1
|
Tanimura K, Aldrich MC, Jaworski J, Xing J, Okawa S, Chandra D, Nouraie SM, Nyunoya T. Identifying a Genetic Link Between Lung Function and Psoriasis. Ann Hum Genet 2025; 89:89-95. [PMID: 39718377 PMCID: PMC11982659 DOI: 10.1111/ahg.12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 12/25/2024]
Abstract
INTRODUCTION The common genetic underpinnings of psoriasis and pulmonary comorbidities have yet to be explored. MATERIAL AND METHODS In this cross-sectional study, we investigated the single-nucleotide polymorphisms (SNPs) associated with psoriasis and their relationship with pulmonary function using data from the UK Biobank (UKBB) and the Vanderbilt University Medical Center Biobank (BioVU). RESULTS Out of the 63 psoriasis-associated SNPs identified in previous genome-wide association studies within the European population, we successfully identified 53 SNPs, including proxy SNPs in UKBB database. Following adjustments using age and sex, 31 SNPs displayed statistically significant associations with psoriasis. Among these, 16 SNPs exhibited significant associations with forced expiratory volume in 1 s (FEV1), 14 with forced vital capacity (FVC), and 5 with the FEV1/FVC ratio in the UKBB. In the validation analysis using the BioVU database, 27 of the 31 psoriasis-associated SNPs were available for examination. Notably, the minor allele of SNP rs8016947 was confirmed to be significant, indicating a reduced risk for psoriasis and improved FEV1. Similarly, the minor alleles of SNPs rs17716942 and rs8016947 were associated with a reduced risk of psoriasis and enhanced FVC. However, none of the 5 SNPs significantly associated with the FEV1/FVC ratio in the UKBB displayed significance in the BioVU dataset. CONCLUSION This study has unveiled genetic variants that bridge the realms of psoriasis and lung function. The genes associated with these variants, including IFIH1, Grancalcin gene (GCA), and NFKB inhibitor alpha gene (NFKBIA), regulate innate immune responses, which suggests that immunodysregulation, a central element in psoriasis pathogenesis, may also impact lung function, alluding to a "skin-lung axis."
Collapse
Affiliation(s)
- Kazuya Tanimura
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Respiratory MedicineNara Medical UniversityKashiharaNaraJapan
| | - Melinda C. Aldrich
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - James Jaworski
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jinchuan Xing
- Department of GeneticsHuman Genetic Institute of New Jersey, Rutgers, the State University of New JerseyPiscatawayNew JerseyUSA
| | - Satoshi Okawa
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Divay Chandra
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Seyed M. Nouraie
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Toru Nyunoya
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Medical Specialty Service LineVeterans Affairs Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Bang CH, Park CJ, Kim YS. Exploring the Efficacy, Safety, and Clinical Implications of Deucravacitinib in East Asians with Psoriasis: A Narrative Review. J Clin Med 2025; 14:1746. [PMID: 40095854 PMCID: PMC11900147 DOI: 10.3390/jcm14051746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
Deucravacitinib, a selective oral tyrosine kinase 2 (TYK2) inhibitor, has demonstrated strong efficacy in the treatment of moderate-to-severe psoriasis. It works through an allosteric mechanism to selectively inhibit TYK2, leading to the suppression of the IL-23/Th17/IL-17 axis and a reduction in key pro-inflammatory cytokines such as IL-17A, IL-17F, IL-22, and IL-23. This review focuses on the clinical implications of deucravacitinib in East Asian patients, highlighting its efficacy, safety, and differences in treatment outcomes compared to other populations. Data from pivotal trials such as POETYK PSO-3 and PSO-4, which included East Asian populations, demonstrated robust efficacy and safety profiles, often surpassing results observed in global trials like POETYK PSO-1 and PSO-2. Subgroup analyses and network meta-analyses further corroborate these findings, providing a comprehensive understanding of its therapeutic potential in this demographic. Factors such as lower body mass index, genetic predispositions, and environmental influences may contribute to these differences in response. The safety profile of deucravacitinib is favorable, with low rates of serious adverse events and stable laboratory parameters. This review underscores the need for further research to investigate the genetic, metabolic, and environmental factors that may influence treatment outcomes, aiming to optimize personalized treatment strategies for East Asian patients with psoriasis.
Collapse
Affiliation(s)
- Chul-Hwan Bang
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chul-Jong Park
- Department of Dermatology, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 14647, Republic of Korea
| | - Yoon-Seob Kim
- Department of Dermatology, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 14647, Republic of Korea
| |
Collapse
|
3
|
Dand N, Stuart PE, Bowes J, Ellinghaus D, Nititham J, Saklatvala JR, Teder-Laving M, Thomas LF, Traks T, Uebe S, Assmann G, Baudry D, Behrens F, Billi AC, Brown MA, Burkhardt H, Capon F, Chung R, Curtis CJ, Duckworth M, Ellinghaus E, FitzGerald O, Gerdes S, Griffiths CEM, Gulliver S, Helliwell PS, Ho P, Hoffmann P, Holmen OL, Huang ZM, Hveem K, Jadon D, Köhm M, Kraus C, Lamacchia C, Lee SH, Ma F, Mahil SK, McHugh N, McManus R, Modalsli EH, Nissen MJ, Nöthen M, Oji V, Oksenberg JR, Patrick MT, Perez White BE, Ramming A, Rech J, Rosen C, Sarkar MK, Schett G, Schmidt B, Tejasvi T, Traupe H, Voorhees JJ, Wacker EM, Warren RB, Wasikowski R, Weidinger S, Wen X, Zhang Z, Barton A, Chandran V, Esko T, Foerster J, Franke A, Gladman DD, Gudjonsson JE, Gulliver W, Hüffmeier U, Kingo K, Kõks S, Liao W, Løset M, Mägi R, Nair RP, Rahman P, Reis A, Smith CH, Di Meglio P, Barker JN, Tsoi LC, Simpson MA, Elder JT. GWAS meta-analysis of psoriasis identifies new susceptibility alleles impacting disease mechanisms and therapeutic targets. Nat Commun 2025; 16:2051. [PMID: 40021644 PMCID: PMC11871359 DOI: 10.1038/s41467-025-56719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/28/2025] [Indexed: 03/03/2025] Open
Abstract
Psoriasis is a common, debilitating immune-mediated skin disease. Genetic studies have identified biological mechanisms of psoriasis risk, including those targeted by effective therapies. However, the genetic liability to psoriasis is not fully explained by variation at robustly identified risk loci. To refine the genetic map of psoriasis susceptibility we meta-analysed 18 GWAS comprising 36,466 cases and 458,078 controls and identified 109 distinct psoriasis susceptibility loci, including 46 that have not been previously reported. These include susceptibility variants at loci in which the therapeutic targets IL17RA and AHR are encoded, and deleterious coding variants supporting potential new drug targets (including in STAP2, CPVL and POU2F3). We conducted a transcriptome-wide association study to identify regulatory effects of psoriasis susceptibility variants and cross-referenced these against single cell expression profiles in psoriasis-affected skin, highlighting roles for the transcriptional regulation of haematopoietic cell development and epigenetic modulation of interferon signalling in psoriasis pathobiology.
Collapse
Grants
- R01 ES033634 NIEHS NIH HHS
- R01AR050511, R01AR054966, R01AR063611, R01AR065183 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- BRC_1215_20006, NIHR302258, NIHR203308, BRC-1215-20014 DH | National Institute for Health Research (NIHR)
- 980 Maudsley Charity
- RG2/10, ST1/19, ST3/20 Psoriasis Association
- EXC 2167-390884018, CRC1181-2/project A05 Deutsche Forschungsgemeinschaft (German Research Foundation)
- STR130505 Guy's and St Thomas' Charity
- K01 AR072129, P30 AR075043, UC2 AR081033, R01AR042742 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- K08 AR078251 NIAMS NIH HHS
- P30 AR075043 NIAMS NIH HHS
- K01 AR072129 NIAMS NIH HHS
- 814364 National Psoriasis Foundation (NPF)
- R01 AR042742 NIAMS NIH HHS
- PUT1465, PRG1189, PRG1911, PRG1291 Eesti Teadusagentuur (Estonian Research Council)
- 2014-2020.4.01.15-0012 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
- U01AI119125 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- LF-OC-22-001033 LEO Pharma Research Foundation
- 821511 Innovative Medicines Initiative (IMI)
- RG-1611-26299 National Multiple Sclerosis Society (National MS Society)
- MR/S003126/1 RCUK | Medical Research Council (MRC)
- U01 AI119125 NIAID NIH HHS
- R01ES033634, R35GM138121, K08 AR078251, R01AR065174 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- R01 AR054966 NIAMS NIH HHS
- R01 AR050511 NIAMS NIH HHS
- R01 AR065174 NIAMS NIH HHS
- R35 GM138121 NIGMS NIH HHS
- 01EC1407A, 01EC1401C Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- SI 236/8-1, SI236/9-1, ER 155/6-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- UC2 AR081033 NIAMS NIH HHS
- R01 AR065183 NIAMS NIH HHS
- R01 AR063611 NIAMS NIH HHS
- U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- Versus Arthritis - grant reference number 21754 Additional funding support from the following bodies are also acknowledged, as detailed in the funding section of the manuscript: Ann Arbor Veterans Hospital; Babcock Memorial Trust; Cambridge Arthritis Research Endeavour (CARE); Dermatology Foundation; Faculty of Medicine and Health Sciences, NTNU; German Centre for Neurodegenerative Disorders (DZNE), Bonn; German Ministry of Education and Science; Heinz Nixdorf Foundation (Germany); Joint Research Committee between St Olav’s Hospital and the Faculty of Medicine and Health Sciences, NTNU; Krembil Foundation; Liaison Committee for Education, Research, and Innovation in Central Norway; The Michael J. Fox Foundation; MSWA; National Institutes of Health; Perron Institute for Neurological and Translational Science; Pfizer Chair Research Award in Rheumatology; Research Council of Norway; Shake It Up Australia; Stiftelsen Kristian Gerhard Jebsen; Taubman Medical Research Institute; University of Michigan
Collapse
Affiliation(s)
- Nick Dand
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Health Data Research UK, London, UK
| | - Philip E Stuart
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
- National Institute for Health and Care Research (NIHR) Manchester Biomedical Research Centre, The University of Manchester, Manchester, UK
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Joanne Nititham
- Deparment of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Jake R Saklatvala
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | | | - Laurent F Thomas
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- BioCore - Bioinformatics Core Facility, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tanel Traks
- Department of Dermatology and Venereology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Steffen Uebe
- Institute of Human Genetics, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Gunter Assmann
- RUB University Hospital JWK Minden, Department of Rheumatology, Minden, Germany
- Jose-Carreras Centrum for Immuno- and Gene Therapy, University of Saarland Medical School, Homburg, Germany
| | - David Baudry
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Frank Behrens
- Division of Translational Rheumatology, Immunology - Inflammation Medicine, University Hospital, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
- Division of Rheumatology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Allison C Billi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Matthew A Brown
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Genomics England, Canary Wharf, London, UK
| | - Harald Burkhardt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
- Division of Rheumatology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Francesca Capon
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Raymond Chung
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, Camberwell, London, UK
- National Institute for Health and Care Research (NIHR) Biomedical Research Centre, South London and Maudsley Hospital, London, UK
| | - Charles J Curtis
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, Camberwell, London, UK
- National Institute for Health and Care Research (NIHR) Biomedical Research Centre, South London and Maudsley Hospital, London, UK
| | - Michael Duckworth
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Oliver FitzGerald
- UCD School of Medicine and Medical Sciences and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Sascha Gerdes
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christopher E M Griffiths
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Centre for Dermatology Research, University of Manchester, NIHR Manchester Biomedical Research Centre, Manchester, UK
- Department of Dermatology, King's College Hospital NHS Foundation Trust, London, UK
| | | | - Philip S Helliwell
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Pauline Ho
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
- National Institute for Health and Care Research (NIHR) Manchester Biomedical Research Centre, The University of Manchester, Manchester, UK
- The Kellgren Centre for Rheumatology, Manchester University NHS Foundation Trust, Manchester, UK
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Oddgeir L Holmen
- HUNT Research Centre, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Zhi-Ming Huang
- Deparment of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Deepak Jadon
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michaela Köhm
- Division of Translational Rheumatology, Immunology - Inflammation Medicine, University Hospital, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
- Division of Rheumatology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Céline Lamacchia
- Division of Rheumatology, Geneva University Hospital, Geneva, Switzerland
| | - Sang Hyuck Lee
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, Camberwell, London, UK
- National Institute for Health and Care Research (NIHR) Biomedical Research Centre, South London and Maudsley Hospital, London, UK
| | - Feiyang Ma
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Satveer K Mahil
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- St John's Institute of Dermatology, Guy's and St Thomas' National Health Service (NHS) Foundation Trust, London, UK
| | - Neil McHugh
- Department of Life Sciences, University of Bath, Bath, UK
| | - Ross McManus
- Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Ellen H Modalsli
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Dermatology, Clinic of Orthopedy, Rheumatology and Dermatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Michael J Nissen
- Division of Rheumatology, Geneva University Hospital, Geneva, Switzerland
| | - Markus Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Vinzenz Oji
- Department of Dermatology, University of Münster, Münster, Germany
| | - Jorge R Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Matthew T Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Andreas Ramming
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jürgen Rech
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Cheryl Rosen
- Division of Dermatology, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Börge Schmidt
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Trilokraj Tejasvi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| | - Heiko Traupe
- Department of Dermatology, University of Münster, Münster, Germany
| | - John J Voorhees
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eike Matthias Wacker
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Richard B Warren
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Centre for Dermatology Research, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M6 8HD, UK
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephan Weidinger
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Xiaoquan Wen
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Zhaolin Zhang
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anne Barton
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
- National Institute for Health and Care Research (NIHR) Manchester Biomedical Research Centre, The University of Manchester, Manchester, UK
- The Kellgren Centre for Rheumatology, Manchester University NHS Foundation Trust, Manchester, UK
| | - Vinod Chandran
- Schroeder Arthritis Institute, Krembil Research Institute and Toronto Western Hospital, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - John Foerster
- College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, UK
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Dafna D Gladman
- Schroeder Arthritis Institute, Krembil Research Institute and Toronto Western Hospital, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Wayne Gulliver
- Newlab Clinical Research Inc, St. John's, NL, Canada
- Department of Dermatology, Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ulrike Hüffmeier
- Institute of Human Genetics, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Külli Kingo
- Department of Dermatology and Venereology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Wilson Liao
- Deparment of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Mari Løset
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Dermatology, Clinic of Orthopedy, Rheumatology and Dermatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Rajan P Nair
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Proton Rahman
- Memorial University of Newfoundland, St. John's, NL, Canada
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Catherine H Smith
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- St John's Institute of Dermatology, Guy's and St Thomas' National Health Service (NHS) Foundation Trust, London, UK
| | - Paola Di Meglio
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Jonathan N Barker
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- St John's Institute of Dermatology, Guy's and St Thomas' National Health Service (NHS) Foundation Trust, London, UK
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michael A Simpson
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| | - James T Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Porter DF, Meyers RM, Miao W, Reynolds DL, Hong AW, Yang X, Mondal S, Siprashvili Z, Srinivasan S, Ducoli L, Meyers JM, Nguyen DT, Ko LA, Kellman L, Elfaki I, Guo M, Winge MC, Lopez-Pajares V, Porter IE, Tao S, Khavari PA. Disease-Linked Regulatory DNA Variants and Homeostatic Transcription Factors in Epidermis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622542. [PMID: 39605549 PMCID: PMC11601284 DOI: 10.1101/2024.11.07.622542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Identifying noncoding single nucleotide variants ( SNVs ) in regulatory DNA linked to polygenic disease risk, the transcription factors ( TFs ) they bind, and the target genes they dysregulate is a goal in polygenic disease research. Massively parallel reporter gene analysis ( MPRA ) of 3,451 SNVs linked to risk for polygenic skin diseases characterized by disrupted epidermal homeostasis identified 355 differentially active SNVs ( daSNVs ). daSNV target gene analysis, combined with daSNV editing, underscored dysregulated epidermal differentiation as a pathomechanism shared across common polygenic skin diseases. CRISPR knockout screens of 1772 human TFs revealed 108 TFs essential for epidermal progenitor differentiation, uncovering novel roles for ZNF217, CXXC1, FOXJ2, IRX2 and NRF1. Population sampling CUT&RUN of 27 homeostatic TFs identified allele-specific DNA binding ( ASB ) differences at daSNVs enriched near epidermal homeostasis and monogenic skin disease genes, with notable representation of SP/KLF and AP-1/2 TFs. This resource implicates dysregulated differentiation in risk for diverse polygenic skin diseases.
