1
|
Koester JA, Fox O, Smith E, Cox MB, Taylor AR. A multifunctional organelle coordinates phagocytosis and chlorophagy in a marine eukaryote phytoplankton Scyphosphaera apsteinii. THE NEW PHYTOLOGIST 2025; 246:1096-1112. [PMID: 40035416 PMCID: PMC11982794 DOI: 10.1111/nph.20388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/06/2024] [Indexed: 03/05/2025]
Abstract
Mixotrophy via phagocytosis can have profound consequences for the survival of marine phytoplankton and the efficiency of carbon transfer in marine systems. Little is known about the cellular mechanisms that underly nutrient acquisition via prey uptake and processing in mixotrophic phytoplankton. We used confocal microscopy, flow cytometry, and electron microscopy to assess phagocytosis and intracellular prey processing in the diploid calcifying coccolithophore Scyphosphaera apsteinii. Bioinformatic analysis was performed to develop a working model of the pathways that likely converge to regulate mixotrophic nutrition and autophagy. We found cells ingested proxy (up to 2 μm diameter) and natural (bacteria and cyanobacteria) prey particles that are processed within a single, prominent acidic vacuole detected in 80-100% of cells during exponential growth. This organelle was constitutive in cells through all growth phases to late stationary and is inherited when cells divide. Chloroplast fragments localized to this digestive organelle. A distinct, nonacidic vacuole containing polyphosphate was also identified in cells with ingested particles. We conclude a novel acidic organelle plays a multifunctional catabolic role in both mixotrophic nutrition (phagotrophy) and autophagy (chlorophagy). This discovery illustrates the dynamic nutritional strategies that marine phytoplankton, such as coccolithophores, have evolved to acquire and conserve nutrients.
Collapse
Affiliation(s)
- Julie A. Koester
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington601 South College RoadWilmingtonNC28403USA
| | - Oren Fox
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington601 South College RoadWilmingtonNC28403USA
| | - Elizabeth Smith
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington601 South College RoadWilmingtonNC28403USA
| | - Madison B. Cox
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington601 South College RoadWilmingtonNC28403USA
| | - Alison R. Taylor
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington601 South College RoadWilmingtonNC28403USA
| |
Collapse
|
2
|
Santana-Molina C, Williams TA, Snel B, Spang A. Chimeric origins and dynamic evolution of central carbon metabolism in eukaryotes. Nat Ecol Evol 2025; 9:613-627. [PMID: 40033103 PMCID: PMC11976288 DOI: 10.1038/s41559-025-02648-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
The origin of eukaryotes was a key event in the history of life. Current leading hypotheses propose that a symbiosis between an asgardarchaeal host cell and an alphaproteobacterial endosymbiont represented a crucial step in eukaryotic origin and that metabolic cross-feeding between the partners provided the basis for their subsequent evolutionary integration. A major unanswered question is whether the metabolism of modern eukaryotes bears any vestige of this ancestral syntrophy. Here we systematically analyse the evolutionary origins of the eukaryotic gene repertoires mediating central carbon metabolism. Our phylogenetic and sequence analyses reveal that this gene repertoire is chimeric, with ancestral contributions from Asgardarchaeota and Alphaproteobacteria operating predominantly in glycolysis and the tricarboxylic acid cycle, respectively. Our analyses also reveal the extent to which this ancestral metabolic interplay has been remodelled via gene loss, transfer and subcellular retargeting in the >2 billion years since the origin of eukaryotic cells, and we identify genetic contributions from other prokaryotic sources in addition to the asgardarchaeal host and alphaproteobacterial endosymbiont. Our work demonstrates that, in contrast to previous assumptions, modern eukaryotic metabolism preserves information about the nature of the original asgardarchaeal-alphaproteobacterial interactions and supports syntrophy scenarios for the origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Carlos Santana-Molina
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, the Netherlands
| | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
| | - Berend Snel
- Theoretical Biology & Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, the Netherlands.
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Keeling PJ, Burki F. Evolution: Untangling the mix of plastid endosymbiosis events. Curr Biol 2025; 35:R94-R96. [PMID: 39904315 DOI: 10.1016/j.cub.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The demonstration that a plastid protein targeting system remained unchanged following the endosymbiotic transfer to a new host calls into question whether we can distinguish between different models commonly used to explain the distribution and origin of eukaryotic organelles.
Collapse
Affiliation(s)
- Patrick J Keeling
- Botany Department, University of British Columbia, Vancouver, BC, Canada.
| | - Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Terpis KX, Salomaki ED, Barcytė D, Pánek T, Verbruggen H, Kolisko M, Bailey JC, Eliáš M, Lane CE. Multiple plastid losses within photosynthetic stramenopiles revealed by comprehensive phylogenomics. Curr Biol 2025; 35:483-499.e8. [PMID: 39793566 DOI: 10.1016/j.cub.2024.11.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/02/2024] [Accepted: 11/26/2024] [Indexed: 01/13/2025]
Abstract
Ochrophyta is a vast and morphologically diverse group of algae with complex plastids, including familiar taxa with fundamental ecological importance (diatoms or kelp) and a wealth of lesser-known and obscure organisms. The sheer diversity of ochrophytes poses a challenge for reconstructing their phylogeny, with major gaps in sampling and an unsettled placement of particular taxa yet to be tackled. We sequenced transcriptomes from 25 strategically selected representatives and used these data to build the most taxonomically comprehensive ochrophyte-centered phylogenomic supermatrix to date. We employed a combination of approaches to reconstruct and critically evaluate the relationships among ochrophytes. While generally congruent with previous analyses, the updated ochrophyte phylogenomic tree resolved the position of several taxa with previously uncertain placement and supported a redefinition of the classes Picophagea and Synchromophyceae. Our results indicated that the heterotrophic, plastid-lacking heliozoan Actinophrys sol is not a sister lineage of ochrophytes, as proposed recently, but rather phylogenetically nested among them, implying that it lacks a plastid due to loss. In addition, we found the heterotrophic ochrophyte Picophagus flagellatus to lack all hallmark plastid genes yet to exhibit mitochondrial proteins that seem to be genetic footprints of a lost plastid organelle. We thus document, for the first time, plastid loss in two separate ochrophyte lineages. Furthermore, by exploring eDNA data, we enrich the ochrophyte phylogenetic tree by identifying five novel uncultured class-level lineages. Altogether, our study provides a new framework for reconstructing trait evolution in ochrophytes and demonstrates that plastid loss is more common than previously thought.
Collapse
Affiliation(s)
- Kristina X Terpis
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Eric D Salomaki
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic; Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI 02912, USA
| | - Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic
| | - Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic; Department of Zoology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Martin Kolisko
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - J Craig Bailey
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC 28403, USA
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic.
| | - Christopher E Lane
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
5
|
Waller RF, Carruthers VB. Adaptations and metabolic evolution of myzozoan protists across diverse lifestyles and environments. Microbiol Mol Biol Rev 2024; 88:e0019722. [PMID: 39387588 DOI: 10.1128/mmbr.00197-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
SUMMARYMyzozoans encompass apicomplexans and dinoflagellates that manifest diverse lifestyles in highly varied environments. They show enormous propensity to employ different metabolic programs and exploit different nutrient resources and niches, and yet, they share much core biology that underlies this evolutionary success and impact. This review discusses apicomplexan parasites of medical significance and the traits and properties they share with non-pathogenic myzozoans. These include the versatility of myzozoan plastids, which scale from fully photosynthetic organelles to the site of very select key metabolic pathways. Pivotal evolutionary innovations, such as the apical complex, have allowed myzozoans to shift from predatory to parasitic and other symbiotic lifestyles multiple times in both apicomplexan and dinoflagellate branches of the myzozoan evolutionary tree. Such traits, along with shared mechanisms for nutrient acquisition, appear to underpin the prosperity of myzozoans in their varied habitats. Understanding the mechanisms of these shared traits has the potential to spawn new strategic interventions against medically and veterinary relevant parasites within this grouping.
Collapse
Affiliation(s)
- Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
He FY, Zhao LS, Qu XX, Li K, Guo JP, Zhao F, Wang N, Qin BY, Chen XL, Gao J, Liu LN, Zhang YZ. Structural insights into the assembly and energy transfer of haptophyte photosystem I-light-harvesting supercomplex. Proc Natl Acad Sci U S A 2024; 121:e2413678121. [PMID: 39642204 PMCID: PMC11648859 DOI: 10.1073/pnas.2413678121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/04/2024] [Indexed: 12/08/2024] Open
Abstract
Haptophyta represents a major taxonomic group, with plastids derived from the primary plastids of red algae. Here, we elucidated the cryoelectron microscopy structure of the photosystem I-light-harvesting complex I (PSI-LHCI) supercomplex from the haptophyte Isochrysis galbana. The PSI core comprises 12 subunits, which have evolved differently from red algae and cryptophytes by losing the PsaO subunit while incorporating the PsaK subunit, which is absent in diatoms and dinoflagellates. The PSI core is encircled by 22 fucoxanthin-chlorophyll a/c-binding light-harvesting antenna proteins (iFCPIs) that form a trilayered antenna arrangement. Moreover, a pigment-binding subunit, LiFP, which has not been identified in any other previously characterized PSI-LHCI supercomplexes, was determined in I. galbana PSI-iFCPI, presumably facilitating the interactions and energy transfer between peripheral iFCPIs and the PSI core. Calculation of excitation energy transfer rates by computational simulations revealed that the intricate pigment network formed within PSI-iFCPI ensures efficient transfer of excitation energy. Overall, our study provides a solid structural foundation for understanding the light-harvesting and energy transfer mechanisms in haptophyte PSI-iFCPI and provides insights into the evolution and structural variations of red-lineage PSI-LHCIs.
Collapse
Affiliation(s)
- Fei-Yu He
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Long-Sheng Zhao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
- Ministry of Education Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Xin-Xiao Qu
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Kang Li
- Ministry of Education Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Jian-Ping Guo
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan430070, China
| | - Fang Zhao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Ning Wang
- Ministry of Education Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao266003, China
| | - Bing-Yue Qin
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan430070, China
| | - Lu-Ning Liu
- Ministry of Education Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao266003, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
- Ministry of Education Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| |
Collapse
|
7
|
Lewis WH, Paris G, Beedessee G, Kořený L, Flores V, Dendooven T, Gallet B, Yee DP, Lam S, Decelle J, Luisi BF, Waller RF. Plastid translocon recycling in dinoflagellates demonstrates the portability of complex plastids between hosts. Curr Biol 2024; 34:5494-5506.e3. [PMID: 39571577 PMCID: PMC7617431 DOI: 10.1016/j.cub.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/29/2024] [Accepted: 10/11/2024] [Indexed: 12/06/2024]
Abstract
The plastids of photosynthetic organisms on land are predominantly "primary plastids," derived from an ancient endosymbiosis of a cyanobacterium. Conversely, the plastids of marine photosynthetic organisms were mostly gained through subsequent endosymbioses of photosynthetic eukaryotes generating so-called "complex plastids." The plastids of the major eukaryotic lineages-cryptophytes, haptophytes, ochrophytes, dinoflagellates, and apicomplexans-were posited to derive from a single secondary endosymbiosis of a red alga in the "chromalveloate" hypothesis. Subsequent phylogenetic resolution of eukaryotes has shown that separate events of plastid acquisition must have occurred to account for this distribution of plastids. However, the number of such events and the donor organisms for the new plastid endosymbioses are still not resolved. A perceived bottleneck of endosymbiotic plastid gain is the development of protein targeting from the hosts into the new plastids, and this supposition has often driven hypotheses toward minimizing the number of plastid-gain events to explain plastid distribution in eukaryotes. But how plastid-protein-targeting is established for new endosymbionts is often unclear, which makes it difficult to assess the likelihood of plastid transfers between lineages. Here, we show that Kareniaceae dinoflagellates, which possess complex plastids known to be derived from haptophytes, acquired all the necessary protein import machinery from these haptophytes. Furthermore, cryo-electron tomography revealed that no additional membranes were added to the Kareniaceae complex plastid during serial endosymbiosis, suggesting that the haptophyte-derived import processes were sufficient. Our analyses suggest that complex red plastids are preadapted for horizontal transmission, potentially explaining their widespread distribution in algal diversity.
