1
|
Wiala A, Elhage KG, Leung A, Young AT, Gregory M, Adrianto I, Zhou L, Mi QS, Kumar S, Orcales F, Yeroushalmi S, Haran K, Liu J, Naik HB, Liao W, Posch C. Patients with PSOriasis and Suppurative Hidradenitis (PSO-SH) share genetic risk factors and are at risk of increased morbidity. J Am Acad Dermatol 2025; 92:1303-1311. [PMID: 39929305 DOI: 10.1016/j.jaad.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 05/24/2025]
Abstract
BACKGROUND Select patients are diagnosed with both psoriasis (PSO) and hidradenitis suppurativa (HS), leading to a unique disease pattern. Genetic risk factors remain unidentified. METHODS The study harnessed an international collection of patients with PSO and HS (PSO-SH). Clinical and genetic data were collected and analyzed. RESULTS Eighty-seven PSO-SH patients (70% female) were identified. They had a high number of comorbidities (89%) and worse general physical health compared to PSO-only (OR: 3.09; 95% CI: 1.56-6.12) or HS-only (OR: 2.5; 95% CI: 1.23-5.00) patients. PSO-SH patients were at significantly higher risk of having Crohn's disease (OR: 4.6-11.9; 95% CI). Data revealed the highest overall genetic risk score for PSO-SH patients (PSO-polygenic risk score; 108.22), followed by PSO (101.18), HS (99.84), and healthy controls (98.58). High non-human leukocyte antigen scores were associated with an increased risk for developing both PSO and HS, indicating a distinct biological profile compared to HS-only and PSO-only individuals. LIMITATIONS Some clinical information was collected retrospectively. CONCLUSIONS This study highlights a shared genetic susceptibility of HS and PSO at non-human leukocyte antigen loci. Recognizing PSO-SH patients as a distinct patient group with high morbidity and increased risk for developing Crohn's disease will help to improve patient management.
Collapse
Affiliation(s)
- Antonia Wiala
- Department of Dermatology, Clinic Landstrasse, Vienna, Austria
| | - Kareem G Elhage
- Department of Dermatology, University of California, San Francisco, California
| | - Andrea Leung
- Department of Dermatology, University of California, San Francisco, California
| | - Albert T Young
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, Michigan
| | - Mark Gregory
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, Michigan
| | - Indra Adrianto
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, Michigan; Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan; Henry Ford Health + Michigan State University Health Sciences, East Lansing, Michigan; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Li Zhou
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, Michigan; Henry Ford Health + Michigan State University Health Sciences, East Lansing, Michigan; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, Michigan; Henry Ford Health + Michigan State University Health Sciences, East Lansing, Michigan; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Sugandh Kumar
- Department of Dermatology, University of California, San Francisco, California
| | - Faye Orcales
- Department of Dermatology, University of California, San Francisco, California
| | - Samuel Yeroushalmi
- Department of Dermatology, University of California, San Francisco, California
| | - Kathryn Haran
- Department of Dermatology, University of California, San Francisco, California
| | - Jared Liu
- Department of Dermatology, University of California, San Francisco, California
| | - Haley B Naik
- Department of Dermatology, University of California, San Francisco, California
| | - Wilson Liao
- Department of Dermatology, University of California, San Francisco, California
| | - Christian Posch
- Department of Dermatology, Clinic Landstrasse, Vienna, Austria; Faculty of Medicine, Sigmund Freud University, Vienna, Austria; Department of Dermatology, Clinic Hietzing, Vienna, Austria; Department of Dermatology and Allergy, School of Medicine, German Cancer Consortium (DKTK), Technical University of Munich, Munich, Germany.
| |
Collapse
|
2
|
Yan F, Tao J, Liu J, Chen Y, Huang Z. Cross-tissue transcriptome-wide association study reveals novel psoriasis susceptibility genes. J Transl Autoimmun 2025; 10:100286. [PMID: 40206863 PMCID: PMC11979975 DOI: 10.1016/j.jtauto.2025.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
Background Psoriasis is a chronic, immune-mediated inflammatory skin disorder with a strong genetic component. Although numerous GWAS have identified risk loci, many associated variants lie in non-coding regions, complicating functional interpretation. Objective This study aimed to identify novel psoriasis susceptibility genes by integrating large-scale GWAS and eQTL data using a cross-tissue TWAS approach. Methods We integrated psoriasis GWAS summary statistics from the FinnGen database with GTEx V8 eQTL data. A cross-tissue TWAS was performed using UTMOST, followed by validation with single-tissue TWAS via FUSION. Conditional and joint analyses were conducted to delineate independent genetic signals, and gene-based analysis was performed using MAGMA. Causal relationships were evaluated using Mendelian randomization (MR) and Bayesian colocalization analyses. Key SNPs were functionally characterized using CADD, GERP++, and RegulomeDB for pathogenicity prediction and regulatory potential assessment. Finally, functional network analysis was conducted using GeneMANIA. Results The cross-tissue TWAS identified 259 genes significantly associated with psoriasis (p < 0.05), with 12 remaining significant after FDR correction. Single-tissue TWAS validation revealed 655 significant genes, with an overlap of three protein-coding candidates: POLI, NFKB1, and ZFYVE28. Cross-validation with MAGMA refined the candidate set to NFKB1 and ZFYVE28. MR and colocalization analyses supported a causal relationship for NFKB1 in Skeletal Muscle, Transverse Colon, and Cultured Fibroblasts, and for ZFYVE28 in Subcutaneous Adipose Tissue and Esophageal Mucosa tissues. Functional annotation identified key SNPs including rs4235405, rs3774960, and rs1598856 for NFKB1, and rs1203786 for ZFYVE28, with varying degrees of pathogenicity and regulatory potential. GeneMANIA network analysis further implicated NFKB1 in NF-κB signaling and ZFYVE28 in vesicle-mediated transport. Conclusion Our integrative multi-omics approach identifies NFKB1 and ZFYVE28 as novel psoriasis susceptibility genes, providing potential biomarkers and therapeutic targets for this complex disease.
Collapse
Affiliation(s)
- Fei Yan
- Jiangbei District Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Jing Tao
- Chongqing Zhongxian Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Jie Liu
- Chongqing Zhongxian Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yongliang Chen
- Chongqing Zhongxian Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Zongju Huang
- Jiangbei District Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
3
|
Byrd AS, Moreau JM, Petukhova L, Frew J. Differentiating the Role of Inflammation in Hidradenitis Suppurativa from that in Other Inflammatory Skin Diseases. J Invest Dermatol 2025:S0022-202X(25)00450-6. [PMID: 40411510 DOI: 10.1016/j.jid.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/27/2025] [Accepted: 04/15/2025] [Indexed: 05/26/2025]
Abstract
Hidradenitis suppurativa (HS) is a chronic, inflammatory skin disease characterized by nodules, abscesses, and sinus tunnels, primarily in intertriginous areas. Symptoms of HS are associated with reduced psychosocial health and physical function. HS shares some pathogenic, cellular, and molecular features with other inflammatory skin diseases, highlighting its heterogeneity and complexity. This heterogeneity in disease presentation may contribute to the diagnosis delay observed with HS. The primary objective of this review is to highlight the initiating events, inflammatory signature, molecular features, and clinical features that differentiate HS from other inflammatory skin diseases to improve outcomes for patients with HS.
Collapse
Affiliation(s)
- Angel S Byrd
- Department of Dermatology, Howard University College of Medicine, Washington, District of Columbia, USA.
| | - Joshua M Moreau
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Lynn Petukhova
- Ronald O. Perelman Department of Dermatology, Grossman School of Medicine, New York University Langone Health, New York, New York, USA; Department of Population Health, Grossman School of Medicine, New York University Langone Health, New York, New York, USA
| | - John Frew
- University of New South Wales, Sydney, Australia; Laboratory of Translational Cutaneous Medicine, Ingham Institute for Applied Medical Research, Liverpool, Australia; Department of Dermatology, Liverpool Hospital, Liverpool, Australia
| |
Collapse
|
4
|
Li G, Tian J, Xu J, Li K. The causal association between psoriasis and 32 types of cancer: a mendelian randomization study. Discov Oncol 2025; 16:819. [PMID: 40389789 PMCID: PMC12089557 DOI: 10.1007/s12672-025-02679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 05/12/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Psoriasis is a systemic immune disease associated with the development of various cancers. However, the causal nature of this association remains unclear. This study aims to systematically investigate the potential causal relationship between psoriasis and 32 types of cancer. METHODS We utilized data from two large genomic databases, the UK Biobank and FinnGen, to extract GWAS summary statistics for 32 cancer types as outcomes and psoriasis-related data as exposures. Mendelian randomization (MR) analysis was performed to assess the causal effects of psoriasis on cancer risk. Sensitivity analyses, including heterogeneity and horizontal pleiotropy tests, were conducted to ensure robustness. Additionally, meta-analysis and FDR correction were applied to enhance the reliability of the results. RESULTS Our findings revealed significant causal relationships between psoriasis and four cancer types: Psoriasis was associated with an increased risk of laryngeal cancer (OR = 1.15, 95% CI: 1.05-1.26). Psoriasis exhibited a protective effect against oral cavity and pharyngeal cancer (OR: 0.91; 95% CI: 0.86-0.97), prostate cancer (OR: 0.97; 95% CI: 0.95-0.99), and malignant non-melanoma cancer (OR: 0.89; 95% CI: 0.82-0.96). CONCLUSION Psoriasis may exert bidirectional effects on the development of specific cancers through distinct mechanisms. Specifically, psoriasis may increase the risk of laryngeal cancer while reducing the risk of oral cavity and pharyngeal cancer, prostate cancer, and malignant non-melanoma cancer. These findings provide new insights into the causal relationship between psoriasis and cancer and could inform prevention and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Guangyao Li
- Department of Gastrointestinal Surgery, The Second People's Hospital of Wuhu, Wuhu, 241000, Anhui, China
| | - Jiahe Tian
- Department of Ultrasound, Weihai Central Hospital Affiliated to Qingdao University, Weihai, 264400, Shandong, China
| | - Jingyu Xu
- Department of Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai, 264400, Shandong, China
| | - Kun Li
- Department of Thyroid Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai, 264400, Shandong, China.
| |
Collapse
|
5
|
Liu M, Sun Z, Tan P, Xie D, Liu Y, Feng W, Ren C, Du S. Associations between psoriasis and risk of 33 cancers: a Mendelian randomization study. BMC Cancer 2025; 25:837. [PMID: 40335896 PMCID: PMC12057250 DOI: 10.1186/s12885-025-14243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Several observational studies have reported epidemiologic associations between psoriasis and risk of some cancers, but systematic evidence is lacking. Our aim was to comprehensively estimate the association between psoriasis and the risk of 33 common cancers using systematical Mendelian randomization based on genetic data. METHOD Forty-nine independent single-nucleotide polymorphisms (SNPs) significantly associated with psoriasis were extracted as instrumental variables from a large-scale meta-analysis study of genome-wide association study (GWAS) for psoriasis. Outcome GWAS data were obtained from the FinnGen consortium (n = 500,348), UK Biobank (n = 420,531), and other large-scale cancer datasets. The inverse-variance weighted (IVW) was used as the primary method to infer the association between psoriasis and risk of cancer, and finally the results from multiple databases were pooled by meta-analysis. RESULTS In the UK Biobank, genetically predicted psoriasis had a suggestive association with colon (OR = 1.055, 95%CI: 1.001-1.113, P = 0.046) and uterine corpus cancer (OR = 0.922, 95%CI: 0.852-0.997, P = 0.042). In the FinnGen consortium, psoriasis had a suggestive association with vulvar cancer (OR = 1.182, 95%CI: 1.023-1.366, P = 0.024), uterine corpus cancer (OR = 0.937, 95%CI: 0.883-0.993, P = 0.028), and prostate cancer (OR = 0.973, 95%CI: 0.948-0.999, P = 0.045). In an additional large-scale cancer dataset, psoriasis also showed a suggestive association with prostate cancer (OR = 0.968, 95%CI:0.942-0.995, P = 0.020). The meta-analysis confirmed the suggestive association of psoriasis with uterine corpus (OR = 0.931, 95% CI: 0.889-0.976, P = 0.003) and prostate cancer (OR = 0.976, 95% CI: 0.955-0.997, P = 0.023). Whereas the effect of psoriasis on colon and vulvar cancer was not in the same direction across different populations. Furthermore, no association between genetically predicted psoriasis and other cancers were observed. CONCLUSIONS This comprehensive MR study suggests that psoriasis may be a potential protective factor for uterine corpus cancer in women and prostate cancer in men.
Collapse
Affiliation(s)
- Mengsi Liu
- Guangdong Cardiovascular Institute, Guangzhou, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peixin Tan
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Southern Medical University, No. 106, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Dehuan Xie
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Southern Medical University, No. 106, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Yantan Liu
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Southern Medical University, No. 106, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Wenqing Feng
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Southern Medical University, No. 106, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Chen Ren
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Southern Medical University, No. 106, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China.
| | - Shasha Du
- Guangdong Cardiovascular Institute, Guangzhou, China.
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Southern Medical University, No. 106, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Tanimura K, Aldrich MC, Jaworski J, Xing J, Okawa S, Chandra D, Nouraie SM, Nyunoya T. Identifying a Genetic Link Between Lung Function and Psoriasis. Ann Hum Genet 2025; 89:89-95. [PMID: 39718377 PMCID: PMC11982659 DOI: 10.1111/ahg.12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 12/25/2024]
Abstract
INTRODUCTION The common genetic underpinnings of psoriasis and pulmonary comorbidities have yet to be explored. MATERIAL AND METHODS In this cross-sectional study, we investigated the single-nucleotide polymorphisms (SNPs) associated with psoriasis and their relationship with pulmonary function using data from the UK Biobank (UKBB) and the Vanderbilt University Medical Center Biobank (BioVU). RESULTS Out of the 63 psoriasis-associated SNPs identified in previous genome-wide association studies within the European population, we successfully identified 53 SNPs, including proxy SNPs in UKBB database. Following adjustments using age and sex, 31 SNPs displayed statistically significant associations with psoriasis. Among these, 16 SNPs exhibited significant associations with forced expiratory volume in 1 s (FEV1), 14 with forced vital capacity (FVC), and 5 with the FEV1/FVC ratio in the UKBB. In the validation analysis using the BioVU database, 27 of the 31 psoriasis-associated SNPs were available for examination. Notably, the minor allele of SNP rs8016947 was confirmed to be significant, indicating a reduced risk for psoriasis and improved FEV1. Similarly, the minor alleles of SNPs rs17716942 and rs8016947 were associated with a reduced risk of psoriasis and enhanced FVC. However, none of the 5 SNPs significantly associated with the FEV1/FVC ratio in the UKBB displayed significance in the BioVU dataset. CONCLUSION This study has unveiled genetic variants that bridge the realms of psoriasis and lung function. The genes associated with these variants, including IFIH1, Grancalcin gene (GCA), and NFKB inhibitor alpha gene (NFKBIA), regulate innate immune responses, which suggests that immunodysregulation, a central element in psoriasis pathogenesis, may also impact lung function, alluding to a "skin-lung axis."