Collapse
|
5
|
Tan JHJ, Li Z, Porta MG, Rajaby R, Lim WK, Tan YA, Jimenez RT, Teo R, Hebrard M, Ow JL, Ang S, Jeyakani J, Chong YS, Lim TH, Goh LL, Tham YC, Leong KP, Chin CWL, SG10K_Health Consortium, Davila S, Karnani N, Cheng CY, Chambers J, Tai ES, Liu J, Sim X, Sung WK, Prabhakar S, Tan P, Bertin N. A Catalogue of Structural Variation across Ancestrally Diverse Asian Genomes. Nat Commun 2024; 15:9507. [PMID: 39496583 PMCID: PMC11535549 DOI: 10.1038/s41467-024-53620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/14/2024] [Indexed: 11/06/2024] Open
Abstract
Structural variants (SVs) are significant contributors to inter-individual genetic variation associated with traits and diseases. Current SV studies using whole-genome sequencing (WGS) have a largely Eurocentric composition, with little known about SV diversity in other ancestries, particularly from Asia. Here, we present a WGS catalogue of 73,035 SVs from 8392 Singaporeans of East Asian, Southeast Asian and South Asian ancestries, of which ~65% (47,770 SVs) are novel. We show that Asian populations can be stratified by their global SV patterns and identified 42,239 novel SVs that are specific to Asian populations. 52% of these novel SVs are restricted to one of the three major ancestry groups studied (Indian, Chinese or Malay). We uncovered SVs affecting major clinically actionable loci. Lastly, by identifying SVs in linkage disequilibrium with single-nucleotide variants, we demonstrate the utility of our SV catalogue in the fine-mapping of Asian GWAS variants and identification of potential causative variants. These results augment our knowledge of structural variation across human populations, thereby reducing current ancestry biases in global references of genetic variation afflicting equity, diversity and inclusion in genetic research.
Collapse
Affiliation(s)
- Joanna Hui Juan Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Zhihui Li
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Mar Gonzalez Porta
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Nalagenetics, Singapore, Singapore
| | - Ramesh Rajaby
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Human Genome Center, University of Tokyo, Bunkyō, Japan
| | - Weng Khong Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore Health Services, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Duke-NUS Medical School, Singapore, Singapore
| | - Ye An Tan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Rodrigo Toro Jimenez
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Renyi Teo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Maxime Hebrard
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jack Ling Ow
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shimin Ang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Justin Jeyakani
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yap Seng Chong
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Tock Han Lim
- NHG Eye Institute, Tan Tock Seng Hospital, National Healthcare Group, Singapore, Singapore
| | - Liuh Ling Goh
- Personalised Medicine Service, Tan Tock Seng Hospital, Singapore, Singapore
| | - Yih Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Khai Pang Leong
- Personalised Medicine Service, Tan Tock Seng Hospital, Singapore, Singapore
| | - Calvin Woon Loong Chin
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular ACP, Duke-NUS Medical School, Singapore, Singapore
| | | | - Sonia Davila
- SingHealth Duke-NUS Genomic Medicine Centre, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Institute of Precision medicine, Singapore Health Services, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
- Translational Medicine, Sidra Medicine, Ar-Rayyan, Qatar
| | - Neerja Karnani
- Human Development, Singapore Institute for Clinical Sciences, Singapore, Singapore
- Clinical Data Engagement, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John Chambers
- Population and Global Health, Nanyang Technological University, Lee Kong Chian School of Medicine, Singapore, Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Precision Health Research, Singapore, Singapore
| | - E Shyong Tai
- Duke-NUS Medical School, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Precision Health Research, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianjun Liu
- Laboratory of Human Genomics, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Wing Kin Sung
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Hong Kong Genome Institute, Hong Kong, Hong Kong
- Department of Chemical Pathology, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Shyam Prabhakar
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - Patrick Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore Health Services, Duke-NUS Medical School, Singapore, Singapore.
- Precision Health Research, Singapore, Singapore.
| | - Nicolas Bertin
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
Collaborators
Khung Keong Yeo, Stuart Alexander Cook, Chee Jian Pua, Chengxi Yang, Tien Yin Wong, Charumathi Sabanayagam, Lavanya Raghavan, Tin Aung, Miao Ling Chee, Miao Li Chee, Hengtong Li, Jimmy Lee, Eng Sing Lee, Joanne Ngeow, Paul Eillot, Elio Riboli, Hong Kiat Ng, Theresia Mina, Darwin Tay, Nilanjana Sadhu, Pritesh Rajesh Jain, Dorrain Low, Xiaoyan Wang, Jin Fang Chai, Rob M Van Dam, Yik Ying Teo, Chia Wei Lim, Pi Kuang Tsai, Wen Jie Chew, Wey Ching Sim, Li-Xian Grace Toh, Johan Gunnar Eriksson, Peter D Gluckman, Yung Seng Lee, Fabian Yap, Kok Hian Tan,
Collapse
|
6
|
Niedźwiedź M, Skibińska M, Ciążyńska M, Noweta M, Czerwińska A, Krzyścin J, Narbutt J, Lesiak A. Psoriasis and Seasonality: Exploring the Genetic and Epigenetic Interactions. Int J Mol Sci 2024; 25:11670. [PMID: 39519223 PMCID: PMC11547062 DOI: 10.3390/ijms252111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Psoriasis is a multifactorial, chronic, and inflammatory disease that severely impacts patients' quality of life. The disease is caused by genetic irregularities affected by epigenetic and environmental factors. Some of these factors may include seasonal changes, such as solar radiation, air pollution, and humidity, and changes in circadian rhythm, especially in the temporal and polar zones. Thus, some psoriasis patients report seasonal variability of symptoms. Through a comprehensive review, we aim to delve deeper into the intricate interplay between seasonality, environmental factors, and the genetic and epigenetic landscape of psoriasis. By elucidating these complex relationships, we strive to provide insights that may inform targeted interventions and personalized management strategies for individuals living with psoriasis.
Collapse
Affiliation(s)
- Michał Niedźwiedź
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
- International Doctoral School, Medical University of Lodz, 90-419 Lodz, Poland
| | - Małgorzata Skibińska
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
| | - Magdalena Ciążyńska
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
| | - Marcin Noweta
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
| | - Agnieszka Czerwińska
- Institute of Geophysics, Polish Academy of Sciences, 01-452 Warsaw, Poland; (A.C.); (J.K.)
| | - Janusz Krzyścin
- Institute of Geophysics, Polish Academy of Sciences, 01-452 Warsaw, Poland; (A.C.); (J.K.)
| | - Joanna Narbutt
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
| | - Aleksandra Lesiak
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
- Laboratory of Autoinflammatory, Genetic and Rare Skin Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
7
|
Orcales F, Kumar S, Bui A, Johnson C, Liu J, Huang ZM, Liao W. A partitioned polygenic risk score reveals distinct contributions to psoriasis clinical phenotypes across a multi-ethnic cohort. J Transl Med 2024; 22:835. [PMID: 39261909 PMCID: PMC11389070 DOI: 10.1186/s12967-024-05591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024] Open
Abstract
Psoriasis is a chronic, immune-mediated inflammatory skin disease associated with a polygenic mode of inheritance. There are few studies that explore the association of a psoriasis Polygenic Risk Score (PRS) with patient clinical characteristics, and to our knowledge there are no studies examining psoriasis PRS associations across different ethnicities. In this study, we used a multi-racial psoriasis cohort to investigate PRS associations with clinical phenotypes including age of onset, psoriatic arthritis, other comorbidities, psoriasis body location, psoriasis subtype, environmental triggers, and response to therapies. We collected patient data and Affymetrix genome-wide SNP data from a cohort of 607 psoriasis patients and calculated an 88-loci PRS (PRS-ALL), also partitioned between genetic loci within the HLA region (PRS-HLA; 11 SNPS) and loci outside the HLA region (PRS-NoHLA; 77 SNPS). We used t-test and logistic regression to analyze the association of PRS with clinical phenotypes. We found that PRS-HLA and PRS-noHLA had differing effects on psoriasis age of onset, psoriatic arthritis, psoriasis located on the ears, genitals, nails, soles of feet, skin folds, and palms, skin injury as an environmental trigger, cardiovascular comorbidities, and response to phototherapy. In some cases these PRS associations were ethnicity specific. Overall, these results show that the genetic basis for clinical manifestations of psoriasis are driven by distinct HLA and non-HLA effects, and that these PRS associations can be dependent on ethnicity.
Collapse
Affiliation(s)
- Faye Orcales
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
| | - Sugandh Kumar
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Audrey Bui
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Chandler Johnson
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jared Liu
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Zhi-Ming Huang
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Li R, Luo W, Chen X, Zeng Q, Yang S, Wang P, Hu J, Chen A. An observational and genetic investigation into the association between psoriasis and risk of malignancy. Nat Commun 2024; 15:7952. [PMID: 39261450 PMCID: PMC11391051 DOI: 10.1038/s41467-024-51824-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024] Open
Abstract
The relationship between psoriasis and site-specific cancers remains unclear. Here, we aim to investigate whether psoriasis is causally associated with site-specific cancers. We use observational and genetic data from the UK Biobank, obtaining GWAS summary data, eQTL analysis data, TCGA data, and GTEx data from public datasets. We perform PheWAS, polygenic risk score analysis, and one-sample and two-sample Mendelian randomization analyses to investigate the potential causal associations between psoriasis and cancers. In the unselected PheWAS analysis, psoriasis is associated with higher risks of 16 types of cancer. Using one-sample Mendelian randomization analyses, it is found that genetically predicted psoriasis is associated with higher risks of anal canal cancer, breast cancer, follicular non-Hodgkin's lymphoma and nonmelanoma skin cancer in women; and lung cancer and kidney cancer in men. Our two-sample Mendelian randomization analysis indicates that psoriasis is causally associated with breast cancer and lung cancer. Gene annotation shows that psoriasis-related genes, such as ERAP1, are significantly different in lung and breast cancer tissues. Taken together, clinical attention to lung cancer and breast cancer may be warranted among patients with psoriasis.
Collapse
Affiliation(s)
- Ruolin Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjin Luo
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangjun Chen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinglian Zeng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shumin Yang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinbo Hu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Aijun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Perry M. Psoriasis: an overview. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2024; 33:686-692. [PMID: 39141331 DOI: 10.12968/bjon.2024.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
This article discusses psoriasis with a brief overview of the various types. It considers the symptoms, aetiology and treatment options and hopes to give nurses and non-medical prescribers more confidence in recognising and treating this disease.
Collapse
|
10
|
Bui A, Orcales F, Kranyak A, Chung BY, Haran K, Smith P, Johnson C, Liao W. The Role of Genetics on Psoriasis Susceptibility, Comorbidities, and Treatment Response. Dermatol Clin 2024; 42:439-469. [PMID: 38796275 DOI: 10.1016/j.det.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
This review highlights advances made in psoriasis genetics, including findings from genome-wide association studies, exome-sequencing studies, and copy number variant studies. The impact of genetic variants on various comorbidities and therapeutic responses is discussed.
