1
|
Huercano C, Moya-Barrientos M, Cuevas O, Sanchez-Vera V, Ruiz-Lopez N. ER-plastid contact sites as molecular crossroads for plastid lipid biosynthesis. BMC Biol 2025; 23:139. [PMID: 40405194 PMCID: PMC12096540 DOI: 10.1186/s12915-025-02239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 05/09/2025] [Indexed: 05/24/2025] Open
Abstract
Membrane contact sites are specialized regions where organelle membranes are in close proximity, enabling lipid transfer while preserving membrane identity. In plants, ER‒chloroplast contact sites are critical for maintaining glycerolipid homeostasis. This review examines the lipid-modifying and lipid-transfer proteins/complexes involved in these processes. Key proteins at these sites, including components of the TGD and VAP27‒ORP2A complexes, as well as Sec14 proteins, facilitate lipid exchange. Additionally, the roles of lipid-modifying proteins at these contact sites are discussed. Despite significant progress, further research is needed to identify additional proteins, investigate ER‒chloroplast dynamics under stress and explore ER contact sites in non-chloroplast plastids.
Collapse
Affiliation(s)
- Carolina Huercano
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus de Teatinos, Málaga, 29071, Spain
| | - Miriam Moya-Barrientos
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus de Teatinos, Málaga, 29071, Spain
| | - Oliver Cuevas
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus de Teatinos, Málaga, 29071, Spain
| | - Victoria Sanchez-Vera
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus de Teatinos, Málaga, 29071, Spain
| | - Noemi Ruiz-Lopez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus de Teatinos, Málaga, 29071, Spain.
| |
Collapse
|
2
|
Strauch CJ, Sprotte N, Peña Lozano E, Boutant E, Amari K, Ostendorp S, Ostendorp A, Kehr J, Niehl A. Studies on the Japanese soil-borne wheat mosaic virus movement protein highlight its ability to bind plant RNA. Virol J 2025; 22:134. [PMID: 40336096 PMCID: PMC12060307 DOI: 10.1186/s12985-025-02757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/22/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Plant viral movement protein (MP) function is decisive for virus cell-to-cell movement. Often, MPs also induce membrane alterations, which are believed to play a role for the establishment of viral replication compartments. Despite these central roles in virus infection, knowledge of the underlying molecular mechanisms by which MPs cause changes in plasmodesmata (PD) size exclusion limit and contribute to the formation of viral replication compartments remain far from being complete. METHODS To further identify host processes subverted by viral MPs, we here characterized the MP of Japanese soil-borne wheat mosaic virus (JSBWMV). We used confocal fluorescence microscopy to study the subcellular localization of MPJSBWMV and to address its functionality in promoting virus cell-to-cell movement. Using the biochemical and biophysical methods co-immunoprecipitation, fluorescence lifetime imaging, microscale thermophoresis and RNA immunoprecipitation we investigate the capacity of MPJSBWMV to multimerize and to bind viral and cellular RNAs. RESULTS MPJSBWMV localized to PD, promoted cell-to-cell movement by complementing a movement-deficient unrelated virus, formed multimers in-vivo and bound to viral RNA with high affinity. Using RNA immunoprecipitation, we identified host RNAs associated with the viral MP. Within the MP-RNA complexes we found RNAs encoding proteins with key functions in membrane modification, signaling, protein folding, and degradation. We propose that binding of MP to these RNAs during infection and regulation of their spatio-temporal translation may represent a mechanism for MPs to achieve PD and host control during replication and movement. CONCLUSION This study provides new insight into the complex interactions between viral MPs and host cellular processes.
Collapse
Affiliation(s)
- Claudia Janina Strauch
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Brunswick, Germany
| | - Nico Sprotte
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Brunswick, Germany
| | - Estefania Peña Lozano
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
| | - Emmanuel Boutant
- Laboratory of Bioimaging and Pathologies, CNRS UMR 7021, Faculty of Pharmacy, University of Strasbourg, 74 Route du Rhin - CS 60024, F-67400, Illkirch, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, F-67412, Illkirch, Strasbourg, France
| | - Khalid Amari
- Institute for Biosafety in Plant Biotechnology, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Steffen Ostendorp
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
| | - Anna Ostendorp
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
| | - Julia Kehr
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
| | - Annette Niehl
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Brunswick, Germany.
| |
Collapse
|
3
|
Wang F, Qiu M, Hou L, Li X, Ren H, Zhuo J, Liu H, Li Y, Yang Y, Yan X, Zhang M, Jin D, Lan T, Zeng J, Fan Y, Yuan Y, Ma Z, Pei Y. N terminus and C terminus of Arabidopsis P4-ATPase AtALA1 facilitate the detoxification of the mycotoxin deoxynivalenol in wheat. Cell Rep 2025; 44:115641. [PMID: 40327508 DOI: 10.1016/j.celrep.2025.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/18/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Fusarium head blight (FHB) is a devastating disease affecting many important cereal crops. The disease is mainly caused by Fusarium graminearum, which produces mycotoxins, e.g., deoxynivalenol (DON), that contaminate grains, leading to serious issues in food safety worldwide. Here, we demonstrate that expressing the Arabidopsis P4-ATPase flippase gene, AtALA1, significantly increases wheat resistance to FHB, while substantially reducing DON content in grains. However, expressing TaALA1s, the wheat homologs of AtALA1, does not enhance the resistance. We discovered that the N terminus and C terminus of AtALA1 are crucial for its role in DON detoxification. The motif [DE]nX1-2FXX[FL]XXXR, found exclusively in the N terminus of ALA1s in Brassicaceae species, facilitates AtALA1-associated vesicle transport by binding with AP-2. Meanwhile the DON-stimulated phosphorylation at three key sites in the C terminus is responsible for promoting DON trafficking into vacuoles. Our findings suggest a great potential for vesicle-associated detoxification in FHB resistance and food safety.