Collapse
Affiliation(s)
- William H Lewis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Giulia Paris
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Girish Beedessee
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Ludek Kořený
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Victor Flores
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Tom Dendooven
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Trumpington, Cambridge CB2 0QH, UK
| | - Benoit Gallet
- Cell and Plant Physiology Laboratory, University of Grenoble Alpes, CNRS, CEA, INRAE, and IRIG, 17 Avenue des Martyrs, Auvergne-Rhone-Alpes, Grenoble 38054, France
| | - Daniel P Yee
- Cell and Plant Physiology Laboratory, University of Grenoble Alpes, CNRS, CEA, INRAE, and IRIG, 17 Avenue des Martyrs, Auvergne-Rhone-Alpes, Grenoble 38054, France
| | - Simon Lam
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Johan Decelle
- Cell and Plant Physiology Laboratory, University of Grenoble Alpes, CNRS, CEA, INRAE, and IRIG, 17 Avenue des Martyrs, Auvergne-Rhone-Alpes, Grenoble 38054, France
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| |
Collapse
|
8
|
Berdieva M, Kalinina V, Palii O, Skarlato S. Putative MutS2 Homologs in Algae: More Goods in Shopping Bag? J Mol Evol 2024; 92:815-833. [PMID: 39365456 DOI: 10.1007/s00239-024-10210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
MutS2 proteins are presumably involved in either control of recombination or translation quality control in bacteria. MutS2 homologs have been found in plants and some algae; however, their actual diversity in eukaryotes remains unknown. We found putative MutS2 homologs in various species of photosynthetic eukaryotes and performed a detailed analysis of the revealed amino acid sequences. Three groups of homologs were distinguished depending on their domain composition: MutS2 homologs with full set of specific domains, MutS2-like sequences without endonuclease Smr domain, and MutS2-like homologs lacking Smr and clamp in domain IV, the extreme form of which are proteins with only a complete ATPase domain. We clarified the information about amino acid composition and set of specific motifs in the conserved domains in MutS2 and MutS2-like sequences. The models of the predicted tertiary structure were obtained for each group of homologs. The phylogenetic analysis demonstrated that all eukaryotic sequences split into two large groups. The first group included homologs belonging to species of Archaeplastida and a subset of haptophyte homologs, while the second-sequences of organisms from CASH groups (cryptophytes, alveolates, stramenopiles, haptophytes) and chlorarachniophytes. The cyanobacterial MutS2 clustered together with the first group, and proteins belonging to Deltaproteobacteria (orders Myxococcales and Bradymonadales) showed phylogenetic affinity to the CASH-including group with strong support. The observed tree pattern did not support a clear differentiation of eukaryotes into lineages with red and green algae-derived plastids. The results are discussed in the context of current conceptions of serial endosymbioses and genetic mosaicism in algae with complex plastids.
Collapse
Affiliation(s)
- Mariia Berdieva
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia.
| | - Vera Kalinina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| | - Olga Palii
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| | - Sergei Skarlato
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| |
Collapse
|
9
|
Yazaki E, Uehara T, Sakamoto H, Inagaki Y. Dinotoms possess two evolutionary distinct autophagy-related ubiquitin-like conjugation systems. Protist 2024; 175:126067. [PMID: 39341116 DOI: 10.1016/j.protis.2024.126067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/29/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
Autophagy is an intracellular degradation mechanism by which cytoplasmic materials are delivered to and degraded in the lysosome-fused autophagosome (autolysosome) and proposed to have been established at an early stage of eukaryotic evolution. Dinoflagellates harboring endosymbiotic diatoms (so-called "dinotoms"), which retain their own nuclei and mitochondria in addition to plastids, have been investigated as an intermediate toward the full integration of a eukaryotic phototroph into the host-controlled organelle (i.e., plastid) through endosymbiosis. Pioneering studies systematically evaluated the degree of host governance on several metabolic pathways in the endosymbiotic diatoms (ESDs). However, little attention has been paid to the impact of the endosymbiotic lifestyle on the autophagy operated in the ESDs. In this study, we searched for ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, and ATG12, which are required for autophagosome formation, in the RNA-seq data from dinotoms Durinskia baltica and Kryptoperidinium foliaceum. We detected two evolutionally distinct sets of the ATG proteins in the dinotom species, one affiliated with the dinoflagellate homologs and the other with the diatom homologs in phylogenetic analyses. The results suggest that the ATG proteins descended from the diatom taken up by the dinoflagellate host persist for autophagosome formation and, most likely, autophagy.
Collapse
Affiliation(s)
- Euki Yazaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan; RIKEN iTHEMS, Wako, Saitama, Japan.
| | - Tadaaki Uehara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hirokazu Sakamoto
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Kumazawa M, Ifuku K. Unraveling the evolutionary trajectory of LHCI in red-lineage algae: Conservation, diversification, and neolocalization. iScience 2024; 27:110897. [PMID: 39386759 PMCID: PMC11462038 DOI: 10.1016/j.isci.2024.110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/21/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Red algae and the secondary symbiotic algae that engulfed a red alga as an endosymbiont are called red-lineage algae. Several photosystem (PS) I-light-harvesting complex I (LHCI) structures have been reported from red-lineage algae-two red algae Cyanidioschyzon merolae (Cyanidiophyceae) and Porphyridium purpureum (Rhodophytina), a diatom, and a Cryptophyte. Here, we clarified the orthologous relation of LHCIs by combining a detailed phylogenetic analysis and the structural information of PSI-LHCI. We found that the seven Lhcr groups in LHCI are conserved in Rhodophytina; furthermore, during both genome reduction in Cyanidioschyzonales and endosymbiosis leading to Cryptophyta, some LHCIs were lost and replaced by existing or differentiated LHCIs. We denominate "neolocalization" to these examples of flexible reorganization of LHCIs. This study provides insights into the evolutionary process of LHCIs in red-lineage algae and clarifies the need for both molecular phylogeny and structural information to elucidate the plausible evolutionary history of LHCI.
Collapse
Affiliation(s)
- Minoru Kumazawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Kentaro Ifuku
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Lang T, Cummins SF, Paul NA, Campbell AH. Molecular responses of seaweeds to biotic interactions: A systematic review. JOURNAL OF PHYCOLOGY 2024; 60:1036-1057. [PMID: 39298370 DOI: 10.1111/jpy.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024]
Abstract
Seaweed farming is the single largest aquaculture commodity with >30 million tonnes produced each year. Furthermore, the restoration of lost seaweed forests is gaining significant momentum, particularly for kelps in warming temperate areas. Whether in aquaculture settings, following restoration practices, or in the wild, all seaweeds undergo biotic interactions with a diverse range of co-occurring or cocultured organisms. To date, most research assessing such biotic interactions has focused on the response of the organism interacting with seaweeds, rather than on the seaweeds themselves. However, understanding how seaweeds respond to other organisms, particularly on a molecular scale, is crucial for optimizing outcomes of seaweed farming or restoration efforts and, potentially, also for the conservation of natural populations. In this systematic review, we assessed the molecular processes that seaweeds undergo during biotic interactions and propose priority areas for future research. Despite some insights into the response of seaweeds to biotic interactions, this review specifically highlights a lack of characterization of biomolecules involved in the response to chemical cues derived from interacting organisms (four studies in the last 20 years) and a predominant use of laboratory-based experiments conducted under controlled conditions. Additionally, this review reveals that studies targeting metabolites (70%) are more common than those examining the role of genes (22%) and proteins (8%). To effectively inform seaweed aquaculture efforts, it will be crucial to conduct larger scale experiments simulating natural environments. Also, employing a holistic approach targeting genes and proteins would be beneficial to complement the relatively well-established role of metabolites.
Collapse
Affiliation(s)
- Tomas Lang
- Seaweed Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Scott F Cummins
- Seaweed Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Nicholas A Paul
- Seaweed Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Alexandra H Campbell
- Seaweed Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| |
Collapse
|
12
|
Pietluch F, Mackiewicz P, Ludwig K, Gagat P. A New Model and Dating for the Evolution of Complex Plastids of Red Alga Origin. Genome Biol Evol 2024; 16:evae192. [PMID: 39240751 DOI: 10.1093/gbe/evae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 08/14/2024] [Accepted: 08/31/2024] [Indexed: 09/08/2024] Open
Abstract
Complex plastids, characterized by more than two bounding membranes, still present an evolutionary puzzle for the traditional endosymbiotic theory. Unlike primary plastids that directly evolved from cyanobacteria, complex plastids originated from green or red algae. The Chromalveolata hypothesis proposes a single red alga endosymbiosis that involved the ancestor of all the Chromalveolata lineages: cryptophytes, haptophytes, stramenopiles, and alveolates. As extensive phylogenetic analyses contradict the monophyly of Chromalveolata, serial plastid endosymbiosis models were proposed, suggesting a single secondary red alga endosymbiosis within Cryptophyta, followed by subsequent plastid transfers to other chromalveolates. Our findings based on 97 plastid-encoded markers, 112 species, and robust phylogenetic methods challenge all the existing models. They reveal two independent secondary endosymbioses, one within Cryptophyta and one within stramenopiles, precisely the phylum Ochrophyta, with two different groups of red algae. Consequently, we propose a new model for the emergence of red alga plastid-containing lineages and, through molecular clock analyses, estimate their ages.
