1
|
Adnani L, Meehan B, Kim M, Choi D, Rudd CE, Riazalhosseini Y, Rak J. Immune cell infiltration into brain tumor microenvironment is mediated by Rab27-regulated vascular wall integrity. SCIENCE ADVANCES 2025; 11:eadr6940. [PMID: 40408475 PMCID: PMC12101492 DOI: 10.1126/sciadv.adr6940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 04/22/2025] [Indexed: 05/25/2025]
Abstract
Aggressive brain tumors often exhibit immunologically 'cold' microenvironment, where the vascular barrier impedes effective immunotherapy in poorly understood ways. Tumor vasculature also plays a pivotal role in immunoregulation and antitumor immunity. Here, we show that small GTPase Rab27 controls the vascular morphogenesis and permeability for blood content and immune effectors. Thus, in Rab27a/b double knock out (Rab27-dKO) mice, the brain vasculature is abnormally scarce, while the blood vessels become dysmorphic and hyperpermeable in the context of brain tumors, including syngeneic glioblastoma. These defects are reflected in rearrangements of endothelial cell subpopulations with underlying diminution of venous endothelial subtype along with changes in gene and protein expression. Notably, Rab27-dKO brain endothelial cells exhibit deficient tight junctions, whereby they enable large-scale extravasation of cytotoxic T cells into the tumor mass. We show that Rab27-regulated vascular T cell infiltration can be exploited to enhance adoptive T cell therapy in syngeneic brain tumors.
Collapse
Affiliation(s)
- Lata Adnani
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Brian Meehan
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Minjun Kim
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University. McGill University Department of Human Genetics, Montreal, QC, Canada
| | - Dongsic Choi
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam 31151, Republic of Korea
| | - Christopher E. Rudd
- Division of Immunology-Oncology Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
- Département de Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Centre for Translational Research in Cancer, McGill University, Montreal, QC, Canada
| | - Yasser Riazalhosseini
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University. McGill University Department of Human Genetics, Montreal, QC, Canada
| | - Janusz Rak
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
2
|
Xu M, Xu B. Protein lipidation in the tumor microenvironment: enzymology, signaling pathways, and therapeutics. Mol Cancer 2025; 24:138. [PMID: 40335986 PMCID: PMC12057185 DOI: 10.1186/s12943-025-02309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/18/2025] [Indexed: 05/09/2025] Open
Abstract
Protein lipidation is a pivotal post-translational modification that increases protein hydrophobicity and influences their function, localization, and interaction network. Emerging evidence has shown significant roles of lipidation in the tumor microenvironment (TME). However, a comprehensive review of this topic is lacking. In this review, we present an integrated and in-depth literature review of protein lipidation in the context of the TME. Specifically, we focus on three major lipidation modifications: S-prenylation, S-palmitoylation, and N-myristoylation. We emphasize how these modifications affect oncogenic signaling pathways and the complex interplay between tumor cells and the surrounding stromal and immune cells. Furthermore, we explore the therapeutic potential of targeting lipidation mechanisms in cancer treatment and discuss prospects for developing novel anticancer strategies that disrupt lipidation-dependent signaling pathways. By bridging protein lipidation with the dynamics of the TME, our review provides novel insights into the complex relationship between them that drives tumor initiation and progression.
Collapse
Affiliation(s)
- Mengke Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Intelligent Oncology Innovation Center Designated by the Ministry of Education, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Intelligent Oncology Innovation Center Designated by the Ministry of Education, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China.
| |
Collapse
|
3
|
Horodecka K, Czernek L, Pęczek Ł, Klink M. Revealing the role of RAB27 in HER receptor family expression and signaling in melanoma cells. Cell Commun Signal 2025; 23:118. [PMID: 40038749 PMCID: PMC11877929 DOI: 10.1186/s12964-025-02064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/25/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Alterations in signalling pathways fuel the growth and progression of melanoma. Therefore, understanding these processes is essential for developing effective treatment strategies. RAB27A and RAB27B are known to possess oncogenic effects by modulating cancer cell proliferation, invasion and drug resistance in various types of cancer, including melanoma. These proteins are mostly acknowledged as coordinators of the vesicular trafficking, however, their function in cellular signaling is less recognized. Therefore we aimed to investigate the relationship between RAB27 and oncogenic or signalling proteins in melanoma cells. METHODS We generated RAB27A knockout (KO) in SkMel28, A375, and patient-derived DMBC12 melanoma cell lines. Additionally, a double RAB27A/B knockout (dKO) A375 cell line was created. Firstly, we applied the Proteome Profiler array to identify proteins differentially expressed upon RAB27A/B loss. Subsequently, we picked selected specific proteins for a further in-depth analysis using RT-PCR, Western blot, and flow cytometry. RESULTS We found that silencing RAB27 markedly decreased the levels of various intracellular proteins linked with proliferation, invasion, angiogenesis, adhesion, or EMT at a cell-line dependent level. Among others, we observed a link between the expression of RAB27 and EGFR, HER2 and HER3. Altered levels of HER receptors disturbed the downstream signaling pathways by reducing the phosphorylation of AKT and ERK1/2 proteins. CONCLUSIONS Our findings present novel, previously unpublished data on the relationship between HER family receptor expression and potential activity, and the involvement of RAB27 in melanoma cells.
Collapse
Affiliation(s)
- Katarzyna Horodecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland.
| | - Liliana Czernek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland
| | - Łukasz Pęczek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106 Str., Lodz, 93-232, Poland.
| |
Collapse
|
4
|
Demoures B, Soulet F, Descarpentrie J, Galeano-Otero I, Sanchez Collado J, Casado M, Smani T, González A, Alves I, Lalloué F, Masri B, Rascol E, Dupuy JW, Dourthe C, Saltel F, Raymond AA, Badiola I, Evrard S, Villoutreix B, Pernot S, Siegfried G, Khatib AM. Repression of apelin Furin cleavage sites provides antimetastatic strategy in colorectal cancer. EMBO Mol Med 2025; 17:504-534. [PMID: 39962271 PMCID: PMC11904221 DOI: 10.1038/s44321-025-00196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 03/14/2025] Open
Abstract
The adipokine apelin has been directly implicated in various physiological processes during embryogenesis and human cancers. Nevertheless, the importance of the conversion of its precursor proapelin to mature apelin in tumorigenesis remains unknown. In this study, we identify Furin as the cellular proprotein convertase responsible for proapelin cleavage. We explore the therapeutic potential of targeting proapelin cleavage sites in metastatic colorectal cancer by introducing apelin-dm, a modified variant resulting from alteration in proapelin cleavage sites. Apelin-dm demonstrates efficacy in inhibiting tumor growth, promoting cell death, suppressing angiogenesis, and early colorectal liver metastasis events. Proteomic analysis reveals reciprocal regulation between apelin and apelin-dm on proteins associated with clinical outcomes in colon cancer patients. Apelin-dm emerges as a modulator of apelin receptor dynamics, influencing affinity, internalization, and repression of apelin signaling linked to various protein kinases. Pharmacokinetic and toxicity assessments confirm the specificity, safety, and stability of apelin-dm, as well as its facile hepatic metabolism. These findings position targeting proapelin cleavage as a promising therapeutic strategy against metastatic colorectal cancer, paving the way for further clinical exploration.
Collapse
Affiliation(s)
- Béatrice Demoures
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
| | - Fabienne Soulet
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
| | - Jean Descarpentrie
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
| | - Isabel Galeano-Otero
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
| | - José Sanchez Collado
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
| | - Maria Casado
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
- Department of Cell Biology and Histology, University of the Basque Country, B° Sarriena sn, 48940, Leioa, Spain
| | - Tarik Smani
- Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Avenida Manuel Siurot s/n, 41013, Seville, Spain
| | - Alvaro González
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
| | - Isabel Alves
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, Bordeaux, France
| | - Fabrice Lalloué
- EA3842- CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, 87025 Cedex, Limoges, France
| | - Bernard Masri
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014, Paris, France
| | - Estelle Rascol
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, Bordeaux, France
| | - Jean-William Dupuy
- Bordeaux Protéome, F-33000, Bordeaux, France
- Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | - Cyril Dourthe
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
- Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | - Frédéric Saltel
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
- Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | - Anne-Aurélie Raymond
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
- Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | - Iker Badiola
- Department of Cell Biology and Histology, University of the Basque Country, B° Sarriena sn, 48940, Leioa, Spain
| | - Serge Evrard
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
- Institut Bergonié, Bordeaux, France
| | - Bruno Villoutreix
- Université de Paris, Inserm UMR 1141, Robert-Debré Hospital, 75019, Paris, France
| | - Simon Pernot
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
- Institut Bergonié, Bordeaux, France
| | - Géraldine Siegfried
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France.
| | - Abdel-Majid Khatib
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France.
- Institut Bergonié, Bordeaux, France.
| |
Collapse
|
5
|
Choi DK. Epigenetic regulation of angiogenesis and its therapeutics. Genomics Inform 2025; 23:4. [PMID: 39934895 DOI: 10.1186/s44342-025-00038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/19/2025] [Indexed: 02/13/2025] Open
Abstract
Angiogenesis, the formation of new blood vessels from preexisting ones, is essential for normal development, wound healing, and tissue repair. However, dysregulated angiogenesis is implicated in various pathological conditions, including cancer, diabetic retinopathy, and atherosclerosis. Epigenetic modifications, including DNA methylation, histone modification, and noncoding RNAs (e.g., miRNAs), play a crucial role in regulating angiogenic gene expression without altering the underlying DNA sequence. These modifications tightly regulate the balance between pro-angiogenic and anti-angiogenic factors, thereby influencing endothelial cell proliferation, migration, and tube formation. In recent years, epigenetic drugs, such as DNA methyltransferase inhibitors (e.g., azacitidine, decitabine), histone deacetylase inhibitors (e.g., vorinostat, romidepsin), and BET inhibitors (e.g., JQ1), have emerged as promising therapeutic strategies for targeting abnormal angiogenesis. These agents modulate gene expression patterns, reactivating silenced tumor suppressor genes while downregulating pro-angiogenic signaling pathways. Additionally, miRNA modulators, such as MRG-110 and MRG-201, provide precise regulation of angiogenesis-related pathways, demonstrating significant therapeutic potential in preclinical models. This review underscores the intricate interplay between epigenetic regulation and angiogenesis, highlighting key mechanisms and therapeutic applications. Advancing our understanding of these processes will enable the development of more effective and targeted epigenetic therapies for angiogenesis-related diseases, paving the way for innovative clinical interventions.
Collapse
Affiliation(s)
- Dong Kyu Choi
- BK21 FOUR KNU Creative BioResearch Group, School of Life Science and Biotechnology, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
6
|
He Y, Li S, Jiang L, Wu K, Chen S, Su L, Liu C, Liu P, Luo W, Zhong S, Li Z. Palmitic Acid Accelerates Endothelial Cell Injury and Cardiovascular Dysfunction via Palmitoylation of PKM2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412895. [PMID: 39665133 PMCID: PMC11791964 DOI: 10.1002/advs.202412895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/17/2024] [Indexed: 12/13/2024]
Abstract
High serum level of palmitic acid(PA) is implicated in pathogenesis of cardiovascular diseases. PA serves as the substrate for protein palmitoylation. However, it is still unknown whether palmitoylation is involved in PA-induced cardiovascular dysfunction. Here, in clinical cohort studies of 1040 patients with coronary heart disease, high level of PA is associated with risk of major adverse cardiovascular events (MACE) and death. In ApoE-/-mice, 10 mg/kg-1 PA treatment induces blood pressure elevation, cardiac contractile dysfunction, endothelial dysfunction and atherosclerotic plaqueformation. In endothelial cells, inhibition of palmitoylation bypalmitoyl-transferase inhibitor 2-BP eliminates PA-induced endothelial injury, whereas promotion of palmitoylation by depalmitoylase inhibitor ML349 exacerbates the harmful effect of PA. Palmitoyl-proteomics analysis identifies pyruvate kinase isozyme type M2 (PKM2) as the palmitoylated protein responsible for PA-induced endothelial injury, and Cys31 as the predominant palmitoylated site. PKM2-C31S mutants (cysteine replaced by serine) prevents PA-induced endothelial injury. Endothelial-specific AAV-C31S PKM2endo ameliorates cardiovascular dysfunction caused by PA in ApoE-/- mice. Mechanistically, PKM2-C31 palmitoylation impairs PKM2 tetramerization to inhibit its pyruvate kinase activity and endothelial glycolysis. Finally, zDHHC13 is identified as the palmitoyl acyltransferase of PKM2. In conclusion, these findings suggest that PKM2-C31 palmitoylation contributes to PA-induced endothelial injury and cardiovascular dysfunction.
