1
|
Bono H. Recent Advances in Genome Editing and Bioinformatics: Addressing Challenges in Genome Editing Implementation and Genome Sequencing. Int J Mol Sci 2025; 26:3442. [PMID: 40244417 PMCID: PMC11989416 DOI: 10.3390/ijms26073442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Genome-editing technology has advanced significantly since the 2020 Nobel Prize in Chemistry was awarded for the development of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9). While CRISPR-Cas9 has become widely used in academic research, its social implementation has lagged due to unresolved patent disputes and slower progress in gene function analysis. To address this, new approaches bypassing direct gene function analysis are needed, with bioinformatics and next-generation sequencing (NGS) playing crucial roles. NGS is essential for sequencing the genome of target species, but challenges such as data quality, genome heterogeneity, ploidy, and small individual sizes persist. Despite these issues, advancements in sequencing technologies, like PacBio high-fidelity (HiFi) long reads and high-throughput chromosome conformation capture (Hi-C), have improved genome sequencing. Bioinformatics contributes to genome editing through off-target prediction and target gene selection, both of which require accurate genome sequence information. In this review, I will give updates on the development of genome editing and bioinformatics technologies with a focus on the rapid progress in genome sequencing.
Collapse
Affiliation(s)
- Hidemasa Bono
- Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Japan; ; Tel.: +81-82-424-4013
- Department of Biological Science, School of Science, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
- Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| |
Collapse
|
2
|
Tsubota T, Takasu Y, Yonemura N, Sezutsu H. Enhancements of the CRISPR-Cas System in the Silkworm Bombyx mori. CRISPR J 2025; 8:155-164. [PMID: 40151969 DOI: 10.1089/crispr.2024.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
The silkworm (Bombyx mori) is a lepidopteran model insect that has been utilized for basic research and industrial applications. In this species, transcription activator-like effector nucleases (TALENs) have been found to function efficiently, and we previously developed a TALEN-mediated genome editing system for knockout and knock-in experiments using plasmids and single-stranded oligodeoxynucleotides (ssODNs) as donors. By contrast, clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated genome editing, especially for gene integration, remains limited. In this study, we attempted to improve CRISPR-Cas systems to expand the utility of genome editing in the silkworm. Codon optimization of Cas9 improved genome editing efficiency, and single-guide RNA utilization also resulted in a higher genome editing efficiency than crRNA/tracrRNA when Cas9 messenger RNA (mRNA) was used. CRISPR-Cas12a-mediated genome editing and targeted sequence integration using ssODNs were both successfully performed. Overall, our study provides a robust technical platform that can facilitate basic and applied silkworm studies.
Collapse
Affiliation(s)
- Takuya Tsubota
- Silkworm Research Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Yoko Takasu
- Silk Materials Research Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Naoyuki Yonemura
- Silkworm Research Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hideki Sezutsu
- Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
3
|
Siles L, Pomares E. Rescue of the disease-associated phenotype in CRISPR-corrected hiPSCs as a therapeutic approach for inherited retinal dystrophies. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102482. [PMID: 40083649 PMCID: PMC11903799 DOI: 10.1016/j.omtn.2025.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Inherited retinal dystrophies (IRDs), such as retinitis pigmentosa and Stargardt disease, are a group of rare diseases caused by mutations in more than 300 genes that currently have no treatment in most cases. They commonly trigger blindness and other ocular affectations due to retinal cell degeneration. Gene editing has emerged as a promising and powerful strategy for the development of IRD therapies, allowing the permanent correction of pathogenic variants. Using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 and transcription activator-like effector nucleases (TALEN) gene-editing tools, we precisely corrected seven hiPS cell lines derived from IRD patients carrying mutations in ABCA4, BEST1, PDE6A, PDE6C, RHO, or USH2A. Homozygous mutations and point insertions/deletions resulted in the highest homology-directed repair efficiencies, with at least half of the clones repaired properly without off-target effects. Strikingly, correction of a heterozygous pathogenic variant was achieved using the wild-type allele of the patient as the template for DNA repair. These results suggest the unexpected potential application of CRISPR as a donor template-free strategy for single-nucleotide modifications. Additionally, the corrected clones exhibited a reversion of the disease-associated phenotype in retinal cellular models. These data strengthen the study and application of gene editing-based approaches for IRD treatment.
Collapse
Affiliation(s)
- Laura Siles
- Departament de Genètica, Institut de Microcirurgia Ocular, IMO Grupo Miranza, 08035 Barcelona, Spain
| | - Esther Pomares
- Departament de Genètica, Institut de Microcirurgia Ocular, IMO Grupo Miranza, 08035 Barcelona, Spain
| |
Collapse
|
4
|
Wang L, Hu Y, Qiu Y, Lin H, Li X, Fu S, Zeng YY, Ghouse M, Long C, Liu Y, Fei JF. Establishing a semi-homology-directed recombination method for precision gene integration in axolotls. J Genet Genomics 2025:S1673-8527(25)00059-1. [PMID: 40057303 DOI: 10.1016/j.jgg.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/02/2025] [Accepted: 03/02/2025] [Indexed: 05/25/2025]
Abstract
The axolotl is broadly used in regenerative, developmental, and evolutionary biology research. Targeted gene knock-in is crucial for precision transgenesis, enabling disease modeling, visualization, tracking, and functional manipulation of specific cells or genes of interest (GOIs). Existing CRISPR/Cas9-mediated homology-independent method for gene knock-in often causes "scars/indels" at integration junctions. Here, we develop a CRISPR/Cas9-mediated semi-homology-directed recombination (HDR) knock-in method using a donor construct containing a single homology arm for precise GOI integration. This semi-HDR approach achieves seamless single-end integration of the Cherry reporter gene and a large inducible Cre cassette into intronless genes like Sox2 and Neurod6 in axolotls, which are challenging to modify with the homology-independent method. Additionally, we integrate the inducible Cre cassette into intron-containing loci (e.g., Nkx2.2 and FoxA2) without introducing indels via semi-HDR. GOIs are properly expressed in F0 founders, with approximately 5%-10% showing precise integration confirmed by genotyping. Furthermore, using the Nkx2.2:CreERT2 line, we fate-map spinal cord p3 neural progenitor cells, revealing that Nkx2.2+ cells adopt different lineages in development and regeneration, preferentially generating motoneurons over oligodendrocytes during regeneration. Overall, this semi-HDR method balances efficiency and precision in GOI integration, providing a valuable tool for generating knock-in axolotls and potentially extending to other species.
Collapse
Affiliation(s)
- Liqun Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China; Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Yan Hu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Yuanhui Qiu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Huiting Lin
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Xiang Li
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Sulei Fu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Yan-Yun Zeng
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Maria Ghouse
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China.
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China; The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China; School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
5
|
Nakamae K, Suzuki T, Yonezawa S, Yamamoto K, Kakuzaki T, Ono H, Naito Y, Bono H. Risk Prediction of RNA Off-Targets of CRISPR Base Editors in Tissue-Specific Transcriptomes Using Language Models. Int J Mol Sci 2025; 26:1723. [PMID: 40004186 PMCID: PMC11855689 DOI: 10.3390/ijms26041723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Base-editing technologies, particularly cytosine base editors (CBEs), allow precise gene modification without introducing double-strand breaks; however, unintended RNA off-target effects remain a critical concern and are under studied. To address this gap, we developed the Pipeline for CRISPR-induced Transcriptome-wide Unintended RNA Editing (PiCTURE), a standardized computational pipeline for detecting and quantifying transcriptome-wide CBE-induced RNA off-target events. PiCTURE identifies both canonical ACW (W = A or T/U) motif-dependent and non-canonical RNA off-targets, revealing a broader WCW motif that underlies many unanticipated edits. Additionally, we developed two machine learning models based on the DNABERT-2 language model, termed STL and SNL, which outperformed motif-only approaches in terms of accuracy, precision, recall, and F1 score. To demonstrate the practical application of our predictive model for CBE-induced RNA off-target risk, we integrated PiCTURE outputs with the Predicting RNA Off-target compared with Tissue-specific Expression for Caring for Tissue and Organ (PROTECTiO) pipeline and estimated RNA off-target risk for each transcript showing tissue-specific expression. The analysis revealed differences among tissues: while the brain and ovaries exhibited relatively low off-target burden, the colon and lungs displayed relatively high risks. Our study provides a comprehensive framework for RNA off-target profiling, emphasizing the importance of advanced machine learning-based classifiers in CBE safety evaluations and offering valuable insights to inform the development of safer genome-editing therapies.
Collapse
Affiliation(s)
- Kazuki Nakamae
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan;
| | - Takayuki Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-0046, Japan; (T.S.); (S.Y.)
| | - Sora Yonezawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-0046, Japan; (T.S.); (S.Y.)
| | | | | | - Hiromasa Ono
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan;
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 178-4-4 Wakashiba, Kashiwa 277-0871, Japan;
| | - Yuki Naito
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 178-4-4 Wakashiba, Kashiwa 277-0871, Japan;
| | - Hidemasa Bono
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan;
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-0046, Japan; (T.S.); (S.Y.)
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 178-4-4 Wakashiba, Kashiwa 277-0871, Japan;
| |
Collapse
|
6
|
Bi C, Yuan B, Zhang Y, Wang M, Tian Y, Li M. Prevalent integration of genomic repetitive and regulatory elements and donor sequences at CRISPR-Cas9-induced breaks. Commun Biol 2025; 8:94. [PMID: 39833279 PMCID: PMC11747631 DOI: 10.1038/s42003-025-07539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
CRISPR-Cas9 genome editing has been extensively applied in both academia and clinical settings, but its genotoxic risks, including large insertions (LgIns), remain poorly studied due to methodological limitations. This study presents the first detailed report of unintended LgIns consistently induced by different Cas9 editing regimes using various types of donors across multiple gene loci. Among these insertions, retrotransposable elements (REs) and host genomic coding and regulatory sequences are prevalent. RE frequencies and 3D genome organization analysis suggest LgIns originate from randomly acquired genomic fragments by DNA repair mechanisms. Additionally, significant unintended full-length and concatemeric double-stranded DNA (dsDNA) donor integrations occur when donor DNA is present. We further demonstrate that phosphorylated dsDNA donors consistently reduce large insertions and deletions by almost two-fold without compromising homology-directed repair (HDR) efficiency. Taken together, our study addresses a ubiquitous and overlooked risk of unintended LgIns in Cas9 editing, contributing valuable insights for the safe use of Cas9 editing tools.