Collapse
Affiliation(s)
- Filip Pietluch
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Kacper Ludwig
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Przemysław Gagat
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| |
Collapse
|
13
|
Tian LR, Chen JH. Photosystem I: A Paradigm for Understanding Biological Environmental Adaptation Mechanisms in Cyanobacteria and Algae. Int J Mol Sci 2024; 25:8767. [PMID: 39201454 PMCID: PMC11354412 DOI: 10.3390/ijms25168767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
The process of oxygenic photosynthesis is primarily driven by two multiprotein complexes known as photosystem II (PSII) and photosystem I (PSI). PSII facilitates the light-induced reactions of water-splitting and plastoquinone reduction, while PSI functions as the light-driven plastocyanin-ferredoxin oxidoreductase. In contrast to the highly conserved structure of PSII among all oxygen-evolving photosynthetic organisms, the structures of PSI exhibit remarkable variations, especially for photosynthetic organisms that grow in special environments. In this review, we make a concise overview of the recent investigations of PSI from photosynthetic microorganisms including prokaryotic cyanobacteria and eukaryotic algae from the perspective of structural biology. All known PSI complexes contain a highly conserved heterodimeric core; however, their pigment compositions and peripheral light-harvesting proteins are substantially flexible. This structural plasticity of PSI reveals the dynamic adaptation to environmental changes for photosynthetic organisms.
Collapse
Affiliation(s)
- Li-Rong Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China;
| | - Jing-Hua Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Zhang YZ, Li K, Qin BY, Guo JP, Zhang QB, Zhao DL, Chen XL, Gao J, Liu LN, Zhao LS. Structure of cryptophyte photosystem II-light-harvesting antennae supercomplex. Nat Commun 2024; 15:4999. [PMID: 38866834 PMCID: PMC11169493 DOI: 10.1038/s41467-024-49453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
Cryptophytes are ancestral photosynthetic organisms evolved from red algae through secondary endosymbiosis. They have developed alloxanthin-chlorophyll a/c2-binding proteins (ACPs) as light-harvesting complexes (LHCs). The distinctive properties of cryptophytes contribute to efficient oxygenic photosynthesis and underscore the evolutionary relationships of red-lineage plastids. Here we present the cryo-electron microscopy structure of the Photosystem II (PSII)-ACPII supercomplex from the cryptophyte Chroomonas placoidea. The structure includes a PSII dimer and twelve ACPII monomers forming four linear trimers. These trimers structurally resemble red algae LHCs and cryptophyte ACPI trimers that associate with Photosystem I (PSI), suggesting their close evolutionary links. We also determine a Chl a-binding subunit, Psb-γ, essential for stabilizing PSII-ACPII association. Furthermore, computational calculation provides insights into the excitation energy transfer pathways. Our study lays a solid structural foundation for understanding the light-energy capture and transfer in cryptophyte PSII-ACPII, evolutionary variations in PSII-LHCII, and the origin of red-lineage LHCIIs.
Collapse
Affiliation(s)
- Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Kang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Bing-Yue Qin
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian-Ping Guo
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Quan-Bao Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Dian-Li Zhao
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China.
| | - Lu-Ning Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Long-Sheng Zhao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
15
|
Mao Z, Li X, Li Z, Shen L, Li X, Yang Y, Wang W, Kuang T, Shen JR, Han G. Structure and distinct supramolecular organization of a PSII-ACPII dimer from a cryptophyte alga Chroomonas placoidea. Nat Commun 2024; 15:4535. [PMID: 38806516 PMCID: PMC11133340 DOI: 10.1038/s41467-024-48878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Cryptophyte algae are an evolutionarily distinct and ecologically important group of photosynthetic unicellular eukaryotes. Photosystem II (PSII) of cryptophyte algae associates with alloxanthin chlorophyll a/c-binding proteins (ACPs) to act as the peripheral light-harvesting system, whose supramolecular organization is unknown. Here, we purify the PSII-ACPII supercomplex from a cryptophyte alga Chroomonas placoidea (C. placoidea), and analyze its structure at a resolution of 2.47 Å using cryo-electron microscopy. This structure reveals a dimeric organization of PSII-ACPII containing two PSII core monomers flanked by six symmetrically arranged ACPII subunits. The PSII core is conserved whereas the organization of ACPII subunits exhibits a distinct pattern, different from those observed so far in PSII of other algae and higher plants. Furthermore, we find a Chl a-binding antenna subunit, CCPII-S, which mediates interaction of ACPII with the PSII core. These results provide a structural basis for the assembly of antennas within the supercomplex and possible excitation energy transfer pathways in cryptophyte algal PSII, shedding light on the diversity of supramolecular organization of photosynthetic machinery.
Collapse
Affiliation(s)
- Zhiyuan Mao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xingyue Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhenhua Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Liangliang Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- Cryo-EM Centre, Southern University of Science and Technology, 518055, Guangdong, China
- China National Botanical Garden, 100093, Beijing, China
| | - Xiaoyi Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
| | - Yanyan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257300, Dongying, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257300, Dongying, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- China National Botanical Garden, 100093, Beijing, China.
- Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- China National Botanical Garden, 100093, Beijing, China.
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257300, Dongying, China.
| |
Collapse
|
16
|
Jinkerson RE, Poveda-Huertes D, Cooney EC, Cho A, Ochoa-Fernandez R, Keeling PJ, Xiang T, Andersen-Ranberg J. Biosynthesis of chlorophyll c in a dinoflagellate and heterologous production in planta. Curr Biol 2024; 34:594-605.e4. [PMID: 38157859 DOI: 10.1016/j.cub.2023.12.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Chlorophyll c is a key photosynthetic pigment that has been used historically to classify eukaryotic algae. Despite its importance in global photosynthetic productivity, the pathway for its biosynthesis has remained elusive. Here we define the CHLOROPHYLL C SYNTHASE (CHLCS) discovered through investigation of a dinoflagellate mutant deficient in chlorophyll c. CHLCSs are proteins with chlorophyll a/b binding and 2-oxoglutarate-Fe(II) dioxygenase (2OGD) domains found in peridinin-containing dinoflagellates; other chlorophyll c-containing algae utilize enzymes with only the 2OGD domain or an unknown synthase to produce chlorophyll c. 2OGD-containing synthases across dinoflagellate, diatom, cryptophyte, and haptophyte lineages form a monophyletic group, 8 members of which were also shown to produce chlorophyll c. Chlorophyll c1 to c2 ratios in marine algae are dictated in part by chlorophyll c synthases. CHLCS heterologously expressed in planta results in the accumulation of chlorophyll c1 and c2, demonstrating a path to augment plant pigment composition with algal counterparts.
Collapse
Affiliation(s)
- Robert E Jinkerson
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA; Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA.
| | - Daniel Poveda-Huertes
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Elizabeth C Cooney
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anna Cho
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rocio Ochoa-Fernandez
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tingting Xiang
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA.
| | - Johan Andersen-Ranberg
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
17
|
Gong H, Zhou Z, Bu C, Zhang D, Fang Q, Zhang XY, Song Y. Computational dissection of genetic variation modulating the response of multiple photosynthetic phenotypes to the light environment. BMC Genomics 2024; 25:81. [PMID: 38243219 PMCID: PMC10799405 DOI: 10.1186/s12864-024-09968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The expression of biological traits is modulated by genetics as well as the environment, and the level of influence exerted by the latter may vary across characteristics. Photosynthetic traits in plants are complex quantitative traits that are regulated by both endogenous genetic factors and external environmental factors such as light intensity and CO2 concentration. The specific processes impacted occur dynamically and continuously as the growth of plants changes. Although studies have been conducted to explore the genetic regulatory mechanisms of individual photosynthetic traits or to evaluate the effects of certain environmental variables on photosynthetic traits, the systematic impact of environmental variables on the dynamic process of integrated plant growth and development has not been fully elucidated. RESULTS In this paper, we proposed a research framework to investigate the genetic mechanism of high-dimensional complex photosynthetic traits in response to the light environment at the genome level. We established a set of high-dimensional equations incorporating environmental regulators to integrate functional mapping and dynamic screening of gene‒environment complex systems to elucidate the process and pattern of intrinsic genetic regulatory mechanisms of three types of photosynthetic phenotypes of Populus simonii that varied with light intensity. Furthermore, a network structure was established to elucidate the crosstalk among significant QTLs that regulate photosynthetic phenotypic systems. Additionally, the detection of key QTLs governing the response of multiple phenotypes to the light environment, coupled with the intrinsic differences in genotype expression, provides valuable insights into the regulatory mechanisms that drive the transition of photosynthetic activity and photoprotection in the face of varying light intensity gradients. CONCLUSIONS This paper offers a comprehensive approach to unraveling the genetic architecture of multidimensional variations in photosynthetic phenotypes, considering the combined impact of integrated environmental factors from multiple perspectives.
Collapse
Affiliation(s)
- Huiying Gong
- College of Science, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Ziyang Zhou
- College of Science, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Chenhao Bu
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Deqiang Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Qing Fang
- Faculty of Science, Yamagata University, Yamagata, 990, Japan
| | - Xiao-Yu Zhang
- College of Science, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| | - Yuepeng Song
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| |
Collapse
|
18
|
Jirsová D, Wideman JG. Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin. THE ISME JOURNAL 2024; 18:wrae150. [PMID: 39077993 PMCID: PMC11412368 DOI: 10.1093/ismejo/wrae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
Stramenopiles represent a significant proportion of aquatic and terrestrial biota. Most biologists can name a few, but these are limited to the phototrophic (e.g. diatoms and kelp) or parasitic species (e.g. oomycetes, Blastocystis), with free-living heterotrophs largely overlooked. Though our attention is slowly turning towards heterotrophs, we have only a limited understanding of their biology due to a lack of cultured models. Recent metagenomic and single-cell investigations have revealed the species richness and ecological importance of stramenopiles-especially heterotrophs. However, our lack of knowledge of the cell biology and behaviour of these organisms leads to our inability to match species to their particular ecological functions. Because photosynthetic stramenopiles are studied independently of their heterotrophic relatives, they are often treated separately in the literature. Here, we present stramenopiles as a unified group with shared synapomorphies and evolutionary history. We introduce the main lineages, describe their important biological and ecological traits, and provide a concise update on the origin of the ochrophyte plastid. We highlight the crucial role of heterotrophs and mixotrophs in our understanding of stramenopiles with the goal of inspiring future investigations in taxonomy and life history. To understand each of the many diversifications within stramenopiles-towards autotrophy, osmotrophy, or parasitism-we must understand the ancestral heterotrophic flagellate from which they each evolved. We hope the following will serve as a primer for new stramenopile researchers or as an integrative refresher to those already in the field.
Collapse
Affiliation(s)
- Dagmar Jirsová
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
| |
Collapse
|
19
|
Füssy Z, Oborník M. Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events. Methods Mol Biol 2024; 2776:21-41. [PMID: 38502496 DOI: 10.1007/978-1-0716-3726-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
A considerable part of the diversity of eukaryotic phototrophs consists of algae with plastids that evolved from endosymbioses between two eukaryotes. These complex plastids are characterized by a high number of envelope membranes (more than two) and some of them contain a residual nucleus of the endosymbiotic alga called a nucleomorph. Complex plastid-bearing algae are thus chimeric cell assemblies, eukaryotic symbionts living in a eukaryotic host. In contrast, the primary plastids of the Archaeplastida (plants, green algae, red algae, and glaucophytes) possibly evolved from a single endosymbiosis with a cyanobacterium and are surrounded by two membranes. Complex plastids have been acquired several times by unrelated groups of eukaryotic heterotrophic hosts, suggesting that complex plastids are somewhat easier to obtain than primary plastids. Evidence suggests that complex plastids arose twice independently in the green lineage (euglenophytes and chlorarachniophytes) through secondary endosymbiosis, and four times in the red lineage, first through secondary endosymbiosis in cryptophytes, then by higher-order events in stramenopiles, alveolates, and haptophytes. Engulfment of primary and complex plastid-containing algae by eukaryotic hosts (secondary, tertiary, and higher-order endosymbioses) is also responsible for numerous plastid replacements in dinoflagellates. Plastid endosymbiosis is accompanied by massive gene transfer from the endosymbiont to the host nucleus and cell adaptation of both endosymbiotic partners, which is related to the trophic switch to phototrophy and loss of autonomy of the endosymbiont. Such a process is essential for the metabolic integration and division control of the endosymbiont in the host. Although photosynthesis is the main advantage of acquiring plastids, loss of photosynthesis often occurs in algae with complex plastids. This chapter summarizes the essential knowledge of the acquisition, evolution, and function of complex plastids.