Collapse
Affiliation(s)
- Yu He
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Senlin Li
- Department of PharmacyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080P. R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease PreventionGuangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080P. R. China
- School of MedicineSouth China University of TechnologyGuangzhou510006P. R. China
| | - Lujing Jiang
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Kejue Wu
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Shanshan Chen
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Linjie Su
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Cui Liu
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Peiqing Liu
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Wenwei Luo
- Department of PharmacyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080P. R. China
| | - Shilong Zhong
- Department of PharmacyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080P. R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease PreventionGuangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080P. R. China
- School of MedicineSouth China University of TechnologyGuangzhou510006P. R. China
| | - Zhuoming Li
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| |
Collapse
|
7
|
Micó-Carnero M, Rojano-Alfonso C, Maroto-Serrat C, Cutrin JC, Casillas-Ramírez A, Peralta C. Relevance of the GH-VEGFB/VEGFA axis in liver grafts from brain-dead donors with alcohol-associated liver disease. Front Cell Dev Biol 2025; 12:1455258. [PMID: 39839674 PMCID: PMC11747040 DOI: 10.3389/fcell.2024.1455258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Grafts with alcohol-associated liver disease (ALD) subjected to prolonged cold ischaemia from donors after brain death (DBD) are typically unsuitable for transplantation. Here, we investigated the role of growth hormone (GH) in livers with ALD from DBDs and its relationship with vascular endothelial growth factor A (VEGFA) and VEGFB. Methods Livers from rats fed ethanol for 6 weeks and with brain death (BD) were cold stored for 24 h and subjected to ex vivo reperfusion. Hepatic damage and proliferative and inflammatory parameters were analysed after BD, before graft retrieval, and after reperfusion. Survival was monitored using an in vivo transplantation model. Results In DBDs, the administration of GH, which increased the levels in the intestine but not in the liver, induced the generation of both VEGFA and VEGFB in the intestine and protected against hepatic damage caused by BD before retrieving liver grafts from donors. However, VEGFA was the only factor that protected against damage after cold ischemia and reperfusion, which also increased the survival of the recipients. Discussion In conclusion, the signalling pathway and beneficial properties of the GH-VEGFA/VEGFB pathway, in which the intestine-liver axis plays a key role, were disrupted when grafts with ALD from DBDs were retrieved from donors and subjected to cold ischemia and reperfusion.
Collapse
Affiliation(s)
- Marc Micó-Carnero
- Department of Liver, Digestive System and Metabolism, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Carlos Rojano-Alfonso
- Department of Liver, Digestive System and Metabolism, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Cristina Maroto-Serrat
- Department of Liver, Digestive System and Metabolism, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Juan Carlos Cutrin
- Molecular Biotechnology Center II “Guido Tarone”, Department of Molecular Biotechnologies and Science for the Health, University of Torino, Torino, Italy
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria, IMSS-BIENESTAR, Ciudad Victoria, Mexico
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros, Mexico
| | - Carmen Peralta
- Department of Liver, Digestive System and Metabolism, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
8
|
Ibrahim H, Sharawy MH, Hamed MF, Abu-Elsaad N. Peficitinib halts acute kidney injury via JAK/STAT3 and growth factors immunomodulation. Eur J Pharmacol 2024; 984:177020. [PMID: 39349115 DOI: 10.1016/j.ejphar.2024.177020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Acute Kidney Injury (AKI) is characterized by a sudden loss of kidney function and its management continues to be a challenge. In this study the effect of peficitinib, a Janus kinase inhibitor (JAKi), was studied in an aim to stop the progression of AKI at an early point of injury. Adult male mice were injected with aristolochic acid (AA) a single dose (10 mg/kg, i.p) to induce AKI. Peficitinib was injected in one of the two tested doses (5 or 10 mg/kg, i.p) 1 h after AA injection and was continued daily for seven days. Histopathological evaluation showed that peficitinib alleviated necrosis and hyaline cast formation induced by aristolochic acid. It decreased serum creatinine and the kidney injury molecule-1 (KIM-1) elevated by AA. Peficitinib also mitigated AA induced oxidative stress through regulating total antioxidant capacity (TAC) and reduced glutathione (GSH) level in renal tissue. Additionally, renal sections isolated from groups that received peficitinib revealed a decrease in vascular endothelial growth factor receptor 1 interstitial expression and transforming growth factor-beta 1 (TGF-β1) renal level. Peficitinib received groups showed a decrease in the active phosphorylated form of signal transducers and activators of transcription (STAT3). Moreover, peficitinib decreased renal protein levels and gene expression of the pro-inflammatory cytokines; interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and interferon gamma (IFN-γ). These findings suggest that peficitinib is helpful in halting AKI progression into chronic kidney disease through modulating JAK/STAT3 dependent inflammatory pathways and growth factors involved in normal glomerular function.
Collapse
Affiliation(s)
- Hassnaa Ibrahim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 33516, Egypt; Pharmacist at Urology and Nephrology Center, Mansoura University, Mansoura, 33516, Egypt
| | - Maha H Sharawy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 33516, Egypt.
| | - Mohamed F Hamed
- Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 33516, Egypt
| | - Nashwa Abu-Elsaad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 33516, Egypt
| |
Collapse
|
9
|
Li Y, Sun Y, Xie D, Chen H, Zhang Q, Zhang S, Wen F, Ou JS, Zhang M, Su L, Li X, Wen WP, Chi W. AIP1 Regulates Ocular Angiogenesis Via NLRP12-ASC-Caspase-8 Inflammasome-Mediated Endothelial Pyroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405834. [PMID: 39527457 DOI: 10.1002/advs.202405834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Pathological ocular angiogenesis is a significant cause of irreversible vision loss and blindness worldwide. Currently, most studies have focused on the angiogenesis factors in ocular vascular diseases, and very few endogenous anti-angiogenic compounds have been found. Moreover, although inflammation is closely related to the predominant processes involved in angiogenesis, the mechanisms by which inflammation regulates pathological ocular angiogenesis remain obscure. In this study, a vascular endothelial cells (VECs)-specific anti-angiogenic factor is identified, apoptosis signal-regulating kinase 1(ASK1)-interacting protein-1 (AIP1) as a key pathogenic regulator in a typical ocular angiogenesis model, oxygen-induced retinopathy (OIR), using single-cell RNA sequencing. It is demonstrated that AIP1 inhibited pathological angiogenesis by preventing a particular inflammatory death pathway, namely pyroptosis, in retinal VECs. The assembly of a noncanonical inflammasome is further uncovered, the NLRP12-ASC-caspase-8 inflammasome, which is promoted by decreased AIP1 in OIR. This inflammasome elicited gasdermin D (GSDMD)-dependent endothelial pyroptosis, which in turn promoted the release of vascular endothelial growth factor (VEGF) and interleukin (IL)-1β. Suppression of NLRP12-CASP8-GSDMD axis and AIP1 upregulation reduced VEGF signaling, limiting new vessel formation. These findings reveal a previously uncharacterized inflammatory angiogenic process involving VECs pyroptosis-inducing retinal neovascularization, paving the way for promising therapeutic avenues targeting angiogenesis via AIP1 or pyroptosis.
Collapse
Affiliation(s)
- Yonghao Li
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Jinan University, Shenzhen, Guangdong, 518043, China
| | - Yimeng Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Dasen Xie
- Xiamen Key Laboratory of Ophthalmology, Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, Fujian, 361003, China
| | - Hui Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Jinan University, Shenzhen, Guangdong, 518043, China
| | - Feng Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Min Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Lishi Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Wei-Ping Wen
- Department of Otolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Wei Chi
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Jinan University, Shenzhen, Guangdong, 518043, China
| |
Collapse
|
10
|
Zhang X, Thomas GM. Recruitment, regulation, and release: Control of signaling enzyme localization and function by reversible S-acylation. J Biol Chem 2024; 300:107696. [PMID: 39168183 PMCID: PMC11417247 DOI: 10.1016/j.jbc.2024.107696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
An ever-growing number of studies highlight the importance of S-acylation, a reversible protein-lipid modification, for diverse aspects of intracellular signaling. In this review, we summarize the current understanding of how S-acylation regulates perhaps the best-known class of signaling enzymes, protein kinases. We describe how S-acylation acts as a membrane targeting signal that localizes certain kinases to specific membranes, and how such membrane localization in turn facilitates the assembly of signaling hubs consisting of an S-acylated kinase's upstream activators and/or downstream targets. We further discuss recent findings that S-acylation can control additional aspects of the function of certain kinases, including their interactions and, surprisingly, their activity, and how such regulation might be exploited for potential therapeutic gain. We go on to describe the roles and regulation of de-S-acylases and how extracellular signals drive dynamic (de)S-acylation of certain kinases. We discuss how S-acylation has the potential to lead to "emergent properties" that alter the temporal profile and/or salience of intracellular signaling events. We close by giving examples of other S-acylation-dependent classes of signaling enzymes and by discussing how recent biological and technological advances should facilitate future studies into the functional roles of S-acylation-dependent signaling.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Department of Neural Sciences, Center for Neural Development and Repair, Philadelphia, Pennsylvania, USA
| | - Gareth M Thomas
- Department of Neural Sciences, Center for Neural Development and Repair, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Kucinski JP, Calderon D, Kendall GC. Biological and therapeutic insights from animal modeling of fusion-driven pediatric soft tissue sarcomas. Dis Model Mech 2024; 17:dmm050704. [PMID: 38916046 PMCID: PMC11225592 DOI: 10.1242/dmm.050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
Survival for children with cancer has primarily improved over the past decades due to refinements in surgery, radiation and chemotherapy. Although these general therapies are sometimes curative, the cancer often recurs, resulting in poor outcomes for patients. Fusion-driven pediatric soft tissue sarcomas are genetically defined by chromosomal translocations that create a chimeric oncogene. This distinctive, almost 'monogenic', genetic feature supports the generation of animal models to study the respective diseases in vivo. This Review focuses on a subset of fusion-driven pediatric soft tissue sarcomas that have transgenic animal tumor models, which includes fusion-positive and infantile rhabdomyosarcoma, synovial sarcoma, undifferentiated small round cell sarcoma, alveolar soft part sarcoma and clear cell sarcoma. Studies using the animal models of these sarcomas have highlighted that pediatric cancers require a specific cellular state or developmental stage to drive tumorigenesis, as the fusion oncogenes cause different outcomes depending on their lineage and timing of expression. Therefore, understanding these context-specific activities could identify targetable activities and mechanisms critical for tumorigenesis. Broadly, these cancers show dependencies on chromatin regulators to support oncogenic gene expression and co-opting of developmental pathways. Comparative analyses across lineages and tumor models will further provide biological and therapeutic insights to improve outcomes for these children.
Collapse
Affiliation(s)
- Jack P. Kucinski
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology PhD Program, The Ohio State University, Columbus, OH 43210, USA
| | - Delia Calderon
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology PhD Program, The Ohio State University, Columbus, OH 43210, USA
| | - Genevieve C. Kendall
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology PhD Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| |
Collapse
|
12
|
Sultan I, Ramste M, Peletier P, Hemanthakumar KA, Ramanujam D, Tirronen A, von Wright Y, Antila S, Saharinen P, Eklund L, Mervaala E, Ylä-Herttuala S, Engelhardt S, Kivelä R, Alitalo K. Contribution of VEGF-B-Induced Endocardial Endothelial Cell Lineage in Physiological Versus Pathological Cardiac Hypertrophy. Circ Res 2024; 134:1465-1482. [PMID: 38655691 PMCID: PMC11542978 DOI: 10.1161/circresaha.123.324136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Preclinical studies have shown the therapeutic potential of VEGF-B (vascular endothelial growth factor B) in revascularization of the ischemic myocardium, but the associated cardiac hypertrophy and adverse side effects remain a concern. To understand the importance of endothelial proliferation and migration for the beneficial versus adverse effects of VEGF-B in the heart, we explored the cardiac effects of autocrine versus paracrine VEGF-B expression in transgenic and gene-transduced mice. METHODS We used single-cell RNA sequencing to compare cardiac endothelial gene expression in VEGF-B transgenic mouse models. Lineage tracing was used to identify the origin of a VEGF-B-induced novel endothelial cell population and adeno-associated virus-mediated gene delivery to compare the effects of VEGF-B isoforms. Cardiac function was investigated using echocardiography, magnetic resonance imaging, and micro-computed tomography. RESULTS Unlike in physiological cardiac hypertrophy driven by a cardiomyocyte-specific VEGF-B transgene (myosin heavy chain alpha-VEGF-B), autocrine VEGF-B expression in cardiac endothelium (aP2 [adipocyte protein 2]-VEGF-B) was associated with septal defects and failure to increase perfused subendocardial capillaries postnatally. Paracrine VEGF-B led to robust proliferation and myocardial migration of a novel cardiac endothelial cell lineage (VEGF-B-induced endothelial cells) of endocardial origin, whereas autocrine VEGF-B increased proliferation of VEGF-B-induced endothelial cells but failed to promote their migration and efficient contribution to myocardial capillaries. The surviving aP2-VEGF-B offspring showed an altered ratio of secreted VEGF-B isoforms and developed massive pathological cardiac hypertrophy with a distinct cardiac vessel pattern. In the normal heart, we found a small VEGF-B-induced endothelial cell population that was only minimally expanded during myocardial infarction but not during physiological cardiac hypertrophy associated with mouse pregnancy. CONCLUSIONS Paracrine and autocrine secretions of VEGF-B induce expansion of a specific endocardium-derived endothelial cell population with distinct angiogenic markers. However, autocrine VEGF-B signaling fails to promote VEGF-B-induced endothelial cell migration and contribution to myocardial capillaries, predisposing to septal defects and inducing a mismatch between angiogenesis and myocardial growth, which results in pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Ibrahim Sultan
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Markus Ramste
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Pim Peletier
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Karthik Amudhala Hemanthakumar
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Deepak Ramanujam
- Institute of Pharmacology and Toxicology, Technical University of Munich, DZHK partner site Munich Heart Alliance, Germany (D.R., S.E.)
- RNATICS GmbH, Planegg, Germany (D.R.)
| | - Annakaisa Tirronen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland (A.T., S.Y.-H.)
| | - Ylva von Wright
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Salli Antila
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Pipsa Saharinen
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Finland (L.E.)
| | - Eero Mervaala
- Department of Pharmacology (E.M.), Faculty of Medicine, University of Helsinki, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland (A.T., S.Y.-H.)
