1
|
Das A, Yilmaz O, Yilmaz O, Deshpande V. SOX17: a new therapeutic target for immune evasion of colorectal cancer. J Clin Pathol 2025:jcp-2024-209878. [PMID: 40350244 DOI: 10.1136/jcp-2024-209878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2025] [Indexed: 05/14/2025]
Abstract
Despite advances in cancer immunotherapies across various cancers, survival outcomes in colorectal cancer (CRC) with these agents remain largely unsatisfactory despite the high tumour burden. Colorectal stem cells (CSCs), especially LGR5+ CSCs, are the significant drivers in CRC initiation, progression and resistance to conventional therapies. Although native immune surveillance is sufficient to combat early tumour formation, CRC evades early immune detection with its well-documented adenoma-to-carcinoma sequence. The exact mechanism underlying this phenomenon still needs to be better understood. SRY-related HMG box gene 17 (SOX17), a transcription factor that specifies embryonic gut formation, is increasingly recognised as a significant factor in CRC tumourigenesis. However, its role as a tumour suppressor or oncogene is still debated. Evidence from a recent study highlighted the critical role of SOX17 in reshaping the tumour immune ecosystem through the simultaneous inhibition of CD8+ T cells and selective suppression of LGR5 expression in CSCs through transcriptional repression, thereby facilitating disease progression. Given its role in immune evasion, SOX17 could be a promising marker in personalised therapy. Additionally, SOX17 could play a role in the diagnostic arena, potentially identifying dysplasia in the gastrointestinal tract. Future clinical, basic and genetic studies focusing on SOX17 are needed to ascertain its mechanistic role in tumour immunomodulation in CRC and diagnosing preneoplastic lesions in the gastrointestinal tract.
Collapse
Affiliation(s)
- Avash Das
- Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Omer Yilmaz
- Harvard Medical School, Boston, Massachusetts, USA
| | - Osman Yilmaz
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Vikram Deshpande
- Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Wang L, Hu F, Cui Q, Qiao H, Li L, Geng T, Li Y, Sun Z, Zhou S, Lan Z, Guo S, Hu Y, Wang J, Yang Q, Wang Z, Dai Y, Geng Y. Structural insights into the LGR4-RSPO2-ZNRF3 complexes regulating WNT/β-catenin signaling. Nat Commun 2025; 16:362. [PMID: 39753551 PMCID: PMC11698847 DOI: 10.1038/s41467-024-55431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025] Open
Abstract
WNT/β-catenin signaling plays key roles in development and cancer1,2. ZNRF3/RNF43 modulates Frizzleds through ubiquitination, dampening WNT/β-catenin signaling. Conversely, RSPO1-4 binding to LGR4-6 and ZNRF3/RNF43 enhances WNT/β-catenin signaling3-5. Here, we elucidate the overall landscape of architectures in multiple LGR4, RSPO2, and ZNRF3 assemblies, showcasing varying stoichiometries and arrangements. These structures reveal that LGR4 and RSPO2 capture distinct states of ZNRF3. The intrinsic heterogeneity of the LGR4-RSPO2-ZNRF3 assembly is influenced by LGR4 content. Particularly, in the assembly complex with a 2:2:2 ratio, two LGR4 protomers induce and stabilize the inactive state of ZNRF3, characterized by a wide inward-open conformation of two transmembrane helices (TM helices). This specific assembly promotes a stable complex, facilitating LGR4-induced endocytosis of ZNRF3. In contrast, the active dimeric ZNRF3, bound by a single LGR4, adopts a coiled-coil TM helices conformation and dimerization of RING domains. Our findings unveil how LGR4 content mediates diverse assemblies, leading to conformational rearrangements in ZNRF3 to regulate WNT/β-catenin signaling, and provide a structural foundation for drug development targeting Wnt-driven cancers.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fangzheng Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qianqian Cui
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Huarui Qiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lingyun Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Center for Cognitive Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Tengjie Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuying Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zengchao Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Siyu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhongyun Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shaojue Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Hu
- Center for Cognitive Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Qilun Yang
- Shanghai Kailuo Biotechnology Co. Ltd, Shanghai, China
| | - Zenan Wang
- Center for Cognitive Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| | - Yuanyuan Dai
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital of Chinese Academy of Medical Sciences, Langfang Campus, Langfang, China.
| | - Yong Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Kumar S, Basu M, Ghosh MK. E3 ubiquitin ligases and deubiquitinases in colorectal cancer: Emerging molecular insights and therapeutic opportunities. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119827. [PMID: 39187067 DOI: 10.1016/j.bbamcr.2024.119827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Colorectal cancer (CRC) presents ongoing challenges due to limited treatment effectiveness and a discouraging prognosis, underscoring the need for ground-breaking therapeutic approaches. This review delves into the pivotal role of E3 ubiquitin ligases and deubiquitinases (DUBs), underscoring their role as crucial regulators for tumor suppression and oncogenesis in CRC. We spotlight the diverse impact of E3 ligases and DUBs on CRC's biological processes and their remarkable versatility. We closely examine their specific influence on vital signaling pathways, particularly Wnt/β-catenin and NF-κB. Understanding these regulatory mechanisms is crucial for unravelling the complexities of CRC progression. Importantly, we explore the untapped potential of E3 ligases and DUBs as novel CRC treatment targets, discussing aspects that may guide more effective therapeutic strategies. In conclusion, our concise review illuminates the E3 ubiquitin ligases and deubiquitinases pivotal role in CRC, offering insights to inspire innovative approaches for transforming the treatment landscape in CRC.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, PIN - 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
4
|
Jin X, Wang S, Luo L, Yan F, He Q. Targeting the Wnt/β-catenin signal pathway for the treatment of gastrointestinal cancer: Potential for advancement. Biochem Pharmacol 2024; 227:116463. [PMID: 39102994 DOI: 10.1016/j.bcp.2024.116463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Gastrointestinal cancers (GICs) are highly prevalent cancers that threaten human health worldwide. The Wnt/β-catenin signaling pathway has been reported to play a pivotal role in the carcinogenesis of GICs. Numerous interventions targeting the Wnt/β-catenin signaling in GICs are currently being tested in clinical trials with promising results. Unfortunately, there are no clinically approved drugs that effectively target this pathway. This comprehensive review aims to evaluate the impact of clinical therapies targeting the Wnt/β-catenin signaling pathway in GICs. By integrating data from bioinformatics databases and recent literature from the past five years, we examine the heterogeneous expression and regulatory mechanisms of Wnt/β-catenin pathway genes and proteins in GICs. Specifically, we focus on expression patterns, mutation frequencies, and clinical prognoses to understand their implications for treatment strategies. Additionally, we discuss recent clinical trial efforts targeting this pathway. Understanding the inhibitors currently under clinical investigation may help optimize foundational research and clinical strategies. We hope that elucidating the current status of precision therapeutic stratification for patients targeting the Wnt/β-catenin pathway will guide future innovations in precision medicine for GICs.
Collapse
Affiliation(s)
- Xizhi Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang 310018, PR China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Fangjie Yan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang 310018, PR China.
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
5
|
Tamada H, Uehara T, Yoshizawa T, Iwaya M, Asaka S, Nakajima T, Kamakura M, Ota H. Exploring LGR5 as a prognostic marker of extrahepatic cholangiocarcinoma: insights from expression analysis and clinical correlations. Diagn Pathol 2024; 19:116. [PMID: 39198902 PMCID: PMC11350935 DOI: 10.1186/s13000-024-01537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) is a cancer stem cell (CSC) marker of colorectal cancer and may be a CSC marker of other cancer types. Few studies have been conducted on LGR5 expression in extrahepatic cholangiocarcinoma (ECC). METHODS We analyzed LGR5 expression using RNAscope, a highly sensitive RNA in situ hybridization technique. Fifty-three ECCs were selected from the medical archives at Shinshu University Hospital and analyzed using a tissue microarray. LGR5 expression levels were divided into expression and no expression groups. LGR5 expression and clinicopathological characteristics were analyzed. RESULTS Among 25 cases, no LGR5-positive dots were identified. Among 28 cases, some LGR5-positive dots were observed in carcinoma cells, together with a wide range of LGR5-positive cells. LGR5 expression was conspicuous in glandular duct formations. Well- to moderately differentiated types showed significantly higher LGR5 expression than the poorly differentiated type (p = 0.0268). LGR5 expression was associated with good overall survival (p = 0.0219) and good disease-free survival (DFS) (p = 0.0228). High LGR5 expression was associated with well- to moderately-differentiated types, indicating a favorable prognosis. In terms of DFS, multivariate analysis showed that high LGR5 expression was an independent favorable prognostic factor (p = 0.0397). CONCLUSIONS These findings suggest that LGR5 is a promising, novel prognostic marker.
Collapse
Affiliation(s)
- Hisashi Tamada
- Department of Pathology, Nagano Red Cross Hospital, Nagano, Japan
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | - Takahiro Yoshizawa
- Department of Gastroenterological, Pediatric and Transplant Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Mai Iwaya
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Shiho Asaka
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
- Department of Laboratory Medicine, Nagano Children's Hospital, Azumino, Japan
| | - Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Masato Kamakura
- Department of Gastroenterology, Nagano Red Cross Hospital, Nagano, Japan
| | - Hiroyoshi Ota
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
- Department of Biomedical Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| |
Collapse
|
6
|
Peng Q, Cao T, Yang X, Ye Z, Wang J, Chen S, Yu Y, Yu Y, Xue W, Chen Z, Fan J. RSPO2-associated mitochondrial metabolism defines molecular subtypes with distinct clinical and immune features in esophageal cancer. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 38491805 DOI: 10.1002/tox.24209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Esophageal cancer is a highly aggressive malignancy with limited treatment options and poor prognosis. The identification of novel molecular subtypes and therapeutic targets is crucial for improving clinical outcomes. METHOD In this study, we investigated the role of R-spondin 2 (RSPO2) in esophageal cancer and its association with mitochondrial metabolism. Using bioinformatics analysis of publicly available datasets, we identified a panel of RSPO2-related mitochondrial metabolism genes and their expression patterns in esophageal cancer. Based on these genes, we stratified esophageal cancer patients into distinct molecular subtypes with different survival rates, immune cell infiltration profiles, and drug sensitivities. RESULTS Our findings suggest that RSPO2-related mitochondrial metabolism genes may serve as potential therapeutic targets and prognostic markers for esophageal cancer. These genes play an important role in the prognosis, immune cell infiltration and drug sensitivity of esophageal cancer. CONCLUSION The identified molecular subtypes provide valuable insights into the underlying molecular mechanisms of esophageal cancer and could guide personalized treatment strategies in the future.
Collapse
Affiliation(s)
- Quanzhou Peng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Tianfeng Cao
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Xi'an No. 1 Hospital, Xi'an, China
| | - Xue Yang
- Medical Insurance Office, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhujia Ye
- AnchorDx Medical Co., Ltd, Guangzhou, China
| | - Jun Wang
- AnchorDx Medical Co., Ltd, Guangzhou, China
| | - Shang Chen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanqi Yu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yingdian Yu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenyuan Xue
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | | | - Jianbing Fan
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- AnchorDx Medical Co., Ltd, Guangzhou, China
| |
Collapse
|
7
|
Srivastava A, Srivastava S. Multiomics data identifies RSPO2 as a prognostic biomarker in human tumors associated with pan-cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:469-499. [PMID: 38448143 DOI: 10.1016/bs.apcsb.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
RSPO2 protein may provide valuable insights into the mechanism underlying various types of tumorigenesis. The role of RSPO2 in pan-cancer has not been reported so far. Therefore, this study aimed to provide a comprehensive analysis of RSPO2 from a pan-cancer perspective employing multiomics data. The expression profile and function of RSPO2 across different tumors were investigated using various web-based tools UALCAN, GEPIA, TIMER, Human Protein Atlas, cBioPortal, TISIDB, STRING, and Metascape to interpret the expression profile, promoter methylation status, genomic alterations, survival analysis, protein-protein interaction, correlation with immune cell subtypes, tumor immune microenvironment and enrichment analysis. Comprehensive pan-cancer analysis indicated that RSPO2 was significantly downregulated in eleven and upregulated in five tumor types compared to normal tissues, validation results further suggest RSPO2 was downregulated in most of the tumors. The protein level expression of RSPO2 was mostly low in malignant tissues. We found that RSPO2 was significantly related to individual pathological stages in BLCA, COAD, LUAD and LUSC. Prognostic analysis indicates that the high RSPO2 expression was significantly correlated with the poor prognosis in BRCA, KICH, KIRP, READ, and UCES. Furthermore, RSPO2 is frequently amplified, exhibits hypermethylated promoter in most cancers, and is associated with immune subtypes, molecular subtypes and immune cell infiltration. Finally, enrichment analysis showed that RSPO2 is involved in the regulation of the canonical Wnt pathway and neuronal development. The overall comprehensive pan-cancer analysis affirms that RSPO2 could be a promising diagnostic and prognostic biomarker and latent therapy target in the future.