Collapse
Affiliation(s)
- Fanlong Wang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Beibei, Chongqing 400715, China
| | - Mingliang Qiu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Lei Hou
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Beibei, Chongqing 400715, China
| | - Xianbi Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Beibei, Chongqing 400715, China
| | - Hui Ren
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Jingxin Zhuo
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Haoru Liu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Yujie Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Yang Yang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Xingying Yan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Beibei, Chongqing 400715, China
| | - Mi Zhang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Dan Jin
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Ting Lan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jianyan Zeng
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Beibei, Chongqing 400715, China
| | - Yanhua Fan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Yang Yuan
- Applied Plant Genomics Laboratory, Crop Genomics and Bioinformatics Centre, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengqiang Ma
- Applied Plant Genomics Laboratory, Crop Genomics and Bioinformatics Centre, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Pei
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
4
|
Li Y, Yang J, Zhang Q, Zhang K, Xue Q, Liu W, Ding X, Niu Z. CRISPR-Cas9 Mediated Gene Editing Platform Through Callus-to-Plant Regeneration and Functional Analysis of DoALA4─DoALA6 in Dendrobium officinale. PLANT, CELL & ENVIRONMENT 2025; 48:2923-2936. [PMID: 39641183 DOI: 10.1111/pce.15312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Dendrobium orchids are well known for their great horticultural and medicinal values; however, the CRISPR/Cas9 gene editing system for Dendrobium species still needs to be improved. Therefore, this study aims to establish a CRISPR/Cas9-based functional validation system using Dendrobium officinale as a model species for the Dendrobium genus and to validate the DoALA4─DoALA6 genes, which may relate to growth and disease resistance. We first conducted a bioinformatics analysis of the P-type ATPase gene family in D. officinale, revealing the evolutionary diversity of P-type ATPase genes in orchids. Second, we inserted the GFP gene into the vector of CRISPR/Cas9 gene editing system to enhance the selection efficiency of genome-edited plants. Comparative analysis showed that different explants exhibited varying transformation efficiencies, ranging from 5% to 46.2%. Considering the regeneration capability, survival rate and gene editing efficiency, we selected callus as the transformation explant. Third, we used this editing system to generate DoALA4─DoALA6 mutants. Phenotypic observations of the mutants and inoculation of D. officinale with Sclerotium rolfsii indicated that DoALA4─DoALA6 are crucial for the growth of D. officinale and its resistance to southern blight disease. This efficient and stable CRISPR/Cas9 platform offers a foundation for further gene studies and Dendrobium breeding.
Collapse
Affiliation(s)
- Ying Li
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Jiapeng Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Qian Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Ke Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| |
Collapse
|
5
|
Wei J, Zhang G, Lv H, Wang S, Liu X, Qi Y, Sun Z, Li C. Genome-wide identification of the P4ATPase gene family and its response to biotic and abiotic stress in soybean (Glycine max L.). BMC Genomics 2025; 26:277. [PMID: 40114086 PMCID: PMC11927284 DOI: 10.1186/s12864-025-11468-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Soybean is an important legume crop and has significant agricultural and economic value. P4-ATPases (aminophospholipid ATPases, ALAs), one of the classes of P-type ATPases, can transport or flip phospholipids across membranes, creating and maintaining lipid asymmetry and playing crucial roles in plant growth and development. To date, however, the ALA gene family and its expression patterns under abiotic and biotic stresses have not been studied in the soybean genome. RESULTS A total of 27 GmALA genes were identified in the soybean genome and these genes were unevenly distributed on 15 chromosomes and classified into five groups based on phylogenetic analysis. The GmALAs family had diverse intron-exon patterns and a highly conserved motif distribution. A total of eight domains were found in GmALAs, and all GmALAs had conserved PhoLip_ATPase_C, phosphorylation and transmembrane domains. Cis-acting elements in the promoter demonstrated that GmALAs are associated with cellular development, phytohormones, environmental stress and photoresponsiveness. Analysis of gene duplication events revealed 24 orthologous gene pairs in soybean and synteny analysis revealed that GmALAs had greater collinearity with AtALAs than with OsALAs. Evolutionary constraint analyses suggested that GmALAs have undergone strong selective pressure for purification during the evolution of soybeans. Tissue-specific expression profiles revealed that GmALAs were differentially expressed in roots, stems, seeds, flowers, nodules and leaves. The expression pattern of these genes appeared to be diverse in the different developmental tissues. Combined transcriptome and qRT-PCR data confirmed the differential expression of GmALAs under abiotic (dehydration, saline, low temperature, ozone, light, wounding and phytohormones) and biotic stresses (aphid, fungi, rhizobia and rust pathogen). CONCLUSION In summary, genome-wide identification and evolutionary and expression analyses of the GmALAs gene family in soybean were conducted. Our work provides an important theoretical basis for further understanding GmALAs in biological functional studies.
Collapse
Affiliation(s)
- Jingjing Wei
- School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, P. R. China
| | - Gaoyang Zhang
- School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, P. R. China.
| | - Huanhuan Lv
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
| | - Saidi Wang
- School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, P. R. China
| | - Xingyu Liu
- School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, P. R. China
| | - Yanli Qi
- School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, P. R. China
| | - Zhongke Sun
- School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, P. R. China
| | - Chengwei Li
- School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, P. R. China.
| |
Collapse
|
6
|
Cordovado A, Hérenger Y, Cormier C, López-Martín E, Stamberger H, Faivre L, Denommé-Pichon AS, Vitobello A, Abdallah HH, Barcia G, Courtin T, Martínez-Delgado B, Bermejo-Sánchez E, Barrero MJ, Gasser B, Bezieau S, Küry S, Weckhuysen S, Laumonnier F, Toutain A, Vuillaume ML. Heterozygous Missense Variants in the ATPase Phospholipid Transporting 9A Gene, ATP9A, Alter Dendritic Spine Maturation and Cause Dominantly Inherited Nonsyndromic Intellectual Disability. Hum Mutat 2025; 2025:7085599. [PMID: 40226306 PMCID: PMC11987072 DOI: 10.1155/humu/7085599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 01/27/2025] [Indexed: 04/15/2025]
Abstract
Intellectual disability is a neurodevelopmental disorder, affecting 2%-3% of the population, with a genetic cause in the majority of cases. ATP9A (Online Mendelian Inheritance in Man (OMIM)∗609126, NM_006045.3) has recently been added to the list of candidate genes involved in this disorder with the identification of biallelic truncating variants in patients with a neurodevelopmental disorder. In this study, we propose a novel mode of inheritance for ATP9A-related disorders with the identification of five de novo heterozygous missense variants (p.(Thr393Arg), p.(Glu400Gln), p.(Lys461Glu), p.(Gly552Ala), and p.(His713Asp)), in patients with intellectual disability. In a patient with a similar phenotype, we also identified two truncating variants in ATP9A (p.(Arg145∗), p.(Glu901∗)), adding a novel family to the six already described in the literature with the recessive mode of inheritance. Functional studies were performed to assess the pathogenicity of these variants. Overexpression of four selected missense mutant forms of Atp9a in HeLa cells and in primary neuronal cultures led to a loss of mature dendritic spines. In HeLa cells, the endosomal localization of the protein encoded by three of these missense variants was preserved whereas the fourth remained blocked in the endoplasmic reticulum. To mimic the effect on neuronal morphology and spine density of nonsense variants, small hairpin RNAs (shRNAs) were used. They induced a decreased expression of ATP9A, affecting the neuronal arborization by decreasing the number of dendrites per neuron. Our results therefore demonstrate the pathogenicity of ATP9A heterozygous missense variants and confirm the role of ATP9A in neuronal maturation and in brain wiring during development. They strengthen the association of ATP9A with neurodevelopmental disorders and demonstrate that a double mode of inheritance should be considered for ATP9A-related disorders.
