1
|
Srimathi SR, Ignacio MA, Rife M, Tai S, Milton DK, Scull MA, DeVoe DL. Microfluidic digital focus assays for the quantification of infectious influenza virus. LAB ON A CHIP 2025; 25:2004-2016. [PMID: 39907221 PMCID: PMC11796355 DOI: 10.1039/d4lc00940a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Quantifying infectious virus is essential for vaccine development, clinical diagnostics, and infectious disease research, but current assays are constrained by long turnaround times, high costs, and laborious procedures. To address these limitations, we present a digital focus assay employing an array of independent nanoliter cell cultures. The microfluidic platform allows cells in each nanowell to be inoculated with virus, followed by oil discretization to prevent cross-contamination. After incubation, infected cells are visualized through immunofluorescence staining, and a binary map of wells positive for viral antigen is generated by automated image analysis, allowing infectious viral titer to be calculated by statistical analysis. The platform requires significantly smaller sample and reagent volumes than conventional focus assays while enhancing assay automation and endpoint time flexibility. The technology is applied to the quantification of infectious influenza A using both model virus and clinical specimens, demonstrating the digital platform as an accurate, rapid, cost-effective, and convenient tool for viral load quantification with broad utility in clinical, pharmaceutical, and research applications.
Collapse
Affiliation(s)
- Siddharth Raghu Srimathi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, USA
| | - Maxinne A Ignacio
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, USA
| | - Maria Rife
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, USA
| | - Sheldon Tai
- Department of Global, Environmental, and Occupational Health, University of Maryland, College Park, USA
| | - Donald K Milton
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, USA
- Department of Global, Environmental, and Occupational Health, University of Maryland, College Park, USA
| | - Margaret A Scull
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, USA
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, USA
| | - Don L DeVoe
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, USA
- Department of Mechanical Engineering, University of Maryland, College Park, USA
| |
Collapse
|
2
|
Pan J, Duggal NK, Lakdawala SS, Rockey NC, Marr LC. Mucin Colocalizes with Influenza Virus and Preserves Infectivity in Deposited Model Respiratory Droplets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2192-2200. [PMID: 39823314 DOI: 10.1021/acs.est.4c10886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The stability of influenza virus in respiratory particles varies with relative humidity (RH) and protein content. This study investigated the decay, or loss of infectivity, of influenza A virus (IAV) in 1-μL respiratory droplets deposited on a surface with varying concentrations of mucin, one of the most abundant proteins in respiratory mucus, and examined the localization of virions within droplets. IAV remained stable at 0.1% and 0.5% mucin in phosphate-buffered saline (PBS) over 4 h at 20%, 50%, and 80% RH, with a maximum decay of 1.2 log10/mL. In contrast, in pure PBS droplets, the virus decayed by at least 2.6 log10/mL after 4 h at 50% and 80% RH. Mucin's protective effect was independent of its concentration, except at 80% RH after 4 h. Confocal microscopy of the particles revealed that at 20% and 50% RH, mucin led to thicker coffee rings and dendritic patterns where virions colocalized with mucin. At 80% RH, no morphological difference was observed between PBS-only and mucin-containing droplets, but virions still colocalized with mucin in the center of droplets with 0.5% mucin. Analysis by digital droplet PCR showed that mucin helped maintain virus integrity. To our knowledge, this is the first study to localize influenza virus in model respiratory droplets. The results suggest that mucin's colocalization with virions in droplets may protect the virus from environmental stressors, enhancing its stability.
Collapse
Affiliation(s)
- Jin Pan
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia 24061, United States
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, United States
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Nicole C Rockey
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, United States
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
3
|
Allison JR, Tiede S, Holliday R, Durham J, Jakubovics NS. Bioaerosols and Airborne Transmission in the Dental Clinic. Int Dent J 2024; 74 Suppl 2:S418-S428. [PMID: 39515929 PMCID: PMC11583874 DOI: 10.1016/j.identj.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
The importance of aerosols (particles suspended in air) produced during dental procedures became more apparent than ever during the COVID-19 pandemic. Concerns over transmission of infection in these aerosols led to unprecedented disruption to dental services across the world, adversely impacting patients' oral health. This article discusses the evidence related to airborne transmission of infectious diseases and the relevance to dentistry. The production of bioaerosols (aerosols carrying biological material) during dental procedures is explored, as well as how the potential risks posed by these bioaerosols can be controlled. A better understanding of dental bioaerosols is needed to prevent similar disruption to dental services in future outbreaks, and to reduce the risk of infection of dental professionals when treating patients with active infections who require urgent or emergency dental care.
Collapse
Affiliation(s)
- James R Allison
- Faculty of Medical Sciences, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | | | - Richard Holliday
- Faculty of Medical Sciences, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Justin Durham
- Faculty of Medical Sciences, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Nicholas S Jakubovics
- Faculty of Medical Sciences, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Schaub A, Luo B, David SC, Glas I, Klein LK, Costa L, Terrettaz C, Bluvshtein N, Motos G, Violaki K, Pohl MO, Hugentobler W, Nenes A, Stertz S, Krieger UK, Peter T, Kohn T. Salt Supersaturation as an Accelerator of Influenza A Virus Inactivation in 1 μL Droplets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18856-18869. [PMID: 39392017 DOI: 10.1021/acs.est.4c04734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Influenza A virus (IAV) spreads through exhaled aerosol particles and larger droplets. Estimating the stability of IAV is challenging and depends on factors such as the respiratory matrix and drying kinetics. Here, we combine kinetic experiments on millimeter-sized saline droplets with a biophysical aerosol model to quantify the impact of NaCl on IAV stability. We show that IAV inactivation is determined by NaCl concentration, which increases during water evaporation and then decreases again when efflorescence occurs. When drying in air with relative humidity RH = 30%, inactivation follows an inverted sigmoidal curve, with inactivation occurring most rapidly when the NaCl concentration exceeds 20 mol/(kg H2O) immediately prior to efflorescence. Efflorescence reduces the NaCl molality to saturated conditions, resulting in a significantly reduced inactivation rate. We demonstrate that the inactivation rate k depends exponentially on NaCl molality, and after the solution reaches equilibrium, the inactivation proceeds at a first-order rate. Introducing sucrose, an organic cosolute, attenuates IAV inactivation via two mechanisms: first by decreasing the NaCl molality during the drying phase and second by a protective effect against the NaCl-induced inactivation. For both pure saline and sucrose-containing droplets, our biophysical model ResAM accurately simulates the inactivation when NaCl molality is used as the only inactivating factor. This study highlights the role of NaCl molality in IAV inactivation and provides a mechanistic basis for the observed inactivation rates.
Collapse
Affiliation(s)
- Aline Schaub
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Beiping Luo
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich 8092, Switzerland
| | - Shannon C David
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Irina Glas
- Institute of Medical Virology, University of Zurich, Zurich 8057, Switzerland
| | - Liviana K Klein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich 8092, Switzerland
| | - Laura Costa
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Céline Terrettaz
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Nir Bluvshtein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich 8092, Switzerland
| | - Ghislain Motos
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Kalliopi Violaki
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Marie O Pohl
- Institute of Medical Virology, University of Zurich, Zurich 8057, Switzerland
| | - Walter Hugentobler
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Center for The Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras 26504, Greece
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zurich 8057, Switzerland
| | - Ulrich K Krieger
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich 8092, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich 8092, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
5
|
Lin FC, Chen YH, Kuo YW, Ku SC, Jerng JS. Aerosol particle dispersion in spontaneous breathing training of oxygen delivery tracheostomized patients on prolonged mechanical ventilation. J Formos Med Assoc 2024; 123:1104-1109. [PMID: 38336509 DOI: 10.1016/j.jfma.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Tracheostomized patients undergoing liberation from mechanical ventilation (MV) are exposed to the ambient environment through humidified air, potentially heightening aerosol particle dispersion. This study was designed to evaluate the patterns of aerosol dispersion during spontaneous breathing trials in such patients weaning from prolonged MV. METHODS Particle Number Concentrations (PNC) at varying distances from tracheostomized patients in a specialized weaning unit were quantified using low-cost particle sensors, calibrated against a Condensation Particle Counter. Different oxygen delivery methods, including T-piece and collar mask both with the humidifier or with a small volume nebulizer (SVN), and simple collar mask, were employed. The PNC at various distances and across different oxygen devices were compared using the Kruskal-Wallis test. RESULTS Of nine patients receiving prolonged MV, five underwent major surgery, and eight were successfully weaned from ventilation. PNCs at distances ranging from 30 cm to 300 cm showed no significant disparity (H(4) = 8.993, p = 0.061). However, significant differences in PNC were noted among oxygen delivery methods, with Bonferroni-adjusted pairwise comparisons highlighting differences between T-piece or collar mask with SVN and other devices. CONCLUSION Aerosol dispersion within 300 cm of the patient was not significantly different, while the nebulization significantly enhances ambient aerosol dispersion in tracheostomized patients on prolonged MV.
Collapse
Affiliation(s)
- Feng-Ching Lin
- Division of Respiratory Therapy, Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei, Taiwan; School of Respiratory Therapy, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsuan Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yao-Wen Kuo
- Division of Respiratory Therapy, Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Chi Ku
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jih-Shuin Jerng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Center for Quality Management, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
6
|
Ohlopkova OV, Goncharov AE, Aslanov BI, Fadeev AV, Davidyuk YN, Moshkin AD, Stolbunova KA, Stepanyuk MA, Sobolev IA, Tyumentseva MA, Tyumentsev AI, Shestopalov AM, Akimkin VG. First detection of influenza A virus subtypes H1N1 and H3N8 in the Antarctic region: King George Island, 2023. Vopr Virusol 2024; 69:377-389. [PMID: 39361931 DOI: 10.36233/0507-4088-257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Indexed: 10/05/2024]
Abstract
RELEVANCE Influenza A virus is characterized by a segmented single-stranded RNA genome. Such organization of the virus genome determines the possibility of reassortment, which can lead to the emergence of new virus variants. The main natural reservoir of most influenza A virus subtypes are wild waterfowl. Seasonal migrations gather waterfowl from all major migration routes to nesting areas near the northern and southern polar circles. This makes intercontinental spread of influenza A viruses possible. Objective ‒ to conduct molecular genetic monitoring and study the phylogenetic relationships of influenza A virus variants circulating in Antarctica in 2023. MATERIALS AND METHODS We studied 84 samples of biological material obtained from birds and marine mammals in April‒May 2023 in coastal areas of Antarctica. For 3 samples, sequencing was performed on the Miseq, Illumina platform and phylogenetic analysis of the obtained nucleotide sequences of the influenza A virus genomes was performed. RESULTS The circulation of avian influenza virus in the Antarctic region was confirmed. Heterogeneity of the pool of circulating variants of the influenza A virus (H3N8, H1N1) was revealed. Full-length genomes of the avian influenza virus were sequenced and posted in the GISAID database (EPI_ISL_19032103, 19174530, 19174467). CONCLUSION The study of the genetic diversity of influenza A viruses circulating in the polar regions of the Earth and the identification of the conditions for the emergence of new genetic variants is a relevant task for the development of measures to prevent biological threats.
Collapse
Affiliation(s)
- O V Ohlopkova
- Central Research Institute of Epidemiology, Rospotrebnadzor
- Federal Research Center for Fundamental and Translational Medicine
| | - A E Goncharov
- Institute of Experimental Medicine
- Northwestern State Medical University named after I.I. Mechnikov
| | - B I Aslanov
- Northwestern State Medical University named after I.I. Mechnikov
| | - A V Fadeev
- A.A. Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation
| | - Y N Davidyuk
- Federal State Educational Institution of Higher Education «Kazan (Volga Region) Federal University»
| | - A D Moshkin
- Federal Research Center for Fundamental and Translational Medicine
| | - K A Stolbunova
- Federal Research Center for Fundamental and Translational Medicine
| | - M A Stepanyuk
- Federal Research Center for Fundamental and Translational Medicine
| | - I A Sobolev
- Federal Research Center for Fundamental and Translational Medicine
| | | | - A I Tyumentsev
- Central Research Institute of Epidemiology, Rospotrebnadzor
| | - A M Shestopalov
- Federal Research Center for Fundamental and Translational Medicine
| | - V G Akimkin
- Central Research Institute of Epidemiology, Rospotrebnadzor
| |
Collapse
|
7
|
Feng J, Du Y, Chen L, Su W, Wei H, Liu A, Jiang X, Guo J, Dai C, Xu Y, Peng T. A quadrivalent recombinant influenza Hemagglutinin vaccine induced strong protective immune responses in animal models. Vaccine 2024; 42:126008. [PMID: 38834431 DOI: 10.1016/j.vaccine.2024.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Globally, influenza poses a substantial threat to public health, serving as a major contributor to both morbidity and mortality. The current vaccines for seasonal influenza are not optimal. A novel recombinant hemagglutinin (rHA) protein-based quadrivalent seasonal influenza vaccine, SCVC101, has been developed. SCVC101-S contains standard dose protein (15μg of rHA per virus strain) and an oil-in-water adjuvant, CD-A, which enhances the immunogenicity and cross-protection of the vaccine. Preclinical studies in mice, rats, and rhesus macaques demonstrate that SCVC101-S induces robust humoral and cellular immune responses, surpassing those induced by commercially available vaccines. Notably, a single injection with SCVC101-S can induce a strong immune response in macaques, suggesting the potential for a standard-dose vaccination with a recombinant protein influenza vaccine. Furthermore, SCVC101-S induces cross-protection immune responses against heterologous viral strains, indicating broader protection than current vaccines. In conclusion, SCVC101-S has demonstrated safety and efficacy in preclinical settings and warrants further investigation in human clinical trials. Its potential as a valuable addition to the vaccines against seasonal influenza, particularly for the elderly population, is promising.