Collapse
Affiliation(s)
- Chongwei Bi
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Baolei Yuan
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yingzi Zhang
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mengge Wang
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yeteng Tian
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mo Li
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Bioengineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- KAUST Center of Excellence for Smart Health (KCSH), Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
7
|
Yang S, Hu G, Wang J, Song J. CRISPR/Cas-Based Gene Editing Tools for Large DNA Fragment Integration. ACS Synth Biol 2025; 14:57-71. [PMID: 39680738 DOI: 10.1021/acssynbio.4c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
In recent years, gene editing technologies have rapidly evolved to enable precise and efficient genomic modification. These strategies serve as a crucial instrument in advancing our comprehension of genetics and treating genetic disorders. Of particular interest is the manipulation of large DNA fragments, notably the insertion of large fragments, which has emerged as a focal point of research in recent years. Nevertheless, the techniques employed to integrate larger gene fragments are frequently confronted with inefficiencies, off-target effects, and elevated costs. It is therefore imperative to develop efficient tools capable of precisely inserting kilobase-sized DNA fragments into mammalian genomes to support genetic engineering, gene therapy, and synthetic biology applications. This review provides a comprehensive overview of methods developed in the past five years for integrating large DNA fragments with a particular focus on burgeoning CRISPR-related technologies. We discuss the opportunities associated with homology-directed repair (HDR) and emerging CRISPR-transposase and CRISPR-recombinase strategies, highlighting their potential to revolutionize gene therapies for complex diseases. Additionally, we explore the challenges confronting these methodologies and outline potential future directions for their improvement with the overarching goal of facilitating the utilization and advancement of tools for large fragment gene editing.
Collapse
Affiliation(s)
- Shuhan Yang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang Hu
- School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jianming Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
8
|
Li Z, Wang X, Janssen JM, Liu J, Tasca F, Hoeben RC, Gonçalves MAFV. Precision genome editing using combinatorial viral vector delivery of CRISPR-Cas9 nucleases and donor DNA constructs. Nucleic Acids Res 2025; 53:gkae1213. [PMID: 39657782 PMCID: PMC11754671 DOI: 10.1093/nar/gkae1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/17/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
Genome editing based on programmable nucleases and donor DNA constructs permits introducing specific base-pair changes and complete transgenes or live-cell reporter tags at predefined chromosomal positions. A crucial requirement for such versatile genome editing approaches is, however, the need to co-deliver in an effective, coordinated and non-cytotoxic manner all the required components into target cells. Here, adenoviral (AdV) and adeno-associated viral (AAV) vectors are investigated as delivery agents for, respectively, engineered CRISPR-Cas9 nucleases and donor DNA constructs prone to homologous recombination (HR) or homology-mediated end joining (HMEJ) processes. Specifically, canonical single-stranded and self-complementary double-stranded AAVs served as sources of ectopic HR and HMEJ substrates, whilst second- and third-generation AdVs provided for matched CRISPR-Cas9 nucleases. We report that combining single-stranded AAV delivery of HR donors with third-generation AdV transfer of CRISPR-Cas9 nucleases results in selection-free and precise whole transgene insertion in large fractions of target-cell populations (i.e. up to 93%) and disclose that programmable nuclease-induced chromosomal breaks promote AAV transduction. Finally, besides investigating relationships between distinct AAV structures and genome-editing performance endpoints, we further report that high-fidelity CRISPR-Cas9 nucleases are critical for mitigating off-target chromosomal insertion of defective AAV genomes known to be packaged in vector particles.
Collapse
Affiliation(s)
- Zhen Li
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Xiaoling Wang
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Josephine M Janssen
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Jin Liu
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Francesca Tasca
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Rob C Hoeben
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Manuel A F V Gonçalves
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| |
Collapse
|
9
|
Zhang S, Roeder RG. Resistance of estrogen receptor function to BET bromodomain inhibition is mediated by transcriptional coactivator cooperativity. Nat Struct Mol Biol 2025; 32:98-112. [PMID: 39251822 DOI: 10.1038/s41594-024-01384-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/01/2024] [Indexed: 09/11/2024]
Abstract
The bromodomain and extraterminal domain (BET) family of proteins are critical chromatin readers that bind to acetylated histones through their bromodomains to activate transcription. Here, we reveal that bromodomain inhibition fails to repress oncogenic targets of estrogen receptor because of an intrinsic transcriptional mechanism. While bromodomains are necessary for the transcription of many genes, bromodomain-containing protein 4 (BRD4) binds to estrogen receptor binding sites and activates transcription of critical oncogenes such as MYC, independently of its bromodomains. BRD4 associates with the Mediator complex and disruption of Mediator reduces BRD4's enhancer occupancy. Profiling changes of the post-initiation RNA polymerase II (Pol II)-associated factors revealed that BET proteins regulate interactions between Pol II and elongation factors SPT5, SPT6 and the polymerase-associated factor 1 complex, which associate with BET proteins independently of their bromodomains and mediate their transcription elongation effect. Our findings highlight the importance of bromodomain-independent functions and interactions of BET proteins in the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Sicong Zhang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA.
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
10
|
Cavazzana M, Corsia A, Brusson M, Miccio A, Semeraro M. Treating Sickle Cell Disease: Gene Therapy Approaches. Annu Rev Pharmacol Toxicol 2025; 65:397-413. [PMID: 39259977 DOI: 10.1146/annurev-pharmtox-022124-022000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Sickle cell disease (SCD) is a hereditary blood disorder characterized by the presence of abnormal hemoglobin molecules and thus distortion (sickling) of the red blood cells. SCD causes chronic pain and organ damage and shortens life expectancy. Gene therapy emerges as a potentially curative approach for people with SCD who lack a matched sibling donor for hematopoietic stem cell transplantation. Here, we review recent progress in gene therapy for SCD and focus on innovative technologies that target the genetic roots of the disease. We also review the challenges associated with gene therapy, including oncogenic risks, and the need for refined delivery methods. Despite these hurdles, the rapidly evolving landscape of gene therapy for SCD raises hope for a paradigm shift in the treatment of this debilitating disease. As research progresses, a deeper understanding of the molecular mechanisms involved and continuous improvements in gene-editing technologies promise to bring gene therapy for SCD closer to mainstream clinical application, offering a transformative, curative option for patients with this genetic disorder.
Collapse
Affiliation(s)
- Marina Cavazzana
- Imagine Institute, Paris, France
- Centre d'Investigation Clinique en Biothérapie, INSERM UMR1163, Paris, France
- Département de Biothérapie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France;
- Université Paris Cité, Paris, France
| | - Alice Corsia
- Université Paris Cité, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France
- Université Paris Cité, Paris, France
| | - Megane Brusson
- Université Paris Cité, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France
| | - Annarita Miccio
- Université Paris Cité, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France
| | - Michaela Semeraro
- EA 7323, Université Paris Cité, Pharmacologie et Évaluations Thérapeutiques chez l'Enfant et la Femme Enceinte, Paris, France
- Centre d'Investigation Clinique and Unité de Recherche Clinique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité, Paris, France
| |
Collapse
|
11
|
Azeez SS, Hamad RS, Hamad BK, Shekha MS, Bergsten P. Advances in CRISPR-Cas technology and its applications: revolutionising precision medicine. Front Genome Ed 2024; 6:1509924. [PMID: 39726634 PMCID: PMC11669675 DOI: 10.3389/fgeed.2024.1509924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated proteins) has undergone marked advancements since its discovery as an adaptive immune system in bacteria and archaea, emerged as a potent gene-editing tool after the successful engineering of its synthetic guide RNA (sgRNA) toward the targeting of specific DNA sequences with high accuracy. Besides its DNA editing ability, further-developed Cas variants can also edit the epigenome, rendering the CRISPR-Cas system a versatile tool for genome and epigenome manipulation and a pioneering force in precision medicine. This review explores the latest advancements in CRISPR-Cas technology and its therapeutic and biomedical applications, highlighting its transformative impact on precision medicine. Moreover, the current status of CRISPR therapeutics in clinical trials is discussed. Finally, we address the persisting challenges and prospects of CRISPR-Cas technology.
Collapse
Affiliation(s)
- Sarkar Sardar Azeez
- Department of Medical Laboratory Technology, Soran Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Rahin Shareef Hamad
- Nursing Department, Soran Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Bahra Kakamin Hamad
- Department of Medical Laboratory Technology, Erbil Health and Medical Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Mudhir Sabir Shekha
- Department of Biology, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Koeppel J, Weller J, Vanderstichele T, Parts L. Engineering structural variants to interrogate genome function. Nat Genet 2024; 56:2623-2635. [PMID: 39533047 DOI: 10.1038/s41588-024-01981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Structural variation, such as deletions, duplications, inversions and complex rearrangements, can have profound effects on gene expression, genome stability, phenotypic diversity and disease susceptibility. Structural variants can encompass up to millions of bases and have the potential to rearrange substantial segments of the genome. They contribute considerably more to genetic diversity in human populations and have larger effects on phenotypic traits than point mutations. Until recently, our understanding of the effects of structural variants was driven mainly by studying naturally occurring variation. New genome-engineering tools capable of generating deletions, insertions, inversions and translocations, together with the discovery of new recombinases and advances in creating synthetic DNA constructs, now enable the design and generation of an extended range of structural variation. Here, we discuss these tools and examples of their application and highlight existing challenges that will need to be overcome to fully harness their potential.
Collapse
|
13
|
Nakata M, Ueno M, Kikuchi Y, Iwami M, Takayanagi-Kiya S, Kiya T. CRISPR/Cas9- and Single-Stranded ODN-Mediated Knock-In in Silkworm Bombyx mori. Zoolog Sci 2024; 41:540-547. [PMID: 39636137 DOI: 10.2108/zs240019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/12/2024] [Indexed: 12/07/2024]
Abstract
Although genome editing techniques have made significant progress, introducing exogenous genes into the genome through knock-in remains a challenge in many organisms. In silkworm Bombyx mori, TALEN-mediated knock-in methods have been established. However, difficulties in construction and limitations of the target sequence have hindered the application of these methods. In the present study, we verified several CRISPR/Cas9-mediated knock-in methods to expand the application of gene knock-in techniques and found that the short single-stranded oligodeoxynucleotide (ssODN)-mediated method is the most effective in silkworms. Using ssODN-mediated methods, we established knock-in silkworm strains that harbor an attP sequence, a 50 bp phiC31 integrase recognition site, at either the BmHr38 (Hormone receptor 38) or Bmdsx (doublesex) locus. Additionally, we found that the long ssODN (lsODN)-mediated method successfully introduced the GAL4 gene at the doublesex locus in embryos. The present study provides valuable information on CRISPR/Cas9-mediated knock-in methods in silkworms, expanding the utility of genome editing techniques in insects and paving the way for analyzing gene and genome function in silkworms.