Collapse
Affiliation(s)
- Amélie Cordovado
- Imaging Brain and Neuropsychiatry, iBraiN U1253, INSERM, University of Tours, Tours, France
| | - Yvan Hérenger
- Genetica AG, Human Genetics and Genetic Counselling Unit, Zurich, Switzerland
| | - Coline Cormier
- Genetic Center, Rare Diseases Reference Center On Developmental Anomalies and Malformative Syndromes, FHU TRANSLAD, University Hospital, Dijon, France
| | - Estrella López-Martín
- Institute of Rare Disease Research, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Hannah Stamberger
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Laurence Faivre
- Genetic Center, Rare Diseases Reference Center On Developmental Anomalies and Malformative Syndromes, FHU TRANSLAD, University Hospital, Dijon, France
- INSERM, Unit 1231 GAD Team, Burgundy University, Dijon, France
| | - Anne-Sophie Denommé-Pichon
- Genetic Center, Rare Diseases Reference Center On Developmental Anomalies and Malformative Syndromes, FHU TRANSLAD, University Hospital, Dijon, France
- INSERM, Unit 1231 GAD Team, Burgundy University, Dijon, France
- Medical Genomics Laboratory, FHU TRANSLAD, University Hospital, Dijon, France
| | - Antonio Vitobello
- INSERM, Unit 1231 GAD Team, Burgundy University, Dijon, France
- Medical Genomics Laboratory, FHU TRANSLAD, University Hospital, Dijon, France
| | - Hamza Hadj Abdallah
- Rare Diseases Genomic Medicine Department, Necker-Enfants Malades University Hospital, Paris, France
| | - Giulia Barcia
- Rare Diseases Genomic Medicine Department, Necker-Enfants Malades University Hospital, Paris, France
| | - Thomas Courtin
- Rare Diseases Genomic Medicine Department, Necker-Enfants Malades University Hospital, Paris, France
| | | | - Eva Bermejo-Sánchez
- Institute of Rare Disease Research, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María J. Barrero
- Institute of Rare Disease Research, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Stéphane Bezieau
- Medical Genetics Department, University Hospital, Nantes, France
- Thorax Institute Research Unit, INSERM, CNRS, Nantes University, Nantes, France
| | - Sébastien Küry
- Medical Genetics Department, University Hospital, Nantes, France
- Thorax Institute Research Unit, INSERM, CNRS, Nantes University, Nantes, France
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Frédéric Laumonnier
- Imaging Brain and Neuropsychiatry, iBraiN U1253, INSERM, University of Tours, Tours, France
- Genetics Department, University Hospital of Tours, Tours, France
| | - Annick Toutain
- Imaging Brain and Neuropsychiatry, iBraiN U1253, INSERM, University of Tours, Tours, France
- Genetics Department, University Hospital of Tours, Tours, France
| | - Marie-Laure Vuillaume
- Imaging Brain and Neuropsychiatry, iBraiN U1253, INSERM, University of Tours, Tours, France
- Genetics Department, University Hospital of Tours, Tours, France
| |
Collapse
|
7
|
Jain BK, Mansueto AJ, Graham TR. Measuring Phospholipid Flippase Activity by NBD-Lipid Uptake in Living Yeast Cells. Methods Mol Biol 2025; 2888:133-145. [PMID: 39699729 DOI: 10.1007/978-1-0716-4318-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Phospholipid flippases in the P4-ATPase family are essential for establishing membrane asymmetry. These ATP-powered pumps translocate specific lipids from the exofacial leaflet to the cytosolic leaflet of the plasma membrane, thereby concentrating substrate lipids, such as phosphatidylserine, in the cytosolic leaflet while non-substrate lipids populate the exofacial leaflet. Here, we describe a method for measuring P4-ATPase transport activity in the yeast plasma membrane by using flow cytometry to quantify the uptake of lipids derivatized with a fluorescent [7-nitro-2-1,3-benzoxadiazol-4-yl)amino] (NBD) group on a short (C6) fatty acyl chain. The NBD-lipid uptake assay quantitatively measures P4-ATPase transport activity and substrate selectivity in the native membrane environment.
Collapse
Affiliation(s)
- Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | | | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
8
|
Li YK, Dai GY, Zhang YM, Yao N. Imaging Plant Lipids with Fluorescent Reporters. PLANTS (BASEL, SWITZERLAND) 2024; 14:15. [PMID: 39795280 PMCID: PMC11723198 DOI: 10.3390/plants14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
In plants, lipids function as structural elements and signaling molecules. Understanding lipid composition and dynamics is essential for unraveling their biological functions and metabolism. Mapping the spatiotemporal distribution of lipids in plants holds great potential for elucidating lipid biosynthetic pathways and gaining insights to guide crop genetic engineering. Recent progress in fluorescence microscopy and imaging has opened new opportunities for researchers to visualize plant lipids in vivo at high spatiotemporal resolution. In this review, we provide an up-to-date overview of the methods used to image plant lipids with fluorescence microscopy. We highlight caveats and potential limitations of these approaches and provide suggestions for optimizing their utilization. This review synthesizes current knowledge and highlights the potential of these methods to provide new insights into lipid biology.