Collapse
Affiliation(s)
- Kazuya Tanimura
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Respiratory MedicineNara Medical UniversityKashiharaNaraJapan
| | - Melinda C. Aldrich
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - James Jaworski
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jinchuan Xing
- Department of GeneticsHuman Genetic Institute of New Jersey, Rutgers, the State University of New JerseyPiscatawayNew JerseyUSA
| | - Satoshi Okawa
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Divay Chandra
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Seyed M. Nouraie
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Toru Nyunoya
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Medical Specialty Service LineVeterans Affairs Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| |
Collapse
|
7
|
Riachi M, Bryant D, Ellis J, Hughes C, Polubothu S, Del Valle Torres I, Sauvadet A, Knöpfel N, Muwanga-Nanyonjo N, Martin SB, Bruzos A, Kelly G, Calvani E, Palma-Duran SA, Silva Dos Santos M, Chaloner C, Khalil Y, Clayton P, Mills P, Bulstrode N, Dand N, Di WL, Barral P, Simpson MA, Barker J, Lee JC, Macrae J, Kinsler VA. Cholesterol pathway gene variants and reduced keratinocyte cholesterol support a final common druggable pathway in hyperproliferative inflammatory skin diseases. J Invest Dermatol 2025:S0022-202X(25)00414-2. [PMID: 40274221 DOI: 10.1016/j.jid.2025.02.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 04/26/2025]
Abstract
Hyperproliferative inflammatory skin disease (HISD) is frequently seen in rare monogenic diseases of cholesterol metabolism and responds to topical cholesterol/statin. We hypothesised that aberrant cholesterol metabolism within keratinocytes could be important in HISD more generally, driven by either immunological or lipid pathway genetic variation. Whilst other epidermal lipids have been well characterised in HISDs, cholesterol and its metabolites have not. Using GCxGC 3D mass spectrometry we find here that primary keratinocytes from diverse monogenic HISDs (Inflammatory Linear Verruvous Epidermal Naevus ILVEN n=14, CHILD syndrome n=2), and from plaque psoriasis (n=2), demonstrate significantly reduced mean cholesterol across all patient groups compared to controls. This striking abnormality appears causally implicated, as treatment in vitro with cholesterol and statin rescues the cellular hyperproliferation. Using SNPsea and burden analysis of large international psoriasis cohorts we go on to show that GWAS hits are significantly enriched in proximity to genes encoding lipid metabolic pathways, and that rare variants in lipid metabolic pathway genes are significantly enriched in psoriasis patients. These data identify a final common pathway of aberrant keratinocyte cholesterol metabolism in HISD, which should be drugged topically to avoid first pass metabolism. In parallel we implicate genetic variation in lipid pathway genes in psoriasis susceptibility, potentially explaining the co-morbidity of abnormal serum lipid profile and psoriasis.
Collapse
Affiliation(s)
- Melissa Riachi
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Dale Bryant
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - James Ellis
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Connor Hughes
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Satyamaanasa Polubothu
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK; Paediatric Dermatology, Great Ormond St Hospital for Children, London, UK
| | - Ignacio Del Valle Torres
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Aimie Sauvadet
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Nicole Knöpfel
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK; Paediatric Dermatology, Great Ormond St Hospital for Children, London, UK
| | - Noreen Muwanga-Nanyonjo
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK; Paediatric Dermatology, Great Ormond St Hospital for Children, London, UK
| | - Sara Barberan Martin
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Alicia Bruzos
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Gavin Kelly
- Bioinformatics and Biostatistics, The Francis Crick Insitute, London, UK
| | - Enrica Calvani
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, UK
| | | | | | - Charlotte Chaloner
- Department of Medical and Molecular Genetics, King's College London, London, UK; The Peter Gorer Department of Immunology, King's College London, London, UK
| | - Youssef Khalil
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Peter Clayton
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Philippa Mills
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Neil Bulstrode
- Plastic Surgery, Great Ormond St Hospital for Children, London, UK
| | - Nick Dand
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Wei-Li Di
- The Peter Gorer Department of Immunology, King's College London, London, UK
| | - Patricia Barral
- Immune Response to Lipids Laboratory, The Francis Crick Institute, London, UK
| | - Michael A Simpson
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Jonathan Barker
- St John's Institute of Dermatology, Guys and St Thomas' Trust, London UK
| | - James C Lee
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
| | - James Macrae
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Veronica A Kinsler
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK; Paediatric Dermatology, Great Ormond St Hospital for Children, London, UK.
| |
Collapse
|
8
|
Lachnit T, Ulrich L, Willmer FM, Hasenbein T, Steiner LX, Wolters M, Herbst EM, Deines P. Nutrition-induced changes in the microbiota can cause dysbiosis and disease development. mBio 2025; 16:e0384324. [PMID: 39998180 PMCID: PMC11980362 DOI: 10.1128/mbio.03843-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Eukaryotic organisms are associated with complex microbial communities. Changes within these communities have been implicated in disease development. Nonetheless, it remains unclear whether these changes are a cause or a consequence of disease. Here, we report a causal link between environment-induced shifts in the microbiota and disease development. Using the model organism Hydra, we observed changes in microbial composition when transferring laboratory-grown Hydra to natural lake environments. These shifts were caused not only by new colonizers, through the process of community coalescence (merging of previously separate microbial communities), but also by lake water nutrients. Moreover, selective manipulation of the nutrient environment induced compound-specific shifts in the microbiota followed by disease development. Finally, L-arginine supplementation alone caused a transition in Pseudomonas from symbiotic to pathogenic, leading to an upregulation of immune response genes, tissue degradation, and host death. These findings challenge the notion that the host-associated microbiota is exclusively controlled by the host, highlighting the dynamic interplay between host epithelial environment, microbial colonizer pool, and nutrient conditions of the surrounding water. Furthermore, our results show that overfeeding of the microbiota allows for uncontrolled microbial growth and versatile interactions with the host. Environmental conditions may thus render symbionts a potential hazard to their hosts, blurring the divide between pathogenic and non-pathogenic microbes.IMPORTANCEThis study highlights the critical need to understand the dynamic interplay between host-associated microbiota and environmental factors to obtain a holistic view on organismal health. Our results demonstrate that ecosystem-wide microbial trafficking (community coalescence) and environmental nutrient conditions reshape microbial communities with profound implications for host health. By exploring nutrient-driven changes in microbial composition, our research finds experimental support for the "overfeeding hypothesis," which states that overfeeding alters the functionality of the host microbiota such that an overabundance in nutrients can facilitate disease development, transforming non-pathogenic microbes into pathogens. These findings emphasize the critical role of metabolic interactions driving microbial pathogenicity. Furthermore, our research provides empirical evidence for the "pathogenic potential" concept, challenging traditional distinctions between pathogenic and non-pathogenic microbes and supporting the idea that any microbe can become pathogenic under certain conditions.
Collapse
Affiliation(s)
- Tim Lachnit
- Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Laura Ulrich
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Fiete M. Willmer
- Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Tim Hasenbein
- Institute of Pharmacology and Toxicology, Technical University of Munich, München, Germany
| | - Leon X. Steiner
- RU Marine Symbioses, RD3 Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Maria Wolters
- Fakultät Nachhaltigkeit, Leuphana Universität Lüneburg, Lüneburg, Germany
| | - Eva M. Herbst
- Experimental Orthopedics and Trauma Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Peter Deines
- Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
9
|
He X, Huang J, Ma H, Ma Z, Huang C, Ling Y, Zhou B, Li J. Identification of novel IL17-related genes as prognostic and therapeutic biomarkers of psoriasis using comprehensive bioinformatics analysis and machine learning. Sci Rep 2025; 15:11295. [PMID: 40175394 PMCID: PMC11965382 DOI: 10.1038/s41598-025-87556-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/20/2025] [Indexed: 04/04/2025] Open
Abstract
Psoriasis is a common chronic skin disorder with a polygenic background. It is widely acknowledged that Th17/IL-17A axis plays a key role in the pathogenesis of psoriasis. However, numerous regulatory genes upstream of the pathway remain undiscovered, creating a knowledge gap in our understanding of the genetic aspects of the Th17/IL-17A axis. In this study, we employed machine learning algorithms to identify three target genes associated with psoriasis: CCR7, IL2RG, and PLEK. The validation of these genes was carried out in specimens from psoriatic patients. In vivo, investigations assessed the relationship between these three genes and IL-17A-related inflammation and their connection to psoriatic phenotypes. To further confirm the significance of the newly discovered gene, PLEK, we performed experiments involving the blockade of its expression. Our bioinformatics analysis revealed three novel genes closely linked to psoriasis: CCR7, IL2RG, and PLEK. These genes exhibited upregulated expression in psoriasis, consistently aligning with the Th17/IL-17A axis. Inhibition of PLEK expression reduced Th17/IL-17A-related inflammation and alleviated psoriatic phenotypes. CCR7, IL2RG, and PLEK show potential as three novel biomarkers for psoriasis, with PLEK being reported for the first time in this context. These genes contribute to pathogenesis by associating with the Th17/IL-17A signaling pathway.
Collapse
Affiliation(s)
- Xingling He
- Yiling Hospital of Yichang City, Yichang, 443000, Hubei, China
| | - Jingjing Huang
- Yiling Hospital of Yichang City, Yichang, 443000, Hubei, China
| | - Hanying Ma
- School of Life Sciences, Huanggang Normal University, Huanggang, 438000, China
- College of Biology Pharmacy, Three Gorges University, Yichang, 443000, Hubei, China
| | - Zhujun Ma
- College of Biology Pharmacy, Three Gorges University, Yichang, 443000, Hubei, China
| | - Changzheng Huang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yunli Ling
- Beijing Huairou Hospital, Capital Medical University, Beijing, 101400, China.
| | - Bin Zhou
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Jingang Li
- Yichang Central People's Hospital, the first College of Clinical Medical Science, Three Gorges University, Yichang, 443000, Hubei, China.
| |
Collapse
|
10
|
Dand N, Stuart PE, Bowes J, Ellinghaus D, Nititham J, Saklatvala JR, Teder-Laving M, Thomas LF, Traks T, Uebe S, Assmann G, Baudry D, Behrens F, Billi AC, Brown MA, Burkhardt H, Capon F, Chung R, Curtis CJ, Duckworth M, Ellinghaus E, FitzGerald O, Gerdes S, Griffiths CEM, Gulliver S, Helliwell PS, Ho P, Hoffmann P, Holmen OL, Huang ZM, Hveem K, Jadon D, Köhm M, Kraus C, Lamacchia C, Lee SH, Ma F, Mahil SK, McHugh N, McManus R, Modalsli EH, Nissen MJ, Nöthen M, Oji V, Oksenberg JR, Patrick MT, Perez White BE, Ramming A, Rech J, Rosen C, Sarkar MK, Schett G, Schmidt B, Tejasvi T, Traupe H, Voorhees JJ, Wacker EM, Warren RB, Wasikowski R, Weidinger S, Wen X, Zhang Z, Barton A, Chandran V, Esko T, Foerster J, Franke A, Gladman DD, Gudjonsson JE, Gulliver W, Hüffmeier U, Kingo K, Kõks S, Liao W, Løset M, Mägi R, Nair RP, Rahman P, Reis A, Smith CH, Di Meglio P, Barker JN, Tsoi LC, Simpson MA, Elder JT. GWAS meta-analysis of psoriasis identifies new susceptibility alleles impacting disease mechanisms and therapeutic targets. Nat Commun 2025; 16:2051. [PMID: 40021644 PMCID: PMC11871359 DOI: 10.1038/s41467-025-56719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/28/2025] [Indexed: 03/03/2025] Open
Abstract
Psoriasis is a common, debilitating immune-mediated skin disease. Genetic studies have identified biological mechanisms of psoriasis risk, including those targeted by effective therapies. However, the genetic liability to psoriasis is not fully explained by variation at robustly identified risk loci. To refine the genetic map of psoriasis susceptibility we meta-analysed 18 GWAS comprising 36,466 cases and 458,078 controls and identified 109 distinct psoriasis susceptibility loci, including 46 that have not been previously reported. These include susceptibility variants at loci in which the therapeutic targets IL17RA and AHR are encoded, and deleterious coding variants supporting potential new drug targets (including in STAP2, CPVL and POU2F3). We conducted a transcriptome-wide association study to identify regulatory effects of psoriasis susceptibility variants and cross-referenced these against single cell expression profiles in psoriasis-affected skin, highlighting roles for the transcriptional regulation of haematopoietic cell development and epigenetic modulation of interferon signalling in psoriasis pathobiology.