Collapse
Affiliation(s)
- Masami Nakata
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masumi Ueno
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yusuke Kikuchi
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masafumi Iwami
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Seika Takayanagi-Kiya
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Taketoshi Kiya
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan,
| |
Collapse
|
14
|
Izsvák Z. Non-viral targeted insertion of large payloads into T cells. Nat Biomed Eng 2024; 8:1516-1517. [PMID: 39284951 DOI: 10.1038/s41551-024-01252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Affiliation(s)
- Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany.
| |
Collapse
|
15
|
Sookhoo JRV, Schiffman Z, Ambagala A, Kobasa D, Pardee K, Babiuk S. Protein Expression Platforms and the Challenges of Viral Antigen Production. Vaccines (Basel) 2024; 12:1344. [PMID: 39772006 PMCID: PMC11680109 DOI: 10.3390/vaccines12121344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Several protein expression platforms exist for a wide variety of biopharmaceutical needs. A substantial proportion of research and development into protein expression platforms and their optimization since the mid-1900s is a result of the production of viral antigens for use in subunit vaccine research. This review discusses the seven most popular forms of expression systems used in the past decade-bacterial, insect, mammalian, yeast, algal, plant and cell-free systems-in terms of advantages, uses and limitations for viral antigen production in the context of subunit vaccine research. Post-translational modifications, immunogenicity, efficacy, complexity, scalability and the cost of production are major points discussed. Examples of licenced and experimental vaccines are included along with images which summarize the processes involved.
Collapse
Affiliation(s)
- Jamie R. V. Sookhoo
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Zachary Schiffman
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (Z.S.); (D.K.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Aruna Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (Z.S.); (D.K.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada;
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
16
|
Simpson SG, Park KE, Yeddula SGR, Waters J, Scimeca E, Poonooru RR, Etches R, Telugu BP. Blastocyst complementation generates exogenous donor-derived liver in ahepatic pigs. FASEB J 2024; 38:e70161. [PMID: 39530535 DOI: 10.1096/fj.202401244r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Liver diseases are one of the leading causes of morbidity and mortality worldwide. Globally, liver diseases are responsible for approximately 2 million deaths annually (1 of every 25 deaths). Many of the patients with chronic liver diseases can benefit from organ transplantation. However, stringent criteria for placement on organ transplantation waitlist and chronic shortage of organs preclude access to patients. To bridge the shortfall, generation of chimeric human organs in pigs has long been considered as an alternative. Here, we report feasibility of the approach by generating chimeric livers in pigs using a conditional blastocyst complementation approach that creates a vacant niche in chimeric hosts, enabling the initiation of organogenesis through donor-derived pluripotent cells. Porcine fetal fibroblasts were sequentially targeted for knockin of CRE into the endogenous FOXA3 locus (FOXA3CRE) followed by floxing of exon 1 of HHEX (FOXA3CREHHEXloxP/loxP) locus. The conditional HHEX knockout and constitutive GFP donor (COL1ACAG:LACZ 2A EGFP) were used as nuclear donors to generate host embryos by somatic cell nuclear transfer, and complemented and transferred into estrus synchronized surrogates. In the resulting fetuses, donor EGFP blastomeres reconstituted hepatocytes as confirmed by immunohistochemistry. These results potentially pave the way for exogenous donor-derived hepatogenesis in large animal models.
Collapse
Affiliation(s)
- Sean G Simpson
- RenOVAte Biosciences Inc, Reisterstown, Maryland, USA
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Ki-Eun Park
- RenOVAte Biosciences Inc, Reisterstown, Maryland, USA
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | | | - Jerel Waters
- RenOVAte Biosciences Inc, Reisterstown, Maryland, USA
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Erin Scimeca
- RenOVAte Biosciences Inc, Reisterstown, Maryland, USA
| | | | - Rob Etches
- RenOVAte Biosciences Inc, Reisterstown, Maryland, USA
| | - Bhanu P Telugu
- RenOVAte Biosciences Inc, Reisterstown, Maryland, USA
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
17
|
Yao B, Lei Z, Gonçalves MAFV, Sluijter JPG. Integrating Prime Editing and Cellular Reprogramming as Novel Strategies for Genetic Cardiac Disease Modeling and Treatment. Curr Cardiol Rep 2024; 26:1197-1208. [PMID: 39259489 PMCID: PMC11538137 DOI: 10.1007/s11886-024-02118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW This review aims to evaluate the potential of CRISPR-based gene editing tools, particularly prime editors (PE), in treating genetic cardiac diseases. It seeks to answer how these tools can overcome current therapeutic limitations and explore the synergy between PE and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) for personalized medicine. RECENT FINDINGS Recent advancements in CRISPR technology, including CRISPR-Cas9, base editors, and PE, have demonstrated precise genome correction capabilities. Notably, PE has shown exceptional precision in correcting genetic mutations. Combining PE with iPSC-CMs has emerged as a robust platform for disease modeling and developing innovative treatments for genetic cardiac diseases. The review finds that PE, when combined with iPSC-CMs, holds significant promise for treating genetic cardiac diseases by addressing their root causes. This approach could revolutionize personalized medicine, offering more effective and precise treatments. Future research should focus on refining these technologies and their clinical applications.
Collapse
Affiliation(s)
- Bing Yao
- Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Circulatory Health Research Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Zhiyong Lei
- Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Circulatory Health Research Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.
- Regenerative Medicine Center Utrecht, Circulatory Health Research Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
18
|
Hong S, Lee J, Kim Y, Kim E, Shin K. AAVS1-targeted, stable expression of ChR2 in human brain organoids for consistent optogenetic control. Bioeng Transl Med 2024; 9:e10690. [PMID: 39545087 PMCID: PMC11558186 DOI: 10.1002/btm2.10690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 11/17/2024] Open
Abstract
Self-organizing brain organoids provide a promising tool for studying human development and disease. Here we created human forebrain organoids with stable and homogeneous expression of channelrhodopsin-2 (ChR2) by generating AAVS1 safe harbor locus-targeted, ChR2 knocked-in human pluripotent stem cells (hPSCs), followed by the differentiation of these genetically engineered hPSCs into forebrain organoids. The resulting ChR2-expressing human forebrain organoids showed homogeneous cellular expression of ChR2 throughout entire regions without any structural and functional perturbations and displayed consistent and robust neural activation upon light stimulation, allowing for the non-virus mediated, spatiotemporal optogenetic control of neural activities. Furthermore, in the hybrid platform in which brain organoids are connected with spinal cord organoids and skeletal muscle spheroids, ChR2 knocked-in forebrain organoids induced strong and consistent muscle contraction upon brain-specific optogenetic stimulation. Our study thus provides a novel, non-virus mediated, preclinical human organoid system for light-inducible, consistent control of neural activities to study neural circuits and dynamics in normal and disease-specific human brains as well as neural connections between brain and other peripheral tissues.
Collapse
Affiliation(s)
- Soojung Hong
- School of Biological Sciences, College of Natural Sciences, Seoul National UniversitySeoulRepublic of Korea
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Juhee Lee
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Yunhee Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National UniversitySeoulRepublic of Korea
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Eunjee Kim
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Kunyoo Shin
- School of Biological Sciences, College of Natural Sciences, Seoul National UniversitySeoulRepublic of Korea
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
19
|
Murray-Nerger LA, Gewurz BE. Efficient CRISPR/Cas9 Knock-in Approaches for Manipulation of Endogenous Genes in Human B Lymphoma Cells. Curr Protoc 2024; 4:e70041. [PMID: 39535522 PMCID: PMC11567056 DOI: 10.1002/cpz1.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Precise understanding of temporally controlled protein-protein interactions, localization, and expression is often difficult to achieve using traditional overexpression techniques. Recent advances have made CRISPR-based knock-in approaches efficient, which enables rapid derivation of cells with tagged endogenous proteins. However, the high degree of variability in knock-in efficiency across cell types and gene loci poses challenges, in particular with B lymphocytes, which are refractory to lipid transfection. Here, we present detailed protocols for efficient B lymphoma cell CRISPR/Cas9-mediated knock-in. We address knock-in efficiency in two ways. First, we provide a detailed approach for assessing cutting efficiency to select the most efficient single guide RNA for the gene region of interest. Second, we provide detailed approaches for tagging endogenous proteins with a fluorescent marker or instead for co-expressing them with an unlinked fluorescent marker. Either approach facilitates downstream selection of single-cell or bulk populations with the desired knock-in, particularly when knock-in efficiency is low. The utility of this approach is demonstrated via examples of engineering tags onto endogenous protein N- or C-termini, together with downstream analyses. We anticipate that this workflow can be applied more broadly to other cell types for efficient knock-in into endogenous loci. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Choosing an optimal knock-in target site and single guide RNA (sgRNA) design Basic Protocol 2: Assessment of Cas9 editing efficiency at the desired B cell genomic knock-in site Basic Protocol 3: Cloning the sgRNA dual guide construct Basic Protocol 4: Repair template design and cloning Basic Protocol 5: Electroporation and selection of engineered B cells Basic Protocol 6: Single-cell cloning of engineered B cells.
