1
|
Cleary SJ, Qiu L, Seo Y, Baluk P, Liu D, Serwas NK, Taylor CA, Zhang D, Cyster JG, McDonald DM, Krummel MF, Looney MR. Intravital imaging of pulmonary lymphatics in inflammation and metastatic cancer. J Exp Med 2025; 222:e20241359. [PMID: 39969509 PMCID: PMC11837973 DOI: 10.1084/jem.20241359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/11/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
Intravital microscopy has enabled the study of immune dynamics in the pulmonary microvasculature, but many key events remain unseen because they occur in deeper lung regions. We therefore developed a technique for stabilized intravital imaging of bronchovascular cuffs and collecting lymphatics surrounding pulmonary veins in mice. Intravital imaging of pulmonary lymphatics revealed ventilation dependence of steady-state lung lymph flow and ventilation-independent lymph flow during inflammation. We imaged the rapid exodus of migratory dendritic cells through lung lymphatics following inflammation and measured effects of pharmacologic and genetic interventions targeting chemokine signaling. Intravital imaging also captured lymphatic immune surveillance of lung-metastatic cancers and lymphatic metastasis of cancer cells. To our knowledge, this is the first imaging of lymph flow and leukocyte migration through intact pulmonary lymphatics. This approach will enable studies of protective and maladaptive processes unfolding within the lungs and in other previously inaccessible locations.
Collapse
Affiliation(s)
- Simon J. Cleary
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Institute of Pharmaceutical Science, King’s College London, London, UK
| | - Longhui Qiu
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Yurim Seo
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Peter Baluk
- Department of Anatomy, Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
| | - Dan Liu
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
- Westlake Laboratory of Life Sciences and Biomedicine, School of Medicine, Westlake University, Hangzhou, China
| | | | - Catherine A. Taylor
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Dongliang Zhang
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Jason G. Cyster
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
- Bakar ImmunoX Initiative, UCSF, San Francisco, CA, USA
| | - Donald M. McDonald
- Department of Anatomy, Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
| | - Matthew F. Krummel
- Department of Pathology, UCSF, San Francisco, CA, USA
- Bakar ImmunoX Initiative, UCSF, San Francisco, CA, USA
| | - Mark R. Looney
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Bakar ImmunoX Initiative, UCSF, San Francisco, CA, USA
| |
Collapse
|
2
|
Yang M, Hou S, Chen Y, Chen H, Chu M, Liu SB. Emerging insights into intravital imaging, unraveling its role in cancer immunotherapy. Cancer Immunol Immunother 2025; 74:100. [PMID: 39904769 PMCID: PMC11794739 DOI: 10.1007/s00262-025-03944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Cancer immunotherapy has attracted great attention as a potential therapeutic approach for advanced malignancies due to its promising survival benefits. Comprehension of intricate interactions between the tumor microenvironment (TME) and immune checkpoint inhibitors (ICIs) is crucial for optimizing and improving immunotherapies. Currently, several experimental strategies are available to monitor this complexity but most of them fail to facilitate real-time monitoring of the immune response such as cellular phagocytosis and cytolysis. Consequently, the application of intravital imaging has been extensively studied in the domain of cancer immunotherapy. Intravital imaging has been proven to be a powerful real-time imaging modality that provides insights into intratumoral immune responses, cellular metabolic signatures, tumor vasculature, and cellular functions. This review aims to provide a comprehensive overview of the latest research on intravital imaging in cancer immunotherapy, especially addressing how intravital imaging sheds light on essential features of tumor immunity, immune infiltrations, tumor angiogenesis, and aids in the clarification of underlying immunotherapeutic mechanisms. Moreover, a variety of labeling tools, imaging windows and models for real-time visualizations of TME are also summarized. We will also investigate the full potential of using intravital imaging to circumvent the limitations of currently available imaging modalities, which hold promise to advent efficient immunotherapy for cancer patients.
Collapse
Affiliation(s)
- Minfeng Yang
- School of Public Health, Nantong University, Nantong, China
| | - Shiqiang Hou
- The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou, China
| | - Yao Chen
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, 215009, China
| | - Hongzhao Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, People's Republic of China
| | - Minjie Chu
- School of Public Health, Nantong University, Nantong, China.
| | - Song-Bai Liu
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, 215009, China.
| |
Collapse
|
3
|
Kunisch M, Beutler S, Pilger C, Kiefer F, Huser T, Wirth B. Active axial motion compensation in multiphoton-excited fluorescence microscopy. OPTICS EXPRESS 2025; 33:3620-3636. [PMID: 39876479 DOI: 10.1364/oe.547244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025]
Abstract
In living organisms, the natural motion caused by heartbeat, breathing, or muscle movements leads to the deformation of tissue caused by translation and stretching of the tissue structure. This effect results in the displacement or deformation of the plane of observation for intravital microscopy and causes motion-induced aberrations of the resulting image data. This, in turn, places severe limitations on the time during which specific events can be observed in intravital imaging experiments. These limitations can be overcome if the tissue motion can be compensated such that the plane of observation remains steady. We have developed a mathematical shape space model that can predict the periodic motion of a cylindrical tissue phantom resembling blood vessels. This model is then used to rapidly calculate the future position of the plane of observation of a two-photon laser scanning fluorescence microscope. The focal plane is continuously adjusted to the calculated position with a piezo-actuated objective lens holder. We demonstrate active motion compensation for non-harmonic axial displacements of the vessel phantom with a field of view up to 400 µm × 400 µm, vertical amplitudes of more than 100 µm, and at a rate of 0.5 Hz.
Collapse
|
4
|
Jang MA, Song JW, Kim RH, Kang DO, Kang U, Kim HJ, Kim JH, Park EJ, Park YH, Lee BH, Kim CK, Park K, Kim JW, Yoo H. Real-Time Imaging Assessment of Stress-Induced Vascular Inflammation Using Heartbeat-Synchronized Motion Compensation. Arterioscler Thromb Vasc Biol 2024; 44:2493-2506. [PMID: 39387121 DOI: 10.1161/atvbaha.124.321566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Chronic mental stress accelerates atherosclerosis through complicated neuroimmune pathways, needing for advanced imaging techniques to delineate underlying cellular mechanisms. While histopathology, ex vivo imaging, and snapshots of in vivo images offer promising evidence, they lack the ability to capture real-time visualization of blood cell dynamics within pulsatile arteries in longitudinal studies. METHODS An electrically tunable lens was implemented in intravital optical microscopy, synchronizing the focal plane with heartbeats to follow artery movements. ApoE-/- mice underwent 2 weeks of restraint stress before baseline imaging followed by 2 weeks of stress exposure in the longitudinal imaging, while nonstressed mice remained undisturbed. The progression of vascular inflammation was assessed in the carotid arteries through intravital imaging and histological analyses. RESULTS A 4-fold reduction of motion artifact, assessed by interframe SD, and an effective temporal resolution of 25.2 Hz were achieved in beating murine carotid arteries. Longitudinal intravital imaging showed chronic stress led to a 6.09-fold (P=0.017) increase in myeloid cell infiltration compared with nonstressed mice. After 3 weeks, we observed that chronic stress intensified vascular inflammation, increasing adhered myeloid cells by 2.45-fold (P=0.031), while no significant changes were noted in nonstressed mice. Microcirculation imaging revealed increased circulating, rolling, and adhered cells in stressed mice's venules. Histological analysis of the carotid arteries confirmed the in vivo findings that stress augmented plaque area, myeloid cell and macrophage accumulation, and necrotic core volume while reducing fibrous cap thickness indicating accelerated plaque formation. We visualized the 3-dimensional structure of the carotid artery and 4-dimensional dynamics of the venules in the cremaster muscle. CONCLUSIONS Dynamic focusing motion compensation intravital microscopy enabled subcellular resolution in vivo imaging of blood cell dynamics in beating arteries under chronic restraint stress in real time. This novel technique emphasizes the importance of advanced in vivo imaging for understanding cardiovascular disease.
Collapse
Affiliation(s)
- Minseok A Jang
- Department of Mechanical Engineering, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea (M.A.J., U.K., H.Y.)
| | - Joon Woo Song
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Ryeong Hyun Kim
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Dong Oh Kang
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Ungyo Kang
- Department of Mechanical Engineering, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea (M.A.J., U.K., H.Y.)
| | - Hyun Jung Kim
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Jin Hyuk Kim
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Eun Jin Park
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Ye Hee Park
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Bo-Hyung Lee
- Department of Neurology (B.-H.L., C.K.K.), Korea University Guro Hospital, Seoul
| | - Chi Kyung Kim
- Department of Neurology (B.-H.L., C.K.K.), Korea University Guro Hospital, Seoul
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea (K.P.)
| | - Jin Won Kim
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Hongki Yoo
- Department of Mechanical Engineering, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea (M.A.J., U.K., H.Y.)
| |
Collapse
|
5
|
Cleary SJ, Qiu L, Seo Y, Baluk P, Liu D, Serwas NK, Cyster JG, McDonald DM, Krummel MF, Looney MR. Intravital imaging of pulmonary lymphatics in inflammation and metastatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612619. [PMID: 39345499 PMCID: PMC11430110 DOI: 10.1101/2024.09.12.612619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Intravital microscopy has enabled the study of immune dynamics in the pulmonary microvasculature, but many key events remain unseen because they occur in deeper lung regions. We therefore developed a technique for stabilized intravital imaging of bronchovascular cuffs and collecting lymphatics surrounding pulmonary veins in mice. Intravital imaging of pulmonary lymphatics revealed ventilation-dependence of steady-state lung lymph flow and ventilation-independent lymph flow during inflammation. We imaged the rapid exodus of migratory dendritic cells through lung lymphatics following inflammation and measured effects of pharmacologic and genetic interventions targeting chemokine signaling. Intravital imaging also captured lymphatic immune surveillance of lung-metastatic cancers and lymphatic metastasis of cancer cells. To our knowledge, this is the first imaging of lymph flow and leukocyte migration through intact pulmonary lymphatics. This approach will enable studies of protective and maladaptive processes unfolding within the lungs and in other previously inaccessible locations.