Collapse
Grants
- R01 ES033634 NIEHS NIH HHS
- R01AR050511, R01AR054966, R01AR063611, R01AR065183 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- BRC_1215_20006, NIHR302258, NIHR203308, BRC-1215-20014 DH | National Institute for Health Research (NIHR)
- 980 Maudsley Charity
- RG2/10, ST1/19, ST3/20 Psoriasis Association
- EXC 2167-390884018, CRC1181-2/project A05 Deutsche Forschungsgemeinschaft (German Research Foundation)
- STR130505 Guy's and St Thomas' Charity
- K01 AR072129, P30 AR075043, UC2 AR081033, R01AR042742 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- K08 AR078251 NIAMS NIH HHS
- P30 AR075043 NIAMS NIH HHS
- K01 AR072129 NIAMS NIH HHS
- 814364 National Psoriasis Foundation (NPF)
- R01 AR042742 NIAMS NIH HHS
- PUT1465, PRG1189, PRG1911, PRG1291 Eesti Teadusagentuur (Estonian Research Council)
- 2014-2020.4.01.15-0012 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
- U01AI119125 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- LF-OC-22-001033 LEO Pharma Research Foundation
- 821511 Innovative Medicines Initiative (IMI)
- RG-1611-26299 National Multiple Sclerosis Society (National MS Society)
- MR/S003126/1 RCUK | Medical Research Council (MRC)
- U01 AI119125 NIAID NIH HHS
- R01ES033634, R35GM138121, K08 AR078251, R01AR065174 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- R01 AR054966 NIAMS NIH HHS
- R01 AR050511 NIAMS NIH HHS
- R01 AR065174 NIAMS NIH HHS
- R35 GM138121 NIGMS NIH HHS
- 01EC1407A, 01EC1401C Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- SI 236/8-1, SI236/9-1, ER 155/6-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- UC2 AR081033 NIAMS NIH HHS
- R01 AR065183 NIAMS NIH HHS
- R01 AR063611 NIAMS NIH HHS
- U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- Versus Arthritis - grant reference number 21754 Additional funding support from the following bodies are also acknowledged, as detailed in the funding section of the manuscript: Ann Arbor Veterans Hospital; Babcock Memorial Trust; Cambridge Arthritis Research Endeavour (CARE); Dermatology Foundation; Faculty of Medicine and Health Sciences, NTNU; German Centre for Neurodegenerative Disorders (DZNE), Bonn; German Ministry of Education and Science; Heinz Nixdorf Foundation (Germany); Joint Research Committee between St Olav’s Hospital and the Faculty of Medicine and Health Sciences, NTNU; Krembil Foundation; Liaison Committee for Education, Research, and Innovation in Central Norway; The Michael J. Fox Foundation; MSWA; National Institutes of Health; Perron Institute for Neurological and Translational Science; Pfizer Chair Research Award in Rheumatology; Research Council of Norway; Shake It Up Australia; Stiftelsen Kristian Gerhard Jebsen; Taubman Medical Research Institute; University of Michigan
Collapse
Affiliation(s)
- Nick Dand
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Health Data Research UK, London, UK
| | - Philip E Stuart
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
- National Institute for Health and Care Research (NIHR) Manchester Biomedical Research Centre, The University of Manchester, Manchester, UK
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Joanne Nititham
- Deparment of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Jake R Saklatvala
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | | | - Laurent F Thomas
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- BioCore - Bioinformatics Core Facility, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tanel Traks
- Department of Dermatology and Venereology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Steffen Uebe
- Institute of Human Genetics, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Gunter Assmann
- RUB University Hospital JWK Minden, Department of Rheumatology, Minden, Germany
- Jose-Carreras Centrum for Immuno- and Gene Therapy, University of Saarland Medical School, Homburg, Germany
| | - David Baudry
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Frank Behrens
- Division of Translational Rheumatology, Immunology - Inflammation Medicine, University Hospital, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
- Division of Rheumatology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Allison C Billi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Matthew A Brown
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Genomics England, Canary Wharf, London, UK
| | - Harald Burkhardt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
- Division of Rheumatology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Francesca Capon
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Raymond Chung
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, Camberwell, London, UK
- National Institute for Health and Care Research (NIHR) Biomedical Research Centre, South London and Maudsley Hospital, London, UK
| | - Charles J Curtis
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, Camberwell, London, UK
- National Institute for Health and Care Research (NIHR) Biomedical Research Centre, South London and Maudsley Hospital, London, UK
| | - Michael Duckworth
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Oliver FitzGerald
- UCD School of Medicine and Medical Sciences and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Sascha Gerdes
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christopher E M Griffiths
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Centre for Dermatology Research, University of Manchester, NIHR Manchester Biomedical Research Centre, Manchester, UK
- Department of Dermatology, King's College Hospital NHS Foundation Trust, London, UK
| | | | - Philip S Helliwell
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Pauline Ho
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
- National Institute for Health and Care Research (NIHR) Manchester Biomedical Research Centre, The University of Manchester, Manchester, UK
- The Kellgren Centre for Rheumatology, Manchester University NHS Foundation Trust, Manchester, UK
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Oddgeir L Holmen
- HUNT Research Centre, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Zhi-Ming Huang
- Deparment of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Deepak Jadon
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michaela Köhm
- Division of Translational Rheumatology, Immunology - Inflammation Medicine, University Hospital, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
- Division of Rheumatology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Céline Lamacchia
- Division of Rheumatology, Geneva University Hospital, Geneva, Switzerland
| | - Sang Hyuck Lee
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, Camberwell, London, UK
- National Institute for Health and Care Research (NIHR) Biomedical Research Centre, South London and Maudsley Hospital, London, UK
| | - Feiyang Ma
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Satveer K Mahil
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- St John's Institute of Dermatology, Guy's and St Thomas' National Health Service (NHS) Foundation Trust, London, UK
| | - Neil McHugh
- Department of Life Sciences, University of Bath, Bath, UK
| | - Ross McManus
- Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Ellen H Modalsli
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Dermatology, Clinic of Orthopedy, Rheumatology and Dermatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Michael J Nissen
- Division of Rheumatology, Geneva University Hospital, Geneva, Switzerland
| | - Markus Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Vinzenz Oji
- Department of Dermatology, University of Münster, Münster, Germany
| | - Jorge R Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Matthew T Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Andreas Ramming
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jürgen Rech
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Cheryl Rosen
- Division of Dermatology, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Börge Schmidt
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Trilokraj Tejasvi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| | - Heiko Traupe
- Department of Dermatology, University of Münster, Münster, Germany
| | - John J Voorhees
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eike Matthias Wacker
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Richard B Warren
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Centre for Dermatology Research, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M6 8HD, UK
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephan Weidinger
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Xiaoquan Wen
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Zhaolin Zhang
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anne Barton
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
- National Institute for Health and Care Research (NIHR) Manchester Biomedical Research Centre, The University of Manchester, Manchester, UK
- The Kellgren Centre for Rheumatology, Manchester University NHS Foundation Trust, Manchester, UK
| | - Vinod Chandran
- Schroeder Arthritis Institute, Krembil Research Institute and Toronto Western Hospital, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - John Foerster
- College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, UK
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Dafna D Gladman
- Schroeder Arthritis Institute, Krembil Research Institute and Toronto Western Hospital, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Wayne Gulliver
- Newlab Clinical Research Inc, St. John's, NL, Canada
- Department of Dermatology, Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ulrike Hüffmeier
- Institute of Human Genetics, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Külli Kingo
- Department of Dermatology and Venereology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Wilson Liao
- Deparment of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Mari Løset
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Dermatology, Clinic of Orthopedy, Rheumatology and Dermatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Rajan P Nair
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Proton Rahman
- Memorial University of Newfoundland, St. John's, NL, Canada
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Catherine H Smith
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- St John's Institute of Dermatology, Guy's and St Thomas' National Health Service (NHS) Foundation Trust, London, UK
| | - Paola Di Meglio
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Jonathan N Barker
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- St John's Institute of Dermatology, Guy's and St Thomas' National Health Service (NHS) Foundation Trust, London, UK
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michael A Simpson
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| | - James T Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Schwarz CW, Blegvad C, Baudry D, Tosi I, Lee SH, Chung R, Tato-Barcia E, Curtis CJ, Smith CH, Simpson MA, Nybo Andersen AM, Barker JN, Di Meglio P, Skov L, Dand N. Genetic Risk Factors in Childhood Psoriasis. J Invest Dermatol 2025:S0022-202X(25)00117-4. [PMID: 39983980 DOI: 10.1016/j.jid.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/23/2025]
Affiliation(s)
- Christopher Willy Schwarz
- Department of Dermatology and Allergy, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Copenhagen Research Group for Inflammatory Skin, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark.
| | - Christoffer Blegvad
- Department of Dermatology and Allergy, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - David Baudry
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Isabella Tosi
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Sang-Hyuck Lee
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; UK National Institute for Health and Care Research Biomedical Research Centre for Mental Health, South London and Maudsley Hospital, London, United Kingdom
| | - Raymond Chung
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; UK National Institute for Health and Care Research Biomedical Research Centre for Mental Health, South London and Maudsley Hospital, London, United Kingdom
| | - Esteban Tato-Barcia
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; UK National Institute for Health and Care Research Biomedical Research Centre for Mental Health, South London and Maudsley Hospital, London, United Kingdom
| | - Charles J Curtis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; UK National Institute for Health and Care Research Biomedical Research Centre for Mental Health, South London and Maudsley Hospital, London, United Kingdom
| | - Catherine H Smith
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Michael A Simpson
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Anne-Marie Nybo Andersen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan N Barker
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Paola Di Meglio
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Lone Skov
- Department of Dermatology and Allergy, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Copenhagen Research Group for Inflammatory Skin, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Nick Dand
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom.
| |
Collapse
|
12
|
Xiong Y, Xia Y, Zhang X, Jiang B, Zhang Z, Xie C, Miao X, Lan J, Tao J. Joint exposure to multiple air pollutants, genetic risk and incident psoriasis: a large-scale prospective cohort study. Br J Dermatol 2025; 192:420-429. [PMID: 39395185 DOI: 10.1093/bjd/ljae391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Air pollution and genetic risk have been found to contribute to the onset and development of psoriasis. However, the extent to which genetic susceptibility modifies the effects of air pollutants on the risk of incident psoriasis remains unknown. OBJECTIVES To assess the association between joint exposure to multiple air pollutants and the risk of psoriasis, and its modification, according to genetic susceptibility. METHODS This prospective study included 451 064 participants from the UK Biobank who had complete air pollution data and were free of psoriasis at baseline. All participants were enrolled from 2006 to 2010 and followed up to 2022. An air pollution score (APS) was calculated to assess joint exposure to multiple air pollutants, including fine particulate matter (PM) with diameters ≤ 2.5 μm (PM2.5), between 2.5 and 10 μm (PM2.5-10) and ≤ 10 μm (PM10), as well as nitrogen dioxide (NO2) and nitrogen oxides (NOx). To evaluate the genetic risk, a polygenic risk score (PRS) for psoriasis was constructed. Cox proportional hazard models were used to assess the association of air pollution and genetic susceptibility with the risk of psoriasis. Stratified analyses were conducted based on the individual characteristics. RESULTS During a median follow-up of 13.79 years (range 0.00-16.81), 4414 cases of psoriasis were recorded. The hazard ratios (HRs) for psoriasis were 1.036 [95% confidence interval (CI) 0.936-1.147], 1.091 (95% CI 0.987-1.206), 1.159 (95% CI 1.048-1.283) and 1.163 (95% CI 1.052-1.286) in the higher APS quintile groups (Q2, Q3, Q4 and Q5, respectively) vs. the lowest APS quintile (Q1; P-value for trend < 0.05). When considering genetic susceptibility, participants with a high PRS and a high APS had the greatest risk of incident psoriasis (HR 1.962, 95% CI 1.630-2.362) vs. those with a low PRS and low APS. The HRs for PM2.5-10, NOx, PM2.5 absorbance, PM2.5, NO2 and PM10 in the group with the highest exposure level and genetic risk were 1.831 (95% CI 1.537-2.181), 1.722 (95% CI 1.431-2.073), 1.698 (95% CI 1.416-2.037), 1.619 (95% CI 1.353-1.938), 1.504 (95% CI 1.252-1.806) and 1.425 (95% CI 1.192-1.704), respectively. CONCLUSIONS Long-term exposure to various air pollutants is positively associated with an increased risk of incident psoriasis, particularly in individuals with a high genetic risk of the disease. More comprehensive measures are needed to reduce the air pollution levels for better prevention of psoriasis.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuting Xia
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyue Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Biling Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeling Zhang
- Department of Computer Science and Technology, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Chunhui Xie
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jiajia Lan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Shi C, Zhao D, Butler J, Frantzeskos A, Rossi S, Ding J, Ferrazzano C, Wynn C, Hum RM, Richards E, Gupta M, Patel K, Yap CF, Plant D, Grencis R, Martin P, Adamson A, Eyre S, Bowes J, Barton A, Ho P, Rattray M, Orozco G. Multi-omics analysis in primary T cells elucidates mechanisms behind disease-associated genetic loci. Genome Biol 2025; 26:26. [PMID: 39930543 PMCID: PMC11808986 DOI: 10.1186/s13059-025-03492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have uncovered the genetic basis behind many diseases and conditions. However, most of these genetic loci affect regulatory regions, making the interpretation challenging. Chromatin conformation has a fundamental role in gene regulation and is frequently used to associate potential target genes to regulatory regions. However, previous studies mostly used small sample sizes and immortalized cell lines instead of primary cells. RESULTS Here we present the most extensive dataset of chromatin conformation with matching gene expression and chromatin accessibility from primary CD4+ and CD8+ T cells to date, isolated from psoriatic arthritis patients and healthy controls. We generated 108 Hi-C libraries (49 billion reads), 128 RNA-seq libraries and 126 ATAC-seq libraries. These data enhance our understanding of the mechanisms by which GWAS variants impact gene regulation, revealing how genetic variation alters chromatin accessibility and structure in primary cells at an unprecedented scale. We refine the mapping of GWAS loci to implicated regulatory elements, such as CTCF binding sites and other enhancer elements, aiding gene assignment. We uncover BCL2L11 as the probable causal gene within the rheumatoid arthritis (RA) locus rs13396472, despite the GWAS variants' intronic positioning relative to ACOXL, and we identify mechanisms involving SESN3 dysregulation in the RA locus rs4409785. CONCLUSIONS Given these genes' significant role in T cell development and maturation, our work deepens our comprehension of autoimmune disease pathogenesis, suggesting potential treatment targets. In addition, our dataset provides a valuable resource for the investigation of immune-mediated diseases and gene regulatory mechanisms.
Collapse
Affiliation(s)
- Chenfu Shi
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Danyun Zhao
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jake Butler
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Antonios Frantzeskos
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Stefano Rossi
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - James Ding
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Carlo Ferrazzano
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Charlotte Wynn
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ryan Malcolm Hum
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Kellgren Centre for Rheumatology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ellie Richards
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Muskan Gupta
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Khadijah Patel
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Chuan Fu Yap
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Darren Plant
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard Grencis
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Martin
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Antony Adamson
- Genome Editing Unit, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Stephen Eyre
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Anne Barton
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Kellgren Centre for Rheumatology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Pauline Ho
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Kellgren Centre for Rheumatology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Magnus Rattray
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gisela Orozco
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
14
|
Mao R, Zhang T, Zhong Y, Meng X, Yi C, Wang F, Li J. Associations between domestic hard water exposure and incident psoriasis in adults: Insights from the UK Biobank cohort study. J Autoimmun 2025; 151:103373. [PMID: 39862482 DOI: 10.1016/j.jaut.2025.103373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Although exposure to hard water is associated with various inflammatory skin conditions, the specific relationship between hard water and psoriasis has not been clearly defined. We analyzed data from 486,414 participants in the UK Biobank cohort to explore the association between domestic hard water exposure and the incidence of psoriasis. Domestic water hardness, measured in calcium carbonate concentration, was obtained in 2005 from local water providers in Wales, Scotland, and England. During a median follow-up period of approximately 14 years, a total of 4801 (1.0 %) participants reported psoriasis, and we observed that for every 50 mg/L increase in water hardness (as CaCO₃), there was a 3 % increase in the risk of psoriasis [Hazard Ratio (HR) = 1.03, 95 % Confidence Interval (CI) 1.01-1.06]. Individuals exposed to very hard water (>180 mg/L) exhibited a 20 % increased risk of psoriasis compared to those exposed to soft water (0-60 mg/L) [HR: 1.20, 95 % CI: 1.07-1.34]. A positive linear relationship was observed between water hardness and the risk of psoriasis. Furthermore, the polygenic risk score indicated a synergistic effect between hard water exposure and genetic risk factors in developing psoriasis. Subgroup analysis suggested that the effect of hard water on psoriasis is more pronounced in individuals with a low polygenic risk score, women, the elderly, non-obese individuals, those of high socioeconomic status or without dyslipidemia. Residential water hardness has been identified as a significant risk factor for psoriasis in adults. Sustained efforts to reduce exposure to hard water may alleviate the psoriasis burden.
Collapse
Affiliation(s)
- Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tongtong Zhang
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, Sichuan, 610031, China
| | - Yun Zhong
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; Department of Dermatology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Xin Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Caitan Yi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fan Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
15
|
Reich JLK, Onoufriadis A, McGrath JA, Reich K. Favourable response of Blaschko linear psoriasis to interleukin-23 inhibition. SKIN HEALTH AND DISEASE 2025; 5:82-87. [PMID: 40125006 PMCID: PMC11924370 DOI: 10.1093/skinhd/vzae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 03/25/2025]
Affiliation(s)
- Jeremias L K Reich
- Oxford University Clinical Academic Graduate School, Oxford University, Oxford, UK
| | - Alexandros Onoufriadis
- Laboratory of Medical Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John A McGrath
- School of Basic and Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
| | - Kristian Reich
- Center for Translational Research in Inflammatory Skin Diseases, Institute for Health Services Research in Dermatology and Nursing, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Zhang M, Su W, Deng J, Zhai B, Zhu G, Gao R, Zeng Q, Qiu J, Bian Z, Xiao H, Luan G, Wang R. Multi-ancestry genome-wide meta-analysis with 472,819 individuals identifies 32 novel risk loci for psoriasis. J Transl Med 2025; 23:133. [PMID: 39885523 PMCID: PMC11783861 DOI: 10.1186/s12967-024-06015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Psoriasis is a common chronic, recurrent, immune-mediated disease involved in the skin or joints or both. However, deeper insight into the genetic susceptibility of psoriasis is still unclear. METHODS Here we performed the largest multi-ancestry meta-analysis of genome-wide association study including 28,869 psoriasis cases and 443,950 healthy controls. RESULTS We identified 74 genome-wide significant loci for psoriasis. Of 74 loci, 32 were novel psoriasis risk loci. Across 74 loci, 801 likely causal genes are indicated and 164 causal genes are prioritized. SNP-based heritability analyses demonstrated that common variants explain 15% of genetic risk for psoriasis. Gene-set analyses and the genetic correlation revealed that psoriasis-related genes have the positive correlations with autoimmune diseases such as ulcerative colitis, inflammatory bowel diseases, and Crohn's disease. Gene-drug interaction analysis suggested that psoriasis-associated genes overlapped with targets of current medications for psoriasis. Finally, we used the multi-ancestry meta-analysis to explore drug repurposing and the potential targets for psoriasis. CONCLUSIONS We identified 74 genome-wide significant loci for psoriasis. Based on 74 loci, we provided new biological insights to the etiology of psoriasis. Of clinical interest, we gave some hints for 76 potential targets and drug repurposing for psoriasis.