Collapse
Affiliation(s)
- Laura A. Murray-Nerger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Harvard Program in Virology, Boston, MA 02115, USA
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Harvard Program in Virology, Boston, MA 02115, USA
| |
Collapse
|
20
|
Cotta GC, Teixeira dos Santos RC, Costa GMJ, Lacerda SMDSN. Reporter Alleles in hiPSCs: Visual Cues on Development and Disease. Int J Mol Sci 2024; 25:11009. [PMID: 39456792 PMCID: PMC11507014 DOI: 10.3390/ijms252011009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Reporter alleles are essential for advancing research with human induced pluripotent stem cells (hiPSCs), notably in developmental biology and disease modeling. This study investigates the state-of-the-art gene-editing techniques tailored for generating reporter alleles in hiPSCs, emphasizing their effectiveness in investigating cellular dynamics and disease mechanisms. Various methodologies, including the application of CRISPR/Cas9 technology, are discussed for accurately integrating reporter genes into the specific genomic loci. The synthesis of findings from the studies utilizing these reporter alleles reveals insights into developmental processes, genetic disorder modeling, and therapeutic screening, consolidating the existing knowledge. These hiPSC-derived models demonstrate remarkable versatility in replicating human diseases and evaluating drug efficacy, thereby accelerating translational research. Furthermore, this review addresses challenges and future directions in refining the reporter allele design and application to bolster their reliability and relevance in biomedical research. Overall, this investigation offers a comprehensive perspective on the methodologies, applications, and implications of reporter alleles in hiPSC-based studies, underscoring their essential role in advancing both fundamental scientific understanding and clinical practice.
Collapse
Affiliation(s)
| | | | | | - Samyra Maria dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil; (G.C.C.); (R.C.T.d.S.); (G.M.J.C.)
| |
Collapse
|
21
|
Aguilar G, Bauer M, Vigano MA, Schnider ST, Brügger L, Jiménez-Jiménez C, Guerrero I, Affolter M. Seamless knockins in Drosophila via CRISPR-triggered single-strand annealing. Dev Cell 2024; 59:2672-2686.e5. [PMID: 38971155 DOI: 10.1016/j.devcel.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/06/2023] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
Abstract
CRISPR-Cas greatly facilitated the integration of exogenous sequences into specific loci. However, knockin generation in multicellular animals remains challenging, partially due to the complexity of insertion screening. Here, we describe SEED/Harvest, a method to generate knockins in Drosophila, based on CRISPR-Cas and the single-strand annealing (SSA) repair pathway. In SEED (from "scarless editing by element deletion"), a switchable cassette is first integrated into the target locus. In a subsequent CRISPR-triggered repair event, resolved by SSA, the cassette is seamlessly removed. Germline excision of SEED cassettes allows for fast and robust knockin generation of both fluorescent proteins and short protein tags in tandem. Tissue-specific expression of Cas9 results in somatic cassette excision, conferring spatiotemporal control of protein labeling and the conditional rescue of mutants. Finally, to achieve conditional protein labeling and manipulation of short tag knockins, we developed a genetic toolbox by functionalizing the ALFA nanobody.
Collapse
Affiliation(s)
- Gustavo Aguilar
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Milena Bauer
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - M Alessandra Vigano
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Sophie T Schnider
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Lukas Brügger
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Carlos Jiménez-Jiménez
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, Spain
| | - Isabel Guerrero
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, Spain
| | - Markus Affolter
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
22
|
Naert T, Yamamoto T, Han S, Horn M, Bethge P, Vladimirov N, Voigt FF, Figueiro-Silva J, Bachmann-Gagescu R, Helmchen F, Lienkamp SS. Pythia: Non-random DNA repair allows predictable CRISPR/Cas9 integration and gene editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614424. [PMID: 39386429 PMCID: PMC11463480 DOI: 10.1101/2024.09.23.614424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
CRISPR-based genome engineering holds enormous promise for basic science and therapeutic applications. Integrating and editing DNA sequences is still challenging in many cellular contexts, largely due to insufficient control of the repair process. We find that repair at the genome-cargo interface is predictable by deep-learning models and adheres to sequence context specific rules. Based on in silico predictions, we devised a strategy of triplet base-pair repeat repair arms that correspond to microhomologies at double-strand breaks (trimologies), which facilitated integration of large cargo (>2 kb) and protected the targeted locus and transgene from excessive damage. Successful integrations occurred in >30 loci in human cells and in in vivo models. Germline transmissible transgene integration in Xenopus, and endogenous tagging of tubulin in adult mice brains demonstrated integration during early embryonic cleavage and in non-dividing differentiated cells. Further, optimal repair arms for single- or double nucleotide edits were predictable, and facilitated small edits in vitro and in vivo using oligonucleotide templates. We provide a design-tool (Pythia, pythia-editing.org) to optimize custom integration, tagging or editing strategies. Pythia will facilitate genomic integration and editing for experimental and therapeutic purposes for a wider range of target cell types and applications.
Collapse
Affiliation(s)
- Thomas Naert
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Present address: Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Taiyo Yamamoto
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Shuting Han
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Melanie Horn
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Phillip Bethge
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Nikita Vladimirov
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, Zurich, Switzerland
| | - Fabian F Voigt
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA
| | - Joana Figueiro-Silva
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Zurich Kidney Center
| | - Ruxandra Bachmann-Gagescu
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Zurich Kidney Center
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| | - Soeren S Lienkamp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Zurich Kidney Center
| |
Collapse
|
23
|
Chen F, Peng S, Li C, Yang F, Yi Y, Chen X, Xu H, Cheng B, Xu Y, Xie X. Nitidine chloride inhibits mTORC1 signaling through ATF4-mediated Sestrin2 induction and targets IGF2R for lysosomal degradation. Life Sci 2024; 353:122918. [PMID: 39034027 DOI: 10.1016/j.lfs.2024.122918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
AIMS Nitidine chloride (NC), a natural phytochemical alkaloid derived from Zanthoxylum nitidum (Roxb.) DC, exhibits multiple bioactivities, including antitumor, anti-inflammatory, and other therapeutic effects. However, the primary targets of NC and the mechanism of action (MOA) have not been explicitly defined. METHODS We explored the effects of NC on mTORC1 signaling by immunoblotting and fluorescence microscopy in wild-type and gene knockout cell lines generated by the CRISPR/Cas9 gene editing technique. We identified IGF2R as a direct target of NC via the drug affinity-responsive target stability (DARTS) method. We investigated the antitumor effects of NC using a mouse melanoma B16 tumor xenograft model. KEY FINDINGS NC inhibits mTORC1 activity by targeting amino acid-sensing signaling through activating transcription factor 4 (ATF4)-mediated Sestrin2 induction. NC directly binds to IGF2R and promotes its lysosomal degradation. Moreover, NC displayed potent cytotoxicity against various cancer cells and inhibited B16 tumor xenografts. SIGNIFICANCE NC inhibits mTORC1 signaling through nutrient sensing and directly targets IGF2R for lysosomal degradation, providing mechanistic insights into the MOA of NC.
Collapse
Affiliation(s)
- Fengzhi Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shujun Peng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Canrong Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Fan Yang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuguo Yi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xinyu Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Haolun Xu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Baicheng Cheng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yumin Xu
- Department of Infectious Diseases & Department of Hospital Infection Management, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoduo Xie
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
24
|
Simoni C, Barbon E, Muro AF, Cantore A. In vivo liver targeted genome editing as therapeutic approach: progresses and challenges. Front Genome Ed 2024; 6:1458037. [PMID: 39246827 PMCID: PMC11378722 DOI: 10.3389/fgeed.2024.1458037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
The liver is an essential organ of the body that performs several vital functions, including the metabolism of biomolecules, foreign substances, and toxins, and the production of plasma proteins, such as coagulation factors. There are hundreds of genetic disorders affecting liver functions and, for many of them, the only curative option is orthotopic liver transplantation, which nevertheless entails many risks and long-term complications. Some peculiar features of the liver, such as its large blood flow supply and the tolerogenic immune environment, make it an attractive target for in vivo gene therapy approaches. In recent years, several genome-editing tools mainly based on the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) system have been successfully exploited in the context of liver-directed preclinical or clinical therapeutic applications. These include gene knock-out, knock-in, activation, interference, or base and prime editing approaches. Despite many achievements, important challenges still need to be addressed to broaden clinical applications, such as the optimization of the delivery methods, the improvement of the editing efficiency, and the risk of on-target or off-target unwanted effects and chromosomal rearrangements. In this review, we highlight the latest progress in the development of in vivo liver-targeted genome editing approaches for the treatment of genetic disorders. We describe the technological advancements that are currently under investigation, the challenges to overcome for clinical applicability, and the future perspectives of this technology.
Collapse
Affiliation(s)
- Chiara Simoni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Barbon
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrés F Muro
- International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
25
|
Adibzadeh S, Amiri S, Barkhordari F, Mowla SJ, Bayat H, Ghanbari S, Faghihi F, Davami F. CHO cell engineering via targeted integration of circular miR-21 decoy using CRISPR/RMCE hybrid system. Appl Microbiol Biotechnol 2024; 108:434. [PMID: 39120640 PMCID: PMC11315787 DOI: 10.1007/s00253-024-13266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Chinese hamster ovary (CHO) cells, widely acknowledged as the preferred host system for industrial recombinant protein manufacturing, play a crucial role in developing pharmaceuticals, including anticancer therapeutics. Nevertheless, mammalian cell-based biopharmaceutical production methods are still beset by cellular constraints such as limited growth and poor productivity. MicroRNA-21 (miR-21) has a major impact on a variety of malignancies, including glioblastoma multiforme (GBM). However, reduced productivity and growth rate have been linked to miR-21 overexpression in CHO cells. The current study aimed to engineer a recombinant CHO (rCHO) cell using the CRISPR-mediated precise integration into target chromosome (CRIS-PITCh) system coupled with the Bxb1 recombinase-mediated cassette exchange (RMCE) to express a circular miR-21 decoy (CM21D) with five bulged binding sites for miR-21 sponging. Implementing the ribonucleoprotein (RNP) delivery method, a landing pad was inserted into the genome utilizing the CRIS-PITCh technique. Subsequently, the CM21D cassette flanked by Bxb1 attB was then retargeted into the integrated landing pad using the RMCE/Bxb1 system. This strategy raised the targeting efficiency by 1.7-fold, and off-target effects were decreased. The miR-21 target genes (Pdcd4 and Atp11b) noticed a significant increase in expression upon the miR-21 sponging through CM21D. Following the expression of CM21D, rCHO cells showed a substantial decrease in doubling time and a 1.3-fold increase in growth rate. Further analysis showed an increased yield of hrsACE2, a secretory recombinant protein, by 2.06-fold. Hence, we can conclude that sponging-induced inhibition of miR-21 may lead to a growth rate increase that could be linked to increased CHO cell productivity. For industrial cell lines, including CHO cells, an increase in productivity is crucial. The results of our research indicate that CM21D is an auspicious CHO engineering approach. KEY POINTS: • CHO is an ideal host cell line for producing industrial therapeutics manufacturing, and miR-21 is downregulated in CHO cells, which produce recombinant proteins. • The miR-21 target genes noticed a significant increase in expression upon the miR-21 sponging through CM21D. Additionally, sponging of miR-21 by CM21D enhanced the growth rate of CHO cells. • Productivity and growth rate were increased in CHO cells expressing recombinant hrs-ACE2 protein after CM21D knocking in.