Collapse
Affiliation(s)
- Simon J. Cleary
- Department of Medicine, University of California, San Francisco (UCSF), CA, USA
- Institute of Pharmaceutical Science, King’s College London, London, UK
| | - Longhui Qiu
- Department of Medicine, University of California, San Francisco (UCSF), CA, USA
| | - Yurim Seo
- Department of Medicine, University of California, San Francisco (UCSF), CA, USA
| | - Peter Baluk
- Department of Anatomy, Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, UCSF, CA, USA
| | - Dan Liu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, UCSF, CA, USA
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang, China
| | | | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, UCSF, CA, USA
- Bakar ImmunoX Initiative, UCSF, CA, USA
| | - Donald M. McDonald
- Department of Anatomy, Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, UCSF, CA, USA
| | - Matthew F. Krummel
- Department of Pathology, UCSF, CA, USA
- Bakar ImmunoX Initiative, UCSF, CA, USA
| | - Mark R. Looney
- Department of Medicine, University of California, San Francisco (UCSF), CA, USA
- Bakar ImmunoX Initiative, UCSF, CA, USA
| |
Collapse
|
6
|
Seyedhassantehrani N, Burns CS, Verrinder R, Okafor V, Abbasizadeh N, Spencer JA. Intravital two-photon microscopy of the native mouse thymus. PLoS One 2024; 19:e0307962. [PMID: 39088574 PMCID: PMC11293686 DOI: 10.1371/journal.pone.0307962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/15/2024] [Indexed: 08/03/2024] Open
Abstract
The thymus, a key organ in the adaptive immune system, is sensitive to a variety of insults including cytotoxic preconditioning, which leads to atrophy, compression of the blood vascular system, and alterations in hemodynamics. Although the thymus has innate regenerative capabilities, the production of T cells relies on the trafficking of lymphoid progenitors from the bone marrow through the altered thymic blood vascular system. Our understanding of thymic blood vascular hemodynamics is limited due to technical challenges associated with accessing the native thymus in live mice. To overcome this challenge, we developed an intravital two-photon imaging method to visualize the native thymus in vivo and investigated functional changes to the vascular system following sublethal irradiation. We quantified blood flow velocity and shear rate in cortical blood vessels and identified a subtle but significant increase in vessel leakage and diameter ~24 hrs post-sublethal irradiation. Ex vivo whole organ imaging of optically cleared thymus lobes confirmed a disruption of the thymus vascular structure, resulting in an increase in blood vessel diameter and vessel area, and concurrent thymic atrophy. This novel two-photon intravital imaging method enables a new paradigm for directly investigating the thymic microenvironment in vivo.
Collapse
Affiliation(s)
- Negar Seyedhassantehrani
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, California, United States of America
- NSF-CREST Center for Cellular and Biomolecular Machines, University of California Merced, Merced, California, United States of America
| | - Christian S. Burns
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, California, United States of America
- NSF-CREST Center for Cellular and Biomolecular Machines, University of California Merced, Merced, California, United States of America
| | - Ruth Verrinder
- NSF-CREST Center for Cellular and Biomolecular Machines, University of California Merced, Merced, California, United States of America
- Department of Bioengineering, University of California Merced, Merced, California, United States of America
| | - Victoria Okafor
- NSF-CREST Center for Cellular and Biomolecular Machines, University of California Merced, Merced, California, United States of America
- Department of Bioengineering, University of California Merced, Merced, California, United States of America
| | - Nastaran Abbasizadeh
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, California, United States of America
- NSF-CREST Center for Cellular and Biomolecular Machines, University of California Merced, Merced, California, United States of America
| | - Joel A. Spencer
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, California, United States of America
- NSF-CREST Center for Cellular and Biomolecular Machines, University of California Merced, Merced, California, United States of America
- Department of Bioengineering, University of California Merced, Merced, California, United States of America
- Health Science Research Institute, University of California Merced, Merced, California, United States of America
| |
Collapse
|
7
|
Yang S, Hu S. Perspectives on endoscopic functional photoacoustic microscopy. APPLIED PHYSICS LETTERS 2024; 125:030502. [PMID: 39022117 PMCID: PMC11251735 DOI: 10.1063/5.0201691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024]
Abstract
Endoscopy, enabling high-resolution imaging of deep tissues and internal organs, plays an important role in basic research and clinical practice. Recent advances in photoacoustic microscopy (PAM), demonstrating excellent capabilities in high-resolution functional imaging, have sparked significant interest in its integration into the field of endoscopy. However, there are challenges in achieving functional PAM in the endoscopic setting. This Perspective article discusses current progress in the development of endoscopic PAM and the challenges related to functional measurements. Then, it points out potential directions to advance endoscopic PAM for functional imaging by leveraging fiber optics, microfabrication, optical engineering, and computational approaches. Finally, it highlights emerging opportunities for functional endoscopic PAM in basic and translational biomedicine.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Song Hu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
8
|
Avolio E, Campagnolo P, Katare R, Madeddu P. The role of cardiac pericytes in health and disease: therapeutic targets for myocardial infarction. Nat Rev Cardiol 2024; 21:106-118. [PMID: 37542118 DOI: 10.1038/s41569-023-00913-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
Millions of cardiomyocytes die immediately after myocardial infarction, regardless of whether the culprit coronary artery undergoes prompt revascularization. Residual ischaemia in the peri-infarct border zone causes further cardiomyocyte damage, resulting in a progressive decline in contractile function. To date, no treatment has succeeded in increasing the vascularization of the infarcted heart. In the past decade, new approaches that can target the heart's highly plastic perivascular niche have been proposed. The perivascular environment is populated by mesenchymal progenitor cells, fibroblasts, myofibroblasts and pericytes, which can together mount a healing response to the ischaemic damage. In the infarcted heart, pericytes have crucial roles in angiogenesis, scar formation and stabilization, and control of the inflammatory response. Persistent ischaemia and accrual of age-related risk factors can lead to pericyte depletion and dysfunction. In this Review, we describe the phenotypic changes that characterize the response of cardiac pericytes to ischaemia and the potential of pericyte-based therapy for restoring the perivascular niche after myocardial infarction. Pericyte-related therapies that can salvage the area at risk of an ischaemic injury include exogenously administered pericytes, pericyte-derived exosomes, pericyte-engineered biomaterials, and pharmacological approaches that can stimulate the differentiation of constitutively resident pericytes towards an arteriogenic phenotype. Promising preclinical results from in vitro and in vivo studies indicate that pericytes have crucial roles in the treatment of coronary artery disease and the prevention of post-ischaemic heart failure.
Collapse
Affiliation(s)
- Elisa Avolio
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK.
| | - Paola Campagnolo
- School of Biosciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
9
|
Ahn S, Yoon JY, Kim P. Intravital imaging of cardiac tissue utilizing tissue-stabilized heart window chamber in live animal model. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2024; 2:qyae062. [PMID: 39224098 PMCID: PMC11367956 DOI: 10.1093/ehjimp/qyae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/07/2024] [Indexed: 09/04/2024]
Abstract
Aims To develop and validate an optimized intravital heart microimaging protocol using a suction-based tissue motion-stabilizing cardiac imaging window to facilitate real-time observation of dynamic cellular behaviours within cardiac tissue in live mouse models. Methods and results Intravital heart imaging was conducted using dual-mode confocal and two-photon microscopy. Mice were anesthetized, intubated, and maintained at a stable body temperature during the procedure. LysM-eGFP transgenic mice were utilized to visualize immune cell dynamics with vascular labelling by intravenous injection of anti-CD31 antibody and DiD-labelled red blood cells (RBCs). A heart imaging window chamber with a vacuum-based tissue motion stabilizer with 890-920 mbar was applied following a chest incision to expose the cardiac tissue. The suction-based heart imaging window chamber system and artificial intelligence-based motion compensation function significantly reduced motion artefacts and facilitated real-time in vivo cell analysis of immune cell and RBC trafficking, revealing a mean neutrophil movement velocity of 1.66 mm/s, which was slower compared to the RBC flow velocity of 9.22 mm/s. Intravital two-photon microscopic heart imaging enabled label-free second harmonic generation imaging of cardiac muscle structures with 820-840 nm excitation wavelength, revealing detailed biodistributions and structural variations in sarcomeres and fibrillar organization in the heart. Conclusion The optimized intravital heart imaging protocol successfully demonstrates its capability to provide high-resolution, real-time visualization of dynamic cellular activities within live cardiac tissue.
Collapse
Affiliation(s)
- Soyeon Ahn
- R&D Center, IVIM Technology, 17 Techno 4-ro, Yuseong-gu, Daejeon, 34013, Republic of Korea
| | - Jung-yeon Yoon
- R&D Center, IVIM Technology, 17 Techno 4-ro, Yuseong-gu, Daejeon, 34013, Republic of Korea
| | - Pilhan Kim
- R&D Center, IVIM Technology, 17 Techno 4-ro, Yuseong-gu, Daejeon, 34013, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
10
|
Kuo CW, Pratiwi FW, Liu YT, Chueh DY, Chen P. Revealing the nanometric structural changes in myocardial infarction models by time-lapse intravital imaging. Front Bioeng Biotechnol 2022; 10:935415. [PMID: 36051583 PMCID: PMC9424828 DOI: 10.3389/fbioe.2022.935415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the development of bioinspired nanomaterials for therapeutic applications, it is very important to validate the design of nanomaterials in the disease models. Therefore, it is desirable to visualize the change of the cells in the diseased site at the nanoscale. Heart diseases often start with structural, morphological, and functional alterations of cardiomyocyte components at the subcellular level. Here, we developed straightforward technique for long-term real-time intravital imaging of contracting hearts without the need of cardiac pacing and complex post processing images to understand the subcellular structural and dynamic changes in the myocardial infarction model. A two-photon microscope synchronized with electrocardiogram signals was used for long-term in vivo imaging of a contracting heart with subcellular resolution. We found that the structural and dynamic behaviors of organelles in cardiomyocytes closely correlated with heart function. In the myocardial infarction model, sarcomere shortening decreased from ∼15% (healthy) to ∼8% (diseased) as a result of impaired cardiac function, whereas the distances between sarcomeres increased by 100 nm (from 2.11 to 2.21 μm) in the diastolic state. In addition, T-tubule system regularity analysis revealed that T-tubule structures that were initially highly organized underwent significant remodeling. Morphological remodeling and changes in dynamic activity at the subcellular level are essential to maintain heart function after infarction in a heart disease model.