Collapse
Affiliation(s)
- Min Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Wenting Su
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jiahui Deng
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Epilepsy, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Bin Zhai
- Department of Hematology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Gaizhi Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Ran Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Qi Zeng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jinming Qiu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Ziqing Bian
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Epilepsy, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, SanBo Brain Hospital, Capital Medical University, Beijing, China.
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
17
|
Tsoi L, Dong Y, Patrick M, Sarkar M, Zhang H, Bogle R, Zhang Z, Dand N, Paulsen M, Ljungman M, Betz RC, Petukhova L, Christiano A, Simpson M, Modlin R, Khanna D, Barker J, Budunova I, Gharaee-Kermani M, Billi A, Elder J, Kahlenberg JM, Gudjonsson J. IL-1 signaling enrichment in inflammatory skin disease loci with higher-risk allele frequencies in African ancestry. RESEARCH SQUARE 2025:rs.3.rs-5724270. [PMID: 39975900 PMCID: PMC11838759 DOI: 10.21203/rs.3.rs-5724270/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Inflammatory skin diseases (ISDs) exhibit varying prevalence across different ancestry background and geographical regions. Genetic research for complex ISDs has predominantly centered on European Ancestry (EurA) populations and genetic effects on immune cell responses but generally failed to consider contributions from other cell types in skin. Here, we utilized 273 genetic signals from seven different ISDs: acne, alopecia areata (AA), atopic dermatitis (AD), psoriasis, systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and vitiligo, to demonstrate enriched IL1 signaling in keratinocytes, particularly in signals with higher risk allele frequencies in the African ancestry. Using a combination of ATAC-seq, Bru-seq, and promoter capture Hi-C, we revealed potential regulatory mechanisms of the acne locus on chromosome 2q13. We further demonstrated differential responses in keratinocytes upon IL1β stimulation, including the pro-inflammatory mediators CCL5, IL36G, and CXCL8. Taken together, our findings highlight IL1 signaling in epidermal keratinocytes as a contributor to ancestry-related differences in ISDs.
Collapse
Affiliation(s)
| | | | | | | | | | - Rachael Bogle
- Department of Dermatology, INSERM 1098, Franche comté university, Besançon university hospital
| | | | | | | | | | | | | | | | | | - Robert Modlin
- University of California Los Angeles, David Geffen School of Medicine
| | | | | | | | | | | | - James Elder
- Department of Dermatology, University of Michigan, 1500 East Medical Center
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | |
Collapse
|
18
|
Rane SS, Elyoussfi S, Shellard E, Eyre S, Warren RB. Characterising a Novel Therapeutic Target for Psoriasis, TYK2, Using Functional Genomics. Int J Mol Sci 2024; 25:13229. [PMID: 39684939 DOI: 10.3390/ijms252313229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Psoriasis (Ps) is a debilitating immune-mediated chronic skin condition. It affects about 1-3% of the world population, with an 8-11% prevalence in Northern European populations. Tyrosine kinase 2 (TYK2) is a newly identified target for Ps. An independent non-coding genetic association with Ps has been identified ~400 kb upstream of TYK2. The variants making up the credible Ps Single-Nucleotide Polymorphism (SNP) set were identified in their genomic context with the potential to influence TYK2 expression by interacting with regulatory elements involved in gene regulation. Previous evidence from our laboratory has suggested that credible SNP sets in intronic regions can be distal regulators of the genes of interest through long-range chromatin interactions. We hypothesise that SNPs at ILF3 are distal regulators of TYK2 expression via long-range chromatin interactions and Ps risk. The dysregulation of the TYK2 pathway in Ps may be mediated by a combination of GWAS risk SNPs at ILF3 and TYK2 and downstream genes. We investigated this by employing functional genomics and molecular biology methods. We developed a CD4 T cell model system with Jurkat-dCAS9-VP64 and Jurkat-dCAS9-KRAB cells using CRISPR activation and CRISPR inhibition of the risk variants rs892086 and rs7248205, selected from the latest Ps GWAS SNP set for their long-range interaction and light Linkage Disequilibrium (R2 > 0.8), respectively. Using CRISPR activation, we demonstrate here that these risk SNPs, although distal to TYK2, do indeed regulate the TYK2 gene. Investigations into annotating the TYK2 pathway using RNA-seq analysis revealed differentially regulated genes, including VEGFA, C1R, ADORA1, GLUD2, NDUFB8, and FCGR2C, which are thought to be implicated in Ps. These genes were observed to be associated with conditions such as psoriatic arthritis, atopic dermatitis, and systemic sclerosis when compared using published databases, which confirms their relevance and importance in inflammatory conditions. With the developed cell model systems using CRISPR technology and differential gene regulation, we demonstrate here that these genes have the potential to define the TYK2/Ps pathway and our understanding of the disease biology.
Collapse
Affiliation(s)
- Shraddha S Rane
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Sarah Elyoussfi
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
- Dermatology Centre, Northern Care Alliance NHS Foundation Trust, Manchester M6 8HD, UK
| | - Elan Shellard
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Steve Eyre
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Richard B Warren
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
- Dermatology Centre, Northern Care Alliance NHS Foundation Trust, Manchester M6 8HD, UK
| |
Collapse
|
19
|
Mao R, Zhang T, Yang Z, Li J. Unveiling Novel Protein Biomarkers for Psoriasis Through Integrated Analysis of Human Plasma Proteomics and Mendelian Randomization. PSORIASIS (AUCKLAND, N.Z.) 2024; 14:179-193. [PMID: 39669686 PMCID: PMC11635628 DOI: 10.2147/ptt.s492205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Background Current pharmacological treatments for psoriasis are generally non-specific and have significant limitations, particularly in the realm of targeted biologic therapies. There is an urgent need to identify and develop new therapeutic targets to improve treatment options. Objective The aim of this study was to explore the proteome associated with psoriasis in large population cohorts to discover novel biomarkers that could guide therapy. Methods We analyzed data from 54,306 participants enrolled in the UK Biobank Pharmacological Proteomics Project (UKB-PPP). We investigated the relationship between 2923 serum proteins and the risk of psoriasis using multivariate Cox regression models initially. This was complemented by two-sample Mendelian randomization (TSMR), Summary-data-based Mendelian Randomization (SMR), and coloc colocalization studies to identify genetic correlations with protein targets linked to psoriasis. A protein scoring system was created using the Cox proportional hazards model, and cumulative risk curves were generated to analyze psoriasis incidence variations. Results Our study pinpointed 62 proteins significantly linked to the risk of developing psoriasis. Further analysis through TSMR narrowed these down to ten proteins with strong causal relationships to the disease. Additional deep-dive analyses such as SMR, colocalization, and differential expression studies highlighted four critical proteins (MMP12, PCSK9, PRSS8, and SCLY). We calculated a protein score based on the levels of these proteins, with higher scores correlating with increased risk of psoriasis. Conclusion This study's integration of proteomic and genetic data from a European adult cohort provides compelling evidence of several proteins as viable predictive biomarkers and potential therapeutic targets for psoriasis, facilitating the advancement of targeted treatment strategies.
Collapse
Affiliation(s)
- Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Tongtong Zhang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, 610031, People’s Republic of China
| | - Ziye Yang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
20
|
Heikkilä A, Sliz E, Huilaja L, Reis K, Palta P, Elnahas AG, Reigo A, Esko T, Laisk T, Teder-Laving M, Tasanen K, Kettunen J. Genetic Study of Psoriasis Highlights its Close Link with Socioeconomic Status and Affective Symptoms. J Invest Dermatol 2024; 144:2719-2729. [PMID: 38763176 DOI: 10.1016/j.jid.2024.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/07/2024] [Accepted: 03/28/2024] [Indexed: 05/21/2024]
Abstract
Psoriasis is an inflammatory skin disease with an estimated heritability of around 70%. Previous GWASs have detected several risk loci for psoriasis. To further improve the understanding of the genetic risk factors impacting the disease, we conducted a discovery GWAS in FinnGen and a subsequent replication and meta-analysis with data from the Estonian Biobank and the UK Biobank; the study sample included 925,649 individuals (22,659 cases and 902,990 controls), the largest sample for psoriasis yet. In addition, we conducted downstream analyses to find out more about psoriasis' cross-trait genetic correlations and causal relationships. We report 6 risk loci, which, to our knowledge, are previously unreported, most of which harbor genes related to NF-κB signaling pathway and overall immunity. Genetic correlations highlight the relationship between psoriasis and smoking, higher body weight, and lower education level. In addition, we report causal relationships between psoriasis and mood symptoms as well as 2-directioned causal relationship between psoriasis and lower education level. Our results provide further knowledge on psoriasis risk factors, which may be useful in the development of future treatment strategies.
Collapse
Affiliation(s)
- Anni Heikkilä
- Systems epidemiology, Research Unit of Population Health, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | - Eeva Sliz
- Systems epidemiology, Research Unit of Population Health, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | - Laura Huilaja
- Department of Dermatology, Research Unit of Clinical Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Kadri Reis
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Priit Palta
- Institute of Genomics, University of Tartu, Tartu, Estonia; Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | | | - Anu Reigo
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Triin Laisk
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Kaisa Tasanen
- Department of Dermatology, Research Unit of Clinical Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - Johannes Kettunen
- Systems epidemiology, Research Unit of Population Health, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| |
Collapse
|
21
|
Ouyang F, Yang H, Di Z, Hu J, Ding Y, Ji C, Liu Y, Chen L, Xia Y. Life's Essential 8, genetic susceptibility and the risk of psoriatic disease: a prospective cohort study. Br J Dermatol 2024; 191:897-905. [PMID: 38912785 DOI: 10.1093/bjd/ljae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Psoriatic disease (PsD) is closely associated with cardiovascular (CV) disease. The Life's Essential 8 (LE8) score is a new metric to assess CV health (CVH), where a higher score indicates better CVH. However, the longitudinal association between LE8 score and the risk of PsD remains uncertain. OBJECTIVES To investigate, in a cohort study, the association between LE8 score, genetic susceptibility and the risk of PsD. METHODS This cohort study included 261 642 participants in the UK Biobank without PsD at baseline. LE8 comprises eight indicators: diet, physical activity, nicotine exposure, sleep health, body mass index, blood lipids, blood glucose and blood pressure. Cox proportional hazard models were used to examine the association between participants' LE8 scores, genetic risk of PsD and the risk of PsD. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated. RESULTS During an average follow-up of 12.3 years, 1501 participants developed PsD. Compared with participants with low LE8 scores, the HRs of developing PsD for those with moderate and high LE8 scores were 0.51 (95% CI 0.43-0.59) and 0.34 (95% CI 0.27-0.42) after adjustments, respectively. Dose-response analysis revealed a linear negative association between continuous LE8 score and the risk of developing PsD (P < 0.001), with no evidence of nonlinear association detected. Genetic susceptibility to PsD did not modify this association (P-interaction = 0.63). Subgroup analyses revealed that women had a more pronounced beneficial association between LE8 scores and PsD risk (P-interaction = 0.02). CONCLUSIONS Our study suggests that a higher LE8 score, regardless of genetic risk, is associated with a lower risk of PsD, particularly in women. Consequently, maintaining good CVH status is recommended to prevent PsD and assess associated risks.
Collapse
Affiliation(s)
- Fujun Ouyang
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Honghao Yang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China
| | - Zhenghong Di
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiahao Hu
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuan Ding
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chao Ji
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China
| | - Yashu Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China
| |
Collapse
|
22
|
Braun A, Shekhar S, Levey DF, Straub P, Kraft J, Panagiotaropoulou GM, Heilbron K, Awasthi S, Meleka Hanna R, Hoffmann S, Stein M, Lehnerer S, Mergenthaler P, Elnahas AG, Topaloudi A, Koromina M, Palviainen T, Asbjornsdottir B, Stefansson H, Skuladóttir AT, Jónsdóttir I, Stefansson K, Reis K, Esko T, Palotie A, Leypoldt F, Stein MB, Fontanillas P, Kaprio J, Gelernter J, Davis LK, Paschou P, Tannemaat MR, Verschuuren JJGM, Kuhlenbäumer G, Gregersen PK, Huijbers MG, Stascheit F, Meisel A, Ripke S. Genome-wide meta-analysis of myasthenia gravis uncovers new loci and provides insights into polygenic prediction. Nat Commun 2024; 15:9839. [PMID: 39537604 PMCID: PMC11560923 DOI: 10.1038/s41467-024-53595-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Myasthenia gravis (MG) is a rare autoantibody-mediated disease affecting the neuromuscular junction. We performed a genome-wide association study of 5708 MG cases and 432,028 controls of European ancestry and a replication study in 3989 cases and 226,643 controls provided by 23andMe Inc. We identified 12 independent genome-wide significant hits (P < 5e-8) across 11 loci. Subgroup analyses revealed two of these were associated with early-onset (at age <50) and four with late-onset MG (at age ≥ 50). Imputation of human leukocyte antigen alleles revealed inverse effect sizes for late- and early-onset, suggesting a potential modulatory influence on the time of disease manifestation. We assessed the performance of polygenic risk scores for MG, which significantly predicted disease status in an independent target cohort, explaining 4.21% of the phenotypic variation (P = 5.12e-9). With this work, we aim to enhance our understanding of the genetic architecture of MG.