Collapse
Affiliation(s)
- Audrey Bui
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA; Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Faye Orcales
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Allison Kranyak
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Bo-Young Chung
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang-si Gyeonggi-do, 14068, Republic of Korea
| | - Kathryn Haran
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Payton Smith
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Chandler Johnson
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA.
| |
Collapse
|
11
|
Yang JS, Liu TY, Lu HF, Tsai SC, Liao WL, Chiu YJ, Wang YW, Tsai FJ. Genome‑wide association study and polygenic risk scores predict psoriasis and its shared phenotypes in Taiwan. Mol Med Rep 2024; 30:115. [PMID: 38757301 PMCID: PMC11106694 DOI: 10.3892/mmr.2024.13239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Psoriasis is a chronic inflammatory dermatological disease, and there is a lack of understanding of the genetic factors involved in psoriasis in Taiwan. To establish associations between genetic variations and psoriasis, a genome‑wide association study was performed in a cohort of 2,248 individuals with psoriasis and 67,440 individuals without psoriasis. Using the ingenuity pathway analysis software, biological networks were constructed. Human leukocyte antigen (HLA) diplotypes and haplotypes were analyzed using Attribute Bagging (HIBAG)‑R software and chi‑square analysis. The present study aimed to assess the potential risks associated with psoriasis using a polygenic risk score (PRS) analysis. The genetic association between single nucleotide polymorphisms (SNPs) in psoriasis and various human diseases was assessed by phenome‑wide association study. METAL software was used to analyze datasets from China Medical University Hospital (CMUH) and BioBank Japan (BBJ). The results of the present study revealed 8,585 SNPs with a significance threshold of P<5x10‑8, located within 153 genes strongly associated with the psoriasis phenotype, particularly on chromosomes 5 and 6. This specific genomic region has been identified by analyzing the biological networks associated with numerous pathways, including immune responses and inflammatory signaling. HLA genotype analysis indicated a strong association between HLA‑A*02:07 and HLA‑C*06:02 in a Taiwanese population. Based on our PRS analysis, the risk of psoriasis associated with the SNPs identified in the present study was quantified. These SNPs are associated with various dermatological, circulatory, endocrine, metabolic, musculoskeletal, hematopoietic and infectious diseases. The meta‑analysis results indicated successful replication of a study conducted on psoriasis in the BBJ. Several genetic loci are significantly associated with susceptibility to psoriasis in Taiwanese individuals. The present study contributes to our understanding of the genetic determinants that play a role in susceptibility to psoriasis. Furthermore, it provides valuable insights into the underlying etiology of psoriasis in the Taiwanese community.
Collapse
Affiliation(s)
- Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404327, Taiwan, R.O.C
| | - Ting-Yuan Liu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| | - Hsing-Fang Lu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| | - Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan, R.O.C
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404333, Taiwan, R.O.C
- Center for Personalized Medicine, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| | - Yu-Jen Chiu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
| | - Yu-Wen Wang
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan, R.O.C
- Department of Pediatric Genetics, China Medical University Children's Hospital, Taichung 404327, Taiwan, R.O.C
- Department of Medical Genetics, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| |
Collapse
|
12
|
Guo Y, Luo L, Zhu J, Li C. Advance in Multi-omics Research Strategies on Cholesterol Metabolism in Psoriasis. Inflammation 2024; 47:839-852. [PMID: 38244176 DOI: 10.1007/s10753-023-01961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/29/2023] [Accepted: 12/25/2023] [Indexed: 01/22/2024]
Abstract
The skin is a complex and dynamic organ where homeostasis is maintained through the intricate interplay between the immune system and metabolism, particularly cholesterol metabolism. Various factors such as cytokines, inflammatory mediators, cholesterol metabolites, and metabolic enzymes play crucial roles in facilitating these interactions. Dysregulation of this delicate balance contributes to the pathogenic pathways of inflammatory skin conditions, notably psoriasis. In this article, we provide an overview of omics biomarkers associated with psoriasis in relation to cholesterol metabolism. We explore multi-omics approaches that reveal the communication between immunometabolism and psoriatic inflammation. Additionally, we summarize the use of multi-omics strategies to uncover the complexities of multifactorial and heterogeneous inflammatory diseases. Finally, we highlight potential future perspectives related to targeted drug therapies and research areas that can advance precise medicine. This review aims to serve as a valuable resource for those investigating the role of cholesterol metabolism in psoriasis.
Collapse
Affiliation(s)
- Youming Guo
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Lingling Luo
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jing Zhu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Chengrang Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China.
| |
Collapse
|
13
|
Daccache JA, Naik S. Inflammatory Memory in Chronic Skin Disease. JID INNOVATIONS 2024; 4:100277. [PMID: 38708420 PMCID: PMC11068922 DOI: 10.1016/j.xjidi.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 05/07/2024] Open
Abstract
Inflammation is a hallmark of remitting-relapsing dermatological diseases. Although a large emphasis has been placed on adaptive immune cells as mediators of relapse, evidence in epithelial and innate immune biology suggests that disease memory is widespread. In this study, we bring to the fore the concept of inflammatory memory or nonspecific training of long-lived cells in the skin, highlighting the epigenetic and other mechanisms that propagate memory at the cellular level. We place these findings in the context of psoriasis, a prototypic flaring disease known to have localized memory, and underscore the importance of targeting memory to limit disease flares.
Collapse
Affiliation(s)
| | - Shruti Naik
- Department of Pathology, NYU Langone Health, New York, New York, USA
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, New York, USA
- Department of Medicine, NYU Langone Health, New York, New York, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
- Colton Center for Autoimmunity, NYU Langone Health, New York, New York, USA
| |
Collapse
|
14
|
Liadaki K, Zafiriou E, Giannoulis T, Alexouda S, Chaidaki K, Gidarokosta P, Roussaki-Schulze AV, Tsiogkas SG, Daponte A, Mamuris Z, Bogdanos DP, Moschonas NK, Sarafidou T. PDE4 Gene Family Variants Are Associated with Response to Apremilast Treatment in Psoriasis. Genes (Basel) 2024; 15:369. [PMID: 38540428 PMCID: PMC10970167 DOI: 10.3390/genes15030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 06/14/2024] Open
Abstract
Moderate-to-severe psoriasis (Ps) treatment includes systemic drugs and biological agents. Apremilast, a small molecule primarily metabolized by cytochrome CYP3A4, modulates the immune system by specifically inhibiting phosphodiesterase type 4 (PDE4) isoforms and is currently used for the treatment of Ps and psoriatic arthritis (PsA). Clinical trials and real-world data showed variable efficacy in response among Ps patients underlying the need for personalized therapy. This study implements a candidate-gene and a network-based approach to identify genetic markers associated with apremilast response in forty-nine Greek Ps patients. Our data revealed an association of sixty-four SNPs within or near PDE4 and CYP3A4 genes, four SNPs in ncRNAs ANRIL, LINC00941 and miR4706, which influence the abundance or function of PDE4s, and thirty-three SNPs within fourteen genes whose protein products either interact directly with PDE4 proteins or constitute components of the cAMP signaling pathway which is modulated by PDE4s. Notably, fifty-six of the aforementioned SNPs constitute eQTLs for the respective genes in relevant to psoriasis tissues/cells implying that these variants could be causal. Our analysis provides a number of novel genetic variants that, upon validation in larger cohorts, could be utilized as predictive markers regarding the response of Ps patients to apremilast treatment.
Collapse
Affiliation(s)
- Kalliopi Liadaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece; (K.L.); (Z.M.)
| | - Efterpi Zafiriou
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 41500 Larissa, Greece; (E.Z.); (K.C.); (P.G.); (A.-V.R.-S.)
| | | | - Sofia Alexouda
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece; (K.L.); (Z.M.)
| | - Kleoniki Chaidaki
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 41500 Larissa, Greece; (E.Z.); (K.C.); (P.G.); (A.-V.R.-S.)
| | - Polyxeni Gidarokosta
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 41500 Larissa, Greece; (E.Z.); (K.C.); (P.G.); (A.-V.R.-S.)
| | - Angeliki-Viktoria Roussaki-Schulze
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 41500 Larissa, Greece; (E.Z.); (K.C.); (P.G.); (A.-V.R.-S.)
| | - Sotirios G. Tsiogkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 41500 Larissa, Greece; (S.G.T.); (A.D.); (D.P.B.)
| | - Athina Daponte
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 41500 Larissa, Greece; (S.G.T.); (A.D.); (D.P.B.)
| | - Zissis Mamuris
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece; (K.L.); (Z.M.)
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 41500 Larissa, Greece; (S.G.T.); (A.D.); (D.P.B.)
| | - Nicholas K. Moschonas
- School of Medicine, University of Patras, 26500 Patras, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, 26504 Patras, Greece
| | - Theologia Sarafidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece; (K.L.); (Z.M.)
| |
Collapse
|
15
|
Su L, Xu C, Huang H, Zhang P, Wang J, Ouyang X, Yang X, Ye J. Effects of tumor necrosis factor-alpha inhibitors on lipid profiles in patients with psoriasis: a systematic review and meta-analysis. Front Immunol 2024; 15:1354593. [PMID: 38500874 PMCID: PMC10944886 DOI: 10.3389/fimmu.2024.1354593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Background There is no consensus on the effect of tumor necrosis factor-alpha (TNF-alpha) inhibitors on lipid profiles in patients with psoriasis. This study aimed to investigate the effects of TNF-alpha inhibitors on lipid profiles (triglycerides, total cholesterol, low-density lipoprotein, or high-density lipoprotein) in patients with psoriasis. Methods We searched PubMed, Embase, and Cochrane Library databases for articles published before October 17, 2023. Four TNF-alpha inhibitors (infliximab, etanercept, adalimumab, and certolizumab) were included in our study. (PROSPERO ID: CRD42023469703). Results A total of twenty trials were included. Overall results revealed that TNF-alpha inhibitors elevated high-density lipoprotein levels in patients with psoriasis (WMD = 2.31; 95% CI: 0.96, 3.67; P = 0.001), which was supported by the results of sensitivity analyses excluding the effect of lipid-lowering drugs. Subgroup analyses indicated that high-density lipoprotein levels were significantly increased in the less than or equal to 3 months group (WMD = 2.88; 95% CI: 1.37, 4.4; P < 0.001), the etanercept group (WMD = 3.4; 95% CI = 1.71, 5.09, P < 0.001), and the psoriasis group (WMD = 2.52; 95% CI = 0.57, 4.48, P = 0.011). Triglyceride levels were significantly increased in the 3 to 6-month group (WMD = 4.98; 95% CI = 1.97, 7.99, P = 0.001) and significantly decreased in the 6-month and older group (WMD = -19.84; 95% CI = -23.97, -15.7, P < 0.001). Additionally, Triglyceride levels were significantly increased in the psoriasis group (WMD = 5.22; 95% CI = 2.23, 8.21, P = 0.001). Conclusion Our results revealed that TNF-alpha inhibitors might temporarily increase high-density lipoprotein levels in patients with psoriasis. However, changes in triglycerides were not consistent among the different durations of treatment, with significant increases after 3 to 6 months of treatment. Future prospective trials with long-term follow-up contribute to confirming and extending our findings. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023469703.
Collapse
Affiliation(s)
- Liang Su
- Department of Dermatology, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
- Department of Dermatology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| | - Chunyan Xu
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hong Huang
- Department of Dermatology, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
- Department of Dermatology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| | - Peilian Zhang
- Department of Dermatology, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
- Department of Dermatology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| | - Jinrong Wang
- Department of Dermatology, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
- Department of Dermatology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| | - Xiaoyong Ouyang
- Department of Dermatology, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
- Department of Dermatology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| | - Xuesong Yang
- Department of Dermatology, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
- Department of Dermatology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| | - Jianzhou Ye
- Department of Dermatology, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
- Department of Dermatology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
16
|
Eyermann CE, Chen X, Somuncu OS, Li J, Joukov AN, Chen J, Alexandrova EM. ΔNp63 Regulates Homeostasis, Stemness, and Suppression of Inflammation in the Adult Epidermis. J Invest Dermatol 2024; 144:73-83.e10. [PMID: 37543242 DOI: 10.1016/j.jid.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
The p63 transcription factor is critical for epidermis formation in embryonic development, but its role in the adult epidermis is poorly understood. In this study, we show that acute genetic ablation of ΔNp63, the main p63 isoform, in adult epidermis disrupts keratinocyte proliferation and self-maintenance and, unexpectedly, triggers an inflammatory psoriasis-like condition. Mechanistically, single-cell RNA sequencing revealed the downregulation of cell cycle genes, upregulation of differentiation markers, and induction of several proinflammatory pathways in ΔNp63-ablated keratinocytes. Intriguingly, ΔNp63-ablated cells disappear by 3 weeks after ablation, at the expense of the remaining nonablated cells. This is not associated with active cell death and is likely due to reduced self-maintenance and enhanced differentiation. Indeed, in vivo wound healing, a physiological readout of the epidermal stem cell function, is severely impaired upon ΔNp63 ablation. We found that the Wnt signaling pathway (Wnt10A, Fzd6, Fzd10) and the activator protein 1 (JunB, Fos, FosB) factors are the likely ΔNp63 effectors responsible for keratinocyte proliferation/stemness and suppression of differentiation, respectively, whereas IL-1a, IL-18, IL-24, and IL-36γ are the likely negative effectors responsible for suppression of inflammation. These data establish ΔNp63 as a critical node that coordinates epidermal homeostasis, stemness, and suppression of inflammation, upstream of known regulatory pathways.
Collapse
Affiliation(s)
- Christopher E Eyermann
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Xi Chen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Ozge S Somuncu
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Jinyu Li
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | | | - Jiang Chen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Evguenia M Alexandrova
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA.
| |
Collapse
|
17
|
Zhang H, Patrick MT, Tejasvi T, Sarkar MK, Wasikowski R, Stuart PE, Li Q, Xing X, Voorhees JJ, Ward NL, He K, Zhou X, Gudjonsson JE, Nair RP, Elder JT, Tsoi LC. Retrospective pharmacogenetic study of psoriasis highlights the role of KLK7 in tumour necrosis factor signalling. Br J Dermatol 2023; 190:70-79. [PMID: 37672660 PMCID: PMC10733628 DOI: 10.1093/bjd/ljad332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Multiple treatment options are available for the management of psoriasis, but clinical response varies among individual patients and no biomarkers are available to facilitate treatment selection for improved patient outcomes. OBJECTIVES To utilize retrospective data to conduct a pharmacogenetic study to explore the potential genetic pathways associated with drug response in the treatment of psoriasis. METHODS We conducted a retrospective pharmacogenetic study using self-evaluated treatment response from 1942 genotyped patients with psoriasis. We examined 6 502 658 genetic markers to model their associations with response to six treatment options using linear regression, adjusting for cohort variables and demographic features. We further utilized an integrative approach incorporating epigenomics, transcriptomics and a longitudinal clinical cohort to provide biological implications for the topmost signals associated with drug response. RESULTS Two novel markers were revealed to be associated with treatment response: rs1991820 (P = 1.30 × 10-6) for anti-tumour necrosis factor (TNF) biologics; and rs62264137 (P = 2.94 × 10-6) for methotrexate, which was also associated with cutaneous mRNA expression levels of two known psoriasis-related genes KLK7 (P = 1.0 × 10-12) and CD200 (P = 5.4 × 10-6). We demonstrated that KLK7 expression was increased in the psoriatic epidermis, as shown by immunohistochemistry, as well as single-cell RNA sequencing, and its responsiveness to anti-TNF treatment was highlighted. By inhibiting the expression of KLK7, we further illustrated that keratinocytes have decreased proinflammatory responses to TNF. CONCLUSIONS Our study implicates the genetic regulation of cytokine responses in predicting clinical drug response and supports the association between pharmacogenetic loci and anti-TNF response, as shown here for KLK7.