Collapse
MESH Headings
- Animals
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Macaca mulatta
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Cross Protection/immunology
- Mice
- Rats
- Female
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Immunity, Cellular
- Mice, Inbred BALB C
- Disease Models, Animal
- Immunity, Humoral
- Adjuvants, Vaccine/administration & dosage
- Humans
Collapse
Affiliation(s)
- Jin Feng
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; Guangzhou National Laboratory, Guangzhou Bio-Island, Guangzhou 510005, China; Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China
| | - Yingying Du
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China
| | - Liyun Chen
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China
| | - Wenhan Su
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China
| | - Hailiu Wei
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China
| | - Aijiao Liu
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China
| | - Xiaojun Jiang
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China
| | - Jianmin Guo
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou 510900, China
| | - Cailing Dai
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou 510900, China
| | - Yuhua Xu
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China.
| | - Tao Peng
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China.
| |
Collapse
|
8
|
Zhao X, Zheng X, Yang X, Guo Q, Zhang Y, Lou J. Establishment of a Lateral Flow Dipstick Detection Method for Influenza A Virus Based on CRISPR/Cas12a System. China CDC Wkly 2024; 6:946-952. [PMID: 39347452 PMCID: PMC11427337 DOI: 10.46234/ccdcw2024.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/01/2024] [Indexed: 10/01/2024] Open
Abstract
Objective This study aimed to develop a rapid, visual PCR-CRISPR/Cas12-LFD method for detecting influenza A by utilizing the conserved region of the matrix protein gene. Method We crafted universal degradation primers and clustered regularly interspaced short palindromic repeats RNA (CRISPR RNA, crRNA) targeting the conserved matrix protein gene of the influenza virus (IFV), integrated with lateral flow dipstick (LFD) technology. This new PCR-CRISPR/Cas12-LFD approach was designed to determine its sensitivity and specificity through the analysis of various clinical samples collected in 2023. Results The developed nucleic acid assay for influenza A viruses (IAV) demonstrated a sensitivity of 10 copies/μL without cross-reactivity with other respiratory pathogens. Evaluation of 82 clinical samples showed high concordance with results from fluorescent Polymerase Chain Reaction (PCR), achieving a kappa value of 0.95. Conclusion A highly sensitive and specific PCR-CRISPR/Cas12-LFD method has been successfully established for the detection of influenza A, offering a robust tool for its diagnosis and aiding in the prevention and control of this virus.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Department of Clinical Laboratory, Zhumadian Central Hospital, Zhumadian City, Henan Province, China
| | - Ximing Zheng
- Department of Clinical Laboratory, Zhumadian Central Hospital, Zhumadian City, Henan Province, China
| | - Xiyong Yang
- Department of Clinical Laboratory, Zhumadian Central Hospital, Zhumadian City, Henan Province, China
| | - Qi Guo
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Yi Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Lou
- Department of Clinical Laboratory, Zhumadian Central Hospital, Zhumadian City, Henan Province, China
| |
Collapse
|
9
|
Rockey NC, Le Sage V, Shephard M, Vargas-Maldonado N, Vu MN, Brown CA, Patel K, French AJ, Merrbach GA, Walter S, Ferreri LM, Holmes KE, VanInsberghe D, Clack HL, Prussin AJ, Lowen AC, Marr LC, Lakdawala SS. Ventilation does not affect close-range transmission of influenza virus in a ferret playpen setup. Proc Natl Acad Sci U S A 2024; 121:e2322660121. [PMID: 39361828 PMCID: PMC11331089 DOI: 10.1073/pnas.2322660121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/10/2024] [Indexed: 10/05/2024] Open
Abstract
Sustained community spread of influenza viruses relies on efficient person-to-person transmission. Current experimental transmission systems do not mimic environmental conditions (e.g., air exchange rates, flow patterns), host behaviors, or exposure durations relevant to real-world settings. Therefore, results from these traditional systems may not be representative of influenza virus transmission in humans. To address this pitfall, we developed a close-range transmission setup that implements a play-based scenario and used it to investigate the impact of ventilation rates on transmission. In this setup, four immunologically naive recipient ferrets were exposed to a donor ferret infected with a genetically barcoded 2009 H1N1 virus (H1N1pdm09) for 4 h. The ferrets interacted in a shared space that included toys, similar to a childcare setting. Transmission efficiency was assessed under low and high ventilation, with air exchange rates of ~1.3 h-1 and 23 h-1, respectively. Transmission efficiencies observed in three independent replicate studies were similar between ventilation conditions. The presence of infectious virus or viral RNA on surfaces and in air throughout the exposure area was also not impacted by the ventilation rate. While high viral genetic diversity in donor ferret nasal washes was maintained during infection, recipient ferret nasal washes displayed low diversity, revealing a narrow transmission bottleneck regardless of ventilation rate. Examining the frequency and duration of ferret physical touches revealed no link between these interactions and a successful transmission event. Our findings indicate that exposures characterized by frequent, close-range interactions and the presence of fomites can overcome the benefits of increased ventilation.
Collapse
Affiliation(s)
- Nicole C. Rockey
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, PA15219
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, PA15219
| | - Meredith Shephard
- Department of Microbiology and Immunology, Emory University, Atlanta, GA30322
| | | | - Michelle N. Vu
- Department of Microbiology and Immunology, Emory University, Atlanta, GA30322
| | - Cambria A. Brown
- Department of Microbiology and Immunology, Emory University, Atlanta, GA30322
| | - Krishna Patel
- Department of Microbiology and Immunology, Emory University, Atlanta, GA30322
| | - Andrea J. French
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, PA15219
| | - Grace A. Merrbach
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, PA15219
| | - Sydney Walter
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, PA15219
| | - Lucas M. Ferreri
- Department of Microbiology and Immunology, Emory University, Atlanta, GA30322
| | - Katie E. Holmes
- Department of Microbiology and Immunology, Emory University, Atlanta, GA30322
| | - David VanInsberghe
- Department of Microbiology and Immunology, Emory University, Atlanta, GA30322
| | - Herek L. Clack
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI48109
| | - Aaron J. Prussin
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA24061
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University, Atlanta, GA30322
| | - Linsey C. Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA24061
| | - Seema S. Lakdawala
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, PA15219
- Department of Microbiology and Immunology, Emory University, Atlanta, GA30322
| |
Collapse
|
10
|
Vargas-Lizarazo AY, Ali MA, Mazumder NA, Kohli GM, Zaborska M, Sons T, Garnett M, Senanayake IM, Goodson BM, Vargas-Muñiz JM, Pond A, Jensik PJ, Olson ME, Hamilton-Brehm SD, Kohli P. Electrically polarized nanoscale surfaces generate reactive oxygenated and chlorinated species for deactivation of microorganisms. SCIENCE ADVANCES 2024; 10:eado5555. [PMID: 39093965 PMCID: PMC11636998 DOI: 10.1126/sciadv.ado5555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Because of the decreasing supply of new antibiotics, recent outbreaks of infectious diseases, and the emergence of antibiotic-resistant microorganisms, it is imperative to develop new effective strategies for deactivating a broad spectrum of microorganisms and viruses. We have implemented electrically polarized nanoscale metallic (ENM) coatings that deactivate a wide range of microorganisms including Gram-negative and Gram-positive bacteria with greater than 6-log reduction in less than 10 minutes of treatment. The electrically polarized devices were also effective in deactivating lentivirus and Candida albicans. The key to the high deactivation effectiveness of ENM devices is electrochemical production of micromolar cuprous ions, which mediated reduction of oxygen to hydrogen peroxide. Formation of highly damaging species, hydroxyl radicals and hypochlorous acid, from hydrogen peroxide contributed to antimicrobial properties of the ENM devices. The electric polarization of nanoscale coatings represents an unconventional tool for deactivating a broad spectrum of microorganisms through in situ production of reactive oxygenated and chlorinated species.
Collapse
Affiliation(s)
- Annie Y. Vargas-Lizarazo
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - M. Aswad Ali
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Nehal A. Mazumder
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | | | - Miroslava Zaborska
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Tyler Sons
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Michelle Garnett
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Ishani M. Senanayake
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Boyd M. Goodson
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - José M. Vargas-Muñiz
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Amber Pond
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Philip J. Jensik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Michael E. Olson
- Department of Medical Microbiology, Immunology and Cell Biology, School of Medicine, Southern Illinois University, Springfield, IL 62702, USA
| | | | - Punit Kohli
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- Integrated Microscopy and Graphics Expertise (IMAGE) Center, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
11
|
Asplin P, Mancy R, Finnie T, Cumming F, Keeling MJ, Hill EM. Symptom propagation in respiratory pathogens of public health concern: a review of the evidence. J R Soc Interface 2024; 21:20240009. [PMID: 39045688 PMCID: PMC11267474 DOI: 10.1098/rsif.2024.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Symptom propagation occurs when the symptom set an individual experiences is correlated with the symptom set of the individual who infected them. Symptom propagation may dramatically affect epidemiological outcomes, potentially causing clusters of severe disease. Conversely, it could result in chains of mild infection, generating widespread immunity with minimal cost to public health. Despite accumulating evidence that symptom propagation occurs for many respiratory pathogens, the underlying mechanisms are not well understood. Here, we conducted a scoping literature review for 14 respiratory pathogens to ascertain the extent of evidence for symptom propagation by two mechanisms: dose-severity relationships and route-severity relationships. We identify considerable heterogeneity between pathogens in the relative importance of the two mechanisms, highlighting the importance of pathogen-specific investigations. For almost all pathogens, including influenza and SARS-CoV-2, we found support for at least one of the two mechanisms. For some pathogens, including influenza, we found convincing evidence that both mechanisms contribute to symptom propagation. Furthermore, infectious disease models traditionally do not include symptom propagation. We summarize the present state of modelling advancements to address the methodological gap. We then investigate a simplified disease outbreak scenario, finding that under strong symptom propagation, isolating mildly infected individuals can have negative epidemiological implications.
Collapse
Affiliation(s)
- Phoebe Asplin
- EPSRC & MRC Centre for Doctoral Training in Mathematics for Real-World Systems, University of Warwick, Coventry, UK
- Mathematics Institute, University of Warwick, Coventry, UK
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, UK
| | - Rebecca Mancy
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, UK
| | - Thomas Finnie
- Data, Analytics and Surveillance, UK Health Security Agency, London, UK
| | - Fergus Cumming
- Foreign, Commonwealth and Development Office, London, UK
| | - Matt J. Keeling
- Mathematics Institute, University of Warwick, Coventry, UK
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, UK
- School of Life Sciences, University of Glasgow, Glasgow, UK
| | - Edward M. Hill
- Mathematics Institute, University of Warwick, Coventry, UK
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, UK
| |
Collapse
|
12
|
Prada GI, Băjenaru OL, Chelu GC, Matei-Lincă CM, Nuţă CR, Moscu SG. Protecting the elderly from influenza in the context of immune system senescence. Elderly aged 65 and over are vulnerable to influenza and its associated complications.: Position paper by the Romanian Society of Gerontology and Geriatrics. J Med Life 2024; 17:746-754. [PMID: 39440332 PMCID: PMC11493167 DOI: 10.25122/jml-2024-0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 10/25/2024] Open
Abstract
Influenza affects millions globally each year, often causing severe complications, hospitalizations, and deaths, particularly among the elderly. As the global population ages, infections will pose a growing health risk. Annual vaccination remains the most effective way to prevent influenza and its complications. After the age of 65, people suffering from chronic diseases become the majority of this population category. All the data support that most of the population over 65 years old, whose immune system goes through immunosenescence, presents multimorbidity, requiring age-appropriate anti-influenza protection. The immune response to the traditional influenza vaccine has been proven to be lower in the elderly, highlighting the need for a more immunogenic vaccine specifically tailored to the elderly population group. Therefore, high-dose (HD) influenza vaccines have demonstrated their safety and are more effective in preventing influenza and its associated complications compared to standard-dose (SD) vaccines in the elderly in the context of immunosenescence. These recommendations focus on the safety, effectiveness, and efficacy of HD influenza vaccines, adapted to the elderly and available on the Romanian market, to increase the vaccination rate and, thus, protect against influenza infection and its complications. Therefore, strategies such as increased accessibility and free immunizations, as well as ensuring that flu vaccines for the elderly are prescribed without restrictions based on the number of comorbidities, should be used.