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich, DZHK partner site Munich Heart Alliance, Germany (D.R., S.E.)
| | - Riikka Kivelä
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Stem Cells and Metabolism Research Program (R.K.), Faculty of Medicine, University of Helsinki, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Finland (R.K.)
| | - Kari Alitalo
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| |
Collapse
|
13
|
Cano I, Wild M, Gupta U, Chaudhary S, Ng YSE, Saint-Geniez M, D'Amore PA, Hu Z. Endomucin selectively regulates vascular endothelial growth factor receptor-2 endocytosis through its interaction with AP2. Cell Commun Signal 2024; 22:225. [PMID: 38605348 PMCID: PMC11007909 DOI: 10.1186/s12964-024-01606-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
The endothelial glycocalyx, located at the luminal surface of the endothelium, plays an important role in the regulation of leukocyte adhesion, vascular permeability, and vascular homeostasis. Endomucin (EMCN), a component of the endothelial glycocalyx, is a mucin-like transmembrane glycoprotein selectively expressed by venous and capillary endothelium. We have previously shown that knockdown of EMCN impairs retinal vascular development in vivo and vascular endothelial growth factor 165 isoform (VEGF165)-induced cell migration, proliferation, and tube formation by human retinal endothelial cells in vitro and that EMCN is essential for VEGF165-stimulated clathrin-mediated endocytosis and signaling of VEGF receptor 2 (VEGFR2). Clathrin-mediated endocytosis is an essential step in receptor signaling and is of paramount importance for a number of receptors for growth factors involved in angiogenesis. In this study, we further investigated the molecular mechanism underlying EMCN's involvement in the regulation of VEGF-induced endocytosis. In addition, we examined the specificity of EMCN's role in angiogenesis-related cell surface receptor tyrosine kinase endocytosis and signaling. We identified that EMCN interacts with AP2 complex, which is essential for clathrin-mediated endocytosis. Lack of EMCN did not affect clathrin recruitment to the AP2 complex following VEGF stimulation, but it is necessary for the interaction between VEGFR2 and the AP2 complex during endocytosis. EMCN does not inhibit VEGFR1 and FGFR1 internalization or their downstream activities since EMCN interacts with VEGFR2 but not VEGFR1 or FGFR1. Additionally, EMCN also regulates VEGF121-induced VEGFR2 phosphorylation and internalization.
Collapse
Affiliation(s)
- Issahy Cano
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Present affiliation: Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Melissa Wild
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Urvi Gupta
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Suman Chaudhary
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yin Shan Eric Ng
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Present Affiliation: EyeBiotech, London, UK
| | - Magali Saint-Geniez
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Present affiliation: Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Pimentel EF, de Oliveira BG, Pereira ACH, Figueira MM, Portes DB, Scherer R, Ruas FG, Romão W, Fronza M, Endringer DC. Polyphenols, Antioxidants, and Wound Healing of Lecythis pisonis Seed Coats. PLANTA MEDICA 2024; 90:243-251. [PMID: 37973148 DOI: 10.1055/a-2212-0262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
To better use the Lecythis pisonis Cambess. biomass, this study investigates whether Sapucaia seed coats present wound healing properties. We analyzed the antibacterial, antioxidant, and wound healing-promoting potentials, plus cytotoxicity and stimulation of vascular endothelial growth factor-A. The chemical composition was analyzed by positive ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. A total of 19 compounds were identified, such as proanthocyanidin A1, procyanidins A1, B2, and C1, epigallocatechin, and kaempferol (p-coumaroyl) glycoside. Potent antioxidant strength/index was verified for 2,2-diphenyl-1-picrylhydrazyl radical (IC50 = 0.99 µg/mL) and ferric reducing antioxidant power (IC50 = 1.09 µg/mL). The extract did not present cytotoxicity and promoted significant cell migration and/or proliferation of fibroblasts (p < 0.05). Vascular endothelial growth factor-A was stimulated dose-dependently at 6 µg/mL (167.13 ± 8.30 pg/mL), 12.5 µg/mL (210.3 ± 14.2 pg/mL), and 25 µg/mL (411.6 ± 29.4 pg/mL). Platelet-derived growth factor (PDGF) (0.002 µg/mL) was stimulated at 215.98 pg/mL. Staphylococcus aureus was susceptible to the extract, with a minimum inhibitory concentration of 31.25 µg/mL. The identified compounds benefit the antioxidant activity, promoting hemostasis for the wound healing process, indicating that this extract has the potential for use in dermatological cosmetics.
Collapse
Affiliation(s)
| | | | | | | | - Danielle Braga Portes
- Pharmaceutical Science Graduate Program, Vila Velha University, Vila Velha, ES, Brazil
| | - Rodrigo Scherer
- Pharmaceutical Science Graduate Program, Vila Velha University, Vila Velha, ES, Brazil
| | - Fabiana Gomes Ruas
- Capixaba Institute for Research, Technical Assistance, and Rural Extension, Vitoria, Brazil
| | | | - Márcio Fronza
- Pharmaceutical Science Graduate Program, Vila Velha University, Vila Velha, ES, Brazil
| | | |
Collapse
|
15
|
Sarabipour S, Kinghorn K, Quigley KM, Kovacs-Kasa A, Annex BH, Bautch VL, Mac Gabhann F. Trafficking dynamics of VEGFR1, VEGFR2, and NRP1 in human endothelial cells. PLoS Comput Biol 2024; 20:e1011798. [PMID: 38324585 PMCID: PMC10878527 DOI: 10.1371/journal.pcbi.1011798] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 02/20/2024] [Accepted: 01/03/2024] [Indexed: 02/09/2024] Open
Abstract
The vascular endothelial growth factor (VEGF) family of cytokines are key drivers of blood vessel growth and remodeling. These ligands act via multiple VEGF receptors (VEGFR) and co-receptors such as Neuropilin (NRP) expressed on endothelial cells. These membrane-associated receptors are not solely expressed on the cell surface, they move between the surface and intracellular locations, where they can function differently. The location of the receptor alters its ability to 'see' (access and bind to) its ligands, which regulates receptor activation; location also alters receptor exposure to subcellularly localized phosphatases, which regulates its deactivation. Thus, receptors in different subcellular locations initiate different signaling, both in terms of quantity and quality. Similarly, the local levels of co-expression of other receptors alters competition for ligands. Subcellular localization is controlled by intracellular trafficking processes, which thus control VEGFR activity; therefore, to understand VEGFR activity, we must understand receptor trafficking. Here, for the first time, we simultaneously quantify the trafficking of VEGFR1, VEGFR2, and NRP1 on the same cells-specifically human umbilical vein endothelial cells (HUVECs). We build a computational model describing the expression, interaction, and trafficking of these receptors, and use it to simulate cell culture experiments. We use new quantitative experimental data to parameterize the model, which then provides mechanistic insight into the trafficking and localization of this receptor network. We show that VEGFR2 and NRP1 trafficking is not the same on HUVECs as on non-human ECs; and we show that VEGFR1 trafficking is not the same as VEGFR2 trafficking, but rather is faster in both internalization and recycling. As a consequence, the VEGF receptors are not evenly distributed between the cell surface and intracellular locations, with a very low percentage of VEGFR1 being on the cell surface, and high levels of NRP1 on the cell surface. Our findings have implications both for the sensing of extracellular ligands and for the composition of signaling complexes at the cell surface versus inside the cell.
Collapse
Affiliation(s)
- Sarvenaz Sarabipour
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Karina Kinghorn
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kaitlyn M. Quigley
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Anita Kovacs-Kasa
- Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
| | - Brian H. Annex
- Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
| | - Victoria L. Bautch
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Feilim Mac Gabhann
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
16
|
Kinghorn K, Gill A, Marvin A, Li R, Quigley K, Singh S, Gore MT, le Noble F, Gabhann FM, Bautch VL. A defined clathrin-mediated trafficking pathway regulates sFLT1/VEGFR1 secretion from endothelial cells. Angiogenesis 2024; 27:67-89. [PMID: 37695358 PMCID: PMC10881643 DOI: 10.1007/s10456-023-09893-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
FLT1/VEGFR1 negatively regulates VEGF-A signaling and is required for proper vessel morphogenesis during vascular development and vessel homeostasis. Although a soluble isoform, sFLT1, is often mis-regulated in disease and aging, how sFLT1 is trafficked and secreted from endothelial cells is not well understood. Here we define requirements for constitutive sFLT1 trafficking and secretion in endothelial cells from the Golgi to the plasma membrane, and we show that sFLT1 secretion requires clathrin at or near the Golgi. Perturbations that affect sFLT1 trafficking blunted endothelial cell secretion and promoted intracellular mis-localization in cells and zebrafish embryos. siRNA-mediated depletion of specific trafficking components revealed requirements for RAB27A, VAMP3, and STX3 for post-Golgi vesicle trafficking and sFLT1 secretion, while STX6, ARF1, and AP1 were required at the Golgi. Live-imaging of temporally controlled sFLT1 release from the endoplasmic reticulum showed clathrin-dependent sFLT1 trafficking at the Golgi into secretory vesicles that then trafficked to the plasma membrane. Depletion of STX6 altered vessel sprouting in 3D, suggesting that endothelial cell sFLT1 secretion influences proper vessel sprouting. Thus, specific trafficking components provide a secretory path from the Golgi to the plasma membrane for sFLT1 in endothelial cells that utilizes a specialized clathrin-dependent intermediate, suggesting novel therapeutic targets.
Collapse
Affiliation(s)
- Karina Kinghorn
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Amy Gill
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Allison Marvin
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Renee Li
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Kaitlyn Quigley
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Simcha Singh
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Michaelanthony T Gore
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Institute of Zoology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Liu J, Yao X, Xu Z, Wu Y, Pei F, Zhang L, Li M, Shi M, Du X, Zhao H. Modified tibial cortex transverse transport for diabetic foot ulcers with Wagner grade ≥ II: a study of 98 patients. Front Endocrinol (Lausanne) 2024; 15:1334414. [PMID: 38318295 PMCID: PMC10841573 DOI: 10.3389/fendo.2024.1334414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Background Diabetic foot ulcers constitute a substantial healthcare burden on a global scale and present challenges in achieving healing. Our objective was to assess the efficacy of modified tibial cortex transverse transport surgery in managing refractory diabetic foot ulcers. Methods We retrospectively analyzed clinical data from 98 patients suffering from diabetic foot ulcers classified as Wagner grade ≥II who were admitted to our medical facility between January 2020 and June 2022. All the patients were treated by modified tibial cortex transverse transport surgery, wherein the osteotomy scope was reduced to two rectangular bone windows measuring 1.5cm × 1.5cm each. Record the patient's general information and ulcer healing time; ulcer area, ankle-brachial index, WIFi classification, and visual analogue scale before and 3 months following the surgical intervention. Results The average duration of diabetes of 98 patients with diabetic foot ulcer was 20.22 ± 8.02 years, 52 patients had more than one toe gangrene on admission. The postoperative wound healing rate was 95.83% and the average healing time was 53.18 ± 20.18 days. The patients showed significant improvement in ankle-brachial index, WIFi classification, and visual analogue scale at 3 months postoperatively compared to preoperatively, with statistically significant differences (P< 0.05). Eight patients experienced complications, and the incidence of complications was 8.16%. Throughout the follow-up period, there were no instances of ulcer recurrence noted. Conclusion Modified tibial cortex transverse transport surgery demonstrates effectiveness in the management of diabetic foot ulcers by enhancing lower limb microcirculation and facilitating the process of wound healing.
Collapse
Affiliation(s)
- Junpeng Liu
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xingchen Yao
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ziyu Xu
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yue Wu
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Fuchun Pei
- Department of Orthopaedic Surgery, Beijing Chaoyang Integrative Medicine Rescue and First Aid Hospital, Beijing, China
| | - Lin Zhang
- Department of Orthopaedic Surgery, Beijing Chaoyang Integrative Medicine Rescue and First Aid Hospital, Beijing, China
| | - Meng Li
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ming Shi
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinru Du
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hui Zhao
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Nawaz S, Kulyar MFEA, Mo Q, Yao W, Iqbal M, Li J. Homeostatic Regulation of Pro-Angiogenic and Anti-Angiogenic Proteins via Hedgehog, Notch Grid, and Ephrin Signaling in Tibial Dyschondroplasia. Animals (Basel) 2023; 13:3750. [PMID: 38136788 PMCID: PMC10740744 DOI: 10.3390/ani13243750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Precise coupling of two fundamental mechanisms, chondrogenesis and osteogenesis via angiogenesis, plays a crucial role during rapid proliferation of growth plates, and alteration in their balance might lead to pathogenic conditions. Tibial dyschondroplasia (TD) is characterized by an avascular, non-mineralized, jade-white "cartilaginous wedge" with impaired endochondral ossification and chondrocyte proliferation at the proximal end of a tibial bone in rapidly growing poultry birds. Developing vascular structures are dynamic with cartilage growth and are regulated through homeostatic balance among pro and anti-angiogenic proteins and cytokines. Pro-angiogenic factors involves a wide spectrum of multifactorial mitogens, such as vascular endothelial growth factors (VEGF), platelet-derived growth factors (PDGF), basic fibroblast growth factor (bFGF), placental growth factors, transforming growth factor-β (TGF-β), and TNF-α. Considering their regulatory role via the sonic hedgehog, notch-gridlock, and ephrin-B2/EphB4 pathways and inhibition through anti-angiogenic proteins like angiostatin, endostatin, decoy receptors, vasoinhibin, thrombospondin, PEX, and troponin, their possible role in persisting inflammatory conditions like TD was studied in the current literature review. Balanced apoptosis and angiogenesis are vital for physiological bone growth. Any homeostatic imbalance among apoptotic, angiogenetic, pro-angiogenic, or anti-angiogenic proteins ultimately leads to pathological bone conditions like TD and osteoarthritis. The current review might substantiate solid grounds for developing innovative therapeutics for diseases governed by the disproportion of angiogenesis and anti-angiogenesis proteins.
