessed substantial advancements, deepening our insights into the molecular intricacies of EV-DNA emission, detection, and analysis. Understanding the complexities surrounding the release of EV-DNA and addressing the challenges inherent in EV-DNA research are pivotal steps toward enhancing liquid biopsy-based strategies. These strategies, crucial for the detection and monitoring of various pathological conditions, particularly cancer, rely on a comprehensive understanding of why and how EV-DNA is released. In our review, we aim to provide a thorough summary of a decade's worth of research on EV-DNA. We will delve into diverse mechanisms of EV-DNA emission, its potential as a biomarker, its functional capabilities, discordant findings in the field, and the hurdles hindering its clinical application. Looking ahead to the next decade, we envision that advancements in EV isolation and detection techniques, coupled with improved standardization and data sharing, will catalyze the development of novel strategies exploiting EV-DNA as both a source of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Thupten Tsering
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Amélie Nadeau
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Tad Wu
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Kyle Dickinson
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
47
|
Ozaki K, Nagahara H, Kawamura A, Ohgita T, Higashi S, Ogura K, Tsutsuki H, Iyoda S, Yokotani A, Yamaji T, Moss J, Yahiro K. Extracellular Vesicle Inhibitors Enhance Cholix-Induced Cell Death via Regulation of the JNK-Dependent Pathway. Toxins (Basel) 2024; 16:380. [PMID: 39330838 PMCID: PMC11435833 DOI: 10.3390/toxins16090380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Vibrio cholerae is an important foodborne pathogen. Cholix cytotoxin (Cholix), produced by V. cholerae, is a novel eukaryotic elongation factor 2 (eEF2) adenosine diphosphate ribosyltransferase that causes host cell death by inhibiting protein synthesis. However, the role of Cholix in the infectious diseases caused by V. cholerae remains unclear. Some bacterial cytotoxins are carried by host extracellular vesicles (EVs) and transferred to other cells. In this study, we investigated the effects of EV inhibitors and EV-regulating proteins on Cholix-induced hepatocyte death. We observed that Cholix-induced cell death was significantly enhanced in the presence of EV inhibitors (e.g., dimethyl amiloride, and desipramine) and Rab27a-knockdown cells, but it did not involve a sphingomyelin-dependent pathway. RNA sequencing analysis revealed that desipramine, imipramine, and EV inhibitors promoted the Cholix-activated c-Jun NH2-terminal kinase (JNK) pathway. Furthermore, JNK inhibition decreased desipramine-enhanced Cholix-induced poly (ADP-ribose) polymerase (PARP) cleavage. In addition, suppression of Apaf-1 by small interfering RNA further enhanced Cholix-induced PARP cleavage by desipramine. We identified a novel function of desipramine in which the stimulated JNK pathway promoted a mitochondria-independent cell death pathway by Cholix.
Collapse
Affiliation(s)
- Kazuya Ozaki
- Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.O.); (H.N.); (A.K.); (S.H.); (A.Y.)
| | - Hiyo Nagahara
- Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.O.); (H.N.); (A.K.); (S.H.); (A.Y.)
| | - Asaka Kawamura
- Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.O.); (H.N.); (A.K.); (S.H.); (A.Y.)
| | - Takashi Ohgita
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan;
| | - Sachika Higashi
- Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.O.); (H.N.); (A.K.); (S.H.); (A.Y.)
| | - Kohei Ogura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8501, Japan;
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan;
| | - Atsushi Yokotani
- Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.O.); (H.N.); (A.K.); (S.H.); (A.Y.)
- Kyoto Biken Laboratories, Inc., Kyoto 611-0041, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Juntendo University, Chiba 279-0013, Japan
| | - Joel Moss
- Clinical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20824-0105, USA;
| | - Kinnosuke Yahiro
- Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.O.); (H.N.); (A.K.); (S.H.); (A.Y.)
| |
Collapse
|
48
|
Motlagh RA, Pipella J, Thompson PJ. Exploring senescence as a modifier of β cell extracellular vesicles in type 1 diabetes. Front Endocrinol (Lausanne) 2024; 15:1422279. [PMID: 39239092 PMCID: PMC11374605 DOI: 10.3389/fendo.2024.1422279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Type 1 Diabetes (T1D) is a chronic metabolic disease resulting from insulin deficiency due to autoimmune loss of pancreatic β cells. In addition to β cell destruction, it is now accepted that β cell stress and dysfunction, such as senescence, plays a crucial role in the development of the disease. Accumulation of senescent β cells occurs during development of T1D in humans and contributes to the progression of T1D in the nonobese diabetic (NOD) mouse model. Senescent β cells are thought to exacerbate the inflammatory response within the islets by production and secretion of senescence-associated secretory phenotype (SASP). Extracellular vesicles (EVs) from β cells have been shown to carry protein and microRNAs (miRNAs), influencing cellular signaling and may contribute to the development of T1D but it remains to be addressed how senescence impacts β cell EV cargo. In this minireview, we discuss emerging evidence that EV cargo proteins and miRNAs associated with senescence could contribute to the development of T1D and could suggest potential biomarkers and therapeutic targets for the regulation of SASP and elimination of senescent β cells in T1D. Future investigation exploring the intricate relationship between β cell senescence, EVs and miRNAs could pave the way for the development of novel diagnostic techniques and therapeutic interventions.
