1
|
Birtele M, Lancaster M, Quadrato G. Modelling human brain development and disease with organoids. Nat Rev Mol Cell Biol 2025; 26:389-412. [PMID: 39668188 DOI: 10.1038/s41580-024-00804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/14/2024]
Abstract
Organoids are systems derived from pluripotent stem cells at the interface between traditional monolayer cultures and in vivo animal models. The structural and functional characteristics of organoids enable the modelling of early stages of brain development in a physiologically relevant 3D environment. Moreover, organoids constitute a tool with which to analyse how individual genetic variation contributes to the susceptibility and progression of neurodevelopmental disorders. This Roadmap article describes the features of brain organoids, focusing on the neocortex, and their advantages and limitations - in comparison with other model systems - for the study of brain development, evolution and disease. We highlight avenues for enhancing the physiological relevance of brain organoids by integrating bioengineering techniques and unbiased high-throughput analyses, and discuss future applications. As organoids advance in mimicking human brain functions, we address the ethical and societal implications of this technology.
Collapse
Affiliation(s)
- Marcella Birtele
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Madeline Lancaster
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Giorgia Quadrato
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Eldred KC, Edgerton SJ, Ortuño-Lizarán I, Wohlschlegel J, Sherman SM, Petter S, Wyatt-Draher G, Hoffer D, Glass I, La Torre A, Reh TA. Ciliary marginal zone of the developing human retina maintains retinal progenitor cells until late gestational stages. Cell Rep 2025; 44:115460. [PMID: 40178972 DOI: 10.1016/j.celrep.2025.115460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/15/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Non-mammalian vertebrates maintain a proliferative cell population at the far periphery of their retina called the ciliary marginal zone (CMZ), which contributes to retinal regeneration upon injury. Humans do not maintain a proliferative CMZ into adulthood; however, it is unknown how long in development this region continues to generate neurons. Here, we identify a population of cells in the far-peripheral retina of the human that continues to proliferate after the rest of the retina is quiescent. Single-cell RNA sequencing and 5-ethynyl-2'-deoxyuridine tracing at late developmental time points reveal that this region has the capacity to produce both early- and late-born cell types late in development and a longer cell cycle than more centrally located retinal progenitor cells (RPCs). Moreover, while most RPCs exit the cell cycle with the addition of a transforming growth factor β inhibitor, early RPCs within the CMZ do not. These findings define the late stages of neurogenesis in human retinal development.
Collapse
Affiliation(s)
- Kiara C Eldred
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Sierra J Edgerton
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Isabel Ortuño-Lizarán
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA; Physiology, Genetics, and Microbiology, University of Alicante, San Vicente del Raspeig, Spain
| | - Juliette Wohlschlegel
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Stephanie M Sherman
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Sidnee Petter
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Gracious Wyatt-Draher
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Dawn Hoffer
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Ian Glass
- Pediatrics/Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Medical Genetics, Seattle Children's Hospital, Seattle, WA 98195, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Thomas A Reh
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
3
|
Gong J, Ge L, Zeng Y, Yang C, Luo Y, Kang J, Zou T, Xu H. The influence of SARS-CoV-2 spike protein exposure on retinal development in the human retinal organoids. Cell Biosci 2025; 15:43. [PMID: 40217547 PMCID: PMC11987193 DOI: 10.1186/s13578-025-01383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Pregnant women are considered a high-risk population for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as the virus can infect the placenta and embryos. Recently, SARS-CoV-2 has been widely reported to cause retinal pathological changes and to infect the embryonic retina. The infection of host cells by SARS-CoV-2 is primarily mediated through spike (S) protein, which also plays a crucial role in the pathogenesis of SARS-CoV-2. However, it remains poorly understood how the S protein of SARS-CoV-2 affects retinal development, and the underlying mechanism has not yet been clarified. METHODS We used human embryonic stem cell-derived retinal organoids (hEROs) as a model to study the effect of S protein exposure at different stages of retinal development. hEROs were treated with 2 μg/mL of S protein on days 90 and 280. Immunofluorescence staining, RNA sequencing, and RT-PCR were performed to assess the influence of S protein exposure on retinal development at both early and late stages. RESULTS The results showed that ACE2 and TMPRSS2, the receptors facilitating SARS-CoV-2 entry into host cells, were expressed in hEROs. Exposure to the S protein induced an inflammatory response in both the early and late stages of retinal development in the hEROs. Additionally, RNA sequencing indicated that early exposure of the S protein to hEROs affected nuclear components and lipid metabolism, while late-stages exposure resulted in changes to cell membrane components and the extracellular matrix. CONCLUSION This work highlights the differential effects of SARS-CoV-2 S protein exposure on retinal development at both early and late stages, providing insights into the cellular and molecular mechanisms underlying SARS-CoV-2-induced developmental impairments in the human retina.
Collapse
Affiliation(s)
- Jing Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yushan Luo
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Jiahui Kang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
4
|
Kaminska K, Cancellieri F, Quinodoz M, Moye AR, Bauwens M, Lin S, Janeschitz-Kriegl L, Hayman T, Barberán-Martínez P, Schlaeger R, Van den Broeck F, Ávila Fernández A, Fernández-Caballero L, Perea-Romero I, García-García G, Salom D, Mazzola P, Zuleger T, Poths K, Haack TB, Jacob J, Vermeer S, Terbeek F, Feltgen N, Moulin AP, Koutroumanou L, Papadakis G, Browning AC, Madhusudhan S, Gränse L, Banin E, Sousa AB, Coutinho Santos L, Kuehlewein L, De Angeli P, Leroy BP, Mahroo OA, Sedgwick F, Eden J, Pfau M, Andréasson S, Scholl HPN, Ayuso C, Millán JM, Sharon D, Tsilimbaris MK, Vaclavik V, Tran HV, Ben-Yosef T, De Baere E, Webster AR, Arno G, Sergouniotis PI, Kohl S, Santos C, Rivolta C. Bi-allelic variants in three genes encoding distinct subunits of the vesicular AP-5 complex cause hereditary macular dystrophy. Am J Hum Genet 2025; 112:808-828. [PMID: 40081374 DOI: 10.1016/j.ajhg.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 03/16/2025] Open
Abstract
Inherited retinal diseases (IRDs) are a genetically heterogeneous group of Mendelian disorders that often lead to progressive vision loss and involve approximately 300 distinct genes. Although variants in these loci account for the majority of molecular diagnoses, other genes associated with IRD await molecular identification. In this study, we uncover bi-allelic assortments of 23 different (22 loss-of-function) variants in AP5Z1, AP5M1, and AP5B1 as independent causes of recessive IRD in members of 19 families from nine countries. Affected individuals, regardless of their genotypes, exhibit a specific form of macular degeneration, sometimes presenting in association with extraocular features. All three genes encode different subunits of the vesicular fifth adaptor protein (AP-5) complex, a component of the intracellular trafficking system involved in maintaining cellular homeostasis and ensuring the proper functioning of lysosomal pathways. The retinal pigment epithelium (RPE), a cellular monolayer located posteriorly to the neural retina, is characterized by intense lysosomal and phagocytic activity. Immunostaining of RPE cells revealed a punctate pattern of AP5Z1, AP5M1, and AP5B1 staining and co-localization with markers of late endosomes and the Golgi, suggesting a role of AP-5 in the normal physiology of this tissue. Overall, the identification of independently acting variants in three distinct proteins within the same macromolecular complex reveals AP-5 as having an important function in the preservation and maintenance of normal macular functions.
Collapse
Affiliation(s)
- Karolina Kaminska
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Francesca Cancellieri
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Abigail R Moye
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Miriam Bauwens
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Siying Lin
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9P, UK; NIHR Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Lucas Janeschitz-Kriegl
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Tamar Hayman
- Department of Ophthalmology, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Pilar Barberán-Martínez
- Molecular, Cellular, and Genomic Biomedicine Group, IIS-La Fe, 46012 Valencia, Spain; Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, IIS-La Fe, 46012 Valencia, Spain
| | - Regina Schlaeger
- Department of Neurology, University Hospital Basel, 4031 Basel, Switzerland
| | - Filip Van den Broeck
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; Department of Head & Skin, Ghent University Hospital, 9000 Ghent, Belgium; Department of Ophthalmology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Almudena Ávila Fernández
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lidia Fernández-Caballero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Irene Perea-Romero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Gema García-García
- Molecular, Cellular, and Genomic Biomedicine Group, IIS-La Fe, 46012 Valencia, Spain; Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, IIS-La Fe, 46012 Valencia, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - David Salom
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Theresia Zuleger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Karin Poths
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, 72072 Tübingen, Germany
| | - Julie Jacob
- Department of Ophthalmology, Universitair Ziekenhuis Leuven (UZ Leuven), 3000 Leuven, Belgium
| | - Sascha Vermeer
- Center for Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium
| | | | - Nicolas Feltgen
- Department of Ophthalmology, University Hospital Basel, 4031 Basel, Switzerland
| | - Alexandre P Moulin
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, 1004 Lausanne, Switzerland
| | | | | | - Andrew C Browning
- Ophthalmology Department, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK
| | - Savita Madhusudhan
- St. Paul's Eye Department, Royal Liverpool University Hospital, Liverpool L7 8XP, UK; Department of Eye and Vision Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Lotta Gränse
- Department of Ophthalmology, Lund University, 223 62 Lund, Sweden
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ana Berta Sousa
- Department of Medical Genetics, Hospital Santa Maria, Unidade Local de Saúde de Santa Maria, 1649-035 Lisbon, Portugal; Medical Genetics University Clinic, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Luisa Coutinho Santos
- Department of Ophthalmology, Instituto de Oftalmologia Dr Gama Pinto (IOGP), 1169-019 Lisbon, Portugal
| | - Laura Kuehlewein
- University Eye Hospital, Center for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Pietro De Angeli
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Bart P Leroy
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; Department of Head & Skin, Ghent University Hospital, 9000 Ghent, Belgium; Department of Ophthalmology, Ghent University Hospital, 9000 Ghent, Belgium; Division of Ophthalmology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Omar A Mahroo
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK; UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; Department of Ophthalmology, St Thomas' Hospital, London SE1 7EH, UK
| | - Fay Sedgwick
- Eye Team, North West Genomic Laboratory Hub, St Mary's Hospital, Manchester M13 9WL, UK
| | - James Eden
- Eye Team, North West Genomic Laboratory Hub, St Mary's Hospital, Manchester M13 9WL, UK
| | - Maximilian Pfau
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031 Basel, Switzerland; Department of Ophthalmology, University Hospital Basel, 4031 Basel, Switzerland
| | - Sten Andréasson
- Department of Ophthalmology, Lund University, 223 62 Lund, Sweden
| | - Hendrik P N Scholl
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; Pallas Kliniken AG, Pallas Klinik Zürich, 8005 Zürich, Switzerland; European Vision Institute, 4056 Basel, Switzerland
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José M Millán
- Molecular, Cellular, and Genomic Biomedicine Group, IIS-La Fe, 46012 Valencia, Spain; Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, IIS-La Fe, 46012 Valencia, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; University and Polytechnic La Fe Hospital of Valencia, 46026 Valencia, Spain
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Veronika Vaclavik
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, 1004 Lausanne, Switzerland
| | - Hoai V Tran
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, 1004 Lausanne, Switzerland; Centre for Gene Therapy and Regenerative Medicine, King's College London, London WC2R 2LS, UK
| | - Tamar Ben-Yosef
- The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Andrew R Webster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK; UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Gavin Arno
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK; UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; Division of Research, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Panagiotis I Sergouniotis
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9P, UK; Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Susanne Kohl
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Cristina Santos
- Department of Ophthalmology, Instituto de Oftalmologia Dr Gama Pinto (IOGP), 1169-019 Lisbon, Portugal; iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1099-085 Lisbon, Portugal
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
5
|
Galindo-Cabello N, Caballano-Infantes E, Benites G, Pastor-Idoate S, Diaz-Corrales FJ, Usategui-Martín R. Retinal Organoids: Innovative Tools for Understanding Retinal Degeneration. Int J Mol Sci 2025; 26:3263. [PMID: 40244125 PMCID: PMC11990004 DOI: 10.3390/ijms26073263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Retinal degenerative diseases (RDDs) comprise diverse genetic and phenotypic conditions that cause progressive retinal dysfunction and cell loss, leading to vision impairment or blindness. Most RDDs lack appropriate animal models for their study, which affects understanding their disease mechanisms and delays the progress of new treatment development. Recent advances in stem cell engineering, omics, and organoid technology are facilitating research into diseases for which there are no previously existing models. The development of retinal organoids produced from human stem cells has impacted the study of retinal development as well as the development of in vitro models of diseases, opening possibilities for applications in regenerative medicine, drug discovery, and precision medicine. In this review, we recapitulate research in the retinal organoid models for RDD, mentioning some of the main pathways underlying retinal neurodegeneration that can be studied in these new models, as well as their limitations and future challenges in this rapidly advancing field.
Collapse
Affiliation(s)
- Nadia Galindo-Cabello
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain; (G.B.); (S.P.-I.)
| | - Estefanía Caballano-Infantes
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain;
| | - Gregorio Benites
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain; (G.B.); (S.P.-I.)
| | - Salvador Pastor-Idoate
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain; (G.B.); (S.P.-I.)