Collapse
Affiliation(s)
- Zoltán Füssy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
20
|
Greenwold MJ, Merritt K, Richardson TL, Dudycha JL. A three-genome ultraconserved element phylogeny of cryptophytes. Protist 2023; 174:125994. [PMID: 37935085 DOI: 10.1016/j.protis.2023.125994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/18/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023]
Abstract
Cryptophytes are single celled protists found in all aquatic environments. They are composed of a heterotrophic genus, Goniomonas, and a largely autotrophic group comprising many genera. Cryptophytes evolved through secondary endosymbiosis between a host eukaryotic heterotroph and a symbiont red alga. This merger resulted in a four-genome system that includes the nuclear and mitochondrial genomes from the host and a second nuclear genome (nucleomorph) and plastid genome inherited from the symbiont. Here, we make use of different genomes (with potentially distinct evolutionary histories) to perform a phylogenomic study of the early history of cryptophytes. Using ultraconserved elements from the host nuclear genome and symbiont nucleomorph and plastid genomes, we produce a three-genome phylogeny of 91 strains of cryptophytes. Our phylogenetic analyses find that that there are three major cryptophyte clades: Clade 1 comprises Chroomonas and Hemiselmis species, Clade 2, a taxonomically rich clade, comprises at least twelve genera, and Clade 3, comprises the heterotrophic Goniomonas species. Each of these major clades include both freshwater and marine species, but subclades within these clades differ in degrees of niche conservatism. Finally, we discuss priorities for taxonomic revision to Cryptophyceae based on previous studies and in light of these phylogenomic analyses.
Collapse
Affiliation(s)
- Matthew J Greenwold
- Biology Department, University of Texas at Tyler, 3900 University Blvd., Tyler, TX, 75799, USA.
| | - Kristiaän Merritt
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA
| | - Tammi L Richardson
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA; School of the Earth, Ocean, and Environment, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA
| |
Collapse
|
21
|
Bolik S, Schlaich A, Mukhina T, Amato A, Bastien O, Schneck E, Demé B, Jouhet J. Lipid bilayer properties potentially contributed to the evolutionary disappearance of betaine lipids in seed plants. BMC Biol 2023; 21:275. [PMID: 38017456 PMCID: PMC10685587 DOI: 10.1186/s12915-023-01775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Many organisms rely on mineral nutrients taken directly from the soil or aquatic environment, and therefore, developed mechanisms to cope with the limitation of a given essential nutrient. For example, photosynthetic cells have well-defined responses to phosphate limitation, including the replacement of cellular membrane phospholipids with non-phosphorous lipids. Under phosphate starvation, phospholipids in extraplastidial membranes are replaced by betaine lipids in microalgae. In higher plants, the synthesis of betaine lipid is lost, driving plants to other strategies to cope with phosphate starvation where they replace their phospholipids by glycolipids. RESULTS The aim of this work was to evaluate to what extent betaine lipids and PC lipids share physicochemical properties and could substitute for each other. By neutron diffraction experiments and dynamic molecular simulation of two synthetic lipids, the dipalmitoylphosphatidylcholine (DPPC) and the dipalmitoyl-diacylglyceryl-N,N,N-trimethylhomoserine (DP-DGTS), we found that DP-DGTS bilayers are thicker than DPPC bilayers and therefore are more rigid. Furthermore, DP-DGTS bilayers are more repulsive, especially at long range, maybe due to unexpected unscreened electrostatic contribution. Finally, DP-DGTS bilayers could coexist in the gel and fluid phases. CONCLUSION The different properties and hydration responses of PC and DGTS provide an explanation for the diversity of betaine lipids observed in marine organisms and for their disappearance in seed plants.
Collapse
Affiliation(s)
- Stéphanie Bolik
- Laboratoire Physiologie Cellulaire Et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
- Large Scale Structures Group, Institut Laue-Langevin, 38000, Grenoble, France
| | - Alexander Schlaich
- Institute for Computational Physics, Universität Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Science (SimTech), Universität Stuttgart, Stuttgart, Germany
| | - Tetiana Mukhina
- Institute for Condensed Matter Physics, Darmstadt, Darmstadt, TU, Germany
| | - Alberto Amato
- Laboratoire Physiologie Cellulaire Et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
| | - Olivier Bastien
- Laboratoire Physiologie Cellulaire Et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, Darmstadt, Darmstadt, TU, Germany
| | - Bruno Demé
- Large Scale Structures Group, Institut Laue-Langevin, 38000, Grenoble, France.
| | - Juliette Jouhet
- Laboratoire Physiologie Cellulaire Et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France.
| |
Collapse
|
22
|
Miyagishima SY. Taming the perils of photosynthesis by eukaryotes: constraints on endosymbiotic evolution in aquatic ecosystems. Commun Biol 2023; 6:1150. [PMID: 37952050 PMCID: PMC10640588 DOI: 10.1038/s42003-023-05544-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023] Open
Abstract
An ancestral eukaryote acquired photosynthesis by genetically integrating a cyanobacterial endosymbiont as the chloroplast. The chloroplast was then further integrated into many other eukaryotic lineages through secondary endosymbiotic events of unicellular eukaryotic algae. While photosynthesis enables autotrophy, it also generates reactive oxygen species that can cause oxidative stress. To mitigate the stress, photosynthetic eukaryotes employ various mechanisms, including regulating chloroplast light absorption and repairing or removing damaged chloroplasts by sensing light and photosynthetic status. Recent studies have shown that, besides algae and plants with innate chloroplasts, several lineages of numerous unicellular eukaryotes engage in acquired phototrophy by hosting algal endosymbionts or by transiently utilizing chloroplasts sequestrated from algal prey in aquatic ecosystems. In addition, it has become evident that unicellular organisms engaged in acquired phototrophy, as well as those that feed on algae, have also developed mechanisms to cope with photosynthetic oxidative stress. These mechanisms are limited but similar to those employed by algae and plants. Thus, there appear to be constraints on the evolution of those mechanisms, which likely began by incorporating photosynthetic cells before the establishment of chloroplasts by extending preexisting mechanisms to cope with oxidative stress originating from mitochondrial respiration and acquiring new mechanisms.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
- The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
23
|
Jiang Y, Cao T, Yang Y, Zhang H, Zhang J, Li X. A chlorophyll c synthase widely co-opted by phytoplankton. Science 2023; 382:92-98. [PMID: 37797009 DOI: 10.1126/science.adg7921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023]
Abstract
Marine and terrestrial photosynthesis exhibit a schism in the accessory chlorophyll (Chl) that complements the function of Chl a: Chl b for green plants versus Chl c for most eukaryotic phytoplankton. The enzymes that mediate Chl c biosynthesis have long remained elusive. In this work, we identified the CHLC dioxygenase (Phatr3_J43737) from the marine diatom Phaeodactylum tricornutum as the Chl c synthase. The chlc mutants lacked Chl c, instead accumulating its precursors, and exhibited growth defects. In vitro, recombinant CHLC protein converted these precursors into Chl c, thereby confirming its identity. Phylogenetic evidence demonstrates conserved use of CHLC across phyla but also the existence of distinct Chl c synthases in different algal groups. Our study addresses a long-outstanding question with implications for both contemporary and ancient marine photosynthesis.
Collapse
Affiliation(s)
- Yanyou Jiang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tianjun Cao
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuqing Yang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Huan Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jingyu Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaobo Li
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
24
|
Brown AL, Casarez GA, Moeller HV. Acquired Phototrophy as an Evolutionary Path to Mixotrophy. Am Nat 2023; 202:458-470. [PMID: 37792914 DOI: 10.1086/725918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractAcquired photosynthesis transforms genotypically heterotrophic lineages into autotrophs. Transient acquisitions of eukaryotic chloroplasts may provide key evolutionary insight into the endosymbiosis process-the hypothesized mechanism by which eukaryotic cells obtained new functions via organelle retention. Here, we use an eco-evolutionary model to study the environmental conditions under which chloroplast retention is evolutionarily favorable. We focus on kleptoplastidic lineages-which steal functional chloroplasts from their prey-as hypothetical evolutionary intermediates. Our adaptive dynamics analysis reveals a spectrum of evolutionarily stable strategies ranging from phagotrophy to phototrophy to obligate kleptoplasty. Our model suggests that a low-light niche and weak (or absent) trade-offs between chloroplast retention and overall digestive ability favor the evolution of phototrophy. In contrast, when consumers experience strong trade-offs, obligate kleptoplasty emerges as an evolutionary end point. Therefore, the preevolved trade-offs that underlie an evolving lineage's physiology will likely constrain its evolutionary trajectory.
Collapse
|
25
|
Gomes KM, Nunn BL, Chappell PD, Jenkins BD. Subcellular proteomics for determining iron-limited remodeling of plastids in the model diatom Thalassiosira pseudonana (Bacillariophyta). JOURNAL OF PHYCOLOGY 2023; 59:1085-1099. [PMID: 37615442 DOI: 10.1111/jpy.13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Abstract
Diatoms are important primary producers in the world's oceans, yet their growth is constrained in large regions by low bioavailable iron (Fe). Low-Fe stress-induced limitation of primary production is due to requirements for Fe in components of essential metabolic pathways including photosynthesis and other chloroplast plastid functions. Studies have shown that under low-Fe stress, diatoms alter plastid-specific processes, including components of electron transport. These physiological changes suggest changes of protein content and in protein abundances within the diatom plastid. While in silico predictions provide putative information on plastid-localized proteins, knowledge of diatom plastid proteins remains limited in comparison to well-studied model photosynthetic organisms. To address this, we employed shotgun proteomics to investigate the proteome of subcellular plastid-enriched fractions from Thalassiosira pseudonana to gain a better understanding of how the plastid proteome is remodeled in response to Fe limitation. Using mass spectrometry-based peptide identification and quantification, we analyzed T. pseudonana grown under Fe-replete and -limiting conditions. Through these analyses, we inferred the relative quantities of each protein, revealing that Fe limitation regulates major metabolic pathways in the plastid, including the Calvin cycle. Additionally, we observed changes in the expression of light-harvesting proteins. In silico localization predictions of proteins identified in this plastid-enriched proteome allowed for an in-depth comparison of theoretical versus observed plastid-localization, providing evidence for the potential of additional protein import pathways into the diatom plastid.