Collapse
Affiliation(s)
- Chiung Wen Kuo
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
| | | | - Yen-Ting Liu
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
| | - Peilin Chen
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
- Institute of Physics, Academia Sinica, Taipei, Taiwan
- *Correspondence: Peilin Chen,
| |
Collapse
|
11
|
Visualization of regenerating and repairing hearts. Clin Sci (Lond) 2022; 136:787-798. [PMID: 35621122 PMCID: PMC9886236 DOI: 10.1042/cs20211116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023]
Abstract
With heart failure continuing to become more prevalent, investigating the mechanisms of heart injury and repair holds much incentive. In contrast with adult mammals, other organisms such as teleost fish, urodele amphibians, and even neonatal mammals are capable of robust cardiac regeneration to replenish lost or damaged myocardial tissue. Long-term high-resolution intravital imaging of the behaviors and interactions of different cardiac cell types in their native environment could yield unprecedented insights into heart regeneration and repair. However, this task remains challenging for the heart due to its rhythmic contraction and anatomical location. Here, we summarize recent advances in live imaging of heart regeneration and repair, discuss the advantages and limitations of current systems, and suggest future directions for novel imaging technology development.
Collapse
|
12
|
Sacconi L, Silvestri L, Rodríguez EC, Armstrong GA, Pavone FS, Shrier A, Bub G. KHz-rate volumetric voltage imaging of the whole Zebrafish heart. BIOPHYSICAL REPORTS 2022; 2:100046. [PMID: 36425080 PMCID: PMC9680780 DOI: 10.1016/j.bpr.2022.100046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/31/2022] [Indexed: 05/11/2023]
Abstract
Fast volumetric imaging is essential for understanding the function of excitable tissues such as those found in the brain and heart. Measuring cardiac voltage transients in tissue volumes is challenging, especially at the high spatial and temporal resolutions needed to give insight to cardiac function. We introduce a new imaging modality based on simultaneous illumination of multiple planes in the tissue and parallel detection with multiple cameras, avoiding compromises inherent in any scanning approach. The system enables imaging of voltage transients in situ, allowing us, for the first time to our knowledge, to map voltage activity in the whole heart volume at KHz rates. The high spatiotemporal resolution of our method enabled the observation of novel dynamics of electrical propagation through the zebrafish atrioventricular canal.
Collapse
Affiliation(s)
- Leonardo Sacconi
- European Laboratory for Non-linear Spectroscopy, and National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
- Corresponding author
| | - Ludovico Silvestri
- European Laboratory for Non-linear Spectroscopy, and National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Florence, Italy
| | | | - Gary A.B. Armstrong
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Francesco S. Pavone
- European Laboratory for Non-linear Spectroscopy, and National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Florence, Italy
| | - Alvin Shrier
- Department of Physiology, McGill University, Montreal, Canada
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, Canada
- Corresponding author
| |
Collapse
|
13
|
Tiwari A, Elgrably B, Saar G, Vandoorne K. Multi-Scale Imaging of Vascular Pathologies in Cardiovascular Disease. Front Med (Lausanne) 2022; 8:754369. [PMID: 35071257 PMCID: PMC8766766 DOI: 10.3389/fmed.2021.754369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular disease entails systemic changes in the vasculature. The endothelial cells lining the blood vessels are crucial in the pathogenesis of cardiovascular disease. Healthy endothelial cells direct the blood flow to tissues as vasodilators and act as the systemic interface between the blood and tissues, supplying nutrients for vital organs, and regulating the smooth traffic of leukocytes into tissues. In cardiovascular diseases, when inflammation is sensed, endothelial cells adjust to the local or systemic inflammatory state. As the inflamed vasculature adjusts, changes in the endothelial cells lead to endothelial dysfunction, altered blood flow and permeability, expression of adhesion molecules, vessel wall inflammation, thrombosis, angiogenic processes, and extracellular matrix production at the endothelial cell level. Preclinical multi-scale imaging of these endothelial changes using optical, acoustic, nuclear, MRI, and multimodal techniques has progressed, due to technical advances and enhanced biological understanding on the interaction between immune and endothelial cells. While this review highlights biological processes that are related to changes in the cardiac vasculature during cardiovascular diseases, it also summarizes state-of-the-art vascular imaging techniques. The advantages and disadvantages of the different imaging techniques are highlighted, as well as their principles, methodologies, and preclinical and clinical applications with potential future directions. These multi-scale approaches of vascular imaging carry great potential to further expand our understanding of basic vascular biology, to enable early diagnosis of vascular changes and to provide sensitive diagnostic imaging techniques in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Ashish Tiwari
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Betsalel Elgrably
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Galit Saar
- Biomedical Core Facility, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Katrien Vandoorne
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Kalia N. A historical review of experimental imaging of the beating heart coronary microcirculation in vivo. J Anat 2021; 242:3-16. [PMID: 34905637 PMCID: PMC9773169 DOI: 10.1111/joa.13611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Following a myocardial infarction (MI), the prognosis of patients is highly dependent upon the re-establishment of perfusion not only in the occluded coronary artery, but also within the coronary microcirculation. However, our fundamental understanding of the pathophysiology of the tiniest blood vessels of the heart is limited primarily because no current clinical imaging tools can directly visualise them. Moreover, in vivo experimental studies of the beating heart using intravital imaging have also been hampered due to obvious difficulties related to significant inherent contractile motion, movement of the heart brought about by nearby lungs and its location in an anatomically challenging position for microscopy. However, recent advances in microscopy techniques, and the development of fluorescent reporter mice and fluorescently conjugated antibodies allowing visualisation of vascular structures, thromboinflammatory cells and blood flow, have allowed us to overcome some of these challenges and increase our basic understanding of cardiac microvascular pathophysiology. In this review, the elegant attempts of the pioneers in intravital imaging of the beating heart will be discussed, which focussed on providing new insights into the anatomy and physiology of the healthy heart microvessels. The reviews end with the more recent studies that focussed on disease pathology and increasing our understanding of myocardial thromboinflammatory cell recruitment and flow disturbances, particularly in the setting of diseases such as MI.
Collapse
Affiliation(s)
- Neena Kalia
- Microcirculation Research GroupInstitute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
15
|
Müllenbroich MC, Kelly A, Acker C, Bub G, Bruegmann T, Di Bona A, Entcheva E, Ferrantini C, Kohl P, Lehnart SE, Mongillo M, Parmeggiani C, Richter C, Sasse P, Zaglia T, Sacconi L, Smith GL. Novel Optics-Based Approaches for Cardiac Electrophysiology: A Review. Front Physiol 2021; 12:769586. [PMID: 34867476 PMCID: PMC8637189 DOI: 10.3389/fphys.2021.769586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022] Open
Abstract
Optical techniques for recording and manipulating cellular electrophysiology have advanced rapidly in just a few decades. These developments allow for the analysis of cardiac cellular dynamics at multiple scales while largely overcoming the drawbacks associated with the use of electrodes. The recent advent of optogenetics opens up new possibilities for regional and tissue-level electrophysiological control and hold promise for future novel clinical applications. This article, which emerged from the international NOTICE workshop in 2018, reviews the state-of-the-art optical techniques used for cardiac electrophysiological research and the underlying biophysics. The design and performance of optical reporters and optogenetic actuators are reviewed along with limitations of current probes. The physics of light interaction with cardiac tissue is detailed and associated challenges with the use of optical sensors and actuators are presented. Case studies include the use of fluorescence recovery after photobleaching and super-resolution microscopy to explore the micro-structure of cardiac cells and a review of two photon and light sheet technologies applied to cardiac tissue. The emergence of cardiac optogenetics is reviewed and the current work exploring the potential clinical use of optogenetics is also described. Approaches which combine optogenetic manipulation and optical voltage measurement are discussed, in terms of platforms that allow real-time manipulation of whole heart electrophysiology in open and closed-loop systems to study optimal ways to terminate spiral arrhythmias. The design and operation of optics-based approaches that allow high-throughput cardiac electrophysiological assays is presented. Finally, emerging techniques of photo-acoustic imaging and stress sensors are described along with strategies for future development and establishment of these techniques in mainstream electrophysiological research.
Collapse
Affiliation(s)
| | - Allen Kelly
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Corey Acker
- Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, United States
| | - Gil Bub
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Tobias Bruegmann
- Institute for Cardiovascular Physiology, University Medical Center Goettingen, Goettingen, Germany
| | - Anna Di Bona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | | | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Stephan E. Lehnart
- Heart Research Center Göttingen, University Medical Center Göttingen, Göttingen, Germany
- Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | | | - Claudia Richter
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Leonardo Sacconi
- European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Italy
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
- National Institute of Optics, National Research Council, Florence, Italy
| | - Godfrey L. Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
16
|
Abstract
Conduction disorders and arrhythmias remain difficult to treat and are increasingly prevalent owing to the increasing age and body mass of the general population, because both are risk factors for arrhythmia. Many of the underlying conditions that give rise to arrhythmia - including atrial fibrillation and ventricular arrhythmia, which frequently occur in patients with acute myocardial ischaemia or heart failure - can have an inflammatory component. In the past, inflammation was viewed mostly as an epiphenomenon associated with arrhythmia; however, the recently discovered inflammatory and non-canonical functions of cardiac immune cells indicate that leukocytes can be arrhythmogenic either by altering tissue composition or by interacting with cardiomyocytes; for example, by changing their phenotype or perhaps even by directly interfering with conduction. In this Review, we discuss the electrophysiological properties of leukocytes and how these cells relate to conduction in the heart. Given the thematic parallels, we also summarize the interactions between immune cells and neural systems that influence information transfer, extrapolating findings from the field of neuroscience to the heart and defining common themes. We aim to bridge the knowledge gap between electrophysiology and immunology, to promote conceptual connections between these two fields and to explore promising opportunities for future research.
Collapse
|
17
|
Intravital mesoscopic fluorescence molecular tomography allows non-invasive in vivo monitoring and quantification of breast cancer growth dynamics. Commun Biol 2021; 4:556. [PMID: 33976362 PMCID: PMC8113483 DOI: 10.1038/s42003-021-02063-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/31/2021] [Indexed: 02/03/2023] Open
Abstract
Preclinical breast tumor models are an invaluable tool to systematically study tumor progression and treatment response, yet methods to non-invasively monitor the involved molecular and mechanistic properties under physiologically relevant conditions are limited. Here we present an intravital mesoscopic fluorescence molecular tomography (henceforth IFT) approach that is capable of tracking fluorescently labeled tumor cells in a quantitative manner inside the mammary gland of living mice. Our mesoscopic approach is entirely non-invasive and thus permits prolonged observational periods of several months. The relatively high sensitivity and spatial resolution further enable inferring the overall number of oncogene-expressing tumor cells as well as their tumor volume over the entire cycle from early tumor growth to residual disease following the treatment phase. Our IFT approach is a promising method for studying tumor growth dynamics in a quantitative and longitudinal fashion in-vivo.