Collapse
Affiliation(s)
- Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| |
Collapse
|
19
|
Li YJ, Wu XF, Wang DD, Li P, Liang H, Hu XY, Gan JQ, Sun YZ, Li JH, Li J, Shu X, Song AL, Yang CY, Yang ZY, Yu WF, Yang LQ, Wang XB, Belguise K, Xia ZY, Yi B. Serum Soluble Vascular Endothelial Growth Factor Receptor 1 as a Potential Biomarker of Hepatopulmonary Syndrome. J Clin Transl Hepatol 2023; 11:1150-1160. [PMID: 37577229 PMCID: PMC10412700 DOI: 10.14218/jcth.2022.00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 07/03/2023] Open
Abstract
Background and Aims The results of basic research implicate the vascular endothelial growth factor (VEGF) family as a potential target of hepatopulmonary syndrome (HPS). However, the negative results of anti-angiogenetic therapy in clinical studies have highlighted the need for markers for HPS. Therefore, we aimed to determine whether VEGF family members and their receptors can be potential biomarkers for HPS through clinical and experimental studies. Methods Clinically, patients with chronic liver disease from two medical centers were enrolled and examined for HPS. Patients were divided into HPS, intrapulmonary vascular dilation [positive contrast-enhanced echocardiography (CEE) and normal oxygenation] and CEE-negative groups. Baseline information and perioperative clinical data were compared between HPS and non-HPS patients. Serum levels of VEGF family members and their receptors were measured. In parallel, HPS rats were established by common bile duct ligation. Liver, lung and serum samples were collected for the evaluation of pathophysiologic changes, as well as the expression levels of the above factors. Results In HPS rats, all VEGF family members and their receptors underwent significant changes; however, only soluble VEGFR1 (sFlt-1) and the sFlt-1/ placental growth factor (PLGF) ratio were changed in almost the same manner as those in HPS patients. Furthermore, through feature selection and internal and external validation, sFlt-1 and the sFlt-1/PLGF ratio were identified as the most important variables to distinguish HPS from non-HPS patients. Conclusions Our results from animal and human studies indicate that sFlt-1 and the sFlt-1/PLGF ratio in serum are potential markers for HPS.
Collapse
Affiliation(s)
- Yu-Jie Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xian-Feng Wu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan-Dan Wang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Peng Li
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Hao Liang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiao-Yan Hu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jia-Qi Gan
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Yi-Zhu Sun
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun-Hong Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Shu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ai-Lin Song
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chun-Yong Yang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhi-Yong Yang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Bo Wang
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Karine Belguise
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Zheng-Yuan Xia
- Department of Anesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bin Yi
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
20
|
Zhang Y, Zhang YY, Pan ZW, Li QQ, Sun LH, Li X, Gong MY, Yang XW, Wang YY, Li HD, Xuan LN, Shao YC, Li MM, Zhang MY, Yu Q, Li Z, Zhang XF, Liu DH, Zhu YM, Tan ZY, Zhang YY, Liu YQ, Zhang Y, Jiao L, Yang BF. GDF11 promotes wound healing in diabetic mice via stimulating HIF-1ɑ-VEGF/SDF-1ɑ-mediated endothelial progenitor cell mobilization and neovascularization. Acta Pharmacol Sin 2023; 44:999-1013. [PMID: 36347996 PMCID: PMC10104842 DOI: 10.1038/s41401-022-01013-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Non-healing diabetic wounds (DW) are a serious clinical problem that remained poorly understood. We recently found that topical application of growth differentiation factor 11 (GDF11) accelerated skin wound healing in both Type 1 DM (T1DM) and genetically engineered Type 2 diabetic db/db (T2DM) mice. In the present study, we elucidated the cellular and molecular mechanisms underlying the action of GDF11 on healing of small skin wound. Single round-shape full-thickness wound of 5-mm diameter with muscle and bone exposed was made on mouse dorsum using a sterile punch biopsy 7 days following the onset of DM. Recombinant human GDF11 (rGDF11, 50 ng/mL, 10 μL) was topically applied onto the wound area twice a day until epidermal closure (maximum 14 days). Digital images of wound were obtained once a day from D0 to D14 post-wounding. We showed that topical application of GDF11 accelerated the healing of full-thickness skin wounds in both type 1 and type 2 diabetic mice, even after GDF8 (a muscle growth factor) had been silenced. At the cellular level, GDF11 significantly facilitated neovascularization to enhance regeneration of skin tissues by stimulating mobilization, migration and homing of endothelial progenitor cells (EPCs) to the wounded area. At the molecular level, GDF11 greatly increased HIF-1ɑ expression to enhance the activities of VEGF and SDF-1ɑ, thereby neovascularization. We found that endogenous GDF11 level was robustly decreased in skin tissue of diabetic wounds. The specific antibody against GDF11 or silence of GDF11 by siRNA in healthy mice mimicked the non-healing property of diabetic wound. Thus, we demonstrate that GDF11 promotes diabetic wound healing via stimulating endothelial progenitor cells mobilization and neovascularization mediated by HIF-1ɑ-VEGF/SDF-1ɑ pathway. Our results support the potential of GDF11 as a therapeutic agent for non-healing DW.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yi-Yuan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhen-Wei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Qing-Qi Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Li-Hua Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xin Li
- Department of Cardiovascular Sciences, School of Engineering, University of Leicester, Leicester, UK
| | - Man-Yu Gong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xue-Wen Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yan-Ying Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hao-Dong Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Li-Na Xuan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying-Chun Shao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Meng-Meng Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ming-Yu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Qi Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhange Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiao-Fang Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Dong-Hua Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yan-Meng Zhu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhong-Yue Tan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuan-Yuan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yun-Qi Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lei Jiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Bao-Feng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
21
|
Hagiwara S, Nishida N, Kudo M. Advances in Immunotherapy for Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:2070. [PMID: 37046727 PMCID: PMC10093619 DOI: 10.3390/cancers15072070] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) aim to induce immune responses against tumors and are less likely to develop drug resistance than molecularly targeted drugs. In addition, they are characterized by a long-lasting antitumor effect. However, since its effectiveness depends on the tumor's immune environment, it is essential to understand the immune environment of hepatocellular carcinoma to select ICI therapeutic indications and develop biomarkers. A network of diverse cellular and humoral factors establishes cancer immunity. By analyzing individual cases and classifying them from the viewpoint of tumor immunity, attempts have been made to select the optimal therapeutic drug for immunotherapy, including ICIs. ICI treatment is discussed from the viewpoints of immune subclass of HCC, Wnt/β-catenin mutation, immunotherapy in NASH-related HCC, the mechanism of HPD onset, and HBV reactivation.
Collapse
Affiliation(s)
- Satoru Hagiwara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | | | | |
Collapse
|
22
|
Kinghorn K, Gill A, Marvin A, Li R, Quigley K, le Noble F, Mac Gabhann F, Bautch VL. A defined clathrin-mediated trafficking pathway regulates sFLT1/VEGFR1 secretion from endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525517. [PMID: 36747809 PMCID: PMC9900880 DOI: 10.1101/2023.01.27.525517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
FLT1/VEGFR1 negatively regulates VEGF-A signaling and is required for proper vessel morphogenesis during vascular development and vessel homeostasis. Although a soluble isoform, sFLT1, is often mis-regulated in disease and aging, how sFLT1 is trafficked and secreted from endothelial cells is not well understood. Here we define requirements for constitutive sFLT1 trafficking and secretion in endothelial cells from the Golgi to the plasma membrane, and we show that sFLT1 secretion requires clathrin at or near the Golgi. Perturbations that affect sFLT1 trafficking blunted endothelial cell secretion and promoted intracellular mis-localization in cells and zebrafish embryos. siRNA-mediated depletion of specific trafficking components revealed requirements for RAB27A, VAMP3, and STX3 for post-Golgi vesicle trafficking and sFLT1 secretion, while STX6, ARF1, and AP1 were required at the Golgi. Depletion of STX6 altered vessel sprouting in a 3D angiogenesis model, indicating that endothelial cell sFLT1 secretion is important for proper vessel sprouting. Thus, specific trafficking components provide a secretory path from the Golgi to the plasma membrane for sFLT1 in endothelial cells that utilizes a specialized clathrin-dependent intermediate, suggesting novel therapeutic targets.
Collapse
Affiliation(s)
- Karina Kinghorn
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill NC USA
| | - Amy Gill
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA
| | - Allison Marvin
- Department of Biology, University of North Carolina, Chapel Hill NC USA
| | - Renee Li
- Department of Biology, University of North Carolina, Chapel Hill NC USA
| | - Kaitlyn Quigley
- Department of Biology, University of North Carolina, Chapel Hill NC USA
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Institute of Zoology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Feilim Mac Gabhann
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill NC USA
- Department of Biology, University of North Carolina, Chapel Hill NC USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill NC USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill NC USA
| |
Collapse
|
23
|
Shang S, Liu J, Hua F. Protein acylation: mechanisms, biological functions and therapeutic targets. Signal Transduct Target Ther 2022; 7:396. [PMID: 36577755 PMCID: PMC9797573 DOI: 10.1038/s41392-022-01245-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 11/06/2022] [Indexed: 12/30/2022] Open
Abstract
Metabolic reprogramming is involved in the pathogenesis of not only cancers but also neurodegenerative diseases, cardiovascular diseases, and infectious diseases. With the progress of metabonomics and proteomics, metabolites have been found to affect protein acylations through providing acyl groups or changing the activities of acyltransferases or deacylases. Reciprocally, protein acylation is involved in key cellular processes relevant to physiology and diseases, such as protein stability, protein subcellular localization, enzyme activity, transcriptional activity, protein-protein interactions and protein-DNA interactions. Herein, we summarize the functional diversity and mechanisms of eight kinds of nonhistone protein acylations in the physiological processes and progression of several diseases. We also highlight the recent progress in the development of inhibitors for acyltransferase, deacylase, and acylation reader proteins for their potential applications in drug discovery.
Collapse
Affiliation(s)
- Shuang Shang
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Jing Liu
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Fang Hua
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| |
Collapse
|
24
|
Gong CX, Zhang Q, Xiong XY, Yuan JJ, Yang GQ, Huang JC, Liu J, Duan CM, Rui-Xu, Qiu ZM, Meng ZY, Zhou K, Wang FX, Zhao CH, Li F, Yang QW. Pericytes Regulate Cerebral Perfusion through VEGFR1 in Ischemic Stroke. Cell Mol Neurobiol 2022; 42:1897-1908. [PMID: 33712886 PMCID: PMC11421746 DOI: 10.1007/s10571-021-01071-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 02/27/2021] [Indexed: 10/21/2022]
Abstract
Neurons in the penumbra (the area surrounding ischemic tissue that consists of still viable tissue but with reduced blood flow and oxygen transport) may be rescued following stroke if adequate perfusion is restored in time. It has been speculated that post-stroke angiogenesis in the penumbra can reduce damage caused by ischemia. However, the mechanism for neovasculature formation in the brain remains unclear and vascular-targeted therapies for brain ischemia remain suboptimal. Here, we show that VEGFR1 was highly upregulated in pericytes after stroke. Knockdown of VEGFR1 in pericytes led to increased infarct area and compromised post-ischemia vessel formation. Furthermore, in vitro studies confirmed a critical role for pericyte-derived VEGFR1 in both endothelial tube formation and pericyte migration. Interestingly, our results show that pericyte-derived VEGFR1 has opposite effects on Akt activity in endothelial cells and pericytes. Collectively, these results indicate that pericyte-specific expression of VEGFR1 modulates ischemia-induced vessel formation and vascular integrity in the brain.
Collapse
Affiliation(s)
- Chang-Xiong Gong
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), No.183, Xinqiao Main St, Shapingba District, Chongqing, 400037, China
| | - Qin Zhang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), No.183, Xinqiao Main St, Shapingba District, Chongqing, 400037, China
| | - Xiao-Yi Xiong
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), No.183, Xinqiao Main St, Shapingba District, Chongqing, 400037, China
| | - Jun-Jie Yuan
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), No.183, Xinqiao Main St, Shapingba District, Chongqing, 400037, China
| | - Guo-Qiang Yang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), No.183, Xinqiao Main St, Shapingba District, Chongqing, 400037, China
| | - Jia-Cheng Huang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), No.183, Xinqiao Main St, Shapingba District, Chongqing, 400037, China
| | - Juan Liu
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), No.183, Xinqiao Main St, Shapingba District, Chongqing, 400037, China
| | - Chun-Mei Duan
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), No.183, Xinqiao Main St, Shapingba District, Chongqing, 400037, China
| | - Rui-Xu
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), No.183, Xinqiao Main St, Shapingba District, Chongqing, 400037, China
| | - Zhong-Ming Qiu
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), No.183, Xinqiao Main St, Shapingba District, Chongqing, 400037, China
| | - Zhao-You Meng
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), No.183, Xinqiao Main St, Shapingba District, Chongqing, 400037, China
| | - Kai Zhou
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), No.183, Xinqiao Main St, Shapingba District, Chongqing, 400037, China
| | - Fa-Xiang Wang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), No.183, Xinqiao Main St, Shapingba District, Chongqing, 400037, China
| | - Chen-Hao Zhao
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), No.183, Xinqiao Main St, Shapingba District, Chongqing, 400037, China
| | - Fangfei Li
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), No.183, Xinqiao Main St, Shapingba District, Chongqing, 400037, China.