Collapse
Affiliation(s)
| | | | - Trilokraj Tejasvi
- Department of Dermatology
- Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| | | | | | | | | | | | | | - Nicole L Ward
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Johann E Gudjonsson
- Department of Dermatology
- Taubman Medical Research Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - James T Elder
- Department of Dermatology
- Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Departments of Biostatistics
- Department of Dermatology
- Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Garrett-Sinha LA. An update on the roles of transcription factor Ets1 in autoimmune diseases. WIREs Mech Dis 2023; 15:e1627. [PMID: 37565573 PMCID: PMC10842644 DOI: 10.1002/wsbm.1627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Transcription factors are crucial to regulate gene expression in immune cells and in other cell types. In lymphocytes, there are a large number of different transcription factors that are known to contribute to cell differentiation and the balance between quiescence and activation. One such transcription factor is E26 oncogene homolog 1 (Ets1). Ets1 expression is high in quiescent B and T lymphocytes and its levels are decreased upon activation. The human ETS1 gene has been identified as a susceptibility locus for many autoimmune and inflammatory diseases. In accord with this, gene knockout of Ets1 in mice leads to development of a lupus-like autoimmune disease, with enhanced activation and differentiation of both B cells and T cells. Prior reviews have summarized functional roles for Ets1 based on studies of Ets1 knockout mice. In recent years, numerous additional studies have been published that further validate ETS1 as a susceptibility locus for human diseases where immune dysregulation plays a causative role. In this update, new information that further links Ets1 to human autoimmune diseases is organized and collated to serve as a resource. This update also describes recent studies that seek to understand molecularly how Ets1 regulates immune cell activation, either using human cells and tissues or mouse models. This resource is expected to be useful to investigators seeking to understand how Ets1 may regulate the human immune response, particularly in terms of its roles in autoimmunity and inflammation. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Lee Ann Garrett-Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, USA
| |
Collapse
|
19
|
Loyo-Celis V, Patel D, Sanghvi S, Kaur K, Ponnalagu D, Zheng Y, Bindra S, Bhachu HR, Deschenes I, Gururaja Rao S, Singh H. Biophysical characterization of chloride intracellular channel 6 (CLIC6). J Biol Chem 2023; 299:105349. [PMID: 37838179 PMCID: PMC10641671 DOI: 10.1016/j.jbc.2023.105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/16/2023] Open
Abstract
Chloride intracellular channels (CLICs) are a family of proteins that exist in soluble and transmembrane forms. The newest discovered member of the family CLIC6 is implicated in breast, ovarian, lung gastric, and pancreatic cancers and is also known to interact with dopamine-(D(2)-like) receptors. The soluble structure of the channel has been resolved, but the exact physiological role of CLIC6, biophysical characterization, and the membrane structure remain unknown. Here, we aimed to characterize the biophysical properties of this channel using a patch-clamp approach. To determine the biophysical properties of CLIC6, we expressed CLIC6 in HEK-293 cells. On ectopic expression, CLIC6 localizes to the plasma membrane of HEK-293 cells. We established the biophysical properties of CLIC6 by using electrophysiological approaches. Using various anions and potassium (K+) solutions, we determined that CLIC6 is more permeable to chloride-(Cl-) as compared to bromide-(Br-), fluoride-(F-), and K+ ions. In the whole-cell configuration, the CLIC6 currents were inhibited after the addition of 10 μM of IAA-94 (CLIC-specific blocker). CLIC6 was also found to be regulated by pH and redox potential. We demonstrate that the histidine residue at 648 (H648) in the C terminus and cysteine residue in the N terminus (C487) are directly involved in the pH-induced conformational change and redox regulation of CLIC6, respectively. Using qRT-PCR, we identified that CLIC6 is most abundant in the lung and brain, and we recorded the CLIC6 current in mouse lung epithelial cells. Overall, we have determined the biophysical properties of CLIC6 and established it as a Cl- channel.
Collapse
Affiliation(s)
- Veronica Loyo-Celis
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Devendra Patel
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Shridhar Sanghvi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA; Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, Ohio, USA
| | - Kamalpreet Kaur
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Devasena Ponnalagu
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA; Department of Pharmacology, The University of Washington, Seattle, Washington, USA
| | - Yang Zheng
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Sahej Bindra
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Harmeet Rireika Bhachu
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Isabelle Deschenes
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Harpreet Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA; Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
20
|
Xiao Q, Mears J, Nathan A, Ishigaki K, Baglaenko Y, Lim N, Cooney LA, Harris KM, Anderson MS, Fox DA, Smilek DE, Krueger JG, Raychaudhuri S. Immunosuppression causes dynamic changes in expression QTLs in psoriatic skin. Nat Commun 2023; 14:6268. [PMID: 37805522 PMCID: PMC10560299 DOI: 10.1038/s41467-023-41984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/25/2023] [Indexed: 10/09/2023] Open
Abstract
Psoriasis is a chronic, systemic inflammatory condition primarily affecting skin. While the role of the immune compartment (e.g., T cells) is well established, the changes in the skin compartment are more poorly understood. Using longitudinal skin biopsies (n = 375) from the "Psoriasis Treatment with Abatacept and Ustekinumab: A Study of Efficacy"(PAUSE) clinical trial (n = 101), we report 953 expression quantitative trait loci (eQTLs). Of those, 116 eQTLs have effect sizes that were modulated by local skin inflammation (eQTL interactions). By examining these eQTL genes (eGenes), we find that most are expressed in the skin tissue compartment, and a subset overlap with the NRF2 pathway. Indeed, the strongest eQTL interaction signal - rs1491377616-LCE3C - links a psoriasis risk locus with a gene specifically expressed in the epidermis. This eQTL study highlights the potential to use biospecimens from clinical trials to discover in vivo eQTL interactions with therapeutically relevant environmental variables.
Collapse
Affiliation(s)
- Qian Xiao
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joseph Mears
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Kazuyoshi Ishigaki
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Yuriy Baglaenko
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Noha Lim
- Immune Tolerance Network, Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Laura A Cooney
- Immune Tolerance Network, Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Division of Rheumatology, Department of Internal Medicine and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI, USA
| | - Kristina M Harris
- Immune Tolerance Network, Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Mark S Anderson
- Immune Tolerance Network, Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - David A Fox
- Division of Rheumatology, Department of Internal Medicine and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI, USA
| | - Dawn E Smilek
- Immune Tolerance Network, Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK.
| |
Collapse
|
21
|
Dand N, Stuart PE, Bowes J, Ellinghaus D, Nititham J, Saklatvala JR, Teder-Laving M, Thomas LF, Traks T, Uebe S, Assmann G, Baudry D, Behrens F, Billi AC, Brown MA, Burkhardt H, Capon F, Chung R, Curtis CJ, Duckworth M, Ellinghaus E, FitzGerald O, Gerdes S, Griffiths CEM, Gulliver S, Helliwell P, Ho P, Hoffmann P, Holmen OL, Huang ZM, Hveem K, Jadon D, Köhm M, Kraus C, Lamacchia C, Lee SH, Ma F, Mahil SK, McHugh N, McManus R, Modalsli EH, Nissen MJ, Nöthen M, Oji V, Oksenberg JR, Patrick MT, Perez-White BE, Ramming A, Rech J, Rosen C, Sarkar MK, Schett G, Schmidt B, Tejasvi T, Traupe H, Voorhees JJ, Wacker EM, Warren RB, Wasikowski R, Weidinger S, Wen X, Zhang Z, Barton A, Chandran V, Esko T, Foerster J, Franke A, Gladman DD, Gudjonsson JE, Gulliver W, Hüffmeier U, Kingo K, Kõks S, Liao W, Løset M, Mägi R, Nair RP, Rahman P, Reis A, Smith CH, Di Meglio P, Barker JN, Tsoi LC, Simpson MA, Elder JT. GWAS meta-analysis of psoriasis identifies new susceptibility alleles impacting disease mechanisms and therapeutic targets. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.04.23296543. [PMID: 37873414 PMCID: PMC10593001 DOI: 10.1101/2023.10.04.23296543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Psoriasis is a common, debilitating immune-mediated skin disease. Genetic studies have identified biological mechanisms of psoriasis risk, including those targeted by effective therapies. However, the genetic liability to psoriasis is not fully explained by variation at robustly identified risk loci. To move towards a saturation map of psoriasis susceptibility we meta-analysed 18 GWAS comprising 36,466 cases and 458,078 controls and identified 109 distinct psoriasis susceptibility loci, including 45 that have not been previously reported. These include susceptibility variants at loci in which the therapeutic targets IL17RA and AHR are encoded, and deleterious coding variants supporting potential new drug targets (including in STAP2, CPVL and POU2F3). We conducted a transcriptome-wide association study to identify regulatory effects of psoriasis susceptibility variants and cross-referenced these against single cell expression profiles in psoriasis-affected skin, highlighting roles for the transcriptional regulation of haematopoietic cell development and epigenetic modulation of interferon signalling in psoriasis pathobiology.
Collapse
Affiliation(s)
- Nick Dand
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Health Data Research UK, London, UK
| | - Philip E Stuart
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
- National Institute for Health and Care Research (NIHR) Manchester Biomedical Research Centre, The University of Manchester, Manchester, UK
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Joanne Nititham
- Deparment of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Jake R Saklatvala
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | | | - Laurent F Thomas
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- BioCore - Bioinformatics Core Facility, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St.Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tanel Traks
- Department of Dermatology and Venereology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Steffen Uebe
- Institute of Human Genetics, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Gunter Assmann
- RUB University Hospital JWK Minden, Department of Rheumatology, Minden, Germany
- Jose-Carreras Centrum for Immuno- and Gene Therapy, University of Saarland Medical School, Homburg, Germany
| | - David Baudry
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Frank Behrens
- Division of Translational Rheumatology, Immunology - Inflammation Medicine, University Hospital, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
- Division of Rheumatology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Allison C Billi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Matthew A Brown
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Genomics England, Canary Wharf, London, UK
| | - Harald Burkhardt
- Division of Rheumatology, University Hospital, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Francesca Capon
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Raymond Chung
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, Camberwell, London, UK
- National Institute for Health and Care Research (NIHR) Biomedical Research Centre, South London and Maudsley Hospital, London, UK
| | - Charles J Curtis
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, Camberwell, London, UK
- National Institute for Health and Care Research (NIHR) Biomedical Research Centre, South London and Maudsley Hospital, London, UK
| | - Michael Duckworth
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Oliver FitzGerald
- UCD School of Medicine and Medical Sciences and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Sascha Gerdes
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christopher E M Griffiths
- Centre for Dermatology Research, University of Manchester, NIHR Manchester Biomedical Research Centre, Manchester, UK
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Department of Dermatology, King's College Hospital NHS Foundation Trust, London, UK
| | | | - Philip Helliwell
- National Institute for Health and Care Research (NIHR) Leeds Biomedical Research Centre, Leeds Teaching Hospitals Trust, UK
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, UK
| | - Pauline Ho
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
- National Institute for Health and Care Research (NIHR) Manchester Biomedical Research Centre, The University of Manchester, Manchester, UK
- The Kellgren Centre for Rheumatology, Manchester University NHS Foundation Trust, Manchester, UK
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Oddgeir L Holmen
- HUNT Research Centre, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Zhi-Ming Huang
- Deparment of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Deepak Jadon
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michaela Köhm
- Division of Translational Rheumatology, Immunology - Inflammation Medicine, University Hospital, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
- Division of Rheumatology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Céline Lamacchia
- Division of Rheumatology, Geneva University Hospital, Geneva, Switzerland
| | - Sang Hyuck Lee
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, Camberwell, London, UK
- National Institute for Health and Care Research (NIHR) Biomedical Research Centre, South London and Maudsley Hospital, London, UK
| | - Feiyang Ma
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Satveer K Mahil
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- St John's Institute of Dermatology, Guy's and St Thomas' National Health Service (NHS) Foundation Trust, London, UK
| | - Neil McHugh
- Royal National Hospital for Rheumatic Diseases and Dept Pharmacy and Pharmacology, University of Bath, UK
| | - Ross McManus
- Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Ellen H Modalsli
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Dermatology, Clinic of Orthopedy, Rheumatology and Dermatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Michael J Nissen
- Division of Rheumatology, Geneva University Hospital, Geneva, Switzerland
| | - Markus Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Vinzenz Oji
- Department of Dermatology, University of Münster, Münster, Germany
| | - Jorge R Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Matthew T Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Andreas Ramming
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jürgen Rech
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Cheryl Rosen
- Division of Dermatology, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Börge Schmidt
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Trilokraj Tejasvi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| | - Heiko Traupe
- Department of Dermatology, University of Münster, Münster, Germany
| | - John J Voorhees
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eike Matthias Wacker
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Richard B Warren
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK
- Centre for Dermatology Research, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M6 8HD, UK
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephan Weidinger
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Xiaoquan Wen
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Zhaolin Zhang
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anne Barton
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
- National Institute for Health and Care Research (NIHR) Manchester Biomedical Research Centre, The University of Manchester, Manchester, UK
- The Kellgren Centre for Rheumatology, Manchester University NHS Foundation Trust, Manchester, UK
| | - Vinod Chandran
- Schroeder Arthritis Institute, Krembil Research Institute, and Toronto Western Hospital, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - John Foerster
- College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, UK
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Dafna D Gladman
- Schroeder Arthritis Institute, Krembil Research Institute, and Toronto Western Hospital, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Wayne Gulliver
- Newlab Clinical Research Inc, St. John's, NL, Canada
- Department of Dermatology, Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ulrike Hüffmeier
- Institute of Human Genetics, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Külli Kingo
- Department of Dermatology and Venereology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia
| | - Wilson Liao
- Deparment of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Mari Løset
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Dermatology, Clinic of Orthopedy, Rheumatology and Dermatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Rajan P Nair
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Proton Rahman
- Memorial University of Newfoundland, St. John's, NL, Canada
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Catherine H Smith
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- St John's Institute of Dermatology, Guy's and St Thomas' National Health Service (NHS) Foundation Trust, London, UK
| | - Paola Di Meglio
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Jonathan N Barker
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- St John's Institute of Dermatology, Guy's and St Thomas' National Health Service (NHS) Foundation Trust, London, UK
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michael A Simpson
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - James T Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Antonatos C, Grafanaki K, Georgiou S, Evangelou E, Vasilopoulos Y. Disentangling the complexity of psoriasis in the post-genome-wide association era. Genes Immun 2023; 24:236-247. [PMID: 37717118 DOI: 10.1038/s41435-023-00222-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
In recent years, genome-wide association studies (GWAS) have been instrumental in unraveling the genetic architecture of complex diseases, including psoriasis. The application of large-scale GWA studies in psoriasis has illustrated several associated loci that participate in the cutaneous inflammation, however explaining a fraction of the disease heritability. With the advent of high-throughput sequencing technologies and functional genomics approaches, the post-GWAS era aims to unravel the functional mechanisms underlying the inter-individual variability in psoriasis patients. In this review, we present the key advances of psoriasis GWAS in under-represented populations, rare, non-coding and structural variants and epistatic phenomena that orchestrate the interplay between different cell types. We further review the gene-gene and gene-environment interactions contributing to the disease predisposition and development of comorbidities through Mendelian randomization studies and pleiotropic effects of psoriasis-associated loci. We finally examine the holistic approaches conducted in psoriasis through system genetics and state-of-the-art transcriptomic analyses, discussing their potential implication in the expanding field of precision medicine and characterization of comorbidities.