Collapse
Affiliation(s)
- Ankit Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
8
|
Lee H, Camuto CM, Niehrs C. R-Spondin 2 governs Xenopus left-right body axis formation by establishing an FGF signaling gradient. Nat Commun 2024; 15:1003. [PMID: 38307837 PMCID: PMC10837206 DOI: 10.1038/s41467-024-44951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024] Open
Abstract
Establishment of the left-right (LR, sinistral, dextral) body axis in many vertebrate embryos relies on cilia-driven leftward fluid flow within an LR organizer (LRO). A cardinal question is how leftward flow triggers symmetry breakage. The chemosensation model posits that ciliary flow enriches a signaling molecule on the left side of the LRO that promotes sinistral cell fate. However, the nature of this sinistralizing signal has remained elusive. In the Xenopus LRO, we identified the stem cell growth factor R-Spondin 2 (Rspo2) as a symmetrically expressed, sinistralizing signal. As predicted for a flow-mediated signal, Rspo2 operates downstream of leftward flow but upstream of the asymmetrically expressed gene dand5. Unexpectedly, in LR patterning, Rspo2 acts as an FGF receptor antagonist: Rspo2 via its TSP1 domain binds Fgfr4 and promotes its membrane clearance by Znrf3-mediated endocytosis. Concordantly, we find that at flow-stage, FGF signaling is dextralizing and forms a gradient across the LRO, high on the dextral- and low on the sinistral side. Rspo2 gain- and loss-of function equalize this FGF signaling gradient and sinistralize and dextralize development, respectively. We propose that leftward flow of Rspo2 produces an FGF signaling gradient that governs LR-symmetry breakage.
Collapse
Affiliation(s)
- Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Celine Marie Camuto
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany.
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| |
Collapse
|
9
|
Zhang J, Liu G, Liu Y, Yang P, Xie J, Wei X. The biological functions and related signaling pathways of SPON2. Front Oncol 2024; 13:1323744. [PMID: 38264743 PMCID: PMC10803442 DOI: 10.3389/fonc.2023.1323744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Spondin-2 (SPON2), also referred to as M-spondin or DIL-1, is a member of the extracellular matrix protein family known as Mindin-F-spondin (FS). SPON2 can be used as a broad-spectrum tumor marker for more than a dozen tumors, mainly prostate cancer. Meanwhile, SPON2 is also a potential biomarker for the diagnosis of certain non-tumor diseases. Additionally, SPON2 plays a pivotal role in regulating tumor metastasis and progression. In normal tissues, SPON2 has a variety of biological functions represented by promoting growth and development and cell proliferation. This paper presents a comprehensive overview of the regulatory mechanisms, diagnostic potential as a broad-spectrum biomarker, diverse biological functions, involvement in various signaling pathways, and clinical applications of SPON2.
Collapse
Affiliation(s)
- Jingrun Zhang
- Zhongshan Clinical College, Dalian University, Dalian, China
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ge Liu
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yuchen Liu
- Zhongshan Clinical College, Dalian University, Dalian, China
| | - Pei Yang
- Department of Neurology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Junyuan Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaowei Wei
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
10
|
Chen J, Feng H, Wang Y, Bai X, Sheng S, Li H, Huang M, Chu X, Lei Z. The involvement of E3 ubiquitin ligases in the development and progression of colorectal cancer. Cell Death Discov 2023; 9:458. [PMID: 38104139 PMCID: PMC10725464 DOI: 10.1038/s41420-023-01760-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
To date, colorectal cancer (CRC) still has limited therapeutic efficacy and poor prognosis and there is an urgent need for novel targets to improve the outcome of CRC patients. The highly conserved ubiquitination modification mediated by E3 ubiquitin ligases is an important mechanism to regulate the expression and function of tumor promoters or suppressors in CRC. In this review, we provide an overview of E3 ligases in modulating various biological processes in CRC, including proliferation, migration, stemness, metabolism, cell death, differentiation and immune response of CRC cells, emphasizing the pluripotency of E3 ubiquitin ligases. We further focus on the role of E3 ligases in regulating vital cellular signal pathways in CRC, such as Wnt/β-catenin pathway and NF-κB pathway. Additionally, considering the potential of E3 ligases as novel targets in the treatment of CRC, we discuss what aspects of E3 ligases can be utilized and exploited for efficient therapeutic strategies.
Collapse
Affiliation(s)
- Jie Chen
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Haimei Feng
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yiting Wang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaoming Bai
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Siqi Sheng
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Huiyu Li
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Mengxi Huang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical university, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, China.
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical university, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
11
|
Guo D, Pan H, Lu X, Chen Z, Zhou L, Chen S, Huang J, Liang X, Xiao Z, Zeng H, Shao Y, Qi W, Xie D, Lin C. Rspo2 exacerbates rheumatoid arthritis by targeting aggressive phenotype of fibroblast-like synoviocytes and disrupting chondrocyte homeostasis via Wnt/β-catenin pathway. Arthritis Res Ther 2023; 25:217. [PMID: 37946278 PMCID: PMC10634117 DOI: 10.1186/s13075-023-03198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The aggressive phenotype of fibroblast-like synoviocytes (FLS) has been identified as a contributing factor to the exacerbation of rheumatoid arthritis (RA) through the promotion of synovitis and cartilage damage. Regrettably, there is currently no effective therapeutic intervention available to address this issue. Recent research has shed light on the crucial regulatory role of R-spondin-2 (Rspo2) in cellular proliferation, cartilage degradation, and tumorigenesis. However, the specific impact of Rspo2 on RA remains poorly understood. We aim to investigate the function and mechanism of Rspo2 in regulating the aggressive phenotype of FLS and maintaining chondrocyte homeostasis in the context of RA. METHODS The expression of Rspo2 in knee joint synovium and cartilage were detected in RA mice with antigen-induced arthritis (AIA) and RA patients. Recombinant mouse Rspo2 (rmRspo2), Rspo2 neutralizing antibody (Rspo2-NAb), and recombinant mouse DKK1 (rmDKK1, a potent inhibitor of Wnt signaling pathway) were used to explore the role and mechanism of Rspo2 in the progression of RA, specifically in relation to the aggressive phenotype of FLS and chondrocyte homeostasis, both in vivo and in vitro. RESULTS We indicated that Rspo2 expression was upregulated both in synovium and articular cartilage as RA progressed in RA mice and RA patients. Increased Rspo2 upregulated the expression of leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), as the ligand for Rspo2, and β-catenin in FLS and chondrocytes. Subsequent investigations revealed that intra-articular administration of rmRspo2 caused striking progressive synovitis and articular cartilage destruction to exacerbate RA progress in mice. Conversely, neutralization of Rspo2 or inhibition of the Wnt/β-catenin pathway effectively alleviated experimental RA development. Moreover, Rspo2 facilitated FLS aggressive phenotype and disrupted chondrocyte homeostasis primarily through activating Wnt/β-catenin pathway, which were effectively alleviated by Rspo2-NAb or rmDKK1. CONCLUSIONS Our data confirmed a critical role of Rspo2 in enhancing the aggressive phenotype of FLS and disrupting chondrocyte homeostasis through the Wnt/β-catenin pathway in the context of RA. Furthermore, the results indicated that intra-articular administration of Rspo2 neutralizing antibody or recombinant DKK1 might represent a promising therapeutic strategy for the treatment of RA.
Collapse
Affiliation(s)
- Dong Guo
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Haoyan Pan
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Xueying Lu
- Shenzhen Hospital of Beijing University of Chinese Medicine (Longgang), Shenzhen, 518100, People's Republic of China
| | - Zhong Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Laixi Zhou
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515031, People's Republic of China
| | - Shuxin Chen
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515031, People's Republic of China
| | - Jin Huang
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515031, People's Republic of China
| | - Xinzhi Liang
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Zhisheng Xiao
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Hua Zeng
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Yan Shao
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Weizhong Qi
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China.
| | - Denghui Xie
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China.
| | - Chuangxin Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515031, People's Republic of China.
| |
Collapse
|
12
|
Giri AK, Aavikko M, Wartiovaara L, Lemmetyinen T, Karjalainen J, Mehtonen J, Palin K, Välimäki N, Tamlander M, Saikkonen R, Karhu A, Morgunova E, Sun B, Runz H, Palta P, Luo S, Joensuu H, Mäkelä TP, Kostiainen I, Schalin-Jäntti C, FinnGen, Palotie A, Aaltonen LA, Ollila S, Daly MJ. Genome-Wide Association Study Identifies 4 Novel Risk Loci for Small Intestinal Neuroendocrine Tumors Including a Missense Mutation in LGR5. Gastroenterology 2023; 165:861-873. [PMID: 37453564 DOI: 10.1053/j.gastro.2023.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/07/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND & AIMS Small intestinal neuroendocrine tumor (SI-NET) is a rare disease, but its incidence has increased over the past 4 decades. Understanding the genetic risk factors underlying SI-NETs can help in disease prevention and may provide clinically beneficial markers for diagnosis. Here the results of the largest genome-wide association study of SI-NETs performed to date with 405 cases and 614,666 controls are reported. METHODS Samples from 307 patients with SI-NETs and 287,137 controls in the FinnGen study were used for the identification of SI-NET risk-associated genetic variants. The results were also meta-analyzed with summary statistics from the UK Biobank (n = 98 patients with SI-NET and n = 327,529 controls). RESULTS We identified 6 genome-wide significant (P < 5 × 10-8) loci associated with SI-NET risk, of which 4 (near SEMA6A, LGR5, CDKAL1, and FERMT2) are novel and 2 (near LTA4H-ELK and in KIF16B) have been reported previously. Interestingly, the top hit (rs200138614; P = 1.80 × 10-19) was a missense variant (p.Cys712Phe) in the LGR5 gene, a bona-fide marker of adult intestinal stem cells and a potentiator of canonical WNT signaling. The association was validated in an independent Finnish collection of 70 patients with SI-NETs, as well as in the UK Biobank exome sequence data (n = 92 cases and n = 392,814 controls). Overexpression of LGR5 p.Cys712Phe in intestinal organoids abolished the ability of R-Spondin1 to support organoid growth, indicating that the mutation perturbed R-Spondin-LGR5 signaling. CONCLUSIONS Our study is the largest genome-wide association study to date on SI-NETs and reported 4 new associated genome-wide association study loci, including a novel missense mutation (rs200138614, p.Cys712Phe) in LGR5, a canonical marker of adult intestinal stem cells.
Collapse
Affiliation(s)
- Anil K Giri
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Foundation for the Finnish Cancer Institute, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mervi Aavikko
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Medical and Clinical Genetics and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Linnea Wartiovaara
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Toni Lemmetyinen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts; Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Juha Mehtonen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Kimmo Palin
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Medical and Clinical Genetics and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Niko Välimäki
- Department of Medical and Clinical Genetics and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Max Tamlander
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Riikka Saikkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Auli Karhu
- Department of Medical and Clinical Genetics and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ekaterina Morgunova
- Karolinska Institute, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Benjamin Sun
- Translational Biology, Research and Development, Biogen Inc, Cambridge, Massachusetts
| | - Heiko Runz
- Translational Biology, Research and Development, Biogen Inc, Cambridge, Massachusetts
| | - Priit Palta
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Shuang Luo
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Heikki Joensuu
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Tomi P Mäkelä
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Iiro Kostiainen
- Endocrinology, Abdominal Center, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Camilla Schalin-Jäntti
- Endocrinology, Abdominal Center, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - FinnGen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Saara Ollila
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mark J Daly
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts; Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
13
|
Sun M, Tan Z, Lin K, Li X, Zhu J, Zhan L, Zheng H. Advanced Progression for the Heterogeneity and Homeostasis of Intestinal Stem Cells. Stem Cell Rev Rep 2023; 19:2109-2119. [PMID: 37351833 DOI: 10.1007/s12015-023-10578-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Current understanding of the leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) in intestinal stem cells (ISCs) is well established, however, the implications of ISC heterogeneity and homeostasis are poorly understood. Prior studies have provided important evidence for the association between heterogeneity of ISC pools with pathogenesis and therapeutic response of malignant disease. Leveraging the advantages of organoids and single cell RNA sequencing (scRNA-seq), glandular development has been simulated and cell heterogeneity has been clarified. Based on this research, several potential ISCs were identified, such as LGR5 + p27 + quiescent ISCs, LGR5 + Mex3a + slowly proliferating stem cells, and CLU + reverse stem cells. We also illustrated major factors responsible for ISC homeostasis including metabolism-related (LKB1, TGR5, HMGCS2), inflammation-related (IFB-b, IFN2, TNF), and Wnt signaling-related (CREPT, Mex3a, MTG16) factors. ISCs play complex roles in intestinal tumorigenesis, chemoresistance and occasional relapse of colon cancer, which bear discussion. In this review, we focus on novel technical challenges in ISCs fate drawing upon recent research with the goals of clarifying our understanding of complex ISCs, elucidating the integrated intestinal crypt niche, and creating new opportunities for therapeutic development.