- Department of Ophthalmology, University Clinical Hospital of Valladolid, 47003 Valladolid, Spain
| | - Francisco J. Diaz-Corrales
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain;
| | - Ricardo Usategui-Martín
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain; (G.B.); (S.P.-I.)
| |
Collapse
|
6
|
Liu H, Ma Y, Gao N, Zhou Y, Li G, Zhu Q, Liu X, Li S, Deng C, Chen C, Yang Y, Ren Q, Hu H, Cai Y, Chen M, Xue Y, Zhang K, Qu J, Su J. Identification and characterization of human retinal stem cells capable of retinal regeneration. Sci Transl Med 2025; 17:eadp6864. [PMID: 40138453 DOI: 10.1126/scitranslmed.adp6864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/12/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Human retinal stem cells hold great promise in regenerative medicine, yet their existence and characteristics remain elusive. Here, we performed single-cell multiomics and spatial transcriptomics of human fetal retinas and uncovered a cell subpopulation, human neural retinal stem-like cells (hNRSCs), distinct from retinal pigment epithelium stem-like cells and traditional retinal progenitor cells. We found that these hNRSCs reside in the peripheral retina in the ciliary marginal zone, exhibiting substantial self-renewal and differentiation potential. We conducted single-cell and spatial transcriptomic analyses of human retinal organoids (hROs) and revealed that hROs contain a population of hNRSCs with similar transcriptional profiles and developmental trajectories to hNRSCs in the fetal retina potentially capable of regenerating all retinal cells. Furthermore, we identified crucial transcription factors, such as MECOM, governing hNRSC commitment to neural retinogenesis and regulating repair processes in hROs. hRO-derived hNRSCs transplanted into the rd10 mouse model of retinitis pigmentosa differentiated and were integrated into the retina, alleviated retinal degeneration, and improved visual function. Overall, our work identifies and characterizes a distinct category of retinal stem cells from human retinas, underscoring their regenerative potential and promise for transplantation therapy.
Collapse
Affiliation(s)
- Hui Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yunlong Ma
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
| | - Na Gao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yijun Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Gen Li
- Guangzhou National Laboratory, Guangzhou 510005, China
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Qunyan Zhu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| | - Xiaoyu Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Shasha Li
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
| | - Chunyu Deng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
| | - Cheng Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
| | - Yuhe Yang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Ren
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Huijuan Hu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yaoyao Cai
- Department of Obstetrics, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ming Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yuanchao Xue
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Kang Zhang
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Jia Qu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
| | - Jianzhong Su
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| |
Collapse
|
7
|
Zhang J, Wang J, Zhou Q, Chen Z, Zhuang J, Zhao X, Gan Z, Wang Y, Wang C, Molday RS, Yang YT, Li X, Zhao XM. Spatiotemporally resolved transcriptomics reveals the cellular dynamics of human retinal development. Nat Commun 2025; 16:2307. [PMID: 40055379 PMCID: PMC11889126 DOI: 10.1038/s41467-025-57625-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
The morphogenesis and cellular interactions in developing retina are incompletely characterized. The full understanding needs a precise mapping of the gene expression with a single-cell spatial resolution. Here, we present a spatial transcriptomic (ST) resource for the developing human retina at six developmental stages. Combining the spatial and single-cell transcriptomic data enables characterization of the cell-type-specific expression profiles at distinct anatomical regions at each developmental stage, highlighting the spatiotemporal dynamics of cellular composition during retinal development. All the ST spots are catalogued into consensus spatial domains, which are further associated to their specific expression signatures and biological functions associated with neuron and eye development. We prioritize a set of critical regulatory genes for the transitions of spatial domains during retinal development. Differentially expressed genes from different spatial domains are associated with distinct retinal diseases, indicating the biological relevance and clinical significance of the spatially defined gene expression. Finally, we reconstruct the spatial cellular communication networks, and highlight critical ligand-receptor interactions during retinal development. Overall, our study reports the spatiotemporal dynamics of gene expression and cellular profiles during retinal development, and provides a rich resource for the future studies on retinogenesis.
Collapse
Affiliation(s)
- Jinglong Zhang
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qiongjie Zhou
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Zixin Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Junyi Zhuang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xingzhong Zhao
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ziquan Gan
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yinan Wang
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chunxiu Wang
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Yucheng T Yang
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Xiaotian Li
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| | - Xing-Ming Zhao
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Yang C, Du Z, Mei L, Chen X, Liao Y, Ge L, Kang J, Gu Z, Fan X, Xu H. Influences of lead-based perovskite nanoparticles exposure on early development of human retina. J Nanobiotechnology 2025; 23:144. [PMID: 40001141 PMCID: PMC11863764 DOI: 10.1186/s12951-025-03245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Lead-based perovskite nanoparticles (Pb-PNPs) are widely utilized in the photovoltaic industry. However, due to their poor stability and high water solubility, lead often gets released into the environment, which can negatively impact the development of the central nervous system (CNS). As an extension of the CNS, the effects and mechanisms of Pb-PNPs on human retinal development have remained elusive. OBJECTIVES We aimed to investigate the effects of Pb-PNPs on human retinal development. METHODS Human embryonic stem cell-derived three-dimensional floating retinal organoids (hEROs) were established to simulate early retinal development. Using immunofluorescence staining, biological-transmission electron microscopy analysis, inductively coupled plasma-mass spectrometry, two-dimensional element distribution detection, and RNA sequencing, we evaluated and compared the toxicity of CsPbBr3 nanoparticles (a representative substance of Pb-PNPs) and Pb(AC)2 and investigated the toxicity-reducing effects of SiO2 encapsulation. RESULTS Our findings revealed that CsPbBr3 nanoparticles exposure resulted in a concentration-dependent decrease in the area and thickness of the neural retina in hEROs. Additionally, CsPbBr3 nanoparticles exposure hindered cell proliferation and promoted cell apoptosis while suppressing the retinal ganglion cell differentiation, an alteration that further led to the disruption of retinal structure. By contrast, CsPbBr3 nanoparticles exposure to hEROs was slightly less toxic than Pb(AC)2. Mechanistically, CsPbBr3 nanoparticles exposure activated endoplasmic reticulum stress, which promoted apoptosis by up-regulating Caspase-3 and inhibited retinal ganglion cell development by down-regulating Pax6. Interestingly, after coating CsPbBr3 nanoparticles with silica, it exhibited lower toxicities to hEROs by alleviating endoplasmic reticulum stress. CONCLUSION Overall, our study provides evidence of Pb-PNPs-induced developmental toxicity in the human retina, explores the potential mechanisms of CsPbBr3 nanoparticles' developmental toxicity, and suggests a feasible strategy to reduce toxicity.
Collapse
Affiliation(s)
- Cao Yang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Zhulin Du
- Key Laboratory of Extreme Environmental Medicine Ministry of Education, Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Linqiang Mei
- Institute of High Energy Physics and National Center for Nanoscience and Technology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Chen
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - You Liao
- Institute of High Energy Physics and National Center for Nanoscience and Technology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingling Ge
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Jiahui Kang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Zhanjun Gu
- Institute of High Energy Physics and National Center for Nanoscience and Technology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, Beijing, 100049, China.
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaotang Fan
- Key Laboratory of Extreme Environmental Medicine Ministry of Education, Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China.
| |
Collapse
|
9
|
Watson A, Queen R, Ferrández-Peral L, Dorgau B, Collin J, Nelson A, Hussain R, Coxhead J, McCorkindale M, Atkinson R, Zerti D, Chichagova V, Conesa A, Armstrong L, Cremers FPM, Lako M. Unravelling genotype-phenotype correlations in Stargardt disease using patient-derived retinal organoids. Cell Death Dis 2025; 16:108. [PMID: 39971915 PMCID: PMC11840025 DOI: 10.1038/s41419-025-07420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/18/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
Stargardt disease is an inherited retinopathy affecting approximately 1:8000 individuals. It is characterised by biallelic variants in ABCA4 which encodes a vital protein for the recycling of retinaldehydes in the retina. Despite its prevalence and impact, there are currently no treatments available for this condition. Furthermore, 35% of STGD1 cases remain genetically unsolved. To investigate the cellular and molecular characteristics associated with STGD1, we generated iPSCs from two monoallelic unresolved (PT1 & PT2), late-onset STGD1 cases with the heterozygous complex allele - c.[5461-10 T > C;5603 A > T]. Both patient iPSCs and those from a biallelic affected control (AC) carrying -c.4892 T > C and c.4539+2001G > A, were differentiated to retinal organoids, which developed all key retinal neurons and photoreceptors with outer segments positive for ABCA4 expression. We observed patient-specific disruption to lamination with OPN1MW/LW+ cone photoreceptor retention in the retinal organoid centre during differentiation. Photoreceptor retention was more severe in the AC case affecting both cones and rods, suggesting a genotype/phenotype correlation. scRNA-Seq suggests retention may be due to the induction of stress-related pathways in photoreceptors. Whole genome sequencing successfully identified the missing alleles in both cases; PT1 reported c.-5603A > T in homozygous state and PT2 uncovered a rare hypomorph - c.-4685T > C. Furthermore, retinal organoids were able to recapitulate the retina-specific splicing defect in PT1 as shown by long-read RNA-seq data. Collectively, these results highlight the suitability of retinal organoids in STGD1 modelling. Their ability to display genotype-phenotype correlations enhances their utility as a platform for therapeutic development.
Collapse
Affiliation(s)
- Avril Watson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcells Biotech Ltd., Newcastle upon Tyne, UK
| | - Rachel Queen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Luis Ferrández-Peral
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
| | - Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Nelson
- NU-OMICs, Northumbria University, Newcastle Upon Tyne, UK
| | - Rafiqul Hussain
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Robert Atkinson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Darin Zerti
- Department of Biotechnological and Applied Clinical Sciences, Università degli Studi dell'Aquila, L'Aquila, Italy
| | | | - Ana Conesa
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcells Biotech Ltd., Newcastle upon Tyne, UK
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
10
|
Muller A, Sullivan J, Schwarzer W, Wang M, Park-Windhol C, Hasler PW, Janeschitz-Kriegl L, Duman M, Klingler B, Matsell J, Hostettler SM, Galliker P, Hou Y, Balmer P, Virág T, Barrera LA, Young L, Xu Q, Magda DP, Kilin F, Khadka A, Moreau PH, Fellmann L, Azoulay T, Quinodoz M, Karademir D, Leppert J, Fratzl A, Kosche G, Sharma R, Montford J, Cattaneo M, Croyal M, Cronin T, Picelli S, Grison A, Cowan CS, Kusnyerik Á, Anders P, Renner M, Nagy ZZ, Szabó A, Bharti K, Rivolta C, Scholl HPN, Bryson D, Ciaramella G, Roska B, György B. High-efficiency base editing in the retina in primates and human tissues. Nat Med 2025; 31:490-501. [PMID: 39779923 PMCID: PMC11835749 DOI: 10.1038/s41591-024-03422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Stargardt disease is a currently untreatable, inherited neurodegenerative disease that leads to macular degeneration and blindness due to loss-of-function mutations in the ABCA4 gene. We have designed a dual adeno-associated viral vector encoding a split-intein adenine base editor to correct the most common mutation in ABCA4 (c.5882G>A, p.Gly1961Glu). We optimized ABCA4 base editing in human models, including retinal organoids, induced pluripotent stem cell-derived retinal pigment epithelial (RPE) cells, as well as adult human retinal explants and RPE/choroid explants in vitro. The resulting gene therapy vectors achieved high levels of gene correction in mutation-carrying mice and in female nonhuman primates, with average editing of 75% of cones and 87% of RPE cells in vivo, which has the potential to translate to a clinical benefit. No off-target editing was detectable in human retinal explants and RPE/choroid explants. The high editing rates in primates show promise for efficient gene editing in other ocular diseases that are targetable by base editing.
Collapse
Affiliation(s)
- Alissa Muller
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | | | - Wibke Schwarzer
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Mantian Wang
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | | | - Pascal W Hasler
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Lucas Janeschitz-Kriegl
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Mert Duman
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Beryll Klingler
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Jane Matsell
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Simon Manuel Hostettler
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Patricia Galliker
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Yanyan Hou
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Pierre Balmer
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | | | | | | | - Quan Xu
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Dániel Péter Magda
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ferenc Kilin
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | | | | | - Lyne Fellmann
- SILABE, Université de Strasbourg, Niederhausbergen, France
| | | | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Duygu Karademir
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Juna Leppert
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Alex Fratzl
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Georg Kosche
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jair Montford
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marco Cattaneo
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Mikaël Croyal
- Nantes Université, CNRS, INSERM, L'institut du thorax, Nantes, France
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Therese Cronin
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| | - Simone Picelli
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Alice Grison
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Cameron S Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Ákos Kusnyerik
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Philipp Anders
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Magdalena Renner
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Arnold Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- European Vision Institute, Basel, Switzerland
- Medical University of Vienna, Department of Clinical Pharmacology, Vienna, Austria
| | | | | | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.
- Department of Ophthalmology, University of Basel, Basel, Switzerland.
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.
| | - Bence György
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.