Collapse
Affiliation(s)
- Gabriel-Ioan Prada
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- National Institute of Gerontology and Geriatrics Ana Aslan, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Ovidiu-Lucian Băjenaru
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- National Institute of Gerontology and Geriatrics Ana Aslan, Bucharest, Romania
| | - Gabriela-Cristina Chelu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- National Institute of Gerontology and Geriatrics Ana Aslan, Bucharest, Romania
| | | | - Cătălina-Raluca Nuţă
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- National Institute of Gerontology and Geriatrics Ana Aslan, Bucharest, Romania
| | - Sînziana-Georgeta Moscu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- National Institute of Gerontology and Geriatrics Ana Aslan, Bucharest, Romania
| |
Collapse
|
13
|
Saito M, Uchino H, Iwata Y, Fuchigami A, Sato G, Yoshikawa F, Miyagi M, Miyazaki T, Urita Y, Aoki K, Ishii Y, Tateda K, Hirose T. Glucose Tolerance and the Risk Factors for Transmission in Japanese SARS-CoV-2/WA-1/2020 Epicenter: A Retrospective Study. Diabetes Metab Syndr Obes 2024; 17:2547-2554. [PMID: 38915899 PMCID: PMC11195674 DOI: 10.2147/dmso.s450230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose The severe pathogenic ancient-type COVID-19, SARS-CoV-2/WA-1/2020 was the predominant gene variant in early 2020 in Japan, however, its transmissibility was uncertain. The period before the public commenced using any personal protective equipment (PPE) was evaluating to describe the transmissibility of the SARS-CoV-2/WA-1/2020. We analyzed the secondary attack rate (SAR) among close contacts and the risk factor for SAR. Methods This retrospective cohort study included a total of 539 patients who were anticipated for the SARS-CoV-2/WA-1/2020 infection at Toho University Medical Center Omori Hospital from February to May 2020. We selected 54 patients with 1) exclude other pathogens infection, 2) include "Three Cs" condition: crowded places between distance< 6 feet, closed spaces indoor and close contact settings involving contact >15min with a person tested positive for SARS-CoV-2/WA-1/2020 without PPE. We evaluated alternative infection risks: the body mass index (BMI) and diabetes (DM) status (non-DM, pre-DM, and DM) as demographic determinants of transmissibility and infectivity of SARS-CoV2/WA-1/2020 cases during the incubation period. Results The calculated SAR was 79.3%. BMI was significantly associated with the PCR positivity rate, which was significant in the univariate (CI 95%, 1.02-1.51; P = 0.03) and multivariate (CI 95%, 1.02-1.60; P = 0.03) analyses. Comparing the different BMI groups, the highest BMI group (25.5-35.8 kg/m2) had an elevated risk of SAR compared to the lowest BMI group (14.0-22.8 kg/m2), with an odds ratio of 1.41 (95% CI, 1.02-1.59; P = 0.03). There were no significant differences in the risk of SAR among different DM statuses. Conclusion The transmissibility of SARS-CoV2/WA-1/2020 was high (79.3%) among household members without PPE who had "Three Cs" exposure. Although pre-DM and established DM did not confer a risk for transmissibility, higher BMI was associated with an increased risk of SAR. Trial Registration UMIN Clinical Trials Registry, UMIN0000 50905.
Collapse
Affiliation(s)
- Manabu Saito
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Uchino
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Iwata
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Ayako Fuchigami
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Genki Sato
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Fukumi Yoshikawa
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Masahiko Miyagi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Taito Miyazaki
- Department of General Medicine and Emergency Care, Toho University School of Medicine, Tokyo, Japan
| | - Yoshihisa Urita
- Department of General Medicine and Emergency Care, Toho University School of Medicine, Tokyo, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Takahisa Hirose
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Guo X, Zhou Y, Yan H, An Q, Liang C, Liu L, Qian J. Molecular Markers and Mechanisms of Influenza A Virus Cross-Species Transmission and New Host Adaptation. Viruses 2024; 16:883. [PMID: 38932174 PMCID: PMC11209369 DOI: 10.3390/v16060883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza A viruses continue to be a serious health risk to people and result in a large-scale socio-economic loss. Avian influenza viruses typically do not replicate efficiently in mammals, but through the accumulation of mutations or genetic reassortment, they can overcome interspecies barriers, adapt to new hosts, and spread among them. Zoonotic influenza A viruses sporadically infect humans and exhibit limited human-to-human transmission. However, further adaptation of these viruses to humans may result in airborne transmissible viruses with pandemic potential. Therefore, we are beginning to understand genetic changes and mechanisms that may influence interspecific adaptation, cross-species transmission, and the pandemic potential of influenza A viruses. We also discuss the genetic and phenotypic traits associated with the airborne transmission of influenza A viruses in order to provide theoretical guidance for the surveillance of new strains with pandemic potential and the prevention of pandemics.
Collapse
Affiliation(s)
- Xinyi Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| | - Yang Zhou
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Huijun Yan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
| | - Qing An
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China;
| | - Chudan Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
| | - Linna Liu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Jun Qian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| |
Collapse
|
15
|
Asplin P, Keeling MJ, Mancy R, Hill EM. Epidemiological and health economic implications of symptom propagation in respiratory pathogens: A mathematical modelling investigation. PLoS Comput Biol 2024; 20:e1012096. [PMID: 38701066 PMCID: PMC11095726 DOI: 10.1371/journal.pcbi.1012096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/15/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Respiratory pathogens inflict a substantial burden on public health and the economy. Although the severity of symptoms caused by these pathogens can vary from asymptomatic to fatal, the factors that determine symptom severity are not fully understood. Correlations in symptoms between infector-infectee pairs, for which evidence is accumulating, can generate large-scale clusters of severe infections that could be devastating to those most at risk, whilst also conceivably leading to chains of mild or asymptomatic infections that generate widespread immunity with minimal cost to public health. Although this effect could be harnessed to amplify the impact of interventions that reduce symptom severity, the mechanistic representation of symptom propagation within mathematical and health economic modelling of respiratory diseases is understudied. METHODS AND FINDINGS We propose a novel framework for incorporating different levels of symptom propagation into models of infectious disease transmission via a single parameter, α. Varying α tunes the model from having no symptom propagation (α = 0, as typically assumed) to one where symptoms always propagate (α = 1). For parameters corresponding to three respiratory pathogens-seasonal influenza, pandemic influenza and SARS-CoV-2-we explored how symptom propagation impacted the relative epidemiological and health-economic performance of three interventions, conceptualised as vaccines with different actions: symptom-attenuating (labelled SA), infection-blocking (IB) and infection-blocking admitting only mild breakthrough infections (IB_MB). In the absence of interventions, with fixed underlying epidemiological parameters, stronger symptom propagation increased the proportion of cases that were severe. For SA and IB_MB, interventions were more effective at reducing prevalence (all infections and severe cases) for higher strengths of symptom propagation. For IB, symptom propagation had no impact on effectiveness, and for seasonal influenza this intervention type was more effective than SA at reducing severe infections for all strengths of symptom propagation. For pandemic influenza and SARS-CoV-2, at low intervention uptake, SA was more effective than IB for all levels of symptom propagation; for high uptake, SA only became more effective under strong symptom propagation. Health economic assessments found that, for SA-type interventions, the amount one could spend on control whilst maintaining a cost-effective intervention (termed threshold unit intervention cost) was very sensitive to the strength of symptom propagation. CONCLUSIONS Overall, the preferred intervention type depended on the combination of the strength of symptom propagation and uptake. Given the importance of determining robust public health responses, we highlight the need to gather further data on symptom propagation, with our modelling framework acting as a template for future analysis.
Collapse
Affiliation(s)
- Phoebe Asplin
- EPSRC & MRC Centre for Doctoral Training in Mathematics for Real-World Systems, University of Warwick, Coventry, United Kingdom
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| | - Matt J. Keeling
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Rebecca Mancy
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
- MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, United Kingdom
| | - Edward M. Hill
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
16
|
Tastassa AC, Sharaby Y, Lang-Yona N. Aeromicrobiology: A global review of the cycling and relationships of bioaerosols with the atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168478. [PMID: 37967625 DOI: 10.1016/j.scitotenv.2023.168478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Airborne microorganisms and biological matter (bioaerosols) play a key role in global biogeochemical cycling, human and crop health trends, and climate patterns. Their presence in the atmosphere is controlled by three main stages: emission, transport, and deposition. Aerial survival rates of bioaerosols are increased through adaptations such as ultra-violet radiation and desiccation resistance or association with particulate matter. Current research into modern concerns such as climate change, global gene transfer, and pathogenicity often neglects to consider atmospheric involvement. This comprehensive review outlines the transpiring of bioaerosols across taxa in the atmosphere, with significant focus on their interactions with environmental elements including abiotic factors (e.g., atmospheric composition, water cycle, and pollution) and events (e.g., dust storms, hurricanes, and wildfires). The aim of this review is to increase understanding and shed light on needed research regarding the interplay between global atmospheric phenomena and the aeromicrobiome. The abundantly documented bacteria and fungi are discussed in context of their cycling and human health impacts. Gaps in knowledge regarding airborne viral community, the challenges and importance of studying their composition, concentrations and survival in the air are addressed, along with understudied plant pathogenic oomycetes, and archaea cycling. Key methodologies in sampling, collection, and processing are described to provide an up-to-date picture of ameliorations in the field. We propose optimization to microbiological methods, commonly used in soil and water analysis, that adjust them to the context of aerobiology, along with other directions towards novel and necessary advancements. This review offers new perspectives into aeromicrobiology and calls for advancements in global-scale bioremediation, insights into ecology, climate change impacts, and pathogenicity transmittance.
Collapse
Affiliation(s)
- Ariel C Tastassa
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Yehonatan Sharaby
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Naama Lang-Yona
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel.
| |
Collapse
|
17
|
Feng Y, Wen S, Xue S, Hou M, Jin Y. Potential co-infection of influenza A, influenza B, respiratory syncytial virus, and Chlamydia pneumoniae: a case report with literature review. Front Med (Lausanne) 2024; 10:1325482. [PMID: 38259842 PMCID: PMC10800736 DOI: 10.3389/fmed.2023.1325482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The occurrence of a co-infection involving four distinct respiratory pathogens could be underestimated. Here, we report the case of a 72-year-old woman who presented to a community hospital with a cough productive of sputum as her main clinical manifestation. Antibody detection of common respiratory pathogens revealed potential co-infection with influenza A, influenza B, respiratory syncytial virus, and Chlamydia pneumoniae. We treated her with 75 mg oseltamivir phosphate administered orally twice daily for 5 days, 0.5 g azithromycin administered orally for 5 days, and 0.3 g acetylcysteine aerosol inhaled twice daily for 3 days. The patient showed a favorable outcome on the eighth day after early diagnosis and treatment. Since co-infection with these four pathogens is rare, we performed an extensive PubMed search of similar cases and carried out a systematic review to analyze the epidemiology, clinical manifestations, transmission route, susceptible population, and outcomes of these four different pathogens. Our report highlights the importance for general practitioners to be vigilant about the possibility of mixed infections when a patient presents with respiratory symptoms. Although these symptoms may be mild, early diagnosis and timely treatment could improve outcomes. Additionally, further research is warranted to explore the potential influence of SARS-CoV-2 infection on the co-occurrence of multiple respiratory pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Ying Jin
- Huangpu District Dapuqiao Community Health Center, Shanghai, China
| |
Collapse
|
18
|
Wang J, Li L, Xu C, Jiang H, Xie QX, Yang XY, Li JC, Xu H, Chen Y, Yi W, Hong XJ, Lan YQ. Hot-Pressing Metal Covalent Organic Frameworks as Personal Protection Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2311519. [PMID: 38127976 DOI: 10.1002/adma.202311519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Effective personal protection is crucial for controlling infectious disease spread. However, commonly used personal protective materials such as disposable masks lack antibacterial/antiviral function and may lead to cross infection. Herein, a polyethylene glycol-assisted solvent-free strategy is proposed to rapidly synthesize a series of the donor-acceptor metal-covalent organic frameworks (MCOFs) (i.e., GZHMU-2, JNM-1, and JNM-2) under air atmosphere and henceforth extend it via in situ hot-pressing process to prepare MCOFs based films with photocatalytic disinfect ability. Best of them, the newly designed GZHMU-2 has a wide absorption spectrum (200 to 1500 nm) and can efficiently produce reactive oxygen species under sunlight irradiation, achieving excellent photocatalytic disinfection performance. After in situ hot-pressing as a film material, the obtained GZHMU-2/NMF can effectively kill E. coli (99.99%), S. aureus (99%), and H1N1 (92.5%), meanwhile possessing good reusability. Noteworthy, the long-term use of a GZHMU-2/NWF-based mask has verified no damage to the living body by measuring the expression of mouse blood routine, lung tissue, and inflammatory factors at the in-vivo level.