Collapse
Affiliation(s)
- Yong-Kang Li
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Y.-K.L.); (Y.-M.Z.)
| | - Guang-Yi Dai
- South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou 510275, China;
| | - Yu-Meng Zhang
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Y.-K.L.); (Y.-M.Z.)
| | - Nan Yao
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Y.-K.L.); (Y.-M.Z.)
| |
Collapse
|
9
|
Dang T, Piro L, Pasini C, Santelia D. Starch metabolism in guard cells: At the intersection of environmental stimuli and stomatal movement. PLANT PHYSIOLOGY 2024; 196:1758-1777. [PMID: 39115378 PMCID: PMC11531838 DOI: 10.1093/plphys/kiae414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024]
Abstract
Starch metabolism in guard cells plays a central role in regulating stomatal movement in response to light, elevated ambient CO2 and potentially other abiotic and biotic factors. Here, we discuss how various guard cell signal transduction pathways converge to promote rearrangements in guard cell starch metabolism for efficient stomatal responses, an essential physiological process that sustains plant productivity and stress tolerance. We suggest manipulation of guard cell starch dynamics as a previously overlooked strategy to improve stomatal behavior under changing environmental conditions.
Collapse
Affiliation(s)
- Trang Dang
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Lucia Piro
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Carlo Pasini
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Diana Santelia
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
10
|
Wojciechowska I, Mukherjee T, Knox-Brown P, Hu X, Khosla A, Subedi B, Ahmad B, Mathews GL, Panagakis AA, Thompson KA, Peery ST, Szlachetko J, Thalhammer A, Hincha DK, Skirycz A, Schrick K. Arabidopsis PROTODERMAL FACTOR2 binds lysophosphatidylcholines and transcriptionally regulates phospholipid metabolism. THE NEW PHYTOLOGIST 2024; 244:1498-1518. [PMID: 38952028 PMCID: PMC11486602 DOI: 10.1111/nph.19917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/06/2024] [Indexed: 07/03/2024]
Abstract
Plant homeodomain leucine zipper IV (HD-Zip IV) transcription factors (TFs) contain an evolutionarily conserved steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain. While the START domain is required for TF activity, its presumed role as a lipid sensor is not clear. Here we used tandem affinity purification from Arabidopsis cell cultures to demonstrate that PROTODERMAL FACTOR2 (PDF2), a representative member that controls epidermal differentiation, recruits lysophosphatidylcholines (LysoPCs) in a START-dependent manner. Microscale thermophoresis assays confirmed that a missense mutation in a predicted ligand contact site reduces lysophospholipid binding. We additionally found that PDF2 acts as a transcriptional regulator of phospholipid- and phosphate (Pi) starvation-related genes and binds to a palindromic octamer with consensus to a Pi response element. Phospholipid homeostasis and elongation growth were altered in pdf2 mutants according to Pi availability. Cycloheximide chase experiments revealed a role for START in maintaining protein levels, and Pi starvation resulted in enhanced protein destabilization, suggesting a mechanism by which lipid binding controls TF activity. We propose that the START domain serves as a molecular sensor for membrane phospholipid status in the epidermis. Our data provide insights toward understanding how the lipid metabolome integrates Pi availability with gene expression.
Collapse
Affiliation(s)
| | - Thiya Mukherjee
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, KS, 66506, USA
- Donald Danforth Plant Science Center, Olivette, MO, 63132, USA
| | | | - Xueyun Hu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Aashima Khosla
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Bibek Subedi
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Bilal Ahmad
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Graham L Mathews
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Kyle A Thompson
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sophie T Peery
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jagoda Szlachetko
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Anja Thalhammer
- Physical Biochemistry, University of Potsdam, 14476, Potsdam, Germany
| | - Dirk K Hincha
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48823, USA
| | - Kathrin Schrick
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
11
|
Palmgren M, López-Marqués RL. A new START. THE NEW PHYTOLOGIST 2024; 244:1122-1124. [PMID: 39081023 DOI: 10.1111/nph.20010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
This article is a Commentary on Wojciechowska et al. (2024), 244: 1498–1518.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Rosa Laura López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
12
|
Ngo AH, Angkawijaya AE, Nakamura Y, Kanehara K. Non-specific phospholipase C3 is involved in endoplasmic reticulum stress tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6489-6499. [PMID: 39169567 DOI: 10.1093/jxb/erae303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Non-specific phospholipase C (NPC) is an emerging family of lipolytic enzymes unique to plants and bacteria that play crucial roles in growth and stress responses. Among six copies of NPC isoforms found in Arabidopsis, the role of NPC3 remains elusive to date. Here, we show that NPC3 is a functional non-specific phospholipase C involved in tolerance to tunicamycin (TM)-induced endoplasmic reticulum (ER) stress through the synthesis of phosphocholine (PCho), a reaction product of NPC3. The npc3 mutant exhibited reduced sensitivity to TM treatment. Recombinant NPC3 possessed pronounced phospholipase C activity that hydrolyses phosphatidylcholine (PC). The hyposensitivity of npc3 to TM treatment was complemented by exogenous PCho, suggesting that NPC3-catalysed PCho production is involved in TM-induced ER stress tolerance. NPC3 was localized at the ER and was predominantly expressed in the roots, and it was further induced by TM-induced ER stress. Intriguingly, npc3 mutants showed a markedly reduced PCho content in shoots under ER stress. Our results indicate that ER stress induces NPC3 to produce PCho, which is involved in TM-induced ER stress tolerance.