Collapse
Affiliation(s)
- Kristofer M Gomes
- Department of Biological Sciences, University of Rhode Island, Rhode Island, Kingston, USA
| | - Brook L Nunn
- Department of Genome Sciences, University of Washington, Washington, Seattle, USA
| | - P Dreux Chappell
- College of Marine Science, University of South Florida, Florida, St. Petersburg, USA
| | - Bethany D Jenkins
- Department of Cell and Molecular Biology, University of Rhode Island, Rhode Island, Kingston, USA
- Graduate School of Oceanography, University of Rhode Island, Rhode Island, Narragansett, USA
| |
Collapse
|
26
|
Bowles AMC, Williamson CJ, Williams TA, Lenton TM, Donoghue PCJ. The origin and early evolution of plants. TRENDS IN PLANT SCIENCE 2023; 28:312-329. [PMID: 36328872 DOI: 10.1016/j.tplants.2022.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Plant (archaeplastid) evolution has transformed the biosphere, but we are only now beginning to learn how this took place through comparative genomics, phylogenetics, and the fossil record. This has illuminated the phylogeny of Archaeplastida, Viridiplantae, and Streptophyta, and has resolved the evolution of key characters, genes, and genomes - revealing that many key innovations evolved long before the clades with which they have been casually associated. Molecular clock analyses estimate that Streptophyta and Viridiplantae emerged in the late Mesoproterozoic to late Neoproterozoic, whereas Archaeplastida emerged in the late-mid Palaeoproterozoic. Together, these insights inform on the coevolution of plants and the Earth system that transformed ecology and global biogeochemical cycles, increased weathering, and precipitated snowball Earth events, during which they would have been key to oxygen production and net primary productivity (NPP).
Collapse
Affiliation(s)
- Alexander M C Bowles
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK; Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| | | | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Timothy M Lenton
- Global Systems Institute, University of Exeter, Laver Building, North Park Road, Exeter EX4 4QE, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| |
Collapse
|
27
|
Helliwell KE. Emerging trends in nitrogen and phosphorus signalling in photosynthetic eukaryotes. TRENDS IN PLANT SCIENCE 2023; 28:344-358. [PMID: 36372648 DOI: 10.1016/j.tplants.2022.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) and nitrogen (N) are the major nutrients that constrain plant and algal growth in nature. Recent advances in understanding nutrient signalling mechanisms of these organisms have revealed molecular attributes to optimise N and P acquisition. This has illuminated the importance of interplay between N and P regulatory networks, highlighting a need to study synergistic interactions rather than single-nutrient effects. Emerging insights of nutrient signalling in polyphyletic model plants and algae hint that, although core P-starvation signalling components are conserved, distinct mechanisms for P (and N) sensing have arisen. Here, the N and P signalling mechanisms of diverse photosynthetic eukaryotes are examined, drawing parallels and differences between taxa. Future directions to understand their molecular basis, evolution, and ecology are proposed.
Collapse
Affiliation(s)
- Katherine E Helliwell
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; Marine Biological Association, Citadel Hill, Plymouth PL1 2PB, UK.
| |
Collapse
|
28
|
Photoacclimation of photosystem II photochemistry induced by rose Bengal and methyl viologen in Nannochloropsis oceanica. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:2205-2215. [PMID: 36074327 DOI: 10.1007/s43630-022-00289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/16/2022] [Indexed: 12/13/2022]
Abstract
The photosynthetic apparatus is a major reactive oxygen species (ROS) proliferator, especially in high-light environments. The role of ROS in photoinhibition and photoacclimation mechanisms has been extensively explored, primarily in model plant species. However, little work has been performed on the topic in non-Archaeplastida organisms, such as the model heterokont species Nannochloropsis oceanica. To investigate the photoacclimation and damaging impact of singlet oxygen and superoxide anions on the photosynthetic apparatus of N. oceanica, we subjected cells to two doses of methyl viologen and rose bengal. Significant findings: Rose bengal (a singlet-oxygen photosensitizer) induced changes to the photosynthetic apparatus and PSII photochemistry mirroring high-light-acclimated cells, suggesting that singlet-oxygen signaling plays a role in the high-light acclimation of PSII. We further suggest that this singlet-oxygen pathway is mediated outside the plastid, given that rose bengal caused no detectable damage to the photosynthetic apparatus. Methyl viologen (a superoxide-anion sensitizer) induced an enhanced non-photochemical quenching response, similar to what occurs in high-light-acclimated cells. We propose that superoxide anions produced inside the plastid help regulate the high-light acclimation of photoprotective pathways.
Collapse
|
29
|
Gololobova MA, Belyakova GA. Position of Algae on the Tree of Life. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2022; 507:312-326. [PMID: 36781528 DOI: 10.1134/s0012496622060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/15/2023]
Abstract
Issues related to evolution of algal chloroplasts are considered. The position of algae on the Tree of Life is discussed. Algae are now included in five of the monophyletic eukaryotic supergroups: Archaeplastida (Glaucocystophyta, Rhodophyta, Prasinodermophyta, Chlorophyta, and Charophyta), TSAR (Ochrophyta; Dinophyta; Chlorarachniophyta; and photosynthetic species of the genera Chromera, Vetrella, and Paulinella), Haptista (Prymnesiophyta and Rappemonads), Cryptista (Cryptophyta), and Discoba (Euglenophyta). The algal divisions and the respective supergroups are characterized in brief.
Collapse
Affiliation(s)
- M A Gololobova
- Biological Faculty, Moscow State University, Moscow, Russia.
| | - G A Belyakova
- Biological Faculty, Moscow State University, Moscow, Russia
| |
Collapse
|
30
|
Tilney CL, Hubbard KA. Expression of nuclear-encoded, haptophyte-derived ftsH genes support extremely rapid PSII repair and high-light photoacclimation in Karenia brevis (Dinophyceae). HARMFUL ALGAE 2022; 118:102295. [PMID: 36195421 DOI: 10.1016/j.hal.2022.102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
Karenia brevis, a neurotoxic dinoflagellate that produces brevetoxins, is endemic to the Gulf of Mexico and can grow at high irradiances typical of surface waters found there. To build upon a growing number of studies addressing high-light tolerance in K. brevis, specific photobiology and molecular mechanisms underlying this capacity were evaluated in culture. Since photosystem II (PSII) repair cycle activity can be crucial to high light tolerance in plants and algae, the present study assessed this capacity in K. brevis and characterized the ftsH-like genes which are fundamental to this process. Compared with cultures grown in low-light, cultures grown in high-light showed a 65-fold increase in PSII photoinactivation, a ∼50-fold increase in PSII repair, enhanced nonphotochemical quenching (NPQ), and depressed Fv/Fm. Repair rates were among the fastest reported in phytoplankton. Publicly available K. brevis transcriptomes (MMETSP) were queried for ftsH-like sequences and refined with additional sequencing from two K. brevis strains. The genes were phylogenetically related to haptophyte orthologs, implicating acquisition during tertiary endosymbiosis. RT-qPCR of three of the four ftsH-like homologs revealed that poly-A tails predominated in all homologs, and that the most highly expressed homolog had a 5' splice leader and amino-acid motifs characteristic of chloroplast targeting, indicating nuclear encoding for this plastid-targeted gene. High-light cultures showed a ∼1.5-fold upregulation in mRNA expression of the thylakoid-associated genes. Overall, in conjunction with NPQ mechanisms, rapid PSII repair mediated by a haptophyte-derived ftsH prevents chronic photoinhibition in K. brevis. Our findings continue to build the case that high-light photobiology-supported by the acquisition and maintenance of tertiary endosymbiotic genes-is critical to the success of K. brevis in the Gulf of Mexico.
Collapse
Affiliation(s)
- Charles L Tilney
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, 33701, USA; Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, G5M 1L7, Canada.
| | - Katherine A Hubbard
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, 33701, USA
| |
Collapse
|
31
|
Bai Y, Cao T, Dautermann O, Buschbeck P, Cantrell MB, Chen Y, Lein CD, Shi X, Ware MA, Yang F, Zhang H, Zhang L, Peers G, Li X, Lohr M. Green diatom mutants reveal an intricate biosynthetic pathway of fucoxanthin. Proc Natl Acad Sci U S A 2022; 119:e2203708119. [PMID: 36095219 PMCID: PMC9499517 DOI: 10.1073/pnas.2203708119] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/08/2022] [Indexed: 01/17/2023] Open
Abstract
Fucoxanthin is a major light-harvesting pigment in ecologically important algae such as diatoms, haptophytes, and brown algae (Phaeophyceae). Therefore, it is a major driver of global primary productivity. Species of these algal groups are brown colored because the high amounts of fucoxanthin bound to the proteins of their photosynthetic machineries enable efficient absorption of green light. While the structure of these fucoxanthin-chlorophyll proteins has recently been resolved, the biosynthetic pathway of fucoxanthin is still unknown. Here, we identified two enzymes central to this pathway by generating corresponding knockout mutants of the diatom Phaeodactylum tricornutum that are green due to the lack of fucoxanthin. Complementation of the mutants with the native genes or orthologs from haptophytes restored fucoxanthin biosynthesis. We propose a complete biosynthetic path to fucoxanthin in diatoms and haptophytes based on the carotenoid intermediates identified in the mutants and in vitro biochemical assays. It is substantially more complex than anticipated and reveals diadinoxanthin metabolism as the central regulatory hub connecting the photoprotective xanthophyll cycle and the formation of fucoxanthin. Moreover, our data show that the pathway evolved by repeated duplication and neofunctionalization of genes for the xanthophyll cycle enzymes violaxanthin de-epoxidase and zeaxanthin epoxidase. Brown algae lack diadinoxanthin and the genes described here and instead use an alternative pathway predicted to involve fewer enzymes. Our work represents a major step forward in elucidating the biosynthesis of fucoxanthin and understanding the evolution, biogenesis, and regulation of the photosynthetic machinery in algae.