Collapse
Affiliation(s)
- Jiajia Wang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Li Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chuanshan Xu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hong Jiang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qin-Xie Xie
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xin-Yi Yang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ji-Cheng Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huiying Xu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yifa Chen
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Wei Yi
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Jia Hong
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ya-Qian Lan
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
19
|
Reyes-Carmona L, Sepúlveda-Robles OA, Almaguer-Flores A, Bello-Lopez JM, Ramos-Vilchis C, Rodil SE. Antimicrobial activity of silver-copper coating against aerosols containing surrogate respiratory viruses and bacteria. PLoS One 2023; 18:e0294972. [PMID: 38079398 PMCID: PMC10712891 DOI: 10.1371/journal.pone.0294972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
The transmission of bacteria and respiratory viruses through expelled saliva microdroplets and aerosols is a significant concern for healthcare workers, further highlighted during the SARS-CoV-2 pandemic. To address this issue, the development of nanomaterials with antimicrobial properties for use as nanolayers in respiratory protection equipment, such as facemasks or respirators, has emerged as a potential solution. In this study, a silver and copper nanolayer called SakCu® was deposited on one side of a spun-bond polypropylene fabric using the magnetron sputtering technique. The antibacterial and antiviral activity of the AgCu nanolayer was evaluated against droplets falling on the material and aerosols passing through it. The effectiveness of the nanolayer was assessed by measuring viral loads of the enveloped virus SARS-CoV-2 and viability assays using respiratory surrogate viruses, including PaMx54, PaMx60, PaMx61 (ssRNA, Leviviridae), and PhiX174 (ssDNA, Microviridae) as representatives of non-enveloped viruses. Colony forming unit (CFU) determination was employed to evaluate the survival of aerobic and anaerobic bacteria. The results demonstrated a nearly exponential reduction in SARS-CoV-2 viral load, achieving complete viral load reduction after 24 hours of contact incubation with the AgCu nanolayer. Viability assays with the surrogate viruses showed a significant reduction in viral replication between 2-4 hours after contact. The simulated viral filtration system demonstrated inhibition of viral replication ranging from 39% to 64%. The viability assays with PhiX174 exhibited a 2-log reduction in viral replication after 24 hours of contact and a 16.31% inhibition in viral filtration assays. Bacterial growth inhibition varied depending on the species, with reductions ranging from 70% to 92% for aerobic bacteria and over 90% for anaerobic strains. In conclusion, the AgCu nanolayer displayed high bactericidal and antiviral activity in contact and aerosol conditions. Therefore, it holds the potential for incorporation into personal protective equipment to effectively reduce and prevent the transmission of aerosol-borne pathogenic bacteria and respiratory viruses.
Collapse
Affiliation(s)
- Lorena Reyes-Carmona
- Laboratorio de Biointerfases, DEPeI, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX, México
- Programa de Maestría y Doctorado en Ciencias Médicas Odontológicas y de la Salud, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX, México
| | - Omar A. Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), CDMX, México
| | - Argelia Almaguer-Flores
- Laboratorio de Biointerfases, DEPeI, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX, México
| | - Juan Manuel Bello-Lopez
- Dirección de Investigación, Hospital Juárez de México, Magdalena de las Salinas, CDMX, México
| | - Carlos Ramos-Vilchis
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CDMX, México
| | - Sandra E. Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CDMX, México
| |
Collapse
|
20
|
Qiu G, Zhang X, deMello AJ, Yao M, Cao J, Wang J. On-site airborne pathogen detection for infection risk mitigation. Chem Soc Rev 2023; 52:8531-8579. [PMID: 37882143 PMCID: PMC10712221 DOI: 10.1039/d3cs00417a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 10/27/2023]
Abstract
Human-infecting pathogens that transmit through the air pose a significant threat to public health. As a prominent instance, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused the COVID-19 pandemic has affected the world in an unprecedented manner over the past few years. Despite the dissipating pandemic gloom, the lessons we have learned in dealing with pathogen-laden aerosols should be thoroughly reviewed because the airborne transmission risk may have been grossly underestimated. From a bioanalytical chemistry perspective, on-site airborne pathogen detection can be an effective non-pharmaceutic intervention (NPI) strategy, with on-site airborne pathogen detection and early-stage infection risk evaluation reducing the spread of disease and enabling life-saving decisions to be made. In light of this, we summarize the recent advances in highly efficient pathogen-laden aerosol sampling approaches, bioanalytical sensing technologies, and the prospects for airborne pathogen exposure measurement and evidence-based transmission interventions. We also discuss open challenges facing general bioaerosols detection, such as handling complex aerosol samples, improving sensitivity for airborne pathogen quantification, and establishing a risk assessment system with high spatiotemporal resolution for mitigating airborne transmission risks. This review provides a multidisciplinary outlook for future opportunities to improve the on-site airborne pathogen detection techniques, thereby enhancing the preparedness for more on-site bioaerosols measurement scenarios, such as monitoring high-risk pathogens on airplanes, weaponized pathogen aerosols, influenza variants at the workplace, and pollutant correlated with sick building syndromes.
Collapse
Affiliation(s)
- Guangyu Qiu
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Xiaole Zhang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg1, Zürich, Switzerland
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Science, China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
21
|
Lim HJ, Lee JY, Baek YH, Park MY, Youm DJ, Kim I, Kim MJ, Choi J, Sohn YH, Park JE, Yang YJ. Evaluation of Multiplex Rapid Antigen Tests for the Simultaneous Detection of SARS-CoV-2 and Influenza A/B Viruses. Biomedicines 2023; 11:3267. [PMID: 38137488 PMCID: PMC10741453 DOI: 10.3390/biomedicines11123267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Single-target rapid antigen tests (RATs) are commonly used to detect highly transmissible respiratory viruses (RVs), such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses. The simultaneous detection of RVs presenting overlapping symptoms is vital in making appropriate decisions about treatment, isolation, and resource utilization; however, few studies have evaluated multiplex RATs for SARS-CoV-2 and other RVs. We assessed the diagnostic performance of multiplex RATs targeting both the SARS-CoV-2 and influenza A/B viruses with the GenBody Influenza/COVID-19 Ag Triple, InstaView COVID-19/Flu Ag Combo (InstaView), STANDARDTM Q COVID-19 Ag Test, and STANDARDTM Q Influenza A/B Test kits using 974 nasopharyngeal swab samples. The cycle threshold values obtained from the real-time reverse transcription polymerase chain reaction results showed higher sensitivity (72.7-100%) when the values were below, rather than above, the cut-off values. The InstaView kit exhibited significantly higher positivity rates (80.21% for SARS-CoV-2, 61.75% for influenza A, and 46.15% for influenza B) and cut-off values (25.57 for SARS-CoV-2, 21.19 for influenza A, and 22.35 for influenza B) than the other two kits, and was able to detect SARS-CoV-2 Omicron subvariants. Therefore, the InstaView kit is the best choice for routine screening for both SARS-CoV-2 and influenza A/B in local communities.
Collapse
Affiliation(s)
- Ho-Jae Lim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea
| | - Ji-Yoon Lee
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Young-Hyun Baek
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Min-Young Park
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Dong-Jae Youm
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Inhee Kim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Min-Jin Kim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Jongmun Choi
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Yong-Hak Sohn
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Jung-Eun Park
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea
| | - Yong-Jin Yang
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| |
Collapse
|
22
|
Xia Q, Nie X, Yang Y, Nie F, Liu S. A case of clustered influenza A in a pediatric ward. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1432-1436. [PMID: 38044656 PMCID: PMC10929862 DOI: 10.11817/j.issn.1672-7347.2023.230089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Indexed: 12/05/2023]
Abstract
Children with low immunity and weak resistance are at high risk for influenza, and infection with the influenza virus can be life-threatening in severe cases. This article reported on the investigation and management of a clustered of influenza A cases in a pediatric ward. The clustered influenza A cases were caused by a community-infected influenza A chaperone who was the source of infection, and was most likely spread in close proximity through droplets or aerosols in the same hospital ward. This person caused the influenza A hospital-acquired infections in 2 children (aged 11 months and 12 months, respectively) in the hospital. After taking timely case management and ward management, the prognosis of the three infected patients was good and there was no outbreak of influenza-like illness in the pediatric ward. It is recommended that during the peak of the influenza season, air disinfection should be strengthened and windows should be opened for ventilation in medical institutions, while patients and accompanying staff should be strengthened to wear masks and other publicity, and influenza vaccination should be encouraged, so as to reduce cross-transmission and prevent outbreaks of hospital-acquired infections.
Collapse
Affiliation(s)
- Qing Xia
- Hospital Infection Control Center, Xiangya Hospital, Central South University, Changsha 410008.
- Disease Prevention and Control Section, 921 Hospital of Joint Logistics Support Force, Changsha 410000.
| | - Xin Nie
- Disease Prevention and Control Section, 921 Hospital of Joint Logistics Support Force, Changsha 410000
| | - Yun Yang
- Department of Laboratory, 921 Hospital of Joint Logistics Support Force, Changsha 410000
| | - Fuying Nie
- Department of Pediatrics, 921 Hospital of Joint Logistics Support Force, Changsha 410000, China
| | - Sidi Liu
- Hospital Infection Control Center, Xiangya Hospital, Central South University, Changsha 410008.
| |
Collapse
|
23
|
Hanna F, Alameddine I, Zaraket H, Alkalamouni H, El-Fadel M. Airborne influenza virus shedding by patients in health care units: Removal mechanisms affecting virus transmission. PLoS One 2023; 18:e0290124. [PMID: 37878553 PMCID: PMC10599543 DOI: 10.1371/journal.pone.0290124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/01/2023] [Indexed: 10/27/2023] Open
Abstract
In this study, we characterize the distribution of airborne viruses (influenza A/B) in hospital rooms of patients with confirmed infections. Concurrently, we monitored fine particulate matter (PM2.5 & PM10) and several physical parameters including the room air exchange rate, temperature, and relative humidity to identify corresponding correlations with virus transport and removal determinants. The results continue to raise concerns about indoor air quality (IAQ) in healthcare facilities and the potential exposure of patients, staff and visitors to aerosolized viruses as well as elevated indoor PM levels caused by outdoor sources and/or re-suspension of settled particles by indoor activities. The influenza A virus was detected in 42% of 33 monitored rooms, with viruses detectible up to 1.5 m away from the infected patient. Active coughing was a statistically significant variable that contributed to a higher positive rate of virus detection in the collected air samples. Viral load across patient rooms ranged between 222 and 5,760 copies/m3, with a mean of 820 copies/m3. Measured PM2.5 and PM10 levels exceeded IAQ daily exposure guidelines in most monitored rooms. Statistical and numerical analyses showed that dispersion was the dominant viral removal pathway followed by settling. Changes in the relative humidity and the room's temperature were had a significant impact on the viral load removal. In closure, we highlight the need for an integrated approach to control determinants of IAQ in patients' rooms.
Collapse
Affiliation(s)
- Francis Hanna
- Department of Civil Infrastructure & Environmental Engineering, College of Engineering, Khalifa University, United Arab Emirates
- Department of Civil & Environmental Engineering, Faculty of Engineering & Architecture, American University of Beirut, Lebanon
| | - Ibrahim Alameddine
- Department of Civil & Environmental Engineering, Faculty of Engineering & Architecture, American University of Beirut, Lebanon
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology & Microbiology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Habib Alkalamouni
- Department of Experimental Pathology, Immunology & Microbiology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Mutasem El-Fadel
- Department of Civil Infrastructure & Environmental Engineering, College of Engineering, Khalifa University, United Arab Emirates
- Department of Civil & Environmental Engineering, Faculty of Engineering & Architecture, American University of Beirut, Lebanon
| |
Collapse
|
24
|
David SC, Vadas O, Glas I, Schaub A, Luo B, D'angelo G, Montoya JP, Bluvshtein N, Hugentobler W, Klein LK, Motos G, Pohl M, Violaki K, Nenes A, Krieger UK, Stertz S, Peter T, Kohn T. Inactivation mechanisms of influenza A virus under pH conditions encountered in aerosol particles as revealed by whole-virus HDX-MS. mSphere 2023; 8:e0022623. [PMID: 37594288 PMCID: PMC10597348 DOI: 10.1128/msphere.00226-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/23/2023] [Indexed: 08/19/2023] Open
Abstract
Multiple respiratory viruses, including influenza A virus (IAV), can be transmitted via expiratory aerosol particles, and aerosol pH was recently identified as a major factor influencing airborne virus infectivity. Indoors, small exhaled aerosols undergo rapid acidification to pH ~4. IAV is known to be sensitive to mildly acidic conditions encountered within host endosomes; however, it is unknown whether the same mechanisms could mediate viral inactivation within the more acidic aerosol micro-environment. Here, we identified that transient exposure to pH 4 caused IAV inactivation by a two-stage process, with an initial sharp decline in infectious titers mainly attributed to premature attainment of the post-fusion conformation of viral protein haemagglutinin (HA). Protein changes were observed by hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) as early as 10 s post-exposure to acidic conditions. Our HDX-MS data are in agreement with other more labor-intensive structural analysis techniques, such as X-ray crystallography, highlighting the ease and usefulness of whole-virus HDX-MS for multiplexed protein analyses, even within enveloped viruses such as IAV. Additionally, virion integrity was partially but irreversibly affected by acidic conditions, with a progressive unfolding of the internal matrix protein 1 (M1) that aligned with a more gradual decline in viral infectivity with time. In contrast, no acid-mediated changes to the genome or lipid envelope were detected. Improved understanding of respiratory virus fate within exhaled aerosols constitutes a global public health priority, and information gained here could aid the development of novel strategies to control the airborne persistence of seasonal and/or pandemic influenza in the future. IMPORTANCE It is well established that COVID-19, influenza, and many other respiratory diseases can be transmitted by the inhalation of aerosolized viruses. Many studies have shown that the survival time of these airborne viruses is limited, but it remains an open question as to what drives their infectivity loss. Here, we address this question for influenza A virus by investigating structural protein changes incurred by the virus under conditions relevant to respiratory aerosol particles. From prior work, we know that expelled aerosols can become highly acidic due to equilibration with indoor room air, and our results indicate that two viral proteins are affected by these acidic conditions at multiple sites, leading to virus inactivation. Our findings suggest that the development of air treatments to quicken the speed of aerosol acidification would be a major strategy to control infectious bioburdens in the air.