Collapse
Grants
- S10 RR025141 NCRR NIH HHS
- UL1 TR002243 NCATS NIH HHS
- UL1 TR000445 NCATS NIH HHS
- UL1 RR024975 NCRR NIH HHS
- U01 HG004798 NHGRI NIH HHS
- R01 NS032830 NINDS NIH HHS
- RC2 GM092618 NIGMS NIH HHS
- P50 GM115305 NIGMS NIH HHS
- U01 HG006378 NHGRI NIH HHS
- U19 HL065962 NHLBI NIH HHS
- R01 HD074711 NICHD NIH HHS
- Full founding statement: The FinnGen project is funded by two grants from Business Finland (HUS 4685/31/2016 and UH 4386/31/2016) and the following industry partners: AbbVie Inc., AstraZeneca UK Ltd, Biogen MA Inc., Bristol Myers Squibb (and Celgene Corporation & Celgene International II Sàrl), Genentech Inc., Merck Sharp & Dohme LCC, Pfizer Inc., GlaxoSmithKline Intellectual Property Development Ltd., Sanofi US Services Inc., Maze Therapeutics Inc., Janssen Biotech Inc, Novartis AG, and Boehringer Ingelheim International GmbH. This research is based, in part, on data from the Million Veteran Program, Office of Research and Development, Veterans Health Administration. Funding for D.F.L. was provided by a Career Development Award CDA-2 from the Veterans Affairs Office of Research and Development (1IK2BX005058-01A2). Funding for M.B.S. and J.G. was provided from a Veterans Affairs Office of Research and Development Merit Award (I01CX001849). One dataset used for the analyses described were obtained from Vanderbilt University Medical Center’s BioVU which is supported by numerous sources: institutional funding, private agencies, and federal grants. These include the NIH funded Shared Instrumentation Grant S10RR025141; and CTSA grants UL1TR002243, UL1TR000445, and UL1RR024975. Genomic data are also supported by investigator-led projects that include U01HG004798, R01NS032830, RC2GM092618, P50GM115305, U01HG006378, U19HL065962, R01HD074711; and additional funding sources listed at https://victr.vumc.org/biovufunding/. P.M. is Einstein Junior Fellow funded by the Einstein Foundation Berlin and acknowledges funding support by the Einstein Foundation Berlin (EJF‐2020–602; EVF‐2021–619, EVF-BUA-2022-694) and the Leducq Foundation for Cardiovascular and Neurovascular Research (Consortium International pour la Recherche Circadienne sur l’AVC). M.G.H. receives financial support from the LUMC (Gisela Thier Fellowship 2021), Top Sector Life Sciences & Health to Samenwerkende Gezondheidsfondsen (LSHM19130), Prinses Beatrix Spierfonds (W.OR-19.13). The LUMC is part of the European Reference Network for Rare Neuromuscular Diseases [ERN EURO-NMD] and the Netherlands Neuromuscular Center. S.R. has received funding from the German Research Foundation (Deutsche Forschungsgemeinschaft - DFG) (grant number 461427996). The Estonian Biobank work was supported by Personal research funding: Team grant PRG1291.
Collapse
Affiliation(s)
- Alice Braun
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Sudhanshu Shekhar
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Daniel F Levey
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
- Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Peter Straub
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julia Kraft
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Georgia M Panagiotaropoulou
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Karl Heilbron
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Rafael Meleka Hanna
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
| | - Sarah Hoffmann
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
| | - Maike Stein
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Sophie Lehnerer
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
| | - Philipp Mergenthaler
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Apostolia Topaloudi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Maria Koromina
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Teemu Palviainen
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | - Kadri Reis
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Aarno Palotie
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Frank Leypoldt
- Department of Neurology, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Murray B Stein
- Department of Psychiatry and School of Public Health, University of California San Diego, La Jolla, California, USA
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, California, USA
| | | | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
- Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Lea K Davis
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Martijn R Tannemaat
- Leiden University Medical Center, Department of Neurology, Leiden, Zuid Holland, Netherlands
| | - Jan J G M Verschuuren
- Leiden University Medical Center, Department of Neurology, Leiden, Zuid Holland, Netherlands
| | - Gregor Kuhlenbäumer
- Department of Neurology, Kiel University, Kiel, Schleswig-Holstein, Germany
- Neuroimmunology, Kiel University, Institute of Clinical Chemistry, Kiel, Schleswig-Holstein, Germany
| | - Peter K Gregersen
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, NY, USA
| | - Maartje G Huijbers
- Leiden University Medical Center, Department of Neurology, Leiden, Zuid Holland, Netherlands
- Leiden University Medical Center, Department of Human Genetics, Leiden, Zuid Holland, Netherlands
| | - Frauke Stascheit
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
| | - Andreas Meisel
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany.
| |
Collapse
|
23
|
Roberts GHL, Fain PR, Santorico SA, Spritz RA. Inverse relationship between polygenic risk burden and age of onset of autoimmune vitiligo. Am J Hum Genet 2024; 111:2561-2565. [PMID: 39419028 PMCID: PMC11568747 DOI: 10.1016/j.ajhg.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Vitiligo is a common autoimmune disease characterized by patches of depigmented skin and overlying hair due to destruction of melanocytes in the involved regions. We investigated the relationship between vitiligo risk and vitiligo age of onset (AOO) using a vitiligo polygenic risk score that incorporated the most significant SNPs from genome-wide association studies. We find that vitiligo genetic risk and AOO are strongly inversely correlated; subjects with higher common-variant polygenic risk tend to develop vitiligo at an earlier age. Nevertheless, the correlation is not simple. In individuals who carry a single high-risk major histocompatibility complex class II haplotype, the effect of additional polygenic risk on vitiligo AOO is reduced. Particularly among those with early-AOO vitiligo (onset ≤12 years of age), genetic risk can reflect contributions from high common-variant burden but also rare variants of high effect and sometimes both. While the heritability of vitiligo is relatively high, and we here show that genetic risk factors predict vitiligo AOO, vitiligo is never congenital, and thus environmental triggers also play an important role in disease onset.
Collapse
Affiliation(s)
- Genevieve H L Roberts
- Human Medical Genetics and Genomics Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Pamela R Fain
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephanie A Santorico
- Human Medical Genetics and Genomics Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80217, USA
| | - Richard A Spritz
- Human Medical Genetics and Genomics Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
24
|
Antonatos C, Koskeridis F, Ralliou CM, Evangelou E, Grafanaki K, Georgiou S, Tsilidis KK, Tzoulaki I, Vasilopoulos Y. A polygenic risk score model for psoriasis based on the protein interactions of psoriasis susceptibility loci. Front Genet 2024; 15:1451679. [PMID: 39568675 PMCID: PMC11576467 DOI: 10.3389/fgene.2024.1451679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Polygenic Risk Scores (PRS) are an emerging tool for predicting an individual's genetic risk to a complex trait. Several methods have been proposed to construct and calculate these scores. Here, we develop a biologically driven PRS using the UK BioBank cohort through validated protein interactions (PPI) and network construction for psoriasis, incorporating variants mapped to the interacting genes of 14 psoriasis susceptibility (PSORS) loci, as identified from previous genetic linkage studies. Methods We constructed the PPI network via the implementation of two major meta-databases of protein interactions, and identified variants mapped to the identified PSORS-interacting genes. We selected only European unrelated participants including individuals with psoriasis and randomly selected healthy controls using an at least 1:4 ratio to maximize statistical power. We next compared our PPI-PRS model to (i) clinical risk models and (ii) conventional PRS calculations through p-value thresholding. Results Our PPI-PRS model provides comparable results to both clinical risk models and conventional approaches, despite the incorporation of a limited number of variants which have not necessarily reached genome-wide significance (GWS). Exclusion of variants mapped to the HLA-C locus, an established risk locus for psoriasis resulted in highly similar associations compared to our primary model, indicating the contribution of the genetic variability mapped to non-GWS variants in PRS computations. Discussion Our findings support the implementation of biologically driven approaches in PRS calculations in psoriasis, highlighting their potential clinical utility in risk assessment and treatment management.
Collapse
Affiliation(s)
- Charalabos Antonatos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| | - Fotios Koskeridis
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Christiana M Ralliou
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Ioannina, Greece
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - Katerina Grafanaki
- Department of Dermatology-Venereology, School of Medicine, University of Patras, Patras, Greece
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
| | - Sophia Georgiou
- Department of Dermatology-Venereology, School of Medicine, University of Patras, Patras, Greece
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, Imperial College London, London, United Kingdom
- Centre for Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| |
Collapse
|
25
|
Veerasubramanian PK, Wynn TA, Quan J, Karlsson FJ. Targeting TNF/TNFR superfamilies in immune-mediated inflammatory diseases. J Exp Med 2024; 221:e20240806. [PMID: 39297883 PMCID: PMC11413425 DOI: 10.1084/jem.20240806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulated signaling from TNF and TNFR proteins is implicated in several immune-mediated inflammatory diseases (IMIDs). This review centers around seven IMIDs (rheumatoid arthritis, systemic lupus erythematosus, Crohn's disease, ulcerative colitis, psoriasis, atopic dermatitis, and asthma) with substantial unmet medical needs and sheds light on the signaling mechanisms, disease relevance, and evolving drug development activities for five TNF/TNFR signaling axes that garner substantial drug development interest in these focus conditions. The review also explores the current landscape of therapeutics, emphasizing the limitations of the approved biologics, and the opportunities presented by small-molecule inhibitors and combination antagonists of TNF/TNFR signaling.
Collapse
Affiliation(s)
| | - Thomas A. Wynn
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA, USA
| | - Jie Quan
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA, USA
| | | |
Collapse
|
26
|
Sortebech D, Schoenfeldt T, Duvetorp A, Agerholm-Nielsen R, Eidsmo L. Skin-resident T Cells Contribute to the Dynamic Disease Manifestations of Psoriasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1267-1277. [PMID: 39432869 DOI: 10.4049/jimmunol.2400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/23/2024] [Indexed: 10/23/2024]
Abstract
The human skin forms a dynamic barrier to physical injuries and microbial invasion. Constant interactions between stroma and tissue-confined immune cells maintain skin homeostasis. However, the cellular interactions that maintain skin health also contribute to focal immunopathology. Psoriasis is a common disease that manifests with focal pathology induced by environmental triggers in genetically susceptible individuals. Within psoriasis plaques, cross-talk between skin-resident T cells and stroma cells leads to chronic inflammation. Inflammatory cytokines such as TNF-α, IL-17, IL-22, and IL-23 amplify the local chronic inflammation and sustain the well-demarcated thick and scaly plaques that characterize the disease. In resolved lesions, T cells remain poised for IL-17 and IL-22 production, and postinflammatory epigenetic modifications lower the threshold for initiation of local relapse. This review focuses on how tissue-resident memory T cells contribute to the onset, maintenance, resolution, and relapse of psoriasis.
Collapse
Affiliation(s)
- Daniel Sortebech
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Trine Schoenfeldt
- Leo Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Albert Duvetorp
- Leo Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology, Skåne University Hospital, Malmö, Sweden
| | - Rasmus Agerholm-Nielsen
- Leo Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Liv Eidsmo
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Leo Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Shi X, Wallach J, Ma X, Rogne T. Autoimmune Diseases and Risk of Non-Hodgkin Lymphoma: A Mendelian Randomisation Study. Cancer Med 2024; 13:e70327. [PMID: 39506244 PMCID: PMC11540836 DOI: 10.1002/cam4.70327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/12/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Non-Hodgkin lymphoma (NHL) is one of the most common haematologic malignancies in the world. Despite substantial efforts to identify causes and risk factors for NHL, its aetiology is largely unclear. Autoimmune diseases have long been considered potential risk factors for NHL. We carried out Mendelian randomisation (MR) analyses to examine whether genetically predicted susceptibility to ten autoimmune diseases (Behçet's disease, coeliac disease, dermatitis herpetiformis, lupus, psoriasis, rheumatoid arthritis, sarcoidosis, Sjögren's syndrome, systemic sclerosis, and type 1 diabetes) is associated with risk of NHL. METHODS Two-sample MR was performed using publicly available summary statistics from cohorts of European ancestry. For NHL and four NHL subtypes, we used data from UK Biobank, Kaiser Permanente cohorts, and FinnGen studies. RESULTS Negative associations between type 1 diabetes and sarcoidosis and the risk of NHL were observed (odds ratio [OR] 0.95, 95% confidence interval [CI]: 0.92-0.98, p = 5 × 10-3, and OR 0.92, 95% CI: 0.85-0.99, p = 2.8 × 10-2, respectively). These findings were supported by the sensitivity analyses accounting for potential pleiotropy and weak instrument bias. No significant associations were found between the other eight autoimmune diseases and NHL risk. CONCLUSION These findings suggest that genetically predicted susceptibility to type 1 diabetes, and to some extent sarcoidosis, might reduce the risk of NHL. However, future studies with different datasets, approaches, and populations are warranted to further examine the potential associations between these autoimmune diseases and the risk of NHL.
Collapse
Affiliation(s)
- Xiaoting Shi
- Department of Environmental Health SciencesYale School of Public HealthNew HavenConnecticutUSA
- Yale Center for Perinatal, Pediatric, and Environmental EpidemiologyYale School of Public HealthNew HavenConnecticutUSA
| | - Joshua D. Wallach
- Department of Epidemiology, Rollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| | - Xiaomei Ma
- Department of Chronic Diseases EpidemiologyYale School of Public HealthNew HavenConnecticutUSA
| | - Tormod Rogne
- Yale Center for Perinatal, Pediatric, and Environmental EpidemiologyYale School of Public HealthNew HavenConnecticutUSA
- Department of Chronic Diseases EpidemiologyYale School of Public HealthNew HavenConnecticutUSA
- Department of Community Medicine and Global HealthUniversity of OsloOsloNorway
| |
Collapse
|
28
|
Zhang J, Ren C, Qin Z, Zhu L, Jin Z, Yan Y, Pan X, Luan L. Association between Life's Essential 8 and psoriasis in US adults: a cross-sectional study. Front Med (Lausanne) 2024; 11:1445288. [PMID: 39450106 PMCID: PMC11499175 DOI: 10.3389/fmed.2024.1445288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Background Psoriasis is closely associated with cardiovascular disease (CVD). However, the current evidence on the correlation between Life's Essential 8 and Psoriasis is insufficient. Our aim was to investigate the relationship between Life's Essential 8 (LE8), a measure of cardiovascular health (CVH), and psoriasis. Objective This study aimed to clarify the impact of Life's Essential 8 on Psoriasis and explore its implications. Methods This population-based cross-sectional study included 9,876 US adults aged 20 to 59 years from the National Health and Nutrition Examination Survey (NHANES) 2003-2006 and 2009-2014 cycles. The LE8 score comprises 8 metrics and was categorized into low, moderate, and high CVH. Logistic regression and restricted cubic splines (RCS) were used to assess the association between LE8 score and psoriasis. Results Among the 9,876 participants, those with moderate and high CVH had higher risks of psoriasis compared to low CVH. Additionally, every 10-point increase in the LE8 score was associated with a 10% reduced risk of psoriasis. Interaction was observed between gender, age, education level, race/ethnicity, marital status, and PIR. Conclusion LE8 and its subscale scores were strongly negatively related to the risk of psoriasis. Encouraging optimal CVH levels may be advantageous in reducing the incidence of psoriasis.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Ci Ren
- Department of Dermatological Surgery, Shenyang Seventh People’s Hospital, Shenyang, China
| | - Zihan Qin
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Laboratory of Digestive Health, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Ling Zhu
- Medical Technology Department, Sichuan Nursing Vocational College, Chengdu, China
| | - Zhoufeng Jin
- Department of Plastic Surgery, Shenyang Mingliu Plastic Surgery and Aesthetics Hospital, Shenyang, China
| | - Yuanyuan Yan
- Affiliated Hospital of Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Xinghe Pan
- Department of General Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Lan Luan
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| |
Collapse
|
29
|
Hitomi Y, Ueno K, Aiba Y, Nishida N, Kono M, Sugihara M, Kawai Y, Kawashima M, Khor SS, Sugi K, Kouno H, Kohno H, Naganuma A, Iwamoto S, Katsushima S, Furuta K, Nikami T, Mannami T, Yamashita T, Ario K, Komatsu T, Makita F, Shimada M, Hirashima N, Yokohama S, Nishimura H, Sugimoto R, Komura T, Ota H, Kojima M, Nakamuta M, Fujimori N, Yoshizawa K, Mano Y, Takahashi H, Hirooka K, Tsuruta S, Sato T, Yamasaki K, Kugiyama Y, Motoyoshi Y, Suehiro T, Saeki A, Matsumoto K, Nagaoka S, Abiru S, Yatsuhashi H, Ito M, Kawata K, Takaki A, Arai K, Arinaga-Hino T, Abe M, Harada M, Taniai M, Zeniya M, Ohira H, Shimoda S, Komori A, Tanaka A, Ishigaki K, Nagasaki M, Tokunaga K, Nakamura M. A genome-wide association study identified PTPN2 as a population-specific susceptibility gene locus for primary biliary cholangitis. Hepatology 2024; 80:776-790. [PMID: 38652555 DOI: 10.1097/hep.0000000000000894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND AND AIMS Previous genome-wide association studies (GWAS) have indicated the involvement of shared (population-nonspecific) and nonshared (population-specific) susceptibility genes in the pathogenesis of primary biliary cholangitis (PBC) among European and East-Asian populations. Although a meta-analysis of these distinct populations has recently identified more than 20 novel PBC susceptibility loci, analyses of population-specific genetic architecture are still needed for a more comprehensive search for genetic factors in PBC. APPROACH AND RESULTS Protein tyrosine phosphatase nonreceptor type 2 ( PTPN2) was identified as a novel PBC susceptibility gene locus through GWAS and subsequent genome-wide meta-analysis involving 2181 cases and 2699 controls from the Japanese population (GWAS-lead variant: rs8098858, p = 2.6 × 10 -8 ). In silico and in vitro functional analyses indicated that the risk allele of rs2292758, which is a primary functional variant, decreases PTPN2 expression by disrupting Sp1 binding to the PTPN2 promoter in T follicular helper cells and plasmacytoid dendritic cells. Infiltration of PTPN2-positive T-cells and plasmacytoid dendritic cells was confirmed in the portal area of the PBC liver by immunohistochemistry. Furthermore, transcriptomic analysis of PBC-liver samples indicated the presence of a compromised negative feedback loop in vivo between PTPN2 and IFNG in patients carrying the risk allele of rs2292758. CONCLUSIONS PTPN2 , a novel susceptibility gene for PBC in the Japanese population, may be involved in the pathogenesis of PBC through an insufficient negative feedback loop caused by the risk allele of rs2292758 in IFN-γ signaling. This suggests that PTPN2 could be a potential molecular target for PBC treatment.