Collapse
Affiliation(s)
- Charalabos Antonatos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504, Patras, Greece
| | - Katerina Grafanaki
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504, Patras, Greece
| | - Sophia Georgiou
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504, Patras, Greece
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, 45110, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110, Ioannina, Greece
- Department of Epidemiology & Biostatistics, MRC Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504, Patras, Greece.
| |
Collapse
|
23
|
Battaglia M, Sunshine AC, Luo W, Jin R, Stith A, Lindemann M, Miller LS, Sinha S, Wohlfert E, Garrett-Sinha LA. Ets1 and IL17RA cooperate to regulate autoimmune responses and skin immunity to Staphylococcus aureus. Front Immunol 2023; 14:1208200. [PMID: 37691956 PMCID: PMC10486983 DOI: 10.3389/fimmu.2023.1208200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Ets1 is a lymphoid-enriched transcription factor that regulates B- and Tcell functions in development and disease. Mice that lack Ets1 (Ets1 KO) develop spontaneous autoimmune disease with high levels of autoantibodies. Naïve CD4 + T cells isolated from Ets1 KO mice differentiate more readily to Th17 cells that secrete IL-17, a cytokine implicated in autoimmune disease pathogenesis. To determine if increased IL-17 production contributes to the development of autoimmunity in Ets1 KO mice, we crossed Ets1 KO mice to mice lacking the IL-17 receptor A subunit (IL17RA KO) to generate double knockout (DKO) mice. Methods In this study, the status of the immune system of DKO and control mice was assessed utilizing ELISA, ELISpot, immunofluorescent microscopy, and flow cytometric analysis of the spleen, lymph node, skin. The transcriptome of ventral neck skin was analyzed through RNA sequencing. S. aureus clearance kinetics in in exogenously infected mice was conducted using bioluminescent S. aureus and tracked using an IVIS imaging experimental scheme. Results We found that the absence of IL17RA signaling did not prevent or ameliorate the autoimmune phenotype of Ets1 KO mice but rather that DKO animals exhibited worse symptoms with striking increases in activated B cells and secreted autoantibodies. This was correlated with a prominent increase in the numbers of T follicular helper (Tfh) cells. In addition to the autoimmune phenotype, DKO mice also showed signs of immunodeficiency and developed spontaneous skin lesions colonized by Staphylococcus xylosus. When DKO mice were experimentally infected with Staphylococcus aureus, they were unable to clear the bacteria, suggesting a general immunodeficiency to staphylococcal species. γδ T cells are important for the control of skin staphylococcal infections. We found that mice lacking Ets1 have a complete deficiency of the γδ T-cell subset dendritic epidermal T cells (DETCs), which are involved in skin woundhealing responses, but normal numbers of other skin γδ T cells. To determine if loss of DETC combined with impaired IL-17 signaling might promote susceptibility to staph infection, we depleted DETC from IL17RA KO mice and found that the combined loss of DETC and impaired IL-17 signaling leads to an impaired clearance of the infection. Conclusions Our studies suggest that loss of IL-17 signaling can result in enhanced autoimmunity in Ets1 deficient autoimmune-prone mice. In addition, defects in wound healing, such as that caused by loss of DETC, can cooperate with impaired IL-17 responses to lead to increased susceptibility to skin staph infections.
Collapse
Affiliation(s)
- Michael Battaglia
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Alex C. Sunshine
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Wei Luo
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Richard Jin
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Alifa Stith
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | | | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Elizabeth Wohlfert
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
24
|
Krušič M, Jezernik G, Potočnik U. Gene Ontology Analysis Highlights Biological Processes Influencing Responsiveness to Biological Therapy in Psoriasis. Pharmaceutics 2023; 15:2024. [PMID: 37631238 PMCID: PMC10459906 DOI: 10.3390/pharmaceutics15082024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Psoriasis is a chronic, immune-mediated and inflammatory skin disease. Although various biological drugs are available for psoriasis treatment, some patients have poor responses or do not respond to treatment. The aim of the present study was to highlight the molecular mechanism of responsiveness to current biological drugs for psoriasis treatment. To this end, we reviewed previously published articles that reported genes associated with treatment response to biological drugs in psoriasis, and gene ontology analysis was subsequently performed using the Cytoscape platform. Herein, we revealed a statistically significant association between NF-kappaB signaling (p value = 3.37 × 10-9), regulation of granulocyte macrophage colony-stimulating factor production (p value = 6.20 × 10-6), glial cell proliferation (p value = 2.41 × 10-5) and treatment response in psoriatic patients. To the best of our knowledge, we are the first to directly associate glial cells with treatment response. Taken together, our study revealed gene ontology (GO) terms, some of which were previously shown to be implicated in the molecular pathway of psoriasis, as novel GO terms involved in responsiveness in psoriatic disease patients.
Collapse
Affiliation(s)
- Martina Krušič
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.K.); (G.J.)
| | - Gregor Jezernik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.K.); (G.J.)
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.K.); (G.J.)
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Department for Science and Research, University Clinical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
25
|
Talwar JV, Laub D, Pagadala MS, Castro A, Lewis M, Luebeck GE, Gorman BR, Pan C, Dong FN, Markianos K, Teerlink CC, Lynch J, Hauger R, Pyarajan S, Tsao PS, Morris GP, Salem RM, Thompson WK, Curtius K, Zanetti M, Carter H. Autoimmune alleles at the major histocompatibility locus modify melanoma susceptibility. Am J Hum Genet 2023; 110:1138-1161. [PMID: 37339630 PMCID: PMC10357503 DOI: 10.1016/j.ajhg.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Autoimmunity and cancer represent two different aspects of immune dysfunction. Autoimmunity is characterized by breakdowns in immune self-tolerance, while impaired immune surveillance can allow for tumorigenesis. The class I major histocompatibility complex (MHC-I), which displays derivatives of the cellular peptidome for immune surveillance by CD8+ T cells, serves as a common genetic link between these conditions. As melanoma-specific CD8+ T cells have been shown to target melanocyte-specific peptide antigens more often than melanoma-specific antigens, we investigated whether vitiligo- and psoriasis-predisposing MHC-I alleles conferred a melanoma-protective effect. In individuals with cutaneous melanoma from both The Cancer Genome Atlas (n = 451) and an independent validation set (n = 586), MHC-I autoimmune-allele carrier status was significantly associated with a later age of melanoma diagnosis. Furthermore, MHC-I autoimmune-allele carriers were significantly associated with decreased risk of developing melanoma in the Million Veteran Program (OR = 0.962, p = 0.024). Existing melanoma polygenic risk scores (PRSs) did not predict autoimmune-allele carrier status, suggesting these alleles provide orthogonal risk-relevant information. Mechanisms of autoimmune protection were neither associated with improved melanoma-driver mutation association nor improved gene-level conserved antigen presentation relative to common alleles. However, autoimmune alleles showed higher affinity relative to common alleles for particular windows of melanocyte-conserved antigens and loss of heterozygosity of autoimmune alleles caused the greatest reduction in presentation for several conserved antigens across individuals with loss of HLA alleles. Overall, this study presents evidence that MHC-I autoimmune-risk alleles modulate melanoma risk unaccounted for by current PRSs.
Collapse
Affiliation(s)
- James V Talwar
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - David Laub
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Meghana S Pagadala
- Biomedical Science Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrea Castro
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - McKenna Lewis
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Georg E Luebeck
- Public Health Sciences Division, Herbold Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bryan R Gorman
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA 02130, USA; Booz Allen Hamilton, Inc., McLean, VA 22102, USA
| | - Cuiping Pan
- Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto, CA, USA
| | - Frederick N Dong
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA 02130, USA; Booz Allen Hamilton, Inc., McLean, VA 22102, USA
| | - Kyriacos Markianos
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA 02130, USA; Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02115, USA
| | - Craig C Teerlink
- Department of Veterans Affairs Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Healthcare System, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Julie Lynch
- Department of Veterans Affairs Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Healthcare System, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Richard Hauger
- VA San Diego Healthcare System, La Jolla, CA, USA; Center for Behavioral Genetics of Aging, University of California San Diego, La Jolla, CA, USA; Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA 02130, USA; Department of Medicine, Brigham Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Philip S Tsao
- Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto, CA, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald P Morris
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rany M Salem
- Division of Epidemiology, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Wesley K Thompson
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74136, USA
| | - Kit Curtius
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Maurizio Zanetti
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; The Laboratory of Immunology, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, Division of Hematology and Oncology, University of California San Diego, La Jolla, CA 92093, USA
| | - Hannah Carter
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
Xiao Z, Luo S, Zhou Y, Pang H, Yin W, Qin J, Xie Z, Zhou Z. Association of the rs1990760, rs3747517, and rs10930046 polymorphisms in the IFIH1 gene with susceptibility to autoimmune diseases: a meta-analysis. Front Immunol 2023; 14:1051247. [PMID: 37426657 PMCID: PMC10327432 DOI: 10.3389/fimmu.2023.1051247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Objective Interferon induced with helicase C domain 1 (IFIH1) single-nucleotide polymorphisms (SNP) rs1990760, rs3747517, and rs10930046 have been shown to be closely related to the risk of autoimmune diseases. The aim of this study was firstly to examine the association of the rs1990760 with type 1 diabetes (T1D) in a Chinese population. Secondly, to assess the association of SNP rs1990760, rs3747517, and rs10930046 with autoimmune diseases susceptibility. Methods A total of 1,273 T1D patients and 1,010 healthy control subjects in a Chinese population were enrolled in this case-control study. Subsequently, we performed a meta-analysis on the association of the SNP rs1990760, rs3747517, and rs10930046 in the IFIH1 gene with susceptibility to autoimmune diseases. The random and fixed genetic effects models were used to evaluate the association and the effect sizes, including odds ratios (OR) and 95% confidence intervals (CI). Stratification analyses based on ethnicity and the type of autoimmune diseases were performed. Results IFIH1 SNP rs1990760 was not associated with a significant risk of T1D in the Chinese population in the case-control study. A total of 35 studies including 70,966 patients and 124,509 controls were identified and included in the meta-analysis. The results displayed significant associations between IFIH1 rs1990760 A allele and rs3747517 C allele and autoimmune diseases risk (OR=1.09, 95% CI: 1.01~1.17; OR=1.24, 95% CI: 1.15~1.25, respectively). Stratified analysis indicated a significant association rs1990760 and rs3747517 with autoimmune diseases risk in the Caucasian population (OR=1.11, 95% CI: 1.02~1.20, OR=1.29, 95% CI: 1.18~1.41, respectively). Conclusions This study revealed no association between IFIH1 SNP rs1990760 and T1D in Chinese. Furthermore, the meta-analysis indicated that rs1990760 and rs3747517 polymorphisms, confer susceptibility to autoimmune diseases, especially in the Caucasian population.
Collapse
Affiliation(s)
- Zilin Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yuemin Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenfeng Yin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
27
|
Suga K, Suto A, Tanaka S, Sugawara Y, Kageyama T, Ishikawa J, Sanayama Y, Ikeda K, Furuta S, Kagami SI, Iwata A, Hirose K, Suzuki K, Ohara O, Nakajima H. TAp63, a methotrexate target in CD4+ T cells, suppresses Foxp3 expression and exacerbates autoimmune arthritis. JCI Insight 2023; 8:164778. [PMID: 37212280 PMCID: PMC10322677 DOI: 10.1172/jci.insight.164778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/07/2023] [Indexed: 05/23/2023] Open
Abstract
Methotrexate (MTX) is a standard, first-line therapy for rheumatoid arthritis (RA); however, its precise mechanisms of action other than antifolate activity are largely unknown. We performed DNA microarray analyses of CD4+ T cells in patients with RA before and after MTX treatment and found that TP63 was the most significantly downregulated gene after MTX treatment. TAp63, an isoform of TP63, was highly expressed in human IL-17-producing Th (Th17) cells and was suppressed by MTX in vitro. Murine TAp63 was expressed at high levels in Th cells and at lower levels in thymus-derived Treg cells. Importantly, TAp63 knockdown in murine Th17 cells ameliorated the adoptive transfer arthritis model. RNA-Seq analyses of human Th17 cells overexpressing TAp63 and those with TAp63 knockdown identified FOXP3 as a possible TAp63 target gene. TAp63 knockdown in CD4+ T cells cultured under Th17 conditions with low-dose IL-6 increased Foxp3 expression, suggesting that TAp63 balances Th17 cells and Treg cells. Mechanistically, TAp63 knockdown in murine induced Treg (iTreg) cells promoted hypomethylation of conserved noncoding sequence 2 (CNS2) of the Foxp3 gene and enhanced the suppressive function of iTreg cells. Reporter analyses revealed that TAp63 suppressed the activation of the Foxp3 CNS2 enhancer. Collectively, TAp63 suppresses Foxp3 expression and exacerbates autoimmune arthritis.