Collapse
Affiliation(s)
- Setare Adibzadeh
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Shahin Amiri
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Farzaneh Barkhordari
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hadi Bayat
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, H2W 1R7, Canada
| | - Samaneh Ghanbari
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Davami
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
26
|
Matsuzaki S, Sakuma T, Yamamoto T. REMOVER-PITCh: microhomology-assisted long-range gene replacement with highly multiplexed CRISPR-Cas9. In Vitro Cell Dev Biol Anim 2024; 60:697-707. [PMID: 38334880 PMCID: PMC11297102 DOI: 10.1007/s11626-024-00850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024]
Abstract
A variety of CRISPR-Cas9-based gene editing technologies have been developed, including gene insertion and gene replacement, and applied to the study and treatment of diseases. While numerous studies have been conducted to improve the efficiency of gene insertion and to expand the system in various ways, there have been relatively few reports on gene replacement technology; therefore, further improvements are still needed in this context. Here, we developed the REMOVER-PITCh system to establish an efficient long-range gene replacement method and demonstrated its utility at two genomic loci in human cultured cells. REMOVER-PITCh depends on microhomology-assisted gene insertion technology called PITCh with highly multiplexed CRISPR-Cas9. First, we achieved gene replacement of about 20-kb GUSB locus using this system. Second, by applying the previously established knock-in-enhancing platform, the LoAD system, along with REMOVER-PITCh, we achieved the replacement of a longer gene region of about 200 kb at the ARSB locus. Our REMOVER-PITCh system will make it possible to remove and incorporate a variety of sequences from and into the genome, respectively, which will facilitate the generation of various disease and humanized models.
Collapse
Affiliation(s)
- Shu Matsuzaki
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., 1624 Shimokotachi, Koda-Cho, Akitakata-Shi, Hiroshima, 739-1195, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
27
|
Chen X, Yang G, Ji P, Liu G, Zhang L. Identification of Site in the UTY Gene as Safe Harbor Locus on the Y Chromosome of Pig. Genes (Basel) 2024; 15:1005. [PMID: 39202365 PMCID: PMC11353466 DOI: 10.3390/genes15081005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Genomic Safe Harbors (GSH) are loci used for the insertion of exogenous genetic elements, enabling exogenous gene expressing predictably without alterations of the host genome. These sites are becoming increasingly important as the gene editing technologies advance rapidly. Currently, only a few GSHs have been identified in the pig genome. In this study, a novel strategy was demonstrated for the efficient insertion of exogenous genetic material into the third exon of the UTY gene on the Y chromosome using CRISPR/Cas9-mediated homology arm-mediated end joining. The safety of the locus was verified according to the proper expression of the inserted EGFP gene without altering the expression of UTY. This approach enables the integration and expression of the exogenous gene at this locus, indicating that the UTY locus serves as a genomic safe harbor site for gene editing in the pig genome. Located on the Y chromosome, this site can be utilized for sex-biased pig breeding and developing biomedical models.
Collapse
Affiliation(s)
- Xiaomei Chen
- State Key Laboratory of Farm Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.C.); (G.Y.); (P.J.); (G.L.)
- College of Animal Science and Technology, Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Guang Yang
- State Key Laboratory of Farm Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.C.); (G.Y.); (P.J.); (G.L.)
- College of Animal Science and Technology, Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Pengyun Ji
- State Key Laboratory of Farm Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.C.); (G.Y.); (P.J.); (G.L.)
| | - Guoshi Liu
- State Key Laboratory of Farm Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.C.); (G.Y.); (P.J.); (G.L.)
- College of Animal Science and Technology, Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Lu Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.C.); (G.Y.); (P.J.); (G.L.)
- College of Animal Science and Technology, Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
28
|
Zhang S, Roeder RG. Resistance of estrogen receptor function to BET bromodomain inhibition is mediated by transcriptional coactivator cooperativity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605008. [PMID: 39211208 PMCID: PMC11361192 DOI: 10.1101/2024.07.25.605008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The Bromodomain and Extra-Terminal Domain (BET) family of proteins are critical chromatin readers that bind to acetylated histones through their bromodomains to activate transcription. Here, we reveal that bromodomain inhibition fails to repress oncogenic targets of estrogen receptor due to an intrinsic transcriptional mechanism. While bromodomains are necessary for the transcription of many genes, BRD4 binds to estrogen receptor binding sites and activates transcription of critical oncogenes independently of its bromodomains. BRD4 associates with the Mediator complex and disruption of Mediator complex reduces BRD4's enhancer occupancy. Profiling changes in the post-initiation RNA polymerase II (Pol II)-associated factors revealed that BET proteins regulate interactions between Pol II and elongation factors SPT5, SPT6, and PAF1 complex, which associate with BET proteins independently of their bromodomains and mediate their transcription elongation effect. Our findings highlight the importance of bromodomain-independent functions and interactions of BET proteins in the development of future therapeutic strategies.
Collapse
|
29
|
Liu Y, Kong J, Liu G, Li Z, Xiao Y. Precise Gene Knock-In Tools with Minimized Risk of DSBs: A Trend for Gene Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401797. [PMID: 38728624 PMCID: PMC11267366 DOI: 10.1002/advs.202401797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Gene knock-in refers to the insertion of exogenous functional genes into a target genome to achieve continuous expression. Currently, most knock-in tools are based on site-directed nucleases, which can induce double-strand breaks (DSBs) at the target, following which the designed donors carrying functional genes can be inserted via the endogenous gene repair pathway. The size of donor genes is limited by the characteristics of gene repair, and the DSBs induce risks like genotoxicity. New generation tools, such as prime editing, transposase, and integrase, can insert larger gene fragments while minimizing or eliminating the risk of DSBs, opening new avenues in the development of animal models and gene therapy. However, the elimination of off-target events and the production of delivery carriers with precise requirements remain challenging, restricting the application of the current knock-in treatments to mainly in vitro settings. Here, a comprehensive review of the knock-in tools that do not/minimally rely on DSBs and use other mechanisms is provided. Moreover, the challenges and recent advances of in vivo knock-in treatments in terms of the therapeutic process is discussed. Collectively, the new generation of DSBs-minimizing and large-fragment knock-in tools has revolutionized the field of gene editing, from basic research to clinical treatment.
Collapse
Affiliation(s)
- Yongfeng Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Mudi Meng Honors CollegeChina Pharmaceutical UniversityNanjing210009China
| | - Jianping Kong
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Gongyu Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Zhaoxing Li
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Yibei Xiao
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| |
Collapse
|
30
|
Li C, Yi Y, Ouyang Y, Chen F, Lu C, Peng S, Wang Y, Chen X, Yan X, Xu H, Li S, Feng L, Xie X. TORSEL, a 4EBP1-based mTORC1 live-cell sensor, reveals nutrient-sensing targeting by histone deacetylase inhibitors. Cell Biosci 2024; 14:68. [PMID: 38824577 PMCID: PMC11143692 DOI: 10.1186/s13578-024-01250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is an effective therapeutic target for diseases such as cancer, diabetes, aging, and neurodegeneration. However, an efficient tool for monitoring mTORC1 inhibition in living cells or tissues is lacking. RESULTS We developed a genetically encoded mTORC1 sensor called TORSEL. This sensor changes its fluorescence pattern from diffuse to punctate when 4EBP1 dephosphorylation occurs and interacts with eIF4E. TORSEL can specifically sense the physiological, pharmacological, and genetic inhibition of mTORC1 signaling in living cells and tissues. Importantly, TORSEL is a valuable tool for imaging-based visual screening of mTORC1 inhibitors. Using TORSEL, we identified histone deacetylase inhibitors that selectively block nutrient-sensing signaling to inhibit mTORC1. CONCLUSIONS TORSEL is a unique living cell sensor that efficiently detects the inhibition of mTORC1 activity, and histone deacetylase inhibitors such as panobinostat target mTORC1 signaling through amino acid sensing.
Collapse
Affiliation(s)
- Canrong Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuguo Yi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yingyi Ouyang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Fengzhi Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Chuxin Lu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shujun Peng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yifan Wang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xinyu Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiao Yan
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Haolun Xu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shuiming Li
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Lin Feng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoduo Xie
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
31
|
Zhang Z, Zhang S, Wong HT, Li D, Feng B. Targeted Gene Insertion: The Cutting Edge of CRISPR Drug Development with Hemophilia as a Highlight. BioDrugs 2024; 38:369-385. [PMID: 38489061 PMCID: PMC11055778 DOI: 10.1007/s40259-024-00654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
The remarkable advance in gene editing technology presents unparalleled opportunities for transforming medicine and finding cures for hereditary diseases. Human trials of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9)-based therapeutics have demonstrated promising results in disrupting or deleting target sequences to treat specific diseases. However, the potential of targeted gene insertion approaches, which offer distinct advantages over disruption/deletion methods, remains largely unexplored in human trials due to intricate technical obstacles and safety concerns. This paper reviews the recent advances in preclinical studies demonstrating in vivo targeted gene insertion for therapeutic benefits, targeting somatic solid tissues through systemic delivery. With a specific emphasis on hemophilia as a prominent disease model, we highlight advancements in insertion strategies, including considerations of DNA repair pathways, targeting site selection, and donor design. Furthermore, we discuss the complex challenges and recent breakthroughs that offer valuable insights for progressing towards clinical trials.