Collapse
Affiliation(s)
- Minqiong Sun
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Zhenya Tan
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Keqiong Lin
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Xiaofei Li
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Jicheng Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Li Zhan
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Hong Zheng
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
14
|
Kwiatkowski E, Suman S, Kallakury BVS, Datta K, Fornace AJ, Kumar S. Expression of Stem Cell Markers in High-LET Space Radiation-Induced Intestinal Tumors in Apc1638N/+ Mouse Intestine. Cancers (Basel) 2023; 15:4240. [PMID: 37686516 PMCID: PMC10486545 DOI: 10.3390/cancers15174240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Estimation of cancer risk among astronauts planning to undertake future deep-space missions requires understanding the quantitative and qualitative differences in radiogenic cancers after low- and high-LET radiation exposures. Previously, we reported a multifold higher RBE for high-LET radiation-induced gastrointestinal (GI) tumorigenesis in Apc1638N/+ mice. Using the same model system, i.e., Apc1638N/+ mice, here, we report qualitative differences in the cellular phenotype of low- and high-LET radiation-induced GI tumors. Stem cell (SC) phenotypes were identified using BMI1, ALDH1, CD133, DCLK1, MSI1, and LGR5 markers in low (γ-rays)- and high (56Fe)-LET radiation-induced and spontaneous tumors. We also assessed the expression of these markers in the adjacent normal mucosa. All six of these putative SC markers were shown to be overexpressed in tumors compared to the adjacent normal intestinal tissue. A differential SC phenotype for spontaneous and radiogenic intestinal tumors in Apc1638N/+ mice was observed, where the ALDH1, BMI1, CD133, MSI1, and DCLK1 expressing cells were increased, while LGR5 expressing cells were decreased in 56Fe-induced tumors compared to γ-ray-induced and spontaneous tumors. Furthermore, higher β-catenin activation (marked by nuclear localization) was observed in 56Fe-induced tumors compared to γ and spontaneous tumors. Since differential tumor cell phenotype along with activated β-catenin may very well affect malignant progression, our findings are relevant to understanding the higher carcinogenic risk of high-LET radiation. This study has implications for the assessment of GI-cancer risk among astronauts, as well as for the estimation of secondary cancer risk among patients receiving hadron therapy, considering that our results indicate increased stemness properties after radiation.
Collapse
Affiliation(s)
- Elaina Kwiatkowski
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | - Kamal Datta
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | - Santosh Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
15
|
Tejedor JR, Peñarroya A, Gancedo-Verdejo J, Santamarina-Ojeda P, Pérez RF, López-Tamargo S, Díez-Borge A, Alba-Linares JJ, González-Del-Rey N, Urdinguio RG, Mangas C, Roberti A, López V, Morales-Ruiz T, Ariza RR, Roldán-Arjona T, Meijón M, Valledor L, Cañal MJ, Fernández-Martínez D, Fernández-Hevia M, Jiménez-Fonseca P, García-Flórez LJ, Fernández AF, Fraga MF. CRISPR/dCAS9-mediated DNA demethylation screen identifies functional epigenetic determinants of colorectal cancer. Clin Epigenetics 2023; 15:133. [PMID: 37612734 PMCID: PMC10464368 DOI: 10.1186/s13148-023-01546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Promoter hypermethylation of tumour suppressor genes is frequently observed during the malignant transformation of colorectal cancer (CRC). However, whether this epigenetic mechanism is functional in cancer or is a mere consequence of the carcinogenic process remains to be elucidated. RESULTS In this work, we performed an integrative multi-omic approach to identify gene candidates with strong correlations between DNA methylation and gene expression in human CRC samples and a set of 8 colon cancer cell lines. As a proof of concept, we combined recent CRISPR-Cas9 epigenome editing tools (dCas9-TET1, dCas9-TET-IM) with a customized arrayed gRNA library to modulate the DNA methylation status of 56 promoters previously linked with strong epigenetic repression in CRC, and we monitored the potential functional consequences of this DNA methylation loss by means of a high-content cell proliferation screen. Overall, the epigenetic modulation of most of these DNA methylated regions had a mild impact on the reactivation of gene expression and on the viability of cancer cells. Interestingly, we found that epigenetic reactivation of RSPO2 in the tumour context was associated with a significant impairment in cell proliferation in p53-/- cancer cell lines, and further validation with human samples demonstrated that the epigenetic silencing of RSPO2 is a mid-late event in the adenoma to carcinoma sequence. CONCLUSIONS These results highlight the potential role of DNA methylation as a driver mechanism of CRC and paves the way for the identification of novel therapeutic windows based on the epigenetic reactivation of certain tumour suppressor genes.
Collapse
Affiliation(s)
- Juan Ramón Tejedor
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Alfonso Peñarroya
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
| | - Javier Gancedo-Verdejo
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Pablo Santamarina-Ojeda
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Raúl F Pérez
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Sara López-Tamargo
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Ana Díez-Borge
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Viralgen Vector Core, 20009, San Sebastián, Gipuzkoa, Spain
| | - Juan J Alba-Linares
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Nerea González-Del-Rey
- Department of Organisms and Systems Biology, Institute of Biotechnology of Asturias, University of Oviedo, 33071, Oviedo, Asturias, Spain
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Rocío G Urdinguio
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Cristina Mangas
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Annalisa Roberti
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
| | - Virginia López
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Teresa Morales-Ruiz
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain
- Department of Genetics, University of Córdoba, 14071, Córdoba, Spain
| | - Rafael R Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain
- Department of Genetics, University of Córdoba, 14071, Córdoba, Spain
| | - Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain
- Department of Genetics, University of Córdoba, 14071, Córdoba, Spain
| | - Mónica Meijón
- Department of Organisms and Systems Biology, Institute of Biotechnology of Asturias, University of Oviedo, 33071, Oviedo, Asturias, Spain
| | - Luis Valledor
- Department of Organisms and Systems Biology, Institute of Biotechnology of Asturias, University of Oviedo, 33071, Oviedo, Asturias, Spain
| | - María Jesús Cañal
- Department of Organisms and Systems Biology, Institute of Biotechnology of Asturias, University of Oviedo, 33071, Oviedo, Asturias, Spain
| | - Daniel Fernández-Martínez
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
- Division of General Surgery, Department of Colorectal Surgery, Central University Hospital of Asturias (HUCA), 33011, Oviedo, Asturias, Spain
| | - María Fernández-Hevia
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
- Division of General Surgery, Department of Colorectal Surgery, Central University Hospital of Asturias (HUCA), 33011, Oviedo, Asturias, Spain
| | - Paula Jiménez-Fonseca
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Division of Oncology, Department of Medical Oncology, Central University Hospital of Asturias (HUCA), 33011, Oviedo, Asturias, Spain
| | - Luis J García-Flórez
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
- Division of General Surgery, Department of Colorectal Surgery, Central University Hospital of Asturias (HUCA), 33011, Oviedo, Asturias, Spain
- Department of Surgery and Medical Surgical Specialties, University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Agustín F Fernández
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain.
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain.
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain.
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain.
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain.
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain.
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain.
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain.
| |
Collapse
|
16
|
Pan R, Dai J, Liang W, Wang H, Ye L, Ye S, Lin Z, Huang S, Xiong Y, Zhang L, Lu L, Wang O, Shen X, Liao W, Lu X. PDE4DIP contributes to colorectal cancer growth and chemoresistance through modulation of the NF1/RAS signaling axis. Cell Death Dis 2023; 14:373. [PMID: 37355626 PMCID: PMC10290635 DOI: 10.1038/s41419-023-05885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/26/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023]
Abstract
Phosphodiesterase 4D interacting protein (PDE4DIP) is a centrosome/Golgi protein associated with cyclic nucleotide phosphodiesterases. PDE4DIP is commonly mutated in human cancers, and its alteration in mice leads to a predisposition to intestinal cancer. However, the biological function of PDE4DIP in human cancer remains obscure. Here, we report for the first time the oncogenic role of PDE4DIP in colorectal cancer (CRC) growth and adaptive MEK inhibitor (MEKi) resistance. We show that the expression of PDE4DIP is upregulated in CRC tissues and associated with the clinical characteristics and poor prognosis of CRC patients. Knockdown of PDE4DIP impairs the growth of KRAS-mutant CRC cells by inhibiting the core RAS signaling pathway. PDE4DIP plays an essential role in the full activation of oncogenic RAS/ERK signaling by suppressing the expression of the RAS GTPase-activating protein (RasGAP) neurofibromin (NF1). Mechanistically, PDE4DIP promotes the recruitment of PLCγ/PKCε to the Golgi apparatus, leading to constitutive activation of PKCε, which triggers the degradation of NF1. Upregulation of PDE4DIP results in adaptive MEKi resistance in KRAS-mutant CRC by reactivating the RAS/ERK pathway. Our work reveals a novel functional link between PDE4DIP and NF1/RAS signal transduction and suggests that targeting PDE4DIP is a promising therapeutic strategy for KRAS-mutant CRC.
Collapse
Affiliation(s)
- Rulu Pan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Juji Dai
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weicheng Liang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongxiao Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lin Ye
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Siqi Ye
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ziqi Lin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shishun Huang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yan Xiong
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Li Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Liting Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ouchen Wang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xian Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wanqin Liao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xincheng Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
17
|
Iyer AS, Shaik MR, Raufman JP, Xie G. The Roles of Zinc Finger Proteins in Colorectal Cancer. Int J Mol Sci 2023; 24:10249. [PMID: 37373394 DOI: 10.3390/ijms241210249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Despite colorectal cancer remaining a leading worldwide cause of cancer-related death, there remains a paucity of effective treatments for advanced disease. The molecular mechanisms underlying the development of colorectal cancer include altered cell signaling and cell cycle regulation that may result from epigenetic modifications of gene expression and function. Acting as important transcriptional regulators of normal biological processes, zinc finger proteins also play key roles in regulating the cellular mechanisms underlying colorectal neoplasia. These actions impact cell differentiation and proliferation, epithelial-mesenchymal transition, apoptosis, homeostasis, senescence, and maintenance of stemness. With the goal of highlighting promising points of therapeutic intervention, we review the oncogenic and tumor suppressor roles of zinc finger proteins with respect to colorectal cancer tumorigenesis and progression.
Collapse
Affiliation(s)
- Aishwarya S Iyer
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mohammed Rifat Shaik
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Guofeng Xie
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
18
|
Qin Y, Wu K, Zhang Z, Pan R, Lin Z, Zhang W, Huang S, Dai J, Huang R, Gong S, Lin H, Chong S, Lu L, Lu X. NLRC3 deficiency promotes cutaneous wound healing due to the inhibition of p53 signaling. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166518. [PMID: 35963285 DOI: 10.1016/j.bbadis.2022.166518] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 12/25/2022]
Abstract
Cutaneous wound healing is a complicated process that is characterized by an initial inflammatory phase followed by a proliferative phase. NLRC3 plays important roles in innate immunity, inflammatory regulation and tumor cell growth. However, the function of NLRC3 in wound healing remains unclear. Here, we investigated the function of NLRC3 in acute cutaneous wound healing using Nlrc3 gene knockout (Nlrc3-/-) mice. Our results demonstrated that skin wound repair in Nlrc3-/- mice was significantly accelerated compared with that in wild-type (WT) mice. NLRC3 deficiency promoted the inflammatory and proliferative phases in wounds enhanced the inflammatory response and increased re-epithelialization and granulation tissue formation, and these phenotypes were primarily ascribed to regulatory effects on p53 signaling. Mechanistically, we uncovered novel crosstalk between NLRC3 and p53 signaling and revealed that NLRC3 could mediate the ubiquitination and degradation of p53 in an Hsp90-dependent manner. In conclusion, our study suggests that NLRC3 is a critical negative regulator of the inflammatory response and cell proliferation during wound healing and that blocking NLRC3 may represent a potential approach for accelerating wound healing.