Collapse
Affiliation(s)
- Anh H Ngo
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Japan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | - Yuki Nakamura
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Japan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
13
|
Lingwan M. Fats influencing flowering: Pistil-derived lipids affect pollen tube growth and fertility in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 196:670-671. [PMID: 38875167 PMCID: PMC11444267 DOI: 10.1093/plphys/kiae341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Affiliation(s)
- Maneesh Lingwan
- Plant Physiology, American Society of Plant Biologists
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| |
Collapse
|
14
|
Song J, Mavraganis I, Shen W, Yang H, Patterson N, Wang L, Xiang D, Cui Y, Zou J. Pistil-derived lipids influence pollen tube growth and male fertility in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 196:763-772. [PMID: 38917229 DOI: 10.1093/plphys/kiae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 06/27/2024]
Abstract
Pollen germination and pollen tube elongation require rapid phospholipid production and remodeling in membrane systems that involve both de novo synthesis and turnover. Phosphatidic acid phosphohydrolase (PAH) and lysophosphatidylcholine acyltransferase (LPCAT) are 2 key enzymes in membrane lipid maintenance. PAH generates diacylglycerol (DAG), a necessary precursor for the de novo synthesis of phosphatidylcholine (PC), while LPCAT reacylates lysophosphatidylcholine to PC and plays an essential role in the remodeling of membrane lipids. In this study, we investigated the synthetic defects of pah and lpcat mutations in sexual reproduction of Arabidopsis (Arabidopsis thaliana) and explored the prospect of pistil lipid provision to pollen tube growth. The combined deficiencies of lpcat and pah led to decreased pollen tube growth in the pistil and reduced male transmission. Interestingly, pistils of the lipid mutant dgat1 ameliorated the male transmission deficiencies of pah lpcat pollen. In contrast, pollination with a nonspecific phospholipase C (NPC) mutant exacerbated the fertilization impairment of the pah lpcat pollen. Given the importance of DAG in lipid metabolism and its contrasting changes in the dgat1 and npc mutants, we further investigated whether DAG supplement in synthetic media could influence pollen performance. DAG was incorporated into phospholipids of germinating pollen and stimulated pollen tube growth. Our study provides evidence that pistil-derived lipids contribute to membrane lipid synthesis in pollen tube growth, a hitherto unknown role in synergistic pollen-pistil interactions.
Collapse
Affiliation(s)
- Jingpu Song
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Ioannis Mavraganis
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Wenyun Shen
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Hui Yang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Nii Patterson
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Liping Wang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Daoquan Xiang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3
- Department of Biology, Western University, London, ON, Canada N6A 5B7
| | - Jitao Zou
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| |
Collapse
|
15
|
Sai KV, Lee JYE. Crossing the membrane-What does it take to flip a phospholipid? Structural and biochemical advances on P4-ATPase flippases. J Biol Chem 2024; 300:107738. [PMID: 39233230 PMCID: PMC11460456 DOI: 10.1016/j.jbc.2024.107738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Membrane asymmetry is critical for maintenance of several different processes such as cell signaling, apoptosis, and vesicular transport in various eukaryotic systems. Flippases of the P4-ATPase family are associated with flipping phospholipids from the luminal or exoplasmic leaflet to the cytosolic leaflet. P4-ATPases belong to the P-type ATPase family, which are activated by phosphorylation and couple ATPase activity to substrate translocation. These proteins possess a transmembrane domain responsible for substrate transport, while the cytosolic machinery performs the necessary ATP hydrolysis for this process. Several high-resolution structures of human or yeast P4-ATPases have recently been resolved, but a comprehensive overview of the changes for reaction cycle in different members was crucial for future research. In this review, we have compiled available data reflecting the reaction cycle-associated changes in conformation of P4-ATPases. Together, this will provide an improved understanding of the similarities and differences between these members, which will drive further structural, functional, and computational studies to understand the mechanisms of these flippases.
Collapse
Affiliation(s)
- Kadambari Vijay Sai
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jyh-Yeuan Eric Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
16
|
Hamel L, Tardif R, Poirier‐Gravel F, Rasoolizadeh A, Brosseau C, Giroux G, Lucier J, Goulet M, Barrada A, Paré M, Roussel É, Comeau M, Lavoie P, Moffett P, Michaud D, D'Aoust M. Molecular responses of agroinfiltrated Nicotiana benthamiana leaves expressing suppressor of silencing P19 and influenza virus-like particles. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1078-1100. [PMID: 38041470 PMCID: PMC11022802 DOI: 10.1111/pbi.14247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
The production of influenza vaccines in plants is achieved through transient expression of viral hemagglutinins (HAs), a process mediated by the bacterial vector Agrobacterium tumefaciens. HA proteins are then produced and matured through the secretory pathway of plant cells, before being trafficked to the plasma membrane where they induce formation of virus-like particles (VLPs). Production of VLPs unavoidably impacts plant cells, as do viral suppressors of RNA silencing (VSRs) that are co-expressed to increase recombinant protein yields. However, little information is available on host molecular responses to foreign protein expression. This work provides a comprehensive overview of molecular changes occurring in Nicotiana benthamiana leaf cells transiently expressing the VSR P19, or co-expressing P19 and an influenza HA. Our data identifies general responses to Agrobacterium-mediated expression of foreign proteins, including shutdown of chloroplast gene expression, activation of oxidative stress responses and reinforcement of the plant cell wall through lignification. Our results also indicate that P19 expression promotes salicylic acid (SA) signalling, a process dampened by co-expression of the HA protein. While reducing P19 level, HA expression also induces specific signatures, with effects on lipid metabolism, lipid distribution within membranes and oxylipin-related signalling. When producing VLPs, dampening of P19 responses thus likely results from lower expression of the VSR, crosstalk between SA and oxylipin pathways, or a combination of both outcomes. Consistent with the upregulation of oxidative stress responses, we finally show that reduction of oxidative stress damage through exogenous application of ascorbic acid improves plant biomass quality during production of VLPs.