Collapse
Affiliation(s)
- Zhenjie Zhang
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Siqi Zhang
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
| | - Hoi Ting Wong
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
32
|
Sun L, Zhang T, Lan X, Zhang N, Wang R, Ma S, Zhao P, Xia Q. High-Throughput Screening of PAM-Flexible Cas9 Variants for Expanded Genome Editing in the Silkworm ( Bombyx mori). INSECTS 2024; 15:241. [PMID: 38667371 PMCID: PMC11050708 DOI: 10.3390/insects15040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Genome editing provides novel opportunities for the precise genome engineering of diverse organisms. Significant progress has been made in the development of genome-editing tools for Bombyx mori (B. mori) in recent years. Among these, CRISPR/Cas9, which is currently the most commonly used system in lepidopteran insects, recognizes NGG protospacer adjacent motif (PAM) sequences within the target locus. However, Cas9 lacks the ability to target all gene loci in B. mori, indicating the need for Cas9 variants with a larger editing range. In this study, we developed a high-throughput screening platform to validate Cas9 variants at all possible recognizable and editable PAM sites for target sequences in B. mori. This platform enabled us to identify PAM sites that can be recognized by both xCas9 3.7 and SpCas9-NG variants in B. mori and to assess their editing efficiency. Cas9 shows PAM sites every 13 base pairs in the genome, whereas xCas9 3.7 and SpCas9-NG have an average distance of 3.4 and 3.6 base pairs, respectively, between two specific targeting sites. Combining the two Cas9 variants could significantly expand the targeting range of the genome, accelerate research on the B. mori genome, and extend the high-throughput rapid screening platform to other insects, particularly those lacking suitable NGG PAM sequences.
Collapse
Affiliation(s)
- Le Sun
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.S.)
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Tong Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.S.)
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Xinhui Lan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.S.)
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Na Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.S.)
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Ruolin Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.S.)
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.S.)
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.S.)
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.S.)
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| |
Collapse
|
33
|
Hermantara R, Richmond L, Taqi AF, Chilaka S, Jeantet V, Guerrini I, West K, West A. Improving CRISPR-Cas9 directed faithful transgene integration outcomes by reducing unwanted random DNA integration. J Biomed Sci 2024; 31:32. [PMID: 38532479 PMCID: PMC10964699 DOI: 10.1186/s12929-024-01020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The field of genome editing has been revolutionized by the development of an easily programmable editing tool, the CRISPR-Cas9. Despite its promise, off-target activity of Cas9 posed a great disadvantage for genome editing purposes by causing DNA double strand breaks at off-target locations and causing unwanted editing outcomes. Furthermore, for gene integration applications, which introduce transgene sequences, integration of transgenes to off-target sites could be harmful, hard to detect, and reduce faithful genome editing efficiency. METHOD Here we report the development of a multicolour fluorescence assay for studying CRISPR-Cas9-directed gene integration at an endogenous locus in human cell lines. We examine genetic integration of reporter genes in transiently transfected cells as well as puromycin-selected stable cell lines to determine the fidelity of multiple CRISPR-Cas9 strategies. RESULT We found that there is a high occurrence of unwanted DNA integration which tarnished faithful knock-in efficiency. Integration outcomes are influenced by the type of DNA DSBs, donor design, the use of enhanced specificity Cas9 variants, with S-phase regulated Cas9 activity. Moreover, restricting Cas9 expression with a self-cleaving system greatly improves knock-in outcomes by substantially reducing the percentage of cells with unwanted DNA integration. CONCLUSION Our results highlight the need for a more stringent assessment of CRISPR-Cas9-mediated knock-in outcomes, and the importance of careful strategy design to maximise efficient and faithful transgene integration.
Collapse
Affiliation(s)
- Rio Hermantara
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia.
| | - Laura Richmond
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Aqeel Faisal Taqi
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sabari Chilaka
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Valentine Jeantet
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ileana Guerrini
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Katherine West
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Adam West
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
34
|
Chen X, Du J, Yun S, Xue C, Yao Y, Rao S. Recent advances in CRISPR-Cas9-based genome insertion technologies. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102138. [PMID: 38379727 PMCID: PMC10878794 DOI: 10.1016/j.omtn.2024.102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Programmable genome insertion (or knock-in) is vital for both fundamental and translational research. The continuously expanding number of CRISPR-based genome insertion strategies demonstrates the ongoing development in this field. Common methods for site-specific genome insertion rely on cellular double-strand breaks repair pathways, such as homology-directed repair, non-homologous end-joining, and microhomology-mediated end joining. Recent advancements have further expanded the toolbox of programmable genome insertion techniques, including prime editing, integrase coupled with programmable nuclease, and CRISPR-associated transposon. These tools possess their own capabilities and limitations, promoting tremendous efforts to enhance editing efficiency, broaden targeting scope and improve editing specificity. In this review, we first summarize recent advances in programmable genome insertion techniques. We then elaborate on the cons and pros of each technique to assist researchers in making informed choices when using these tools. Finally, we identify opportunities for future improvements and applications in basic research and therapeutics.
Collapse
Affiliation(s)
- Xinwen Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jingjing Du
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Shaowei Yun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Chaoyou Xue
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Yao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Shuquan Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
35
|
Li S, Wang Y, van der Stoel M, Zhou X, Madhusudan S, Kanerva K, Nguyen VD, Eskici N, Olkkonen VM, Zhou Y, Raivio T, Ikonen E. HiHo-AID2: boosting homozygous knock-in efficiency enables robust generation of human auxin-inducible degron cells. Genome Biol 2024; 25:58. [PMID: 38409044 PMCID: PMC10895734 DOI: 10.1186/s13059-024-03187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Recent developments in auxin-inducible degron (AID) technology have increased its popularity for chemogenetic control of proteolysis. However, generation of human AID cell lines is challenging, especially in human embryonic stem cells (hESCs). Here, we develop HiHo-AID2, a streamlined procedure for rapid, one-step generation of human cancer and hESC lines with high homozygous degron-tagging efficiency based on an optimized AID2 system and homology-directed repair enhancers. We demonstrate its application for rapid and inducible functional inactivation of twelve endogenous target proteins in five cell lines, including targets with diverse expression levels and functions in hESCs and cells differentiated from hESCs.
Collapse
Affiliation(s)
- Shiqian Li
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland.
| | - Yafei Wang
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Miesje van der Stoel
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Xin Zhou
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Shrinidhi Madhusudan
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Kristiina Kanerva
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Van Dien Nguyen
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Nazli Eskici
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Vesa M Olkkonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland.
| |
Collapse
|
36
|
Gim GM, Jang G. Outlook on genome editing application to cattle. J Vet Sci 2024; 25:e10. [PMID: 38311323 PMCID: PMC10839183 DOI: 10.4142/jvs.23133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 02/07/2024] Open
Abstract
In livestock industry, there is growing interest in methods to increase the production efficiency of livestock to address food shortages, given the increasing global population. With the advancements in gene engineering technology, it is a valuable tool and has been intensively utilized in research specifically focused on human disease. In historically, this technology has been used with livestock to create human disease models or to produce recombinant proteins from their byproducts. However, in recent years, utilizing gene editing technology, cattle with identified genes related to productivity can be edited, thereby enhancing productivity in response to climate change or specific disease instead of producing recombinant proteins. Furthermore, with the advancement in the efficiency of gene editing, it has become possible to edit multiple genes simultaneously. This cattle breed improvement has been achieved by discovering the genes through the comprehensive analysis of the entire genome of cattle. The cattle industry has been able to address gene bottlenecks that were previously impossible through conventional breeding systems. This review concludes that gene editing is necessary to expand the cattle industry, improving productivity in the future. Additionally, the enhancement of cattle through gene editing is expected to contribute to addressing environmental challenges associated with the cattle industry. Further research and development in gene editing, coupled with genomic analysis technologies, will significantly contribute to solving issues that conventional breeding systems have not been able to address.
Collapse
Affiliation(s)
| | - Goo Jang
- LARTBio Inco, Seoul 06221, Korea
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul 08826, Korea
- Comparative medicine Disease Research Center, Seoul National University, Seoul 08826, Korea
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia.
| |
Collapse
|
37
|
Lampe GD, King RT, Halpin-Healy TS, Klompe SE, Hogan MI, Vo PLH, Tang S, Chavez A, Sternberg SH. Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases. Nat Biotechnol 2024; 42:87-98. [PMID: 36991112 PMCID: PMC10620015 DOI: 10.1038/s41587-023-01748-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
Conventional genome engineering with CRISPR-Cas9 creates double-strand breaks (DSBs) that lead to undesirable byproducts and reduce product purity. Here we report an approach for programmable integration of large DNA sequences in human cells that avoids the generation of DSBs by using Type I-F CRISPR-associated transposases (CASTs). We optimized DNA targeting by the QCascade complex through protein design and developed potent transcriptional activators by exploiting the multi-valent recruitment of the AAA+ ATPase TnsC to genomic sites targeted by QCascade. After initial detection of plasmid-based integration, we screened 15 additional CAST systems from a wide range of bacterial hosts, identified a homolog from Pseudoalteromonas that exhibits improved activity and further increased integration efficiencies. Finally, we discovered that bacterial ClpX enhances genomic integration by multiple orders of magnitude, likely by promoting active disassembly of the post-integration CAST complex, akin to its known role in Mu transposition. Our work highlights the ability to reconstitute complex, multi-component machineries in human cells and establishes a strong foundation to exploit CRISPR-associated transposases for eukaryotic genome engineering.
Collapse
Affiliation(s)
- George D Lampe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Rebeca T King
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Tyler S Halpin-Healy
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Marcus I Hogan
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Phuc Leo H Vo
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
- Vertex Pharmaceuticals, Inc., Boston, MA, USA
| | - Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
38
|
Kajihara R, Ezaki R, Watanabe T, Ichikawa K, Matsuzaki M, Horiuchi H. Evaluation of expression systems for recombinant protein production in chicken egg bioreactors. Biotechnol J 2024; 19:e2300316. [PMID: 37859508 DOI: 10.1002/biot.202300316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
Chicken eggs have gained attention as excellent bioreactors because of their genetic modifications. However, the development of chicken egg bioreactors requires a long time from the construction of the production system to the evaluation of the products. Therefore, in this study, a chicken cell line producing ovalbumin (OVA) was established and constructed a system for the rapid evaluation of the production system. First, the EF1α promoter was knocked in upstream of the OVA locus in chicken DF-1 cells for continuous OVA expression. Furthermore, an ideal position at the OVA locus for the insertion of useful protein genes to maximize recombinant protein yield was analyzed and identified. The knocking in the EF1α promoter upstream of exon1 yielded the maximum production of OVA protein was achieved. In addition, Linking a recombinant hFGF2 cDNA to the 5' side of the OVA was found to increase production efficiency. Therefore, an OVA-expressing cell line and an evaluation system for proteins in chicken egg bioreactors was established. The findings may improve the efficiency of chicken expression systems and expand their applications in protein production.