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), No.183, Xinqiao Main St, Shapingba District, Chongqing, 400037, China.
| |
Collapse
|
25
|
Saikia Q, Reeve H, Alzahrani A, Critchley WR, Zeqiraj E, Divan A, Harrison MA, Ponnambalam S. VEGFR endocytosis: Implications for angiogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 194:109-139. [PMID: 36631189 DOI: 10.1016/bs.pmbts.2022.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The binding of vascular endothelial growth factor (VEGF) superfamily to VEGF receptor tyrosine kinases (VEGFRs) and co-receptors regulates vasculogenesis, angiogenesis and lymphangiogenesis. A recurring theme is that dysfunction in VEGF signaling promotes pathological angiogenesis, an important feature of cancer and pro-inflammatory disease states. Endocytosis of basal (resting) or activated VEGFRs facilitates signal attenuation and endothelial quiescence. However, increasing evidence suggest that activated VEGFRs can continue to signal from intracellular compartments such as endosomes. In this chapter, we focus on the evolving link between VEGFR endocytosis, signaling and turnover and the implications for angiogenesis. There is much interest in how such understanding of VEGFR dynamics can be harnessed therapeutically for a wide range of human disease states.
Collapse
Affiliation(s)
- Queen Saikia
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Hannah Reeve
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Areej Alzahrani
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - William R Critchley
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Elton Zeqiraj
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Aysha Divan
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Michael A Harrison
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
26
|
Liu Z, Xu C, Yu Y, Tu D, Peng Y, Zhang B. Twenty Years Development of Tibial Cortex Transverse Transport Surgery in PR China. Orthop Surg 2022; 14:1034-1048. [PMID: 35524654 PMCID: PMC9163800 DOI: 10.1111/os.13214] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 11/22/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
Tibial cortex transverse transport (TTT) surgery is an extension of the Ilizarov technique. Based on the law of tension-stress, its primary function is to rebuild microcirculation which can relieve ischemic symptoms and promote wound healing. It has received more and more scholars' attention and has experienced a series of changes for 20 years since it entered PR China. The mechanisms involved have gradually become clear, such as the reconstruction of the polarization balance of macrophages, the promotion of vascular tissue regeneration, and the mobilization and regulation of bone marrow-derived stem cells. TTT technique is mainly used in the treatment of chronic ischemic diseases of the lower extremities. It has recently been successfully used in the treatment of primary lymphedema of the lower extremities. A series of improvements have been made in the external fixator's style, the size of skin incision and osteotomy, and distraction method. For example, the annular external fixator has been redesigned as a unilateral external fixator, and accordion technology has been introduced. For distraction methods after surgery, there was no uniform standard in the past. The technique can also be used in combination with other treatments to achieve better effects, such as interventional therapy, negative pressure sealed drainage, 3D printing technology, traditional Chinese medicine. Nevertheless, the surgery may bring some complications, such as secondary fracture, nail infection, skin necrosis at the surgical site, etc. Reports of complications and doubts about the technique have made the TTT technique controversial. In 2020, the relevant expert consensus was published with treatment and management principles, which might guide the better application and development of this technique.
Collapse
Affiliation(s)
- Zheng Liu
- The Second Clinical Medical College of Zhejiang Chinese Medical UniversityZhejiangChina
| | - Chao Xu
- The Second Clinical Medical College of Zhejiang Chinese Medical UniversityZhejiangChina
- The Second Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
| | - Yi‐kang Yu
- The Second Clinical Medical College of Zhejiang Chinese Medical UniversityZhejiangChina
| | - Dong‐peng Tu
- The Second Clinical Medical College of Zhejiang Chinese Medical UniversityZhejiangChina
| | - Yi Peng
- The Second Clinical Medical College of Zhejiang Chinese Medical UniversityZhejiangChina
| | - Bin Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical UniversityZhejiangChina
| |
Collapse
|
27
|
Optimized Heterologous Expression and Efficient Purification of a New TRAIL-Based Antitumor Fusion Protein SRH-DR5-B with Dual VEGFR2 and DR5 Receptor Specificity. Int J Mol Sci 2022; 23:ijms23115860. [PMID: 35682540 PMCID: PMC9180153 DOI: 10.3390/ijms23115860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/27/2022] Open
Abstract
In the last two decades, bifunctional proteins have been created by genetic and protein engineering methods to increase therapeutic effects in various diseases, including cancer. Unlike conventional small molecule or monotargeted drugs, bifunctional proteins have increased biological activity while maintaining low systemic toxicity. The recombinant anti-cancer cytokine TRAIL has shown a limited therapeutic effect in clinical trials. To enhance the efficacy of TRAIL, we designed the HRH–DR5-B fusion protein based on the DR5-selective mutant variant of TRAIL fused to the anti-angiogenic synthetic peptide HRHTKQRHTALH. Initially low expression of HRH–DR5-B was enhanced by the substitution of E. coli-optimized codons with AT-rich codons in the DNA sequence encoding the first 7 amino acid residues of the HRH peptide. However, the HRH–DR5-B degraded during purification to form two adjacent protein bands on the SDS-PAGE gel. The replacement of His by Ser at position P2 immediately after the initiator Met dramatically minimized degradation, allowing more than 20 mg of protein to be obtained from 200 mL of cell culture. The resulting SRH–DR5-B fusion bound the VEGFR2 and DR5 receptors with high affinity and showed increased cytotoxic activity in 3D multicellular tumor spheroids. SRH–DR5-B can be considered as a promising candidate for therapeutic applications.
Collapse
|
28
|
Mahon N, Slater K, O'Brien J, Alvarez Y, Reynolds A, Kennedy B. Discovery and Development of the Quininib Series of Ocular Drugs. J Ocul Pharmacol Ther 2022; 38:33-42. [PMID: 35089801 DOI: 10.1089/jop.2021.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The quininib series is a novel collection of small-molecule drugs with antiangiogenic, antivascular permeability, anti-inflammatory, and antiproliferative activity. Quininib was initially identified as a drug hit during a random chemical library screen for determinants of developmental ocular angiogenesis in zebrafish. To enhance drug efficacy, novel quininib analogs were designed by applying medicinal chemistry approaches. The resulting quininib drug series has efficacy in in vitro and ex vivo models of angiogenesis utilizing human cell lines and tissues. In vivo, quininib drugs reduce pathological angiogenesis and retinal vascular permeability in rodent models. Quininib acts as a cysteinyl leukotriene (CysLT) receptor antagonist, revealing new roles of these G-protein-coupled receptors in developmental angiogenesis of the eye and unexpectedly in uveal melanoma (UM). The quininib series highlighted the potential of CysLT receptors as therapeutic targets for retinal vasculopathies (e.g., neovascular age-related macular degeneration, diabetic retinopathy, and diabetic macular edema) and ocular cancers (e.g., UM).
Collapse
Affiliation(s)
- Niamh Mahon
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Kayleigh Slater
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Justine O'Brien
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Yolanda Alvarez
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Alison Reynolds
- UCD Conway Institute, University College Dublin, Dublin, Ireland.,UCD School of Veterinary Medicine, Veterinary Sciences Center, University College Dublin, Dublin, Ireland
| | - Breandán Kennedy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
29
|
Webb AM, Francis CR, Judson RJ, Kincross H, Lundy KM, Westhoff DE, Meadows SM, Kushner EJ. EHD2 modulates Dll4 endocytosis during blood vessel development. Microcirculation 2022; 29:e12740. [PMID: 34820962 PMCID: PMC9286817 DOI: 10.1111/micc.12740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/28/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Despite the absolute requirement of Delta/Notch signaling to activate lateral inhibition during early blood vessel development, many mechanisms remain unclear about how this system is regulated. Our objective was to determine the involvement of Epsin 15 Homology Domain Containing 2 (EHD2) in delta-like ligand 4 (Dll4) endocytosis during Notch activation. APPROACH AND RESULTS Using both in vivo and in vitro models, we demonstrate that EHD2 is a novel modulator of Notch activation in endothelial cells through controlling endocytosis of Dll4. In vitro, EHD2 localized to plasma membrane-bound Dll4 and caveolae. Chemical disruption of caveolae complexes resulted in EHD2 failing to organize around Dll4 as well as loss of Dll4 internalization. Reduced Dll4 internalization blunted Notch activation in endothelial cells. In vivo, EHD2 is primarily expressed in the vasculature, colocalizing with junctional marker VE-cadherin and Dll4. Knockout of EHD2 in zebrafish produced a significant increase in dysmorphic sprouts in zebrafish intersomitic vessels during development and a reduction in downstream Notch signaling. CONCLUSIONS Overall, we demonstrate that EHD2 is necessary for Dll4 transcytosis and downstream Notch activation.
Collapse
Affiliation(s)
- Amelia M. Webb
- Department of Biological SciencesUniversity of DenverDenverColoradoUSA
| | | | - Rachael J. Judson
- Department of Biological SciencesUniversity of DenverDenverColoradoUSA
| | - Hayle Kincross
- Department of Biological SciencesUniversity of DenverDenverColoradoUSA
| | - Keanna M. Lundy
- Department of Biological SciencesUniversity of DenverDenverColoradoUSA
| | - Dawn E. Westhoff
- Cell and Molecular Biology DepartmentTulane UniversityNew OrleansLouisinaUSA
| | - Stryder M. Meadows
- Cell and Molecular Biology DepartmentTulane UniversityNew OrleansLouisinaUSA
| | - Erich J. Kushner
- Department of Biological SciencesUniversity of DenverDenverColoradoUSA
| |
Collapse
|
30
|
Shang R, Lal N, Lee CS, Zhai Y, Puri K, Seira O, Boushel RC, Sultan I, Räsänen M, Alitalo K, Hussein B, Rodrigues B. Cardiac-specific VEGFB overexpression reduces lipoprotein lipase activity and improves insulin action in rat heart. Am J Physiol Endocrinol Metab 2021; 321:E753-E765. [PMID: 34747201 DOI: 10.1152/ajpendo.00219.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac muscle uses multiple sources of energy including glucose and fatty acid (FA). The heart cannot synthesize FA and relies on obtaining it from other sources, with lipoprotein lipase (LPL) breakdown of lipoproteins suggested to be a key source of FA for cardiac use. Recent work has indicated that cardiac vascular endothelial growth factor B (VEGFB) overexpression expands the coronary vasculature and facilitates metabolic reprogramming that favors glucose utilization. We wanted to explore whether this influence of VEGFB on cardiac metabolism involves regulation of LPL activity with consequent effects on lipotoxicity and insulin signaling. The transcriptomes of rats with and without cardiomyocyte-specific overexpression of human VEGFB were compared by using RNA sequencing. Isolated perfused hearts or cardiomyocytes incubated with heparin were used to enable measurement of LPL activity. Untargeted metabolomic analysis was performed for quantification of cardiac lipid metabolites. Cardiac insulin sensitivity was evaluated using fast-acting insulin. Isolated heart and cardiomyocytes were used to determine transgene-encoded VEGFB isoform secretion patterns and mitochondrial oxidative capacity using high-resolution respirometry and extracellular flux analysis. In vitro, transgenic cardiomyocytes incubated overnight and thus exposed to abundantly secreted VEGFB isoforms, in the absence of any in vivo confounding regulators of cardiac metabolism, demonstrated higher basal oxygen consumption. In the whole heart, VEGFB overexpression induced an angiogenic response that was accompanied by limited cardiac LPL activity through multiple mechanisms. This was associated with a lowered accumulation of lipid intermediates, diacylglycerols and lysophosphatidylcholine, that are known to influence insulin action. In response to exogenous insulin, transgenic hearts demonstrated increased insulin sensitivity. In conclusion, the interrogation of VEGFB function on cardiac metabolism uncovered an intriguing and previously unappreciated effect to lower LPL activity and prevent lipid metabolite accumulation to improve insulin action. VEGFB could be a potential cardioprotective therapy to treat metabolic disorders, for example, diabetes.NEW & NOTEWORTHY In hearts overexpressing vascular endothelial growth factor B (VEGFB), besides its known angiogenic response, multiple regulatory mechanisms lowered coronary LPL. This was accompanied by limited cardiac lipid metabolite accumulation with an augmentation of cardiac insulin action. Our data for the first time links VEGFB to coronary LPL in regulation of cardiac metabolism. VEGFB may be cardioprotective in metabolic disorders like diabetes.
Collapse
Affiliation(s)
- Rui Shang
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nathaniel Lal
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chae Syng Lee
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yajie Zhai
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karanjit Puri
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oscar Seira
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert C Boushel
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ibrahim Sultan
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Markus Räsänen
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Gross SJ, Webb AM, Peterlin AD, Durrant JR, Judson RJ, Raza Q, Kitajewski JK, Kushner EJ. Notch regulates vascular collagen IV basement membrane through modulation of lysyl hydroxylase 3 trafficking. Angiogenesis 2021; 24:789-805. [PMID: 33956260 PMCID: PMC8487879 DOI: 10.1007/s10456-021-09791-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/19/2021] [Indexed: 11/26/2022]
Abstract
Collagen type IV (Col IV) is a basement membrane protein associated with early blood vessel morphogenesis and is essential for blood vessel stability. Defects in vascular Col IV deposition are the basis of heritable disorders, such as small vessel disease, marked by cerebral hemorrhage and drastically shorten lifespan. To date, little is known about how endothelial cells regulate the intracellular transport and selective secretion of Col IV in response to angiogenic cues, leaving a void in our understanding of this critical process. Our aim was to identify trafficking pathways that regulate Col IV deposition during angiogenic blood vessel development. We have identified the GTPase Rab10 as a major regulator of Col IV vesicular trafficking during vascular development using both in vitro imaging and biochemistry as well as in vivo models. Knockdown of Rab10 reduced de novo Col IV secretion in vivo and in vitro. Mechanistically, we determined that Rab10 is an indirect mediator of Col IV secretion, partnering with atypical Rab25 to deliver the enzyme lysyl hydroxylase 3 (LH3) to Col IV-containing vesicles staged for secretion. Loss of Rab10 or Rab25 results in depletion of LH3 from Col IV-containing vesicles and rapid lysosomal degradation of Col IV. Furthermore, we demonstrate that Rab10 is Notch responsive, indicating a novel connection between permissive Notch-based vessel maturation programs and vesicle trafficking. Our results illustrate both a new trafficking-based component in the regulated secretion of Col IV and how this vesicle trafficking program interfaces with Notch signaling to fine-tune basement membrane secretion during blood vessel development.