Collapse
Affiliation(s)
| | | | | | - Asieh Rasoolizadeh
- Centre SÈVE, Faculté des Sciences, Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Chantal Brosseau
- Centre SÈVE, Faculté des Sciences, Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Geneviève Giroux
- Centre SÈVE, Faculté des Sciences, Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Jean‐François Lucier
- Centre SÈVE, Faculté des Sciences, Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Marie‐Claire Goulet
- Centre de Recherche et d'innovation sur les Végétaux, Département de PhytologieUniversité LavalQuébecQuébecCanada
| | - Adam Barrada
- Centre de Recherche et d'innovation sur les Végétaux, Département de PhytologieUniversité LavalQuébecQuébecCanada
| | | | | | | | | | - Peter Moffett
- Centre SÈVE, Faculté des Sciences, Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Dominique Michaud
- Centre de Recherche et d'innovation sur les Végétaux, Département de PhytologieUniversité LavalQuébecQuébecCanada
| | | |
Collapse
|
17
|
Davis JA, Poulsen LR, Kjeldgaard B, Moog MW, Brown E, Palmgren M, López-Marqués RL, Harper JF. Deficiencies in cluster-2 ALA lipid flippases result in salicylic acid-dependent growth reductions. PHYSIOLOGIA PLANTARUM 2024; 176:e14228. [PMID: 38413387 PMCID: PMC10976440 DOI: 10.1111/ppl.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
P4 ATPases (i.e., lipid flippases) are eukaryotic enzymes that transport lipids across membrane bilayers. In plants, P4 ATPases are named Aminophospholipid ATPases (ALAs) and are organized into five phylogenetic clusters. Here we generated an Arabidopsis mutant lacking all five cluster-2 ALAs (ala8/9/10/11/12), which is the most highly expressed ALA subgroup in vegetative tissues. Plants harboring the quintuple knockout (KO) show rosettes that are 2.2-fold smaller and display chlorotic lesions. A similar but less severe phenotype was observed in an ala10/11 double KO. The growth and lesion phenotypes of ala8/9/10/11/12 mutants were reversed by expressing a NahG transgene, which encodes an enzyme that degrades salicylic acid (SA). A role for SA in promoting the lesion phenotype was further supported by quantitative PCR assays showing increased mRNA abundance for an SA-biosynthesis gene ISOCHORISMATE SYNTHASE 1 (ICS1) and two SA-responsive genes PATHOGENESIS-RELATED GENE 1 (PR1) and PR2. Lesion phenotypes were also reversed by growing plants in liquid media containing either low calcium (~0.1 mM) or high nitrogen concentrations (~24 mM), which are conditions known to suppress SA-dependent autoimmunity. Yeast-based fluorescent lipid uptake assays revealed that ALA10 and ALA11 display overlapping substrate specificities, including the transport of LysoPC signaling lipids. Together, these results establish that the biochemical functions of ALA8-12 are at least partially overlapping, and that deficiencies in cluster-2 ALAs result in an SA-dependent autoimmunity phenotype that has not been observed for flippase mutants with deficiencies in other ALA clusters.
Collapse
Affiliation(s)
- James A. Davis
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Lisbeth R. Poulsen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Bodil Kjeldgaard
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Max W. Moog
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Elizabeth Brown
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Rosa L. López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Jeffrey F. Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| |
Collapse
|
18
|
Villagrana R, López-Marqués RL. Plant P4-ATPase lipid flippases: How are they regulated? BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119599. [PMID: 37741575 DOI: 10.1016/j.bbamcr.2023.119599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/22/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
P4 ATPases are active membrane transporters that translocate lipids towards the cytosolic side of the biological membranes in eukaryotic cells. Due to their essential cellular functions, P4 ATPase activity is expected to be tightly controlled, but fundamental aspects of the regulation of plant P4 ATPases remain unstudied. In this mini-review, our knowledge of the regulatory mechanisms of yeast and mammalian P4 ATPases will be summarized, and sequence comparison and structural modelling will be used as a basis to discuss the putative regulation of the corresponding plant lipid transporters.
Collapse
Affiliation(s)
- Richard Villagrana
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Rosa Laura López-Marqués
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
19
|
Mueller-Schuessele SJ, Leterme S, Michaud M. Plastid Transient and Stable Interactions with Other Cell Compartments. Methods Mol Biol 2024; 2776:107-134. [PMID: 38502500 DOI: 10.1007/978-1-0716-3726-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Plastids are organelles delineated by two envelopes playing important roles in different cellular processes such as energy production or lipid biosynthesis. To regulate their biogenesis and their function, plastids have to communicate with other cellular compartments. This communication can be mediated by metabolites, signaling molecules, and by the establishment of direct contacts between the plastid envelope and other organelles such as the endoplasmic reticulum, mitochondria, peroxisomes, plasma membrane, and the nucleus. These interactions are highly dynamic and respond to different biotic and abiotic stresses. However, the mechanisms involved in the formation of plastid-organelle contact sites and their functions are still far from being understood. In this chapter, we summarize our current knowledge about plastid contact sites and their role in the regulation of plastid biogenesis and function.
Collapse
Affiliation(s)
| | - Sébastien Leterme
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France.
| |
Collapse
|
20
|
Kotlova ER, Senik SV, Pozhvanov GA, Prokopiev IA, Boldyrev IA, Manzhieva BS, Amigud EY, Puzanskiy RK, Khakulova AA, Serebryakov EB. Uptake and Metabolic Conversion of Exogenous Phosphatidylcholines Depending on Their Acyl Chain Structure in Arabidopsis thaliana. Int J Mol Sci 2023; 25:89. [PMID: 38203257 PMCID: PMC10778594 DOI: 10.3390/ijms25010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Fungi and plants are not only capable of synthesizing the entire spectrum of lipids de novo but also possess a well-developed system that allows them to assimilate exogenous lipids. However, the role of structure in the ability of lipids to be absorbed and metabolized has not yet been characterized in detail. In the present work, targeted lipidomics of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs), in parallel with morphological phenotyping, allowed for the identification of differences in the effects of PC molecular species introduced into the growth medium, in particular, typical bacterial saturated (14:0/14:0, 16:0/16:0), monounsaturated (16:0/18:1), and typical for fungi and plants polyunsaturated (16:0/18:2, 18:2/18:2) species, on Arabidopsis thaliana. For comparison, the influence of an artificially synthesized (1,2-di-(3-(3-hexylcyclopentyl)-propanoate)-sn-glycero-3-phosphatidylcholine, which is close in structure to archaeal lipids, was studied. The phenotype deviations stimulated by exogenous lipids included changes in the length and morphology of both the roots and leaves of seedlings. According to lipidomics data, the main trends in response to exogenous lipid exposure were an increase in the proportion of endogenic 18:1/18:1 PC and 18:1_18:2 PC molecular species and a decrease in the relative content of species with C18:3, such as 18:3/18:3 PC and/or 16:0_18:3 PC, 16:1_18:3 PE. The obtained data indicate that exogenous lipid molecules affect plant morphology not only due to their physical properties, which are manifested during incorporation into the membrane, but also due to the participation of exogenous lipid molecules in the metabolism of plant cells. The results obtained open the way to the use of PCs of different structures as cellular regulators.