Collapse
Affiliation(s)
- Shannon C. David
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Oscar Vadas
- Protein Platform, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Irina Glas
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Aline Schaub
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Beiping Luo
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Giovanni D'angelo
- Laboratory of Lipid Cell Biology, School of Life Sciences, Interschool Institute of Bioengineering and Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jonathan Paz Montoya
- Laboratory of Lipid Cell Biology, School of Life Sciences, Interschool Institute of Bioengineering and Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nir Bluvshtein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Walter Hugentobler
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Liviana K. Klein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Ghislain Motos
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marie Pohl
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Kalliopi Violaki
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| | - Ulrich K. Krieger
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Tamar Kohn
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
25
|
Zhang X, Lu B, Chen G, Wang L, Lin B, Peng Z, Lu S, Li D, Chen J. Culturable and inhalable airborne bacteria in a semiunderground municipal wastewater treatment plant: Distribution, transmission, and health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132234. [PMID: 37586239 DOI: 10.1016/j.jhazmat.2023.132234] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/15/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Airborne pathogens constitute a growing threat to global public health. Wastewater treatment plants (WWTPs) are important sources of airborne bacteria, which pose great health risks to the employee and nearby residents. In this study, the distribution, transmission and health risk of the airborne culturable and inhalable bacteria carried by PM2.5 in a semiunderground WWTP were evaluated. The concentrations of culturable bacteria in the air were 21.2-1431.1 CFU/m3, with the main contributions of primary and biological treatments. The relative abundances of culturable and total inhalable bacterial taxa were positively correlated (p < 0.05). However, certain bacteria, including Bacillus, Acinetobacter and Enterococcus, exhibited high reproductive capacity despite their low concentration in the air, suggesting that they can survive and regrow in suitable environments. Transmission modeling revealed that the concentrations of airborne bacteria exponentially decreased with distance from 18.67 to 24.12 copies /m3 at the source to 0.06-0.14 copies /m3 at 1000 m downwind. The risks of 8-h exposure in this WWTP except the outlet exceeded the reference value recommended by WHO, which were primarily dependent on P. aeruginosa, Salmonella, and E. coli. Management practices should consider improved controls for bioaerosols in order to reduce the risk of disease transmission.
Collapse
Affiliation(s)
- Xiang Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Bingjie Lu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Guang Chen
- Shanghai Chengtou Sewage Treatment Co., LtD., Shanghai 201203, China
| | - Lihua Wang
- Shanghai Chengtou Sewage Treatment Co., LtD., Shanghai 201203, China
| | - Bingjie Lin
- Shanghai Chengtou Sewage Treatment Co., LtD., Shanghai 201203, China
| | - Zhengliang Peng
- Shanghai Chengtou Sewage Treatment Co., LtD., Shanghai 201203, China
| | - Songliu Lu
- Shanghai Investigation, Design & Research Institute, Shanghai 200335, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
26
|
Chow VTK, Tay DJW, Chen MIC, Tang JW, Milton DK, Tham KW. Influenza A and B Viruses in Fine Aerosols of Exhaled Breath Samples from Patients in Tropical Singapore. Viruses 2023; 15:2033. [PMID: 37896810 PMCID: PMC10612062 DOI: 10.3390/v15102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza is a highly contagious respiratory illness that commonly causes outbreaks among human communities. Details about the exact nature of the droplets produced by human respiratory activities such as breathing, and their potential to carry and transmit influenza A and B viruses is still not fully understood. The objective of our study was to characterize and quantify influenza viral shedding in exhaled aerosols from natural patient breath, and to determine their viral infectivity among participants in a university cohort in tropical Singapore. Using the Gesundheit-II exhaled breath sampling apparatus, samples of exhaled breath of two aerosol size fractions ("coarse" > 5 µm and "fine" ≤ 5 µm) were collected and analyzed from 31 study participants, i.e., 24 with influenza A (including H1N1 and H3N2 subtypes) and 7 with influenza B (including Victoria and Yamagata lineages). Influenza viral copy number was quantified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Infectivity of influenza virus in the fine particle fraction was determined by culturing in Madin-Darby canine kidney cells. Exhaled influenza virus RNA generation rates ranged from 9 to 1.67 × 105 and 10 to 1.24 × 104 influenza virus RNA copies per minute for the fine and coarse aerosol fractions, respectively. Compared to the coarse aerosol fractions, influenza A and B viruses were detected more frequently in the fine aerosol fractions that harbored 12-fold higher viral loads. Culturable virus was recovered from the fine aerosol fractions from 9 of the 31 subjects (29%). These findings constitute additional evidence to reiterate the important role of fine aerosols in influenza transmission and provide a baseline range of influenza virus RNA generation rates.
Collapse
Affiliation(s)
- Vincent T. K. Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
| | - Douglas Jie Wen Tay
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
| | - Mark I. C. Chen
- Research Office, National Centre for Infectious Diseases, Singapore 308442, Singapore;
| | - Julian W. Tang
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK;
| | - Donald K. Milton
- Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD 20742, USA;
| | - Kwok Wai Tham
- Department of the Built Environment, College of Design and Engineering, National University of Singapore, Singapore 117356, Singapore
| |
Collapse
|
27
|
Le Sage V, Lowen AC, Lakdawala SS. Block the Spread: Barriers to Transmission of Influenza Viruses. Annu Rev Virol 2023; 10:347-370. [PMID: 37308086 DOI: 10.1146/annurev-virology-111821-115447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Respiratory viruses, such as influenza viruses, cause significant morbidity and mortality worldwide through seasonal epidemics and sporadic pandemics. Influenza viruses transmit through multiple modes including contact (either direct or through a contaminated surface) and inhalation of expelled aerosols. Successful human to human transmission requires an infected donor who expels virus into the environment, a susceptible recipient, and persistence of the expelled virus within the environment. The relative efficiency of each mode can be altered by viral features, environmental parameters, donor and recipient host characteristics, and viral persistence. Interventions to mitigate transmission of influenza viruses can target any of these factors. In this review, we discuss many aspects of influenza virus transmission, including the systems to study it, as well as the impact of natural barriers and various nonpharmaceutical and pharmaceutical interventions.
Collapse
Affiliation(s)
- Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Seema S Lakdawala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA;
| |
Collapse
|
28
|
Shoji M, Ichihashi K, Sriwilaijaroen N, Mayumi H, Morikane S, Takahashi E, Kido H, Suzuki Y, Takeda K, Kuzuhara T. Anti-influenza Activity of Povidone-Iodine-Integrated Materials. Biol Pharm Bull 2023; 46:1231-1239. [PMID: 37357386 DOI: 10.1248/bpb.b23-00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Personal protective equipment (PPE), including medical masks, should be worn for preventing the transmission of respiratory pathogens via infective droplets and aerosols. In medical masks, the key layer is the filter layer, and the melt-blown nonwoven fabric (NWF) is the most used fabric. However, the NWF filter layer cannot kill or inactivate the pathogens spread via droplets and aerosols. Povidone-iodine (PVP-I) has been used as an antiseptic solution given its potent broad-spectrum activity against pathogens. To develop PPE (e.g., medical masks) with anti-pathogenic activity, we integrated PVP-I into nylon-66 NWF. We then evaluated its antiviral activity against influenza A viruses by examining the viability of Madin-Darby canine kidney (MDCK) cells after inoculation with the virus strains exposed to the PVP-I-integrated nylon-66 NWF. The PVP-I nylon-66 NWF protected the MDCK cells from viral infection in a PVP-I concentration-dependent manner. Subsequently, we found to integrate PVP-I into nylon-66 and polyurethane materials among various materials. These PVP-I materials were also effective against influenza virus infection, and treatment with PVP-I nylon-66 NWF showed the highest cell survival among all the tested materials. PVP-I showed anti-influenza A virus activity when used in conjunction with PPE materials. Moreover, nylon-66 NWF integrated with PVP-I was found to be the best material to ensure anti-influenza activity. Therefore, PVP-I-integrated masks could have the potential to inhibit respiratory virus infection. Our results provide new information for developing multi-functional PPEs with anti-viral activity by integrating them with PVP-I to prevent the potential transmission of respiratory viruses.
Collapse
Affiliation(s)
- Masaki Shoji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Kenta Ichihashi
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University (Rangsit Campus)
- Department of Biochemistry, University of Shizuoka School of Pharmaceutical Sciences
| | | | | | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University
| | - Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University
| | - Yasuo Suzuki
- Department of Biochemistry, University of Shizuoka School of Pharmaceutical Sciences
| | | | - Takashi Kuzuhara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| |
Collapse
|
29
|
Ghumra D, Shetty N, McBrearty KR, Puthussery JV, Sumlin BJ, Gardiner WD, Doherty BM, Magrecki JP, Brody DL, Esparza TJ, O’Halloran JA, Presti RM, Bricker TL, Boon ACM, Yuede CM, Cirrito JR, Chakrabarty RK. Rapid Direct Detection of SARS-CoV-2 Aerosols in Exhaled Breath at the Point of Care. ACS Sens 2023; 8:3023-3031. [PMID: 37498298 PMCID: PMC10463275 DOI: 10.1021/acssensors.3c00512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Airborne transmission via virus-laden aerosols is a dominant route for the transmission of respiratory diseases, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Direct, non-invasive screening of respiratory virus aerosols in patients has been a long-standing technical challenge. Here, we introduce a point-of-care testing platform that directly detects SARS-CoV-2 aerosols in as little as two exhaled breaths of patients and provides results in under 60 s. It integrates a hand-held breath aerosol collector and a llama-derived, SARS-CoV-2 spike-protein specific nanobody bound to an ultrasensitive micro-immunoelectrode biosensor, which detects the oxidation of tyrosine amino acids present in SARS-CoV-2 viral particles. Laboratory and clinical trial results were within 20% of those obtained using standard testing methods. Importantly, the electrochemical biosensor directly detects the virus itself, as opposed to a surrogate or signature of the virus, and is sensitive to as little as 10 viral particles in a sample. Our platform holds the potential to be adapted for multiplexed detection of different respiratory viruses. It provides a rapid and non-invasive alternative to conventional viral diagnostics.
Collapse
Affiliation(s)
- Dishit
P. Ghumra
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Nishit Shetty
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Kevin R. McBrearty
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Joseph V. Puthussery
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Benjamin J. Sumlin
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Woodrow D. Gardiner
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Brookelyn M. Doherty
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Jordan P. Magrecki
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - David L. Brody
- National
Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, United States
- Department
of Neurology, Uniformed Services University
of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Thomas J. Esparza
- National
Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, United States
| | - Jane A. O’Halloran
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
| | - Rachel M. Presti
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
| | - Traci L. Bricker
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
- Departments
Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Adrianus C. M. Boon
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
- Departments
Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Carla M. Yuede
- Department
of Psychiatry, Washington University School
of Medicine, Campus Box
8134, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - John R. Cirrito
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Rajan K. Chakrabarty
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
30
|
Collings K, Boisdon C, Sham TT, Skinley K, Oh HK, Prince T, Ahmed A, Pennington SH, Brownridge PJ, Edwards T, Biagini GA, Eyers CE, Lamb A, Myers P, Maher S. Attaching protein-adsorbing silica particles to the surface of cotton substrates for bioaerosol capture including SARS-CoV-2. Nat Commun 2023; 14:5033. [PMID: 37596260 PMCID: PMC10439164 DOI: 10.1038/s41467-023-40696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/07/2023] [Indexed: 08/20/2023] Open
Abstract
The novel coronavirus pandemic (COVID-19) has necessitated a global increase in the use of face masks to limit the airborne spread of the virus. The global demand for personal protective equipment has at times led to shortages of face masks for the public, therefore makeshift masks have become commonplace. The severe acute respiratory syndrome caused by coronavirus-2 (SARS-CoV-2) has a spherical particle size of ~97 nm. However, the airborne transmission of this virus requires the expulsion of droplets, typically ~0.6-500 µm in diameter (by coughing, sneezing, breathing, and talking). In this paper, we propose a face covering that has been designed to effectively capture SARS-CoV-2 whilst providing uncompromised comfort and breathability for the wearer. Herein, we describe a material approach that uses amorphous silica microspheres attached to cotton fibres to capture bioaerosols, including SARS CoV-2. This has been demonstrated for the capture of aerosolised proteins (cytochrome c, myoglobin, ubiquitin, bovine serum albumin) and aerosolised inactivated SARS CoV-2, showing average filtration efficiencies of ~93% with minimal impact on breathability.
Collapse
Affiliation(s)
- Kieran Collings
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Cedric Boisdon
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Tung-Ting Sham
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Kevin Skinley
- Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Hyun-Kyung Oh
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Tessa Prince
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Adham Ahmed
- Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Shaun H Pennington
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Philip J Brownridge
- Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Edwards
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Giancarlo A Biagini
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Claire E Eyers
- Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Amanda Lamb
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Applied Health Insights Ltd, Cheshire, UK
| | - Peter Myers
- Department of Chemistry, University of Liverpool, Liverpool, UK.