Collapse
|
18
|
Vaghela R, Arkudas A, Horch RE, Hessenauer M. Actually Seeing What Is Going on - Intravital Microscopy in Tissue Engineering. Front Bioeng Biotechnol 2021; 9:627462. [PMID: 33681162 PMCID: PMC7925911 DOI: 10.3389/fbioe.2021.627462] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
Intravital microscopy (IVM) study approach offers several advantages over in vitro, ex vivo, and 3D models. IVM provides real-time imaging of cellular events, which provides us a comprehensive picture of dynamic processes. Rapid improvement in microscopy techniques has permitted deep tissue imaging at a higher resolution. Advances in fluorescence tagging methods enable tracking of specific cell types. Moreover, IVM can serve as an important tool to study different stages of tissue regeneration processes. Furthermore, the compatibility of different tissue engineered constructs can be analyzed. IVM is also a promising approach to investigate host reactions on implanted biomaterials. IVM can provide instant feedback for improvising tissue engineering strategies. In this review, we aim to provide an overview of the requirements and applications of different IVM approaches. First, we will discuss the history of IVM development, and then we will provide an overview of available optical modalities including the pros and cons. Later, we will summarize different fluorescence labeling methods. In the final section, we will discuss well-established chronic and acute IVM models for different organs.
Collapse
Affiliation(s)
- Ravikumar Vaghela
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Hessenauer
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
19
|
Chang CY, Lin CY, Hu YY, Tsai SF, Hsu FC, Chen SJ. Temporal focusing multiphoton microscopy with optimized parallel multiline scanning for fast biotissue imaging. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200171RR. [PMID: 33386708 PMCID: PMC7778456 DOI: 10.1117/1.jbo.26.1.016501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Line scanning-based temporal focusing multiphoton microscopy (TFMPM) has superior axial excitation confinement (AEC) compared to conventional widefield TFMPM, but the frame rate is limited due to the limitation of the single line-to-line scanning mechanism. The development of the multiline scanning-based TFMPM requires only eight multiline patterns for full-field uniform multiphoton excitation and it still maintains superior AEC. AIM The optimized parallel multiline scanning TFMPM is developed, and the performance is verified with theoretical simulation. The system provides a sharp AEC equivalent to the line scanning-based TFMPM, but fewer scans are required. APPROACH A digital micromirror device is integrated in the TFMPM system and generates the multiline pattern for excitation. Based on the result of single-line pattern with sharp AEC, we can further model the multiline pattern to find the best structure that has the highest duty cycle together with the best AEC performance. RESULTS The AEC is experimentally improved to 1.7 μm from the 3.5 μm of conventional TFMPM. The adopted multiline pattern is akin to a pulse-width-modulation pattern with a spatial period of four times the diffraction-limited line width. In other words, ideally only four π / 2 spatial phase-shift scans are required to form a full two-dimensional image with superior AEC instead of image-size-dependent line-to-line scanning. CONCLUSIONS We have demonstrated the developed parallel multiline scanning-based TFMPM has the multiline pattern for sharp AEC and the least scans required for full-field uniform excitation. In the experimental results, the temporal focusing-based multiphoton images of disordered biotissue of mouse skin with improved axial resolution due to the near-theoretical limit AEC are shown to clearly reduce background scattering.
Collapse
Affiliation(s)
- Chia-Yuan Chang
- National Cheng Kung University, Department of Mechanical Engineering, Tainan, Taiwan
| | - Chun-Yun Lin
- National Chiao Tung University, College of Photonics, Tainan, Taiwan
| | - Yvonne Y. Hu
- National Cheng Kung University, Department of Photonics, Tainan, Taiwan
| | - Sheng-Feng Tsai
- National Cheng Kung University, Department of Cell Biology and Anatomy, Tainan, Taiwan
| | - Feng-Chun Hsu
- National Chiao Tung University, College of Photonics, Tainan, Taiwan
| | - Shean-Jen Chen
- National Chiao Tung University, College of Photonics, Tainan, Taiwan
| |
Collapse
|
20
|
Micro-endoscopy for Live Small Animal Fluorescent Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:153-186. [PMID: 33834437 DOI: 10.1007/978-981-33-6064-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intravital microscopy has emerged as a powerful technique for the fluorescent visualization of cellular- and subcellular-level biological processes in vivo. However, the size of objective lenses used in standard microscopes currently makes it difficult to access internal organs with minimal invasiveness in small animal models, such as mice. Here we describe front- and side-view designs for small-diameter endoscopes based on gradient-index lenses, their construction, their integration into laser scanning confocal microscopy platforms, and their applications for in vivo imaging of fluorescent cells and microvasculature in various organs, including the kidney, bladder, heart, brain, and gastrointestinal tracts, with a focus on the new techniques developed for each imaging application. The combination of novel fluorescence techniques with these powerful imaging methods promises to continue providing novel insights into a variety of diseases.
Collapse
|
21
|
Liang Y, Walczak P. Long term intravital single cell tracking under multiphoton microscopy. J Neurosci Methods 2020; 349:109042. [PMID: 33340557 DOI: 10.1016/j.jneumeth.2020.109042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Visualizing and tracking cells over time in a living organism has been a much-coveted dream before the invention of intravital microscopy. The opaque nature of tissue was a major hurdle that was remedied by the multiphoton microscopy. With the advancement of optical imaging and fluorescent labeling tools, intravital high resolution imaging has become increasingly accessible over the past few years. Long-term intravital tracking of single cells (LIST) under multiphoton microscopy provides a unique opportunity to gain insight into the longitudinal changes in the morphology, migration, or function of cells or subcellular structures. It is particularly suitable for studying slow-evolving cellular and molecular events during normal development or disease progression, without losing the opportunity of catching fast events such as calcium signals. Here, we review the application of LIST under 2-photon microscopy in various fields of neurobiology and discuss challenges and new directions in labeling and imaging methods for LIST. Overall, this review provides an overview of current applications of LIST in mammals, which is an emerging field that will contribute to a better understanding of essential molecular and cellular events in health and disease.
Collapse
Affiliation(s)
- Yajie Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Bares AJ, Mejooli MA, Pender MA, Leddon SA, Tilley S, Lin K, Dong J, Kim M, Fowell DJ, Nishimura N, Schaffer CB. Hyperspectral multiphoton microscopy for in vivo visualization of multiple, spectrally overlapped fluorescent labels. OPTICA 2020; 7:1587-1601. [PMID: 33928182 PMCID: PMC8081374 DOI: 10.1364/optica.389982] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/30/2020] [Indexed: 05/17/2023]
Abstract
The insensitivity of multiphoton microscopy to optical scattering enables high-resolution, high-contrast imaging deep into tissue, including in live animals. Scattering does, however, severely limit the use of spectral dispersion techniques to improve spectral resolution. In practice, this limited spectral resolution together with the need for multiple excitation wavelengths to excite different fluorophores limits multiphoton microscopy to imaging a few, spectrally-distinct fluorescent labels at a time, restricting the complexity of biological processes that can be studied. Here, we demonstrate a hyperspectral multiphoton microscope that utilizes three different wavelength excitation sources together with multiplexed fluorescence emission detection using angle-tuned bandpass filters. This microscope maintains scattering insensitivity, while providing high enough spectral resolution on the emitted fluorescence and capitalizing on the wavelength-dependent nonlinear excitation of fluorescent dyes to enable clean separation of multiple, spectrally overlapping labels, in vivo. We demonstrated the utility of this instrument for spectral separation of closely-overlapped fluorophores in samples containing ten different colors of fluorescent beads, live cells expressing up to seven different fluorescent protein fusion constructs, and in multiple in vivo preparations in mouse cortex and inflamed skin with up to eight different cell types or tissue structures distinguished.
Collapse
Affiliation(s)
- Amanda J. Bares
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Menansili A. Mejooli
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell A. Pender
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Scott A. Leddon
- Center for Vaccine Biology and Immunology, Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven Tilley
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Karen Lin
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jingyuan Dong
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minsoo Kim
- Center for Vaccine Biology and Immunology, Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Deborah J. Fowell
- Center for Vaccine Biology and Immunology, Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nozomi Nishimura
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Chris B. Schaffer
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
23
|
Yang R, Liao H, Ma W, Li J, Wang S. A Compact High-Speed Image-Based Method for Measuring the Longitudinal Motion of Living Tissues. SENSORS 2020; 20:s20164573. [PMID: 32824066 PMCID: PMC7472052 DOI: 10.3390/s20164573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022]
Abstract
Intraoperative imaging of living tissue at the cell level by endomicroscopy might help surgeons optimize surgical procedures and provide individualized treatments. However, the resolution of the microscopic image is limited by the motion of living tissue caused by heartbeat and respiration. An active motion compensation (AMC) strategy has been recognized as an effective way to reduce, or even eliminate, the influence of tissue movement for intravital fluorescence microscopy (IVM). To realize the AMC system, a high-speed sensor for measuring the motion of tissues is needed. At present, state-of-the-art commercialized displacement sensors are not suitable to apply in minimally invasive imaging instruments to measure the motion of living tissues because of the size problem, range of measurement or the update rate. In this study, a compact high-speed image-based method for measuring the longitudinal motion of living tissues is proposed. The complexity of the proposed method is the same as that of the traditional wide-field fluorescent microscopy (WFFM) system, which makes it easy to be miniaturized and integrated into a minimally invasive imaging instrument. Experimental results reveal that the maximum indication error, range of measurement and the sensitivity of the laboratory-built experimental prototype is 150 μm, 6 mm and −211.46 mm−1 respectively. Experimental results indicate that the proposed optical method is expected to be used in minimally invasive imaging instruments to build an AMC system.
Collapse
Affiliation(s)
- Ruilin Yang
- Key Laboratory for Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (R.Y.); (W.M.); (J.L.)
| | - Heqin Liao
- National Ocean Technology Center, Tianjin 300112, China;
| | - Weng Ma
- Key Laboratory for Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (R.Y.); (W.M.); (J.L.)
| | - Jinhua Li
- Key Laboratory for Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (R.Y.); (W.M.); (J.L.)
| | - Shuxin Wang
- Key Laboratory for Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (R.Y.); (W.M.); (J.L.)