Collapse
Affiliation(s)
- Stephen J Gross
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Amelia M Webb
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Alek D Peterlin
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | | | - Rachel J Judson
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Qanber Raza
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL, USA
| | - Jan K Kitajewski
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
32
|
Wang WY, Kent RN, Huang SA, Jarman EH, Shikanov EH, Davidson CD, Hiraki HL, Lin D, Wall MA, Matera DL, Shin JW, Polacheck WJ, Shikanov A, Baker BM. Direct comparison of angiogenesis in natural and synthetic biomaterials reveals that matrix porosity regulates endothelial cell invasion speed and sprout diameter. Acta Biomater 2021; 135:260-273. [PMID: 34469789 PMCID: PMC8595798 DOI: 10.1016/j.actbio.2021.08.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Vascularization of large, diffusion-hindered biomaterial implants requires an understanding of how extracellular matrix (ECM) properties regulate angiogenesis. Sundry biomaterials assessed across many disparate angiogenesis assays have highlighted ECM determinants that influence this complex multicellular process. However, the abundance of material platforms, each with unique parameters to model endothelial cell (EC) sprouting presents additional challenges of interpretation and comparison between studies. In this work we directly compared the angiogenic potential of commonly utilized natural (collagen and fibrin) and synthetic dextran vinyl sulfone (DexVS) hydrogels in a multiplexed angiogenesis-on-a-chip platform. Modulating matrix density of collagen and fibrin hydrogels confirmed prior findings that increases in matrix density correspond to increased EC invasion as connected, multicellular sprouts, but with decreased invasion speeds. Angiogenesis in synthetic DexVS hydrogels, however, resulted in fewer multicellular sprouts. Characterizing hydrogel Young's modulus and permeability (a measure of matrix porosity), we identified matrix permeability to significantly correlate with EC invasion depth and sprout diameter. Although microporous collagen and fibrin hydrogels produced lumenized sprouts in vitro, they rapidly resorbed post-implantation into the murine epididymal fat pad. In contrast, DexVS hydrogels proved comparatively stable. To enhance angiogenesis within DexVS hydrogels, we incorporated sacrificial microgels to generate cell-scale pores throughout the hydrogel. Microporous DexVS hydrogels resulted in lumenized sprouts in vitro and enhanced cell invasion in vivo. Towards the design of vascularized biomaterials for long-term regenerative therapies, this work suggests that synthetic biomaterials offer improved size and shape control following implantation and that tuning matrix porosity may better support host angiogenesis. STATEMENT OF SIGNIFICANCE: Understanding how extracellular matrix properties govern angiogenesis will inform biomaterial design for engineering vascularized implantable grafts. Here, we utilized a multiplexed angiogenesis-on-a-chip platform to compare the angiogenic potential of natural (collagen and fibrin) and synthetic dextran vinyl sulfone (DexVS) hydrogels. Characterization of matrix properties and sprout morphometrics across these materials points to matrix porosity as a critical regulator of sprout invasion speed and diameter, supported by the observation that nanoporous DexVS hydrogels yielded endothelial cell sprouts that were not perfusable. To enhance angiogenesis into synthetic hydrogels, we incorporated sacrificial microgels to generate microporosity. We find that microporosity increased sprout diameter in vitro and cell invasion in vivo. This work establishes a composite materials approach to enhance the vascularization of synthetic hydrogels.
Collapse
Affiliation(s)
- William Y Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Robert N Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Stephanie A Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27514, United States
| | - Evan H Jarman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Eve H Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Christopher D Davidson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Harrison L Hiraki
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Daphne Lin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Monica A Wall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Daniel L Matera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine & Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, United States
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27514, United States; McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
33
|
Qiang W, Wei R, Chen Y, Chen D. Clinical Pathological Features and Current Animal Models of Type 3 Macular Neovascularization. Front Neurosci 2021; 15:734860. [PMID: 34512255 PMCID: PMC8427186 DOI: 10.3389/fnins.2021.734860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2021] [Indexed: 02/05/2023] Open
Abstract
Type 3 macular neovascularization (MNV3), or retinal angiomatous proliferation (RAP), is a distinct type of neovascular age-related macular degeneration (AMD), which is a leading cause of vision loss in older persons. During the past decade, systematic investigation into the clinical, multimodal imaging, and histopathological features and therapeutic outcomes has provided important new insight into this disease. These studies favor the retinal origin of MNV3 and suggest the involvement of retinal hypoxia, inflammation, von Hippel–Lindau (VHL)–hypoxia-inducible factor (HIF)–vascular endothelial growth factor (VEGF) pathway, and multiple cell types in the development and progression of MNV3. Several mouse models, including the recently built Rb/p107/Vhl triple knockout mouse model by our group, have induced many of the histological features of MNV3 and provided much insight into the underlying pathological mechanisms. These models have revealed the roles of retinal hypoxia, inflammation, lipid metabolism, VHL/HIF pathway, and retinoblastoma tumor suppressor (Rb)–E2F cell cycle pathway in the development of MNV3. This article will summarize the clinical, multimodal imaging, and pathological features of MNV3 and the diversity of animal models that exist for MNV3, as well as their strengths and limitations.
Collapse
Affiliation(s)
- Wei Qiang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Wei
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Danian Chen
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Abstract
The prevalence of peripheral arterial disease (PAD) in the United States exceeds 10 million people, and PAD is a significant cause of morbidity and mortality across the globe. PAD is typically caused by atherosclerotic obstructions in the large arteries to the leg(s). The most common clinical consequences of PAD include pain on walking (claudication), impaired functional capacity, pain at rest, and loss of tissue integrity in the distal limbs that may lead to lower extremity amputation. Patients with PAD also have higher than expected rates of myocardial infarction, stroke, and cardiovascular death. Despite advances in surgical and endovascular procedures, revascularization procedures may be suboptimal in relieving symptoms, and some patients with PAD cannot be treated because of comorbid conditions. In some cases, relieving obstructive disease in the large conduit arteries does not assure complete limb salvage because of severe microvascular disease. Despite several decades of investigational efforts, medical therapies to improve perfusion to the distal limb are of limited benefit. Whereas recent studies of anticoagulant (eg, rivaroxaban) and intensive lipid lowering (such as PCSK9 [proprotein convertase subtilisin/kexin type 9] inhibitors) have reduced major cardiovascular and limb events in PAD populations, chronic ischemia of the limb remains largely resistant to medical therapy. Experimental approaches to improve limb outcomes have included the administration of angiogenic cytokines (either as recombinant protein or as gene therapy) as well as cell therapy. Although early angiogenesis and cell therapy studies were promising, these studies lacked sufficient control groups and larger randomized clinical trials have yet to achieve significant benefit. This review will focus on what has been learned to advance medical revascularization for PAD and how that information might lead to novel approaches for therapeutic angiogenesis and arteriogenesis for PAD.
Collapse
Affiliation(s)
- Brian H Annex
- Vascular Biology Center, Department of Medicine, Medical College of Georgia, Augusta University (B.H.A.)
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX (J.P.C.)
| |
Collapse
|
35
|
Groblewska M, Mroczko B. Pro- and Antiangiogenic Factors in Gliomas: Implications for Novel Therapeutic Possibilities. Int J Mol Sci 2021; 22:ijms22116126. [PMID: 34200145 PMCID: PMC8201226 DOI: 10.3390/ijms22116126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis, a complex, multistep process of forming new blood vessels, plays crucial role in normal development, embryogenesis, and wound healing. Malignant tumors characterized by increased proliferation also require new vasculature to provide an adequate supply of oxygen and nutrients for developing tumor. Gliomas are among the most frequent primary tumors of the central nervous system (CNS), characterized by increased new vessel formation. The processes of neoangiogenesis, necessary for glioma development, are mediated by numerous growth factors, cytokines, chemokines and other proteins. In contrast to other solid tumors, some biological conditions, such as the blood–brain barrier and the unique interplay between immune microenvironment and tumor, represent significant challenges in glioma therapy. Therefore, the objective of the study was to present the role of various proangiogenic factors in glioma angiogenesis as well as the differences between normal and tumoral angiogenesis. Another goal was to present novel therapeutic options in oncology approaches. We performed a thorough search via the PubMed database. In this paper we describe various proangiogenic factors in glioma vasculature development. The presented paper also reviews various antiangiogenic factors necessary in maintaining equilibrium between pro- and antiangiogenic processes. Furthermore, we present some novel possibilities of antiangiogenic therapy in this type of tumors.
Collapse
Affiliation(s)
- Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland
- Correspondence: ; Tel.: +48-858318785
| |
Collapse
|
36
|
Chico TJA, Kugler EC. Cerebrovascular development: mechanisms and experimental approaches. Cell Mol Life Sci 2021; 78:4377-4398. [PMID: 33688979 PMCID: PMC8164590 DOI: 10.1007/s00018-021-03790-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
The cerebral vasculature plays a central role in human health and disease and possesses several unique anatomic, functional and molecular characteristics. Despite their importance, the mechanisms that determine cerebrovascular development are less well studied than other vascular territories. This is in part due to limitations of existing models and techniques for visualisation and manipulation of the cerebral vasculature. In this review we summarise the experimental approaches used to study the cerebral vessels and the mechanisms that contribute to their development.
Collapse
Affiliation(s)
- Timothy J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| | - Elisabeth C Kugler
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| |
Collapse
|
37
|
Francis CR, Claflin S, Kushner EJ. Synaptotagmin-Like Protein 2a Regulates Angiogenic Lumen Formation via Weibel-Palade Body Apical Secretion of Angiopoietin-2. Arterioscler Thromb Vasc Biol 2021; 41:1972-1986. [PMID: 33853352 DOI: 10.1161/atvbaha.121.316113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | - Shea Claflin
- Department of Biological Sciences, University of Denver, CO
| | | |
Collapse
|
38
|
Räsänen M, Sultan I, Paech J, Hemanthakumar KA, Yu W, He L, Tang J, Sun Y, Hlushchuk R, Huan X, Armstrong E, Khoma OZ, Mervaala E, Djonov V, Betsholtz C, Zhou B, Kivelä R, Alitalo K. VEGF-B Promotes Endocardium-Derived Coronary Vessel Development and Cardiac Regeneration. Circulation 2020; 143:65-77. [PMID: 33203221 DOI: 10.1161/circulationaha.120.050635] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Recent discoveries have indicated that, in the developing heart, sinus venosus and endocardium provide major sources of endothelium for coronary vessel growth that supports the expanding myocardium. Here we set out to study the origin of the coronary vessels that develop in response to vascular endothelial growth factor B (VEGF-B) in the heart and the effect of VEGF-B on recovery from myocardial infarction. METHODS We used mice and rats expressing a VEGF-B transgene, VEGF-B-gene-deleted mice and rats, apelin-CreERT, and natriuretic peptide receptor 3-CreERT recombinase-mediated genetic cell lineage tracing and viral vector-mediated VEGF-B gene transfer in adult mice. Left anterior descending coronary vessel ligation was performed, and 5-ethynyl-2'-deoxyuridine-mediated proliferating cell cycle labeling; flow cytometry; histological, immunohistochemical, and biochemical methods; single-cell RNA sequencing and subsequent bioinformatic analysis; microcomputed tomography; and fluorescent- and tracer-mediated vascular perfusion imaging analyses were used to study the development and function of the VEGF-B-induced vessels in the heart. RESULTS We show that cardiomyocyte overexpression of VEGF-B in mice and rats during development promotes the growth of novel vessels that originate directly from the cardiac ventricles and maintain connection with the coronary vessels in subendocardial myocardium. In adult mice, endothelial proliferation induced by VEGF-B gene transfer was located predominantly in the subendocardial coronary vessels. Furthermore, VEGF-B gene transduction before or concomitantly with ligation of the left anterior descending coronary artery promoted endocardium-derived vessel development into the myocardium and improved cardiac tissue remodeling and cardiac function. CONCLUSIONS The myocardial VEGF-B transgene promotes the formation of endocardium-derived coronary vessels during development, endothelial proliferation in subendocardial myocardium in adult mice, and structural and functional rescue of cardiac tissue after myocardial infarction. VEGF-B could provide a new therapeutic strategy for cardiac neovascularization after coronary occlusion to rescue the most vulnerable myocardial tissue.
Collapse
Affiliation(s)
- Markus Räsänen
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| | - Ibrahim Sultan
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| | - Jennifer Paech
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| | - Karthik Amudhala Hemanthakumar
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| | - Wei Yu
- The State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (W.Y., J.T., X.H., B.Z.)
| | - Liqun He
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, China (L.H.).,Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (L.H., Y.S., C.B.)
| | - Juan Tang
- The State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (W.Y., J.T., X.H., B.Z.)
| | - Ying Sun
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (L.H., Y.S., C.B.)
| | - Ruslan Hlushchuk
- Institute of Anatomy, University of Bern, Switzerland (R.H., O.-Z.K., V.D.)
| | - Xiuzheng Huan
- The State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (W.Y., J.T., X.H., B.Z.)
| | - Emma Armstrong
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| | | | - Eero Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.M.)
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Switzerland (R.H., O.-Z.K., V.D.)
| | - Christer Betsholtz
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, Sweden (C.B.)