Collapse
Affiliation(s)
- Yuki Hitomi
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuko Ueno
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshihiro Aiba
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Nao Nishida
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michihiro Kono
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mitsuki Sugihara
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Seik-Soon Khor
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kazuhiro Sugi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hirotaka Kouno
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hiroshi Kohno
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Atsushi Naganuma
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Satoru Iwamoto
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Shinji Katsushima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kiyoshi Furuta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Toshiki Nikami
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tomohiko Mannami
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tsutomu Yamashita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Keisuke Ario
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tatsuji Komatsu
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Fujio Makita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Masaaki Shimada
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Noboru Hirashima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Shiro Yokohama
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hideo Nishimura
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Rie Sugimoto
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Takuya Komura
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hajime Ota
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Motoyuki Kojima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Makoto Nakamuta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Naoyuki Fujimori
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kaname Yoshizawa
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yutaka Mano
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hironao Takahashi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kana Hirooka
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Satoru Tsuruta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Takeaki Sato
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kazumi Yamasaki
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yuki Kugiyama
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | | | - Tomoyuki Suehiro
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Akira Saeki
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kosuke Matsumoto
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Shinya Nagaoka
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Seigo Abiru
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | | | - Masahiro Ito
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kazuhito Kawata
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kuniaki Arai
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Teruko Arinaga-Hino
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Masaru Harada
- The Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makiko Taniai
- Department of Medicine and Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Mikio Zeniya
- Department of Gastroenterology and Hepatology, Tokyo Jikei University School of Medicine, Tokyo, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Shinji Shimoda
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Atsumasa Komori
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masao Nagasaki
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Minoru Nakamura
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| |
Collapse
|
30
|
Rumker L, Sakaue S, Reshef Y, Kang JB, Yazar S, Alquicira-Hernandez J, Valencia C, Lagattuta KA, Mah-Som A, Nathan A, Powell JE, Loh PR, Raychaudhuri S. Identifying genetic variants that influence the abundance of cell states in single-cell data. Nat Genet 2024; 56:2068-2077. [PMID: 39327486 DOI: 10.1038/s41588-024-01909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/14/2024] [Indexed: 09/28/2024]
Abstract
Disease risk alleles influence the composition of cells present in the body, but modeling genetic effects on the cell states revealed by single-cell profiling is difficult because variant-associated states may reflect diverse combinations of the profiled cell features that are challenging to predefine. We introduce Genotype-Neighborhood Associations (GeNA), a statistical tool to identify cell-state abundance quantitative trait loci (csaQTLs) in high-dimensional single-cell datasets. Instead of testing associations to predefined cell states, GeNA flexibly identifies the cell states whose abundance is most associated with genetic variants. In a genome-wide survey of single-cell RNA sequencing peripheral blood profiling from 969 individuals, GeNA identifies five independent loci associated with shifts in the relative abundance of immune cell states. For example, rs3003-T (P = 1.96 × 10-11) associates with increased abundance of natural killer cells expressing tumor necrosis factor response programs. This csaQTL colocalizes with increased risk for psoriasis, an autoimmune disease that responds to anti-tumor necrosis factor treatments. Flexibly characterizing csaQTLs for granular cell states may help illuminate how genetic background alters cellular composition to confer disease risk.
Collapse
Affiliation(s)
- Laurie Rumker
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Saori Sakaue
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yakir Reshef
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joyce B Kang
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Seyhan Yazar
- Translational Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Jose Alquicira-Hernandez
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Translational Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Cristian Valencia
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kaitlyn A Lagattuta
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Annelise Mah-Som
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joseph E Powell
- Translational Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Po-Ru Loh
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
31
|
Orcales F, Kumar S, Bui A, Johnson C, Liu J, Huang ZM, Liao W. A partitioned polygenic risk score reveals distinct contributions to psoriasis clinical phenotypes across a multi-ethnic cohort. J Transl Med 2024; 22:835. [PMID: 39261909 PMCID: PMC11389070 DOI: 10.1186/s12967-024-05591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024] Open
Abstract
Psoriasis is a chronic, immune-mediated inflammatory skin disease associated with a polygenic mode of inheritance. There are few studies that explore the association of a psoriasis Polygenic Risk Score (PRS) with patient clinical characteristics, and to our knowledge there are no studies examining psoriasis PRS associations across different ethnicities. In this study, we used a multi-racial psoriasis cohort to investigate PRS associations with clinical phenotypes including age of onset, psoriatic arthritis, other comorbidities, psoriasis body location, psoriasis subtype, environmental triggers, and response to therapies. We collected patient data and Affymetrix genome-wide SNP data from a cohort of 607 psoriasis patients and calculated an 88-loci PRS (PRS-ALL), also partitioned between genetic loci within the HLA region (PRS-HLA; 11 SNPS) and loci outside the HLA region (PRS-NoHLA; 77 SNPS). We used t-test and logistic regression to analyze the association of PRS with clinical phenotypes. We found that PRS-HLA and PRS-noHLA had differing effects on psoriasis age of onset, psoriatic arthritis, psoriasis located on the ears, genitals, nails, soles of feet, skin folds, and palms, skin injury as an environmental trigger, cardiovascular comorbidities, and response to phototherapy. In some cases these PRS associations were ethnicity specific. Overall, these results show that the genetic basis for clinical manifestations of psoriasis are driven by distinct HLA and non-HLA effects, and that these PRS associations can be dependent on ethnicity.
Collapse
Affiliation(s)
- Faye Orcales
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
| | - Sugandh Kumar
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Audrey Bui
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Chandler Johnson
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jared Liu
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Zhi-Ming Huang
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
32
|
Hernandez-Cordero A, Thomas L, Smail A, Lim ZQ, Saklatvala JR, Chung R, Curtis CJ, Baum P, Visvanathan S, Burden AD, Cooper HL, Dunnill G, Griffiths CEM, Levell NJ, Parslew R, Reynolds NJ, Wahie S, Warren RB, Wright A, Simpson M, Hveem K, Barker JN, Dand N, Løset M, Smith CH, Capon F. A genome-wide meta-analysis of palmoplantar pustulosis implicates T H2 responses and cigarette smoking in disease pathogenesis. J Allergy Clin Immunol 2024; 154:657-665.e9. [PMID: 38815935 DOI: 10.1016/j.jaci.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Palmoplantar pustulosis (PPP) is an inflammatory skin disorder that mostly affects smokers and manifests with painful pustular eruptions on the palms and soles. Although the disease can present with concurrent plaque psoriasis, TNF and IL-17/IL-23 inhibitors show limited efficacy. There is therefore a pressing need to uncover PPP disease drivers and therapeutic targets. OBJECTIVES We sought to identify genetic determinants of PPP and investigate whether cigarette smoking contributes to disease pathogenesis. METHODS We performed a genome-wide association meta-analysis of 3 North-European cohorts (n = 1,456 PPP cases and 402,050 controls). We then used the scGWAS program to investigate the cell-type specificity of the association signals. We also undertook genetic correlation analyses to examine the similarities between PPP and other immune-mediated diseases. Finally, we applied Mendelian randomization to analyze the causal relationship between cigarette smoking and PPP. RESULTS We found that PPP is not associated with the main genetic determinants of plaque psoriasis. Conversely, we identified genome-wide significant associations with the FCGR3A/FCGR3B and CCHCR1 loci. We also observed 13 suggestive (P < 5 × 10-6) susceptibility regions, including the IL4/IL13 interval. Accordingly, we demonstrated a significant genetic correlation between PPP and TH2-mediated diseases such as atopic dermatitis and ulcerative colitis. We also found that genes mapping to PPP-associated intervals were preferentially expressed in dendritic cells and often implicated in T-cell activation pathways. Finally, we undertook a Mendelian randomization analysis, which supported a causal role of cigarette smoking in PPP. CONCLUSIONS The first genome-wide association study of PPP points to a pathogenic role for deregulated TH2 responses and cigarette smoking.
Collapse
Affiliation(s)
- Ariana Hernandez-Cordero
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Laurent Thomas
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway; HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway; BioCore-Bioinformatics Core Facility, NTNU-Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Alice Smail
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Zhao Qin Lim
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom; Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jake R Saklatvala
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Raymond Chung
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Charles J Curtis
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Patrick Baum
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - A David Burden
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Hywel L Cooper
- Portsmouth Dermatology Unit, Portsmouth Hospitals Trust, Portsmouth, United Kingdom
| | | | - Christopher E M Griffiths
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; Department of Dermatology, King's College Hospital, King's College London, London, United Kingdom
| | - Nick J Levell
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Richard Parslew
- Department of Dermatology, Royal Liverpool Hospitals, Liverpool, United Kingdom
| | - Nick J Reynolds
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle NIHR Biomedical Research Centre and the Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Shyamal Wahie
- University Hospital of North Durham, Durham, United Kingdom; Darlington Memorial Hospital, Darlington, United Kingdom
| | - Richard B Warren
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; Dermatology Centre, Northern Care Alliance NHS Foundation Trust, Manchester, United Kingdom
| | - Andrew Wright
- St Lukes Hospital, Bradford, United Kingdom; Centre for Skin Science, University of Bradford, Bradford, United Kingdom
| | - Michael Simpson
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway; Department of Innovation and Research, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jonathan N Barker
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Nick Dand
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Mari Løset
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway; Department of Dermatology, Clinic of Orthopedy, Rheumatology and Dermatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Catherine H Smith
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Francesca Capon
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom.
| |
Collapse
|
33
|
Rane SS, Shellard E, Adamson A, Eyre S, Warren RB. IL23R mutations associated with decreased risk of psoriasis lead to the differential expression of genes implicated in the disease. Exp Dermatol 2024; 33:e15180. [PMID: 39306854 DOI: 10.1111/exd.15180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024]
Abstract
Psoriasis is an incurable immune-mediated skin disease, affecting around 1%-3% of the population. Various lines of evidence implicate IL23 as being pivotal in disease. Genetic variants within the IL23 receptor (IL23R) increase the risk of developing psoriasis, and biologic therapies specifically targeting IL23 demonstrated high efficacy in treating disease. IL23 acts via the IL23R, signalling through the STAT3 pathway, mediating the cascade of events that ultimately results in the clinical presentation of psoriasis. Given the essential role of IL23R in disease, it is important to understand the impact of genetic variants on receptor function with respect to downstream gene regulation. Here we developed model systems in CD4+ (Jurkat) and CD8+ (MyLa) T cells to express either the wild type risk or mutant (R381Q) protective form of IL23R. After confirmation that the model system expressed the genes/proteins and had a differential effect on the phosphorylation of STAT3, we used RNAseq to explore differential gene regulation, in particular for genes implicated with risk to psoriasis, at a single time point for both cell types, and in a time course experiment for Jurkat CD4+ T cells. These experiments discovered differentially regulated genes in the cells expressing wild type and mutant IL23R, including HLA-B, SOCS1, RUNX3, CCR5, CXCR3, CCR9, KLF3, CD28, IRF, SOCS6, TNFAIP and ICAM5, that have been implicated in both the IL23 pathway and psoriasis. These genes have the potential to define a IL23/psoriasis pathway in disease, advancing our understanding of the biology behind the disease.
Collapse
Affiliation(s)
- Shraddha S Rane
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Elan Shellard
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Antony Adamson
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Steve Eyre
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard B Warren
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Dermatology Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| |
Collapse
|
34
|
Chen L, Chen H, Mo L, He M, Zhao Y, Tan T, Yao P, Tang Y, Li X, Li Y. Spatial distribution of residential environment, genetic susceptibility, and psoriasis: A prospective cohort study. J Glob Health 2024; 14:04139. [PMID: 39105325 DOI: 10.7189/jogh.14.04139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
Background Genetic and environmental factors contribute to psoriasis, but the impact of residential environments on this condition remains uncertain. We aimed to investigate the association of residential environments with psoriasis risk and explore its interaction with genes. Methods We retrieved data on the spatial distribution of residential environments at 300 and 1000 m buffer zones from the UK Biobank, including the proportions of natural environments, domestic gardens, green spaces, and blue spaces within these zones. We then used Cox hazard models to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations between residential environments and psoriasis risk. Lastly, we constructed polygenic risk scores to determine genetic susceptibility and further analyse the interaction with residential environments. Results Overall, 3755 incident cases of psoriasis were documented during a median follow-up of 12.45 years. Compared with the lowest exposure quantile (Q1), Q4 exposure to natural environments (1000 m buffer: HR = 1.16, 95% CI = 1.05-1.29; 300 m buffer: HR = 1.12, 95% CI = 1.02-1.24) and green spaces (1000 m buffer: HR = 1.16, 95% CI = 1.04-1.28; 300m buffer: HR = 1.10, 95% CI = 1.00-1.21) increased the risk of psoriasis, while Q4 exposure to domestic gardens (1000 m buffer: HR = 0.85, 95% CI = 0.77-0.93; 300m buffer: HR = 0.91, 95% CI = 0.83-1.00) and Q3 exposure to blue spaces (1000 m buffer: HR = 0.89, 95% CI = 0.81-0.98) were negatively associated with psoriasis risk. Among participants with a high genetic risk, those exposed to high levels of natural environments (1000 m buffer: HR = 1.49, 95% CI = 1.15-1.93; 300 m buffer: HR = 1.39, 95% CI = 1.10-1.77) and green spaces (300 m buffer: HR = 1.30, 95% CI = 1.04-1.64) had a higher risk of psoriasis, while those exposed to blue spaces (1000 m buffer: HR = 0.78, 95% CI = 0.63-0.98) had a lower risk of psoriasis. We also observed joint effects of genetic risk and residential environments and an antagonistic additive interaction between blue spaces and genetic risk (P = 0.011). Conclusions We observed that residing in natural environments and green areas increased the risk of psoriasis in our sample, while proximity to blue spaces and domestic gardens was associated to reduced risks. The association of residential environments with psoriasis risk was modified by genetic susceptibility.