- Correspondence:
| |
Collapse
|
24
|
Kavanagh DPJ, Lokman AB, Neag G, Colley A, Kalia N. Imaging the injured beating heart intravitally and the vasculoprotection afforded by haematopoietic stem cells. Cardiovasc Res 2020; 115:1918-1932. [PMID: 31062860 PMCID: PMC6803816 DOI: 10.1093/cvr/cvz118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/20/2019] [Accepted: 05/01/2019] [Indexed: 12/16/2022] Open
Abstract
Aims Adequate microcirculatory perfusion, and not just opening of occluded arteries, is critical to salvage heart tissue following myocardial infarction. However, the degree of microvascular perfusion taking place is not known, limited primarily by an inability to directly image coronary microcirculation in a beating heart in vivo. Haematopoietic stem/progenitor cells (HSPCs) offer a potential therapy but little is known about their homing dynamics at a cellular level and whether they protect coronary microvessels. This study used intravital microscopy to image the anaesthetized mouse beating heart microcirculation following stabilization. Methods and results A 3D-printed stabilizer was attached to the ischaemia–reperfusion injured (IRI) beating heart. The kinetics of neutrophil, platelet and HSPC recruitment, as well as functional capillary density (FCD), was imaged post-reperfusion. Laser speckle contrast imaging (LSCI) was used for the first time to monitor ventricular blood flow in beating hearts. Sustained hyperaemic responses were measured throughout reperfusion, initially indicating adequate flow resumption. Intravital microscopy confirmed large vessel perfusion but demonstrated poor transmission of flow to downstream coronary microvessels. Significant neutrophil adhesion and microthrombus formation occurred within capillaries with the latter occluding them, resulting in patchy perfusion and reduced FCD. Interestingly, ‘patrolling’ neutrophils were also observed in capillaries. Haematopoietic stem/progenitor cells readily trafficked through the heart but local retention was poor. Despite this, remarkable anti-thromboinflammatory effects were observed, consequently improving microvascular perfusion. Conclusion We present a novel approach for imaging multiple microcirculatory perturbations in the beating heart with LSCI assessment of blood flow. Despite deceptive hyperaemic responses, increased microcirculatory flow heterogeneity was seen, with non-perfused areas interspersed with perfused areas. Microthrombi, rather than neutrophils, appeared to be the major causative factor. We further applied this technique to demonstrate local stem cell presence is not a pre-requisite to confer vasculoprotection. This is the first detailed in vivo characterization of coronary microcirculatory responses post-reperfusion injury.
Collapse
Affiliation(s)
- Dean P J Kavanagh
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Adam B Lokman
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Georgiana Neag
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Abigail Colley
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Neena Kalia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
25
|
Chen Z, Zhou Q, Robin J, Razansky D. Widefield fluorescence localization microscopy for transcranial imaging of cortical perfusion with capillary resolution. OPTICS LETTERS 2020; 45:3470-3473. [PMID: 32630874 DOI: 10.1364/ol.396123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Imaging of cerebral vasculature is impeded with the existing fluorescence microscopy methods due to intense light scattering in living tissues and the need for highly invasive craniotomy procedures to resolve structures on a capillary scale. We propose a widefield fluorescence localization microscopy technique for high-resolution transcranial imaging and quantitative assessment of cortical perfusion in mice. The method is based on tracking single fluorescent microparticles sparsely distributed in the blood stream using a simple CMOS camera and a continuous-wave laser source. We demonstrate quantitative transcranial in vivo mapping of the blood flow velocity and direction at capillary level resolution (5 µm) across the entire cortex. The new technique opens a new high-resolution transcranial window into the brain function in health and disease.
Collapse
|
26
|
Sogabe M, Ohzeki M, Fujimoto K, Sehara-Fujisawa A, Nishimura S. Restored interlaced volumetric imaging increases image quality and scanning speed during intravital imaging in living mice. JOURNAL OF BIOPHOTONICS 2020; 13:e201960204. [PMID: 32078253 DOI: 10.1002/jbio.201960204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Dynamic intravital imaging is essential for revealing ongoing biological phenomena within living organisms and is influenced primarily by several factors: motion artifacts, optical properties and spatial resolution. Conventional imaging quality within a volume, however, is degraded by involuntary movements and trades off between the imaged volume, imaging speed and quality. To balance such trade-offs incurred by two-photon excitation microscopy during intravital imaging, we developed a unique combination of interlaced scanning and a simple image restoration algorithm based on biological signal sparsity and a graph Laplacian matrix. This method increases the scanning speed by a factor of four for a field size of 212 μm × 106 μm × 130 μm, and significantly improves the quality of four-dimensional dynamic volumetric data by preventing irregular artifacts due to the movement observed with conventional methods. Our data suggest this method is robust enough to be applied to multiple types of soft tissue.
Collapse
Affiliation(s)
- Maina Sogabe
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masayuki Ohzeki
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Koji Fujimoto
- Graduate School of Medicine, Human Brain Research Center, Kyoto University, Kyoto, Japan
| | - Atsuko Sehara-Fujisawa
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Satoshi Nishimura
- Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
27
|
Soulet D, Lamontagne-Proulx J, Aubé B, Davalos D. Multiphoton intravital microscopy in small animals: motion artefact challenges and technical solutions. J Microsc 2020; 278:3-17. [PMID: 32072642 PMCID: PMC7187339 DOI: 10.1111/jmi.12880] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
Abstract
Since its invention 29 years ago, two‐photon laser‐scanning microscopy has evolved from a promising imaging technique, to an established widely available imaging modality used throughout the biomedical research community. The establishment of two‐photon microscopy as the preferred method for imaging fluorescently labelled cells and structures in living animals can be attributed to the biophysical mechanism by which the generation of fluorescence is accomplished. The use of powerful lasers capable of delivering infrared light pulses within femtosecond intervals, facilitates the nonlinear excitation of fluorescent molecules only at the focal plane and determines by objective lens position. This offers numerous benefits for studies of biological samples at high spatial and temporal resolutions with limited photo‐damage and superior tissue penetration. Indeed, these attributes have established two‐photon microscopy as the ideal method for live‐animal imaging in several areas of biology and have led to a whole new field of study dedicated to imaging biological phenomena in intact tissues and living organisms. However, despite its appealing features, two‐photon intravital microscopy is inherently limited by tissue motion from heartbeat, respiratory cycles, peristalsis, muscle/vascular tone and physiological functions that change tissue geometry. Because these movements impede temporal and spatial resolution, they must be properly addressed to harness the full potential of two‐photon intravital microscopy and enable accurate data analysis and interpretation. In addition, the sources and features of these motion artefacts are varied, sometimes unpredictable and unique to specific organs and multiple complex strategies have previously been devised to address them. This review will discuss these motion artefacts requirement and technical solutions for their correction and after intravital two‐photon microscopy.
Collapse
Affiliation(s)
- D Soulet
- Centre de recherche du CHUL, Department of Neurosciences, Quebec, Canada.,Faculty of Pharmacy, Université Laval, Quebec, Canada
| | - J Lamontagne-Proulx
- Centre de recherche du CHUL, Department of Neurosciences, Quebec, Canada.,Faculty of Pharmacy, Université Laval, Quebec, Canada
| | - B Aubé
- Centre de recherche du CHUL, Department of Neurosciences, Quebec, Canada
| | - D Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, U.S.A
| |
Collapse
|
28
|
Allan-Rahill NH, Lamont MRE, Chilian WM, Nishimura N, Small DM. Intravital Microscopy of the Beating Murine Heart to Understand Cardiac Leukocyte Dynamics. Front Immunol 2020; 11:92. [PMID: 32117249 PMCID: PMC7010807 DOI: 10.3389/fimmu.2020.00092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease is the leading cause of worldwide mortality. Intravital microscopy has provided unprecedented insight into leukocyte biology by enabling the visualization of dynamic responses within living organ systems at the cell-scale. The heart presents a uniquely dynamic microenvironment driven by periodic, synchronous electrical conduction leading to rhythmic contractions of cardiomyocytes, and phasic coronary blood flow. In addition to functions shared throughout the body, immune cells have specific functions in the heart including tissue-resident macrophage-facilitated electrical conduction and rapid monocyte infiltration upon injury. Leukocyte responses to cardiac pathologies, including myocardial infarction and heart failure, have been well-studied using standard techniques, however, certain questions related to spatiotemporal relationships remain unanswered. Intravital imaging techniques could greatly benefit our understanding of the complexities of in vivo leukocyte behavior within cardiac tissue, but these techniques have been challenging to apply. Different approaches have been developed including high frame rate imaging of the beating heart, explantation models, micro-endoscopy, and mechanical stabilization coupled with various acquisition schemes to overcome challenges specific to the heart. The field of cardiac science has only begun to benefit from intravital microscopy techniques. The current focused review presents an overview of leukocyte responses in the heart, recent developments in intravital microscopy for the murine heart, and a discussion of future developments and applications for cardiovascular immunology.
Collapse
Affiliation(s)
- Nathaniel H Allan-Rahill
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Michael R E Lamont
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Nozomi Nishimura
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - David M Small
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
29
|
Kavanagh DPJ, Kalia N. Live Intravital Imaging of Cellular Trafficking in the Cardiac Microvasculature-Beating the Odds. Front Immunol 2019; 10:2782. [PMID: 31849965 PMCID: PMC6901937 DOI: 10.3389/fimmu.2019.02782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
Although mortality rates from cardiovascular disease in the developed world are falling, the prevalence of cardiovascular disease (CVD) is not. Each year, the number of people either being diagnosed as suffering with CVD or undergoing a surgical procedure related to it, such as percutaneous coronary intervention, continues to increase. In order to ensure that we can effectively manage these diseases in the future, it is critical that we fully understand their basic physiology and their underlying causative factors. Over recent years, the important role of the cardiac microcirculation in both acute and chronic disorders of the heart has become clear. The recruitment of inflammatory cells into the cardiac microcirculation and their subsequent activation may contribute significantly to tissue damage, adverse remodeling, and poor outcomes during recovery. However, our basic understanding of the cardiac microcirculation is hampered by an historic inability to image the microvessels of the beating heart-something we have been able to achieve in other organs for over 100 years. This stems from a couple of clear and obvious difficulties related to imaging the heart-firstly, it has significant inherent contractile motion and is affected considerably by the movement of lungs. Secondly, it is located in an anatomically challenging position for microscopy. However, recent microscopic and technological developments have allowed us to overcome some of these challenges and to begin to answer some of the basic outstanding questions in cardiac microvascular physiology, particularly in relation to inflammatory cell recruitment. In this review, we will discuss some of the historic work that took place in the latter part of last century toward cardiac intravital, before moving onto the advanced work that has been performed since. This work, which has utilized technology such as spinning-disk confocal and multiphoton microscopy, has-along with some significant advancements in algorithms and software-unlocked our ability to image the "business end" of the cardiac vascular tree. This review will provide an overview of these techniques, as well as some practical pointers toward software and other tools that may be useful for other researchers who are considering utilizing this technique themselves.