Collapse
Affiliation(s)
- Yu Bai
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878
| | - Tianjun Cao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Oliver Dautermann
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, 55099 Mainz, Germany
| | - Paul Buschbeck
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, 55099 Mainz, Germany
| | - Michael B. Cantrell
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878
| | - Yinjuan Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, China
| | - Christopher D. Lein
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, 55099 Mainz, Germany
| | - Xiaohuo Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, China
| | - Maxwell A. Ware
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878
| | - Fenghua Yang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Huan Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Lihan Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878
| | - Xiaobo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Martin Lohr
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, 55099 Mainz, Germany
| |
Collapse
|
32
|
Azuma T, Pánek T, Tice AK, Kayama M, Kobayashi M, Miyashita H, Suzaki T, Yabuki A, Brown MW, Kamikawa R. An enigmatic stramenopile sheds light on early evolution in Ochrophyta plastid organellogenesis. Mol Biol Evol 2022; 39:6555011. [PMID: 35348760 PMCID: PMC9004409 DOI: 10.1093/molbev/msac065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ochrophyta is an algal group belonging to the Stramenopiles and comprises diverse lineages of algae which contribute significantly to the oceanic ecosystems as primary producers. However, early evolution of the plastid organelle in Ochrophyta is not fully understood. In this study, we provide a well-supported tree of the Stramenopiles inferred by the large-scale phylogenomic analysis that unveils the eukaryvorous (nonphotosynthetic) protist Actinophrys sol (Actinophryidae) is closely related to Ochrophyta. We used genomic and transcriptomic data generated from A. sol to detect molecular traits of its plastid and we found no evidence of plastid genome and plastid-mediated biosynthesis, consistent with previous ultrastructural studies that did not identify any plastids in Actinophryidae. Moreover, our phylogenetic analyses of particular biosynthetic pathways provide no evidence of a current and past plastid in A. sol. However, we found more than a dozen organellar aminoacyl-tRNA synthases (aaRSs) that are of algal origin. Close relationships between aaRS from A. sol and their ochrophyte homologs document gene transfer of algal genes that happened before the divergence of Actinophryidae and Ochrophyta lineages. We further showed experimentally that organellar aaRSs of A. sol are targeted exclusively to mitochondria, although organellar aaRSs in Ochrophyta are dually targeted to mitochondria and plastids. Together, our findings suggested that the last common ancestor of Actinophryidae and Ochrophyta had not yet completed the establishment of host–plastid partnership as seen in the current Ochrophyta species, but acquired at least certain nuclear-encoded genes for the plastid functions.
Collapse
Affiliation(s)
- Tomonori Azuma
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, Japan
| | - Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Motoki Kayama
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, Japan
| | | | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, Japan
| | | | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology, Japan
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa oiwake cho, Sakyo ku, Kyoto, Kyoto, Japan
| |
Collapse
|
33
|
Oborník M. Organellar Evolution: A Path from Benefit to Dependence. Microorganisms 2022; 10:microorganisms10010122. [PMID: 35056571 PMCID: PMC8781833 DOI: 10.3390/microorganisms10010122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/10/2022] Open
Abstract
Eukaryotic organelles supposedly evolved from their bacterial ancestors because of their benefits to host cells. However, organelles are quite often retained, even when the beneficial metabolic pathway is lost, due to something other than the original beneficial function. The organellar function essential for cell survival is, in the end, the result of organellar evolution, particularly losses of redundant metabolic pathways present in both the host and endosymbiont, followed by a gradual distribution of metabolic functions between the organelle and host. Such biological division of metabolic labor leads to mutual dependence of the endosymbiont and host. Changing environmental conditions, such as the gradual shift of an organism from aerobic to anaerobic conditions or light to dark, can make the original benefit useless. Therefore, it can be challenging to deduce the original beneficial function, if there is any, underlying organellar acquisition. However, it is also possible that the organelle is retained because it simply resists being eliminated or digested untill it becomes indispensable.
Collapse
Affiliation(s)
- Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic;
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| |
Collapse
|
34
|
Marella TK, Bhattacharjya R, Tiwari A. Impact of organic carbon acquisition on growth and functional biomolecule production in diatoms. Microb Cell Fact 2021; 20:135. [PMID: 34266439 PMCID: PMC8281487 DOI: 10.1186/s12934-021-01627-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/03/2021] [Indexed: 02/01/2023] Open
Abstract
Diatoms are unicellular photosynthetic protists which constitute one of the most successful microalgae contributing enormously to global primary productivity and nutrient cycles in marine and freshwater habitats. Though they possess the ability to biosynthesize high value compounds like eicosatetraenoic acid (EPA), fucoxanthin (Fx) and chrysolaminarin (Chrl) the major bottle neck in commercialization is their inability to attain high density growth. However, their unique potential of acquiring diverse carbon sources via varied mechanisms enables them to adapt and grow under phototrophic, mixotrophic as well as heterotrophic modes. Growth on organic carbon substrates promotes higher biomass, lipid, and carbohydrate productivity, which further triggers the yield of various biomolecules. Since, the current mass culture practices primarily employ open pond and tubular photobioreactors for phototrophic growth, they become cost intensive and economically non-viable. Therefore, in this review we attempt to explore and compare the mechanisms involved in organic carbon acquisition in diatoms and its implications on mixotrophic and heterotrophic growth and biomolecule production and validate how these strategies could pave a way for future exploration and establishment of sustainable diatom biorefineries for novel biomolecules.
Collapse
Affiliation(s)
- Thomas Kiran Marella
- Algae Biomass and Energy System R&D Center (ABES), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Raya Bhattacharjya
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
35
|
Abstract
The origin of plastids (chloroplasts) by endosymbiosis stands as one of the most important events in the history of eukaryotic life. The genetic, biochemical, and cell biological integration of a cyanobacterial endosymbiont into a heterotrophic host eukaryote approximately a billion years ago paved the way for the evolution of diverse algal groups in a wide range of aquatic and, eventually, terrestrial environments. Plastids have on multiple occasions also moved horizontally from eukaryote to eukaryote by secondary and tertiary endosymbiotic events. The overall picture of extant photosynthetic diversity can best be described as “patchy”: Plastid-bearing lineages are spread far and wide across the eukaryotic tree of life, nested within heterotrophic groups. The algae do not constitute a monophyletic entity, and understanding how, and how often, plastids have moved from branch to branch on the eukaryotic tree remains one of the most fundamental unsolved problems in the field of cell evolution. In this review, we provide an overview of recent advances in our understanding of the origin and spread of plastids from the perspective of comparative genomics. Recent years have seen significant improvements in genomic sampling from photosynthetic and nonphotosynthetic lineages, both of which have added important pieces to the puzzle of plastid evolution. Comparative genomics has also allowed us to better understand how endosymbionts become organelles.
Collapse
Affiliation(s)
- Shannon J Sibbald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John M Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
36
|
Phylogenomic fingerprinting of tempo and functions of horizontal gene transfer within ochrophytes. Proc Natl Acad Sci U S A 2021; 118:2009974118. [PMID: 33419955 DOI: 10.1073/pnas.2009974118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer (HGT) is an important source of novelty in eukaryotic genomes. This is particularly true for the ochrophytes, a diverse and important group of algae. Previous studies have shown that ochrophytes possess a mosaic of genes derived from bacteria and eukaryotic algae, acquired through chloroplast endosymbiosis and from HGTs, although understanding of the time points and mechanisms underpinning these transfers has been restricted by the depth of taxonomic sampling possible. We harness an expanded set of ochrophyte sequence libraries, alongside automated and manual phylogenetic annotation, in silico modeling, and experimental techniques, to assess the frequency and functions of HGT across this lineage. Through manual annotation of thousands of single-gene trees, we identify continuous bacterial HGT as the predominant source of recently arrived genes in the model diatom Phaeodactylum tricornutum Using a large-scale automated dataset, a multigene ochrophyte reference tree, and mathematical reconciliation of gene trees, we note a probable elevation of bacterial HGTs at foundational points in diatom evolution, following their divergence from other ochrophytes. Finally, we demonstrate that throughout ochrophyte evolutionary history, bacterial HGTs have been enriched in genes encoding secreted proteins. Our study provides insights into the sources and frequency of HGTs, and functional contributions that HGT has made to algal evolution.
Collapse
|
37
|
Goodson HV, Kelley JB, Brawley SH. Cytoskeletal diversification across 1 billion years: What red algae can teach us about the cytoskeleton, and vice versa. Bioessays 2021; 43:e2000278. [PMID: 33797088 DOI: 10.1002/bies.202000278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/05/2022]
Abstract
The cytoskeleton has a central role in eukaryotic biology, enabling cells to organize internally, polarize, and translocate. Studying cytoskeletal machinery across the tree of life can identify common elements, illuminate fundamental mechanisms, and provide insight into processes specific to less-characterized organisms. Red algae represent an ancient lineage that is diverse, ecologically significant, and biomedically relevant. Recent genomic analysis shows that red algae have a surprising paucity of cytoskeletal elements, particularly molecular motors. Here, we review the genomic and cell biological evidence and propose testable models of how red algal cells might perform processes including cell motility, cytokinesis, intracellular transport, and secretion, given their reduced cytoskeletons. In addition to enhancing understanding of red algae and lineages that evolved from red algal endosymbioses (e.g., apicomplexan parasites), these ideas may also provide insight into cytoskeletal processes in animal cells.
Collapse
Affiliation(s)
- Holly V Goodson
- Department of Chemistry and Biochemistry and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Joshua B Kelley
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Susan H Brawley
- School of Marine Sciences, University of Maine, Orono, Maine, USA
| |
Collapse
|
38
|
Strassert JFH, Irisarri I, Williams TA, Burki F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat Commun 2021; 12:1879. [PMID: 33767194 PMCID: PMC7994803 DOI: 10.1038/s41467-021-22044-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/25/2021] [Indexed: 01/31/2023] Open
Abstract
In modern oceans, eukaryotic phytoplankton is dominated by lineages with red algal-derived plastids such as diatoms, dinoflagellates, and coccolithophores. Despite the ecological importance of these groups and many others representing a huge diversity of forms and lifestyles, we still lack a comprehensive understanding of their evolution and how they obtained their plastids. New hypotheses have emerged to explain the acquisition of red algal-derived plastids by serial endosymbiosis, but the chronology of these putative independent plastid acquisitions remains untested. Here, we establish a timeframe for the origin of red algal-derived plastids under scenarios of serial endosymbiosis, using Bayesian molecular clock analyses applied on a phylogenomic dataset with broad sampling of eukaryote diversity. We find that the hypotheses of serial endosymbiosis are chronologically possible, as the stem lineages of all red plastid-containing groups overlap in time. This period in the Meso- and Neoproterozoic Eras set the stage for the later expansion to dominance of red algal-derived primary production in the contemporary oceans, which profoundly altered the global geochemical and ecological conditions of the Earth.