Collapse
Affiliation(s)
- Li Chen
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen City, Guangdong Province, China
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Huimin Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Li Mo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Min He
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen City, Guangdong Province, China
| | - Ying Zhao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Tianqi Tan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Xiangzi Li
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen City, Guangdong Province, China
| | - Yanyan Li
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen City, Guangdong Province, China
| |
Collapse
|
35
|
Treichel AM, Chen JHK, Epstein S, McCormick TS, Bordeaux JS, Alouani DJ, Cooper KD. Maximizing the potential of biobanks in dermatology research. J Dermatol Sci 2024; 115:98-99. [PMID: 39030157 DOI: 10.1016/j.jdermsci.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 07/21/2024]
Affiliation(s)
- Alison M Treichel
- Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Jacky H K Chen
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Samantha Epstein
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Thomas S McCormick
- Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jeremy S Bordeaux
- Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA; Case Western Reserve University School of Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - David J Alouani
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Kevin D Cooper
- Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA; Case Western Reserve University School of Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
36
|
Lecomte K, Toniolo A, Hoste E. Cell death as an architect of adult skin stem cell niches. Cell Death Differ 2024; 31:957-969. [PMID: 38649745 PMCID: PMC11303411 DOI: 10.1038/s41418-024-01297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Our skin provides a physical and immunological barrier against dehydration and environmental insults ranging from microbial attacks, toxins and UV irradiation to wounding. Proper functioning of the skin barrier largely depends on the interplay between keratinocytes- the epithelial cells of the skin- and immune cells. Two spatially distinct populations of keratinocyte stem cells (SCs) maintain the epidermal barrier function and the hair follicle. These SCs are inherently long-lived, but cell death can occur within their niches and impacts their functionality. The default cell death programme in skin is apoptosis, an orderly and non-inflammatory suicide programme. However, recent findings are shedding light on the significance of various modes of regulated necrotic cell death, which are lytic and can provoke inflammation within the local skin environment. While the presence of dying cells was generally regarded as a mere consequence of inflammation, findings in various human dermatological conditions and experimental mouse models of aberrant cell death control demonstrated that cell death programmes in keratinocytes (KCs) can drive skin inflammation and even tumour initiation. When cells die, they need to be removed by phagocytosis and KCs can function as non-professional phagocytes of apoptotic cells with important implications for their SC capacities. It is becoming apparent that in conditions of heightened SC activity, distinct cell death modalities differentially impact the different skin SC populations in their local niches. Here, we describe how regulated cell death modalities functionally affect epidermal SC niches along with their relevance to injury repair, inflammatory skin disorders and cancer.
Collapse
Affiliation(s)
- Kim Lecomte
- VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Annagiada Toniolo
- VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Esther Hoste
- VIB Center for Inflammation Research, 9052, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium.
| |
Collapse
|
37
|
Mack TM, Raddatz MA, Pershad Y, Nachun DC, Taylor KD, Guo X, Shuldiner AR, O'Connell JR, Kenny EE, Loos RJF, Redline S, Cade BE, Psaty BM, Bis JC, Brody JA, Silverman EK, Yun JH, Cho MH, DeMeo DL, Levy D, Johnson AD, Mathias RA, Yanek LR, Heckbert SR, Smith NL, Wiggins KL, Raffield LM, Carson AP, Rotter JI, Rich SS, Manichaikul AW, Gu CC, Chen YDI, Lee WJ, Shoemaker MB, Roden DM, Kooperberg C, Auer PL, Desai P, Blackwell TW, Smith AV, Reiner AP, Jaiswal S, Weinstock JS, Bick AG. Epigenetic and proteomic signatures associate with clonal hematopoiesis expansion rate. NATURE AGING 2024; 4:1043-1052. [PMID: 38834882 PMCID: PMC11832052 DOI: 10.1038/s43587-024-00647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP), whereby somatic mutations in hematopoietic stem cells confer a selective advantage and drive clonal expansion, not only correlates with age but also confers increased risk of morbidity and mortality. Here, we leverage genetically predicted traits to identify factors that determine CHIP clonal expansion rate. We used the passenger-approximated clonal expansion rate method to quantify the clonal expansion rate for 4,370 individuals in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) cohort and calculated polygenic risk scores for DNA methylation aging, inflammation-related measures and circulating protein levels. Clonal expansion rate was significantly associated with both genetically predicted and measured epigenetic clocks. No associations were identified with inflammation-related lab values or diseases and CHIP expansion rate overall. A proteome-wide search identified predicted circulating levels of myeloid zinc finger 1 and anti-Müllerian hormone as associated with an increased CHIP clonal expansion rate and tissue inhibitor of metalloproteinase 1 and glycine N-methyltransferase as associated with decreased CHIP clonal expansion rate. Together, our findings identify epigenetic and proteomic patterns associated with the rate of hematopoietic clonal expansion.
Collapse
Affiliation(s)
- Taralynn M Mack
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael A Raddatz
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yash Pershad
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Daniel C Nachun
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alan R Shuldiner
- Department of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Jeffrey R O'Connell
- Department of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute of Personalized Medicine, Mount Sinai Hospital, New York City, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Brian E Cade
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeong H Yun
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel Levy
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | - Andrew D Johnson
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA, USA
| | - Kerri L Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - C Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yii-Der Ida Chen
- Medical Genetics Translational Genomics and Population Sciences (TGPS), Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - M Benjamin Shoemaker
- Division of Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan M Roden
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Paul L Auer
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Pinkal Desai
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Thomas W Blackwell
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Albert V Smith
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Joshua S Weinstock
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Alexander G Bick
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
38
|
Greve AM, Wulff AB, Bojesen SE, Nordestgaard BG. Elevated plasma triglycerides increase the risk of psoriasis: a cohort and Mendelian randomization study. Br J Dermatol 2024; 191:209-215. [PMID: 38411598 DOI: 10.1093/bjd/ljae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND It is increasingly clear that triglyceride-rich lipoproteins are proinflammatory and cause low-grade systemic inflammation. However, it is currently unknown whether elevated plasma triglycerides are causally related to the development of psoriasis, a skin disorder driven by chronic inflammation. OBJECTIVES To determine if elevated plasma triglycerides are associated with increased risk of psoriasis in observational and Mendelian randomization analysis. METHODS Consecutive individuals from the Copenhagen General Population Study were included. We used plasma triglycerides (n = 108 043) and a weighted triglyceride allele score (n = 92 579) on nine known triglyceride-altering genetic variants. Genetic results were replicated in 337 159 individuals from the UK Biobank. Psoriasis was defined using the International Classification of Diseases, version 10 (ICD-10) code for hospital contact in the main analyses, and prescription of topical antipsoriatics for mild psoriasis in the sensitivity analysis. RESULTS During a follow-up of median (range) 9.3 (0.1-15.1) years from 2003 to 2015 through 2018, 855 (1%) individuals were diagnosed with psoriasis by ICD-10 in the observational analysis and 772 (1%) in the Mendelian randomization analysis. In the observational analysis, the multivariable adjusted hazard ratio for psoriasis by ICD-10 was 1.26 [95% confidence interval (CI) 1.15-1.39] per doubling in plasma triglycerides with a corresponding causal odds ratio of incident psoriasis of 2.10 (95% CI 1.30-3.38). Causality was confirmed from data from the UK Biobank. Results were similar but slightly attenuated when we used topical antipsoriatic prescriptions for mild psoriasis. CONCLUSIONS Elevated plasma triglycerides are associated with an increased risk of psoriasis in observational and Mendelian randomization analysis.
Collapse
Affiliation(s)
- Anders M Greve
- Department of Clinical Biochemistry, Rigshospitalet
- Department of Clinical Biochemistry
- The Copenhagen General Population Study, Herlev and Gentofte Hospital
| | - Anders B Wulff
- Department of Clinical Biochemistry
- The Copenhagen General Population Study, Herlev and Gentofte Hospital
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Stig E Bojesen
- Department of Clinical Biochemistry
- The Copenhagen General Population Study, Herlev and Gentofte Hospital
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- The Copenhagen City Heart Study, Bispebjerg and Frederiksberg Hospital; Copenhagen University Hospital, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry
- The Copenhagen General Population Study, Herlev and Gentofte Hospital
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- The Copenhagen City Heart Study, Bispebjerg and Frederiksberg Hospital; Copenhagen University Hospital, Denmark
| |
Collapse
|
39
|
Rossi S, Richards EL, Orozco G, Eyre S. Functional Genomics in Psoriasis. Int J Mol Sci 2024; 25:7349. [PMID: 39000456 PMCID: PMC11242296 DOI: 10.3390/ijms25137349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Psoriasis is an autoimmune cutaneous condition that significantly impacts quality of life and represents a burden on society due to its prevalence. Genome-wide association studies (GWASs) have pinpointed several psoriasis-related risk loci, underlining the disease's complexity. Functional genomics is paramount to unveiling the role of such loci in psoriasis and disentangling its complex nature. In this review, we aim to elucidate the main findings in this field and integrate our discussion with gold-standard techniques in molecular biology-i.e., Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-and high-throughput technologies. These tools are vital to understanding how disease risk loci affect gene expression in psoriasis, which is crucial in identifying new targets for personalized treatments in advanced precision medicine.
Collapse
Affiliation(s)
| | | | | | - Stephen Eyre
- Centre for Genetics and Genomics versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (S.R.); (E.L.R.); (G.O.)
| |
Collapse
|
40
|
Luo Y, Khan A, Liu L, Lee CH, Perreault GJ, Pomenti SF, Gourh P, Kiryluk K, Bernstein EJ. Cross-Phenotype GWAS Supports Shared Genetic Susceptibility to Systemic Sclerosis and Primary Biliary Cholangitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.01.24309721. [PMID: 39006426 PMCID: PMC11245064 DOI: 10.1101/2024.07.01.24309721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Objective An increased risk of primary biliary cholangitis (PBC) has been reported in patients with systemic sclerosis (SSc). Our study aims to investigate the shared genetic susceptibility between the two disorders and to define candidate causal genes using cross-phenotype GWAS meta-analysis. Methods We performed cross-phenotype GWAS meta-analysis and colocalization analysis for SSc and PBC. We performed both genome-wide and locus-based analysis, including tissue and pathway enrichment analyses, fine-mapping, colocalization analyses with expression quantitative trait loci (eQTL) and protein quantitative trait loci (pQTL) datasets, and phenome-wide association studies (PheWAS). Finally, we used an integrative approach to prioritize candidate causal genes from the novel loci. Results We detected a strong genetic correlation between SSc and PBC (rg = 0.84, p = 1.7 × 10-6). In the cross-phenotype GWAS meta-analysis, we identified 44 non-HLA loci that reached genome-wide significance (p < 5 × 10-8). Evidence of shared causal variants between SSc and PBC was found for nine loci, five of which were novel. Integrating multiple sources of evidence, we prioritized CD40, ERAP1, PLD4, SPPL3, and CCDC113 as novel candidate causal genes. The CD40 risk locus colocalized with trans-pQTLs of multiple plasma proteins involved in B cell function. Conclusion Our study supports a strong shared genetic susceptibility between SSc and PBC. Through cross-phenotype analyses, we have prioritized several novel candidate causal genes and pathways for these disorders.
Collapse
Affiliation(s)
- Yiming Luo
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Lili Liu
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Cue Hyunkyu Lee
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY
| | - Gabriel J Perreault
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Sydney F Pomenti
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Pravitt Gourh
- Scleroderma Genomics and Health Disparities Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Elana J Bernstein
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
41
|
Bui A, Orcales F, Kranyak A, Chung BY, Haran K, Smith P, Johnson C, Liao W. The Role of Genetics on Psoriasis Susceptibility, Comorbidities, and Treatment Response. Dermatol Clin 2024; 42:439-469. [PMID: 38796275 DOI: 10.1016/j.det.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
This review highlights advances made in psoriasis genetics, including findings from genome-wide association studies, exome-sequencing studies, and copy number variant studies. The impact of genetic variants on various comorbidities and therapeutic responses is discussed.
Collapse
Affiliation(s)
- Audrey Bui
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA; Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Faye Orcales
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Allison Kranyak
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Bo-Young Chung
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang-si Gyeonggi-do, 14068, Republic of Korea
| | - Kathryn Haran
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Payton Smith
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Chandler Johnson
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA.
| |
Collapse
|
42
|
Wu J, Ma Y, Yang J, Tian Y. Exposure to Air Pollution, Genetic Susceptibility, and Psoriasis Risk in the UK. JAMA Netw Open 2024; 7:e2421665. [PMID: 39012635 PMCID: PMC11252902 DOI: 10.1001/jamanetworkopen.2024.21665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/17/2024] [Indexed: 07/17/2024] Open
Abstract
IMPORTANCE Psoriasis is a common autoinflammatory disease influenced by complex interactions between environmental and genetic factors. The influence of long-term air pollution exposure on psoriasis remains underexplored. OBJECTIVE To examine the association between long-term exposure to air pollution and psoriasis and the interaction between air pollution and genetic susceptibility for incident psoriasis. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study used data from the UK Biobank. The analysis sample included individuals who were psoriasis free at baseline and had available data on air pollution exposure. Genetic analyses were restricted to White participants. Data were analyzed between November 1 and December 10, 2023. EXPOSURES Exposure to nitrogen dioxide (NO2), nitrogen oxides (NOx), fine particulate matter with a diameter less than 2.5 µm (PM2.5), and particulate matter with a diameter less than 10 µm (PM10) and genetic susceptibility for psoriasis. MAIN OUTCOMES AND MEASURES To ascertain the association of long-term exposure to NO2, NOx, PM2.5, and PM10 with the risk of psoriasis, a Cox proportional hazards model with time-varying air pollution exposure was used. Cox models were also used to explore the potential interplay between air pollutant exposure and genetic susceptibility for the risk of psoriasis incidence. RESULTS A total of 474 055 individuals were included, with a mean (SD) age of 56.54 (8.09) years and 257 686 (54.36%) female participants. There were 9186 participants (1.94%) identified as Asian or Asian British, 7542 (1.59%) as Black or Black British, and 446 637 (94.22%) as White European. During a median (IQR) follow-up of 11.91 (11.21-12.59) years, 4031 incident psoriasis events were recorded. There was a positive association between the risk of psoriasis and air pollutant exposure. For every IQR increase in PM2.5, PM10, NO2, and NOx, the hazard ratios (HRs) were 1.41 (95% CI, 1.35-1.46), 1.47 (95% CI, 1.41-1.52), 1.28 (95% CI, 1.23-1.33), and 1.19 (95% CI, 1.14-1.24), respectively. When comparing individuals in the lowest exposure quartile (Q1) with those in the highest exposure quartile (Q4), the multivariate-adjusted HRs were 2.01 (95% CI, 1.83-2.20) for PM2.5, 2.21 (95% CI, 2.02-2.43) for PM10, 1.64 (95% CI, 1.49-1.80) for NO2, and 1.34 (95% CI, 1.22-1.47) for NOx. Moreover, significant interactions between air pollution and genetic predisposition for incident psoriasis were observed. In the subset of 446 637 White individuals, the findings indicated a substantial risk of psoriasis development in participants exposed to the highest quartile of air pollution levels concomitant with high genetic risk compared with those in the lowest quartile of air pollution levels with low genetic risk (PM2.5: HR, 4.11; 95% CI, 3.46-4.90; PM10: HR, 4.29; 95% CI, 3.61-5.08; NO2: HR, 2.95; 95% CI, 2.49-3.50; NOx: HR, 2.44; 95% CI, 2.08-2.87). CONCLUSIONS AND RELEVANCE In this prospective cohort study of the association between air pollution and psoriasis, long-term exposure to air pollution was associated with increased psoriasis risk. There was an interaction between air pollution and genetic susceptibility on psoriasis risk.