Collapse
Affiliation(s)
- Kensuke Suga
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Akira Suto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Yutaka Sugawara
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Takahiro Kageyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Junichi Ishikawa
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Yoshie Sanayama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Kei Ikeda
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Shunsuke Furuta
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Shin-Ichiro Kagami
- Research Center for Allergy and Clinical Immunology, Asahi General Hospital, Asahi, Chiba, Japan
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| |
Collapse
|
28
|
Hamilton F, Mentzer AJ, Parks T, Baillie JK, Smith GD, Ghazal P, Timpson NJ. Variation in ERAP2 has opposing effects on severe respiratory infection and autoimmune disease. Am J Hum Genet 2023; 110:691-702. [PMID: 36889308 PMCID: PMC10119032 DOI: 10.1016/j.ajhg.2023.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/06/2023] [Indexed: 03/09/2023] Open
Abstract
ERAP2 is an aminopeptidase involved in immunological antigen presentation. Genotype data in human samples from before and after the Black Death, an epidemic due to Yersinia pestis, have marked changes in allele frequency of the single-nucleotide polymorphism (SNP) rs2549794, with the T allele suggested to be deleterious during this period, while ERAP2 is also implicated in autoimmune diseases. This study explored the association between variation at ERAP2 and (1) infection, (2) autoimmune disease, and (3) parental longevity. Genome-wide association studies (GWASs) of these outcomes were identified in contemporary cohorts (UK Biobank, FinnGen, and GenOMICC). Effect estimates were extracted for rs2549794 and rs2248374, a haplotype tagging SNP. Additionally, cis expression and protein quantitative trait loci (QTLs) for ERAP2 were used in Mendelian randomization (MR) analyses. Consistent with decreased survival in the Black Death, the T allele of rs2549794 showed evidence of association with respiratory infection (odds ratio; OR for pneumonia 1.03; 95% CI 1.01-1.05). Effect estimates were larger for more severe phenotypes (OR for critical care admission with pneumonia 1.08; 95% CI 1.02-1.14). In contrast, opposing effects were identified for Crohn disease (OR 0.86; 95% CI 0.82-0.90). This allele was shown to associate with decreased ERAP2 expression and protein levels, independent of haplotype. MR analyses suggest that ERAP2 expression may be mediating disease associations. Decreased ERAP2 expression is associated with severe respiratory infection with an opposing association with autoimmune diseases. These data support the hypothesis of balancing selection at this locus driven by autoimmune and infectious disease.
Collapse
Affiliation(s)
- Fergus Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Infection Science, North Bristol NHS Trust, Bristol, UK.
| | | | - Tom Parks
- Wellcome Centre For Human Genetics, University of Oxford, Oxford, UK; Department of Infectious Disease, Imperial College London, London, UK
| | - J Kenneth Baillie
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK; Roslin Institute, University of Edinburgh, Edinburgh, UK; Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | | | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
29
|
Kuiper JJ, Prinz JC, Stratikos E, Kuśnierczyk P, Arakawa A, Springer S, Mintoff D, Padjen I, Shumnalieva R, Vural S, Kötter I, van de Sande MG, Boyvat A, de Boer JH, Bertsias G, de Vries N, Krieckaert CL, Leal I, Vidovič Valentinčič N, Tugal-Tutkun I, El Khaldi Ahanach H, Costantino F, Glatigny S, Mrazovac Zimak D, Lötscher F, Kerstens FG, Bakula M, Viera Sousa E, Böhm P, Bosman K, Kenna TJ, Powis SJ, Breban M, Gul A, Bowes J, Lories RJ, Nowatzky J, Wolbink GJ, McGonagle DG, Turkstra F. EULAR study group on ‘MHC-I-opathy’: identifying disease-overarching mechanisms across disciplines and borders. Ann Rheum Dis 2023:ard-2022-222852. [PMID: 36987655 DOI: 10.1136/ard-2022-222852] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/25/2023] [Indexed: 03/29/2023]
Abstract
The ‘MHC-I (major histocompatibility complex class I)-opathy’ concept describes a family of inflammatory conditions with overlapping clinical manifestations and a strong genetic link to the MHC-I antigen presentation pathway. Classical MHC-I-opathies such as spondyloarthritis, Behçet’s disease, psoriasis and birdshot uveitis are widely recognised for their strong association with certain MHC-I alleles and gene variants of the antigen processing aminopeptidases ERAP1 and ERAP2 that implicates altered MHC-I peptide presentation to CD8+T cells in the pathogenesis. Progress in understanding the cause and treatment of these disorders is hampered by patient phenotypic heterogeneity and lack of systematic investigation of the MHC-I pathway.Here, we discuss new insights into the biology of MHC-I-opathies that strongly advocate for disease-overarching and integrated molecular and clinical investigation to decipher underlying disease mechanisms. Because this requires transformative multidisciplinary collaboration, we introduce the EULAR study group on MHC-I-opathies to unite clinical expertise in rheumatology, dermatology and ophthalmology, with fundamental and translational researchers from multiple disciplines such as immunology, genomics and proteomics, alongside patient partners. We prioritise standardisation of disease phenotypes and scientific nomenclature and propose interdisciplinary genetic and translational studies to exploit emerging therapeutic strategies to understand MHC-I-mediated disease mechanisms. These collaborative efforts are required to address outstanding questions in the etiopathogenesis of MHC-I-opathies towards improving patient treatment and prognostication.
Collapse
Affiliation(s)
- Jonas Jw Kuiper
- Department of Ophthalmology, Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jörg C Prinz
- University Hospital, department of Dermatology and Allergy, Ludwig Maximilians University Munich, Munchen, Germany
| | - Efstratios Stratikos
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Institute of Immunology and Experimental Therapy Ludwik Hirszfeld Polish Academy of Sciences, Wroclaw, Poland
| | - Akiko Arakawa
- University Hospital, department of Dermatology and Allergy, Ludwig Maximilians University Munich, Munchen, Germany
| | | | - Dillon Mintoff
- Department of Dermatology, Mater Dei Hospital, Msida, Malta
- Department of Pathology, University of Malta Faculty of Medicine and Surgery, Msida, Malta
| | - Ivan Padjen
- Division of Clinical Immunology and Rheumatology, University Hospital Centre Zagreb Department of Internal Medicine, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Russka Shumnalieva
- Clinic of Rheumatology, Department of Rheumatology, Medical University of Sofia, Sofia, Bulgaria
| | - Seçil Vural
- School of Medicine, Department of Dermatology, Koç University, Istanbul, Turkey
| | - Ina Kötter
- Clinic for Rheumatology and Immunology, Bad Bramdsted Hospital, Bad Bramstedt, Germany
- Division of Rheumatology and Systemic Inflammatory Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marleen G van de Sande
- University of Amsterdam, Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Amsterdam Rheumatology and Immunology Center (ARC) | Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ayşe Boyvat
- Department of Dermatology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Joke H de Boer
- Department of Ophthalmology, Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - George Bertsias
- Department of Rheumatology and Clinical Immunology, University of Crete School of Medicine, Iraklio, Greece
- Laboratory of Autoimmunity-Inflammation, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Niek de Vries
- University of Amsterdam, Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Amsterdam Rheumatology and Immunology Center (ARC) | Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Charlotte Lm Krieckaert
- Amsterdam Rheumatology and immunology Center (ARC)| Reade, Amsterdam, The Netherlands
- Department of Rheumatology, Reade Hoofdlocatie Dr Jan van Breemenstraat, Amsterdam, The Netherlands
| | - Inês Leal
- Department of Ophthalmology, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte EPE, Lisboa, Portugal
- Centro de Estudeos das Ciencias da Visão, Universidade de Lisboa Faculdade de Medicina, Lisboa, Portugal
| | - Nataša Vidovič Valentinčič
- University Eye Clinic, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ilknur Tugal-Tutkun
- Department of Ophthalmology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Hanane El Khaldi Ahanach
- Departement of Ophthalmology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Department of Ophthalmology, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | - Félicie Costantino
- Service de Rheumatology, Hospital Ambroise-Pare, Boulogne-Billancourt, France
- Infection & Inflammation, UMR 1173, Inserm, UVSQ, University Paris-Saclay, Montigny-le-Bretonneux, France
| | - Simon Glatigny
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux, France
- Laboratoire d'Excellence Inflamex, Paris, France
| | | | - Fabian Lötscher
- Department of Rheumatology and Immunology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Floor G Kerstens
- Amsterdam Rheumatology and immunology Center (ARC)| Reade, Amsterdam, The Netherlands
- Department of Rheumatology, Reade Hoofdlocatie Dr Jan van Breemenstraat, Amsterdam, The Netherlands
| | - Marija Bakula
- Division of Clinical Immunology and Rheumatology, University Hospital Centre Zagreb Department of Internal Medicine, Zagreb, Croatia
| | - Elsa Viera Sousa
- Rheumatology Research Unit Molecular João Lobo Antunes, University of Lisbon Medical Faculty, Lisboa, Portugal
- Rheumatology DepartmentSanta Maria Centro Hospital, Academic Medical Centre of Lisbon, Lisboa, Portugal
| | - Peter Böhm
- Patientpartner, German League against Rheumatism, Bonn, Germany
| | - Kees Bosman
- Patientpartner, Nationale Vereniging ReumaZorg, Nijmegen, The Netherlands
| | - Tony J Kenna
- Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Simon J Powis
- School of Medicine, University of St Andrews School of Medicine, St Andrews, UK
| | - Maxime Breban
- Service de Rheumatology, Hospital Ambroise-Pare, Boulogne-Billancourt, France
- Infection & Inflammation, UMR 1173, Inserm, UVSQ, University Paris-Saclay, Montigny-le-Bretonneux, France
| | - Ahmet Gul
- Division of Rheumatology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, The University of Manchester, Manchester, UK
- NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rik Ju Lories
- Department of Rheumatology, KU Leuven University Hospitals Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Johannes Nowatzky
- Department of Medicine, Division of Rheumatology, NYU Langone Behçet's Disease Program, NYU Langone Ocular Rheumatology Program, New York University Grossman School of Medicine, New York University, New York, New York, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - Gerrit Jan Wolbink
- Amsterdam Rheumatology and immunology Center (ARC)| Reade, Amsterdam, The Netherlands
- Department Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Dennis G McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Franktien Turkstra
- Amsterdam Rheumatology and immunology Center (ARC)| Reade, Amsterdam, The Netherlands
- Department of Rheumatology, Reade Hoofdlocatie Dr Jan van Breemenstraat, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Mousa M, Albarguthi S, Albreiki M, Farooq Z, Sajid S, El Hajj Chehadeh S, ElBait GD, Tay G, Deeb AA, Alsafar H. Whole-Exome Sequencing in Family Trios Reveals De Novo Mutations Associated with Type 1 Diabetes Mellitus. BIOLOGY 2023; 12:biology12030413. [PMID: 36979105 PMCID: PMC10044903 DOI: 10.3390/biology12030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease characterized by insulin deficiency and loss of pancreatic islet β-cells. The objective of this study is to identify de novo mutations in 13 trios from singleton families that contribute to the genetic basis of T1DM through the application of whole-exome sequencing (WES). Of the 13 families sampled for this project, 12 had de novo variants, with Family 7 having the highest number (nine) of variants linked to T1DM/autoimmune pathways, whilst Family 4 did not have any variants past the filtering steps. There were 10 variants of 7 genes reportedly associated with T1DM (MST1; TDG; TYRO3; IFIHI; GLIS3; VEGFA; TYK2). There were 20 variants of 13 genes that were linked to endocrine, metabolic, or autoimmune diseases. Our findings demonstrate that trio-based WES is a powerful approach for identifying new candidate genes for the pathogenesis of T1D. Genotyping and functional annotation of the discovered de novo variants in a large cohort is recommended to ascertain their association with disease pathogenesis.
Collapse
Affiliation(s)
- Mira Mousa
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Sara Albarguthi
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Mohammed Albreiki
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Zenab Farooq
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Sameeha Sajid
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Sarah El Hajj Chehadeh
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Gihan Daw ElBait
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Guan Tay
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Asma Al Deeb
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Department of Endocrinology, Mafraq Hospital, Abu Dhabi 127788, United Arab Emirates
| | - Habiba Alsafar
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Correspondence:
| |
Collapse
|
31
|
Stankey CT, Lee JC. Translating non-coding genetic associations into a better understanding of immune-mediated disease. Dis Model Mech 2023; 16:dmm049790. [PMID: 36897113 PMCID: PMC10040244 DOI: 10.1242/dmm.049790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Genome-wide association studies have identified hundreds of genetic loci that are associated with immune-mediated diseases. Most disease-associated variants are non-coding, and a large proportion of these variants lie within enhancers. As a result, there is a pressing need to understand how common genetic variation might affect enhancer function and thereby contribute to immune-mediated (and other) diseases. In this Review, we first describe statistical and experimental methods to identify causal genetic variants that modulate gene expression, including statistical fine-mapping and massively parallel reporter assays. We then discuss approaches to characterise the mechanisms by which these variants modulate immune function, such as clustered regularly interspaced short palindromic repeats (CRISPR)-based screens. We highlight examples of studies that, by elucidating the effects of disease variants within enhancers, have provided important insights into immune function and uncovered key pathways of disease.
Collapse
Affiliation(s)
- Christina T. Stankey
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - James C. Lee
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Institute of Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| |
Collapse
|
32
|
Sun Y, Li Y, Zhang J. The causal relationship between psoriasis, psoriatic arthritis, and inflammatory bowel diseases. Sci Rep 2022; 12:20526. [PMID: 36443384 PMCID: PMC9705442 DOI: 10.1038/s41598-022-24872-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Psoriasis is more common in patients with inflammatory bowel disease (IBD) than in the general population. Similarly, patients with psoriasis or psoriatic arthritis (PsA) have a higher incidence of IBD. However, whether this association is causal remains unknown. Therefore, we used a two-sample bidirectional Mendelian randomization (MR) analysis to identify this relationship. According to MR analysis, psoriasis and PsA causally increased the odds of developing Crohn's disease (OR = 1.350 (1.066-1.709) P = 0.013; OR = 1.319 (1.166-1.492) P < 0.001). In contrast, MR estimates gave little support to a possible causal effect of psoriasis, PsA, on ulcerative colitis (OR = 1.101 (0.905-1.340) P = 0.335; OR = 1.007 (0.941-1.078) P = 0.831). Similarly, the reverse analysis suggested the Crohn's disease causally increased the odds of psoriasis and PsA (OR = 1.425 (1.174-1.731) P < 0.001; OR = 1.448 (1.156-1.182) P = 0.001), whereas there are no causal association between ulcerative colitis and psoriasis, PsA (OR = 1.192 (0.921-1.542) P = 0.182; OR = 1.166 (0.818-1.664) P = 0.396). In summary, our MR analysis strengthens the evidence for the bidirectional dual causality between psoriasis (including PsA) and Crohn's disease.