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (W.Y., J.T., X.H., B.Z.)
| | - Riikka Kivelä
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| |
Collapse
|
39
|
Mühleder S, Fernández-Chacón M, Garcia-Gonzalez I, Benedito R. Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. Cell Mol Life Sci 2020; 78:1329-1354. [PMID: 33078209 PMCID: PMC7904752 DOI: 10.1007/s00018-020-03664-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Therapeutic modulation of vascular cell proliferation and migration is essential for the effective inhibition of angiogenesis in cancer or its induction in cardiovascular disease. The general view is that an increase in vascular growth factor levels or mitogenic stimulation is beneficial for angiogenesis, since it leads to an increase in both endothelial proliferation and sprouting. However, several recent studies showed that an increase in mitogenic stimuli can also lead to the arrest of angiogenesis. This is due to the existence of intrinsic signaling feedback loops and cell cycle checkpoints that work in synchrony to maintain a balance between endothelial proliferation and sprouting. This balance is tightly and effectively regulated during tissue growth and is often deregulated or impaired in disease. Most therapeutic strategies used so far to promote vascular growth simply increase mitogenic stimuli, without taking into account its deleterious effects on this balance and on vascular cells. Here, we review the main findings on the mechanisms controlling physiological vascular sprouting, proliferation, and senescence and how those mechanisms are often deregulated in acquired or congenital cardiovascular disease leading to a diverse range of pathologies. We also discuss alternative approaches to increase the effectiveness of pro-angiogenic therapies in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Severin Mühleder
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Macarena Fernández-Chacón
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Irene Garcia-Gonzalez
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
40
|
Jing G, Yao J, Dang Y, Liang W, Xie L, Chen J, Li Z. The role of β-HCG and VEGF-MEK/ERK signaling pathway in villi angiogenesis in patients with missed abortion. Placenta 2020; 103:16-23. [PMID: 33068962 DOI: 10.1016/j.placenta.2020.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To analyze the effects of the Human Chorionic Gonadotropin beta (β-hCG) and the VEGF-MEK/ERK signaling pathway on villi angiogenesis in early missed abortion. METHODS A total of 12 cases of women with missed abortion and 12 cases of women who had induced abortion voluntarily without any disease were included in the present study. The age, pregnancy time and gestation period in the control group corresponded to the missed abortion group. Wes Simple Western system and qRT-PCR were used to detect the expression of VEGF-MEK/ERK signaling pathway related proteins and genes in villous. Radioimmunoassay and Enzyme-linked immunosorbent assay were used to detect β-hCG and VEGF levels in serum. The microvascular density (MVD) in villous tissue was analyzed by immunohistochemical staining. RESULTS The levels of β-hCG and VEGF in serum, the expression of VEGF-MEK/ERK signaling pathway and MVD in villous tissue of the missed abortion group were lower than those of the control group. In addition, compared with the control group, the layers of trophoblasts of the villous tissue in the missed abortion group became thinner significantly, the number of cells reduced, the cell structures were disorganized, and parts of the trophoblast cells were absent. Correlational analysis showed that the protein expression of ERK1/2 was positively correlated with MVD in missed abortion group. CONCLUSIONS Our results reveal that decreased production of β-hCG in early pregnant women could down-regulate the expression of VEGF-MEK/ERK signal pathway, then reduce angiogenesis and eventually leading to the abnormal angiogenesis of villous, which may be an important mechanism of missed abortion.
Collapse
Affiliation(s)
- Guangzhuang Jing
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jianling Yao
- Maternal and Child Health Hospital of Jingning Country, Lanzhou, 743400, China
| | - Yuhui Dang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Weitao Liang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Li'ao Xie
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jia Chen
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Zhilan Li
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
41
|
Njah K, Chakraborty S, Qiu B, Arumugam S, Raju A, Pobbati AV, Lakshmanan M, Tergaonkar V, Thibault G, Wang X, Hong W. A Role of Agrin in Maintaining the Stability of Vascular Endothelial Growth Factor Receptor-2 during Tumor Angiogenesis. Cell Rep 2020; 28:949-965.e7. [PMID: 31340156 DOI: 10.1016/j.celrep.2019.06.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 04/16/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Endothelial cell (EC) recruitment is central to the vascularization of tumors. Although several proteoglycans have been implicated in cancer and angiogenesis, their roles in EC recruitment and vascularization during tumorigenesis remain poorly understood. Here, we reveal that Agrin, which is secreted in liver cancer, promotes angiogenesis by recruiting ECs within tumors and metastatic lesions and facilitates adhesion of cancer cells to ECs. In ECs, Agrin-induced angiogenesis and adherence to cancer cells are mediated by Integrin-β1, Lrp4-MuSK pathways involving focal adhesion kinase. Mechanistically, we uncover that Agrin regulates VEGFR2 levels that sustain the angiogenic property of ECs and adherence to cancer cells. Agrin attributes an ECM stiffness-based stabilization of VEGFR2 by enhancing interactions with Integrin-β1-Lrp4 and additionally stimulates endothelial nitric-oxide synthase (e-NOS) signaling. Therefore, we propose that cross-talk between Agrin-expressing cancer and ECs favor angiogenesis by sustaining the VEGFR2 pathway.
Collapse
Affiliation(s)
- Kizito Njah
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Sayan Chakraborty
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | - Beiying Qiu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Surender Arumugam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Anandhkumar Raju
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Ajaybabu V Pobbati
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Xiaomeng Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore; Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
42
|
刘 铮, 许 超, 俞 益, 涂 冬. [Research progress of tibial transverse transport in treatment of chronic ischemic diseases of the lower extremities]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:994-999. [PMID: 32794668 PMCID: PMC8171916 DOI: 10.7507/1002-1892.202004061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/22/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To summarize the research progress of tibial transverse transport (TTT) in treatment of chronic ischemic diseases of the lower extremities. METHODS The related literature was systematically searched and the mechanisms, clinical treatment methods, clinical efficacy, indications, contraindications, and complications of TTT were discussed. RESULTS Based on the law of tension-stress, TTT is a new method in the treatment of chronic ischemic diseases of the lower extremities. It can relieve the ischemic symptoms, promote the wound healing, and increase the limb salvage rate. The clinical application in recent years has shown good effectiveness, and the scope of application is expanding. CONCLUSION Due to the current limited clinical application, the sample size of the TTT for the chronic ischemic diseases of the lower extremities is relatively small, and the follow-up time is limited. So its validity, long-term effectiveness, and bone transport standards are need further research.
Collapse
Affiliation(s)
- 铮 刘
- 浙江中医药大学第二临床医学院(杭州 310053)The Second Clinical College of Zhejiang Traditional Chinese Medical University, Hangzhou Zhejiang, 310053, P.R.China
| | - 超 许
- 浙江中医药大学第二临床医学院(杭州 310053)The Second Clinical College of Zhejiang Traditional Chinese Medical University, Hangzhou Zhejiang, 310053, P.R.China
| | - 益康 俞
- 浙江中医药大学第二临床医学院(杭州 310053)The Second Clinical College of Zhejiang Traditional Chinese Medical University, Hangzhou Zhejiang, 310053, P.R.China
| | - 冬鹏 涂
- 浙江中医药大学第二临床医学院(杭州 310053)The Second Clinical College of Zhejiang Traditional Chinese Medical University, Hangzhou Zhejiang, 310053, P.R.China
| |
Collapse
|
43
|
Instability of Non-Standard Microsatellites in Relation to Prognosis in Metastatic Colorectal Cancer Patients. Int J Mol Sci 2020; 21:ijms21103532. [PMID: 32429465 PMCID: PMC7279028 DOI: 10.3390/ijms21103532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Very few data are reported in the literature on the association between elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) and prognosis in advanced colorectal cancer. Moreover, there is no information available in relation to the response to antiangiogenic treatment. We analyzed EMAST and vascular endothelial growth factor-B (VEGF-B) microsatellite status, together with standard microsatellite instability (MSI), in relation to prognosis in 141 patients with metastatic colorectal cancer (mCRC) treated with chemotherapy (CT) alone (n = 51) or chemotherapy with bevacizumab (B) (CT + B; n = 90). High MSI (MSI-H) was detected in 3% of patients and was associated with progression-free survival (PFS; p = 0.005) and overall survival (OS; p < 0.0001). A total of 8% of cases showed EMAST instability, which was associated with worse PFS (p = 0.0006) and OS (p < 0.0001) in patients treated with CT + B. A total of 24.2% of patients showed VEGF-B instability associated with poorer outcome in (p = 0.005) in the CT arm. In conclusion, our analysis indicated that EMAST instability is associated with worse prognosis, particularly evident in patients receiving CT + B.
Collapse
|
44
|
Okabe K, Fukada H, Tai-Nagara I, Ando T, Honda T, Nakajima K, Takeda N, Fong GH, Ema M, Kubota Y. Neuron-derived VEGF contributes to cortical and hippocampal development independently of VEGFR1/2-mediated neurotrophism. Dev Biol 2020; 459:65-71. [PMID: 31790655 DOI: 10.1016/j.ydbio.2019.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/07/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a potent mitogen critical for angiogenesis and organogenesis. Deletion or inhibition of VEGF during development not only profoundly suppresses vascular outgrowth, but significantly affects the development and function of various organs. In the brain, VEGF is thought to not only promote vascular growth, but also directly act on neurons as a neurotrophic factor by activating VEGF receptors. In the present study, we demonstrated that deletion of VEGF using hGfap-Cre line, which recombines genes specifically in cortical and hippocampal neurons, severely impaired brain organization and vascularization of these regions. The mutant mice had motor deficits, with lethality around the time of weaning. Multiple reporter lines indicated that VEGF was highly expressed in neurons, but that its cognate receptors, VEGFR1 and 2 were exclusive to endothelial cells in the brain. In accordance, mice lacking neuronal VEGFR1 and VEGFR2 did not exhibit neuronal deformities or lethality. Taken together, our data suggest that neuron-derived VEGF contributes to cortical and hippocampal development likely through angiogenesis independently of direct neurotrophic effects mediated by VEGFR1 and 2.
Collapse
Affiliation(s)
- Keisuke Okabe
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Plastic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Hugh Fukada
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ikue Tai-Nagara
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tomofumi Ando
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takao Honda
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Guo-Hua Fong
- Center for Vascular Biology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06032, USA; Department of Cell Biology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06032, USA
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
45
|
Thalgott JH, Dos-Santos-Luis D, Hosman AE, Martin S, Lamandé N, Bracquart D, Srun S, Galaris G, de Boer HC, Tual-Chalot S, Kroon S, Arthur HM, Cao Y, Snijder RJ, Disch F, Mager JJ, Rabelink TJ, Mummery CL, Raymond K, Lebrin F. Decreased Expression of Vascular Endothelial Growth Factor Receptor 1 Contributes to the Pathogenesis of Hereditary Hemorrhagic Telangiectasia Type 2. Circulation 2019; 138:2698-2712. [PMID: 30571259 DOI: 10.1161/circulationaha.117.033062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hereditary Hemorrhagic Telangiectasia type 2 (HHT2) is an inherited genetic disorder characterized by vascular malformations and hemorrhage. HHT2 results from ACVRL1 haploinsufficiency, the remaining wild-type allele being unable to contribute sufficient protein to sustain endothelial cell function. Blood vessels function normally but are prone to respond to angiogenic stimuli, leading to the development of telangiectasic lesions that can bleed. How ACVRL1 haploinsufficiency leads to pathological angiogenesis is unknown. METHODS We took advantage of Acvrl1+/- mutant mice that exhibit HHT2 vascular lesions and focused on the neonatal retina and the airway system after Mycoplasma pulmonis infection, as physiological and pathological models of angiogenesis, respectively. We elucidated underlying disease mechanisms in vitro by generating Acvrl1+/- mouse embryonic stem cell lines that underwent sprouting angiogenesis and performed genetic complementation experiments. Finally, HHT2 plasma samples and skin biopsies were analyzed to determine whether the mechanisms evident in mice are conserved in humans. RESULTS Acvrl1+/- retinas at postnatal day 7 showed excessive angiogenesis and numerous endothelial "tip cells" at the vascular front that displayed migratory defects. Vascular endothelial growth factor receptor 1 (VEGFR1; Flt-1) levels were reduced in Acvrl1+/- mice and HHT2 patients, suggesting similar mechanisms in humans. In sprouting angiogenesis, VEGFR1 is expressed in stalk cells to inhibit VEGFR2 (Flk-1, KDR) signaling and thus limit tip cell formation. Soluble VEGFR1 (sVEGFR1) is also secreted, creating a VEGF gradient that promotes orientated sprout migration. Acvrl1+/- embryonic stem cell lines recapitulated the vascular anomalies in Acvrl1+/- (HHT2) mice. Genetic insertion of either the membrane or soluble form of VEGFR1 into the ROSA26 locus of Acvrl1+/- embryonic stem cell lines prevented the vascular anomalies, suggesting that high VEGFR2 activity in Acvrl1+/- endothelial cells induces HHT2 vascular anomalies. To confirm our hypothesis, Acvrl1+/- mice were infected by Mycoplasma pulmonis to induce sustained airway inflammation. Infected Acvrl1+/- tracheas showed excessive angiogenesis with the formation of multiple telangiectases, vascular defects that were prevented by VEGFR2 blocking antibodies. CONCLUSIONS Our findings demonstrate a key role of VEGFR1 in HHT2 pathogenesis and provide mechanisms explaining why HHT2 blood vessels respond abnormally to angiogenic signals. This supports the case for using anti-VEGF therapy in HHT2.