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK.
| |
Collapse
|
31
|
Salvador García C, Gimeno Cardona C. Influenza: A preventable infection in different populations. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2023; 41:387-390. [PMID: 37394402 DOI: 10.1016/j.eimce.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 07/04/2023]
Affiliation(s)
- Carme Salvador García
- Servicio de Microbiología, Consorcio Hospital General Universitario de Valencia, Facultad de Medicina, Universidad de Valencia, Spain
| | - Concepción Gimeno Cardona
- Servicio de Microbiología, Consorcio Hospital General Universitario de Valencia, Facultad de Medicina, Universidad de Valencia, Spain.
| |
Collapse
|
32
|
Rodriguez-Rodriguez BA, Ciabattoni GO, Duerr R, Valero-Jimenez AM, Yeung ST, Crosse KM, Schinlever AR, Bernard-Raichon L, Rodriguez Galvan J, McGrath ME, Vashee S, Xue Y, Loomis CA, Khanna KM, Cadwell K, Desvignes L, Frieman MB, Ortigoza MB, Dittmann M. A neonatal mouse model characterizes transmissibility of SARS-CoV-2 variants and reveals a role for ORF8. Nat Commun 2023; 14:3026. [PMID: 37230979 PMCID: PMC10211296 DOI: 10.1038/s41467-023-38783-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Small animal models have been a challenge for the study of SARS-CoV-2 transmission, with most investigators using golden hamsters or ferrets. Mice have the advantages of low cost, wide availability, less regulatory and husbandry challenges, and the existence of a versatile reagent and genetic toolbox. However, adult mice do not robustly transmit SARS-CoV-2. Here we establish a model based on neonatal mice that allows for transmission of clinical SARS-CoV-2 isolates. We characterize tropism, respiratory tract replication and transmission of ancestral WA-1 compared to variants Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Omicron BA.1 and Omicron BQ.1.1. We identify inter-variant differences in timing and magnitude of infectious particle shedding from index mice, both of which shape transmission to contact mice. Furthermore, we characterize two recombinant SARS-CoV-2 lacking either the ORF6 or ORF8 host antagonists. The removal of ORF8 shifts viral replication towards the lower respiratory tract, resulting in significantly delayed and reduced transmission in our model. Our results demonstrate the potential of our neonatal mouse model to characterize viral and host determinants of SARS-CoV-2 transmission, while revealing a role for an accessory protein in this context.
Collapse
Affiliation(s)
| | - Grace O Ciabattoni
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ralf Duerr
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Medicine/Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Vaccine Center, NYU Grossmann of Medicine, New York, NY, 10016, USA
| | - Ana M Valero-Jimenez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Stephen T Yeung
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Keaton M Crosse
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Austin R Schinlever
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Lucie Bernard-Raichon
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Joaquin Rodriguez Galvan
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Marisa E McGrath
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Sanjay Vashee
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
| | - Yong Xue
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
| | - Cynthia A Loomis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Kamal M Khanna
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10016, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ludovic Desvignes
- Department of Medicine/Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- High Containment Laboratories - Office of Science and Research, NYU Langone Health, New York, NY, 10016, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Mila B Ortigoza
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Medicine/Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| | - Meike Dittmann
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
33
|
Liu C, Wu X, Bing X, Qi W, Zhu F, Guo N, Li C, Gao X, Cao X, Zhao M, Xia M. H1N1 influenza virus infection through NRF2-KEAP1-GCLC pathway induces ferroptosis in nasal mucosal epithelial cells. Free Radic Biol Med 2023; 204:226-242. [PMID: 37146698 DOI: 10.1016/j.freeradbiomed.2023.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Influenza A virus can induce nasal inflammation by stimulating the death of nasal mucosa epithelium, however, the mechanism is not clear. In this study, to study the causes and mechanisms of nasal mucosa epithelial cell death caused by Influenza A virus H1N1, we isolated and cultured human nasal epithelial progenitor cells (hNEPCs) and exposed them to H1N1 virus after leading differentiation. Then we performed high-resolution untargeted metabolomics and RNAseq analysis of human nasal epithelial cells (hNECs) infected with H1N1 virus. Surprisingly, H1N1 virus infection caused the differential expression of a large number of ferroptosis related genes and metabolites in hNECs. Furthermore, we have observed a significant reduction in Nrf2/KEAP1 expression, GCLC expression, and abnormal glutaminolysis. By constructing overexpression vector of GCLC and the shRNAs of GCLC and Keap1, we determined the role of NRF2-KEAP1-GCLC signaling pathway in H1N1 virus-induced ferroptosis. In addition, A glutaminase antagonist, JHU-083, also demonstrated that glutaminolysis can regulate the NRF2-KEAP1-GCLC signal pathway and ferroptosis. According to this study, H1N1 virus can induce the ferroptosis of hNECs via the NRF2-KEAP1-GCLC signal pathway and glutaminolysis, leading to nasal mucosal epithelial inflammation. This discovery is expected to provide an attractive therapeutic target for viral-induced nasal inflammation.
Collapse
Affiliation(s)
- Chengcheng Liu
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xinhao Wu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Department of Otolaryngology, Shandong Provincial Hospital, Shandong University, China
| | - Xin Bing
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Department of Otolaryngology, Shandong Provincial Hospital, Shandong University, China
| | - Wenwen Qi
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Department of Otolaryngology, Shandong Provincial Hospital, Shandong University, China
| | - Fangyuan Zhu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Na Guo
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Chengzhilin Li
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaochen Gao
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xue Cao
- Department of Otolaryngology, Shandong Provincial Hospital, Shandong University, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Department of Otolaryngology, Shandong Provincial Hospital, Shandong University, China; NHC Key Laboratory of Otorhinolaryngology, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
34
|
Tang JW, Marr LC, Tellier R, Dancer SJ. Airborne transmission of respiratory viruses including severe acute respiratory syndrome coronavirus 2. Curr Opin Pulm Med 2023; 29:191-196. [PMID: 36866737 PMCID: PMC10090298 DOI: 10.1097/mcp.0000000000000947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
PURPOSE OF REVIEW The coronavirus disease 2019 pandemic has had a wide-ranging and profound impact on how we think about the transmission of respiratory viruses This review outlines the basis on which we should consider all respiratory viruses as aerosol-transmissible infections, in order to improve our control of these pathogens in both healthcare and community settings. RECENT FINDINGS We present recent studies to support the aerosol transmission of severe acute respiratory syndrome coronavirus 2, and some older studies to demonstrate the aerosol transmissibility of other, more familiar seasonal respiratory viruses. SUMMARY Current knowledge on how these respiratory viruses are transmitted, and the way we control their spread, is changing. We need to embrace these changes to improve the care of patients in hospitals and care homes including others who are vulnerable to severe disease in community settings.
Collapse
Affiliation(s)
- Julian W. Tang
- Clinical Microbiology, University Hospitals of Leicester NHS Trust
- Respiratory Sciences, University of Leicester, Leicester, UK
| | | | | | | |
Collapse
|
35
|
Short KR, Cowling BJ. Assessing the potential for fomite transmission of SARS-CoV-2. THE LANCET. MICROBE 2023:S2666-5247(23)00099-X. [PMID: 37031688 PMCID: PMC10079269 DOI: 10.1016/s2666-5247(23)00099-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023]
Affiliation(s)
- Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| |
Collapse
|
36
|
Sanmark E, Oksanen LAH, Rantanen N, Lahelma M, Anttila VJ, Lehtonen L, Hyvärinen A, Geneid A. Aerosol generation during coughing: an observational study. J Laryngol Otol 2023; 137:442-447. [PMID: 35543098 PMCID: PMC10040286 DOI: 10.1017/s0022215122001165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Coronavirus disease 2019 has highlighted the lack of knowledge on aerosol exposure during respiratory activity and aerosol-generating procedures. This study sought to determine the aerosol concentrations generated by coughing to better understand, and to set a standard for studying, aerosols generated in medical procedures. METHODS Aerosol exposure during coughing was measured in 37 healthy volunteers in the operating theatre with an optical particle sizer, from 40 cm, 70 cm and 100 cm distances. RESULTS Altogether, 306 volitional and 15 involuntary coughs were measured. No differences between groups were observed. CONCLUSION Many medical procedures are expected to generate aerosols; it is unclear whether they are higher risk than normal respiratory activity. The measured aerosol exposure can be used to determine the risk for significant aerosol generation during medical procedures. Considerable variation of aerosol generation during cough was observed between individuals, but whether cough was volitional or involuntary made no difference to aerosol production.
Collapse
Affiliation(s)
- E Sanmark
- Facultie of Medicine, University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
| | - L A H Oksanen
- Facultie of Medicine, University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
| | - N Rantanen
- Facultie of Medicine, University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
| | - M Lahelma
- Facultie of Medicine, University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
- Faculties of Science, Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - V-J Anttila
- Facultie of Medicine, University of Helsinki, Helsinki, Finland
- HUS Inflammation Center, Helsinki University Hospital, Helsinki, Finland
| | - L Lehtonen
- Facultie of Medicine, University of Helsinki, Helsinki, Finland
- HUS Diagnostic Center, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - A Hyvärinen
- Finnish Meteorological Institute, Helsinki, Finland
| | - A Geneid
- Facultie of Medicine, University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
37
|
Zhang Z, Jia S, Wu W, Xiao G, Sundarrajan S, Ramakrishna S. Electrospun transparent nanofibers as a next generation face filtration media: A review. BIOMATERIALS ADVANCES 2023; 149:213390. [PMID: 36963249 DOI: 10.1016/j.bioadv.2023.213390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
The development of fascinating materials with functional properties has revolutionized the humankind with materials comfort, stopped the spreading of diseases, relieving the environmental pollution pressure, economized government research funds, and prolonged their serving life. The outbreak of Coronavirus Disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has triggered great global public health concern. Face masks are crucial tools to impede the spreading of SARS-CoV-2 from human to human. However, current face masks exhibit in a variety of colors (opaque), like blue, black, red, etc., leading to a communication barrier between the doctor and the deaf-mute patient when wearing a mask. High optical transparency filters can be utilized for both personal protection and lip-reading. Thus, shaping face air filter into a transparent appearance is an urgent need. Electrospinning technology, as a mature technology, is commonly used to form nanofiber materials utilizing high electrical voltage. With the alteration of the diameters of nanofibers, and proper material selection, it would be possible to make the transparent face mask. In this article, the research progress in the transparent face air filter is reviewed with emphasis on three parts: mechanism of the electrospinning process and light transmission, preparation of transparent face air filter, and their innovative potential. Through the assessment of classic cases, the benefits and drawbacks of various preparation strategies and products are evaluated, to provide general knowledge for the needs of different application scenarios. In the end, the development directions of transparent face masks in protective gear, particularly their novel functional applications and potential contributions in the prevention and control of the epidemic are also proposed.
Collapse
Affiliation(s)
- Zongqi Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Faculty of Mechanical Engineering, National University of Singapore, 117574, Singapore
| | - Shuyue Jia
- Faculty of Mechanical Engineering, National University of Singapore, 117574, Singapore; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Wenting Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Guomin Xiao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Subramanian Sundarrajan
- Faculty of Mechanical Engineering, National University of Singapore, 117574, Singapore; Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.
| | - Seeram Ramakrishna
- Faculty of Mechanical Engineering, National University of Singapore, 117574, Singapore.
| |
Collapse
|
38
|
Raymenants J, Geenen C, Budts L, Thibaut J, Thijssen M, De Mulder H, Gorissen S, Craessaerts B, Laenen L, Beuselinck K, Ombelet S, Keyaerts E, André E. Indoor air surveillance and factors associated with respiratory pathogen detection in community settings in Belgium. Nat Commun 2023; 14:1332. [PMID: 36898982 PMCID: PMC10005919 DOI: 10.1038/s41467-023-36986-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Currently, the real-life impact of indoor climate, human behaviour, ventilation and air filtration on respiratory pathogen detection and concentration are poorly understood. This hinders the interpretability of bioaerosol quantification in indoor air to surveil respiratory pathogens and transmission risk. We tested 341 indoor air samples from 21 community settings in Belgium for 29 respiratory pathogens using qPCR. On average, 3.9 pathogens were positive per sample and 85.3% of samples tested positive for at least one. Pathogen detection and concentration varied significantly by pathogen, month, and age group in generalised linear (mixed) models and generalised estimating equations. High CO2 and low natural ventilation were independent risk factors for detection. The odds ratio for detection was 1.09 (95% CI 1.03-1.15) per 100 parts per million (ppm) increase in CO2, and 0.88 (95% CI 0.80-0.97) per stepwise increase in natural ventilation (on a Likert scale). CO2 concentration and portable air filtration were independently associated with pathogen concentration. Each 100ppm increase in CO2 was associated with a qPCR Ct value decrease of 0.08 (95% CI -0.12 to -0.04), and portable air filtration with a 0.58 (95% CI 0.25-0.91) increase. The effects of occupancy, sampling duration, mask wearing, vocalisation, temperature, humidity and mechanical ventilation were not significant. Our results support the importance of ventilation and air filtration to reduce transmission.