Collapse
Affiliation(s)
- Yuan Qin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Kai Wu
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou 325035, China
| | - Zheng Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Rulu Pan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ziqi Lin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenyi Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shishun Huang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Juji Dai
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ren Huang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Siqing Gong
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Huan Lin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shuyi Chong
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Liting Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xincheng Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
19
|
Chen Y, Song S, Wang Y, Zhu J, Li X. Potential mechanism of oral baicalin treating psoriasis via suppressing Wnt signaling pathway and inhibiting Th17/IL-17 axis by activating PPARγ. Phytother Res 2022; 36:3969-3987. [PMID: 35778948 DOI: 10.1002/ptr.7546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/05/2022]
Abstract
Psoriasis (PSO), an immune-mediated chronic inflammatory skin disease, has seriously affected the quality of patients' life. It is urgent to find effective medicines with lower costs and less side effects. Baicalin (HQG) is the main bioactive substance from Scutellaria baicalensis with effects of anti-inflammation and immunoregulation. Herein, we explored the effect of oral HQG treating PSO and its potential mechanism. Firstly, network pharmacology was used to predict that HQG may act on Estrogen, TNF-alpha (tumor necrosis factor, TNF), interleukin-17 (IL-17) signaling pathways and Th17 cell differentiation, especially the key targets including TNF, Proto-oncogene tyrosine-protein kinase Src, Peroxisome proliferator-activated receptor gamma and Matrix metalloproteinase-9. Imiquimod (IMQ)-induced mice were then used to study the effects of HQG treating PSO. HQG could significantly ameliorate the skin lesions, decrease the level of inflammatory factors and inhibit Th1/Th17 cell differentiation in IMQ-induced mice. Finally, transcriptome analysis of skin lesions integrated with the prediction of network pharmacology further demonstrated that the potential mechanism may be associated with suppressing Wnt signaling pathway and inhibiting Th17/IL-17 axis by activating PPARγ. In conclusion, this study suggested that HQG may be a promising agent for further studies in the search for therapeutic strategies to treat PSO in the future.
Collapse
Affiliation(s)
- Yi Chen
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Shasha Song
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yongfang Wang
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jia Zhu
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xinyu Li
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
20
|
Islam MS, Junod SL, Zhang S, Buuh ZY, Guan Y, Zhao M, Kaneria KH, Kafley P, Cohen C, Maloney R, Lyu Z, Voelz VA, Yang W, Wang RE. Unprotected peptide macrocyclization and stapling via a fluorine-thiol displacement reaction. Nat Commun 2022; 13:350. [PMID: 35039490 PMCID: PMC8763920 DOI: 10.1038/s41467-022-27995-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/19/2021] [Indexed: 12/31/2022] Open
Abstract
We report the discovery of a facile peptide macrocyclization and stapling strategy based on a fluorine thiol displacement reaction (FTDR), which renders a class of peptide analogues with enhanced stability, affinity, cellular uptake, and inhibition of cancer cells. This approach enabled selective modification of the orthogonal fluoroacetamide side chains in unprotected peptides in the presence of intrinsic cysteines. The identified benzenedimethanethiol linker greatly promoted the alpha helicity of a variety of peptide substrates, as corroborated by molecular dynamics simulations. The cellular uptake of benzenedimethanethiol stapled peptides appeared to be universally enhanced compared to the classic ring-closing metathesis (RCM) stapled peptides. Pilot mechanism studies suggested that the uptake of FTDR-stapled peptides may involve multiple endocytosis pathways in a distinct pattern in comparison to peptides stapled by RCM. Consistent with the improved cell permeability, the FTDR-stapled lead Axin and p53 peptide analogues demonstrated enhanced inhibition of cancer cells over the RCM-stapled analogues and the unstapled peptides. Strategies capable of stapling unprotected peptides in a straightforward, chemoselective, and clean manner, as well as promoting cellular uptake are of great interest. Here the authors report a peptide macrocyclization and stapling strategy which satisfies those criteria, based on a fluorine thiol displacement reaction.
Collapse
Affiliation(s)
- Md Shafiqul Islam
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Samuel L Junod
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Si Zhang
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Zakey Yusuf Buuh
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Yifu Guan
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Mi Zhao
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Kishan H Kaneria
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Parmila Kafley
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Carson Cohen
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Robert Maloney
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Zhigang Lyu
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Vincent A Voelz
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Weidong Yang
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Rongsheng E Wang
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
21
|
Nagano K, Yamana K, Saito H, Kiviranta R, Pedroni AC, Raval D, Niehrs C, Gori F, Baron R. R-spondin 3 deletion induces Erk phosphorylation to enhance Wnt signaling and promote bone formation in the appendicular skeleton. eLife 2022; 11:84171. [PMID: 36321691 PMCID: PMC9681208 DOI: 10.7554/elife.84171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
Activation of Wnt signaling leads to high bone density. The R-spondin family of four secreted glycoproteins (Rspo1-4) amplifies Wnt signaling. In humans, RSPO3 variants are strongly associated with bone density. Here, we investigated the role of Rspo3 in skeletal homeostasis in mice. Using a comprehensive set of mouse genetic and mechanistic studies, we show that in the appendicular skeleton, Rspo3 haplo-insufficiency and Rspo3 targeted deletion in Runx2+ osteoprogenitors lead to an increase in trabecular bone mass, with increased number of osteoblasts and bone formation. In contrast and highlighting the complexity of Wnt signaling in the regulation of skeletal homeostasis, we show that Rspo3 deletion in osteoprogenitors results in the opposite phenotype in the axial skeleton, i.e., low vertebral trabecular bone mass. Mechanistically, Rspo3 deficiency impairs the inhibitory effect of Dkk1 on Wnt signaling activation and bone mass. We demonstrate that Rspo3 deficiency leads to activation of Erk signaling which in turn, stabilizes β-catenin and Wnt signaling activation. Our data demonstrate that Rspo3 haplo-insufficiency/deficiency boosts canonical Wnt signaling by activating Erk signaling, to favor osteoblastogenesis, bone formation, and bone mass.
Collapse
Affiliation(s)
- Kenichi Nagano
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Kei Yamana
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Hiroaki Saito
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Riku Kiviranta
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | | | - Dhairya Raval
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Christof Niehrs
- German Cancer Research Center, DKFZ-ZMBH AllianceHeidelbergGermany,Institute of Molecular Biology (IMB)MainzGermany
| | - Francesca Gori
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Roland Baron
- School of Dental Medicine, Harvard UniversityBostonUnited States,Department of Medicine, Harvard Medical SchoolBostonUnited States,Endocrine Unit, Massachusetts General HospitalBostonUnited States
| |
Collapse
|
22
|
Ter Steege EJ, Bakker ERM. The role of R-spondin proteins in cancer biology. Oncogene 2021; 40:6469-6478. [PMID: 34663878 PMCID: PMC8616751 DOI: 10.1038/s41388-021-02059-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
R-spondin (RSPO) proteins constitute a family of four secreted glycoproteins (RSPO1-4) that have appeared as multipotent signaling ligands. The best-known molecular function of RSPOs lie within their capacity to agonize the Wnt/β-catenin signaling pathway. As RSPOs act upon cognate receptors LGR4/5/6 that are typically expressed by stem cells and progenitor cells, RSPO proteins importantly potentiate Wnt/β-catenin signaling especially within these proliferative stem cell compartments. Since multiple organs express LGR4/5/6 receptors and RSPO ligands within their stem cell niches, RSPOs can exert an influential role in stem cell regulation throughout the body. Inherently, over the last decade a multitude of reports implicated the deregulation of RSPOs in cancer development. First, RSPO2 and RSPO3 gene fusions with concomitant enhanced expression have been identified in colon cancer patients, and proposed as an alternative driver of Wnt/β-catenin hyperactivation that earmarks cancer in the colorectal tract. Moreover, the causal oncogenic capacity of RSPO3 overactivation has been demonstrated in the mouse intestine. As a paradigm organ in this field, most of current knowledge about RSPOs in cancer is derived from studies in the intestinal tract. However, RSPO gene fusions as well as enhanced RSPO expression have been reported in multiple additional cancer types, affecting different organs that involve divergent stem cell hierarchies. Importantly, the emerging oncogenic role of RSPO and its potential clinical utility as a therapeutic target have been recognized and investigated in preclinical and clinical settings. This review provides a survey of current knowledge on the role of RSPOs in cancer biology, addressing the different organs implicated, and of efforts made to explore intervention opportunities in cancer cases with RSPO overrepresentation, including the potential utilization of RSPO as novel therapeutic target itself.
Collapse
Affiliation(s)
- Eline J Ter Steege
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elvira R M Bakker
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Epigenetic induction of lipocalin 2 expression drives acquired resistance to 5-fluorouracil in colorectal cancer through integrin β3/SRC pathway. Oncogene 2021; 40:6369-6380. [PMID: 34588619 DOI: 10.1038/s41388-021-02029-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022]
Abstract
The therapeutic efficacy of 5-fluorouracil (5-FU) is often reduced by the development of drug resistance. We observed significant upregulation of lipocalin 2 (LCN2) expression in a newly established 5-FU-resistant colorectal cancer (CRC) cell line. In this study, we demonstrated that 5-FU-treated CRC cells developed resistance through LCN2 upregulation caused by LCN2 promoter demethylation and that feedback between LCN2 and NF-κB further amplified LCN2 expression. High LCN2 expression was associated with poor prognosis in CRC patients. LCN2 attenuated the cytotoxicity of 5-FU by activating the SRC/AKT/ERK-mediated antiapoptotic program. Mechanistically, the LCN2-integrin β3 interaction enhanced integrin β3 stability, thus recruiting SRC to the cytomembrane for autoactivation, leading to downstream AKT/ERK cascade activation. Targeting LCN2 or SRC compromised the growth of CRC cells with LCN2-induced 5-FU resistance. Our findings demonstrate a novel mechanism of acquired resistance to 5-FU, suggesting that LCN2 can be used as a biomarker and/or therapeutic target for advanced CRC.
Collapse
|
24
|
Sun R, He L, Lee H, Glinka A, Andresen C, Hübschmann D, Jeremias I, Müller-Decker K, Pabst C, Niehrs C. RSPO2 inhibits BMP signaling to promote self-renewal in acute myeloid leukemia. Cell Rep 2021; 36:109559. [PMID: 34407399 DOI: 10.1016/j.celrep.2021.109559] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/18/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is a rapidly progressing cancer, for which chemotherapy remains standard treatment and additional therapeutic targets are requisite. Here, we show that AML cells secrete the stem cell growth factor R-spondin 2 (RSPO2) to promote their self-renewal and prevent cell differentiation. Although RSPO2 is a well-known WNT agonist, we reveal that it maintains AML self-renewal WNT independently, by inhibiting BMP receptor signaling. Autocrine RSPO2 signaling is also required to prevent differentiation and to promote self-renewal in normal hematopoietic stem cells as well as primary AML cells. Comprehensive datamining reveals that RSPO2 expression is elevated in patients with AML of poor prognosis. Consistently, inhibiting RSPO2 prolongs survival in AML mouse xenograft models. Our study indicates that in AML, RSPO2 acts as an autocrine BMP antagonist to promote cancer cell renewal and may serve as a marker for poor prognosis.
Collapse
Affiliation(s)
- Rui Sun
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Lixiazi He
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Andrey Glinka
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Carolin Andresen
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), 69120 Heidelberg, Germany
| | - Daniel Hübschmann
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), 69120 Heidelberg, Germany; Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) Heidelberg and DKFZ, 69120 Heidelberg, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Germany
| | - Karin Müller-Decker
- Core Facility Tumor Models, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Caroline Pabst
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| |
Collapse
|
25
|
Reis AH, Sokol SY. Rspo2 inhibits TCF3 phosphorylation to antagonize Wnt signaling during vertebrate anteroposterior axis specification. Sci Rep 2021; 11:13433. [PMID: 34183732 PMCID: PMC8239024 DOI: 10.1038/s41598-021-92824-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/10/2021] [Indexed: 01/20/2023] Open
Abstract
The Wnt pathway activates target genes by controlling the β-catenin-T-cell factor (TCF) transcriptional complex during embryonic development and cancer. This pathway can be potentiated by R-spondins, a family of proteins that bind RNF43/ZNRF3 E3 ubiquitin ligases and LGR4/5 receptors to prevent Frizzled degradation. Here we demonstrate that, during Xenopus anteroposterior axis specification, Rspo2 functions as a Wnt antagonist, both morphologically and at the level of gene targets and pathway mediators. Unexpectedly, the binding to RNF43/ZNRF3 and LGR4/5 was not required for the Wnt inhibitory activity. Moreover, Rspo2 did not influence Dishevelled phosphorylation in response to Wnt ligands, suggesting that Frizzled activity is not affected. Further analysis indicated that the Wnt antagonism is due to the inhibitory effect of Rspo2 on TCF3/TCF7L1 phosphorylation that normally leads to target gene activation. Consistent with this mechanism, Rspo2 anteriorizing activity has been rescued in TCF3-depleted embryos. These observations suggest that Rspo2 is a context-specific regulator of TCF3 phosphorylation and Wnt signaling.