Collapse
Affiliation(s)
- Jürgen F H Strassert
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
- Department of Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Iker Irisarri
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Göttingen, and Campus Institute Data Science (CIDAS), Göttingen, Germany
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, UK
| | - Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
39
|
Rathbone HW, Michie KA, Landsberg MJ, Green BR, Curmi PMG. Scaffolding proteins guide the evolution of algal light harvesting antennas. Nat Commun 2021; 12:1890. [PMID: 33767155 PMCID: PMC7994580 DOI: 10.1038/s41467-021-22128-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
Photosynthetic organisms have developed diverse antennas composed of chromophorylated proteins to increase photon capture. Cryptophyte algae acquired their photosynthetic organelles (plastids) from a red alga by secondary endosymbiosis. Cryptophytes lost the primary red algal antenna, the red algal phycobilisome, replacing it with a unique antenna composed of αβ protomers, where the β subunit originates from the red algal phycobilisome. The origin of the cryptophyte antenna, particularly the unique α subunit, is unknown. Here we show that the cryptophyte antenna evolved from a complex between a red algal scaffolding protein and phycoerythrin β. Published cryo-EM maps for two red algal phycobilisomes contain clusters of unmodelled density homologous to the cryptophyte-αβ protomer. We modelled these densities, identifying a new family of scaffolding proteins related to red algal phycobilisome linker proteins that possess multiple copies of a cryptophyte-α-like domain. These domains bind to, and stabilise, a conserved hydrophobic surface on phycoerythrin β, which is the same binding site for its primary partner in the red algal phycobilisome, phycoerythrin α. We propose that after endosymbiosis these scaffolding proteins outcompeted the primary binding partner of phycoerythrin β, resulting in the demise of the red algal phycobilisome and emergence of the cryptophyte antenna. Cryptophytes acquired plastids from red algae but replaced the light-harvesting phycobilisome with a unique cryptophyte antenna. Here via analysis of phycobilisome cryo-EM structures, Rathbone et al. propose that the α subunit of the cryptophyte antenna originated from phycobilisome linker proteins
Collapse
Affiliation(s)
- Harry W Rathbone
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Katharine A Michie
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.,Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Beverley R Green
- Botany Department, University of British Columbia, Vancouver, BC, V6N 3T7, Canada
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
40
|
Pyrih J, Žárský V, Fellows JD, Grosche C, Wloga D, Striepen B, Maier UG, Tachezy J. The iron-sulfur scaffold protein HCF101 unveils the complexity of organellar evolution in SAR, Haptista and Cryptista. BMC Ecol Evol 2021; 21:46. [PMID: 33740894 PMCID: PMC7980591 DOI: 10.1186/s12862-021-01777-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 11/22/2022] Open
Abstract
Background Nbp35-like proteins (Nbp35, Cfd1, HCF101, Ind1, and AbpC) are P-loop NTPases that serve as components of iron-sulfur cluster (FeS) assembly machineries. In eukaryotes, Ind1 is present in mitochondria, and its function is associated with the assembly of FeS clusters in subunits of respiratory Complex I, Nbp35 and Cfd1 are the components of the cytosolic FeS assembly (CIA) pathway, and HCF101 is involved in FeS assembly of photosystem I in plastids of plants (chHCF101). The AbpC protein operates in Bacteria and Archaea. To date, the cellular distribution of these proteins is considered to be highly conserved with only a few exceptions. Results We searched for the genes of all members of the Nbp35-like protein family and analyzed their targeting sequences. Nbp35 and Cfd1 were predicted to reside in the cytoplasm with some exceptions of Nbp35 localization to the mitochondria; Ind1was found in the mitochondria, and HCF101 was predicted to reside in plastids (chHCF101) of all photosynthetically active eukaryotes. Surprisingly, we found a second HCF101 paralog in all members of Cryptista, Haptista, and SAR that was predicted to predominantly target mitochondria (mHCF101), whereas Ind1 appeared to be absent in these organisms. We also identified a few exceptions, as apicomplexans possess mHCF101 predicted to localize in the cytosol and Nbp35 in the mitochondria. Our predictions were experimentally confirmed in selected representatives of Apicomplexa (Toxoplasma gondii), Stramenopila (Phaeodactylum tricornutum, Thalassiosira pseudonana), and Ciliophora (Tetrahymena thermophila) by tagging proteins with a transgenic reporter. Phylogenetic analysis suggested that chHCF101 and mHCF101 evolved from a common ancestral HCF101 independently of the Nbp35/Cfd1 and Ind1 proteins. Interestingly, phylogenetic analysis supports rather a lateral gene transfer of ancestral HCF101 from bacteria than its acquisition being associated with either α-proteobacterial or cyanobacterial endosymbionts. Conclusion Our searches for Nbp35-like proteins across eukaryotic lineages revealed that SAR, Haptista, and Cryptista possess mitochondrial HCF101. Because plastid localization of HCF101 was only known thus far, the discovery of its mitochondrial paralog explains confusion regarding the presence of HCF101 in organisms that possibly lost secondary plastids (e.g., ciliates, Cryptosporidium) or possess reduced nonphotosynthetic plastids (apicomplexans). Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01777-x.
Collapse
Affiliation(s)
- Jan Pyrih
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Justin D Fellows
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Christopher Grosche
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (Synmikro), Hans-Meerwein-Str. 6, 35032, Marburg, Germany
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Boris Striepen
- Department of Cellular Biology, University of Georgia, Athens, GA, USA.,Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, PA, 19104, USA
| | - Uwe G Maier
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (Synmikro), Hans-Meerwein-Str. 6, 35032, Marburg, Germany
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic.
| |
Collapse
|
41
|
Cainzos M, Marchetti F, Popovich C, Leonardi P, Pagnussat G, Zabaleta E. Gamma carbonic anhydrases are subunits of the mitochondrial complex I of diatoms. Mol Microbiol 2021; 116:109-125. [PMID: 33550595 DOI: 10.1111/mmi.14694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/12/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
Diatoms are unicellular organisms containing red algal-derived plastids that probably originated as result of serial endosymbioses between an ancestral heterotrophic organism and a red alga or cryptophyta algae from which has only the chloroplast left. Diatom mitochondria are thus believed to derive from the exosymbiont. Unlike animals and fungi, diatoms seem to contain ancestral respiratory chains. In support of this, genes encoding gamma type carbonic anhydrases (CAs) whose products were shown to be intrinsic complex I subunits in plants, Euglena and Acanthamoeba were found in diatoms, a representative of Stramenopiles. In this work, we experimentally show that mitochondrial complex I in diatoms is a large complex containing gamma type CA subunits, supporting an ancestral origin. By using a bioinformatic approach, a complex I integrated CA domain with heterotrimeric subunit composition is proposed.
Collapse
Affiliation(s)
- Maximiliano Cainzos
- IIB-CONICET-Universidad Nacional de Mar del Plata, Instituto de Investigaciones Biológicas, Mar del Plata, Argentina
| | - Fernanda Marchetti
- IIB-CONICET-Universidad Nacional de Mar del Plata, Instituto de Investigaciones Biológicas, Mar del Plata, Argentina
| | - Cecilia Popovich
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS) CONICET-UNS, Bahía Blanca, Argentina.,Centro de Emprendedorismo y Desarrollo Territorial Sostenible (CEDETS) CIC-UPSO, Bahía Blanca, Argentina
| | - Patricia Leonardi
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS) CONICET-UNS, Bahía Blanca, Argentina
| | - Gabriela Pagnussat
- IIB-CONICET-Universidad Nacional de Mar del Plata, Instituto de Investigaciones Biológicas, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- IIB-CONICET-Universidad Nacional de Mar del Plata, Instituto de Investigaciones Biológicas, Mar del Plata, Argentina
| |
Collapse
|
42
|
Chabi M, Leleu M, Fermont L, Colpaert M, Colleoni C, Ball SG, Cenci U. Retracing Storage Polysaccharide Evolution in Stramenopila. FRONTIERS IN PLANT SCIENCE 2021; 12:629045. [PMID: 33747010 PMCID: PMC7965971 DOI: 10.3389/fpls.2021.629045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/18/2021] [Indexed: 05/10/2023]
Abstract
Eukaryotes most often synthesize storage polysaccharides in the cytosol or vacuoles in the form of either alpha (glycogen/starch)- or beta-glucosidic (chrysolaminarins and paramylon) linked glucan polymers. In both cases, the glucose can be packed either in water-soluble (glycogen and chrysolaminarins) or solid crystalline (starch and paramylon) forms with different impacts, respectively, on the osmotic pressure, the glucose accessibility, and the amounts stored. Glycogen or starch accumulation appears universal in all free-living unikonts (metazoa, fungi, amoebozoa, etc.), as well as Archaeplastida and alveolata, while other lineages offer a more complex picture featuring both alpha- and beta-glucan accumulators. We now infer the distribution of these polymers in stramenopiles through the bioinformatic detection of their suspected metabolic pathways. Detailed phylogenetic analysis of key enzymes of these pathways correlated to the phylogeny of Stramenopila enables us to retrace the evolution of storage polysaccharide metabolism in this diverse group of organisms. The possible ancestral nature of glycogen metabolism in eukaryotes and the underlying source of its replacement by beta-glucans are discussed.
Collapse
Affiliation(s)
- Malika Chabi
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Marie Leleu
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Léa Fermont
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Matthieu Colpaert
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Christophe Colleoni
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Steven G. Ball
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Ugo Cenci
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- *Correspondence: Ugo Cenci,
| |
Collapse
|
43
|
Chen R, Huangfu L, Lu Y, Fang H, Xu Y, Li P, Zhou Y, Xu C, Huang J, Yang Z. Adaptive innovation of green plants by horizontal gene transfer. Biotechnol Adv 2020; 46:107671. [PMID: 33242576 DOI: 10.1016/j.biotechadv.2020.107671] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Horizontal gene transfer (HGT) refers to the movement of genetic material between distinct species by means other than sexual reproduction. HGT has contributed tremendously to the genome plasticity and adaptive evolution of prokaryotes and certain unicellular eukaryotes. The evolution of green plants from chlorophyte algae to angiosperms and from water to land represents a process of adaptation to diverse environments, which has been facilitated by acquisition of genetic material from other organisms. In this article, we review the occurrence of HGT in major lineages of green plants, including chlorophyte and charophyte green algae, bryophytes, lycophytes, ferns, and seed plants. In addition, we discuss the significance of horizontally acquired genes in the adaptive innovations of green plants and their potential applications to crop breeding and improvement.
Collapse
Affiliation(s)
- Rujia Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Liexiang Huangfu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yue Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Huimin Fang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yang Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC 28590, USA; State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
44
|
Launay H, Huang W, Maberly SC, Gontero B. Regulation of Carbon Metabolism by Environmental Conditions: A Perspective From Diatoms and Other Chromalveolates. FRONTIERS IN PLANT SCIENCE 2020; 11:1033. [PMID: 32765548 PMCID: PMC7378808 DOI: 10.3389/fpls.2020.01033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/23/2020] [Indexed: 05/08/2023]
Abstract
Diatoms belong to a major, diverse and species-rich eukaryotic clade, the Heterokonta, within the polyphyletic chromalveolates. They evolved as a result of secondary endosymbiosis with one or more Plantae ancestors, but their precise evolutionary history is enigmatic. Nevertheless, this has conferred them with unique structural and biochemical properties that have allowed them to flourish in a wide range of different environments and cope with highly variable conditions. We review the effect of pH, light and dark, and CO2 concentration on the regulation of carbon uptake and assimilation. We discuss the regulation of the Calvin-Benson-Bassham cycle, glycolysis, lipid synthesis, and carbohydrate synthesis at the level of gene transcripts (transcriptomics), proteins (proteomics) and enzyme activity. In contrast to Viridiplantae where redox regulation of metabolic enzymes is important, it appears to be less common in diatoms, based on the current evidence, but regulation at the transcriptional level seems to be widespread. The role of post-translational modifications such as phosphorylation, glutathionylation, etc., and of protein-protein interactions, has been overlooked and should be investigated further. Diatoms and other chromalveolates are understudied compared to the Viridiplantae, especially given their ecological importance, but we believe that the ever-growing number of sequenced genomes combined with proteomics, metabolomics, enzyme measurements, and the application of novel techniques will provide a better understanding of how this important group of algae maintain their productivity under changing conditions.