Collapse
Affiliation(s)
- Ryota Kajihara
- Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Ryo Ezaki
- Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Tenkai Watanabe
- Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kennosuke Ichikawa
- Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Mei Matsuzaki
- Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Hiroyuki Horiuchi
- Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
39
|
Watanabe T, Ochi Y, Kajihara R, Ichikawa K, Ezaki R, Matsuzaki M, Horiuchi H. Lipofection with Lipofectamine™ 2000 in a heparin-free growth medium results in high transfection efficiency in chicken primordial germ cells. Biotechnol J 2023; 18:e2300328. [PMID: 37559489 DOI: 10.1002/biot.202300328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Primordial germ cells (PGCs) that can differentiate into gametes are used to produce genome-edited chickens. However, the transfection efficiency into PGCs is low in chickens; therefore, the yield efficiency of PGCs modified via genome editing is problematic. In this study, we improved transfection efficiency and achieved highly efficient genome editing in chicken PGCs. For transfection, we used lipofection, which is convenient for gene transfer. Chicken PGC cultures require adding heparin to support growth; however, heparin significantly reduces lipofection efficiency (p < 0.01). Heparin-induced lipofection efficiency was restored by adding protamine. Based on these results, we optimized gene transfer into chicken PGCs. Lipofectamine 2000 and our PGC medium were the most efficient transfection reagent and medium, respectively. Finally, based on established conditions, we compared the gene knock-out efficiencies of ovomucoid, a major egg allergen, and gene knock-in efficiencies at the ACTB locus. These results indicate that optimized lipofection is useful for CRISPR/Cas9-mediated knock-out and knock-in. Our findings may contribute to the generation of genome-edited chickens and stimulate research in various applications involving them.
Collapse
Affiliation(s)
- Tenkai Watanabe
- Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuta Ochi
- Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ryota Kajihara
- Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kennosuke Ichikawa
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Japan
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Ryo Ezaki
- Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Mei Matsuzaki
- Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiroyuki Horiuchi
- Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
40
|
Takasu Y, Yamada N, Kojima K, Iga M, Yukuhiro F, Iizuka T, Yoshioka T. Fibroin heavy chain gene replacement with a highly ordered synthetic repeat sequence in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 161:104002. [PMID: 37657611 DOI: 10.1016/j.ibmb.2023.104002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The exceptional quality of silkworm silk is attributed to the amino acid sequence of its fibroin heavy chain (Fib-H) protein. The large central domain of Fib-H, which consists of glycine- and alanine-rich crystalline regions interspersed with amorphous motifs of approximately 30 amino acid residues, is considered crucial for fibrilization and determines the properties of the silk fiber. We established a technical platform to modify the Fib-H core region systematically using transcription activator-like effector nuclease-mediated homologous recombination through a somatic and germline gene knockin assay along with PCR-based screening. This efficient knockin system was used to generate a silkworm strain carrying a mutant Fib-H allele, in which the core region was replaced with a highly ordered synthetic repeat sequence of a length comparable with native Fib-H core. Heterozygous knockin mutants produced seemingly normal cocoons, whereas homozygotes did not and exhibited considerable degradation in their posterior silk glands (PSGs). Cross-sectional examination of the PSG lumen and tensile tests conducted on reeled silk threads indicated that the mutant Fib-H, which exhibited reduced stability in the PSG cells and lumen, affected the mechanical properties of the fiber. Thus, sequence manipulation of the Fib-H core domain was identified as a crucial step in successfully creating artificial silk using knockin technology.
Collapse
Affiliation(s)
- Yoko Takasu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan.
| | - Nobuto Yamada
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Katsura Kojima
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Masatoshi Iga
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Fumiko Yukuhiro
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Tetsuya Iizuka
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Taiyo Yoshioka
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| |
Collapse
|
41
|
Higashitani Y, Horie K. Long-read sequence analysis of MMEJ-mediated CRISPR genome editing reveals complex on-target vector insertions that may escape standard PCR-based quality control. Sci Rep 2023; 13:11652. [PMID: 37468545 DOI: 10.1038/s41598-023-38397-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
CRISPR genome editing is a powerful tool for elucidating biological functions. To modify the genome as intended, it is essential to understand the various modes of recombination that can occur. In this study, we report complex vector insertions that were identified during the generation of conditional alleles by CRISPR editing using microhomology-mediated end joining (MMEJ). The targeting vector contained two loxP sequences and flanking 40-bp microhomologies. The genomic regions corresponding to the loxP sequences were cleaved with Cas9 in mouse embryonic stem cells. PCR screening for targeted recombination revealed a high frequency of bands of a larger size than expected. Nanopore sequencing of these bands revealed complex vector insertions mediated not only by MMEJ but also by non-homologous end joining and homologous recombination in at least 17% of the clones. A new band appeared upon improving the PCR conditions, suggesting the presence of unintentionally modified alleles that escape standard PCR screening. This prompted us to characterize the recombination of each allele of the genome-edited clones using heterozygous single nucleotide polymorphisms, leading to confirmation of the presence of homozygous alleles. Our study indicates that careful quality control of genome-edited clones is needed to exclude complex, unintended, on-target vector insertion.
Collapse
Affiliation(s)
- Yuki Higashitani
- Department of Physiology II, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University, Kashihara, Nara, 634-8521, Japan.
| |
Collapse
|
42
|
Wang C, Fang S, Chen Y, Tang N, Jiao G, Hu Y, Li J, Shan Q, Wang X, Feng G, Zhou Q, Li W. High-efficiency targeted transgene integration via primed micro-homologues. Cell Discov 2023; 9:69. [PMID: 37402729 PMCID: PMC10319781 DOI: 10.1038/s41421-023-00552-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/03/2023] [Indexed: 07/06/2023] Open
Abstract
Due to the difficulties in precisely manipulating DNA repair pathways, high-fidelity targeted integration of large transgenes triggered by double-strand breaks is inherently inefficient. Here, we exploit prime editors to devise a robust knock-in (KI) strategy named primed micro-homologues-assisted integration (PAINT), which utilizes reverse-transcribed single-stranded micro-homologues to boost targeted KIs in different types of cells. The improved version of PAINT, designated PAINT 3.0, maximizes editing efficiency and minimizes off-target integration, especially in dealing with scarless in-frame KIs. Using PAINT 3.0, we target a reporter transgene into housekeeping genes with editing efficiencies up to 80%, more than 10-fold higher than the traditional homology-directed repair method. Moreover, the use of PAINT 3.0 to insert a 2.5-kb transgene achieves up to 85% KI frequency at several therapeutically relevant genomic loci, suggesting its potential for clinical applications. Finally, PAINT 3.0 enables high-efficiency non-viral genome targeting in primary T cells and produces functional CAR-T cells with specific tumor-killing ability. Thus, we establish that the PAINT method is a powerful gene editing tool for large transgene integrations and may open new avenues for cell and gene therapies and genome writing technologies.
Collapse
Affiliation(s)
- Chenxin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Sen Fang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yangcan Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Na Tang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Guanyi Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanping Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Xin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
43
|
Graves LE, Horton A, Alexander IE, Srinivasan S. Gene Therapy for Paediatric Homozygous Familial Hypercholesterolaemia. Heart Lung Circ 2023; 32:769-779. [PMID: 37012174 DOI: 10.1016/j.hlc.2023.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/26/2022] [Accepted: 01/04/2023] [Indexed: 04/03/2023]
Abstract
The clinical outcome for children and adolescents with homozygous familial hypercholesterolaemia (HoFH) can be devastating, and treatment options are limited in the presence of a null variant. In HoFH, atherosclerotic risk accumulates from birth. Gene therapy is an appealing treatment option as restoration of low-density lipoprotein receptor (LDLR) gene function could provide a cure for HoFH. A clinical trial using a recombinant adeno-associated vector (rAAV) to deliver LDLR DNA to adult patients with HoFH was recently completed; results have not yet been reported. However, this treatment strategy may face challenges when translating to the paediatric population. The paediatric liver undergoes substantial growth which is significant as rAAV vector DNA persists primarily as episomes (extra-chromosomal DNA) and are not replicated during cell division. Therefore, rAAV-based gene addition treatment administered in childhood would likely only have a transient effect. With over 2,000 unique variants in LDLR, a goal of genomic editing-based therapy development would be to treat most (if not all) mutations with a single set of reagents. For a robust, durable effect, LDLR must be repaired in the genome of hepatocytes, which could be achieved using genomic editing technology such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and a DNA repair strategy such as homology-independent targeted integration. This review discusses this issue in the context of the paediatric patient group with severe compound heterozygous or homozygous null variants which are associated with aggressive early-onset atherosclerosis and myocardial infarction, together with the important pre-clinical studies that use genomic editing strategies to treat HoFH in place of apheresis and liver transplantation.
Collapse
Affiliation(s)
- Lara E Graves
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia; Children's Hospital at Westmead Clinical School, University of Sydney, Sydney, NSW, Australia; Gene Therapy Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia.
| | - Ari Horton
- Monash Heart and Monash Children's Hospital, Monash Health, Melbourne, Vic, Australia; Monash Cardiovascular Research Centre, Victorian Heart Institute, Melbourne, Vic, Australia; Monash Genetics, Monash Health, Melbourne, Vic, Australia; Department of Genomic Medicine, The Royal Melbourne Hospital, Parkville, Vic, Australia; Department of Paediatrics, Monash University Clayton, Vic, Australia
| | - Ian E Alexander
- Children's Hospital at Westmead Clinical School, University of Sydney, Sydney, NSW, Australia; Gene Therapy Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia
| | - Shubha Srinivasan
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia; Children's Hospital at Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
44
|
Chen H, Liu X, Li L, Tan Q, Li S, Li L, Li C, Fu J, Lu Y, Wang Y, Sun Y, Luo ZG, Lu Z, Sun Q, Liu Z. CATI: an efficient gene integration method for rodent and primate embryos by MMEJ suppression. Genome Biol 2023; 24:146. [PMID: 37353834 PMCID: PMC10288798 DOI: 10.1186/s13059-023-02987-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 06/13/2023] [Indexed: 06/25/2023] Open
Abstract
The efficiency of homology-directed repair (HDR) plays a crucial role in the development of animal models and gene therapy. We demonstrate that microhomology-mediated end-joining (MMEJ) constitutes a substantial proportion of DNA repair during CRISPR-mediated gene editing. Using CasRx to downregulate a key MMEJ factor, Polymerase Q (Polq), we improve the targeted integration efficiency of linearized DNA fragments and single-strand oligonucleotides (ssODN) in mouse embryos and offspring. CasRX-assisted targeted integration (CATI) also leads to substantial improvements in HDR efficiency during the CRISPR/Cas9 editing of monkey embryos. We present a promising tool for generating monkey models and developing gene therapies for clinical trials.