- Department of Ophthalmology, University of Basel, Basel, Switzerland.
| |
Collapse
|
11
|
Lee YJ, Jo DH. Retinal Organoids from Induced Pluripotent Stem Cells of Patients with Inherited Retinal Diseases: A Systematic Review. Stem Cell Rev Rep 2025; 21:167-197. [PMID: 39422807 PMCID: PMC11762450 DOI: 10.1007/s12015-024-10802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Currently, most inherited retinal diseases lack curative interventions, and available treatment modalities are constrained to symptomatic approaches. Retinal organoid technology has emerged as a method for treating inherited retinal diseases, with growing academic interest in recent years. The purpose of this review was to systematically organize the current protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal disease and to investigate the application of retinal organoids in inherited retinal disease research. METHODS Data were collected from the PubMed, Scopus, and Web of Science databases using a keyword search. The main search term used was "retinal organoid," accompanied by secondary keywords such as "optic cup," "three-dimensional," and "self-organizing." The final search was conducted on October 2, 2024. RESULTS Of the 2,129 studies retrieved, 130 were included in the qualitative synthesis. The protocols for the generation of retinal organoids in inherited retinal disease research use five major approaches, categorized into 3D and a combination of 2D/3D approaches, implemented with modifications. Disease phenotypes have been successfully reproduced via the generation of retinal organoids from the induced pluripotent stem cells of individuals with inherited retinal diseases, facilitating the progression of research into novel therapeutic developments. Cells have been obtained from retinal organoids for cell therapy, and progress toward their potential integration into clinical practice is underway. Considering their potential applications, retinal organoid technology has shown promise across various domains. CONCLUSION In this systematic review, we organized protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal diseases. Retinal organoid technology has various applications including disease modeling, screening for novel therapies, and cell replacement therapy. Further advancements would make this technology a clinically significant tool for patients with inherited retinal diseases.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Department of Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
12
|
Lei Q, Zhang R, Yuan F, Xiang M. Integration and Differentiation of Transplanted Human iPSC-Derived Retinal Ganglion Cell Precursors in Murine Retinas. Int J Mol Sci 2024; 25:12947. [PMID: 39684658 DOI: 10.3390/ijms252312947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Optic neuropathy such as glaucoma, stemming from retinal ganglion cell (RGC) degeneration, is a leading cause of visual impairment. Given the substantial loss of RGCs preceding clinical detection of visual impairment, cell replacement therapy emerges as a compelling treatment strategy. Human-induced pluripotent stem cells (hiPSCs) serve as invaluable tools for exploring the developmental processes and pathological mechanisms associated with human RGCs. Utilizing a 3D stepwise differentiation protocol for retinal organoids, we successfully differentiated RGC precursors from hiPSCs harboring a BRN3B-GFP RGC reporter, verified by GFP expression. Intravitreal transplantation of enriched RGC precursors into healthy or N-methyl-D-aspartate (NMDA)-injured mice demonstrated their survival, migration, and integration into the proper retinal layer, the ganglion cell layer, after 3 weeks. Notably, these transplanted cells differentiated into marker-positive RGCs and extended neurites. Moreover, enhanced cell survival was observed with immunosuppressive and anti-inflammatory treatments of the host prior to transplantation. These data underscore the potential of transplanted RGC precursors as a promising therapeutic avenue for treating degenerative retinal diseases resulting from RGC dysfunction.
Collapse
Affiliation(s)
- Qiannan Lei
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Rong Zhang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Fa Yuan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
13
|
Barabino A, Mellal K, Hamam R, Polosa A, Griffith M, Bouchard JF, Kalevar A, Hanna R, Bernier G. Molecular characterization and sub-retinal transplantation of hypoimmunogenic human retinal sheets in a minipig model of severe photoreceptor degeneration. Development 2024; 151:dev203071. [PMID: 39633598 DOI: 10.1242/dev.203071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024]
Abstract
Retinal degenerative diseases affect millions of people worldwide, and legal blindness is generally associated with the loss of cone photoreceptors located in the central region of the retina called the macula. Currently, there is no treatment to replace the macula. Addressing this unmet need, we employed control isogenic and hypoimmunogenic induced pluripotent stem cell lines to generate spontaneously polarized retinal sheets (RSs). RSs were enriched in retinal progenitor and cone precursor cells, which could differentiate into mature S- and M/L-cones in long-term cultures. Single-cell RNA-seq analysis showed that RSs recapitulate the ontogeny of the developing human retina. Isolation of neural rosettes for sub-retinal transplantation effectively eliminated unwanted cells such as RPE cells. In a porcine model of chemically induced retinal degeneration, grafts integrated the host retina and formed a new, yet immature, photoreceptor layer. In one transplanted animal, functional and immunohistochemical assays suggest that grafts exhibited responsiveness to light stimuli and established putative synaptic connections with host bipolar neurons. This study underscores the potential and challenges of RSs for clinical applications.
Collapse
Affiliation(s)
- Andrea Barabino
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - Katia Mellal
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - Rimi Hamam
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - Anna Polosa
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - May Griffith
- Department of Ophthalmology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | | | - Ananda Kalevar
- Department of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Roy Hanna
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
14
|
Howard L, Ishikawa Y, Katayama T, Park SJ, Hill MJ, Blake DJ, Nishida K, Hayashi R, Quantock AJ. Single-cell transcriptomics reveals the molecular basis of human iPS cell differentiation into ectodermal ocular lineages. Commun Biol 2024; 7:1495. [PMID: 39532995 PMCID: PMC11557866 DOI: 10.1038/s42003-024-07130-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The generation of a self-formed, ectodermal, autonomous multi-zone (SEAM) from human induced pluripotent stem cells (hiPSCs) offers a unique perspective to study the dynamics of ocular cell differentiation over time. Here, by utilising single-cell transcriptomics, we have (i) identified, (ii) molecularly characterised and (iii) ascertained the developmental trajectories of ectodermally-derived ocular cell populations which emerge within SEAMs as they form. Our analysis reveals interdependency between tissues of the early eye and delineates the sequential formation and maturation of distinct cell types over a 12-week period. We demonstrate a progression from pluripotency through to tissue specification and differentiation which encompasses both surface ectodermal and neuroectodermal ocular lineages and the generation of iPSC-derived components of the developing cornea, conjunctiva, lens, and retina. Our findings not only advance the understanding of ocular development in a stem cell-based system of human origin, but also establish a robust methodological paradigm for exploring cellular and molecular dynamics during SEAM formation at single-cell resolution and highlight the potential of hiPSC-derived systems as powerful platforms for modelling human eye development and disease.
Collapse
Affiliation(s)
- Laura Howard
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
- Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Yuki Ishikawa
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomohiko Katayama
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sung-Joon Park
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Matthew J Hill
- Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Derek J Blake
- Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
| | - Ryuhei Hayashi
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Andrew J Quantock
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
15
|
Alsalloum A, Gornostal E, Mingaleva N, Pavlov R, Kuznetsova E, Antonova E, Nadzhafova A, Kolotova D, Kadyshev V, Mityaeva O, Volchkov P. A Comparative Analysis of Models for AAV-Mediated Gene Therapy for Inherited Retinal Diseases. Cells 2024; 13:1706. [PMID: 39451224 PMCID: PMC11506034 DOI: 10.3390/cells13201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent a diverse group of genetic disorders leading to progressive degeneration of the retina due to mutations in over 280 genes. This review focuses on the various methodologies for the preclinical characterization and evaluation of adeno-associated virus (AAV)-mediated gene therapy as a potential treatment option for IRDs, particularly focusing on gene therapies targeting mutations, such as those in the RPE65 and FAM161A genes. AAV vectors, such as AAV2 and AAV5, have been utilized to deliver therapeutic genes, showing promise in preserving vision and enhancing photoreceptor function in animal models. Despite their advantages-including high production efficiency, low pathogenicity, and minimal immunogenicity-AAV-mediated therapies face limitations such as immune responses beyond the retina, vector size constraints, and challenges in large-scale manufacturing. This review systematically compares different experimental models used to investigate AAV-mediated therapies, such as mouse models, human retinal explants (HREs), and induced pluripotent stem cell (iPSC)-derived retinal organoids. Mouse models are advantageous for genetic manipulation and detailed investigations of disease mechanisms; however, anatomical differences between mice and humans may limit the translational applicability of results. HREs offer valuable insights into human retinal pathophysiology but face challenges such as tissue degradation and lack of systemic physiological effects. Retinal organoids, on the other hand, provide a robust platform that closely mimics human retinal development, thereby enabling more comprehensive studies on disease mechanisms and therapeutic strategies, including AAV-based interventions. Specific outcomes targeted in these studies include vision preservation and functional improvements of retinas damaged by genetic mutations. This review highlights the strengths and weaknesses of each experimental model and advocates for their combined use in developing targeted gene therapies for IRDs. As research advances, optimizing AAV vector design and delivery methods will be critical for enhancing therapeutic efficacy and improving clinical outcomes for patients with IRDs.
Collapse
Affiliation(s)
- Almaqdad Alsalloum
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
| | | | - Natalia Mingaleva
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Roman Pavlov
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | | | - Ekaterina Antonova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Aygun Nadzhafova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Daria Kolotova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | | | - Olga Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
- Moscow Clinical Scientific Center N.A. A.S. Loginov, 111123 Moscow, Russia
| |
Collapse
|
16
|
Wang Y, Liu W, Jiao Y, Yang Y, Shan D, Ji X, Zhang R, Zhan Z, Tang Y, Guo D, Yan C, Liu F. Advances in the Differentiation of hiPSCs into Cerebellar Neuronal Cells. Stem Cell Rev Rep 2024; 20:1782-1794. [PMID: 39023738 DOI: 10.1007/s12015-024-10763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
The cerebellum has historically been primarily associated with the regulation of precise motor functions. However, recent findings suggest that it also plays a pivotal role in the development of advanced cognitive functions, including learning, memory, and emotion regulation. Pathological changes in the cerebellum, whether congenital hereditary or acquired degenerative, can result in a diverse spectrum of disorders, ranging from genetic spinocerebellar ataxias to psychiatric conditions such as autism, and schizophrenia. While studies in animal models have significantly contributed to our understanding of the genetic networks governing cerebellar development, it is important to note that the human cerebellum follows a protracted developmental timeline compared to the neocortex. Consequently, employing animal models to uncover human-specific molecular events in cerebellar development presents significant challenges. The emergence of human induced pluripotent stem cells (hiPSCs) has provided an invaluable tool for creating human-based culture systems, enabling the modeling and analysis of cerebellar physiology and pathology. hiPSCs and their differentiated progenies can be derived from patients with specific disorders or carrying distinct genetic variants. Importantly, they preserve the unique genetic signatures of the individuals from whom they originate, allowing for the elucidation of human-specific molecular and cellular processes involved in cerebellar development and related disorders. This review focuses on the technical advancements in the utilization of hiPSCs for the generation of both 2D cerebellar neuronal cells and 3D cerebellar organoids.
Collapse
Affiliation(s)
- Yingxin Wang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Wenzhu Liu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Yichang Jiao
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Yitong Yang
- School of Nursing, Jining Medical University, Jining, Shandong, 272067, China
| | - Didi Shan
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Xinbo Ji
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Rui Zhang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Zexin Zhan
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Yao Tang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Dandan Guo
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China.
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China.
- Brain Science Research Institute, Shandong University, Jinan, Shandong, 250012, China.
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266103, China.
| | - Fuchen Liu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China.
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China.
- Brain Science Research Institute, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
17
|
Matsushita T, Onishi A, Matsuyama T, Masuda T, Ogino Y, Kageyama M, Takahashi M, Uchiumi F. Rapid and efficient generation of mature retinal organoids derived from human pluripotent stem cells via optimized pharmacological modulation of Sonic hedgehog, activin A, and retinoic acid signal transduction. PLoS One 2024; 19:e0308743. [PMID: 39121095 PMCID: PMC11315325 DOI: 10.1371/journal.pone.0308743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/29/2024] [Indexed: 08/11/2024] Open
Abstract
Human retinal organoids have become indispensable tools for retinal disease modeling and drug screening. Despite its versatile applications, the long timeframe for their differentiation and maturation limits the throughput of such research. Here, we successfully shortened this timeframe by accelerating human retinal organoid development using unique pharmacological approaches. Our method comprised three key steps: 1) a modified self-formed ectodermal autonomous multizone (SEAM) method, including dual SMAD inhibition and bone morphogenetic protein 4 treatment, for initial neural retinal induction; 2) the concurrent use of a Sonic hedgehog agonist SAG, activin A, and all-trans retinoic acid for rapid retinal cell specification; and 3) switching to SAG treatment alone for robust retinal maturation and lamination. The generated retinal organoids preserved typical morphological features of mature retinal organoids, including hair-like surface structures and well-organized outer layers. These features were substantiated by the spatial immunostaining patterns of several retinal cell markers, including rhodopsin and L/M opsin expression in the outermost layer, which was accompanied by reduced ectopic cone photoreceptor generation. Importantly, our method required only 90 days for retinal organoid maturation, which is approximately two-thirds the time necessary for other conventional methods. These results indicate that thoroughly optimized pharmacological interventions play a pivotal role in rapid and precise photoreceptor development during human retinal organoid differentiation and maturation. Thus, our present method may expedite human retinal organoid research, eventually contributing to the development of better treatment options for various degenerative retinal diseases.