Collapse
Affiliation(s)
- Hélène Launay
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
| | - Wenmin Huang
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Stephen C. Maberly
- UK Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster Environment Centre, Lancaster, United Kingdom
| | | |
Collapse
|
45
|
Nan FR, Feng J, Lv JP, Liu Q, Liu XD, Gao F, Xie SL. Comparison of the transcriptomes of different life history stages of the freshwater Rhodophyte Thorea hispida. Genomics 2020; 112:3978-3990. [PMID: 32650096 DOI: 10.1016/j.ygeno.2020.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/04/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
Thorea hispida exclusively inhabits freshwater environments and is characterized by a triphasic life history. In this study, the organelle genomes and transcriptomes of different life history stages of T. hispida were examined using next generation sequencing. The chloroplast and mitochondrial genomes of the chantransia stage were 175,747 and 25,411 bp in length, respectively. The chantransia stage was highly similar to the gametophyte stage based on comparisons of organelle genomes and phylogenetic reconstruction. Transcriptomic comparisons of two stages found that ribosome-related genes were the most up-regulated in the gametophyte stage of T. hispida. Seven meiosis-specific genes, including SPO11 initiator of meiotic double-stranded breaks(spo11), meiotic nuclear divisions 1(mnd1), RAD51 recombinase(rad51), mutS homolog 4(msh4), mutS homolog 5(msh5), REC8 meiotic recombination protein(rec8), and DNA helicase Mer3(mer3), were differentially regulated between the two life history stages. The organelle genomes and transcriptomes from T. hispida provided in this study will be valuable for future studies of freshwater red algae.
Collapse
Affiliation(s)
- Fang-Ru Nan
- School of Life Science, Shanxi University, Taiyuan, China
| | - Jia Feng
- School of Life Science, Shanxi University, Taiyuan, China
| | - Jun-Ping Lv
- School of Life Science, Shanxi University, Taiyuan, China
| | - Qi Liu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Xu-Dong Liu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Fan Gao
- School of Life Science, Shanxi University, Taiyuan, China
| | - Shu-Lian Xie
- School of Life Science, Shanxi University, Taiyuan, China.
| |
Collapse
|
46
|
Nakayama T, Takahashi K, Kamikawa R, Iwataki M, Inagaki Y, Tanifuji G. Putative genome features of relic green alga-derived nuclei in dinoflagellates and future perspectives as model organisms. Commun Integr Biol 2020; 13:84-88. [PMID: 33014260 PMCID: PMC7518460 DOI: 10.1080/19420889.2020.1776568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nucleomorphs, relic endosymbiont nuclei, have been studied as a model to elucidate the evolutionary process of integrating a eukaryotic endosymbiont into a host cell organelle. Recently, we reported two new dinoflagellates possessing nucleomorphs, and proposed them as new models in this research field based on the following findings: genome integration processes are incomplete, and the origins of the endosymbiont lineages were pinpointed. Here, we focused on the nucleomorph genome features in the two green dinoflagellates and compared them with those of the known nucleomorph genomes of cryptophytes and chlorarachniophytes. All nucleomorph genomes showed similar trends suggesting convergent evolution. However, the number of nucleomorph genes that are unrelated to housekeeping machineries in the two green dinoflagellates are greater than the numbers in cryptophytes and chlorarachniophytes, providing additional evidence that their genome reduction has not progressed much compared with those of cryptophytes and chlorarachniophytes. Finally, potential future work is discussed.
Collapse
Affiliation(s)
- Takuro Nakayama
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kazuya Takahashi
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mitsunori Iwataki
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Goro Tanifuji
- Department of Zoology, National Museum of Nature and Science, Tsukuba, Japan
| |
Collapse
|
47
|
Greenwold MJ, Cunningham BR, Lachenmyer EM, Pullman JM, Richardson TL, Dudycha JL. Diversification of light capture ability was accompanied by the evolution of phycobiliproteins in cryptophyte algae. Proc Biol Sci 2020; 286:20190655. [PMID: 31088271 DOI: 10.1098/rspb.2019.0655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Evolutionary biologists have long sought to identify phenotypic traits whose evolution enhances an organism's performance in its environment. Diversification of traits related to resource acquisition can occur owing to spatial or temporal resource heterogeneity. We examined the ability to capture light in the Cryptophyta, a phylum of single-celled eukaryotic algae with diverse photosynthetic pigments, to better understand how acquisition of an abiotic resource may be associated with diversification. Cryptophytes originated through secondary endosymbiosis between an unknown eukaryotic host and a red algal symbiont. This merger resulted in distinctive pigment-protein complexes, the cryptophyte phycobiliproteins, which are the products of genes from both ancestors. These novel complexes may have facilitated diversification across environments where the spectrum of light available for photosynthesis varies widely. We measured light capture and pigments under controlled conditions in a phenotypically and phylogenetically diverse collection of cryptophytes. Using phylogenetic comparative methods, we found that phycobiliprotein characteristics were evolutionarily associated with diversification of light capture in cryptophytes, while non-phycobiliprotein pigments were not. Furthermore, phycobiliproteins were evolutionarily labile with repeated transitions and reversals. Thus, the endosymbiotic origin of cryptophyte phycobiliproteins provided an evolutionary spark that drove diversification of light capture, the resource that is the foundation of photosynthesis.
Collapse
Affiliation(s)
- Matthew J Greenwold
- 1 Department of Biological Sciences, University of South Carolina , Columbia, SC 29208 , USA
| | - Brady R Cunningham
- 2 School of the Earth, Ocean, and Environment, University of South Carolina , Columbia, SC 29208 , USA
| | - Eric M Lachenmyer
- 2 School of the Earth, Ocean, and Environment, University of South Carolina , Columbia, SC 29208 , USA
| | - John Michael Pullman
- 1 Department of Biological Sciences, University of South Carolina , Columbia, SC 29208 , USA
| | - Tammi L Richardson
- 1 Department of Biological Sciences, University of South Carolina , Columbia, SC 29208 , USA.,2 School of the Earth, Ocean, and Environment, University of South Carolina , Columbia, SC 29208 , USA
| | - Jeffry L Dudycha
- 1 Department of Biological Sciences, University of South Carolina , Columbia, SC 29208 , USA
| |
Collapse
|
48
|
Predatory colponemids are the sister group to all other alveolates. Mol Phylogenet Evol 2020; 149:106839. [PMID: 32325195 DOI: 10.1016/j.ympev.2020.106839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 11/20/2022]
Abstract
Alveolates are a major supergroup of eukaryotes encompassing more than ten thousand free-living and parasitic species, including medically, ecologically, and economically important apicomplexans, dinoflagellates, and ciliates. These three groups are among the most widespread eukaryotes on Earth, and their environmental success can be linked to unique innovations that emerged early in each group. Understanding the emergence of these well-studied and diverse groups and their innovations has relied heavily on the discovery and characterization of early-branching relatives, which allow ancestral states to be inferred with much greater confidence. Here we report the phylogenomic analyses of 313 eukaryote protein-coding genes from transcriptomes of three members of one such group, the colponemids (Colponemidia), which support their monophyly and position as the sister lineage to all other known alveolates. Colponemid-related sequences from environmental surveys and our microscopical observations show that colponemids are not common in nature, but they are diverse and widespread in freshwater habitats around the world. Studied colponemids possess two types of extrusive organelles (trichocysts or toxicysts) for active hunting of other unicellular eukaryotes and potentially play an important role in microbial food webs. Colponemids have generally plesiomorphic morphology and illustrate the ancestral state of Alveolata. We further discuss their importance in understanding the evolution of alveolates and the origin of myzocytosis and plastids.
Collapse
|
49
|
Falciatore A, Jaubert M, Bouly JP, Bailleul B, Mock T. Diatom Molecular Research Comes of Age: Model Species for Studying Phytoplankton Biology and Diversity. THE PLANT CELL 2020; 32:547-572. [PMID: 31852772 PMCID: PMC7054031 DOI: 10.1105/tpc.19.00158] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/18/2019] [Accepted: 12/13/2019] [Indexed: 05/08/2023]
Abstract
Diatoms are the world's most diverse group of algae, comprising at least 100,000 species. Contributing ∼20% of annual global carbon fixation, they underpin major aquatic food webs and drive global biogeochemical cycles. Over the past two decades, Thalassiosira pseudonana and Phaeodactylum tricornutum have become the most important model systems for diatom molecular research, ranging from cell biology to ecophysiology, due to their rapid growth rates, small genomes, and the cumulative wealth of associated genetic resources. To explore the evolutionary divergence of diatoms, additional model species are emerging, such as Fragilariopsis cylindrus and Pseudo-nitzschia multistriata Here, we describe how functional genomics and reverse genetics have contributed to our understanding of this important class of microalgae in the context of evolution, cell biology, and metabolic adaptations. Our review will also highlight promising areas of investigation into the diversity of these photosynthetic organisms, including the discovery of new molecular pathways governing the life of secondary plastid-bearing organisms in aquatic environments.
Collapse
Affiliation(s)
- Angela Falciatore
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR7238 Sorbonne Université, 75005 Paris, France
| | - Marianne Jaubert
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR7238 Sorbonne Université, 75005 Paris, France
| | - Jean-Pierre Bouly
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR7238 Sorbonne Université, 75005 Paris, France
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
50
|
Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis. Proc Natl Acad Sci U S A 2020; 117:5364-5375. [PMID: 32094181 DOI: 10.1073/pnas.1911884117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nucleomorphs are relic endosymbiont nuclei so far found only in two algal groups, cryptophytes and chlorarachniophytes, which have been studied to model the evolutionary process of integrating an endosymbiont alga into a host-governed plastid (organellogenesis). However, past studies suggest that DNA transfer from the endosymbiont to host nuclei had already ceased in both cryptophytes and chlorarachniophytes, implying that the organellogenesis at the genetic level has been completed in the two systems. Moreover, we have yet to pinpoint the closest free-living relative of the endosymbiotic alga engulfed by the ancestral chlorarachniophyte or cryptophyte, making it difficult to infer how organellogenesis altered the endosymbiont genome. To counter the above issues, we need novel nucleomorph-bearing algae, in which endosymbiont-to-host DNA transfer is on-going and for which endosymbiont/plastid origins can be inferred at a fine taxonomic scale. Here, we report two previously undescribed dinoflagellates, strains MGD and TGD, with green algal endosymbionts enclosing plastids as well as relic nuclei (nucleomorphs). We provide evidence for the presence of DNA in the two nucleomorphs and the transfer of endosymbiont genes to the host (dinoflagellate) genomes. Furthermore, DNA transfer between the host and endosymbiont nuclei was found to be in progress in both the MGD and TGD systems. Phylogenetic analyses successfully resolved the origins of the endosymbionts at the genus level. With the combined evidence, we conclude that the host-endosymbiont integration in MGD/TGD is less advanced than that in cryptophytes/chrorarachniophytes, and propose the two dinoflagellates as models for elucidating organellogenesis.
Collapse
|