Collapse
Affiliation(s)
- Alice H Reis
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
26
|
Singla B, Lin HP, Chen A, Ahn W, Ghoshal P, Cherian-Shaw M, White J, Stansfield BK, Csányi G. Role of R-spondin 2 in arterial lymphangiogenesis and atherosclerosis. Cardiovasc Res 2021; 117:1489-1509. [PMID: 32750106 PMCID: PMC8152716 DOI: 10.1093/cvr/cvaa244] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
AIMS Impaired lymphatic drainage of the arterial wall results in intimal lipid accumulation and atherosclerosis. However, the mechanisms regulating lymphangiogenesis in atherosclerotic arteries are not well understood. Our studies identified elevated levels of matrix protein R-spondin 2 (RSPO2) in atherosclerotic arteries. In this study, we investigated the role of RSPO2 in lymphangiogenesis, arterial cholesterol efflux into lesion-draining lymph nodes (LNs) and development of atherosclerosis. METHODS AND RESULTS The effect of RSPO2 on lymphangiogenesis was investigated using human lymphatic endothelial cells (LEC) in vitro and implanted Matrigel plugs in vivo. Cellular and molecular approaches, pharmacological agents, and siRNA silencing of RSPO2 receptor LGR4 were used to investigate RSPO2-mediated signalling in LEC. In vivo low-density lipoprotein (LDL) tracking and perivascular blockade of RSPO2-LGR4 signalling using LGR4-extracellular domain (ECD) pluronic gel in hypercholesterolemic mice were utilized to investigate the role of RSPO2 in arterial reverse cholesterol transport and atherosclerosis. Immunoblotting and imaging experiments demonstrated increased RSPO2 expression in human and mouse atherosclerotic arteries compared to non-atherosclerotic controls. RSPO2 treatment inhibited lymphangiogenesis both in vitro and in vivo. LGR4 silencing and inhibition of RSPO2-LGR4 signalling abrogated RSPO2-induced inhibition of lymphangiogenesis. Mechanistically, we found that RSPO2 suppresses PI3K-AKT-endothelial nitric oxide synthase (eNOS) signalling via LGR4 and inhibits activation of the canonical Wnt-β-catenin pathway. ApoE-/- mice treated with LGR4-ECD developed significantly less atherosclerosis compared with control treatment. Finally, increased arterial lymphatic vessel density and improved lymphatic drainage of fluorescently labelled LDL to deep cervical LNs were observed in LGR4-ECD-treated mice. CONCLUSION These findings demonstrate that RSPO2 inhibits lymphangiogenesis via LGR4 and downstream impairment of AKT-eNOS-nitric oxide signalling. These results may also inform new therapeutic strategies to promote lymphangiogenesis and improve cholesterol efflux from atherosclerotic arteries.
Collapse
Affiliation(s)
- Bhupesh Singla
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - Hui-Ping Lin
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - Alex Chen
- Medical Scholars Program, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - WonMo Ahn
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - Pushpankur Ghoshal
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - Mary Cherian-Shaw
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - Joseph White
- Department of Pathology, Medical College of Georgia at Augusta University, 1120 15th Street, BF 104, Augusta, GA 30912, USA
| | - Brian K Stansfield
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
- Department of Pediatrics, Medical College of Georgia at Augusta University, 1120 15th Street, BI6031, Augusta, GA 30912, USA
| | - Gábor Csányi
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| |
Collapse
|
27
|
Sun G, Wu L, Sun G, Shi X, Cao H, Tang W. WNT5a in Colorectal Cancer: Research Progress and Challenges. Cancer Manag Res 2021; 13:2483-2498. [PMID: 33758546 PMCID: PMC7981155 DOI: 10.2147/cmar.s289819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
Despite the clinical development of new adjuvant and neoadjuvant chemotherapy drugs, colorectal cancer is still one of the leading causes of cancer-related death in human beings. WNT5a, an autocrine and paracrine β-catenin independent ligand, has been shown to induce tumor inhibition and carcinogenic signals, depending on the type of cancer. In patients with colorectal cancer, WNT5a triggers a variety of downstream signaling pathways, which mainly affect the migration and invasion of tumor cells. This article reviews the mechanism and therapeutic potential of WNT5a in colorectal cancer. In short, an in-depth understanding of the role of WNT5a in colorectal cancer is very helpful to better deal with this disease.
Collapse
Affiliation(s)
- Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Liangliang Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xuesong Shi
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
28
|
Hwang SU, Yoon JD, Kim M, Cai L, Choi H, Oh D, Kim E, Hyun SH. R-Spondin 2 and WNT/CTNNB1 Signaling Pathways Are Required for Porcine Follicle Development and In Vitro Maturation. Animals (Basel) 2021; 11:ani11030709. [PMID: 33807916 PMCID: PMC7998564 DOI: 10.3390/ani11030709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/26/2022] Open
Abstract
The secretion of oocyte-derived paracrine factors, such as R-spondin2, is an essential mechanism for follicle growth by promoting the proliferation and differentiation of cumulus cells around oocytes. In the present study, we aimed to identify the effect of R-spondin2 during follicular development. First, R-spondin2-related factors (R-spondin2, CTNNB1, LGR4, and LGR5) were identified through immunofluorescence in porcine ovarian tissue. CTNNB1 was expressed in ooplasm, and CTNNB1 and LGR4 were expressed in granulosa cells. In addition, R-spondin2, LGR4, and LGR5 were expressed in the theca interna. These results imply that these proteins play a major role in porcine follicular development. In addition, the effects of R-spondin2 on the in vitro maturation process of porcine cumulus oocyte complexes and subsequent embryonic development were confirmed. A treatment of 100 ng/mL R-spondin2 in the in vitro maturation (IVM) process increased nuclear maturation and increased the expression of EGFR mRNA in cumulus cells. The EGFR-ERK signal is essential for oocyte maturation, ovulation, and luteinization. R-spondin2 treatment also increased the expression of CTNNB1 and EGFR in primary cultured cumulus cells. In conclusion, RSPO2 and WNT/CTNNB1 signaling pathways are required for porcine follicle development and are predicted to be involved in the EGFR-ERK signaling pathway.
Collapse
Affiliation(s)
- Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Junchul David Yoon
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Eunhye Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Correspondence: (E.K.); (S.-H.H.); Tel.: +82-43-249-1746 (E.K.); +82-43-261-3393 (S.-H.H.)
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
- Correspondence: (E.K.); (S.-H.H.); Tel.: +82-43-249-1746 (E.K.); +82-43-261-3393 (S.-H.H.)
| |
Collapse
|
29
|
Little DW, Dumontet T, LaPensee CR, Hammer GD. β-catenin in adrenal zonation and disease. Mol Cell Endocrinol 2021; 522:111120. [PMID: 33338548 PMCID: PMC8006471 DOI: 10.1016/j.mce.2020.111120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022]
Abstract
The Wnt signaling pathway is a critical mediator of the development and maintenance of several tissues. The adrenal cortex is highly dependent upon Wnt/β-catenin signaling for proper zonation and endocrine function. Adrenocortical cells emerge in the peripheral capsule and subcapsular cortex of the gland as progenitor cells that centripetally differentiate into steroid hormone-producing cells of three functionally distinct concentric zones that respond robustly to various endocrine stimuli. Wnt/β-catenin signaling mediates adrenocortical progenitor cell fate and tissue renewal to maintain the gland throughout life. Aberrant Wnt/β-catenin signaling contributes to various adrenal disorders of steroid production and growth that range from hypofunction and hypoplasia to hyperfunction, hyperplasia, benign adrenocortical adenomas, and malignant adrenocortical carcinomas. Great strides have been made in defining the molecular underpinnings of adrenocortical homeostasis and disease, including the interplay between the capsule and cortex, critical components involved in maintaining the adrenocortical Wnt/β-catenin signaling gradient, and new targets in adrenal cancer. This review seeks to examine these and other recent advancements in understanding adrenocortical Wnt/β-catenin signaling and how this knowledge can inform therapeutic options for adrenal disease.
Collapse
Affiliation(s)
| | - Typhanie Dumontet
- Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA
| | - Christopher R LaPensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA
| | - Gary D Hammer
- Doctoral Program in Cancer Biology, USA; Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
30
|
Liao W, Fan L, Li M, Deng H, Yang A, Liu F. MPP7 promotes the migration and invasion of breast cancer cells via EGFR/AKT signaling. Cell Biol Int 2021; 45:948-956. [PMID: 33377561 DOI: 10.1002/cbin.11538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/30/2020] [Accepted: 12/25/2020] [Indexed: 01/02/2023]
Abstract
Metastasis is a major cause of breast cancer death. MPP7 is a cell polarity controller highly linked to cell migration; however, the function of MPP7 in breast cancer remains unknown. In this study, we reported that MPP7 expression was upregulated in breast cancer tissues and high MPP7 expression predicted poor survival in patients with breast cancer. Ectopic expression of MPP7 markedly enhanced the migration and invasion in breast cancer cells. In contrast, depletion of MPP7 resulted in impaired cell mobility and metastasis. Moreover, we demonstrated that MPP7 exerted its promotional effect via modulation of EMT and activation of the EGFR/AKT cascade. Our study reveals an oncogenic role of MPP7 in breast cancer and suggests that MPP7 may serve as a potential target for exploring novel therapeutic strategies against breast cancer metastasis.
Collapse
Affiliation(s)
- Wanqin Liao
- Department of Basic Medicine and Biomedical Engineering, Foshan Stomatology Hospital, School of Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Lixia Fan
- Department of Basic Medicine and Biomedical Engineering, Foshan Stomatology Hospital, School of Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Mingchan Li
- Department of Basic Medicine and Biomedical Engineering, Foshan Stomatology Hospital, School of Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Huizhi Deng
- Department of Basic Medicine and Biomedical Engineering, Foshan Stomatology Hospital, School of Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Anping Yang
- Department of Basic Medicine and Biomedical Engineering, Foshan Stomatology Hospital, School of Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Fang Liu
- Department of Basic Medicine and Biomedical Engineering, Foshan Stomatology Hospital, School of Medicine, Foshan University, Foshan, Guangdong Province, China
| |
Collapse
|
31
|
Angius A, Scanu AM, Arru C, Muroni MR, Rallo V, Deiana G, Ninniri MC, Carru C, Porcu A, Pira G, Uva P, Cossu-Rocca P, De Miglio MR. Portrait of Cancer Stem Cells on Colorectal Cancer: Molecular Biomarkers, Signaling Pathways and miRNAome. Int J Mol Sci 2021; 22:1603. [PMID: 33562604 PMCID: PMC7915330 DOI: 10.3390/ijms22041603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide, and about 20% is metastatic at diagnosis and untreatable. Increasing evidence suggests that the heterogeneous nature of CRC is related to colorectal cancer stem cells (CCSCs), a small cells population with stemness behaviors and responsible for tumor progression, recurrence, and therapy resistance. Growing knowledge of stem cells (SCs) biology has rapidly improved uncovering the molecular mechanisms and possible crosstalk/feedback loops between signaling pathways that directly influence intestinal homeostasis and tumorigenesis. The generation of CCSCs is probably connected to genetic changes in members of signaling pathways, which control self-renewal and pluripotency in SCs and then establish function and phenotype of CCSCs. Particularly, various deregulated CCSC-related miRNAs have been reported to modulate stemness features, controlling CCSCs functions such as regulation of cell cycle genes expression, epithelial-mesenchymal transition, metastasization, and drug-resistance mechanisms. Primarily, CCSC-related miRNAs work by regulating mainly signal pathways known to be involved in CCSCs biology. This review intends to summarize the epigenetic findings linked to miRNAome in the maintenance and regulation of CCSCs, including their relationships with different signaling pathways, which should help to identify specific diagnostic, prognostic, and predictive biomarkers for CRC, but also develop innovative CCSCs-targeted therapies.
Collapse
Affiliation(s)
- Andrea Angius
- Institute of Genetic and Biomedical Research (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
| | - Antonio Mario Scanu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Caterina Arru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Maria Rosaria Muroni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Vincenzo Rallo
- Institute of Genetic and Biomedical Research (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
| | - Giulia Deiana
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Maria Chiara Ninniri
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Alberto Porcu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Giovanna Pira
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Paolo Uva
- IRCCS G. Gaslini, 16147 Genoa, Italy;
| | - Paolo Cossu-Rocca
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
- Department of Diagnostic Services, “Giovanni Paolo II” Hospital, ASSL Olbia-ATS Sardegna, 07026 Olbia, Italy
| | - Maria Rosaria De Miglio
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| |
Collapse
|
32
|
Xu Q, Xu Z. miR-196b-5p Promotes Proliferation, Migration and Invasion of Lung Adenocarcinoma Cells via Targeting RSPO2. Cancer Manag Res 2021; 12:13393-13402. [PMID: 33402849 PMCID: PMC7778444 DOI: 10.2147/cmar.s274171] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Objective To explore the biological role of miR-196b-5p/RSPO2 in the occurrence and development of lung adenocarcinoma (LUAD) and to provide a basis for finding new therapeutic targets for LUAD. Methods Differentially expressed genes were analyzed based on LUAD microarray, and the target gene of the target miRNA was predicted. qRT-PCR was used to detect the expression levels of miR-196b-5p and RSPO2 mRNA in normal human bronchial epithelial cell line BEAS-2B and LUAD cell lines A549, NCI-H1792 and NCI-H226. Western blot was used to evaluate protein expression. Cell proliferative, migratory and invasive abilities were detected by CCK-8 and transwell assays. Dual-luciferase assay was conducted to verify the targeting relationship between miR-196b-5p and RSPO2. Results The results of qRT-PCR showed that miR-196b-5p was significantly highly expressed in LUAD cells, and the expression level of its downstream target gene RSPO2 was significantly decreased. The results of CCK-8 and transwell assays exhibited that miR-196b-5p promoted proliferation, migration and invasion of LUAD cells, while RSPO2 inhibited the malignant progression of LUAD cells. Dual-luciferase assay confirmed the targeted binding relationship between miR-196b-5p and RSPO2. Overexpression of RSPO2 partially reversed the promotion of miR-196b-5p on proliferation, migration and invasion of LUAD cells. Conclusion miR-196b-5p promoted proliferation, migration and invasion of LUAD cells by targeting and down-regulating RSPO2, which provided ideas for searching new targets for the diagnosis and treatment of LUAD.