Collapse
Affiliation(s)
- Tokiyoshi Matsushita
- Faculty of Pharmaceutical Sciences, Department of Gene Regulation, Tokyo University of Science, Noda, Chiba, Japan
- Product Discovery, Ophthalmology Innovation Center, Santen Pharmaceutical Co., Ltd., Ikoma, Nara, Japan
| | - Akishi Onishi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Cell and Gene Therapy in Ophthalmology Laboratory, Baton Zone Program, RIKEN, Wako, Saitama, Japan
| | - Takahiro Matsuyama
- Product Discovery, Ophthalmology Innovation Center, Santen Pharmaceutical Co., Ltd., Ikoma, Nara, Japan
| | - Tomohiro Masuda
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Cell and Gene Therapy in Ophthalmology Laboratory, Baton Zone Program, RIKEN, Wako, Saitama, Japan
| | - Yoko Ogino
- Faculty of Pharmaceutical Sciences, Department of Gene Regulation, Tokyo University of Science, Noda, Chiba, Japan
| | - Masaaki Kageyama
- Product Discovery, Ophthalmology Innovation Center, Santen Pharmaceutical Co., Ltd., Ikoma, Nara, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Cell and Gene Therapy in Ophthalmology Laboratory, Baton Zone Program, RIKEN, Wako, Saitama, Japan
| | - Fumiaki Uchiumi
- Faculty of Pharmaceutical Sciences, Department of Gene Regulation, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
18
|
Campos RC, Matsunaga K, Reid MW, Fernandez GE, Stepanian K, Bharathan SP, Li M, Thornton ME, Grubbs BH, Nagiel A. Non-canonical Wnt pathway expression in the developing mouse and human retina. Exp Eye Res 2024; 244:109947. [PMID: 38815793 PMCID: PMC11179970 DOI: 10.1016/j.exer.2024.109947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The non-canonical Wnt pathway is an evolutionarily conserved pathway essential for tissue patterning and development across species and tissues. In mammals, this pathway plays a role in neuronal migration, dendritogenesis, axon growth, and synapse formation. However, its role in development and synaptogenesis of the human retina remains less established. In order to address this knowledge gap, we analyzed publicly available single-cell RNA sequencing (scRNAseq) datasets for mouse retina, human retina, and human retinal organoids over multiple developmental time points during outer retinal maturation. We identified ligands, receptors, and mediator genes with a putative role in retinal development, including those with novel or species-specific expression, and validated this expression using fluorescence in situ hybridization (FISH). By quantifying outer nuclear layer (ONL) versus inner nuclear layer (INL) expression, we provide evidence for the differential expression of certain non-canonical Wnt signaling components in the developing mouse and human retina during outer plexiform layer (OPL) development. Importantly, we identified distinct expression patterns of mouse and human FZD3 and WNT10A, as well as previously undescribed expression, such as for mouse Wnt2b in Chat+ starburst amacrine cells. Human retinal organoids largely recapitulated the human non-canonical Wnt pathway expression. Together, this work provides the basis for further study of non-canonical Wnt signaling in mouse and human retinal development and synaptogenesis.
Collapse
Affiliation(s)
- Rosanna C Campos
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Development, Stem Cells and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kate Matsunaga
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mark W Reid
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - G Esteban Fernandez
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Kayla Stepanian
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Sumitha P Bharathan
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Meng Li
- USC Libraries Bioinformatics Services, University of Southern California, Los Angeles, CA, USA
| | - Matthew E Thornton
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan H Grubbs
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Aaron Nagiel
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA; Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Seah I, Goh D, Banerjee A, Su X. Modeling inherited retinal diseases using human induced pluripotent stem cell derived photoreceptor cells and retinal pigment epithelial cells. Front Med (Lausanne) 2024; 11:1328474. [PMID: 39011458 PMCID: PMC11246861 DOI: 10.3389/fmed.2024.1328474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Since the discovery of induced pluripotent stem cell (iPSC) technology, there have been many attempts to create cellular models of inherited retinal diseases (IRDs) for investigation of pathogenic processes to facilitate target discovery and validation activities. Consistency remains key in determining the utility of these findings. Despite the importance of consistency, quality control metrics are still not widely used. In this review, a toolkit for harnessing iPSC technology to generate photoreceptor, retinal pigment epithelial cell, and organoid disease models is provided. Considerations while developing iPSC-derived IRD models such as iPSC origin, reprogramming methods, quality control metrics, control strategies, and differentiation protocols are discussed. Various iPSC IRD models are dissected and the scientific hurdles of iPSC-based disease modeling are discussed to provide an overview of current methods and future directions in this field.
Collapse
Affiliation(s)
- Ivan Seah
- Translational Retinal Research Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Debbie Goh
- Department of Ophthalmology, National University Hospital (NUH), Singapore, Singapore
| | - Animesh Banerjee
- Translational Retinal Research Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xinyi Su
- Translational Retinal Research Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Ophthalmology, National University Hospital (NUH), Singapore, Singapore
- Singapore Eye Research Institute (SERI), Singapore, Singapore
| |
Collapse
|
20
|
Harkin J, Peña KH, Gomes C, Hernandez M, Lavekar SS, So K, Lentsch K, Feder EM, Morrow S, Huang KC, Tutrow KD, Morris A, Zhang C, Meyer JS. A highly reproducible and efficient method for retinal organoid differentiation from human pluripotent stem cells. Proc Natl Acad Sci U S A 2024; 121:e2317285121. [PMID: 38870053 PMCID: PMC11194494 DOI: 10.1073/pnas.2317285121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Human pluripotent stem cell (hPSC)-derived retinal organoids are three-dimensional cellular aggregates that differentiate and self-organize to closely mimic the spatial and temporal patterning of the developing human retina. Retinal organoid models serve as reliable tools for studying human retinogenesis, yet limitations in the efficiency and reproducibility of current retinal organoid differentiation protocols have reduced the use of these models for more high-throughput applications such as disease modeling and drug screening. To address these shortcomings, the current study aimed to standardize prior differentiation protocols to yield a highly reproducible and efficient method for generating retinal organoids. Results demonstrated that through regulation of organoid size and shape using quick reaggregation methods, retinal organoids were highly reproducible compared to more traditional methods. Additionally, the timed activation of BMP signaling within developing cells generated pure populations of retinal organoids at 100% efficiency from multiple widely used cell lines, with the default forebrain fate resulting from the inhibition of BMP signaling. Furthermore, given the ability to direct retinal or forebrain fates at complete purity, mRNA-seq analyses were then utilized to identify some of the earliest transcriptional changes that occur during the specification of these two lineages from a common progenitor. These improved methods also yielded retinal organoids with expedited differentiation timelines when compared to traditional methods. Taken together, the results of this study demonstrate the development of a highly reproducible and minimally variable method for generating retinal organoids suitable for analyzing the earliest stages of human retinal cell fate specification.
Collapse
Affiliation(s)
- Jade Harkin
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
| | - Kiersten H. Peña
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN46202
| | - Cátia Gomes
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN46202
| | - Melody Hernandez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN46202
| | - Sailee S. Lavekar
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN46202
| | - Kaman So
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN46202
| | - Kelly Lentsch
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN46202
| | - Elyse M. Feder
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN46202
| | - Sarah Morrow
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
| | - Kang-Chieh Huang
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN46202
| | - Kaylee D. Tutrow
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN46202
| | - Ann Morris
- Department of Biology, University of Kentucky, Lexington, KY40506
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN46202
| | - Jason S. Meyer
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN46202
| |
Collapse
|
21
|
Huang S, Zeng Y, Guo Q, Zou T, Yin ZQ. Small extracellular vesicles of organoid-derived human retinal stem cells remodel Müller cell fate via miRNA: A novel remedy for retinal degeneration. J Control Release 2024; 370:405-420. [PMID: 38663753 DOI: 10.1016/j.jconrel.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Remodeling retinal Müller glial fate, including gliosis inhibition and pro-reprogramming, represents a crucial avenue for treating degenerative retinal diseases. Stem cell transplantation exerts effects on modulating retinal Müller glial fate. However, the optimized stem cell products and the underlying therapeutic mechanisms need to be investigated. In the present study, we found that retinal progenitor cells from human embryonic stem cell-derived retinal organoids (hERO-RPCs) transferred extracellular vesicles (EVs) into Müller cells following subretinal transplantation into RCS rats. Small EVs from hERO-RPCs (hERO-RPC-sEVs) were collected and were found to delay photoreceptor degeneration and protect retinal function in RCS rats. hERO-RPC-sEVs were taken up by Müller cells both in vivo and in vitro, and inhibited gliosis while promoting early dedifferentiation of Müller cells. We further explored the miRNA profiles of hERO-RPC-sEVs, which suggested a functional signature associated with neuroprotection and development, as well as the regulation of stem cell and glial fate. Mechanistically, hERO-RPC-sEVs might regulate the fate of Müller cells by miRNA-mediated nuclear factor I transcription factors B (NFIB) downregulation. Collectively, our findings offer novel mechanistic insights into stem cell therapy and promote the development of EV-centered therapeutic strategies.
Collapse
Affiliation(s)
- Shudong Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qiang Guo
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China; Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|
22
|
Tamada A, Muguruma K. Recapitulation and investigation of human brain development with neural organoids. IBRO Neurosci Rep 2024; 16:106-117. [PMID: 39007085 PMCID: PMC11240300 DOI: 10.1016/j.ibneur.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Organoids are 3D cultured tissues derived from stem cells that resemble the structure of living organs. Based on the accumulated knowledge of neural development, neural organoids that recapitulate neural tissue have been created by inducing self-organized neural differentiation of stem cells. Neural organoid techniques have been applied to human pluripotent stem cells to differentiate 3D human neural tissues in culture. Various methods have been developed to generate neural tissues of different regions. Currently, neural organoid technology has several significant limitations, which are being overcome in an attempt to create neural organoids that more faithfully recapitulate the living brain. The rapidly advancing neural organoid technology enables the use of living human neural tissue as research material and contributes to our understanding of the development, structure and function of the human nervous system, and is expected to be used to overcome neurological diseases and for regenerative medicine.
Collapse
Affiliation(s)
- Atsushi Tamada
- Department of iPS Cell Applied Medicine, Faculty of Medicine, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Keiko Muguruma
- Department of iPS Cell Applied Medicine, Faculty of Medicine, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
23
|
Kawai K, Ho MT, Ueno Y, Abdo D, Xue C, Nonaka H, Nishida H, Honma Y, Wallace VA, Shoichet MS. Hyaluronan improves photoreceptor differentiation and maturation in human retinal organoids. Acta Biomater 2024; 181:117-132. [PMID: 38705224 DOI: 10.1016/j.actbio.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Human stem cell-derived organoids enable both disease modeling and serve as a source of cells for transplantation. Human retinal organoids are particularly important as a source of human photoreceptors; however, the long differentiation period required and lack of vascularization in the organoid often results in a necrotic core and death of inner retinal cells before photoreceptors are fully mature. Manipulating the in vitro environment of differentiating retinal organoids through the incorporation of extracellular matrix components could influence retinal development. We investigated the addition of hyaluronan (HA), a component of the interphotoreceptor matrix, as an additive to promote long-term organoid survival and enhance retinal maturation. HA treatment had a significant reduction in the proportion of proliferating (Ki67+) cells and increase in the proportion of photoreceptors (CRX+), suggesting that HA accelerated photoreceptor commitment in vitro. HA significantly upregulated genes specific to photoreceptor maturation and outer segment development. Interestingly, prolonged HA-treatment significantly decreased the length of the brush border layer compared to those in control retinal organoids, where the photoreceptor outer segments reside; however, HA-treated organoids also had more mature outer segments with organized discs structures, as revealed by transmission electron microscopy. The brush border layer length was inversely proportional to the molar mass and viscosity of the hyaluronan added. This is the first study to investigate the role of exogenous HA, viscosity, and polymer molar mass on photoreceptor maturation, emphasizing the importance of material properties on organoid culture. STATEMENT OF SIGNIFICANCE: Retinal organoids are a powerful tool to study retinal development in vitro, though like many other organoid systems, can be highly variable. In this work, Shoichet and colleagues investigated the use of hyaluronan (HA), a native component of the interphotoreceptor matrix, to improve photoreceptor maturation in developing human retinal organoids. HA promoted human photoreceptor differentiation leading to mature outer segments with disc formation and more uniform and healthy retinal organoids. These findings highlight the importance of adding components native to the developing retina to generate more physiologically relevant photoreceptors for cell therapy and in vitro models to drive drug discovery and uncover novel disease mechanisms.