Collapse
Affiliation(s)
- Ekaterina R. Kotlova
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
| | - Svetlana V. Senik
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
| | - Gregory A. Pozhvanov
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
- Department of Botany and Ecology, Faculty of Biology, Herzen State Pedagogical University, 191186 Saint-Petersburg, Russia
| | - Ilya A. Prokopiev
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
| | - Ivan A. Boldyrev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Bairta S. Manzhieva
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
| | - Ekaterina Ya. Amigud
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
- Department of Botany and Ecology, Faculty of Biology, Herzen State Pedagogical University, 191186 Saint-Petersburg, Russia
| | - Roman K. Puzanskiy
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
| | - Anna A. Khakulova
- Chemical Analysis and Materials Research Core Facility Center, Reseach Park, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; (A.A.K.); (E.B.S.)
| | - Evgeny B. Serebryakov
- Chemical Analysis and Materials Research Core Facility Center, Reseach Park, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; (A.A.K.); (E.B.S.)
| |
Collapse
|
21
|
Tan J, Xu W, Zhai X, Yan B, Luan T, Yang L. Time-course adaption strategy of Tetraselmis-based consortia in response to 17α-ethinylestradiol. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132854. [PMID: 39491996 DOI: 10.1016/j.jhazmat.2023.132854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Estuarine ecosystem constitutes a microenvironment where the abundant green microalga Tetraselmis sp. co-exists with 17α-ethinylestradiol (EE2) pollution. However, the adaption mechanisms of this microalga-based consortia under EE2 shock are rarely recognized. Using extracellular polymeric substance (EPS) characterization, flow cytometry and transcriptomic, this study reveals the time-course response of Tetraselmis-based consortia under EE2 stress. Compared to the insignificant effect of 0.5 mg/L, a high dose of 2.5 mg/L EE2 induces persistent production of reactive oxygen species (ROS) and transiently physiological damages (membrane, chloroplast, organelle morphogenesis, and DNA replication), resulting in cell cycle alteration and division inhibition. These damages could be recovered through active DNA repair and persistently detoxifying processes of enhanced metabolism and ROS quenching. The enhanced EPS production is observed and in line with the significant up-regulation of most key enzymes involved in precursor synthesis and polysaccharides assembling. However, the up-regulation of glycoside hydrolases and most glycosyltransferases, down-regulation of flippases and changed expression of ABC family members indicate the changed EPS composition and synthesis strategy. The resulting increased colloidal polysaccharide is further consumed by associated bacteria whereas protein remains in the co-cultures. These results provide deeper insights into the adverse effects of chemical compounds to microalgae-bacteria and their coadaptation ability.
Collapse
Affiliation(s)
- Jiefeng Tan
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Weihao Xu
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China
| | - Xue Zhai
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Binhua Yan
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lihua Yang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
22
|
Herrera SA, Günther Pomorski T. Reconstitution of ATP-dependent lipid transporters: gaining insight into molecular characteristics, regulation, and mechanisms. Biosci Rep 2023; 43:BSR20221268. [PMID: 37417269 PMCID: PMC10412526 DOI: 10.1042/bsr20221268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023] Open
Abstract
Lipid transporters play a crucial role in supporting essential cellular processes such as organelle assembly, vesicular trafficking, and lipid homeostasis by driving lipid transport across membranes. Cryo-electron microscopy has recently resolved the structures of several ATP-dependent lipid transporters, but functional characterization remains a major challenge. Although studies of detergent-purified proteins have advanced our understanding of these transporters, in vitro evidence for lipid transport is still limited to a few ATP-dependent lipid transporters. Reconstitution into model membranes, such as liposomes, is a suitable approach to study lipid transporters in vitro and to investigate their key molecular features. In this review, we discuss the current approaches for reconstituting ATP-driven lipid transporters into large liposomes and common techniques used to study lipid transport in proteoliposomes. We also highlight the existing knowledge on the regulatory mechanisms that modulate the activity of lipid transporters, and finally, we address the limitations of the current approaches and future perspectives in this field.
Collapse
Affiliation(s)
- Sara Abad Herrera
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
23
|
Béziat C, Jaillais Y. Should I stay or should I go: the functional importance and regulation of lipid diffusion in biological membranes. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2479-2488. [PMID: 36738265 DOI: 10.1093/jxb/erad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/23/2023] [Indexed: 06/06/2023]
Abstract
Biological membranes are highly dynamic, in particular due to the constant exchange of vesicles between the different compartments of the cell. In addition, the dynamic nature of membranes is also caused by their inherently fluid properties, with the diffusion of both proteins and lipids within their leaflets. Lipid diffusion is particularly difficult to study in vivo but recent advances in optical microscopy and lipid visualization now enable the characterization of lipid lateral motion, and here we review these methods in plants. We then discuss the parameters that affect lipid diffusion in membranes and explore their consequences on the formation of membrane domains at different scales. Finally, we consider how controlled lipid diffusion affects membrane functions during cell signaling, development, and environmental interactions.
Collapse
Affiliation(s)
- Chloé Béziat
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| |
Collapse
|
24
|
Negi J, Obata T, Nishimura S, Song B, Yamagaki S, Ono Y, Okabe M, Hoshino N, Fukatsu K, Tabata R, Yamaguchi K, Shigenobu S, Yamada M, Hasebe M, Sawa S, Kinoshita T, Nishida I, Iba K. PECT1, a rate-limiting enzyme in phosphatidylethanolamine biosynthesis, is involved in the regulation of stomatal movement in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37058128 DOI: 10.1111/tpj.16245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023]
Abstract
An Arabidopsis mutant displaying impaired stomatal responses to CO2 , cdi4, was isolated by a leaf thermal imaging screening. The mutated gene PECT1 encodes CTP:phosphorylethanolamine cytidylyltransferase. The cdi4 exhibited a decrease in phosphatidylethanolamine levels and a defect in light-induced stomatal opening as well as low-CO2 -induced stomatal opening. We created RNAi lines in which PECT1 was specifically repressed in guard cells. These lines are impaired in their stomatal responses to low-CO2 concentrations or light. Fungal toxin fusicoccin (FC) promotes stomatal opening by activating plasma membrane H+ -ATPases in guard cells via phosphorylation. Arabidopsis H+ -ATPase1 (AHA1) has been reported to be highly expressed in guard cells, and its activation by FC induces stomatal opening. The cdi4 and PECT1 RNAi lines displayed a reduced stomatal opening response to FC. However, similar to in the wild-type, cdi4 maintained normal levels of phosphorylation and activation of the stomatal H+ -ATPases after FC treatment. Furthermore, the cdi4 displayed normal localization of GFP-AHA1 fusion protein and normal levels of AHA1 transcripts. Based on these results, we discuss how PECT1 could regulate CO2 - and light-induced stomatal movements in guard cells in a manner that is independent and downstream of the activation of H+ -ATPases. [Correction added on 15 May 2023, after first online publication: The third sentence is revised in this version.].