Collapse
Affiliation(s)
- Joren Raymenants
- Laboratory of Clinical Microbiology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of General Internal Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Caspar Geenen
- Laboratory of Clinical Microbiology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Lore Budts
- Department of Laboratory Medicine, National Reference Center of Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Jonathan Thibaut
- Laboratory of Clinical Microbiology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Marijn Thijssen
- Laboratory of Clinical and Epidemiological Virology (Rega Institute), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Hannelore De Mulder
- Laboratory of Clinical Microbiology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sarah Gorissen
- Laboratory of Clinical Microbiology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Bastiaan Craessaerts
- Department of Laboratory Medicine, National Reference Center of Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Lies Laenen
- Laboratory of Clinical Microbiology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Department of Laboratory Medicine, National Reference Center of Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Kurt Beuselinck
- Department of Laboratory Medicine, National Reference Center of Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sien Ombelet
- Department of Laboratory Medicine, National Reference Center of Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Els Keyaerts
- Department of Laboratory Medicine, National Reference Center of Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Emmanuel André
- Laboratory of Clinical Microbiology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Department of Laboratory Medicine, National Reference Center of Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
39
|
Glenn K, He J, Rochlin R, Teng S, Hecker JG, Novosselov I. Assessment of aerosol persistence in ICUs via low-cost sensor network and zonal models. Sci Rep 2023; 13:3992. [PMID: 36899063 PMCID: PMC10006437 DOI: 10.1038/s41598-023-30778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
The COVID-19 pandemic raised public awareness about airborne particulate matter (PM) due to the spread of infectious diseases via the respiratory route. The persistence of potentially infectious aerosols in public spaces and the spread of nosocomial infections in medical settings deserve careful investigation; however, a systematic approach characterizing the fate of aerosols in clinical environments has not been reported. This paper presents a methodology for mapping aerosol propagation using a low-cost PM sensor network in ICU and adjacent environments and the subsequent development of the data-driven zonal model. Mimicking aerosol generation by a patient, we generated trace NaCl aerosols and monitored their propagation in the environment. In positive (closed door) and neutral-pressure (open door) ICUs, up to 6% or 19%, respectively, of all PM escaped through the door gaps; however, the outside sensors did not register an aerosol spike in negative-pressure ICUs. The K-means clustering analysis of temporospatial aerosol concentration data suggests that ICU can be represented by three distinct zones: (1) near the aerosol source, (2) room periphery, and (3) outside the room. The data suggests two-phase plume behavior: dispersion of the original aerosol spike throughout the room, followed by an evacuation phase where "well-mixed" aerosol concentration decayed uniformly. Decay rates were calculated for positive, neutral, and negative pressure operations, with negative-pressure rooms clearing out nearly twice as fast. These decay trends closely followed the air exchange rates. This research demonstrates the methodology for aerosol monitoring in medical settings. This study is limited by a relatively small data set and is specific to single-occupancy ICU rooms. Future work needs to evaluate medical settings with high risks of infectious disease transmission.
Collapse
Affiliation(s)
- K Glenn
- Department of Mechanical Engineering, University of Washington, Seattle, USA
| | - J He
- Department of Mechanical Engineering, University of Washington, Seattle, USA
| | - R Rochlin
- Department of Mechanical Engineering, University of Washington, Seattle, USA
| | - S Teng
- Department of Mechanical Engineering, University of Washington, Seattle, USA
| | - J G Hecker
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
| | - I Novosselov
- Department of Mechanical Engineering, University of Washington, Seattle, USA.
| |
Collapse
|
40
|
Strohm EM, Sathiyamoorthy K, Bok T, Nusrat O, Kolios MC. Air-Coupled Photoacoustic Detection of Airborne Particulates. INTERNATIONAL JOURNAL OF THERMOPHYSICS 2023; 44:67. [PMID: 36909209 PMCID: PMC9990552 DOI: 10.1007/s10765-023-03169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
In this study, we present a novel method to detect airborne particulates using air-coupled photoacoustics, with a goal toward detecting viral content in respiratory droplets. The peak photoacoustic frequency emitted from micrometer-sized particulates is over 1000 MHz, but at this frequency, the signals are highly attenuated in air. Measurements were taken using a thin planar absorber and ultrasound transducers with peak sensitivity between 50 kHz and 2000 kHz and a 532 nm pulsed laser to determine the optimum detection frequency. 350 kHz to 500 kHz provided the highest amplitude signal while minimizing attenuation in air. To simulate the expulsion of respiratory droplets, an atomizer device was used to spray droplets into open air through a pulsed laser. Droplets were composed of water, water with acridine orange dye, and water with gold nanoparticles. The dye and nanoparticles were chosen due to their similarity in the UV absorption peaks when compared to RNA. Using a 260 nm laser, the average photoacoustic signal from water was the highest, and then the signal decreased with dye or nanoparticles. Increasing absorber concentrations within their respective solutions resulted in a decreasing photoacoustic signal, which is opposite to our expectations. Monte Carlo simulations demonstrated that depending on the droplet dimensions, water droplets focus photons to create a localized fluence elevation. Absorbers within the droplet can inhibit photon travel through the droplet, decreasing the fluence. Photoacoustic signals are created through optical absorption within the droplet, potentially amplified with the localized fluence increase through the droplet focusing effect, with a trade-off in signal amplitude depending on the absorber concentration.
Collapse
Affiliation(s)
- Eric M. Strohm
- Department of Physics, Toronto Metropolitan University (Formerly Ryerson University), Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael’s Hospital, Toronto, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Canada
| | - Krishnan Sathiyamoorthy
- Department of Physics, Toronto Metropolitan University (Formerly Ryerson University), Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael’s Hospital, Toronto, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Canada
| | - Taehoon Bok
- Department of Physics, Toronto Metropolitan University (Formerly Ryerson University), Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael’s Hospital, Toronto, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Canada
| | - Omar Nusrat
- Department of Physics, Toronto Metropolitan University (Formerly Ryerson University), Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael’s Hospital, Toronto, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Canada
| | - Michael C. Kolios
- Department of Physics, Toronto Metropolitan University (Formerly Ryerson University), Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael’s Hospital, Toronto, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Canada
| |
Collapse
|
41
|
Marks GB. "Safe air" to breathe: Time for action? Respirology 2023; 28:210-211. [PMID: 36750441 DOI: 10.1111/resp.14469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Affiliation(s)
- Guy B Marks
- South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
42
|
Tandjaoui-Lambiotte Y, Lomont A, Moenne-Locoz P, Seytre D, Zahar JR. Spread of viruses, which measures are the most apt to control COVID-19? Infect Dis Now 2023; 53:104637. [PMID: 36526247 PMCID: PMC9746078 DOI: 10.1016/j.idnow.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
The persistent debate about the modes of transmission of SARS-CoV2 and preventive measures has illustrated the limits of our knowledge regarding the measures to be implemented in the face of viral risk. Past and present (pandemic-related) scientific data underline the complexity of the phenomenon and its variability over time. Several factors contribute to the risk of transmission, starting with incidence in the general population (i.e., colonization pressure) and herd immunity. Other major factors include intensity of symptoms, interactions with the reservoir (proximity and duration of contact), the specific characteristics of the virus(es) involved, and a number of unpredictable elements (humidity, temperature, ventilation…). In this review, we will emphasize the difficulty of "standardizing" the situations that might explain the discrepancies found in the literature. We will show that the airborne route remains the main mode of transmission. Regarding preventive measures of prevention, while vaccination remains the cornerstone of the fight against viral outbreaks, we will remind the reader that wearing a mask is the main barrier measure and that the choice of type of mask depends on the risk situations. Finally, we believe that the recent pandemic should induce us in the future to modify our recommendations by adapting our measures in hospitals, not to the pathogen concerned, which is currently the case, but rather to the type of at-risk situation.
Collapse
Affiliation(s)
- Y Tandjaoui-Lambiotte
- Service de Pneumologie-Infectiologie, CH Saint Denis, 2 rue Dr. Delafontaine, 93200, France
| | - A Lomont
- Unité de Prévention du Risque Infectieux, Service de microbiologie clinique, GHU Paris Seine Saint-Denis, Université Sorbonne Paris Nord, France
| | - P Moenne-Locoz
- Unité de Prévention du Risque Infectieux, Service de microbiologie clinique, GHU Paris Seine Saint-Denis, Université Sorbonne Paris Nord, France
| | - D Seytre
- Unité de Prévention du Risque Infectieux, Service de microbiologie clinique, GHU Paris Seine Saint-Denis, Université Sorbonne Paris Nord, France
| | - J R Zahar
- Unité de Prévention du Risque Infectieux, Service de microbiologie clinique, GHU Paris Seine Saint-Denis, Université Sorbonne Paris Nord, France.
| |
Collapse
|
43
|
D'Adamo A, Schnake-Mahl A, Mullachery PH, Lazo M, Diez Roux AV, Bilal U. Health disparities in past influenza pandemics: A scoping review of the literature. SSM Popul Health 2023; 21:101314. [PMID: 36514788 PMCID: PMC9733119 DOI: 10.1016/j.ssmph.2022.101314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/14/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Objective The COVID-19 pandemic has exacerbated existing health disparities. To provide a historical perspective on health disparities for pandemic acute respiratory viruses, we conducted a scoping review of the public health literature of health disparities in influenza outcomes during the 1918, 1957, 1968, and 2009 influenza pandemics. Methods We searched for articles examining socioeconomic or racial/ethnic disparities in any population, examining any influenza-related outcome (e.g., incidence, hospitalizations, mortality), during the 1918, 1957, 1968, and 2009 influenza pandemics. We conducted a structured search of English-written articles in PubMed supplemented by a snowball of articles meeting inclusion criteria. Results A total of 29 articles met inclusion criteria, all but one focusing exclusively on the 1918 or 2009 pandemics. Individuals of low socioeconomic status, or living in low socioeconomic status areas, experienced higher incidence, hospitalizations, and mortality in the 1918 and 2009 pandemics. There were conflicting results regarding racial/ethnic disparities during the 1918 pandemic, with differences in magnitude and direction by outcome, potentially due to issues in data quality by race/ethnicity. Racial/ethnic minorities had generally higher incidence, mortality, and hospitalization rates in the 1957 and 2009 pandemics. Conclusion Individuals of low socioeconomic status and racial/ethnic minorities have historically experienced worse influenza outcomes during pandemics. These historical patterns can inform current research to understand disparities in the ongoing COVID-19 pandemic and future pandemics.
Collapse
Affiliation(s)
- Angela D'Adamo
- Edward J. Bloustein School of Planning and Public Policy, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alina Schnake-Mahl
- Urban Health Collaborative, Drexel Dornsife School of Public Health, Philadelphia, PA, USA
- Department of Health Management and Policy, Drexel Dornsife School of Public Health, Philadelphia, PA, USA
| | - Pricila H. Mullachery
- Urban Health Collaborative, Drexel Dornsife School of Public Health, Philadelphia, PA, USA
- Department of Health Services Administration and Policy, Temple University College of Public Health, Philadelpha, PA, USA
| | - Mariana Lazo
- Urban Health Collaborative, Drexel Dornsife School of Public Health, Philadelphia, PA, USA
- Department of Community Health and Prevention, Drexel Dornsife School of Public Health, Philadelphia, PA, USA
| | - Ana V. Diez Roux
- Urban Health Collaborative, Drexel Dornsife School of Public Health, Philadelphia, PA, USA
- Department of Epidemiology and Biostatistics, Drexel Dornsife School of Public Health, Philadelphia, PA, USA
| | - Usama Bilal
- Urban Health Collaborative, Drexel Dornsife School of Public Health, Philadelphia, PA, USA
- Department of Epidemiology and Biostatistics, Drexel Dornsife School of Public Health, Philadelphia, PA, USA
| |
Collapse
|
44
|
Ma P, Zhou N, Wang X, Zhang Y, Tang X, Yang Y, Ma X, Wang S. Stronger susceptibilities to air pollutants of influenza A than B were identified in subtropical Shenzhen, China. ENVIRONMENTAL RESEARCH 2023; 219:115100. [PMID: 36565842 DOI: 10.1016/j.envres.2022.115100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Air pollution was indicated to be a key factor contributing to the aggressive spread of influenza viruses, whereas uncertainty still exists regarding to whether distinctions exist between influenza subtypes. Our study quantified the impact of five air pollutants on influenza subtype outbreaks in Shenzhen, China, a densely populated and highly urbanized megacity. Daily influenza outbreak data of laboratory-confirmed positive cases were obtained from the Shenzhen CDC, from May 1, 2013 to Dec 31, 2015. Concentrations of nitrogen dioxide (NO2), sulfur dioxide (SO2), particulate matters ≤2.5 μm (PM2.5), particulate matters ≤10 μm (PM10), and ozone (O3), were retrieved from the 18 national monitoring stations. The generalized additive model (GAM) and distributed lag non-linear model (DLNM) were used to calculate the concentration-response relationships between environmental inducers and outbreak epidemics, respectively for influenza A (Flu-A) and B (Flu-B). There were 1687 positive specimens were confirmed during the study period. The cold season was restricted from Nov. 4th to Apr. 20th, covering all seasons other than the long-lasting summer. Relatively heavy fine particle matter (PM2.5) and NO2 pollution was observed in cold months, with mean concentrations of 46.06 μg/m3 and 40.03 μg/m3, respectively. Time-series analysis indicated that high concentrations of NO2, PM2.5, PM10, and O3 were associated with more influenza outbreaks at short lag periods (0-5 d). Although more Flu-B (679 cases) epidemics occurred than Flu-A (382 cases) in the cold season, Flu-A generally showed higher susceptibility to air pollutants. A 10 μg/m3 increment in concentrations of PM2.5, PM10, and O3 at lag 04, was associated with a 2.103 (95%CI: 1.528-2.893), 1.618 (95%CI: 1.311-1.996), and 1.569 (95%CI: 1.214-2.028) of the relative risk (RR) of Flu-A, respectively. A 5 μg/m3 increase in NO2 was associated with higher risk of Flu-A at lag 03 (RR = 1.646, 95%CI: 1.295-2.092) and of Flu-B at lag 04 (RR = 1.319, 95%CI: 1.095-1.588). Nevertheless, barely significant effect of particulate matters (PM2.5, PM10) on Flu-B and SO2 on both subtypes was detected. Further, the effect estimates of NO2 increased for both subtypes when coexisting with other pollutants. This study provides evidence that declining concentrations of main pollutants including NO2, O3, and particulate matters, could substantially decrease influenza risk in subtropical Shenzhen, especially for influenza A.