Collapse
Affiliation(s)
- Kotoe Kawai
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada; Regenerative Medicine Research and Planning Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Margaret T Ho
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Yui Ueno
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada; Regenerative Medicine Research and Planning Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Dhana Abdo
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Chang Xue
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Hidenori Nonaka
- Regenerative Medicine Research and Planning Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Hiroyuki Nishida
- Regenerative Medicine Research and Planning Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Yoichi Honma
- Regenerative Medicine Research and Planning Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Valerie A Wallace
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Canada
| | - Molly S Shoichet
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Department of Chemistry, University of Toronto, Canada.
| |
Collapse
|
24
|
Kurzawa-Akanbi M, Tzoumas N, Corral-Serrano JC, Guarascio R, Steel DH, Cheetham ME, Armstrong L, Lako M. Pluripotent stem cell-derived models of retinal disease: Elucidating pathogenesis, evaluating novel treatments, and estimating toxicity. Prog Retin Eye Res 2024; 100:101248. [PMID: 38369182 DOI: 10.1016/j.preteyeres.2024.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Blindness poses a growing global challenge, with approximately 26% of cases attributed to degenerative retinal diseases. While gene therapy, optogenetic tools, photosensitive switches, and retinal prostheses offer hope for vision restoration, these high-cost therapies will benefit few patients. Understanding retinal diseases is therefore key to advance effective treatments, requiring in vitro models replicating pathology and allowing quantitative assessments for drug discovery. Pluripotent stem cells (PSCs) provide a unique solution given their limitless supply and ability to differentiate into light-responsive retinal tissues encompassing all cell types. This review focuses on the history and current state of photoreceptor and retinal pigment epithelium (RPE) cell generation from PSCs. We explore the applications of this technology in disease modelling, experimental therapy testing, biomarker identification, and toxicity studies. We consider challenges in scalability, standardisation, and reproducibility, and stress the importance of incorporating vasculature and immune cells into retinal organoids. We advocate for high-throughput automation in data acquisition and analyses and underscore the value of advanced micro-physiological systems that fully capture the interactions between the neural retina, RPE, and choriocapillaris.
Collapse
|
25
|
Lin B, Singh RK, Seiler MJ, Nasonkin IO. Survival and Functional Integration of Human Embryonic Stem Cell-Derived Retinal Organoids After Shipping and Transplantation into Retinal Degeneration Rats. Stem Cells Dev 2024; 33:201-213. [PMID: 38390839 PMCID: PMC11250834 DOI: 10.1089/scd.2023.0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
Because derivation of retinal organoids (ROs) and transplantation are frequently split between geographically distant locations, we developed a special shipping device and protocol capable of the organoids' delivery to any location. Human embryonic stem cell (hESC)-derived ROs were differentiated from the hESC line H1 (WA01), shipped overnight to another location, and then transplanted into the subretinal space of blind immunodeficient retinal degeneration (RD) rats. Development of transplants was monitored by spectral-domain optical coherence tomography. Visual function was accessed by optokinetic tests and superior colliculus (SC) electrophysiology. Cryostat sections through transplants were stained with hematoxylin and eosin; or processed for immunohistochemistry to label human donor cells, retinal cell types, and synaptic markers. After transplantation, ROs integrated into the host RD retina, formed functional photoreceptors, and improved vision in rats with advanced RD. The survival and vision improvement are comparable with our previous results of hESC-ROs without a long-distance delivery. Furthermore, for the first time in the stem cell transplantation field, we demonstrated that the response heatmap on the SC showed a similar shape to the location of the transplant in the host retina, which suggested the point-to-point projection of the transplant from the retina to SC. In conclusion, our results showed that using our special device and protocol, the hESC-derived ROs can be shipped over long distance and are capable of survival and visual improvement after transplantation into the RD rats. Our data provide a proof-of-concept for stem cell replacement as a therapy for RD patients.
Collapse
Affiliation(s)
- Bin Lin
- Department of Anatomy and Neurobiology, Physical Medicine and Rehabilitation, Ophthalmology, Sue and Bill Stem Cell Research Center, University of California, Irvine School of Medicine, Irvine, California, USA
| | | | - Magdalene J. Seiler
- Department of Anatomy and Neurobiology, Physical Medicine and Rehabilitation, Ophthalmology, Sue and Bill Stem Cell Research Center, University of California, Irvine School of Medicine, Irvine, California, USA
| | | |
Collapse
|
26
|
Dorgau B, Collin J, Rozanska A, Zerti D, Unsworth A, Crosier M, Hussain R, Coxhead J, Dhanaseelan T, Patel A, Sowden JC, FitzPatrick DR, Queen R, Lako M. Single-cell analyses reveal transient retinal progenitor cells in the ciliary margin of developing human retina. Nat Commun 2024; 15:3567. [PMID: 38670973 PMCID: PMC11053058 DOI: 10.1038/s41467-024-47933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The emergence of retinal progenitor cells and differentiation to various retinal cell types represent fundamental processes during retinal development. Herein, we provide a comprehensive single cell characterisation of transcriptional and chromatin accessibility changes that underline retinal progenitor cell specification and differentiation over the course of human retinal development up to midgestation. Our lineage trajectory data demonstrate the presence of early retinal progenitors, which transit to late, and further to transient neurogenic progenitors, that give rise to all the retinal neurons. Combining single cell RNA-Seq with spatial transcriptomics of early eye samples, we demonstrate the transient presence of early retinal progenitors in the ciliary margin zone with decreasing occurrence from 8 post-conception week of human development. In retinal progenitor cells, we identified a significant enrichment for transcriptional enhanced associate domain transcription factor binding motifs, which when inhibited led to loss of cycling progenitors and retinal identity in pluripotent stem cell derived organoids.
Collapse
Affiliation(s)
- Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Agata Rozanska
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Darin Zerti
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Moira Crosier
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | | | | | - Aara Patel
- UCL Great Ormond Street Institute of Child Health and NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Jane C Sowden
- UCL Great Ormond Street Institute of Child Health and NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Rachel Queen
- Biosciences Institute, Newcastle University, Newcastle, UK.
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle, UK.
| |
Collapse
|
27
|
Dorgau B, Collin J, Rozanska A, Boczonadi V, Moya-Molina M, Unsworth A, Hussain R, Coxhead J, Dhanaseelan T, Armstrong L, Queen R, Lako M. Deciphering the spatiotemporal transcriptional and chromatin accessibility of human retinal organoid development at the single-cell level. iScience 2024; 27:109397. [PMID: 38510120 PMCID: PMC10952046 DOI: 10.1016/j.isci.2024.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/28/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Molecular information on the early stages of human retinal development remains scarce due to limitations in obtaining early human eye samples. Pluripotent stem cell-derived retinal organoids (ROs) provide an unprecedented opportunity for studying early retinogenesis. Using a combination of single cell RNA-seq and spatial transcriptomics we present for the first-time a single cell spatiotemporal transcriptome of RO development. Our data demonstrate that ROs recapitulate key events of retinogenesis including optic vesicle/cup formation, presence of a putative ciliary margin zone, emergence of retinal progenitor cells and their orderly differentiation to retinal neurons. Combining the scRNA- with scATAC-seq data, we were able to reveal cell-type specific transcription factor binding motifs on accessible chromatin at each stage of organoid development, and to show that chromatin accessibility is highly correlated to the developing human retina, but with some differences in the temporal emergence and abundance of some of the retinal neurons.
Collapse
Affiliation(s)
- Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Agata Rozanska
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Veronika Boczonadi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Marina Moya-Molina
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
- Newcells Biotech, Newcastle upon Tyne NE4 5BX, UK
| | - Adrienne Unsworth
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Rafiqul Hussain
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Tamil Dhanaseelan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Rachel Queen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
28
|
Xiao Y, McGhee CNJ, Zhang J. Adult stem cells in the eye: Identification, characterisation, and therapeutic application in ocular regeneration - A review. Clin Exp Ophthalmol 2024; 52:148-166. [PMID: 38214071 DOI: 10.1111/ceo.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 01/13/2024]
Abstract
Adult stem cells, present in various parts of the human body, are undifferentiated cells that can proliferate and differentiate to replace dying cells within tissues. Stem cells have specifically been identified in the cornea, trabecular meshwork, crystalline lens, iris, ciliary body, retina, choroid, sclera, conjunctiva, eyelid, lacrimal gland, and orbital fat. The identification of ocular stem cells broadens the potential therapeutic strategies for untreatable eye diseases. Currently, stem cell transplantation for corneal and conjunctival diseases remains the most common stem cell-based therapy in ocular clinical management. Lens epithelial stem cells have been applied in the treatment of paediatric cataracts. Several early-phase clinical trials for corneal and retinal regeneration using ocular stem cells are also underway. Extensive preclinical studies using ocular stem cells have been conducted, showing encouraging outcomes. Ocular stem cells currently demonstrate great promise in potential treatments of eye diseases. In this review, we focus on the identification, characterisation, and therapeutic application of adult stem cells in the eye.
Collapse
Affiliation(s)
- Yuting Xiao
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Charles N J McGhee
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jie Zhang
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
Iwama Y, Nomaru H, Masuda T, Kawamura Y, Matsumura M, Murata Y, Teranishi K, Nishida K, Ota S, Mandai M, Takahashi M. Label-free enrichment of human pluripotent stem cell-derived early retinal progenitor cells for cell-based regenerative therapies. Stem Cell Reports 2024; 19:254-269. [PMID: 38181785 PMCID: PMC10874851 DOI: 10.1016/j.stemcr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Pluripotent stem cell-based therapy for retinal degenerative diseases is a promising approach to restoring visual function. A clinical study using retinal organoid (RO) sheets was recently conducted in patients with retinitis pigmentosa. However, the graft preparation currently requires advanced skills to identify and excise suitable segments from the transplantable area of the limited number of suitable ROs. This remains a challenge for consistent clinical implementations. Herein, we enabled the enrichment of wild-type (non-reporter) retinal progenitor cells (RPCs) from dissociated ROs using a label-free ghost cytometry (LF-GC)-based sorting system, where a machine-based classifier was trained in advance with another RPC reporter line. The sorted cells reproducibly formed retinal spheroids large enough for transplantation and developed mature photoreceptors in the retinal degeneration rats. This method of enriching early RPCs with no specific surface antigens and without any reporters or chemical labeling is promising for robust preparation of graft tissues during cell-based therapy.
Collapse
Affiliation(s)
- Yasuaki Iwama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; Cell and Gene Therapy in Ophthalmology Laboratory, BZP, RIKEN, Wako, Saitama 351-0198, Japan; Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | - Tomohiro Masuda
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; Cell and Gene Therapy in Ophthalmology Laboratory, BZP, RIKEN, Wako, Saitama 351-0198, Japan.
| | | | - Michiru Matsumura
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan
| | | | | | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Sadao Ota
- ThinkCyte K.K., Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan.
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
30
|
Aparicio JG, Hopp H, Harutyunyan N, Stewart C, Cobrinik D, Borchert M. Aberrant gene expression yet undiminished retinal ganglion cell genesis in iPSC-derived models of optic nerve hypoplasia. Ophthalmic Genet 2024; 45:1-15. [PMID: 37807874 PMCID: PMC10841193 DOI: 10.1080/13816810.2023.2253902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Optic nerve hypoplasia (ONH), the leading congenital cause of permanent blindness, is characterized by a retinal ganglion cell (RGC) deficit at birth. Multifactorial developmental events are hypothesized to underlie ONH and its frequently associated neurologic and endocrine abnormalities; however, environmental influences are unclear and genetic underpinnings are unexplored. This work investigates the genetic contribution to ONH RGC production and gene expression using patient induced pluripotent stem cell (iPSC)-derived retinal organoids (ROs). MATERIALS AND METHODS iPSCs produced from ONH patients and controls were differentiated to ROs. RGC genesis was assessed using immunofluorescence and flow cytometry. Flow-sorted BRN3+ cells were collected for RNA extraction for RNA-Sequencing. Differential gene expression was assessed using DESeq2 and edgeR. PANTHER was employed to identify statistically over-represented ontologies among the differentially expressed genes (DEGs). DEGs of high interest to ONH were distinguished by assessing function, mutational constraint, and prior identification in ONH, autism and neurodevelopmental disorder (NDD) studies. RESULTS RGC genesis and survival were similar in ONH and control ROs. Differential expression of 70 genes was identified in both DESeq2 and edgeR analyses, representing a ~ 4-fold higher percentage of DEGs than in randomized study participants. DEGs showed trends towards over-representation of validated NDD genes and ONH exome variant genes. Among the DEGs, RAPGEF4 and DMD had the greatest number of disease-relevant features. CONCLUSIONS ONH genetic background was not associated with impaired RGC genesis but was associated with DEGs exhibiting disease contribution potential. This constitutes some of the first evidence of a genetic contribution to ONH.
Collapse
Affiliation(s)
- Jennifer G. Aparicio
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Hanno Hopp
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Narine Harutyunyan
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Carly Stewart
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - David Cobrinik
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Biochemistry & Molecular Medicine, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of
Medicine, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Department of Ophthalmology, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark Borchert
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
- USC Roski Eye Institute, Department of Ophthalmology, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
31
|
Zhao H, Yan F. Retinal Organoids: A Next-Generation Platform for High-Throughput Drug Discovery. Stem Cell Rev Rep 2024; 20:495-508. [PMID: 38079086 PMCID: PMC10837228 DOI: 10.1007/s12015-023-10661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 02/03/2024]
Abstract
Retinal diseases are leading causes of blindness globally. Developing new drugs is of great significance for preventing vision loss. Current drug discovery relies mainly on two-dimensional in vitro models and animal models, but translation to human efficacy and safety is biased. In recent years, the emergence of retinal organoid technology platforms, utilizing three-dimensional microenvironments to better mimic retinal structure and function, has provided new platforms for exploring pathogenic mechanisms and drug screening. This review summarizes the latest advances in retinal organoid technology, emphasizing its application advantages in high-throughput drug screening, efficacy and toxicity evaluation, and translational medicine research. The review also prospects the combination of emerging technologies such as organ-on-a-chip, 3D bioprinting, single cell sequencing, gene editing with retinal organoid technology, which is expected to further optimize retinal organoid models and advance the diagnosis and treatment of retinal diseases.