Collapse
Affiliation(s)
- Qian Xu
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China
| | - Zhenwu Xu
- Department of Thoracic Medical Oncology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, 350014, People's Republic of China
| |
Collapse
|
33
|
Conboy CB, Vélez-Reyes GL, Rathe SK, Abrahante JE, Temiz NA, Burns MB, Harris RS, Starr TK, Largaespada DA. R-Spondins 2 and 3 Are Overexpressed in a Subset of Human Colon and Breast Cancers. DNA Cell Biol 2021; 40:70-79. [PMID: 33320737 PMCID: PMC7821429 DOI: 10.1089/dna.2020.5585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Wnt signaling is activated in many cancer types, yet targeting the canonical Wnt pathway has been challenging for cancer therapy. The pathway might be effectively targeted at many levels depending on the mechanism by which it has become hyperactive. Recently, mouse genetic screens have found that R-spondins (RSPOs) act as oncogenes. Evidence includes recurrent genomic rearrangements that led to increased RSPO2 or RSPO3 expression in human colorectal adenocarcinomas, exclusive of APC mutations. RSPOs modulate Wnt signaling to promote epithelial cell proliferation and survival. These secreted proteins modulate Wnt signaling by binding to G-coupled receptors LGR4/5/6, ultimately inhibiting frizzled membrane clearance by RNF43 and ZNRF3. They also exert their function independent of leucine-rich repeat-containing, G protein-coupled receptors (LGRs) by binding to ZNRF3 and RNF43. This results in increased β-catenin concentration that, after translocation to the nucleus, acts as a transcriptional coactivator of genes necessary for proliferation and cell survival. In this article, we aimed to identify the role of RSPOs in colon and breast cancers by using in silico and in vitro studies. We found that expression of RSPO2 and RSPO3 at high levels characterized a subset of colorectal cancers (CRCs). RSPO2 expression was found to characterize a subset of triple-negative breast cancers. In both instances, increased expression of RSPOs was associated with an activated Wnt signaling gene expression profile. Furthermore, knockdown of RSPO2 decreased Wnt signaling and proliferation in human breast cancer cells. Our findings show and confirm that RSPO2 and RSPO3 expression is upregulated in a subset of colorectal adenocarcinomas and breast cancers and that both are attractive druggable oncoprotein targets against such cancers. We also describe novel fusion transcripts that occur in CRC.
Collapse
Affiliation(s)
- Caitlin B. Conboy
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Susan K. Rathe
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Juan E. Abrahante
- University of Minnesota Informatics Institute, Minneapolis, Minnesota, USA
| | - Nuri A. Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael B. Burns
- Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Reuben S. Harris
- Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Timothy K. Starr
- Department of Obstetrics, Gynecology and Women's Health and University of Minnesota, Minneapolis, Minnesota, USA
| | - David A. Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
34
|
Lähde M, Heino S, Högström J, Kaijalainen S, Anisimov A, Flanagan D, Kallio P, Leppänen VM, Ristimäki A, Ritvos O, Wu K, Tammela T, Hodder M, Sansom OJ, Alitalo K. Expression of R-Spondin 1 in Apc Min/+ Mice Suppresses Growth of Intestinal Adenomas by Altering Wnt and Transforming Growth Factor Beta Signaling. Gastroenterology 2021; 160:245-259. [PMID: 32941878 DOI: 10.1053/j.gastro.2020.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Mutations in the APC gene and other genes in the Wnt signaling pathway contribute to development of colorectal carcinomas. R-spondins (RSPOs) are secreted proteins that amplify Wnt signaling in intestinal stem cells. Alterations in RSPO genes have been identified in human colorectal tumors. We studied the effects of RSPO1 overexpression in ApcMin/+ mutant mice. METHODS An adeno associated viral vector encoding RSPO1-Fc fusion protein, or control vector, was injected into ApcMin/+mice. Their intestinal crypts were isolated and cultured as organoids. which were incubated with or without RSPO1-Fc and an inhibitor of transforming growth factor beta receptor (TGFBR). Livers were collected from mice and analyzed by immunohistochemistry. Organoids and adenomas were analyzed by quantitative reverse-transcription PCR, single cell RNA sequencing, and immunohistochemistry. RESULTS Intestines from Apc+/+ mice injected with the vector encoding RSPO1-Fc had significantly deeper crypts, longer villi, with increased EdU labeling, indicating increased proliferation of epithelial cells, in comparison to mice given control vector. AAV-RSPO1-Fc-transduced ApcMin/+ mice also developed fewer and smaller intestinal tumors and had significantly longer survival times. Adenomas of ApcMin/+ mice injected with the RSPO1-Fc vector showed a rapid increase in apoptosis and in the expression of Wnt target genes, followed by reduced expression of messenger RNAs and proteins regulated by the Wnt pathway, reduced cell proliferation, and less crypt branching than adenomas of mice given the control vector. Addition of RSPO1 reduced the number of adenoma organoids derived from ApcMin/+ mice and suppressed expression of Wnt target genes but increased phosphorylation of SMAD2 and transcription of genes regulated by SMAD. Inhibition of TGFBR signaling in organoids stimulated with RSPO1-Fc restored organoid formation and expression of genes regulated by Wnt. The TGFBR inhibitor restored apoptosis in adenomas from ApcMin/+ mice expressing RSPO1-Fc back to the same level as in the adenomas from mice given the control vector. CONCLUSIONS Expression of RSPO1 in ApcMin/+ mice increases apoptosis and reduces proliferation and Wnt signaling in adenoma cells, resulting in development of fewer and smaller intestinal tumors and longer mouse survival. Addition of RSPO1 to organoids derived from adenomas inhibits their growth and promotes proliferation of intestinal stem cells that retain the APC protein; these effects are reversed by TGFB inhibitor. Strategies to increase the expression of RSPO1 might be developed for the treatment of intestinal adenomas.
Collapse
Affiliation(s)
- Marianne Lähde
- Translational Cancer Medicine Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sarika Heino
- Translational Cancer Medicine Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jenny Högström
- Translational Cancer Medicine Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Seppo Kaijalainen
- Translational Cancer Medicine Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Andrey Anisimov
- Translational Cancer Medicine Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Dustin Flanagan
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Pauliina Kallio
- Translational Cancer Medicine Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Veli-Matti Leppänen
- Translational Cancer Medicine Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| | - Ari Ristimäki
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital; Medicum and Applied Tumor Genomics, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katherine Wu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York; Cell and Developmental Biology, Weill-Cornell Medical College, New York, New York
| | - Michael Hodder
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kari Alitalo
- Translational Cancer Medicine Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland.
| |
Collapse
|
35
|
Park S, Wu L, Tu J, Yu W, Toh Y, Carmon KS, Liu QJ. Unlike LGR4, LGR5 potentiates Wnt-β-catenin signaling without sequestering E3 ligases. Sci Signal 2020; 13:13/660/eaaz4051. [PMID: 33262293 DOI: 10.1126/scisignal.aaz4051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
LGR4 and LGR5 encode two homologous receptors with critical, yet distinct, roles in organ development and adult stem cell survival. Both receptors are coexpressed in intestinal crypt stem cells, bind to R-spondins (RSPOs) with high affinity, and potentiate Wnt-β-catenin signaling, presumably by the same mechanism: forming RSPO-bridged complexes with the E3 ligases RNF43 and ZNRF3 to inhibit ubiquitylation of Wnt receptors. However, direct evidence for RSPO-bound, full-length LGR5 interacting with these E3 ligases in whole cells has not been reported, and only LGR4 is essential for the self-renewal of intestinal stem cells. Here, we examined the mechanisms of action of LGR4 and LGR5 in parallel using coimmunoprecipitation, proximity ligation, competition binding, and time-resolved FRET assays in whole cells. Full-length LGR4 formed a tight complex with ZNRF3 and RNF43 even without RSPO, whereas LGR5 did not interact with either E3 ligase with or without RSPO. Domain-swapping experiments with LGR4 and LGR5 revealed that the seven-transmembrane domain of LGR4 conferred interaction with the E3 ligases. Native LGR4 and LGR5 existed as dimers on the cell surface, and LGR5 interacted with both FZD and LRP6 of the Wnt signalosome to enhance LRP6 phosphorylation and potentiate Wnt-β-catenin signaling. These findings provide a molecular basis for the weaker activity of LGR5 in the potentiation of Wnt signaling that may underlie the distinct roles of LGR4 and LGR5 in organ development, as well as the self-renewal and fitness of adult stem cells.
Collapse
Affiliation(s)
- Soohyun Park
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ling Wu
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jianghua Tu
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wangsheng Yu
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yukimatsu Toh
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kendra S Carmon
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qingyun J Liu
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Leung C, Murad KBA, Tan ALT, Yada S, Sagiraju S, Bode PK, Barker N. Lgr5 Marks Adult Progenitor Cells Contributing to Skeletal Muscle Regeneration and Sarcoma Formation. Cell Rep 2020; 33:108535. [PMID: 33357435 DOI: 10.1016/j.celrep.2020.108535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/15/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Regeneration of adult skeletal muscle is driven largely by resident satellite cells, a stem cell population increasingly considered to display a high degree of molecular heterogeneity. In this study, we find that Lgr5, a receptor for Rspo and a potent mediator of Wnt/β-catenin signaling, marks a subset of activated satellite cells that contribute to muscle regeneration. Lgr5 is found to be rapidly upregulated in purified myogenic progenitors following acute cardiotoxin-induced injury. In vivo lineage tracing using our Lgr5-2ACreERT2R26tdTomatoLSL reporter mouse model shows that Lgr5+ cells can reconstitute damaged muscle fibers following muscle injury, as well as replenish the quiescent satellite cell pool. Moreover, conditional mutation in Lgr52ACreERT2;KrasG12D;Trp53flox/flox mice drives undifferentiated pleomorphic sarcoma formation in adult mice, thereby substantiating Lgr5+ cells as a cell of origin of sarcomas. Our findings provide the groundwork for developing Rspo/Wnt-signaling-based therapeutics to potentially enhance regenerative outcomes of skeletal muscles in degenerative muscle diseases.
Collapse
Affiliation(s)
- Carly Leung
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore
| | - Katzrin Bte Ahmad Murad
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore
| | - Adelyn Liang Thing Tan
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore
| | - Swathi Yada
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore
| | - Sowmya Sagiraju
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore
| | - Peter Karl Bode
- Department of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Nick Barker
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore; Cancer Research Institute, Kanazawa University, Kakuma-machi Kanazawa 920-1192, Japan; School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|
37
|
Sharma M, Pruitt K. Wnt Pathway: An Integral Hub for Developmental and Oncogenic Signaling Networks. Int J Mol Sci 2020; 21:E8018. [PMID: 33126517 PMCID: PMC7663720 DOI: 10.3390/ijms21218018] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
The Wnt pathway is an integral cell-to-cell signaling hub which regulates crucial development processes and maintenance of tissue homeostasis by coordinating cell proliferation, differentiation, cell polarity, cell movement, and stem cell renewal. When dysregulated, it is associated with various developmental diseases, fibrosis, and tumorigenesis. We now better appreciate the complexity and crosstalk of the Wnt pathway with other signaling cascades. Emerging roles of the Wnt signaling in the cancer stem cell niche and drug resistance have led to development of therapeutics specifically targeting various Wnt components, with some agents currently in clinical trials. This review highlights historical and recent findings on key mediators of Wnt signaling and how they impact antitumor immunity and maintenance of cancer stem cells. This review also examines current therapeutics being developed that modulate Wnt signaling in cancer and discusses potential shortcomings associated with available therapeutics.