Collapse
Affiliation(s)
- Roozbeh Akbari Motlagh
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Jasmine Pipella
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Peter J Thompson
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
49
|
Parveen S, Bhat CV, Sagilkumar AC, Aziz S, Arya J, Dutta A, Dutta S, Show S, Sharma K, Rakshit S, Johnson JB, Nongthomba U, Banerjee A, Subramanian K. Bacterial pore-forming toxin pneumolysin drives pathogenicity through host extracellular vesicles released during infection. iScience 2024; 27:110589. [PMID: 39211544 PMCID: PMC11357855 DOI: 10.1016/j.isci.2024.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/11/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Streptococcus pneumoniae is a global priority respiratory pathogen that kills over a million people annually. The pore-forming cytotoxin, pneumolysin (PLY) is a major virulence factor. Here, we found that recombinant PLY as well as wild-type pneumococcal strains, but not the isogenic PLY mutant, upregulated the shedding of extracellular vesicles (EVs) harboring membrane-bound toxin from human THP-1 monocytes. PLY-EVs induced cytotoxicity and hemolysis dose-dependently upon internalization by recipient monocyte-derived dendritic cells. Proteomics analysis revealed that PLY-EVs are selectively enriched in key inflammatory host proteins such as IFI16, NLRC4, PTX3, and MMP9. EVs shed from PLY-challenged or infected cells induced dendritic cell maturation and primed them to infection. In vivo, zebrafish administered with PLY-EVs showed pericardial edema and mortality. Adoptive transfer of bronchoalveolar-lavage-derived EVs from infected mice to healthy recipients induced lung damage and inflammation in a PLY-dependent manner. Our findings identify that host EVs released during infection mediate pneumococcal pathogenesis.
Collapse
Affiliation(s)
- Saba Parveen
- Host-Pathogen Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Chinmayi V Bhat
- Host-Pathogen Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Aswathy C Sagilkumar
- Host-Pathogen Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Shaheena Aziz
- Host-Pathogen Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - J Arya
- Host-Pathogen Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Asmita Dutta
- Host-Pathogen Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Somit Dutta
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Sautan Show
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Kuldeep Sharma
- Bacterial Pathogenesis Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sumit Rakshit
- Bacterial Pathogenesis Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - John Bernet Johnson
- Virology Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Anirban Banerjee
- Bacterial Pathogenesis Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Karthik Subramanian
- Host-Pathogen Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
- Regional Centre for Biotechnology, Faridabad 121001, India
| |
Collapse
|
50
|
Tanaka H, Sugawara S, Tanaka Y, Loo TM, Tachibana R, Abe A, Kamiya M, Urano Y, Takahashi A. Dipeptidylpeptidase-4-targeted activatable fluorescent probes visualize senescent cells. Cancer Sci 2024; 115:2762-2773. [PMID: 38802068 PMCID: PMC11309953 DOI: 10.1111/cas.16229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Senescent cells promote cancer development and progression through chronic inflammation caused by a senescence-associated secretory phenotype (SASP). Although various senotherapeutic strategies targeting senescent cells have been developed for the prevention and treatment of cancers, technology for the in vivo detection and evaluation of senescent cell accumulation has not yet been established. Here, we identified activatable fluorescent probes targeting dipeptidylpeptidase-4 (DPP4) as an effective probe for detecting senescent cells through an enzymatic activity-based screening of fluorescent probes. We also determined that these probes were highly, selectively, and rapidly activated in senescent cells during live cell imaging. Furthermore, we successfully visualized senescent cells in the organs of mice using DPP4-targeted probes. These results are expected to lead to the development of a diagnostic technology for noninvasively detecting senescent cells in vivo and could play a role in the application of DPP4 prodrugs for senotherapy.
Collapse
Affiliation(s)
- Hisamichi Tanaka
- Division of Cellular SenescenceCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- Department of JFCR Cancer Biology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Sho Sugawara
- Division of Cellular SenescenceCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Yoko Tanaka
- Division of Cellular SenescenceCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Tze Mun Loo
- Division of Cellular SenescenceCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Ryo Tachibana
- Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Atsuki Abe
- Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Mako Kamiya
- Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
- Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Akiko Takahashi
- Division of Cellular SenescenceCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- Cancer Cell Communication Project, NEXT‐Ganken ProgramJapanese Foundation for Cancer ResearchTokyoJapan
| |
Collapse
|