Collapse
Affiliation(s)
- Yang Sun
- grid.430605.40000 0004 1758 4110Department of Orthopedics, The First Hospital of Jilin University, Changchun, Jilin China
| | - Yue Li
- grid.410737.60000 0000 8653 1072Department of Social Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| | - Jiting Zhang
- grid.430605.40000 0004 1758 4110Department of Orthopedics, The First Hospital of Jilin University, Changchun, Jilin China
| |
Collapse
|
33
|
Zhang L, Wang Y, Qiu L, Wu J. Psoriasis and cardiovascular disease risk in European and East Asian populations: evidence from meta-analysis and Mendelian randomization analysis. BMC Med 2022; 20:421. [PMID: 36320003 PMCID: PMC9628092 DOI: 10.1186/s12916-022-02617-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Psoriasis has been linked to cardiovascular disease (CVD), including coronary artery disease (CAD), myocardial infarction (MI), and heart failure (HF). However, available studies regarding this relationship have shown inconsistent results. Therefore, in this report, we performed a comprehensive review of the literature to assess the effects of psoriasis on risk of these CVDs. METHODS A search of literature until 24 December 2021 was done in PubMed, the Cochrane Library, Web of Science, Google Scholar, and Embase. Within European and East Asian populations, meta-analyses of observational studies assessing correlations between psoriasis and various CVD risk factors were conducted. Mendelian randomization (MR) was then employed to assess the causative impact of genetic pre-disposition for psoriasis on these CVD risk factors. RESULTS The results of the meta-analyses indicated that, in both the European and East Asian populations, psoriasis was significantly linked to an elevated risk in the incidence of CAD (RR = 1.51, 95% confidence interval (CI): 1.04-2.18, p = 0.028 and RR = 1.91, 95% CI: 1.62-2.25, p < 0.001) and MI (RR = 1.23, 95% CI: 1.04-1.46, p = 0.017 and RR = 2.17, 95% CI: 1.44-3.28, p < 0.001). A positive genetic relationship of psoriasis with CAD was found in European individuals (IVW OR:1.03; 95% CI: 1.01-1.06, p = 0.005) and in East Asian individuals (IVW OR:1.18; 95% CI: 1.03-1.32, p = 0.031). We also established that psoriasis was causally linked with an elevated risk of MI (IVW OR:1.05; 95% CI: 1.01-1.09, p = 0.026) in the European population as determined using an MR approach. Moreover, our MR results were congruent with the null findings from the meta-analysis assessing associations of psoriasis with HF risk. CONCLUSIONS This research work provides preliminary evidence that psoriasis and CVD have a common genetic origin and that targeted psoriasis treatment might improve cardiovascular outcomes. These results not only increase our knowledge of the genetic underpinnings linking a comorbidity of psoriasis with CVD but also suggests a novel approach for CVD prevention.
Collapse
Affiliation(s)
- Liming Zhang
- Department of Dermatology, The First Hospital of China Medical University, National Health Commission Key Laboratory of Immunodermatology, Key Laboratory of Immunodermatology of Ministry of Education, No. 155 Nanjing Bei Street, Shenyang, 110001, China.
| | - Yuxiang Wang
- China Mobile Communications Group Co, Ltd, Shenyang, China
| | - Li Qiu
- Department of Dermatology, The First Hospital of China Medical University, National Health Commission Key Laboratory of Immunodermatology, Key Laboratory of Immunodermatology of Ministry of Education, No. 155 Nanjing Bei Street, Shenyang, 110001, China
| | - Jian Wu
- Department of Dermatology, The First Hospital of China Medical University, National Health Commission Key Laboratory of Immunodermatology, Key Laboratory of Immunodermatology of Ministry of Education, No. 155 Nanjing Bei Street, Shenyang, 110001, China
| |
Collapse
|
34
|
Mauro T, Bikle D. Skin and bone crosstalk during aging. NATURE AGING 2022; 2:874-875. [PMID: 37118286 DOI: 10.1038/s43587-022-00295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Theodora Mauro
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA.
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.
| | - Daniel Bikle
- Departments of Medicine and Dermatology, Veterans Affairs Medical Center and University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
35
|
Duodu P, Sosa G, Canar J, Chhugani O, Gamero AM. Exposing the Two Contrasting Faces of STAT2 in Inflammation. J Interferon Cytokine Res 2022; 42:467-481. [PMID: 35877097 PMCID: PMC9527059 DOI: 10.1089/jir.2022.0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022] Open
Abstract
Inflammation is a natural immune defense mechanism of the body's response to injury, infection, and other damaging triggers. Uncontrolled inflammation may become chronic and contribute to a range of chronic inflammatory diseases. Signal transducer and activator of transcription 2 (STAT2) is an essential transcription factor exclusive to type I and type III interferon (IFN) signaling pathways. Both pathways are involved in multiple biological processes, including powering the immune system as a means of controlling infection that must be tightly regulated to offset the development of persistent inflammation. While studies depict STAT2 as protective in promoting host defense, new evidence is accumulating that exposes the deleterious side of STAT2 when inappropriately regulated, thus prompting its reevaluation as a signaling molecule with detrimental effects in human disease. This review aims to provide a comprehensive summary of the findings based on literature regarding the inflammatory behavior of STAT2 in microbial infections, cancer, autoimmune, and inflammatory diseases. In conveying the extent of our knowledge of STAT2 as a proinflammatory mediator, the aim of this review is to stimulate further investigations into the role of STAT2 in diseases characterized by deregulated inflammation and the mechanisms responsible for triggering severe responses.
Collapse
Affiliation(s)
- Philip Duodu
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Geohaira Sosa
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Jorge Canar
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Olivia Chhugani
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Ana M. Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Jiménez-Andrade Y, Hillette KR, Yoshida T, Kashiwagi M, Choo MK, Liang Y, Georgopoulos K, Park JM. The Developmental Transcription Factor p63 Is Redeployed to Drive Allergic Skin Inflammation through Phosphorylation by p38α. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2613-2621. [PMID: 35623662 PMCID: PMC9308733 DOI: 10.4049/jimmunol.2101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
Keratinocytes, the epithelial cells of the skin, reprogram their gene expression and produce immune effector molecules when exposed to environmental and endogenous triggers of inflammation. It remains unclear how keratinocytes process physiological signals generated during skin irritation and switch from a homeostatic to an inflammatory state. In this article, we show that the stress-activated protein kinase p38α is crucial for keratinocytes to prompt changes in their transcriptome upon cytokine stimulation and drive inflammation in allergen-exposed skin. p38α serves this function by phosphorylating p63, a transcription factor essential for the lineage identity and stemness of the skin epithelium. Phosphorylation by p38α alters the activity of p63 and redeploys this developmental transcription factor to a gene expression program linked to inflammation. Genetic ablation and pharmacological inhibition of p38α or the p38α-p63 target gene product MMP13 attenuate atopic dermatitis-like disease in mice. Our study reveals an epithelial molecular pathway promoting skin inflammation and actionable through treatment with topical small-molecule therapeutics.
Collapse
Affiliation(s)
- Yanek Jiménez-Andrade
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Kathryn R Hillette
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Toshimi Yoshida
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan; and
| | - Mariko Kashiwagi
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Min-Kyung Choo
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Yinming Liang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Jin Mo Park
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA;
| |
Collapse
|
37
|
Hawerkamp HC, Fahy CMR, Fallon PG, Schwartz C. Break on through: The role of innate immunity and barrier defence in atopic dermatitis and psoriasis. SKIN HEALTH AND DISEASE 2022; 2:e99. [PMID: 35677926 PMCID: PMC9168024 DOI: 10.1002/ski2.99] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/07/2022] [Accepted: 01/23/2022] [Indexed: 12/20/2022]
Abstract
The human skin can be affected by a multitude of diseases including inflammatory conditions such as atopic dermatitis and psoriasis. Here, we describe how skin barrier integrity and immunity become dysregulated during these two most common inflammatory skin conditions. We summarise recent advances made in the field of the skin innate immune system and its interaction with adaptive immunity. We review gene variants associated with atopic dermatitis and psoriasis that affect innate immune mechanisms and skin barrier integrity. Finally, we discuss how current and future therapies may affect innate immune responses and skin barrier integrity in a generalized or more targeted approach in order to ameliorate disease in patients.
Collapse
Affiliation(s)
- H C Hawerkamp
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin Dublin Ireland
| | - C M R Fahy
- Paediatric Dermatology Children's Health Ireland at Crumlin Dublin Ireland.,Royal United Hospitals NHS Foundation Trust Bath UK
| | - P G Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin Dublin Ireland.,National Children's Research Centre Our Lady's Children's Hospital Dublin Ireland.,Clinical Medicine Trinity College Dublin Dublin Ireland
| | - C Schwartz
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin Dublin Ireland.,Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg Erlangen Germany.,Medical Immunology Campus Erlangen FAU Erlangen-Nürnberg Erlangen Germany
| |
Collapse
|
38
|
Jamerson TA, Li Q, Sreeskandarajan S, Budunova IV, He Z, Kang J, Gudjonsson JE, Patrick MT, Tsoi LC. Roles Played by Stress-Induced Pathways in Driving Ethnic Heterogeneity for Inflammatory Skin Diseases. Front Immunol 2022; 13:845655. [PMID: 35572606 PMCID: PMC9095822 DOI: 10.3389/fimmu.2022.845655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/23/2022] [Indexed: 12/25/2022] Open
Abstract
Immune-mediated skin conditions (IMSCs) are a diverse group of autoimmune diseases associated with significant disease burden. Atopic dermatitis and psoriasis are among the most common IMSCs in the United States and have disproportionate impact on racial and ethnic minorities. African American patients are more likely to develop atopic dermatitis compared to their European American counterparts; and despite lower prevalence of psoriasis among this group, African American patients can suffer from more extensive disease involvement, significant post-inflammatory changes, and a decreased quality of life. While recent studies have been focused on understanding the heterogeneity underlying disease mechanisms and genetic factors at play, little emphasis has been put on the effect of psychosocial or psychological stress on immune pathways, and how these factors contribute to differences in clinical severity, prevalence, and treatment response across ethnic groups. In this review, we explore the heterogeneity of atopic dermatitis and psoriasis between African American and European American patients by summarizing epidemiological studies, addressing potential molecular and environmental factors, with a focus on the intersection between stress and inflammatory pathways.
Collapse
Affiliation(s)
- Taylor A. Jamerson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Qinmengge Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | | | - Irina V. Budunova
- Department of Dermatology, Northwestern Medicine, Northwestern University, Chicago, IL, United States,Department of Urology, Northwestern Medicine, Northwestern University, Chicago, IL, United States
| | - Zhi He
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Jian Kang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Johann E. Gudjonsson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Matthew T. Patrick
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Lam C. Tsoi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States,Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States,Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States,*Correspondence: Lam C. Tsoi,
| |
Collapse
|
39
|
Chen W, Yong L, Ge H, Xu Q, Zhen Q, Li B, Yu Y, Wu J, Zheng X, Gao J, Liang B, Cheng H, Sun L, Wang W. Polymorphisms in ERAP1 gene are associated with psoriasis. Meta Gene 2022. [DOI: 10.1016/j.mgene.2021.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
40
|
Mathieson I, Terhorst J. Direct detection of natural selection in Bronze Age Britain. Genome Res 2022; 32:2057-2067. [PMID: 36316157 PMCID: PMC9808619 DOI: 10.1101/gr.276862.122] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/29/2022] [Indexed: 11/04/2022]
Abstract
We developed a novel method for efficiently estimating time-varying selection coefficients from genome-wide ancient DNA data. In simulations, our method accurately recovers selective trajectories and is robust to misspecification of population size. We applied it to a large data set of ancient and present-day human genomes from Britain and identified seven loci with genome-wide significant evidence of selection in the past 4500 yr. Almost all of them can be related to increased vitamin D or calcium levels, suggesting strong selective pressure on these or related phenotypes. However, the strength of selection on individual loci varied substantially over time, suggesting that cultural or environmental factors moderated the genetic response. Of 28 complex anthropometric and metabolic traits, skin pigmentation was the only one with significant evidence of polygenic selection, further underscoring the importance of phenotypes related to vitamin D. Our approach illustrates the power of ancient DNA to characterize selection in human populations and illuminates the recent evolutionary history of Britain.
Collapse
Affiliation(s)
- Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jonathan Terhorst
- Department of Statistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
41
|
Tu HP, Lan CC, Yu S, Tsao YH. Drug survival of biologic agents in patients with psoriatic arthritis from a medical center in southern Taiwan. DERMATOL SIN 2022. [DOI: 10.4103/ds.ds_8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
42
|
Trovato E, Rubegni P, Cinotti E. The Immunogenetics of Psoriasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:105-117. [DOI: 10.1007/978-3-030-92616-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Erazo Luna EV, Echavarría Sierra CJ, Cornejo-Sánchez DM, Sanclemente G, Pineda Trujillo NG. Protective association exhibited by a single nucleotide polymorphism of the IFIH1 gene in patients with psoriasis: A case-control study. Medwave 2021; 21:e8492. [PMID: 34882124 DOI: 10.5867/medwave.2021.11.002099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/31/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction Psoriasis is a chronic inflammatory dermatosis, a with variable clinical presentation and whose multifactorial etiology carries an essential genetic component. Multiple genetic variations associated with psoriasis have been described around the world. However, these variants are unknown among the Colombian population. This study aimed to evaluate the single nucleotide polymorphism rs10930046 (His460Arg) in the IFIH1 gene and its ssociation with the development of psoriasis in a Colombian population. Methods An observational, unmatched, case-control study was performed, including 51 patients with psoriasis and 151 population controls, all with self-reported Paisa ancestry (from the Antioquia region). All individuals were genotyped for the single nucleotide polymorphism rs10930046 (His460Arg) in the IFIH1 gene, and its association with psoriasis was pursued. Both groups were demographically characterized, and cases were also assessed for clinical variables. Results Through the allelic association analysis, cases were found to have a lower frequency of the single nucleotide polymorphism rs10930046 (His460Arg) in the IFIH1 gene than controls; 5% versus 22.67%, respectively. There were no significant differences in age or sex. We also found that psoriasis vulgaris was the most common variant (78%), that about half of the cases had nail psoriasis (56%), 19.6% had psoriatic arthritis, and that 45% had some comorbidity. Conclusions The results obtained from this study confirm that carriers of the single nucleotide polymorphism rs10930046 (His460Arg) in the IFIH1 gene have a decreased risk of developing psoriasis.