Collapse
Affiliation(s)
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| |
Collapse
|
38
|
Lai S, Cheng R, Gao D, Chen YG, Deng C. LGR5 constitutively activates NF-κB signaling to regulate the growth of intestinal crypts. FASEB J 2020; 34:15605-15620. [PMID: 33001511 DOI: 10.1096/fj.202001329r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 01/09/2023]
Abstract
Mammalian LGR5 and LGR4, markers of adult stem cells, are involved in many physiological functions by enhancing WNT signaling. However, whether LGR5 and LGR4 are coupled to other intracellular signaling pathways to regulate stem cell function remains unknown. Here, we show that LGR5 and LGR4 can constitutively activate NF-κB signaling in a ligand-independent manner, which is dependent on their C-termini, but independent of receptor endocytosis. Moreover, the C-termini of LGR5/4 interact with TROY, which is required for activating NF-κB signaling. In small intestinal crypt organoids, overexpression of a C-terminal deletion mutant of LGR5 inhibits the growth and bud formation of organoids, whereas overexpression of the R-spondin-binding mutant of LGR5 that is defective for WNT signaling can still promote organoid growth. Our study reveals that NF-κB signaling, regulated by LGR5 and LGR4, plays an important role in the survival of colon cancer cells and the growth of intestinal crypts. Our findings also suggest that LGR5/4-induced NF-κB signaling and WNT signaling may co-regulate the growth of LGR5+ adult stem cells and intestinal crypts.
Collapse
Affiliation(s)
- Shanshan Lai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ran Cheng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Dan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
39
|
Zheng C, Zhou F, Shi LL, Xu GF, Zhang B, Wang L, Zhuge Y, Zou XP, Wang Y. R-spondin2 Suppresses the Progression of Hepatocellular Carcinoma via MAPK Signaling Pathway. Mol Cancer Res 2020; 18:1491-1499. [PMID: 32581137 DOI: 10.1158/1541-7786.mcr-19-0599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 02/19/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022]
Abstract
The R-spondin family plays important roles in embryonic development, including in humans. However, information on the relationship between R-spondin2 and hepatocellular carcinoma (HCC) is lacking. This study aimed was to explore the mechanisms of R-spondin2 action in the progression of HCC. By analyzing R-spondin2 expression levels in HCC tissues by IHC and database, we identified that HCC tissues had lower expression levels of R-spondin2, correlated with a poor prognosis. We also established R-spondin2-overexpressing and knockdown cell lines and measured their viabilities and invasion abilities in vitro and their oncogenic capacity in vivo. Human mRNA microarray analysis was performed to screen for mRNAs that were differentially expressed between R-spondin2-overexpressing and control HCC cells. Microarray and Western blot analyses showed significant changes in the MAPK signaling pathway after transfection. Furthermore, in vivo experiments indicated that R-spondin2 knockdown increased the tumorigenicity of HCC cells after subcutaneous implantation in mice. Altogether, our results indicate that the R-spondin2, which might be a novel tumor suppressor gene, were responsible for inhibiting the proliferation and invasion of HCC via the MAPK signaling pathway. IMPLICATIONS: R-spondin2 gene might be a novel tumor suppressor gene providing new clues to clarify the biological behavior of HCC and thus reduce patient mortality and prolong survival.
Collapse
Affiliation(s)
- Chang Zheng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fan Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Liang Liang Shi
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Gui Fang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bin Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiao Ping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yi Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
40
|
Fernandez Vallone V, Leprovots M, Ribatallada‐Soriano D, Gerbier R, Lefort A, Libert F, Vassart G, Garcia M. LGR5 controls extracellular matrix production by stem cells in the developing intestine. EMBO Rep 2020; 21:e49224. [PMID: 32468660 PMCID: PMC7332981 DOI: 10.15252/embr.201949224] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
The Lgr5 receptor is a marker of intestinal stem cells (ISCs) that regulates Wnt/b-catenin signaling. In this study, phenotype analysis of knockin/knockout Lgr5-eGFP-IRES-Cre and Lgr5-DTReGFP embryos reveals that Lgr5 deficiency during Wnt-mediated cytodifferentiation results in amplification of ISCs and early differentiation into Paneth cells, which can be counteracted by in utero treatment with the Wnt inhibitor LGK974. Conditional ablation of Lgr5 postnatally, but not in adults, alters stem cell fate toward the Paneth lineage. Together, these in vivo studies suggest that Lgr5 is part of a feedback loop to adjust the Wnt tone in ISCs. Moreover, transcriptome analyses reveal that Lgr5 controls fetal ISC maturation associated with acquisition of a definitive stable epithelial phenotype, as well as the capacity of ISCs to generate their own extracellular matrix. Finally, using the ex vivo culture system, evidences are provided that Lgr5 antagonizes the Rspondin 2-Wnt-mediated response in ISCs in organoids, revealing a sophisticated regulatory process for Wnt signaling in ISCs.
Collapse
Affiliation(s)
- Valeria Fernandez Vallone
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
- Present address:
1 Charité – Universitätsmedizin Berlin, Berlin Institute of Health (BIH)BerlinGermany
| | - Morgane Leprovots
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Didac Ribatallada‐Soriano
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Romain Gerbier
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Anne Lefort
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Frédérick Libert
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Gilbert Vassart
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Marie‐Isabelle Garcia
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| |
Collapse
|
41
|
MiR-346-5p promotes colorectal cancer cell proliferation in vitro and in vivo by targeting FBXL2 and activating the β-catenin signaling pathway. Life Sci 2020; 244:117300. [PMID: 31953162 DOI: 10.1016/j.lfs.2020.117300] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/28/2019] [Accepted: 01/12/2020] [Indexed: 01/06/2023]
|
42
|
Chen D, Liu Q, Cao G, Zhang W. TYRO3 facilitates cell growth and metastasis via activation of the Wnt/β-catenin signaling pathway in human gastric cancer cells. Aging (Albany NY) 2020; 12:2261-2274. [PMID: 32018224 PMCID: PMC7041786 DOI: 10.18632/aging.102744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
It has become increasingly important to identify valuable therapeutic targets to improve the prognosis of cancer patients. Although emerging evidence has suggested TYRO3 as a potential therapeutic target in various types of cancers, less is known about its role in gastric cancer (GC) development. Herein, we investigated the functional and molecular mechanisms by which TYRO3 influenced GC. TYRO3 mRNA and protein were evaluated by quantitative real-time PCR (qRT-PCR), western blotting, and immunohistochemistry. Other methods including stable transfection of TYRO3 into GC cells, wound healing, Transwell assays, CCK-8 assays, colony formation assays, immunocytochemistry in vitro, and tumorigenesis in vivo were also conducted. Our results indicated that high levels of TYRO3 significantly correlated with clinical metastasis and poor prognoses in patients with GC. In addition, TYRO3 silencing distinctively suppressed GC cell growth, invasion, and metastasis both in vitro and in vivo. Conversely, TYRO3 overexpression led to the opposite effects. Mechanistic analyses revealed that the Wnt/β-catenin signaling pathway might be involved in TYRO3-facilitated GC cell behavior. Collectively, we demonstrated that elevated TYRO3 expression contributed to GC cell growth and metastasis via the Wnt/β-catenin pathway, suggesting a novel therapeutic target for GC.
Collapse
Affiliation(s)
- Dehu Chen
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, China
| | - Qinghong Liu
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, China
| | - Gan Cao
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, China
| | - Wei Zhang
- Department of Infectious Diseases, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, China
| |
Collapse
|
43
|
Gastric squamous-columnar junction contains a large pool of cancer-prone immature osteopontin responsive Lgr5 -CD44 + cells. Nat Commun 2020; 11:84. [PMID: 31901081 PMCID: PMC6941991 DOI: 10.1038/s41467-019-13847-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
Areas of a junction between two types of epithelia are known to be cancer-prone in many organ systems. However, mechanisms for preferential malignant transformation at the junction areas remain insufficiently elucidated. Here we report that inactivation of tumor suppressor genes Trp53 and Rb1 in the gastric squamous-columnar junction (SCJ) epithelium results in preferential formation of metastatic poorly differentiated neoplasms, which are similar to human gastroesophageal carcinoma. Unlike transformation-resistant antral cells, SCJ cells contain a highly proliferative pool of immature Lgr5−CD44+ cells, which are prone to transformation in organoid assays, comprise early dysplastic lesions, and constitute up to 30% of all neoplastic cells. CD44 ligand osteopontin (OPN) is preferentially expressed in and promotes organoid formation ability and transformation of the SCJ glandular epithelium. OPN and CD44 overexpression correlate with the worst prognosis of human gastroesophageal carcinoma. Thus, detection and selective targeting of the active OPN-CD44 pathway may have direct clinical relevance. Cancers arising from the gastric squamous-columnar junction have high incidence and are characterized by a poor prognosis. Here, the authors use genetic mouse models to show that loss of p53 and Rb1 expression results in preferential tumour development at the gastric squamous-columnar junction that contains a large pool of osteopontin responsive Lgr5-CD44+ cells.
Collapse
|
44
|
Sun X, Chen D, Jin Z, Chen T, Lin A, Jin H, Zhu Y, Lai M. Genome-wide methylation and expression profiling identify methylation-associated genes in colorectal cancer. Epigenomics 2019; 12:19-36. [PMID: 31833403 DOI: 10.2217/epi-2019-0133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: To identify methylation-associated genes in the carcinogenesis of colorectal cancer (CRC). Materials & methods: Genome-wide patterns of DNA methylation and gene expression in CRC tissues and adjacent normal tissues were determined and further validated in The Cancer Genome Atlas data and Chinese CRC patients, respectively. Gene overexpression and knockdown cells were constructed to investigate their biological roles in CRC. Results: After validations, hypermethylation of eight genes were found to be correlated with their reduced transcription, and hypomethyaltion of three genes were associated with their upregulation. CADM3, CNRIP1, GRHL2, GRIA4, GSTM2 and NRXN1 were associated with the overall survival of CRC patients. CNRIP1 and GSTM2 were mainly responsible for the proliferation in CRC cells. Conclusion: A total of 11 genes may be promising biomarkers for CRC.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Diyu Chen
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, PR China
| | - Ziqi Jin
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Tianhui Chen
- Group of Molecular Epidemiology & Cancer Precision Prevention, Zhejiang Academy of Medical Sciences, Hangzhou 310013, PR China
| | - Aifen Lin
- Human Tissue Bank/Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, PR China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Provincial Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou 310020, PR China
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, Zhejiang, PR China.,Department of Respiratory Diseases, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, PR China
| | - Maode Lai
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| |
Collapse
|
45
|
Ihemelandu C, Naeem A, Parasido E, Berry D, Chaldekas K, Harris BT, Rodriguez O, Albanese C. Clinicopathologic and prognostic significance of LGR5, a cancer stem cell marker in patients with colorectal cancer. COLORECTAL CANCER 2019; 8:CRC11. [PMID: 32038737 PMCID: PMC7000925 DOI: 10.2217/crc-2019-0009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aim: To analyze the clinicopathologic and prognostic significance of Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), a cancer stem cell marker expression in a cohort of colorectal cancer patients (CRC). Patients & methods: A total of 76 formalin-fixed paraffin-embedded tissue blocks of primary or metastatic tumors from 49 CRC patients were collected for duration 2009–2015. LGR5 expression was assessed through immunohistochemical staining of a tissue microarray. Results: LGR5 was significantly over expressed in CRC tissue samples and found to be a statistically significant independent prognostic marker for an improved overall survival. Conclusion: LGR5 expression was higher in colorectal cancer than in normal tissue. LGR5 was an independent prognostic marker for better clinical outcomes and might be used as a potential therapeutic target in CRCs.