Collapse
Affiliation(s)
- Hongkun Zhao
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, Yunnan, China
| | - Fei Yan
- Department of Pathology and Pathophysiology, Faculty of Basic Medicine School, Kunming Medical University, 1168 Yuhua Street, Chunrong West Road, Chenggong District, Kunming, Yunnan, 650500, China.
| |
Collapse
|
32
|
Lei Q, Xiang K, Cheng L, Xiang M. Human retinal organoids with an OPA1 mutation are defective in retinal ganglion cell differentiation and function. Stem Cell Reports 2024; 19:68-83. [PMID: 38101398 PMCID: PMC10828684 DOI: 10.1016/j.stemcr.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Autosomal dominant optic atrophy (ADOA), mostly caused by heterozygous OPA1 mutations and characterized by retinal ganglion cell (RGC) loss and optic nerve degeneration, is one of the most common types of inherited optic neuropathies. Previous work using a two-dimensional (2D) differentiation model of induced pluripotent stem cells (iPSCs) has investigated ADOA pathogenesis but failed to agree on the effect of OPA1 mutations on RGC differentiation. Here, we use 3D retinal organoids capable of mimicking in vivo retinal development to resolve the issue. We generated isogenic iPSCs carrying the hotspot OPA1 c.2708_2711delTTAG mutation and found that the mutant variant caused defective initial and terminal differentiation and abnormal electrophysiological properties of organoid-derived RGCs. Moreover, this variant inhibits progenitor proliferation and results in mitochondrial dysfunction. These data demonstrate that retinal organoids coupled with gene editing serve as a powerful tool to definitively identify disease-related phenotypes and provide valuable resources to further investigate ADOA pathogenesis and screen for ADOA therapeutics.
Collapse
Affiliation(s)
- Qiannan Lei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Kangjian Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
33
|
Gao H, Zeng Y, Huang X, A L, Liang Q, Xie J, Lin X, Gong J, Fan X, Zou T, Xu H. Extracellular vesicles from organoid-derived human retinal progenitor cells prevent lipid overload-induced retinal pigment epithelium injury by regulating fatty acid metabolism. J Extracell Vesicles 2024; 13:e12401. [PMID: 38151470 PMCID: PMC10752800 DOI: 10.1002/jev2.12401] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/31/2023] [Accepted: 12/02/2023] [Indexed: 12/29/2023] Open
Abstract
Retinal degeneration (RD), a group of diseases leading to irreversible vision loss, is characterised by retinal pigment epithelium (RPE) or retinal neuron damage and loss. With fewer risks of immune rejection and tumorigenesis, stem cell-secreted extracellular vesicles (EVs) offer a new cell-free therapeutic paradigm for RD, which remains to be investigated. Human retinal organoid-derived retinal progenitor cells (hERO-RPCs) are an easily accessible and advanced cell source for RD treatment. However, hERO-RPCs-derived EVs require further characterisation. Here, we compared the characteristics of EVs from hERO-RPCs (hRPC-EVs) with those of human embryonic stem cell (hESC)-derived EVs (hESC-EVs) as controls. Based on in-depth proteomic analysis, we revealed remarkable differences between hRPC-EVs and hESC-EVs. A comparison between EVs and their respective cells of origin demonstrated that the protein loading of hRPC-EVs was more selective than that of hESC-EVs. In particular, hESC-EVs were enriched with proteins related to angiogenesis and cell cycle, whereas hRPC-EVs were enriched with proteins associated with immune modulation and retinal development. More importantly, compared with that of hESC-EVs, hRPC-EVs exhibited a lower correlation with cell proliferation and a unique capacity to regulate lipid metabolism. It was further confirmed that hRPC-EVs potentially eliminated lipid deposits, inhibited lipotoxicity and oxidative stress, and enhanced phagocytosis and survival of oleic acid-treated ARPE-19 cells. Mechanistically, hRPC-EVs are integrated into the mitochondrial network of oleic acid-treated ARPE-19 cells, and increased the level of mitochondrial fatty acid β-oxidation-related proteins. Thus, organoid-derived hRPC-EVs represent a promising source of cell-free therapy for RD, especially for blinding diseases related to abnormal lipid metabolism in RPE cells.
Collapse
Affiliation(s)
- Hui Gao
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Yuxiao Zeng
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Xiaona Huang
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Luodan A
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Qingle Liang
- Department of Clinical Laboratory Medicine, First Affiliated HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Jing Xie
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Xi Lin
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Jing Gong
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of PsychologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Ting Zou
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
- Department of OphthalmologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| |
Collapse
|
34
|
Mishra I, Gupta K, Mishra R, Chaudhary K, Sharma V. An Exploration of Organoid Technology: Present Advancements, Applications, and Obstacles. Curr Pharm Biotechnol 2024; 25:1000-1020. [PMID: 37807405 DOI: 10.2174/0113892010273024230925075231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Organoids are in vitro models that exhibit a three-dimensional structure and effectively replicate the structural and physiological features of human organs. The capacity to research complex biological processes and disorders in a controlled setting is laid out by these miniature organ-like structures. OBJECTIVES This work examines the potential applications of organoid technology, as well as the challenges and future directions associated with its implementation. It aims to emphasize the pivotal role of organoids in disease modeling, drug discovery, developmental biology, precision medicine, and fundamental research. METHODS The manuscript was put together by conducting a comprehensive literature review, which involved an in-depth evaluation of globally renowned scientific research databases. RESULTS The field of organoids has generated significant attention due to its potential applications in tissue development and disease modelling, as well as its implications for personalised medicine, drug screening, and cell-based therapies. The utilisation of organoids has proven to be effective in the examination of various conditions, encompassing genetic disorders, cancer, neurodevelopmental disorders, and infectious diseases. CONCLUSION The exploration of the wider uses of organoids is still in its early phases. Research shall be conducted to integrate 3D organoid systems as alternatives for current models, potentially improving both fundamental and clinical studies in the future.
Collapse
Affiliation(s)
- Isha Mishra
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Komal Gupta
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Raghav Mishra
- Department of Pharmacy, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Kajal Chaudhary
- Department of Pharmacy, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Vikram Sharma
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
35
|
Hirami Y, Mandai M, Sugita S, Maeda A, Maeda T, Yamamoto M, Uyama H, Yokota S, Fujihara M, Igeta M, Daimon T, Fujita K, Ito T, Shibatani N, Morinaga C, Hayama T, Nakamura A, Ueyama K, Ono K, Ohara H, Fujiwara M, Yamasaki S, Watari K, Bando K, Kawabe K, Ikeda A, Kimura T, Kuwahara A, Takahashi M, Kurimoto Y. Safety and stable survival of stem-cell-derived retinal organoid for 2 years in patients with retinitis pigmentosa. Cell Stem Cell 2023; 30:1585-1596.e6. [PMID: 38065067 DOI: 10.1016/j.stem.2023.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/03/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Transplantation of induced pluripotent stem cell (iPSC)-derived retinal organoids into retinal disease animal models has yielded promising results, and several clinical trials on iPSC-derived retinal pigment epithelial cell transplantation have confirmed its safety. In this study, we performed allogeneic iPSC-derived retinal organoid sheet transplantation in two subjects with advanced retinitis pigmentosa (jRCTa050200027). The primary endpoint was the survival and safety of the transplanted retinal organoid sheets in the first year post-transplantation. The secondary endpoints were the safety of the transplantation procedure and visual function evaluation. The grafts survived in a stable condition for 2 years, and the retinal thickness increased at the transplant site without serious adverse events in both subjects. Changes in visual function were less progressive than those of the untreated eye during the follow-up. Allogeneic iPSC-derived retinal organoid sheet transplantation is a potential therapeutic approach, and the treatment's safety and efficacy for visual function should be investigated further.
Collapse
Affiliation(s)
- Yasuhiko Hirami
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan; Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe 650-0047, Japan; Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
| | - Michiko Mandai
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan; Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; Research Center, Kobe City Eye Hospital, Kobe 650-0047, Japan; RIKEN Program for Drug Discovery and Medical Technology Platforms, Yokohama 230-0045, Japan
| | - Sunao Sugita
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan; Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Akiko Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan; Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; Research Center, Kobe City Eye Hospital, Kobe 650-0047, Japan
| | - Tadao Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan; Research Center, Kobe City Eye Hospital, Kobe 650-0047, Japan
| | - Midori Yamamoto
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan; Research Center, Kobe City Eye Hospital, Kobe 650-0047, Japan
| | - Hirofumi Uyama
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan; Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe 650-0047, Japan
| | - Satoshi Yokota
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan; Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe 650-0047, Japan; Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Masashi Fujihara
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan; Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe 650-0047, Japan; Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Masataka Igeta
- Department of Biostatistics, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Takashi Daimon
- Department of Biostatistics, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Kanako Fujita
- Research Center, Kobe City Eye Hospital, Kobe 650-0047, Japan
| | - Tomoko Ito
- Research Center, Kobe City Eye Hospital, Kobe 650-0047, Japan
| | - Naoki Shibatani
- Research Center, Kobe City Eye Hospital, Kobe 650-0047, Japan
| | - Chikako Morinaga
- RIKEN Program for Drug Discovery and Medical Technology Platforms, Yokohama 230-0045, Japan
| | - Tetsuya Hayama
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co. Ltd., Kobe 650-0047, Japan
| | - Aya Nakamura
- Technology Research & Development Division, Sumitomo Pharma Co. Ltd., Kobe 650-0047, Japan
| | - Kazuki Ueyama
- Technology Research & Development Division, Sumitomo Pharma Co. Ltd., Kobe 650-0047, Japan
| | - Keiichi Ono
- Technology Research & Development Division, Sumitomo Pharma Co. Ltd., Kobe 650-0047, Japan
| | - Hidetaka Ohara
- Regenerative & Cellular Medicine Office, Sumitomo Pharma Co. Ltd., Tokyo 103-6012, Japan
| | - Masayo Fujiwara
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co. Ltd., Kobe 650-0047, Japan
| | - Suguru Yamasaki
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co. Ltd., Kobe 650-0047, Japan
| | - Kenji Watari
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co. Ltd., Kobe 650-0047, Japan
| | - Kiyoko Bando
- Regenerative & Cellular Medicine Office, Sumitomo Pharma Co. Ltd., Tokyo 103-6012, Japan
| | - Keigo Kawabe
- Regenerative & Cellular Medicine Office, Sumitomo Pharma Co. Ltd., Tokyo 103-6012, Japan
| | - Atsushi Ikeda
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co. Ltd., Kobe 650-0047, Japan
| | - Toru Kimura
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co. Ltd., Kobe 650-0047, Japan; Regenerative & Cellular Medicine Office, Sumitomo Pharma Co. Ltd., Tokyo 103-6012, Japan
| | - Atsushi Kuwahara
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co. Ltd., Kobe 650-0047, Japan
| | - Masayo Takahashi
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan
| | - Yasuo Kurimoto
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan; Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe 650-0047, Japan; Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| |
Collapse
|
36
|
Dubaic M, Peskova L, Hampl M, Weissova K, Celiker C, Shylo NA, Hruba E, Kavkova M, Zikmund T, Weatherbee SD, Kaiser J, Barta T, Buchtova M. Role of ciliopathy protein TMEM107 in eye development: insights from a mouse model and retinal organoid. Life Sci Alliance 2023; 6:e202302073. [PMID: 37863656 PMCID: PMC10589122 DOI: 10.26508/lsa.202302073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/22/2023] Open
Abstract
Primary cilia are cellular surface projections enriched in receptors and signaling molecules, acting as signaling hubs that respond to stimuli. Malfunctions in primary cilia have been linked to human diseases, including retinopathies and ocular defects. Here, we focus on TMEM107, a protein localized to the transition zone of primary cilia. TMEM107 mutations were found in patients with Joubert and Meckel-Gruber syndromes. A mouse model lacking Tmem107 exhibited eye defects such as anophthalmia and microphthalmia, affecting retina differentiation. Tmem107 expression during prenatal mouse development correlated with phenotype occurrence, with enhanced expression in differentiating retina and optic stalk. TMEM107 deficiency in retinal organoids resulted in the loss of primary cilia, down-regulation of retina-specific genes, and cyst formation. Knocking out TMEM107 in human ARPE-19 cells prevented primary cilia formation and impaired response to Smoothened agonist treatment because of ectopic activation of the SHH pathway. Our data suggest TMEM107 plays a crucial role in early vertebrate eye development and ciliogenesis in the differentiating retina.