Collapse
Affiliation(s)
- Evelyn Vanesa Erazo Luna
- Grupo de Investigación Dermatológica (GRID), Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia; Grupo de Mapeo Genético, Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia. ORCID: 0000-0002-6116-3191
| | - Claudia Janeth Echavarría Sierra
- Grupo de Investigación Dermatológica (GRID), Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia; Grupo de Mapeo Genético, Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia. ORCID: 0000-0003-0373-2031
| | - Diana M Cornejo-Sánchez
- Grupo de Mapeo Genético, Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia. ORCID: 0000-0002-2667-7592
| | - Gloria Sanclemente
- Grupo de Investigación Dermatológica (GRID), Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia. Address: Carrera 25 A # 1 A Sur 45, Of 2026, Torre Médica El Tesoro, Medellín, Colombia. EMail: ; . ORCID: 0000-0002-1555-2751
| | - Nicolás Guillermo Pineda Trujillo
- Grupo de Mapeo Genético, Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia: ORCID: 0000-0002-8342-2510
| |
Collapse
|
44
|
Li YK, Zhang XX, Yang Y, Gao J, Shi Q, Liu SD, Fu WP, Sun C. Convergent Evidence Supports TH2LCRR as a Novel Asthma Susceptibility Gene. Am J Respir Cell Mol Biol 2021; 66:283-292. [PMID: 34851809 DOI: 10.1165/rcmb.2020-0481oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Asthma is a common complex disease with apparent genetic predispositions, and previous genome-wide association studies suggest that rs1295686 within the IL13 (interleukin 13) gene is significantly associated with asthma. Analysis of the data provided by the 1000 Genomes Project indicated that there are additional four SNPs in nearly complete linkage disequilibrium with rs1295686 in Caucasians. However, the causal SNPs and the associated mechanism remain unclear. To investigate this issue, functional genomics approaches were utilized to analyze the functions of these SNPs. Dual-luciferase assays indicated that the functional SNP is not rs1295686 but a haplotype consisting of other three SNPs, rs1295685, rs848 and rs847. Through chromosome conformation capture, it was found that the enhancer containing the three functional SNPs interacts with the promoter of TH2LCRR (T helper type 2 locus control region associated RNA), a recently identified long non-coding RNA. RNA-seq data analysis indicated that TH2LCRR expression is significantly increased in asthma patients and is dependent on the genotype at this locus, indicating that TH2LCRR is a novel susceptibility gene for asthma and that these SNPs confer asthma risk by regulating TH2LCRR expression. By chromatin immunoprecipitation, the related transcription factors that bind in the region surrounding these three SNPs were identified, and their interactions were investigated by functional genomics approaches. Our effort identified a novel mechanism through which genetic variations at this locus could influence asthma susceptibility.
Collapse
Affiliation(s)
- Yi-Kun Li
- Shaanxi Normal University, 12401, College of Life Sciences, Xi'an, China
| | - Xin-Xin Zhang
- Shaanxi Normal University, 12401, College of Life Sciences, Xi'an, China
| | - Yuan Yang
- Shaanxi Normal University, 12401, College of Life Sciences, Xi'an, China
| | - Jing Gao
- Shaanxi Normal University, 12401, College of Life Sciences, Xi'an, China
| | - Qiang Shi
- Shaanxi Normal University, 12401, College of Life Sciences, Xi'an, China
| | - Shao-Dong Liu
- Shaanxi Normal University, 12401, College of Life Sciences, Xi'an, China
| | - Wei-Ping Fu
- Kunming Medical University First Affilliated Hospital, 36657, Kunming, China
| | - Chang Sun
- Shaanxi Normal University, 12401, College of Life Sciences, Xi'an, China;
| |
Collapse
|
45
|
Jang H, Kim EG, Kim M, Kim SY, Kim YH, Sohn MH, Kim KW. Metabolomic profiling revealed altered lipid metabolite levels in childhood food allergy. J Allergy Clin Immunol 2021; 149:1722-1731.e9. [PMID: 34843802 DOI: 10.1016/j.jaci.2021.10.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/26/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND The pathophysiology of childhood food allergy (FA) and its natural history are poorly understood. Clarification of the underlying mechanism may help identify novel biomarkers and strategies for clinical intervention in children with FA. OBJECTIVE This study aimed to identify metabolites associated with the development and resolution of FA. METHODS The metabolomic profiles of 20 children with FA and 20 healthy controls were assessed by liquid chromatography-tandem mass spectrometry. Comparative analysis was performed to identify metabolites associated with FA and FA resolution. For subjects with FA, serum samples were collected at the time of diagnosis and after resolution to identify the changes in metabolite levels. The selected metabolites were then quantified in a quantification cohort to validate the results. Finally, genome-wide association analysis of the metabolite levels was performed. RESULTS The study demonstrated a significantly higher level of sphingolipid metabolites and a lower level of acylcarnitine metabolites in children with FA than those in healthy controls. At diagnosis, subjects with resolving FA had a significantly high level of omega-3 metabolites and a low level of platelet-activating factors compared to persistent FA. However, the level of omega-3 metabolites decreased in children with resolving FA but increased in children with persistent FA during the same time. The quantification data of omega-3-derived resolvins, platelet-activating factor, and platelet-activating factor acetylhydrolase activity further supported these results. CONCLUSION The lipid metabolite profile is closely related to childhood FA and FA resolution. This study suggests potential predictive biomarkers and provides insight into the mechanisms underlying childhood FA.
Collapse
Affiliation(s)
- Haerin Jang
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea
| | - Eun Gyul Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea
| | - Mina Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea
| | - Soo Yeon Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea
| | - Yoon Hee Kim
- Department of Pediatrics, Gangnam Severance Hospital, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea.
| |
Collapse
|
46
|
Dand N. Genome-wide scan for structural variation underlying psoriasis. Br J Dermatol 2021; 186:210-211. [PMID: 34806175 DOI: 10.1111/bjd.20836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/26/2022]
Affiliation(s)
- N Dand
- Department of Medical and Molecular Genetics, King's College London, London, UK
| |
Collapse
|
47
|
Chen W, Wang W, Yong L, Zhen Q, Yu Y, Ge H, Mao Y, Cao L, Zhang R, Hu X, Li Z, Wang Y, Fan W, Xu Q, Zhang H, Chen S, Wu J, Sun L. Genome-wide meta-analysis identifies ten new psoriasis susceptibility loci in the Chinese population. J Genet Genomics 2021; 49:177-180. [PMID: 34695602 DOI: 10.1016/j.jgg.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Weiwei Chen
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230031, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases 230031, China; Anhui Provincial Institute of Translational Medicine 230031, China
| | - Wenjun Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230031, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases 230031, China; Anhui Provincial Institute of Translational Medicine 230031, China
| | - Liang Yong
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230031, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases 230031, China; Anhui Provincial Institute of Translational Medicine 230031, China
| | - Qi Zhen
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230031, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases 230031, China; Anhui Provincial Institute of Translational Medicine 230031, China
| | - Yafen Yu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230031, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases 230031, China; Anhui Provincial Institute of Translational Medicine 230031, China
| | - Huiyao Ge
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230031, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases 230031, China; Anhui Provincial Institute of Translational Medicine 230031, China
| | - Yiwen Mao
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230031, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases 230031, China; Anhui Provincial Institute of Translational Medicine 230031, China
| | - Lu Cao
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230031, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases 230031, China; Anhui Provincial Institute of Translational Medicine 230031, China
| | - Ruixue Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230031, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases 230031, China; Anhui Provincial Institute of Translational Medicine 230031, China
| | - Xia Hu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230031, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases 230031, China; Anhui Provincial Institute of Translational Medicine 230031, China
| | - Zhuo Li
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230031, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases 230031, China; Anhui Provincial Institute of Translational Medicine 230031, China
| | - Yirui Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230031, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases 230031, China; Anhui Provincial Institute of Translational Medicine 230031, China
| | - Wencheng Fan
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230031, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases 230031, China; Anhui Provincial Institute of Translational Medicine 230031, China
| | - Qiongqiong Xu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230031, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases 230031, China; Anhui Provincial Institute of Translational Medicine 230031, China
| | - Hui Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230031, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases 230031, China; Anhui Provincial Institute of Translational Medicine 230031, China
| | - Shirui Chen
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230031, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases 230031, China; Anhui Provincial Institute of Translational Medicine 230031, China
| | - Jing Wu
- Department of Dermatology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, HuangGang 438000, China
| | - Liangdan Sun
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230031, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases 230031, China; Anhui Provincial Institute of Translational Medicine 230031, China.
| |
Collapse
|
48
|
Zhang Z, Liu L, Shen Y, Meng Z, Chen M, Lu Z, Zhang X. Characterization of chromatin accessibility in psoriasis. Front Med 2021; 16:483-495. [PMID: 34669155 DOI: 10.1007/s11684-021-0872-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/29/2021] [Indexed: 12/13/2022]
Abstract
The pathological hallmarks of psoriasis involve alterations in T cell genes associated with transcriptional levels, which are determined by chromatin accessibility. However, to what extent these alterations in T cell transcriptional levels recapitulate the epigenetic features of psoriasis remains unknown. Here, we systematically profiled chromatin accessibility on Th1, Th2, Th1-17, Th17, and Treg cells and found that chromatin remodeling contributes significantly to the pathogenesis of the disease. The chromatin remodeling tendency of different subtypes of Th cells were relatively consistent. Next, we profiled chromatin accessibility and transcriptional dynamics on memory Th/Treg cells. In the memory Th cells, 803 increased and 545 decreased chromatin-accessible regions were identified. In the memory Treg cells, 713 increased and 1206 decreased chromatin-accessible regions were identified. A total of 54 and 53 genes were differentially expressed in the peaks associated with the memory Th and Treg cells. FOSL1, SPI1, ATF3, NFKB1, RUNX, ETV4, ERG, FLI1, and ETC1 were identified as regulators in the development of psoriasis. The transcriptional regulatory network showed that NFKB1 and RELA were highly connected and central to the network. NFKB1 regulated the genes of CCL3, CXCL2, and IL1RN. Our results provided candidate transcription factors and a foundational framework of the regulomes of the disease.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lu Liu
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yanyun Shen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ziyuan Meng
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Min Chen
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.,Department of Dermatology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215123, China
| | - Zhong Lu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Xuejun Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China. .,Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, 230032, China. .,Department of Dermatology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215123, China.
| |
Collapse
|
49
|
Orsmond A, Bereza-Malcolm L, Lynch T, March L, Xue M. Skin Barrier Dysregulation in Psoriasis. Int J Mol Sci 2021; 22:10841. [PMID: 34639182 PMCID: PMC8509518 DOI: 10.3390/ijms221910841] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
The skin barrier is broadly composed of two elements-a physical barrier mostly localised in the epidermis, and an immune barrier localised in both the dermis and epidermis. These two systems interact cooperatively to maintain skin homeostasis and overall human health. However, if dysregulated, several skin diseases may arise. Psoriasis is one of the most prevalent skin diseases associated with disrupted barrier function. It is characterised by the formation of psoriatic lesions, the aberrant differentiation and proliferation of keratinocytes, and excessive inflammation. In this review, we summarize recent discoveries in disease pathogenesis, including the contribution of keratinocytes, immune cells, genetic and environmental factors, and how they advance current and future treatments.
Collapse
Affiliation(s)
- Andreas Orsmond
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lara Bereza-Malcolm
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Tom Lynch
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Meilang Xue
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| |
Collapse
|
50
|
Shao S, Tsoi LC, Swindell WR, Chen J, Uppala R, Billi AC, Xing X, Zeng C, Sarkar MK, Wasikowski R, Jiang Y, Kirma J, Sun J, Plazyo O, Wang G, Harms PW, Voorhees JJ, Ward NL, Ma F, Pellegrini M, Merleev A, Perez White BE, Modlin RL, Andersen B, Maverakis E, Weidinger S, Kahlenberg JM, Gudjonsson JE. IRAK2 Has a Critical Role in Promoting Feed-Forward Amplification of Epidermal Inflammatory Responses. J Invest Dermatol 2021; 141:2436-2448. [PMID: 33864770 PMCID: PMC9423738 DOI: 10.1016/j.jid.2021.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Many inflammatory skin diseases are characterized by altered epidermal differentiation. Whether this altered differentiation promotes inflammatory responses has been unknown. Here, we show that IRAK2, a member of the signaling complex downstream of IL-1 and IL-36, correlates positively with disease severity in both atopic dermatitis and psoriasis. Inhibition of epidermal IRAK2 normalizes differentiation and inflammation in two mouse models of psoriasis- and atopic dermatitis-like inflammation. Specifically, we demonstrate that IRAK2 ties together proinflammatory and differentiation-dependent responses and show that this function of IRAK2 is specific to keratinocytes and acts through the differentiation-associated transcription factor ZNF750. Taken together, our findings suggest that IRAK2 has a critical role in promoting feed-forward amplification of inflammatory responses in skin through modulation of differentiation pathways and inflammatory responses.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - William R Swindell
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ranjitha Uppala
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chang Zeng
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yanyun Jiang
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph Kirma
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jingru Sun
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Olesya Plazyo
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - John J Voorhees
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole L Ward
- Departments of Nutrition and Dermatology, School of Medicine, Case Western University, Cleveland, Ohio, USA
| | - Feiyang Ma
- Department of UCLA Dermatology, UCLA Medical School, Los Angeles, California, USA
| | - Matteo Pellegrini
- Department of UCLA Dermatology, UCLA Medical School, Los Angeles, California, USA
| | - Alexander Merleev
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
| | - Bethany E Perez White
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Bogi Andersen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
| | - Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|