Collapse
Affiliation(s)
- Dean Philip John Kavanagh
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neena Kalia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
30
|
Al-Gubory KH. Shedding light on fibered confocal fluorescence microscopy: Applications in biomedical imaging and therapies. JOURNAL OF BIOPHOTONICS 2019; 12:e201900146. [PMID: 31343844 DOI: 10.1002/jbio.201900146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Discoveries of major importance in life sciences and preclinical research are linked to the invention of microscopes that enable imaging of cells and their microstructures. Imaging technologies involving in vivo procedures using fluorescent dyes that permit labelling of cells have been developed over the last two decades. Fibered confocal fluorescence microscopy (FCFM) is an imaging technology equipped with fiber-optic probes to deliver light to organs and tissues of live animals. This enables not only in vivo detection of fluorescent signals and visualization of cells, but also the study of dynamic processes, such cell proliferation, apoptosis and angiogenesis, under physiological and pathological conditions. This will allow the diagnosis of diseased organs and tissues and the evaluation of the efficacy of new therapies in animal models of human diseases. The aim of this report is to shed light on FCFM and its potential medical applications and discusses some factors that compromise the reliability and reproducibility of monitoring biological processes by FCFM. This report also highlights the issues concerning animal experimentation and welfare, and the contributions of FCFM to the 3Rs principals, replacement, reduction and refinement.
Collapse
Affiliation(s)
- Kaïs H Al-Gubory
- National Institute for Agricultural Research, Department of Animal Physiology, Jouy-en-Josas, France
| |
Collapse
|
31
|
Vinegoni C, Feruglio PF, Gryczynski I, Mazitschek R, Weissleder R. Fluorescence anisotropy imaging in drug discovery. Adv Drug Deliv Rev 2019; 151-152:262-288. [PMID: 29410158 PMCID: PMC6072632 DOI: 10.1016/j.addr.2018.01.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/15/2022]
Abstract
Non-invasive measurement of drug-target engagement can provide critical insights in the molecular pharmacology of small molecule drugs. Fluorescence polarization/fluorescence anisotropy measurements are commonly employed in protein/cell screening assays. However, the expansion of such measurements to the in vivo setting has proven difficult until recently. With the advent of high-resolution fluorescence anisotropy microscopy it is now possible to perform kinetic measurements of intracellular drug distribution and target engagement in commonly used mouse models. In this review we discuss the background, current advances and future perspectives in intravital fluorescence anisotropy measurements to derive pharmacokinetic and pharmacodynamic measurements in single cells and whole organs.
Collapse
Affiliation(s)
- Claudio Vinegoni
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Paolo Fumene Feruglio
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Ignacy Gryczynski
- University of North Texas Health Science Center, Institute for Molecular Medicine, Fort Worth, TX, United States
| | - Ralph Mazitschek
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Abstract
Myeloid cells assume a wide range of phenotypes, some of which are protective against injury and infection whilst others promote cardiovascular disease. This heterogeneity is partially caused by switching of cell sources from local tissue-resident macrophage proliferation to recruitment of circulating cells, and partially due to macrophages' phenotypic plasticity. While long-lived tissue-resident macrophages support development, tissue homoeostasis and cardiac conduction, monocyte-derived cells may promote destruction of the arterial wall and the myocardium, leading to organ ischaemia and heart failure. Influencing myeloid cell flux and phenotype shifts emerges as a therapeutic opportunity in many disease areas, including atherosclerosis, acute myocardial infarction, heart failure and stroke. However, it is currently unclear which cell subsets and drug targets are the most efficient and safest options. Here I review the neutrophil and macrophage supply chain and the cells' emerging heterogeneity in the setting of atherosclerosis and ischaemic heart disease.
Collapse
Affiliation(s)
- M Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Li J, Zhu P, Wang L, Yang L, Zou L, Gao F. Study of diffusion-weighted magnetic resonance imaging in the evaluation of the response to AAV2-VEGF-Trap neoadjuvant treatment in a triple-negative breast cancer animal model. Cancer Med 2019; 8:1594-1603. [PMID: 30900382 PMCID: PMC6488150 DOI: 10.1002/cam4.1963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/05/2023] Open
Abstract
Objective Evaluation of the efficacy of adeno‐associated virus 2 mediated gene transfer of vascular endothelial growth factor Trap (AAV2‐VEGF‐Trap) alone or combination with paclitaxel in a mouse model of triple‐negative breast cancer (TNBC) using diffusion‐weighted magnetic resonance imaging (DW‐MRI) and in vivo fluorescence imaging. Materials and Methods Xenografted TNBC tumors were established by subcutaneous injection of MDA‐MB‐231 cells into nude mice. Tumors were treated with AAV2‐VEGF‐Trap, paclitaxel, AAV2‐VEGF‐Trap combined with paclitaxel and control. A 7.0‐Tesla magnetic resonance (MR) was used to obtain the apparent diffusion coefficient (ADC) values and ΔADC values. In vivo fluorescence imaging coupled with the optical imaging probe AngioSense680 EX was acquired to obtain average luminous intensity values. Immunohistochemical staining of tumor Ki‐67 and vascular endothelial cell marker antigen (CD31) were used to evaluate the effects on tumor proliferation and angiogenesis. Results The combination of AAV2‐VEGF‐Trap with paclitaxel exhibited greater tumor growth inhibition compared with the other groups. The ADC values in the paclitaxel group and the AAV2‐VEGF‐Trap in combination with paclitaxel group were significant greater compared with the control group, and the ΔADC values of all treatment groups were significantly increased compared with the control group on the 14th day after administration. Decreased microvessel density and luminous intensity in the treatment groups that contain AAV2‐VEGF‐Trap were observed. Reduced proliferation activity was noted in groups that contained paclitaxel. Conclusion AAV2‐VEGF‐Trap inhibits TNBC growth though inhibiting tumor neovascularization with a single intravenous injection, and AAV2‐VEGF‐Trap exhibits a synergistic effect when used in combination with paclitaxel for TNBC neoadjuvant therapy. In vivo fluorescence imaging can detect the anti‐angiogenesis effect of AAV2‐VEGF‐Trap early and noninvasively. DW‐MRI can longitudinally monitor the neoadjuvant efficacy of TNBC.
Collapse
Affiliation(s)
- Jianhua Li
- The First Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Pengjin Zhu
- The First Department of Oncology, West China Hospital, Sichuan University, Chengdu, China.,Department of Oncology, Linfen Central Hospital, Linfen, China
| | - Lei Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of State/National Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Liqun Zou
- The First Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Fabao Gao
- The First Department of Oncology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Miao Q, Pu K. Organic Semiconducting Agents for Deep-Tissue Molecular Imaging: Second Near-Infrared Fluorescence, Self-Luminescence, and Photoacoustics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801778. [PMID: 30058244 DOI: 10.1002/adma.201801778] [Citation(s) in RCA: 376] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/17/2018] [Indexed: 05/05/2023]
Abstract
Optical imaging has played a pivotal role in biology and medicine, but it faces challenges of relatively low tissue penetration and poor signal-to-background ratio due to light scattering and tissue autofluorescence. To overcome these issues, second near-infrared fluorescence, self-luminescence, and photoacoustic imaging have recently emerged, which utilize an optical region with reduced light-tissue interactions, eliminate real-time light excitation, and detect acoustic signals with negligible attenuation, respectively. Because there are only a few endogenous molecules absorbing or emitting above the visible region, development of contrast agents is essential for those deep-tissue optical imaging modalities. Organic semiconducting agents with π-conjugated frameworks can be synthesized to meet different optical imaging requirements due to their easy chemical modification and legible structure-property relation. Herein, the deep-tissue optical imaging applications of organic semiconducting agents including small-molecule agents and nanoparticle derivatives are summarized. In particular, the molecular engineering and nanoformulation approaches to further improve the tissue penetration and detection sensitivity of these optical imaging modalities are highlighted. Finally, current challenges and potential opportunities in this emerging subfield of biomedical imaging are discussed.
Collapse
Affiliation(s)
- Qingqing Miao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
35
|
Matsuura R, Miyagawa S, Fukushima S, Goto T, Harada A, Shimozaki Y, Yamaki K, Sanami S, Kikuta J, Ishii M, Sawa Y. Intravital imaging with two-photon microscopy reveals cellular dynamics in the ischeamia-reperfused rat heart. Sci Rep 2018; 8:15991. [PMID: 30375442 PMCID: PMC6207786 DOI: 10.1038/s41598-018-34295-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/09/2018] [Indexed: 12/27/2022] Open
Abstract
Recent advances in intravital microscopy have provided insight into dynamic biological events at the cellular level in both healthy and pathological tissue. However, real-time in vivo cellular imaging of the beating heart has not been fully established, mainly due to the difficulty of obtaining clear images through cycles of cardiac and respiratory motion. Here we report the successful recording of clear in vivo moving images of the beating rat heart by two-photon microscopy facilitated by cardiothoracic surgery and a novel cardiac stabiliser. Subcellular dynamics of the major cardiac components including the myocardium and its subcellular structures (i.e., nuclei and myofibrils) and mitochondrial distribution in cardiac myocytes were visualised for 4-5 h in green fluorescent protein-expressing transgenic Lewis rats at 15 frames/s. We also observed ischaemia/reperfusion (I/R) injury-induced suppression of the contraction/relaxation cycle and the consequent increase in cell permeability and leukocyte accumulation in cardiac tissue. I/R injury was induced in other transgenic mouse lines to further clarify the biological events in cardiac tissue. This imaging system can serve as an alternative modality for real time monitoring in animal models and cardiological drug screening, and can contribute to the development of more effective treatments for cardiac diseases.