Collapse
Affiliation(s)
- Marija Dubaic
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lucie Peskova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Hampl
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kamila Weissova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Canan Celiker
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Natalia A Shylo
- Department of Genetics, Yale University, School of Medicine, New Haven, CT, USA
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Eva Hruba
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Michaela Kavkova
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Tomas Zikmund
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Scott D Weatherbee
- Department of Genetics, Yale University, School of Medicine, New Haven, CT, USA
- Biology Department, Fairfield University, Fairfield, CT, USA
| | - Jozef Kaiser
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Tomas Barta
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcela Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
37
|
Wang Y, Yin N, Yang R, Zhao M, Li S, Zhang S, Zhao Y, Faiola F. Development of a simplified human embryonic stem cell-based retinal pre-organoid model for toxicity evaluations of common pollutants. Cutan Ocul Toxicol 2023; 42:264-272. [PMID: 37602871 DOI: 10.1080/15569527.2023.2249988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVE To explore the retinal toxicity of pharmaceuticals and personal care products (PPCPs), flame retardants, bisphenols, phthalates, and polycyclic aromatic hydrocarbons (PAHs) on human retinal progenitor cells (RPCs) and retinal pigment epithelial (RPE) cells, which are the primary cell types at the early stages of retinal development, vital for subsequent functional cell type differentiation, and closely related to retinal diseases. MATERIALS AND METHODS After 23 days of differentiation, human embryonic stem cell (hESC)-based retinal pre-organoids, containing RPCs and RPE cells, were exposed to 10, 100, and 1000 nM pesticides (butachlor, terbutryn, imidacloprid, deltamethrin, pendimethalin, and carbaryl), flame retardants (PFOS, TBBPA, DBDPE, and TDCIPP), PPCPs (climbazole and BHT), and other typical pollutants (phenanthrene, DCHP, and BPA) for seven days. Then, mRNA expression changes were monitored and compared. RESULTS (1) The selected pollutants did not show strong effects at environmental and human-relevant concentrations, although the effects of flame retardants were more potent than those of other categories of chemicals. Surprisingly, some pollutants with distinct structures showed similar adverse effects. (2) Exposure to pollutants induced different degrees of cell detachment, probably due to alterations in extracellular matrix and/or cell adhesion. CONCLUSIONS In this study, we established a retinal pre-organoid model suitable for evaluating multiple pollutants' effects, and pointed out the potential retinal toxicity of flame retardants, among other pollutants. Nevertheless, the potential mechanisms of toxicity and the effects on cell detachment are still unclear and deserve further exploration. Additionally, this model holds promise for screening interventions aimed at mitigating the detrimental effects of these pollutants.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Shichang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Shuxian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yanyi Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
38
|
Wahle P, Brancati G, Harmel C, He Z, Gut G, Del Castillo JS, Xavier da Silveira Dos Santos A, Yu Q, Noser P, Fleck JS, Gjeta B, Pavlinić D, Picelli S, Hess M, Schmidt GW, Lummen TTA, Hou Y, Galliker P, Goldblum D, Balogh M, Cowan CS, Scholl HPN, Roska B, Renner M, Pelkmans L, Treutlein B, Camp JG. Multimodal spatiotemporal phenotyping of human retinal organoid development. Nat Biotechnol 2023; 41:1765-1775. [PMID: 37156914 PMCID: PMC10713453 DOI: 10.1038/s41587-023-01747-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/13/2023] [Indexed: 05/10/2023]
Abstract
Organoids generated from human pluripotent stem cells provide experimental systems to study development and disease, but quantitative measurements across different spatial scales and molecular modalities are lacking. In this study, we generated multiplexed protein maps over a retinal organoid time course and primary adult human retinal tissue. We developed a toolkit to visualize progenitor and neuron location, the spatial arrangements of extracellular and subcellular components and global patterning in each organoid and primary tissue. In addition, we generated a single-cell transcriptome and chromatin accessibility timecourse dataset and inferred a gene regulatory network underlying organoid development. We integrated genomic data with spatially segmented nuclei into a multimodal atlas to explore organoid patterning and retinal ganglion cell (RGC) spatial neighborhoods, highlighting pathways involved in RGC cell death and showing that mosaic genetic perturbations in retinal organoids provide insight into cell fate regulation.
Collapse
Affiliation(s)
- Philipp Wahle
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Giovanna Brancati
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Christoph Harmel
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Gabriele Gut
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Aline Xavier da Silveira Dos Santos
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Qianhui Yu
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Pascal Noser
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Jonas Simon Fleck
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Bruno Gjeta
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Dinko Pavlinić
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Simone Picelli
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Max Hess
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Gregor W Schmidt
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Tom T A Lummen
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Yanyan Hou
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Patricia Galliker
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - David Goldblum
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Marton Balogh
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Cameron S Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Magdalena Renner
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.
- Department of Ophthalmology, University of Basel, Basel, Switzerland.
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|
39
|
Liang Y, Sun X, Duan C, Tang S, Chen J. Application of patient-derived induced pluripotent stem cells and organoids in inherited retinal diseases. Stem Cell Res Ther 2023; 14:340. [PMID: 38012786 PMCID: PMC10683306 DOI: 10.1186/s13287-023-03564-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Inherited retinal diseases (IRDs) can induce severe sight-threatening retinal degeneration and impose a considerable economic burden on patients and society, making efforts to cure blindness imperative. Transgenic animals mimicking human genetic diseases have long been used as a primary research tool to decipher the underlying pathogenesis, but there are still some obvious limitations. As an alternative strategy, patient-derived induced pluripotent stem cells (iPSCs), particularly three-dimensional (3D) organoid technology, are considered a promising platform for modeling different forms of IRDs, including retinitis pigmentosa, Leber congenital amaurosis, X-linked recessive retinoschisis, Batten disease, achromatopsia, and best vitelliform macular dystrophy. Here, this paper focuses on the status of patient-derived iPSCs and organoids in IRDs in recent years concerning disease modeling and therapeutic exploration, along with potential challenges for translating laboratory research to clinical application. Finally, the importance of human iPSCs and organoids in combination with emerging technologies such as multi-omics integration analysis, 3D bioprinting, or microfluidic chip platform are highlighted. Patient-derived retinal organoids may be a preferred choice for more accurately uncovering the mechanisms of human retinal diseases and will contribute to clinical practice.
Collapse
Affiliation(s)
- Yuqin Liang
- Aier Eye Institute, Changsha, 410015, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xihao Sun
- Aier Eye Institute, Changsha, 410015, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chunwen Duan
- Aier Eye Institute, Changsha, 410015, China
- Changsha Aier Eye Hospital, Changsha, 410015, China
| | - Shibo Tang
- Aier Eye Institute, Changsha, 410015, China.
- Changsha Aier Eye Hospital, Changsha, 410015, China.
| | - Jiansu Chen
- Aier Eye Institute, Changsha, 410015, China.
- Changsha Aier Eye Hospital, Changsha, 410015, China.
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
40
|
Kruczek K, Swaroop A. Patient stem cell-derived in vitro disease models for developing novel therapies of retinal ciliopathies. Curr Top Dev Biol 2023; 155:127-163. [PMID: 38043950 PMCID: PMC12050124 DOI: 10.1016/bs.ctdb.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Primary cilia are specialized organelles on the surface of almost all cells in vertebrate tissues and are primarily involved in the detection of extracellular stimuli. In retinal photoreceptors, cilia are uniquely modified to form outer segments containing components required for the detection of light in stacks of membrane discs. Not surprisingly, vision impairment is a frequent phenotype associated with ciliopathies, a heterogeneous class of conditions caused by mutations in proteins required for formation, maintenance and/or function of primary cilia. Traditionally, immortalized cell lines and model organisms have been used to provide insights into the biology of ciliopathies. The advent of methods for reprogramming human somatic cells into pluripotent stem cells has enabled the generation of in vitro disease models directly from patients suffering from ciliopathies. Such models help us in investigating pathological mechanisms specific to human physiology and in developing novel therapeutic approaches. In this article, we review current protocols to differentiate human pluripotent stem cells into retinal cell types, and discuss how these cellular and/or organoid models can be utilized to interrogate pathobiology of ciliopathies affecting the retina and for testing prospective treatments.
Collapse
Affiliation(s)
- Kamil Kruczek
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
41
|
Gong Y, Ge L, Li Q, Gong J, Chen M, Gao H, Kang J, Yu T, Li J, Xu H. Ethanol Causes Cell Death and Neuronal Differentiation Defect During Initial Neurogenesis of the Neural Retina by Disrupting Calcium Signaling in Human Retinal Organoids. Stem Cell Rev Rep 2023; 19:2790-2806. [PMID: 37603136 DOI: 10.1007/s12015-023-10604-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
Fetal Alcohol Syndrome (FAS) affects a significant proportion, exceeding 90%, of afflicted children, leading to severe ocular aberrations such as microphthalmia and optic nerve hypoplasia. During the early stages of pregnancy, the commencement of neural retina neurogenesis represents a critical period for human eye development, concurrently exposing the developing retinal structures to the highest risk of prenatal ethanol exposure due to a lack of awareness. Despite the paramount importance of this period, the precise influence and underlying mechanisms of short-term ethanol exposure on the developmental process of the human neural retina have remained largely elusive. In this study, we utilize the human embryonic stem cells derived retinal organoids (hROs) to recapitulate the initial retinal neurogenesis and find that 1% (v/v) ethanol slows the growth of hROs by inducing robust cell death and retinal ganglion cell differentiation defect. Bulk RNA-seq analysis and two-photon microscope live calcium imaging reveal altered calcium signaling dynamics derived from ethanol-induced down-regulation of RYR1 and CACNA1S. Moreover, the calcium-binding protein RET, one of the downstream effector genes of the calcium signaling pathway, synergistically integrates ethanol and calcium signals to abort neuron differentiation and cause cell death. To sum up, our study illustrates the effect and molecular mechanism of ethanol on the initial neurogenesis of the human embryonic neural retina, providing a novel interpretation of the ocular phenotype of FAS and potentially informing preventative measures for susceptible populations.
Collapse
Affiliation(s)
- Yu Gong
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China
- Department of Ophthalmology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Lingling Ge
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China
| | - Qiyou Li
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China
| | - Jing Gong
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Min Chen
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China
| | - Hui Gao
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China
| | - Jiahui Kang
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China
| | - Ting Yu
- Department of Clinical Laboratory, The 89th Hospital of The People's Liberation Army, Weifang, People's Republic of China
| | - Jiawen Li
- Department of Ophthalmology, University-Town Hospital of Chongqing Medical University, Chongqing, China.
| | - Haiwei Xu
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China.
| |
Collapse
|
42
|
Bai J, Koos DS, Stepanian K, Fouladian Z, Shayler DWH, Aparicio JG, Fraser SE, Moats RA, Cobrinik D. Episodic live imaging of cone photoreceptor maturation in GNAT2-EGFP retinal organoids. Dis Model Mech 2023; 16:dmm050193. [PMID: 37902188 PMCID: PMC10690052 DOI: 10.1242/dmm.050193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023] Open
Abstract
Fluorescent reporter pluripotent stem cell-derived retinal organoids are powerful tools to investigate cell type-specific development and disease phenotypes. When combined with live imaging, they enable direct and repeated observation of cell behaviors within a developing retinal tissue. Here, we generated a human cone photoreceptor reporter line by CRISPR/Cas9 genome editing of WTC11-mTagRFPT-LMNB1 human induced pluripotent stem cells (iPSCs) by inserting enhanced green fluorescent protein (EGFP) coding sequences and a 2A self-cleaving peptide at the N-terminus of guanine nucleotide-binding protein subunit alpha transducin 2 (GNAT2). In retinal organoids generated from these iPSCs, the GNAT2-EGFP alleles robustly and exclusively labeled immature and mature cones. Episodic confocal live imaging of hydrogel immobilized retinal organoids allowed tracking of the morphological maturation of individual cones for >18 weeks and revealed inner segment accumulation of mitochondria and growth at 12.2 μm3 per day from day 126 to day 153. Immobilized GNAT2-EGFP cone reporter organoids provide a valuable tool for investigating human cone development and disease.
Collapse
Affiliation(s)
- Jinlun Bai
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - David S. Koos
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Translational Biomedical Imaging Laboratory, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Kayla Stepanian
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Zachary Fouladian
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dominic W. H. Shayler
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jennifer G. Aparicio
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Scott E. Fraser
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Translational Biomedical Imaging Laboratory, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Rex A. Moats
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Translational Biomedical Imaging Laboratory, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - David Cobrinik
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
43
|
Carido M, Völkner M, Steinheuer LM, Wagner F, Kurth T, Dumler N, Ulusoy S, Wieneke S, Norniella AV, Golfieri C, Khattak S, Schönfelder B, Scamozzi M, Zoschke K, Canzler S, Hackermüller J, Ader M, Karl MO. Reliability of human retina organoid generation from hiPSC-derived neuroepithelial cysts. Front Cell Neurosci 2023; 17:1166641. [PMID: 37868194 PMCID: PMC10587494 DOI: 10.3389/fncel.2023.1166641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
The possible applications for human retinal organoids (HROs) derived from human induced pluripotent stem cells (hiPSC) rely on the robustness and transferability of the methodology for their generation. Standardized strategies and parameters to effectively assess, compare, and optimize organoid protocols are starting to be established, but are not yet complete. To advance this, we explored the efficiency and reliability of a differentiation method, called CYST protocol, that facilitates retina generation by forming neuroepithelial cysts from hiPSC clusters. Here, we tested seven different hiPSC lines which reproducibly generated HROs. Histological and ultrastructural analyses indicate that HRO differentiation and maturation are regulated. The different hiPSC lines appeared to be a larger source of variance than experimental rounds. Although previous reports have shown that HROs in several other protocols contain a rather low number of cones, HROs from the CYST protocol are consistently richer in cones and with a comparable ratio of cones, rods, and Müller glia. To provide further insight into HRO cell composition, we studied single cell RNA sequencing data and applied CaSTLe, a transfer learning approach. Additionally, we devised a potential strategy to systematically evaluate different organoid protocols side-by-side through parallel differentiation from the same hiPSC batches: In an explorative study, the CYST protocol was compared to a conceptually different protocol based on the formation of cell aggregates from single hiPSCs. Comparing four hiPSC lines showed that both protocols reproduced key characteristics of retinal epithelial structure and cell composition, but the CYST protocol provided a higher HRO yield. So far, our data suggest that CYST-derived HROs remained stable up to at least day 200, while single hiPSC-derived HROs showed spontaneous pathologic changes by day 200. Overall, our data provide insights into the efficiency, reproducibility, and stability of the CYST protocol for generating HROs, which will be useful for further optimizing organoid systems, as well as for basic and translational research applications.