Collapse
Affiliation(s)
- Chukwuemeka Ihemelandu
- Program in Peritoneal Surface Oncology, MedStar Surgical Oncology, Department of Surgery, MedStar Georgetown University Hospital, 3800 Reservoir Rd, NW Washington, DC 20007, USA.,Preclinical Imaging Research Laboratory, Center for Cell Reprogramming, Department of Oncology and Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd, NW Washington, DC 20007, USA
| | - Aisha Naeem
- Preclinical Imaging Research Laboratory, Center for Cell Reprogramming, Department of Oncology and Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd, NW Washington, DC 20007, USA.,Biostatistician, Preclinical imaging Research Laboratory, Department of Oncology and Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical center, 3800 Reservoir Rd, NW Washington, DC 20007, USA
| | - Erika Parasido
- Preclinical Imaging Research Laboratory, Center for Cell Reprogramming, Department of Oncology and Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd, NW Washington, DC 20007, USA
| | - Deborah Berry
- Histopathology & Tissue Shared Resource, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3900 Reservoir Rd, Washington, DC 20007, USA.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center
| | - Krysta Chaldekas
- Histopathology & Tissue Shared Resource, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3900 Reservoir Rd, Washington, DC 20007, USA.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center
| | - Brent T Harris
- Histopathology & Tissue Shared Resource, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3900 Reservoir Rd, Washington, DC 20007, USA.,Departments of Neurology & Pathology, Georgetown University Medical Center
| | - Olga Rodriguez
- Preclinical Imaging Research Laboratory, Center for Cell Reprogramming, Department of Oncology and Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd, NW Washington, DC 20007, USA.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center
| | - Christopher Albanese
- Preclinical Imaging Research Laboratory, Center for Cell Reprogramming, Department of Oncology and Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd, NW Washington, DC 20007, USA.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center
| |
Collapse
|
46
|
Ruan X, Liu A, Zhong M, Wei J, Zhang W, Rong Y, Liu W, Li M, Qing X, Chen G, Li R, Liao Y, Liu Q, Zhang X, Ren D, Wang Y. Silencing LGR6 Attenuates Stemness and Chemoresistance via Inhibiting Wnt/β-Catenin Signaling in Ovarian Cancer. Mol Ther Oncolytics 2019; 14:94-106. [PMID: 31193124 PMCID: PMC6517611 DOI: 10.1016/j.omto.2019.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022] Open
Abstract
Leucine-rich-repeat-containing G protein-coupled receptors (LGRs) have been widely found to be implicated with development and progression in multiple cancer types. However, the clinical significance and biological functions of LGR6 in ovarian cancer remains unclear. In this study, LGR6 expression was mainly examined by immunohistochemistry. Functional assays in vitro and animal experiments in vivo were carried out to explore the effect of LGR6 on cancer stem cell (CSC) characteristics and chemotherapeutic responses in ovarian cancer cells. Luciferase assays and GSEA were used to discern the underlying mechanisms contributing to the roles of LGR6 in ovarian cancer. Here, we reported that LGR6 was upregulated in ovarian cancer, which positively correlated with poor chemotherapeutic response and progression survival in ovarian cancer patients. Loss-of-function assays showed that downregulating LGR6 abrogated the CSC-like phenotype and chemoresistance in vitro. More importantly, silencing LGR6 improved the chemoresistance of ovarian cancer cells to cisplatin in vivo. Mechanistic investigation further revealed that silencing LGR6 inhibited stemness and chemoresistance by repressing Wnt/β-catenin signaling. Collectively, our results uncover a novel mechanism contributing to LGR6-induced chemotherapeutic resistance in ovarian cancer, providing the evidence for LGR6 as a potential therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Xiaohong Ruan
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People’s Republic of China
- Department of Gynecology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, People’s Republic of China
| | - Aibin Liu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, People’s Republic of China
| | - Meigong Zhong
- Department of Pharmacy, Jiangmen Maternity and Child Health Care Hospital, Jiangmen 529030, China
| | - Jihong Wei
- Department of Gynecology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, People’s Republic of China
| | - Weijian Zhang
- Department of Gynecology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, People’s Republic of China
| | - Yingrou Rong
- Department of Gynecology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, People’s Republic of China
| | - Wanmin Liu
- Department of Gynecology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, People’s Republic of China
| | - Mingwei Li
- Department of Gynecology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, People’s Republic of China
| | - Xingrong Qing
- Department of Gynecology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, People’s Republic of China
| | - Gaowen Chen
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People’s Republic of China
| | - Ronggang Li
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, People’s Republic of China
| | - Yuehua Liao
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, People’s Republic of China
| | - Qiongru Liu
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, People’s Republic of China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Dong Ren
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Yifeng Wang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People’s Republic of China
| |
Collapse
|
47
|
Conboy CB, Vélez-Reyes GL, Tschida BR, Hu H, Kaufmann G, Koes N, Keller B, Alsinet C, Cornellà H, Pinyol R, Abrahante JE, Temiz NA, Linden MA, Amin K, Kuka TP, Keng VW, Llovet JM, Starr TK, Largaespada DA. R-spondin 2 Drives Liver Tumor Development in a Yes-Associated Protein-Dependent Manner. Hepatol Commun 2019; 3:1496-1509. [PMID: 31701073 PMCID: PMC6824083 DOI: 10.1002/hep4.1422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Each year, more than 25,000 people succumb to liver cancer in the United States, and this neoplasm represents the second cause of cancer-related death globally. R-spondins (RSPOs) are secreted regulators of Wnt signaling that function in development and promote tissue stem cell renewal. In cancer, RSPOs 2 and 3 are oncogenes first identified by insertional mutagenesis screens in tumors induced by mouse mammary tumor virus and by transposon mutagenesis in the colonic epithelium of rodents. RSPO2 has been reported to be activated by chromosomal rearrangements in colorectal cancer and overexpressed in a subset of hepatocellular carcinoma. Using human liver tumor gene expression data, we first discovered that a subset of liver cancers were characterized by high levels of RSPO2 in contrast to low levels in adjacent nontumor tissue. To determine if RSPOs are capable of inducing liver tumors, we used an in vivo model from which we found that overexpression of RSPO2 in the liver promoted Wnt signaling, hepatomegaly, and enhanced liver tumor formation when combined with loss of transformation-related protein 53 (Trp53). Moreover, the Hippo/yes-associated protein (Yap) pathway has been implicated in many human cancers, influencing cell survival. Histologic and gene expression studies showed activation of Wnt/β-catenin and Hippo/Yap pathways following RSPO2 overexpression. We demonstrate that knockdown of Yap1 leads to reduced tumor penetrance following RSPO2 overexpression in the context of loss of Trp53. Conclusion: RSPO2 overexpression leads to tumor formation in the mouse liver in a Hippo/Yap-dependent manner. Overall, our results suggest a role for Yap in the initiation and progression of liver tumors and uncover a novel pathway activated in RSPO2-induced malignancies. We show that RSPO2 promotes liver tumor formation in vivo and in vitro and that RSPO2's oncogenic activity requires Hippo/Yap activation in hepatocytes. Both RSPO2 and YAP1 are suggested to represent novel druggable targets in Wnt-driven tumors of the liver.
Collapse
Affiliation(s)
| | | | | | - Hsiangyu Hu
- Masonic Cancer Center University of Minnesota Minneapolis MN
| | | | - Nicholas Koes
- Masonic Cancer Center University of Minnesota Minneapolis MN
| | - Bryant Keller
- Masonic Cancer Center University of Minnesota Minneapolis MN
| | - Clara Alsinet
- Liver Cancer Translational Research Laboratory Liver Unit, L'Institut d'Investigacions Biomèdiques August Pi i Sunyer-Hospital Clinic of Barcelona University of Barcelona Barcelona Spain
| | - Helena Cornellà
- Liver Cancer Translational Research Laboratory Liver Unit, L'Institut d'Investigacions Biomèdiques August Pi i Sunyer-Hospital Clinic of Barcelona University of Barcelona Barcelona Spain
| | - Roser Pinyol
- Liver Cancer Translational Research Laboratory Liver Unit, L'Institut d'Investigacions Biomèdiques August Pi i Sunyer-Hospital Clinic of Barcelona University of Barcelona Barcelona Spain
| | | | - Nuri A Temiz
- Masonic Cancer Center University of Minnesota Minneapolis MN
| | - Michael A Linden
- Comparative Pathology Shared Resource University of Minnesota St. Paul MN.,Department of Medicine Division of Hematology, Oncology, and Transplantation University of Minnesota Minneapolis MN
| | - Khalid Amin
- Comparative Pathology Shared Resource University of Minnesota St. Paul MN.,Department of Medicine Division of Hematology, Oncology, and Transplantation University of Minnesota Minneapolis MN
| | - Timothy P Kuka
- Masonic Cancer Center University of Minnesota Minneapolis MN
| | - Vincent W Keng
- Masonic Cancer Center University of Minnesota Minneapolis MN.,Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Kowloon Hong Kong
| | - Josep M Llovet
- Liver Cancer Translational Research Laboratory Liver Unit, L'Institut d'Investigacions Biomèdiques August Pi i Sunyer-Hospital Clinic of Barcelona University of Barcelona Barcelona Spain.,Mount Sinai Liver Cancer Program Division of Liver Diseases Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai New York NY.,Catalan Institution for Research and Advanced Studies Barcelona Spain
| | - Timothy K Starr
- Department of Obstetrics, Gynecology, and Women's Health University of Minnesota Minneapolis MN
| | - David A Largaespada
- Masonic Cancer Center University of Minnesota Minneapolis MN.,Department of Pediatrics University of Minnesota Minneapolis MN
| |
Collapse
|
48
|
Zhang S, Chatterjee T, Godoy C, Wu L, Liu QJ, Carmon KS. GPR56 Drives Colorectal Tumor Growth and Promotes Drug Resistance through Upregulation of MDR1 Expression via a RhoA-Mediated Mechanism. Mol Cancer Res 2019; 17:2196-2207. [PMID: 31444231 DOI: 10.1158/1541-7786.mcr-19-0436] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/19/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022]
Abstract
Drug resistance continues to be a major obstacle of effective therapy for colorectal cancer, leading to tumor relapse or treatment failure. Cancer stem cells (CSC) or tumor-initiating cells are a subpopulation of tumor cells which retain the capacity for self-renewal and are suggested to be implicated in drug resistance. LGR5 is highly expressed in colorectal cancer and marks CSCs that drive tumor growth and metastasis. LGR5(+) CSCs cells were shown to interconvert with more drug-resistant LGR5(-) cancer cells, and treatment with LGR5-targeted antibody-drug conjugates (ADC) eliminated LGR5(+) tumors, yet a fraction of LGR5(-) tumors eventually recurred. Therefore, it is important to identify mechanisms associated with CSC plasticity and drug resistance in order to develop curative therapies. Here, we show that loss of LGR5 in colon cancer cells enhanced resistance to irinotecan and 5-fluorouracil and increased expression of adhesion G-protein-coupled receptor, GPR56. GPR56 expression was significantly higher in primary colon tumors versus matched normal tissues and correlated with poor survival outcome. GPR56 enhanced drug resistance through upregulation of MDR1 levels via a RhoA-mediated signaling mechanism. Loss of GPR56 led to suppression of tumor growth and increased sensitivity of cancer cells to chemotherapy and monomethyl auristatin E-linked anti-LGR5 ADCs, by reducing MDR1 levels. These findings suggest that upregulation of GPR56 may be a mechanism associated with CSC plasticity by which LGR5(-) cancer cells acquire a more drug-resistant phenotype. IMPLICATIONS: Our findings suggest that targeting GPR56 may provide a new strategy for the treatment of colorectal cancer and combatting drug resistance.
Collapse
Affiliation(s)
- Sheng Zhang
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Treena Chatterjee
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Carla Godoy
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ling Wu
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Qingyun J Liu
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Kendra S Carmon
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
49
|
Xu L, Lin W, Wen L, Li G. Lgr5 in cancer biology: functional identification of Lgr5 in cancer progression and potential opportunities for novel therapy. Stem Cell Res Ther 2019; 10:219. [PMID: 31358061 PMCID: PMC6664754 DOI: 10.1186/s13287-019-1288-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer remains one of the leading lethal diseases worldwide. Identifying biomarkers of cancers might provide insights into the strategies for the development of novel targeted anti-cancer therapies. Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) has been recently discovered as a candidate marker of cancer stem cell populations. Aberrant increased expression of Lgr5 may represent one of the most common molecular alterations in some human cancers, leading to long-term potentiation of canonical Wnt/β-catenin signaling. On the other hand, however, Lgr5-mediated suppression in canonical Wnt/β-catenin signaling has also been reported in certain cancers, such as B cell malignancies. Until now, therapeutic approaches targeting Lgr5-associated signaling axis are not yet clinically available. Increasing evidence have indicated that endogenous Lgr5+ cell population is implicated in tumor initiation, progression, and metastasis. This review is to summarize our current knowledge about the importance of Lgr5 in cancer biology and the underlying molecular mechanisms of Lgr5-mediated tumor-promoting/suppressive activities, as well as potentially useful preventive strategies in treating tumor. Therefore, targeted therapeutic modulation of Lgr5+ cancer cell population by targeting Wnt/β-catenin signaling through targeted drug delivery system or targeted genome editing might be promising for potential novel anti-cancer treatments. Simultaneously, combination of therapeutics targeting both Lgr5+ and Lgr5- cancer cells may deserve further consideration considering the plasticity of cancer cells. Also, a more specific targeting of cancer cells using double biomarkers may be much safer and more effective for anti-cancer therapy.
Collapse
Affiliation(s)
- Liangliang Xu
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Weiping Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR PRC
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Longping Wen
- Nanobio Laboratory, Institute of Life Sciences, South China University of Technology, Guangzhou, Guangdong People’s Republic of China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR PRC
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People’s Republic of China
| |
Collapse
|
50
|
Understanding the role of the R-spondin 2-LGR4 system in tongue squamous cell carcinoma progression. EBioMedicine 2019; 44:8-9. [PMID: 31122842 PMCID: PMC6604665 DOI: 10.1016/j.ebiom.2019.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
|