Collapse
Affiliation(s)
- Jérémy H Thalgott
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, The Netherlands (J.H.T., G.G., H.C.d.B., T.J.R., K.R., F.L.)
| | - Damien Dos-Santos-Luis
- CNRS UMR 7241, INSERM U1050, Collège de France, Paris (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
- MEMOLIFE Laboratory of Excellence and PSL Research University, Paris, France (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
| | - Anna E Hosman
- St. Antonius Hospital, Nieuwegein, The Netherlands (A.E.H., S.K., R.J.S., F.D., J.J.M.)
| | - Sabrina Martin
- CNRS UMR 7241, INSERM U1050, Collège de France, Paris (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
- MEMOLIFE Laboratory of Excellence and PSL Research University, Paris, France (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
| | - Noël Lamandé
- CNRS UMR 7241, INSERM U1050, Collège de France, Paris (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
- MEMOLIFE Laboratory of Excellence and PSL Research University, Paris, France (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
| | - Diane Bracquart
- CNRS UMR 7241, INSERM U1050, Collège de France, Paris (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
- MEMOLIFE Laboratory of Excellence and PSL Research University, Paris, France (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
| | - Samly Srun
- CNRS UMR 7241, INSERM U1050, Collège de France, Paris (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
- MEMOLIFE Laboratory of Excellence and PSL Research University, Paris, France (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
| | - Georgios Galaris
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, The Netherlands (J.H.T., G.G., H.C.d.B., T.J.R., K.R., F.L.)
| | - Hetty C de Boer
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, The Netherlands (J.H.T., G.G., H.C.d.B., T.J.R., K.R., F.L.)
| | - Simon Tual-Chalot
- Institute of Genetic Medicine, Centre of Life, Newcastle University, United Kingdom (S.T.-C., H.M.A., )
| | - Steven Kroon
- St. Antonius Hospital, Nieuwegein, The Netherlands (A.E.H., S.K., R.J.S., F.D., J.J.M.)
| | - Helen M Arthur
- Institute of Genetic Medicine, Centre of Life, Newcastle University, United Kingdom (S.T.-C., H.M.A., )
| | - Yihai Cao
- Department of Microbiology, Tumor and cell Biology, Karolinska Institute, Stockholm, Sweden (Y.C.)
| | - Repke J Snijder
- St. Antonius Hospital, Nieuwegein, The Netherlands (A.E.H., S.K., R.J.S., F.D., J.J.M.)
| | - Frans Disch
- St. Antonius Hospital, Nieuwegein, The Netherlands (A.E.H., S.K., R.J.S., F.D., J.J.M.)
| | - Johannes J Mager
- St. Antonius Hospital, Nieuwegein, The Netherlands (A.E.H., S.K., R.J.S., F.D., J.J.M.)
| | - Ton J Rabelink
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, The Netherlands (J.H.T., G.G., H.C.d.B., T.J.R., K.R., F.L.)
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (C.L.M.)
| | - Karine Raymond
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, The Netherlands (J.H.T., G.G., H.C.d.B., T.J.R., K.R., F.L.)
- Sorbonne Université, UPMC Université Paris 06, INSERM UMR_S938, Centre de Recherche Saint-Antoine, France (K.R.)
| | - Franck Lebrin
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, The Netherlands (J.H.T., G.G., H.C.d.B., T.J.R., K.R., F.L.)
- CNRS UMR 7241, INSERM U1050, Collège de France, Paris (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
- MEMOLIFE Laboratory of Excellence and PSL Research University, Paris, France (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
- CNRS UMR 7587, INSERM U979, Institut Langevin, ESPCI, Paris, France (F.L.)
| |
Collapse
|
46
|
Mousavi SA, Skjeldal F, Fønhus MS, Haugen LH, Eskild W, Berg T, Bakke O. Receptor-Mediated Endocytosis of VEGF-A in Rat Liver Sinusoidal Endothelial Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5496197. [PMID: 31583245 PMCID: PMC6754870 DOI: 10.1155/2019/5496197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS Vascular endothelial growth factor (VEGF) receptors (VEGFR1 and VEGFR2) bind VEGF-A with high affinity. This study sought to determine the relative contributions of these two receptors to receptor-mediated endocytosis of VEGF-A and to clarify their endocytic itineraries in rat liver sinusoidal endothelial cells (LSECs). METHODS Isolated LSECs and radiolabeled VEGF-A were used to examine surface binding and receptor-mediated endocytosis. Quantitative real time RT-PCR (Q-RT-PCR) and Western blotting were applied to demonstrate receptor expression. RESULTS Q-RT-PCR analysis showed that VEGFR1 and VEGFR2 mRNA were expressed in LSECs. Ligand saturation analysis at 4°C indicated two different classes of [125I]-VEGFA binding sites on LSECs with apparent dissociation constants of 8 and 210 pM. At 37°C, LSECs efficiently took up and degraded [125I]-VEGF-A for at least 2 hours. Uptake of [125I]-VEGF-A by LSECs was blocked by dynasore that inhibits dynamin-dependent internalization, whereas inhibition of cysteine proteases by leupeptin inhibited degradation without affecting the uptake of [125I]-VEGF-A, suggesting that it is degraded following transport to lysosomes. Incubation of LSECs in the continued presence of a saturating concentration of unlabeled VEGF-A at 37°C was associated with a loss of as much as 75% of the total VEGFR2 within 30 min as shown by Western blot analysis, whereas there was no appreciable decrease in protein levels for VEGFR1 after 120 min incubation, suggesting that VEGF-A stimulation downregulates VEGFR2, but not VEGFR1, in LSECs. This possibility was supported by the observation that a hexapeptide that specifically blocks VEGF-A binding to VEGFR1 caused a marked reduction in the uptake of [125I]-VEGF-A, whereas a control peptide had no effect. Finally, live cell imaging studies using a fluorescently labeled anti-VEGFR2 antibody showed that VEGFR2 was transported via early and late endosomes to reach endolysosomes where degradation of the VEGFR2 takes place. CONCLUSION Our studies suggest that, subsequent to VEGF-A binding and internalization, the unoccupied VEGFR1 may recycle to the cell surface allowing its reutilization, whereas the majority of the internalized VEGFR2 is targeted for degradation.
Collapse
Affiliation(s)
- Seyed Ali Mousavi
- Department of Immunology and Transfusion Medicine, Akershus University Hospital, University of Oslo, Norway
- Department of Biosciences, University of Oslo, Norway
| | | | | | | | - Winnie Eskild
- Department of Biosciences, University of Oslo, Norway
| | - Trond Berg
- Department of Biosciences, University of Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
47
|
Boucher JM, Robich M, Scott SS, Yang X, Ryzhova L, Turner JE, Pinz I, Liaw L. Rab27a Regulates Human Perivascular Adipose Progenitor Cell Differentiation. Cardiovasc Drugs Ther 2019; 32:519-530. [PMID: 30105417 DOI: 10.1007/s10557-018-6813-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Perivascular adipose tissue (PVAT) surrounds blood vessels and regulates vascular tone through paracrine secretion of cytokines. During conditions promoting cardiometabolic dysfunction, such as obesity, cytokine secretion is altered towards a proinflammatory and proatherogenic profile. Despite the clinical implications for cardiovascular disease, studies addressing the biology of human PVAT remain limited. We are interested in characterizing the resident adipose progenitor cells (APCs) because of their potential role in PVAT expansion during obesity. We also focused on proteins regulating paracrine interactions, including the small GTPase Rab27a, which regulates protein trafficking and secretion. METHODS PVAT from the ascending aorta was collected from patients with severe cardiovascular disease undergoing coronary artery bypass grafting (CABG). Freshly-isolated PVAT was digested and APC expanded in culture for characterizing progenitor markers, evaluating adipogenic potential and assessing the function(s) of Rab27a. RESULTS Using flow cytometry, RT-PCR, and immunoblot, we characterized APC from human PVAT as negative for CD45 and CD31 and expressing CD73, CD105, and CD140A. These APCs differentiate into multilocular, UCP1-producing adipocytes in vitro. Rab27a was detected in interstitial cells of human PVAT in vivo and along F-actin tracks of PVAT-APC in vitro. Knockdown of Rab27a using siRNA in PVAT-APC prior to induction resulted in a marked reduction in lipid accumulation and reduced expression of adipogenic differentiation markers. CONCLUSIONS PVAT-APC from CABG donors express common adipocyte progenitor markers and differentiate into UCP1-containing adipocytes. Rab27a has an endogenous role in promoting the maturation of adipocytes from human PVAT-derived APC.
Collapse
Affiliation(s)
- Joshua M Boucher
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04072, USA
| | - Michael Robich
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04072, USA
- Division of Thoracic and Cardiac Surgery, Maine Medical Center, Portland, ME, 04102, USA
| | - S Spencer Scott
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04072, USA
| | - Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04072, USA
| | - Larisa Ryzhova
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04072, USA
| | - Jacqueline E Turner
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04072, USA
| | - Ilka Pinz
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04072, USA
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04072, USA.
| |
Collapse
|
48
|
Endothelial cell-derived small extracellular vesicles suppress cutaneous wound healing through regulating fibroblasts autophagy. Clin Sci (Lond) 2019; 133:CS20190008. [PMID: 30988132 DOI: 10.1042/cs20190008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/27/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
Abstract
Diabetic foot ulcer is a life-threatening clinical problem in diabetic patients. Endothelial cell-derived small extracellular vesicles (sEVs) are important mediators of intercellular communication in the pathogenesis of several diseases. However, the exact mechanisms of wound healing mediated by endothelial cell-derived sEVs remain unclear. sEVs were isolated from human umbilical vein endothelial cells (HUVECs) pretreated with or without advanced glycation end products (AGEs). The roles of HUVEC-derived sEVs on the biological characteristics of skin fibroblasts were investigated both in vitro and in vivo We demonstrate that sEVs derived from AGEs-pretreated HUVECs (AGEs-sEVs) could inhibit collagen synthesis by activating autophagy of human skin fibroblasts. Additionally, treatment with AGEs-sEVs could delay the wound healing process in Sprague-Dawley (SD) rats. Further analysis indicated that miR-106b-5p was up-regulated in AGEs-sEVs and importantly, in exudate-derived sEVs from patients with diabetic foot ulcer. Consequently, sEV-mediated uptake of miR-106b-5p in recipient fibroblasts reduces expression of extracellular signal-regulated kinase 1/2 (ERK1/2), resulting in fibroblasts autophagy activation and subsequent collagen degradation. Collectively, our data demonstrate that miR-106b-5p could be enriched in AGEs-sEVs, then decreases collagen synthesis and delays cutaneous wound healing by triggering fibroblasts autophagy through reducing ERK1/2 expression.
Collapse
|
49
|
Lam I, Pickering CM, Mac Gabhann F. Context-dependent regulation of receptor tyrosine kinases: Insights from systems biology approaches. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1437. [PMID: 30255986 PMCID: PMC6537588 DOI: 10.1002/wsbm.1437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 06/07/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Receptor tyrosine kinases (RTKs) are cell membrane proteins that provide cells with the ability to sense proteins in their environments. Many RTKs are essential to development and organ growth. Derangement of RTKs-by mutation or by overexpression-is central to several developmental and adult disorders including cancer, short stature, and vascular pathologies. The mechanism of action of RTKs is complex and is regulated by contextual components, including the existence of multiple competing ligands and receptors in many families, the intracellular location of the RTK, the dynamic and cell-specific coexpression of other RTKs, and the commonality of downstream signaling pathways. This means that both the state of the cell and the microenvironment outside the cell play a role, which makes sense given the pivotal location of RTKs as the nexus linking the extracellular milieu to intracellular signaling and modification of cell behavior. In this review, we describe these different contextual components through the lens of systems biology, in which both computational modeling and experimental "omics" approaches have been used to better understand RTK networks. The complexity of these networks is such that using these systems biology approaches is necessary to get a handle on the mechanisms of pathology and the design of therapeutics targeting RTKs. In particular, we describe in detail three concrete examples (involving ErbB3, VEGFR2, and AXL) that illustrate how systems approaches can reveal key mechanistic and therapeutic insights. This article is categorized under: Biological Mechanisms > Cell Signaling Models of Systems Properties and Processes > Mechanistic Models Translational, Genomic, and Systems Medicine > Therapeutic Methods.
Collapse
Affiliation(s)
- Inez Lam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Christina M Pickering
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
50
|
A MST1-FOXO1 cascade establishes endothelial tip cell polarity and facilitates sprouting angiogenesis. Nat Commun 2019; 10:838. [PMID: 30783090 PMCID: PMC6381131 DOI: 10.1038/s41467-019-08773-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
Hypoxia is a main driver of sprouting angiogenesis, but how tip endothelial cells are directed to hypoxic regions remains poorly understood. Here, we show that an endothelial MST1–FOXO1 cascade is essential for directional migration of tip cells towards hypoxic regions. In mice, endothelial‐specific deletion of either MST1 or FOXO1 leads to the loss of tip cell polarity and subsequent impairment of sprouting angiogenesis. Mechanistically, MST1 is activated by reactive oxygen species (ROS) produced in mitochondria in response to hypoxia, and activated MST1 promotes the nuclear import of FOXO1, thus augmenting its transcriptional regulation of polarity and migration‐associated genes. Furthermore, endothelial MST1‐FOXO1 cascade is required for revascularization and neovascularization in the oxygen-induced retinopathy model. Together, the results of our study delineate a crucial coupling between extracellular hypoxia and an intracellular ROS‐MST1‐FOXO1 cascade in establishing endothelial tip cell polarity during sprouting angiogenesis. Angiogenesis is driven by the directed migration of tip endothelial cells towards hypoxic tissues. Here, Kim et al. show that the generation of reactive oxygen species in endothelial cells upon hypoxia activates MST1, which subsequently promotes the nuclear translocation of FOXO1, and thus activates a pro-migratory transcriptional programme in endothelial tip cells.
Collapse
|