Collapse
Affiliation(s)
- Madalena Carido
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Manuela Völkner
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Lisa Maria Steinheuer
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Computer Science, Leipzig University, Leipzig, Germany
| | - Felix Wagner
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Core Facility Electron Microscopy and Histology, TU Dresden, Dresden, Germany
| | - Natalie Dumler
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Selen Ulusoy
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Stephanie Wieneke
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | | | - Cristina Golfieri
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Shahryar Khattak
- Center for Molecular and Cellular Bioengineering (CMCB), Stem Cell Engineering Facility, TU Dresden, Dresden, Germany
| | - Bruno Schönfelder
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Maria Scamozzi
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Katja Zoschke
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Sebastian Canzler
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Jörg Hackermüller
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Computer Science, Leipzig University, Leipzig, Germany
| | - Marius Ader
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Mike O Karl
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| |
Collapse
|
44
|
Chakrabarty K, Nayak D, Debnath J, Das D, Shetty R, Ghosh A. Retinal organoids in disease modeling and drug discovery: Opportunities and challenges. Surv Ophthalmol 2023:S0039-6257(23)00127-3. [PMID: 37778668 DOI: 10.1016/j.survophthal.2023.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Diseases leading to retinal cell loss can cause severe visual impairment and blindness. The lack of effective therapies to address retinal cell loss and the absence of intrinsic regeneration in the human retina leads to an irreversible pathological condition. Progress in recent years in the generation of human three-dimensional retinal organoids from pluripotent stem cells makes it possible to recreate the cytoarchitecture and associated cell-cell interactions of the human retina in remarkable detail. These human three-dimensional retinal organoid systems made of distinct retinal cell types and possessing contextual physiological responses allow the study of human retina development and retinal disease pathology in a way animal model and two-dimensional cell cultures were unable to achieve. We describe the derivation of retinal organoids from human pluripotent stem cells and their application for modeling retinal disease pathologies, while outlining the opportunities and challenges for its application in academia and industry.
Collapse
Affiliation(s)
- Koushik Chakrabarty
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India.
| | - Divyani Nayak
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Jayasree Debnath
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Debashish Das
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| |
Collapse
|
45
|
Beaver D, Limnios IJ. A treatment within sight: challenges in the development of stem cell-derived photoreceptor therapies for retinal degenerative diseases. FRONTIERS IN TRANSPLANTATION 2023; 2:1130086. [PMID: 38993872 PMCID: PMC11235385 DOI: 10.3389/frtra.2023.1130086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/07/2023] [Indexed: 07/13/2024]
Abstract
Stem cell therapies can potentially treat various retinal degenerative diseases, including age-related macular degeneration (AMD) and inherited retinal diseases like retinitis pigmentosa. For these diseases, transplanted cells may include stem cell-derived retinal pigmented epithelial (RPE) cells, photoreceptors, or a combination of both. Although stem cell-derived RPE cells have progressed to human clinical trials, therapies using photoreceptors and other retinal cell types are lagging. In this review, we discuss the potential use of human pluripotent stem cell (hPSC)-derived photoreceptors for the treatment of retinal degeneration and highlight the progress and challenges for their efficient production and clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Davinia Beaver
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QL, Australia
| | - Ioannis Jason Limnios
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QL, Australia
| |
Collapse
|
46
|
Liu W, Shrestha R, Lowe A, Zhang X, Spaeth L. Self-formation of concentric zones of telencephalic and ocular tissues and directional retinal ganglion cell axons. eLife 2023; 12:RP87306. [PMID: 37665325 PMCID: PMC10476969 DOI: 10.7554/elife.87306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
The telencephalon and eye in mammals are originated from adjacent fields at the anterior neural plate. Morphogenesis of these fields generates telencephalon, optic-stalk, optic-disc, and neuroretina along a spatial axis. How these telencephalic and ocular tissues are specified coordinately to ensure directional retinal ganglion cell (RGC) axon growth is unclear. Here, we report self-formation of human telencephalon-eye organoids comprising concentric zones of telencephalic, optic-stalk, optic-disc, and neuroretinal tissues along the center-periphery axis. Initially-differentiated RGCs grew axons towards and then along a path defined by adjacent PAX2+ VSX2+ optic-disc cells. Single-cell RNA sequencing of these organoids not only confirmed telencephalic and ocular identities but also identified expression signatures of early optic-disc, optic-stalk, and RGCs. These signatures were similar to those in human fetal retinas. Optic-disc cells in these organoids differentially expressed FGF8 and FGF9; FGFR inhibitions drastically decreased early RGC differentiation and directional axon growth. Through the RGC-specific cell-surface marker CNTN2 identified here, electrophysiologically excitable RGCs were isolated under a native condition. Our findings provide insight into the coordinated specification of early telencephalic and ocular tissues in humans and establish resources for studying RGC-related diseases such as glaucoma.
Collapse
Affiliation(s)
- Wei Liu
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of MedicineBronxUnited States
- Department of Genetics, Albert Einstein College of MedicineBronxUnited States
- The Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of MedicineBronxUnited States
| | - Rupendra Shrestha
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of MedicineBronxUnited States
- Department of Genetics, Albert Einstein College of MedicineBronxUnited States
- The Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of MedicineBronxUnited States
| | - Albert Lowe
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of MedicineBronxUnited States
- Department of Genetics, Albert Einstein College of MedicineBronxUnited States
| | - Xusheng Zhang
- Department of Genetics, Albert Einstein College of MedicineBronxUnited States
| | - Ludovic Spaeth
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
47
|
Wong NK, Yip SP, Huang CL. Establishing Functional Retina in a Dish: Progress and Promises of Induced Pluripotent Stem Cell-Based Retinal Neuron Differentiation. Int J Mol Sci 2023; 24:13652. [PMID: 37686457 PMCID: PMC10487913 DOI: 10.3390/ijms241713652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The human eye plays a critical role in vision perception, but various retinal degenerative diseases such as retinitis pigmentosa (RP), glaucoma, and age-related macular degeneration (AMD) can lead to vision loss or blindness. Although progress has been made in understanding retinal development and in clinical research, current treatments remain inadequate for curing or reversing these degenerative conditions. Animal models have limited relevance to humans, and obtaining human eye tissue samples is challenging due to ethical and legal considerations. Consequently, researchers have turned to stem cell-based approaches, specifically induced pluripotent stem cells (iPSCs), to generate distinct retinal cell populations and develop cell replacement therapies. iPSCs offer a novel platform for studying the key stages of human retinogenesis and disease-specific mechanisms. Stem cell technology has facilitated the production of diverse retinal cell types, including retinal ganglion cells (RGCs) and photoreceptors, and the development of retinal organoids has emerged as a valuable in vitro tool for investigating retinal neuron differentiation and modeling retinal diseases. This review focuses on the protocols, culture conditions, and techniques employed in differentiating retinal neurons from iPSCs. Furthermore, it emphasizes the significance of molecular and functional validation of the differentiated cells.
Collapse
Affiliation(s)
- Nonthaphat Kent Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
48
|
Liu W, Shrestha R, Lowe A, Zhang X, Spaeth L. Self-formation of concentric zones of telencephalic and ocular tissues and directional retinal ganglion cell axons. eLife 2023; 12:RP87306. [PMID: 37665325 DOI: 10.7554/elife.87306.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
The telencephalon and eye in mammals are originated from adjacent fields at the anterior neural plate. Morphogenesis of these fields generates telencephalon, optic-stalk, optic-disc, and neuroretina along a spatial axis. How these telencephalic and ocular tissues are specified coordinately to ensure directional retinal ganglion cell (RGC) axon growth is unclear. Here, we report self-formation of human telencephalon-eye organoids comprising concentric zones of telencephalic, optic-stalk, optic-disc, and neuroretinal tissues along the center-periphery axis. Initially-differentiated RGCs grew axons towards and then along a path defined by adjacent PAX2+ VSX2+ optic-disc cells. Single-cell RNA sequencing of these organoids not only confirmed telencephalic and ocular identities but also identified expression signatures of early optic-disc, optic-stalk, and RGCs. These signatures were similar to those in human fetal retinas. Optic-disc cells in these organoids differentially expressed FGF8 and FGF9; FGFR inhibitions drastically decreased early RGC differentiation and directional axon growth. Through the RGC-specific cell-surface marker CNTN2 identified here, electrophysiologically excitable RGCs were isolated under a native condition. Our findings provide insight into the coordinated specification of early telencephalic and ocular tissues in humans and establish resources for studying RGC-related diseases such as glaucoma.
Collapse
Affiliation(s)
- Wei Liu
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, United States
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
- The Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Rupendra Shrestha
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, United States
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
- The Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Albert Lowe
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, United States
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Xusheng Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Ludovic Spaeth
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
49
|
Tresenrider A, Sridhar A, Eldred KC, Cuschieri S, Hoffer D, Trapnell C, Reh TA. Single-cell sequencing of individual retinal organoids reveals determinants of cell-fate heterogeneity. CELL REPORTS METHODS 2023; 3:100548. [PMID: 37671011 PMCID: PMC10475847 DOI: 10.1016/j.crmeth.2023.100548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/16/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023]
Abstract
With a critical need for more complete in vitro models of human development and disease, organoids hold immense potential. Their complex cellular composition makes single-cell sequencing of great utility; however, the limitation of current technologies to a handful of treatment conditions restricts their use in screens or studies of organoid heterogeneity. Here, we apply sci-Plex, a single-cell combinatorial indexing (sci)-based RNA sequencing (RNA-seq) multiplexing method to retinal organoids. We demonstrate that sci-Plex and 10× methods produce highly concordant cell-class compositions and then expand sci-Plex to analyze the cell-class composition of 410 organoids upon modulation of critical developmental pathways. Leveraging individual organoid data, we develop a method to measure organoid heterogeneity, and we identify that activation of Wnt signaling early in retinal organoid cultures increases retinal cell classes up to 6 weeks later. Our data show sci-Plex's potential to dramatically scale up the analysis of treatment conditions on relevant human models.
Collapse
Affiliation(s)
- Amy Tresenrider
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Kiara C. Eldred
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Sophia Cuschieri
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Dawn Hoffer
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
| | - Thomas A. Reh
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
50
|
Rocha-Martins M, Nerli E, Kretzschmar J, Weigert M, Icha J, Myers EW, Norden C. Neuronal migration prevents spatial competition in retinal morphogenesis. Nature 2023; 620:615-624. [PMID: 37558872 DOI: 10.1038/s41586-023-06392-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/30/2023] [Indexed: 08/11/2023]
Abstract
The concomitant occurrence of tissue growth and organization is a hallmark of organismal development1-3. This often means that proliferating and differentiating cells are found at the same time in a continuously changing tissue environment. How cells adapt to architectural changes to prevent spatial interference remains unclear. Here, to understand how cell movements that are key for growth and organization are orchestrated, we study the emergence of photoreceptor neurons that occur during the peak of retinal growth, using zebrafish, human tissue and human organoids. Quantitative imaging reveals that successful retinal morphogenesis depends on the active bidirectional translocation of photoreceptors, leading to a transient transfer of the entire cell population away from the apical proliferative zone. This pattern of migration is driven by cytoskeletal machineries that differ depending on the direction: microtubules are exclusively required for basal translocation, whereas actomyosin is involved in apical movement. Blocking the basal translocation of photoreceptors induces apical congestion, which hampers the apical divisions of progenitor cells and leads to secondary defects in lamination. Thus, photoreceptor migration is crucial to prevent competition for space, and to allow concurrent tissue growth and lamination. This shows that neuronal migration, in addition to its canonical role in cell positioning4, can be involved in coordinating morphogenesis.
Collapse
Affiliation(s)
- Mauricio Rocha-Martins
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden (CSBD), Dresden, Germany.
| | - Elisa Nerli
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden (CSBD), Dresden, Germany
| | - Jenny Kretzschmar
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Martin Weigert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden (CSBD), Dresden, Germany
- Institute of Bioengineering, School of Life Sciences École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jaroslav Icha
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden (CSBD), Dresden, Germany
| | - Caren Norden
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|