Collapse
Affiliation(s)
- Hongyu Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Xingchen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing, 100049, China
| | - Lanxin Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qingtong Tan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing, 100049, China
| | - Shiyan Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing, 100049, China
| | - Li Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Chunyang Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Jiqiang Fu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Yong Lu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Yan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Yidi Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zongyang Lu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| | - Qiang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| |
Collapse
|
45
|
Park JC, Park MJ, Lee SY, Kim D, Kim KT, Jang HK, Cha HJ. Gene editing with 'pencil' rather than 'scissors' in human pluripotent stem cells. Stem Cell Res Ther 2023; 14:164. [PMID: 37340491 PMCID: PMC10283231 DOI: 10.1186/s13287-023-03394-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Owing to the advances in genome editing technologies, research on human pluripotent stem cells (hPSCs) have recently undergone breakthroughs that enable precise alteration of desired nucleotide bases in hPSCs for the creation of isogenic disease models or for autologous ex vivo cell therapy. As pathogenic variants largely consist of point mutations, precise substitution of mutated bases in hPSCs allows researchers study disease mechanisms with "disease-in-a-dish" and provide functionally repaired cells to patients for cell therapy. To this end, in addition to utilizing the conventional homologous directed repair system in the knock-in strategy based on endonuclease activity of Cas9 (i.e., 'scissors' like gene editing), diverse toolkits for editing the desirable bases (i.e., 'pencils' like gene editing) that avoid the accidental insertion and deletion (indel) mutations as well as large harmful deletions have been developed. In this review, we summarize the recent progress in genome editing methodologies and employment of hPSCs for future translational applications.
Collapse
Affiliation(s)
- Ju-Chan Park
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Mihn Jeong Park
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Seung-Yeon Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Dayeon Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Keun-Tae Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Hyeon-Ki Jang
- Division of Chemical Engineering and Bioengineering, College of Art Culture and Engineering, Kangwon National University, Chuncheon, South Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Tanizaki Y, Shibata Y, Na W, Shi YB. Cell cycle activation in thyroid hormone-induced apoptosis and stem cell development during Xenopus intestinal metamorphosis. Front Endocrinol (Lausanne) 2023; 14:1184013. [PMID: 37265708 PMCID: PMC10230048 DOI: 10.3389/fendo.2023.1184013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Amphibian metamorphosis resembles mammalian postembryonic development, a period around birth when many organs mature into their adult forms and when plasma thyroid hormone (T3) concentration peaks. T3 plays a causative role for amphibian metamorphosis. This and its independence from maternal influence make metamorphosis of amphibians, particularly anurans such as pseudo-tetraploid Xenopus laevis and its highly related diploid species Xenopus tropicalis, an excellent model to investigate how T3 regulates adult organ development. Studies on intestinal remodeling, a process that involves degeneration of larval epithelium via apoptosis and de novo formation of adult stem cells followed by their proliferation and differentiation to form the adult epithelium, have revealed important molecular insights on T3 regulation of cell fate during development. Here, we review some evidence suggesting that T3-induced activation of cell cycle program is important for T3-induced larval epithelial cell death and de novo formation of adult intestinal stem cells.
Collapse
|
47
|
Kalamakis G, Platt RJ. CRISPR for neuroscientists. Neuron 2023:S0896-6273(23)00306-9. [PMID: 37201524 DOI: 10.1016/j.neuron.2023.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/14/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
Genome engineering technologies provide an entry point into understanding and controlling the function of genetic elements in health and disease. The discovery and development of the microbial defense system CRISPR-Cas yielded a treasure trove of genome engineering technologies and revolutionized the biomedical sciences. Comprising diverse RNA-guided enzymes and effector proteins that evolved or were engineered to manipulate nucleic acids and cellular processes, the CRISPR toolbox provides precise control over biology. Virtually all biological systems are amenable to genome engineering-from cancer cells to the brains of model organisms to human patients-galvanizing research and innovation and giving rise to fundamental insights into health and powerful strategies for detecting and correcting disease. In the field of neuroscience, these tools are being leveraged across a wide range of applications, including engineering traditional and non-traditional transgenic animal models, modeling disease, testing genomic therapies, unbiased screening, programming cell states, and recording cellular lineages and other biological processes. In this primer, we describe the development and applications of CRISPR technologies while highlighting outstanding limitations and opportunities.
Collapse
Affiliation(s)
- Georgios Kalamakis
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Department of Chemistry, University of Basel, Petersplatz 1, 4003 Basel, Switzerland; NCCR MSE, Mattenstrasse 24a, 4058 Basel, Switzerland; Botnar Research Center for Child Health, Mattenstrasse 24a, 4058 Basel, Switzerland.
| |
Collapse
|
48
|
Kalkan AK, Palaz F, Sofija S, Elmousa N, Ledezma Y, Cachat E, Rios-Solis L. Improving recombinant protein production in CHO cells using the CRISPR-Cas system. Biotechnol Adv 2023; 64:108115. [PMID: 36758652 DOI: 10.1016/j.biotechadv.2023.108115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/28/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Chinese hamster ovary (CHO) cells are among the most widely used mammalian cell lines in the biopharmaceutical industry. Therefore, it is not surprising that significant efforts have been made around the engineering of CHO cells using genetic engineering methods such as the CRISPR-Cas system. In this review, we summarize key recent studies that have used different CRISPR-Cas systems such as Cas9, Cas13 or dCas9 fused with effector domains to improve recombinant protein (r-protein) production in CHO cells. Here, every relevant stage of production was considered, underscoring the advantages and limitations of these systems, as well as discussing their bottlenecks and probable solutions. A special emphasis was given on how these systems could disrupt and/or regulate genes related to glycan composition, which has relevant effects over r-protein properties and in vivo activity. Furthermore, the related promising future applications of CRISPR to achieve a tunable, reversible, or highly stable editing of CHO cells are discussed. Overall, the studies covered in this review show that despite the complexity of mammalian cells, the synthetic biology community has developed many mature strategies to improve r-protein production using CHO cells. In this regard, CRISPR-Cas technology clearly provides efficient and flexible genetic manipulation and allows for the generation of more productive CHO cell lines, leading to more cost-efficient production of biopharmaceuticals, however, there is still a need for many emerging techniques in CRISPR to be reported in CHO cells; therefore, more research in these cells is needed to realize the full potential of this technology.
Collapse
Affiliation(s)
- Ali Kerem Kalkan
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Environmental Engineering Department, Gebze Technical University, Turkey
| | - Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Semeniuk Sofija
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Nada Elmousa
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK
| | - Yuri Ledezma
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK; Biology Department, Faculty of Pure and Natural Sciences, Universidad Mayor de San Andrés, Bolivia
| | - Elise Cachat
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences University of Edinburgh, Edinburgh EH9 3BF, UK; UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Leonardo Rios-Solis
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK; School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Division, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| |
Collapse
|
49
|
Mi J, Andersson O. Efficient knock-in method enabling lineage tracing in zebrafish. Life Sci Alliance 2023; 6:e202301944. [PMID: 36878640 PMCID: PMC9990459 DOI: 10.26508/lsa.202301944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Here, we devised a cloning-free 3' knock-in strategy for zebrafish using PCR amplified dsDNA donors that avoids disrupting the targeted genes. The dsDNA donors carry genetic cassettes coding for fluorescent proteins and Cre recombinase in frame with the endogenous gene but separated from it by self-cleavable peptides. Primers with 5' AmC6 end-protections generated PCR amplicons with increased integration efficiency that were coinjected with preassembled Cas9/gRNA ribonucleoprotein complexes for early integration. We targeted four genetic loci (krt92, nkx6.1, krt4, and id2a) and generated 10 knock-in lines, which function as reporters for the endogenous gene expression. The knocked-in iCre or CreERT2 lines were used for lineage tracing, which suggested that nkx6.1 + cells are multipotent pancreatic progenitors that gradually restrict to the bipotent duct, whereas id2a + cells are multipotent in both liver and pancreas and gradually restrict to ductal cells. In addition, the hepatic id2a + duct show progenitor properties upon extreme hepatocyte loss. Thus, we present an efficient and straightforward knock-in technique with widespread use for cellular labelling and lineage tracing.
Collapse
Affiliation(s)
- Jiarui Mi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
50
|
Chen H, Yang QL, Xu JX, Deng X, Zhang YJ, Liu T, Rots MG, Xu GL, Huang KY. Efficient methods for multiple types of precise gene-editing in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37310200 DOI: 10.1111/tpj.16265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 06/14/2023]
Abstract
Precise gene-editing using CRISPR/Cas9 technology remains a long-standing challenge, especially for genes with low expression and no selectable phenotypes in Chlamydomonas reinhardtii, a classic model for photosynthesis and cilia research. Here, we developed a multi-type and precise genetic manipulation method in which a DNA break was generated by Cas9 nuclease and the repair was mediated using a homologous DNA template. The efficacy of this method was demonstrated for several types of gene editing, including inactivation of two low-expression genes (CrTET1 and CrKU80), the introduction of a FLAG-HA epitope tag into VIPP1, IFT46, CrTET1 and CrKU80 genes, and placing a YFP tag into VIPP1 and IFT46 for live-cell imaging. We also successfully performed a single amino acid substitution for the FLA3, FLA10 and FTSY genes, and documented the attainment of the anticipated phenotypes. Lastly, we demonstrated that precise fragment deletion from the 3'-UTR of MAA7 and VIPP1 resulted in a stable knock-down effect. Overall, our study has established efficient methods for multiple types of precise gene editing in Chlamydomonas, enabling substitution, insertion and deletion at the base resolution, thus improving the potential of this alga in both basic research and industrial applications.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qing-Lin Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jia-Xi Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yun-Jie Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ting Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Marianne G Rots
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of Medical Epigenetics, Laboratory of Cancer Epigenetics, Institutes of Biomedical Sciences, Medical College of Fudan University, Chinese Academy of Medical Sciences (RU069), Shanghai, China
| | - Kai-Yao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|