Collapse
Affiliation(s)
- Pan Ma
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China; Chengdu Plain Urban Meteorology and Environment Scientific Observation and Research Station of Sichuan Province, Chengdu, 610225, Sichuan, China.
| | - Ning Zhou
- The First People's Hospital of Lanzhou, Lanzhou, 730050, Gansu, China.
| | - Xinzi Wang
- Meteorological Bureau of Jinnan District, Tianjin, 300350, China.
| | - Ying Zhang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China; Chengdu Plain Urban Meteorology and Environment Scientific Observation and Research Station of Sichuan Province, Chengdu, 610225, Sichuan, China.
| | - Xiaoxin Tang
- Shenzhen National Climate Observatory, Shenzhen, 518000, China.
| | - Yang Yang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China.
| | - Xiaolu Ma
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China.
| | - Shigong Wang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China.
| |
Collapse
|
45
|
Sanmark E, Kuula J, Laitinen S, Oksanen LMAH, Bamford DH, Atanasova NS. Safe use of PHI6 IN the experimental studies. Heliyon 2023; 9:e13565. [PMID: 36879750 PMCID: PMC9984441 DOI: 10.1016/j.heliyon.2023.e13565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Surrogate viruses theoretically provide an opportunity to study the viral spread in an indoor environment, a highly needed understanding during the pandemic, in a safe manner to humans and the environment. However, the safety of surrogate viruses for humans as an aerosol at high concentrations has not been established. In this study, Phi6 surrogate was aerosolized at high concentration (Particulate matter2.5: ∼1018 μg m-3) in the studied indoor space. Participants were closely followed for any symptoms. We measured the bacterial endotoxin concentration of the virus solution used for aerosolization as well as the concentration in the room air containing the aerosolized viruses. In addition, we measured how the bacterial endotoxin concentration of the sample was affected by different traditional virus purification procedures. Despite the purification, bacterial endotoxin concentration of the Phi6 was high (350 EU/ml in solution used for aerosols) with both (two) purification protocols. Bacterial endotoxins were also detected in aerosolized form, but below the occupational exposure limit of 90 EU/m3. Despite these concerns, no symptoms were observed in exposed humans when they were using personal protective equipment. In the future, purification protocols should be developed to reduce associated bacterial endotoxin levels in enveloped bacterial virus specimens to ensure even safer research use of surrogate viruses.
Collapse
Affiliation(s)
- Enni Sanmark
- University of Helsinki, Faculty of Medicine, Helsinki, Finland.,Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Joel Kuula
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki, Finland
| | - Sirpa Laitinen
- Finnish Institute of Occupational Health, Kuopio, Finland
| | - Lotta-Maria A H Oksanen
- University of Helsinki, Faculty of Medicine, Helsinki, Finland.,Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Dennis H Bamford
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Nina S Atanasova
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki, Finland.,Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
46
|
Nieto-Caballero M, Davis RD, Fuques E, Gomez OM, Huynh E, Handorean A, Ushijima S, Tolbert M, Hernandez M. Carbohydrate vitrification in aerosolized saliva is associated with the humidity-dependent infectious potential of airborne coronavirus. PNAS NEXUS 2023; 2:pgac301. [PMID: 36743472 PMCID: PMC9896139 DOI: 10.1093/pnasnexus/pgac301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
An accepted murine analogue for the environmental behavior of human SARS coronaviruses was aerosolized in microdroplets of its culture media and saliva to observe the decay of its airborne infectious potential under relative humidity (RH) conditions relevant to conditioned indoor air. Contained in a dark, 10 m3 chamber maintained at 22°C, murine hepatitis virus (MHV) was entrained in artificial saliva particles that were aerosolized in size distributions that mimic SARS-CoV-2 virus expelled from infected humans' respiration. As judged by quantitative PCR, more than 95% of the airborne MHV aerosolized was recovered from microdroplets with mean aerodynamic diameters between 0.56 and 5.6 μm. As judged by its half-life, calculated from the median tissue culture infectious dose (TCID50), saliva was protective of airborne murine coronavirus through a RH range recommended for conditioned indoor air (60% < RH < 40%; average half-life = 60 minutes). However, its average half-life doubled to 120 minutes when RH was maintained at 25%. Saliva microaerosol was dominated by carbohydrates, which presented hallmarks of vitrification without efflorescence at low RH. These results suggest that dehydrating carbohydrates can affect the infectious potential coronaviruses exhibit while airborne, significantly extending their persistence under the drier humidity conditions encountered indoors.
Collapse
Affiliation(s)
| | - Ryan D Davis
- Department of Chemistry, Trinity University, San Antonio, TX 78212, USA
- Materials Reliability Department, Sandia National Laboratories, Albuquerque, NM 82123, USA
| | - Eddie Fuques
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Odessa M Gomez
- Environmental Engineering Program, University of Colorado, Boulder, CO 80309, USA
| | - Erik Huynh
- Department of Chemistry, Trinity University, San Antonio, TX 78212, USA
| | - Alina Handorean
- Departments of Engineering Design and Society and Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Shuichi Ushijima
- Cooperative Institute for Research in Environmental Sciences and Department of Chemistry, University of Colorado, Boulder, CO 80309, USA
| | - Margaret Tolbert
- Cooperative Institute for Research in Environmental Sciences and Department of Chemistry, University of Colorado, Boulder, CO 80309, USA
| | - Mark Hernandez
- Environmental Engineering Program, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
47
|
López LR, Dessì P, Cabrera-Codony A, Rocha-Melogno L, Kraakman B, Naddeo V, Balaguer MD, Puig S. CO 2 in indoor environments: From environmental and health risk to potential renewable carbon source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159088. [PMID: 36181799 DOI: 10.1016/j.scitotenv.2022.159088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
In the developed world, individuals spend most of their time indoors. Poor Indoor Air Quality (IAQ) has a wide range of effects on human health. The burden of disease associated with indoor air accounts for millions of premature deaths related to exposure to Indoor Air Pollutants (IAPs). Among them, CO2 is the most common one, and is commonly used as a metric of IAQ. Indoor CO2 concentrations can be significantly higher than outdoors due to human metabolism and activities. Even in presence of ventilation, controlling the CO2 concentration below the Indoor Air Guideline Values (IAGVs) is a challenge, and many indoor environments including schools, offices and transportation exceed the recommended value of 1000 ppmv. This is often accompanied by high concentration of other pollutants, including bio-effluents such as viruses, and the importance of mitigating the transmission of airborne diseases has been highlighted by the COVID-19 pandemic. On the other hand, the relatively high CO2 concentration of indoor environments presents a thermodynamic advantage for direct air capture (DAC) in comparison to atmospheric CO2 concentration. This review aims to describe the issues associated with poor IAQ, and to demonstrate the potential of indoor CO2 DAC to purify indoor air while generating a renewable carbon stream that can replace conventional carbon sources as a building block for chemical production, contributing to the circular economy.
Collapse
Affiliation(s)
- L R López
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain.
| | - P Dessì
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - A Cabrera-Codony
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - L Rocha-Melogno
- ICF, 2635 Meridian Parkway Suite 200, Durham, NC 27713, United States
| | - B Kraakman
- Jacobs Engineering, Templey Quay 1, Bristol BAS1 6DG, UK; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - V Naddeo
- Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, 84084 Fisciano, SA, Italy
| | - M D Balaguer
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - S Puig
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| |
Collapse
|
48
|
Takeuchi H, Kawashima R. Disappearance and Re-Emergence of Influenza during the COVID-19 Pandemic: Association with Infection Control Measures. Viruses 2023; 15:223. [PMID: 36680263 PMCID: PMC9862942 DOI: 10.3390/v15010223] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, the influenza virus had a very low prevalence, and in many areas, outbreaks were almost non-existent. In this study, the associations between infection control measures taken for COVID-19 and the global disappearance of the influenza virus were investigated. The detection rate of influenza from baseline was investigated during four seasons (12 weeks from epidemiological week 49 in 2020 and 2021 and 12 weeks from epidemiological week 23 in 2020 and 2021) in each country participating in the surveillance system of the World Health Organization. Three measures of infection control: mask use ratio, social distancing index (an index of human mobility and physical distance obligations), and an index of stringency of measures taken by authorities were studied. In mid-2020, most countries analyzed had high levels of infection control measures, and in most countries, influenza was drastically reduced compared to previous years. Multiple regression analyses compared the study data with data from other seasons. There was an association between high mask use with low influenza detection in all three remaining seasons, an association between a low social distancing index (low mobility and more social contact obligations) with a low influenza detection rate in two seasons, and a marginal significant association of high stringency index with a low influenza detection rate(in 2020-end-seasons). These results support the notion that seasonal influenza is controllable through effective preventive measures, especially those of mask use and human social contact, and these measures should be recommended during future waves of novel influenza virus infection.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
- Smart Aging Research Center, Tohoku University, Sendai 980-8575, Japan
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
49
|
Jasial S, Hu J, Miyao T, Hirama Y, Onishi S, Matsui R, Osaki K, Funatsu K. Screening and Validation of Odorants against Influenza A Virus Using Interpretable Regression Models. ACS Pharmacol Transl Sci 2023; 6:139-150. [PMID: 36654744 PMCID: PMC9841774 DOI: 10.1021/acsptsci.2c00193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 12/23/2022]
Abstract
Influenza is a respiratory infection caused by the influenza virus that is prevalent worldwide. One of the most contagious variants of influenza is influenza A virus (IAV), which usually spreads in closed spaces through aerosols. Preventive measures such as novel compounds are needed that can act on viral membranes and provide a safe environment against IAV infection. In this study, we screened compounds with common fragrances that are generally used to mask unpleasant odors but can also exhibit antiviral activity against a strain of IAV. Initially, a set of 188 structurally diverse odorants were collected, and their antiviral activity was measured in vapor phase against the IAV solution. Regression models were built for the prediction of antiviral activity using this set of odorants by taking into account their structural features along with vapor pressure and partition coefficient (n-octanol/water). The models were interpreted using a feature weighting approach and Shapley Additive exPlanations to rationalize the predictions as an additional validation for virtual screening. This model was used to screen odorants from an in-house odorant data set consisting of 2020 odorants, which were later evaluated using in vitro experiments. Out of 11 odorants proposed using the final model, 8 odorants were found to exhibit antiviral activity. The feature interpretation of screened odorants suggested that they contained hydrophilic substructures, such as hydroxyl group, which might contribute to denaturation of proteins on the surface of the virus. These odorants should be explored as a preventive measure in closed spaces to decrease the risk of infections of IAV.
Collapse
Affiliation(s)
- Swarit Jasial
- Data
Science Center and Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara630-0192, Japan
| | - Jieying Hu
- Material
Science Research, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama640-8580, Japan
| | - Tomoyuki Miyao
- Data
Science Center and Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara630-0192, Japan
| | - Yui Hirama
- Biological
Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi321-3426, Japan
| | - Shintaro Onishi
- Biological
Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi321-3426, Japan
| | - Ryoichi Matsui
- Material
Science Research, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama640-8580, Japan
| | - Koji Osaki
- Material
Science Research, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama640-8580, Japan
| | - Kimito Funatsu
- Data
Science Center and Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara630-0192, Japan
| |
Collapse
|
50
|
Cilloniz C, Luna CM, Hurtado JC, Marcos MÁ, Torres A. Respiratory viruses: their importance and lessons learned from COVID-19. Eur Respir Rev 2022; 31:220051. [PMID: 36261158 PMCID: PMC9724808 DOI: 10.1183/16000617.0051-2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/30/2022] [Indexed: 01/08/2023] Open
Abstract
Respiratory virus infection can cause severe illnesses capable of inducing acute respiratory failure that can progress rapidly to acute respiratory distress syndrome (ARDS). ARDS is related to poor outcomes, especially in individuals with a higher risk of infection, such as the elderly and those with comorbidities, i.e. obesity, asthma, diabetes mellitus and chronic respiratory or cardiovascular disease. Despite this, effective antiviral treatments available for severe viral lung infections are scarce. The coronavirus disease 2019 (COVID-19) pandemic demonstrated that there is also a need to understand the role of airborne transmission of respiratory viruses. Robust evidence supporting this exists, but better comprehension could help implement adequate measures to mitigate respiratory viral infections. In severe viral lung infections, early diagnosis, risk stratification and prognosis are essential in managing patients. Biomarkers can provide reliable, timely and accessible information possibly helpful for clinicians in managing severe lung viral infections. Although respiratory viruses highly impact global health, more research is needed to improve care and prognosis of severe lung viral infections. In this review, we discuss the epidemiology, diagnosis, clinical characteristics, management and prognosis of patients with severe infections due to respiratory viruses.
Collapse
Affiliation(s)
- Catia Cilloniz
- Pneumology Dept, Respiratory Institute, Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (Ciberes), Barcelona, Spain
- Faculty of Health Sciences, Continental University, Huancayo, Peru
| | - Carlos M Luna
- Pneumology Division, Hospital of Clínicas, Faculty of Medicine, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Carlos Hurtado
- Dept of Microbiology, Hospital Clinic, Universitat de Barcelona, ISGlobal, Barcelona, Spain
| | - María Ángeles Marcos
- Dept of Microbiology, Hospital Clinic, Universitat de Barcelona, ISGlobal, Barcelona, Spain
| | - Antoni Torres
- Pneumology Dept, Respiratory Institute, Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (Ciberes), Barcelona, Spain
| |
Collapse
|