Collapse
Affiliation(s)
- Ryohei Matsuura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satsuki Fukushima
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takasumi Goto
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuri Shimozaki
- Research and Development Division for Advanced Technology, Research and Development Center, Dai Nippon Printing Co., Ltd., Tokyo, Japan
| | - Kazumasa Yamaki
- Research and Development Division for Advanced Technology, Research and Development Center, Dai Nippon Printing Co., Ltd., Tokyo, Japan
| | - Sho Sanami
- Research and Development Division for Advanced Technology, Research and Development Center, Dai Nippon Printing Co., Ltd., Tokyo, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
36
|
Optimization of Fluorescent Labeling for In Vivo Nanoimaging of Sarcomeres in the Mouse Heart. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4349170. [PMID: 30211223 PMCID: PMC6126089 DOI: 10.1155/2018/4349170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/13/2018] [Indexed: 11/18/2022]
Abstract
The present study was conducted to systematically investigate the optimal viral titer as well as the volume of the adenovirus vector (ADV) that expresses α-actinin-AcGFP in the Z-disks of myocytes in the left ventricle (LV) of mice. An injection of 10 μL ADV at viral titers of 2 to 4 × 1011 viral particles per mL (VP/mL) into the LV epicardial surface consistently expressed α-actinin-AcGFP in myocytes in vivo, with the fraction of AcGFP-expressing myocytes at ~10%. Our analysis revealed that SL was ~1.90-2.15 μm upon heart arrest via deep anesthesia. Likewise, we developed a novel fluorescence labeling method of the T-tubular system by treating the LV surface with CellMask Orange (CellMask). We found that the T-tubular distance was ~2.10-2.25 μm, similar to SL, in the healthy heart in vivo. Therefore, the present high-precision visualization method for the Z-disks or the T-tubules is beneficial to unveiling the mechanisms of myocyte contraction in health and disease in vivo.
Collapse
|
37
|
Jones JS, Small DM, Nishimura N. In Vivo Calcium Imaging of Cardiomyocytes in the Beating Mouse Heart With Multiphoton Microscopy. Front Physiol 2018; 9:969. [PMID: 30108510 PMCID: PMC6079295 DOI: 10.3389/fphys.2018.00969] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/02/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Understanding the microscopic dynamics of the beating heart has been challenging due to the technical nature of imaging with micrometer resolution while the heart moves. The development of multiphoton microscopy has made in vivo, cell-resolved measurements of calcium dynamics and vascular function possible in motionless organs such as the brain. In heart, however, studies of in vivo interactions between cells and the native microenvironment are behind other organ systems. Our goal was to develop methods for intravital imaging of cardiac structural and calcium dynamics with microscopic resolution. Methods: Ventilated mice expressing GCaMP6f, a genetically encoded calcium indicator, received a thoracotomy to provide optical access to the heart. Vasculature was labeled with an injection of dextran-labeled dye. The heart was partially stabilized by a titanium probe with a glass window. Images were acquired at 30 frames per second with spontaneous heartbeat and continuously running, ventilated breathing. The data were reconstructed into three-dimensional volumes showing tissue structure, vasculature, and GCaMP6f signal in cardiomyocytes as a function of both the cardiac and respiratory cycle. Results: We demonstrated the capability to simultaneously measure calcium transients, vessel size, and tissue displacement in three dimensions with micrometer resolution. Reconstruction at various combinations of cardiac and respiratory phase enabled measurement of regional and single-cell cardiomyocyte calcium transients (GCaMP6f fluorescence). GCaMP6f fluorescence transients in individual, aberrantly firing cardiomyocytes were also quantified. Comparisons of calcium dynamics (rise-time and tau) at varying positions within the ventricle wall showed no significant depth dependence. Conclusion: This method enables studies of coupling between contraction and excitation during physiological blood perfusion and breathing at high spatiotemporal resolution. These capabilities could lead to a new understanding of normal and disease function of cardiac cells.
Collapse
Affiliation(s)
- Jason S Jones
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - David M Small
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Nozomi Nishimura
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
38
|
Nahrendorf M. Myeloid cell contributions to cardiovascular health and disease. Nat Med 2018; 24:711-720. [PMID: 29867229 DOI: 10.1038/s41591-018-0064-0] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022]
Abstract
Recent advances in cell tracing and sequencing technologies have expanded our knowledge on leukocyte behavior. As a consequence, inflammatory cells, such as monocyte-derived macrophages, and their actions and products are increasingly being considered as potential drug targets for treatment of atherosclerosis, myocardial infarction and heart failure. Particularly promising developments are the identification of harmful arterial and cardiac macrophage subsets, the cells' altered, sometimes even clonal production in hematopoietic organs, and epigenetically entrained memories of myeloid progenitors and macrophages in the setting of cardiovascular disease. Given the roles of monocytes and macrophages in host defense, intricately understanding the involved cellular subsets, sources and functions is essential for the design of precision therapeutics that preserve protective innate immunity. Here I review how new clinical and preclinical data, often linking the cardiovascular, immune and other organ systems, propel conceptual advances to a point where cardiovascular immunotherapy appears within reach.
Collapse
Affiliation(s)
- Matthias Nahrendorf
- Center for Systems Biology and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Expression of adhesion molecules on granulocytes and monocytes following myocardial infarction in rats drinking white wine. PLoS One 2018; 13:e0196842. [PMID: 29746525 PMCID: PMC5945017 DOI: 10.1371/journal.pone.0196842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 04/20/2018] [Indexed: 11/29/2022] Open
Abstract
Neutrophils and monocytes through their CD15s, CD11b and CD44 adhesion molecules are implicated in the initiation and resolution of cardiac inflammation as well as in healing processes after the myocardial infarction (MI). The aim of this study was to determine the effect of white wine consumption on granulocyte and monocyte CD15s, CD11b, and CD44 expression 24h after the surgically inflicted MI. Granulocytes and monocytes were analyzed by flow cytometry, using whole blood of male Sprague–Dawley rats that consumed white wine for 4 weeks. This group was compared with water only drinking controls, sham animals (subject to surgery without myocardial infarction) and baseline group (intact animals that received no intervention prior to being sacrificed). Sham animals did not differ from baseline animals in CD11b+CD44+ percentage and CD44+ median fluorescence intensity. Wine drinking was associated with striking increase in CD44 expression on monocyte subpopulations. Its expression was three and fourfold increased on monocytes and large monocytes, respectively, relative to the water only drinking controls. Because of known role of CD44 on suppression of post-infarction inflammation, its upregulation on granulocytes and monocytes may significantly contribute to the microenvironment favourable for the cardiac regeneration.
Collapse
|
40
|
Ai X, Lu W, Zeng K, Li C, Jiang Y, Tu P. Microfluidic Coculture Device for Monitoring of Inflammation-Induced Myocardial Injury Dynamics. Anal Chem 2018. [PMID: 29533659 DOI: 10.1021/acs.analchem.7b04833] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Emerging awareness of cardiac macrophages' role in inflammation after myocardial infarction indicates that overabundant proinflammatory macrophages induce accentuated myocardial injury. The investigation of the macrophages-cardiomyocytes interaction and inflammation-induced dynamic damage in myocardial infarction, especially in a spatiotemporally controlled manner, remains a huge challenge. Here, we developed an in vitro model using a microfluidic coculture system to mimic inflammatory cardiac injury. To our knowledge, on-chip pathological models focused on inflammation-induced myocardial injury have not been reported. The device consists of two sets of thin interconnecting grooves that isolate heterogeneous cells spatially but maintain their soluble factors communication. The mass transportation is visually characterized, and the complete diffusion reaches equilibrium within 100 s. We investigate the dynamic interaction between the macrophages and the cardiomyocytes in the spatiotemporal controlled microenvironment, mimicking a key aspect of the in vivo pathophysiological process. The results show that the activated macrophages induce time-lapsed apoptotic responses of the cardiac cells and damage mitochondria membrane integrity. The anti-inflammatory and cardio-protective effects of quercetin were explored on the chip. The extent of caspase-3 activation is asynchronous in the individual cardiac cells, suggesting the different apoptosis dynamics. We further demonstrate that the mechanism of activated inflammation is associated with the upregulation of several inflammatory cytokines and NF-κB pathway. Thus, the developed microfluidic coculture device provides a useful tool for real-time monitoring of inflammatory response for myocardial disease and holds potential for anti-inflammatory drug screening.
Collapse
Affiliation(s)
- Xiaoni Ai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Wenbo Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine , Beijing University of Chinese Medicine , Beijing 100029 , China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| |
Collapse
|
41
|
White MD, Zhao ZW, Plachta N. In Vivo Imaging of Single Mammalian Cells in Development and Disease. Trends Mol Med 2018; 24:278-293. [PMID: 29439932 DOI: 10.1016/j.molmed.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/05/2018] [Accepted: 01/14/2018] [Indexed: 12/14/2022]
Abstract
Live imaging has transformed biomedical sciences by enabling visualization and analysis of dynamic cellular processes as they occur in their native contexts. Here, we review key recent efforts applying in vivo optical imaging with single-cell resolution to mammalian systems ranging from embryos to adult tissues and organs. We highlight insights into active processes regulating cell fate and morphogenesis during embryonic development, how neuronal circuitry and non-neuronal cell types contribute to neurological functions, and how novel imaging-based approaches enable the dissection of neurological disorders and cancer with high spatio-temporal resolution. The convergence of technical advancements in accessing, visualizing, and manipulating individual cells provides an unprecedented lens to probe mammalian cellular dynamics in vivo in both physiological and pathological states.
Collapse
Affiliation(s)
- Melanie D White
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore; These authors contributed equally to this work
| | - Ziqing W Zhao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore; These authors contributed equally to this work
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
42
|
Lo SC, Ramanan RN, Tey BT, Tan WS, Show PL, Ling TC, Ooi CW. Purification of the recombinant enhanced green fluorescent protein from Escherichia coli using alcohol + salt aqueous two-phase systems. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.09.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Abstract
Recent molecular approaches have provided deeper insight on heart failure. However, real-time in vivo cellular dynamics have not been satisfactorily visualized. Here, we present a detailed protocol for in vivo cellular imaging for visualization of the rat heart using two-photon microscopy.