Collapse
Affiliation(s)
- Junhui Wu
- School of Nursing, Peking University, Beijing, China
| | - Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- Hubei Provincial Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Wu X, Song J, Zhang Y, Kuai L, Liu C, Ma X, Li B, Zhang Z, Luo Y. Exploring the role of autophagy in psoriasis pathogenesis: Insights into sustained inflammation and dysfunctional keratinocyte differentiation. Int Immunopharmacol 2024; 135:112244. [PMID: 38776847 DOI: 10.1016/j.intimp.2024.112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Psoriasis is a common and prevalent chronic papulosquamous cutaneous disorder characterized by sustained inflammation, uncontrolled keratinocyte proliferation, dysfunctional differentiation, and angiogenesis. Autophagy, an intracellular catabolic process, can be induced in response to nutrient stress. It entails the degradation of cellular constituents through the lysosomal machinery, and its association with psoriasis has been well-documented. Nevertheless, there remains a notable dearth of research concerning the involvement of autophagy in the pathogenesis of psoriasis within human skin. This review provides a comprehensive overview of autophagy in psoriasis pathogenesis, focusing on its involvement in two key pathological manifestations: sustained inflammation and uncontrolled keratinocyte proliferation and differentiation. Additionally, it discusses potential avenues for disease management.
Collapse
Affiliation(s)
- Xinxin Wu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Ying Zhang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Changya Liu
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Xin Ma
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Bin Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhan Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
44
|
Guo Y, Luo L, Zhu J, Li C. Advance in Multi-omics Research Strategies on Cholesterol Metabolism in Psoriasis. Inflammation 2024; 47:839-852. [PMID: 38244176 DOI: 10.1007/s10753-023-01961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/29/2023] [Accepted: 12/25/2023] [Indexed: 01/22/2024]
Abstract
The skin is a complex and dynamic organ where homeostasis is maintained through the intricate interplay between the immune system and metabolism, particularly cholesterol metabolism. Various factors such as cytokines, inflammatory mediators, cholesterol metabolites, and metabolic enzymes play crucial roles in facilitating these interactions. Dysregulation of this delicate balance contributes to the pathogenic pathways of inflammatory skin conditions, notably psoriasis. In this article, we provide an overview of omics biomarkers associated with psoriasis in relation to cholesterol metabolism. We explore multi-omics approaches that reveal the communication between immunometabolism and psoriatic inflammation. Additionally, we summarize the use of multi-omics strategies to uncover the complexities of multifactorial and heterogeneous inflammatory diseases. Finally, we highlight potential future perspectives related to targeted drug therapies and research areas that can advance precise medicine. This review aims to serve as a valuable resource for those investigating the role of cholesterol metabolism in psoriasis.
Collapse
Affiliation(s)
- Youming Guo
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Lingling Luo
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jing Zhu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Chengrang Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China.
| |
Collapse
|
45
|
Antonatos C, Georgakilas GK, Evangelou E, Vasilopoulos Y. Transcriptomic meta-analysis characterizes molecular commonalities between psoriasis and obesity. Genes Immun 2024; 25:179-187. [PMID: 38580831 DOI: 10.1038/s41435-024-00271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Despite the abundance of epidemiological evidence for the high comorbid rate between psoriasis and obesity, systematic approaches to common inflammatory mechanisms have not been adequately explored. We performed a meta-analysis of publicly available RNA-sequencing datasets to unveil putative mechanisms that are postulated to exacerbate both diseases, utilizing both late-stage, disease-specific meta-analyses and consensus gene co-expression network (cWGCNA). Single-gene meta-analyses reported several common inflammatory mechanisms fostered by the perturbed expression profile of inflammatory cells. Assessment of gene overlaps between both diseases revealed significant overlaps between up- (n = 170, P value = 6.07 × 10-65) and down-regulated (n = 49, P value = 7.1 × 10-7) genes, associated with increased T cell response and activated transcription factors. Our cWGCNA approach disentangled 48 consensus modules, associated with either the differentiation of leukocytes or metabolic pathways with similar correlation signals in both diseases. Notably, all our analyses confirmed the association of the perturbed T helper (Th)17 differentiation pathway in both diseases. Our novel findings through whole transcriptomic analyses characterize the inflammatory commonalities between psoriasis and obesity implying the assessment of several expression profiles that could serve as putative comorbid disease progression biomarkers and therapeutic interventions.
Collapse
Affiliation(s)
- Charalabos Antonatos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504, Patras, Greece
| | - Georgios K Georgakilas
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504, Patras, Greece
- Information Management Systems Institute (IMSI), ATHENA Research Center, 15125, Athens, Greece
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, 45110, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110, Ioannina, Greece
- Department of Epidemiology & Biostatistics, MRC Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504, Patras, Greece.
| |
Collapse
|
46
|
Ohta R, Tanigawa Y, Suzuki Y, Kellis M, Morishita S. A polygenic score method boosted by non-additive models. Nat Commun 2024; 15:4433. [PMID: 38811555 PMCID: PMC11522481 DOI: 10.1038/s41467-024-48654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
Dominance heritability in complex traits has received increasing recognition. However, most polygenic score (PGS) approaches do not incorporate non-additive effects. Here, we present GenoBoost, a flexible PGS modeling framework capable of considering both additive and non-additive effects, specifically focusing on genetic dominance. Building on statistical boosting theory, we derive provably optimal GenoBoost scores and provide its efficient implementation for analyzing large-scale cohorts. We benchmark it against seven commonly used PGS methods and demonstrate its competitive predictive performance. GenoBoost is ranked the best for four traits and second-best for three traits among twelve tested disease outcomes in UK Biobank. We reveal that GenoBoost improves prediction for autoimmune diseases by incorporating non-additive effects localized in the MHC locus and, more broadly, works best in less polygenic traits. We further demonstrate that GenoBoost can infer the mode of genetic inheritance without requiring prior knowledge. For example, GenoBoost finds non-zero genetic dominance effects for 602 of 900 selected genetic variants, resulting in 2.5% improvements in predicting psoriasis cases. Lastly, we show that GenoBoost can prioritize genetic loci with genetic dominance not previously reported in the GWAS catalog. Our results highlight the increased accuracy and biological insights from incorporating non-additive effects in PGS models.
Collapse
Affiliation(s)
- Rikifumi Ohta
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| | - Yosuke Tanigawa
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Yuta Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
47
|
Wu K, Wang W, Cheng Q, Xiao D, Li Y, Chen M, Zheng X. Rare MED12L Variants Are Associated with Susceptibility to Guttate Psoriasis in the Han Chinese Population. Dermatology 2024; 240:606-614. [PMID: 38735287 DOI: 10.1159/000538805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
INTRODUCTION According to the common disease/rare variant hypothesis, it is important to study the role of rare variants in complex diseases. The association of rare variants with psoriasis has been demonstrated, but the association between rare variants and specific clinical subtypes of psoriasis has not been investigated. METHODS Gene-based and gene-level meta-analyses were performed on data extracted from our previous study data sets (2,483 patients with guttate psoriasis and 8,292 patients with non-guttate psoriasis) for genotyping. Then, haplotype analysis was performed for rare loss-of-function variants located in MED12L, and protein function prediction was performed for MED12L. Gene-based analysis at each stage had a moderate significance threshold (p < 0.05). A χ2 test was then conducted on the three potential genes, and the merged gene-based analysis was used to confirm the results. We also conducted association analysis and meta-analysis for functional variants located on the identified gene. RESULTS Through these gene-level analyses, we determined that MED12L is a guttate psoriasis susceptibility gene (p = 9.99 × 10-5), and the single-nucleotide polymorphism with the strongest association was rs199780529 (p_combine = 1 × 10-3, p_meta = 2 × 10-3). CONCLUSIONS In our study, a guttate psoriasis-specific subtype-associated susceptibility gene was confirmed in a Chinese Han population. These findings contribute to a better genetic understanding of different subtypes of psoriasis.
Collapse
Affiliation(s)
- Kejia Wu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
- Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Wanrong Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
- Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Qianhui Cheng
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
- Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Duncheng Xiao
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
- Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Yunxiao Li
- School of Life Science, Shandong University, Qingdao, China
| | - Mengyun Chen
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
- Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xiaodong Zheng
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
- Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
48
|
Shellard EM, Rane SS, Eyre S, Warren RB. Functional Genomics and Insights into the Pathogenesis and Treatment of Psoriasis. Biomolecules 2024; 14:548. [PMID: 38785955 PMCID: PMC11117854 DOI: 10.3390/biom14050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Psoriasis is a lifelong, systemic, immune mediated inflammatory skin condition, affecting 1-3% of the world's population, with an impact on quality of life similar to diseases like cancer or diabetes. Genetics are the single largest risk factor in psoriasis, with Genome-Wide Association (GWAS) studies showing that many psoriasis risk genes lie along the IL-23/Th17 axis. Potential psoriasis risk genes determined through GWAS can be annotated and characterised using functional genomics, allowing the identification of novel drug targets and the repurposing of existing drugs. This review is focused on the IL-23/Th17 axis, providing an insight into key cell types, cytokines, and intracellular signaling pathways involved. This includes examination of currently available biological treatments, time to relapse post drug withdrawal, and rates of primary/secondary drug failure, showing the need for greater understanding of the underlying genetic mechanisms of psoriasis and how they can impact treatment. This could allow for patient stratification towards the treatment most likely to reduce the burden of disease for the longest period possible.
Collapse
Affiliation(s)
- Elan May Shellard
- Faculty of Biology, Medicine and Health, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester, Manchester M13 9PT, UK
| | - Shraddha S. Rane
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, NIHR Manchester Biomedical Research Centre, The University of Manchester, Manchester M13 9PT, UK; (S.S.R.); (S.E.)
| | - Stephen Eyre
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, NIHR Manchester Biomedical Research Centre, The University of Manchester, Manchester M13 9PT, UK; (S.S.R.); (S.E.)
| | - Richard B. Warren
- Dermatology Centre, Northern Care Alliance NHS Foundation Trust, Manchester M6 8HD, UK;
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK
| |
Collapse
|
49
|
Xiao Y, Jing D, Zhou G, Tang Z, Peng C, Kuang Y, Zhu W, Chen X, Liu H, Shen M. Adenosine 5'monophosphate-activated protein kinase activation reduces the risks of psoriasis and its comorbidities: a Mendelian randomization study in the UK Biobank. Rheumatology (Oxford) 2024; 63:1664-1671. [PMID: 37672020 DOI: 10.1093/rheumatology/kead462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/25/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023] Open
Abstract
OBJECTIVE Whether metformin and its adenosine 5'monophosphate-activated protein kinase (AMPK) activation protect from psoriasis risk is unconcluded. We investigated the effect of AMPK, a pharmacological target of metformin, on the risk of psoriasis and its comorbidities and mortality among participants in the UK Biobank (UKB). METHODS To avoid immortal time biases in pharmacoepidemiologic studies, Mendelian randomization was used to infer the AMPK pathway-dependent effects. The cut-off age for distinguishing early-onset/late-onset psoriasis (EOP/LOP) was set at 60 years, based on the incident psoriasis peak in UKB. A genetic instrument comprising 44 single-nucleotide polymorphisms associated with glycated haemoglobin (HbA1c), serving as a proxy for AMPK genetic risk score (negatively associated with AMPK activation), was employed as previously reported in the literature. Log-binomial models were used to estimate the effect size of AMPK regarding relative risk (RR) and 95% CI. RESULTS A total of 407 159 participants were analysed, including 9126 EOP and 3324 LOP. The AMPK genetic risk score was associated with a 12.4% increase in the risk of LOP in men (RR = 1.124, 95% CI: 1.022-1.236). This association was not significant for EOP or women. AMPK genetic risk score exhibited an elevated risk of ischemic heart disease (RR = 1.217, 95% CI 1.062-1.395) in male psoriasis patients. CONCLUSIONS AMPK activation may protect against LOPs and associated ischemic heart disease in men. A sex-specific, comorbidity-targeted intervention for psoriasis is needed.
Collapse
Affiliation(s)
- Yi Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Furong Laboratory, Changsha, China
| | - Danrong Jing
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Guowei Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenwei Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Furong Laboratory, Changsha, China
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Furong Laboratory, Changsha, China
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Furong Laboratory, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Furong Laboratory, Changsha, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Furong Laboratory, Changsha, China
| | - Minxue Shen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Furong Laboratory, Changsha, China
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
50
|
Das S, Chandra A, Das A, Senapati S, Chatterjee G, Chatterjee R. Identifying the genetic associations among the psoriasis patients in eastern India. J Hum Genet 2024; 69:205-213. [PMID: 38409498 DOI: 10.1038/s10038-024-01227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/28/2024]
Abstract
Psoriasis is a multifactorial genetic disorder manifested by hyperproliferation and abnormal differentiation of epidermal keratinocytes, along with the infiltration of inflammatory cells into the skin. Although ~80 genetic susceptibility variants were reported in psoriasis, many loci showed population-specific associations, warranting the need for more population-specific association studies in psoriasis. We determined the association of forty single nucleotide polymorphisms (SNPs) among 2136 psoriasis patients and normal individuals from eastern India. We investigated the expression of corresponding genes and evaluated the protein structure stability for the genes with susceptible coding variants. We found fifteen SNPs significantly associated with psoriasis, while additional three SNPs showed significant association when we classified the patients based on the presence of HLA-Cw6 allele. Epistatic interaction between HLA-Cw6 and other associated loci showed significant association with the SNPs at PSORS1 region, along with other five SNPs outside PSORS1. Three genes showed significant differential expression in psoriatic tissues compared to the adjacent normal skin tissues but were not differential when classified the patients based on their genotypes. SNP rs495337 at SPATA2 (Spermatogenesis Associated 2) showed a 1.2-fold increased risk among the HLA-Cw6 patients compared to combined samples. We found significant downregulation of SPATA2 among the patients with risk genotypes and HLA-Cw6 allele compared to the non-risk genotypes. Protein structure stability analysis showed reduced structural stability for all the mutant residues caused by the associated coding variants. Our study evaluated the genetic associations of psoriasis-susceptible variants in India and evaluated the possible functional significance of these associated variants in psoriasis.
Collapse
Affiliation(s)
- Shantanab Das
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal, 700108, India
| | - Aditi Chandra
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal, 700108, India
| | - Anamika Das
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal, 700108, India
| | - Swapan Senapati
- Consultant Dermatologist, Uttarpara, Hooghly, West Bengal, 712258, India
| | - Gobinda Chatterjee
- Department of Dermatology, IPGMER/SSKM Hospital, Kolkata, West Bengal, India
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal, 700108, India.
| |
Collapse
|