Collapse
|
44
|
IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat Med 2017; 23:1481-1487. [PMID: 29106401 PMCID: PMC6477926 DOI: 10.1038/nm.4428] [Citation(s) in RCA: 397] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
Interferon regulatory factor 3 (IRF3) and type I interferons (IFNs) protect against infections1 and cancer2, but excessive IRF3 activation and type I IFN production cause auto-inflammatory conditions such as Aicardi Goutieres Syndrome3,4 and STING-associated vasculopathy of infancy (SAVI)3. Myocardial infarction (MI) elicits inflammation5, but the dominant molecular drivers of MI-associated inflammation remain unclear. Here, we show that ischemic cell death in the heart fuels a fatal response to myocardial infarction by activating IRF3 and type I IFN production. In mice, single cell RNA-Seq analysis of 4,215 leukocytes isolated from infarcted and non-infarcted hearts revealed that MI provokes activation of an IRF3-interferon axis in a distinct population of interferon inducible cells (IFNICs that were classified as cardiac macrophages). Mice genetically deficient in cGAS, its adaptor STING, IRF3, or the type I interferon receptor IFNAR exhibited impaired interferon stimulated gene (ISG) expression and, in the case of mice deficient in IRF3 or IFNAR, improved survival after MI as compared to controls. Interruption of IRF3-dependent signaling resulted in decreased cardiac expression of inflammatory cytokines and chemokines and decreased cardiac inflammatory cell infiltration, as well as in attenuated ventricular dilation and improved cardiac function. Similarly, treatment of mice with an IFNAR neutralizing antibody after MI ablated the IFN response and improved left ventricular dysfunction and survival. These results identify IRF3 and the type I interferon response as a potential therapeutic target for post-MI cardioprotection. The massive cell death that occurs during myocardial infarction releases self-DNA and triggers an interferon response in infiltrating leukocytes via a cGAS-STING-IRF3 pathway. In mice subjected to myocardial infarction, genetic disrupton of this pathway or antibody blockade of the type I interferon receptor improved heart function and survival.
Collapse
|
45
|
Wu Z, Rademakers T, Kiessling F, Vogt M, Westein E, Weber C, Megens RT, van Zandvoort M. Multi-photon microscopy in cardiovascular research. Methods 2017; 130:79-89. [DOI: 10.1016/j.ymeth.2017.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/27/2017] [Accepted: 04/11/2017] [Indexed: 01/26/2023] Open
|
46
|
Li YX, Gautam V, Brüstle A, Cockburn IA, Daria VR, Gillespie C, Gaus K, Alt C, Lee WM. Flexible polygon-mirror based laser scanning microscope platform for multiphoton in-vivo imaging. JOURNAL OF BIOPHOTONICS 2017; 10:1526-1537. [PMID: 28164461 DOI: 10.1002/jbio.201600289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 05/18/2023]
Abstract
Commercial microscopy systems make use of tandem scanning i.e. either slow or fast scanning. We constructed, for the first time, an advanced control system capable of delivering a dynamic line scanning speed ranging from 2.7 kHz to 27 kHz and achieve variable frame rates from 5 Hz to 50 Hz (512 × 512). The dynamic scanning ability is digitally controlled by a new customized open-source software named PScan1.0. This permits manipulation of scanning rates either to gain higher fluorescence signal at slow frame rate without increasing laser power or increase frame rates to capture high speed events. By adjusting imaging speed from 40 Hz to 160 Hz, we capture a range of calcium waves and transient peaks from soma and dendrite of single fluorescence neuron (CAL-520AM). Motion artifacts arising from respiratory and cardiac motion in small animal imaging reduce quality of real-time images of single cells in-vivo. An image registration algorithm, integrated with PScan1.0, was shown to perform both real time and post-processed motion correction. The improvement is verified by quantification of blood flow rates. This work describes all the steps necessary to develop a high performance and flexible polygon-mirror based multiphoton microscope system for in-vivo biological imaging.
Collapse
Affiliation(s)
- Y X Li
- Research School of Engineering, College of Engineering and Computer Science, Australia National University, North Road, Canberra ACT, 2601, Australia
| | - V Gautam
- John Curtin School of Medical Research, Australian National University, Garran Road, Canberra ACT, 2601, Australia
| | - A Brüstle
- John Curtin School of Medical Research, Australian National University, Garran Road, Canberra ACT, 2601, Australia
| | - I A Cockburn
- John Curtin School of Medical Research, Australian National University, Garran Road, Canberra ACT, 2601, Australia
| | - V R Daria
- John Curtin School of Medical Research, Australian National University, Garran Road, Canberra ACT, 2601, Australia
| | - C Gillespie
- John Curtin School of Medical Research, Australian National University, Garran Road, Canberra ACT, 2601, Australia
| | - K Gaus
- Australia- EMBL Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney NSW, 2052, Australia
- Australia Research Council Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Australia
| | - C Alt
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - W M Lee
- Research School of Engineering, College of Engineering and Computer Science, Australia National University, North Road, Canberra ACT, 2601, Australia
- Australia Research Council Centre of Excellence in Advanced Molecular Imaging, Australian National University, Australia
| |
Collapse
|
47
|
Lin HCA, Déan-Ben XL, Ivankovic I, Kimm MA, Kosanke K, Haas H, Meier R, Lohöfer F, Wildgruber M, Razansky D. Characterization of Cardiac Dynamics in an Acute Myocardial Infarction Model by Four-Dimensional Optoacoustic and Magnetic Resonance Imaging. Theranostics 2017; 7:4470-4479. [PMID: 29158839 PMCID: PMC5695143 DOI: 10.7150/thno.20616] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/15/2017] [Indexed: 01/25/2023] Open
Abstract
Extraction of murine cardiac functional parameters on a beat-by-beat basis is limited with the existing imaging modalities due to insufficient three-dimensional temporal resolution. Faster volumetric imaging methods enabling in vivo characterization of functional parameters are poised to advance cardiovascular research and provide a better understanding of the mechanisms underlying cardiac diseases. We present a new approach based on analyzing contrast-enhanced optoacoustic (OA) images acquired at high volumetric frame rate without using cardiac gating or other approaches for motion correction. We apply an acute murine myocardial infarction model optimized for acquisition of artifact-free optoacoustic imaging data to study cardiovascular hemodynamics. Infarcted hearts (n = 21) could be clearly differentiated from healthy controls (n = 9) based on a significantly higher pulmonary transit time (PTT) (2.25 [2.00-2.41] s versus 1.34 [1.25-1.67] s, p = 0.0235), while no statistically significant difference was observed in the heart rate (318 [252-361] bpm versus 264 [252-320] bpm, p = 0.3129). Nevertheless, nonlinear heartbeat dynamics was stronger in the healthy hearts, as evidenced by the third harmonic component in the heartbeat spectra. MRI data acquired from the same mice further revealed that the PTT increases with the size of infarction and similarly increases with reduced ejection fraction. Moreover, an inverse relationship between infarct PTT and time post-surgery was found, which suggests the occurrence of cardiac healing. In combination with the proven ability of optoacoustics to track targeted probes within the injured myocardium, our method can depict cardiac anatomy, function, and molecular signatures, with both high spatial and temporal resolution. Volumetric four-dimensional optoacoustic characterization of cardiac dynamics with supreme temporal resolution can capture cardiovascular dynamics on a beat-by-beat basis in mouse models of myocardial ischemia.
Collapse
|
48
|
Koopman CD, Zimmermann WH, Knöpfel T, de Boer TP. Cardiac optogenetics: using light to monitor cardiac physiology. Basic Res Cardiol 2017; 112:56. [PMID: 28861604 PMCID: PMC5579185 DOI: 10.1007/s00395-017-0645-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
Abstract
Our current understanding of cardiac excitation and its coupling to contraction is largely based on ex vivo studies utilising fluorescent organic dyes to assess cardiac action potentials and signal transduction. Recent advances in optogenetic sensors open exciting new possibilities for cardiac research and allow us to answer research questions that cannot be addressed using the classic organic dyes. Especially thrilling is the possibility to use optogenetic sensors to record parameters of cardiac excitation and contraction in vivo. In addition, optogenetics provide a high spatial resolution, as sensors can be coupled to motifs and targeted to specific cell types and subcellular domains of the heart. In this review, we will give a comprehensive overview of relevant optogenetic sensors, how they can be utilised in cardiac research and how they have been applied in cardiac research up to now.
Collapse
Affiliation(s)
- Charlotte D Koopman
- Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, 3584CM, Utrecht, The Netherlands.,Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht, 3584CT, Utrecht, The Netherlands
| | - Wolfram H Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DHZK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London, UK.,Centre for Neurotechnology, Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Teun P de Boer
- Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, 3584CM, Utrecht, The Netherlands.
| |
Collapse
|
49
|
Conway JRW, Warren SC, Timpson P. Context-dependent intravital imaging of therapeutic response using intramolecular FRET biosensors. Methods 2017; 128:78-94. [PMID: 28435000 DOI: 10.1016/j.ymeth.2017.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/13/2017] [Accepted: 04/08/2017] [Indexed: 12/18/2022] Open
Abstract
Intravital microscopy represents a more physiologically relevant method for assessing therapeutic response. However, the movement into an in vivo setting brings with it several additional considerations, the primary being the context in which drug activity is assessed. Microenvironmental factors, such as hypoxia, pH, fibrosis, immune infiltration and stromal interactions have all been shown to have pronounced effects on drug activity in a more complex setting, which is often lost in simpler two- or three-dimensional assays. Here we present a practical guide for the application of intravital microscopy, looking at the available fluorescent reporters and their respective expression systems and analysis considerations. Moving in vivo, we also discuss the microscopy set up and methods available for overlaying microenvironmental context to the experimental readouts. This enables a smooth transition into applying higher fidelity intravital imaging to improve the drug discovery process.
Collapse
Affiliation(s)
- James R W Conway
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Sean C Warren
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia.
| |
Collapse
|
50
|
Miller MA, Weissleder R. Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Adv Drug Deliv Rev 2017; 113:61-86. [PMID: 27266447 PMCID: PMC5136524 DOI: 10.1016/j.addr.2016.05.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Abstract
Therapeutic nanoparticles (NPs) can deliver cytotoxic chemotherapeutics and other drugs more safely and efficiently to patients; furthermore, selective delivery to target tissues can theoretically be accomplished actively through coating NPs with molecular ligands, and passively through exploiting physiological "enhanced permeability and retention" features. However, clinical trial results have been mixed in showing improved efficacy with drug nanoencapsulation, largely due to heterogeneous NP accumulation at target sites across patients. Thus, a clear need exists to better understand why many NP strategies fail in vivo and not result in significantly improved tumor uptake or therapeutic response. Multicolor in vivo confocal fluorescence imaging (intravital microscopy; IVM) enables integrated pharmacokinetic and pharmacodynamic (PK/PD) measurement at the single-cell level, and has helped answer key questions regarding the biological mechanisms of in vivo NP behavior. This review summarizes progress to date and also describes useful technical strategies for successful IVM experimentation.
Collapse
Affiliation(s)
- Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|