Collapse
Affiliation(s)
- Juntaro Negi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Tomoki Obata
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Sakura Nishimura
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Boseok Song
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Sho Yamagaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Yuhei Ono
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Makoto Okabe
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Natsumi Hoshino
- Graduate School of Science and Engineering, Saitama University, 338-8570, Saitama, Japan
| | - Kohei Fukatsu
- Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Ryo Tabata
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, 2-39-1, Kumamoto, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | - Masashi Yamada
- Department of Biology and HHMI, Duke University, Durham, North Carolina, 27710, USA
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Shinichiro Sawa
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, 2-39-1, Kumamoto, Japan
| | - Toshinori Kinoshita
- Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Ikuo Nishida
- Graduate School of Science and Engineering, Saitama University, 338-8570, Saitama, Japan
| | - Koh Iba
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| |
Collapse
|
25
|
López-Marqués RL. Mini-review: Lipid flippases as putative targets for biotechnological crop improvement. FRONTIERS IN PLANT SCIENCE 2023; 14:1107142. [PMID: 36895879 PMCID: PMC9989201 DOI: 10.3389/fpls.2023.1107142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
An increasing world population and drastic changes in weather conditions are challenging agricultural production. To face these challenges and ensure sustainable food production in the future, crop plants need to be improved to withstand several different biotic and abiotic stresses. Commonly, breeders select varieties that can tolerate a specific type of stress and then cross these varieties to stack beneficial traits. This strategy is time-consuming and strictly dependent on the stacked traits been genetically unlinked. Here, we revise the role of plant lipid flippases of the P4 ATPase family in stress-related responses with a special focus on the pleiotropic nature of their functions and discuss their suitability as biotechnological targets for crop improvement.
Collapse
|
26
|
Plant transbilayer lipid asymmetry and the role of lipid flippases. Emerg Top Life Sci 2022; 7:21-29. [PMID: 36562347 DOI: 10.1042/etls20220083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Many biological membranes present an asymmetric lipid distribution between the two leaflets that is known as the transbilayer lipid asymmetry. This asymmetry is essential for cell survival and its loss is related to apoptosis. In mammalian and yeast cells, ATP-dependent transport of lipids to the cytosolic side of the biological membranes, carried out by so-called lipid flippases, contributes to the transbilayer lipid asymmetry. Most of these lipid flippases belong to the P4-ATPase protein family, which is also present in plants. In this review, we summarize the relatively scarce literature concerning the presence of transbilayer lipid asymmetry in different plant cell membranes and revise the potential role of lipid flippases of the P4-ATPase family in generation and/or maintenance of this asymmetry.
Collapse
|
27
|
Wu Q, Yang L, Liang H, Yin L, Chen D, Shen P. Integrated analyses reveal the response of peanut to phosphorus deficiency on phenotype, transcriptome and metabolome. BMC PLANT BIOLOGY 2022; 22:524. [PMID: 36372886 PMCID: PMC9661748 DOI: 10.1186/s12870-022-03867-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Phosphorus (P) is one of the most essential macronutrients for crops. The growth and yield of peanut (Arachis hypogaea L.) are always limited by P deficiency. However, the transcriptional and metabolic regulatory mechanisms were less studied. In this study, valuable phenotype, transcriptome and metabolome data were analyzed to illustrate the regulatory mechanisms of peanut under P deficiency stress. RESULT In present study, two treatments of P level in deficiency with no P application (-P) and in sufficiency with 0.6 mM P application (+ P) were used to investigate the response of peanut on morphology, physiology, transcriptome, microRNAs (miRNAs), and metabolome characterizations. The growth and development of plants were significantly inhibited under -P treatment. A total of 6088 differentially expressed genes (DEGs) were identified including several transcription factor family genes, phosphate transporter genes, hormone metabolism related genes and antioxidant enzyme related genes that highly related to P deficiency stress. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that 117 genes were annotated in the phenylpropanoid biosynthesis pathway under P deficiency stress. A total of 6 miRNAs have been identified significantly differential expression between + P and -P group by high-throughput sequencing of miRNAs, including two up-regulated miRNAs (ahy-miR160-5p and ahy-miR3518) and four down-regulated miRNAs (ahy-miR408-5p, ahy-miR408-3p, ahy-miR398, and ahy-miR3515). Further, the predicted 22 target genes for 6 miRNAs and cis-elements in 2000 bp promoter region of miRNA genes were analyzed. A total of 439 differentially accumulated metabolites (DAMs) showed obviously differences in two experimental conditions. CONCLUSIONS According to the result of transcripome and metabolome analyses, we can draw a conclusion that by increasing the content of lignin, amino acids, and levan combining with decreasing the content of LPC, cell reduced permeability, maintained stability, raised the antioxidant capacity, and increased the P uptake in struggling for survival under P deficiency stress.
Collapse
Affiliation(s)
- Qi Wu
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Liyu Yang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Haiyan Liang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Liang Yin
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Dianxu Chen
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Pu Shen
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| |
Collapse
|
28
|
Yang Y, Niu Y, Chen T, Zhang H, Zhang J, Qian D, Bi M, Fan Y, An L, Xiang Y. The phospholipid flippase ALA3 regulates pollen tube growth and guidance in Arabidopsis. THE PLANT CELL 2022; 34:3718-3736. [PMID: 35861414 PMCID: PMC9516151 DOI: 10.1093/plcell/koac208] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Pollen tube guidance regulates the growth direction and ovule targeting of pollen tubes in pistils, which is crucial for the completion of sexual reproduction in flowering plants. The Arabidopsis (Arabidopsis thaliana) pollen-specific receptor kinase (PRK) family members PRK3 and PRK6 are specifically tip-localized and essential for pollen tube growth and guidance. However, the mechanisms controlling the polar localization of PRKs at the pollen tube tip are unclear. The Arabidopsis P4-ATPase ALA3 helps establish the polar localization of apical phosphatidylserine (PS) in pollen tubes. Here, we discovered that loss of ALA3 function caused pollen tube defects in growth and ovule targeting and significantly affected the polar localization pattern of PRK3 and PRK6. Both PRK3 and PRK6 contain two polybasic clusters in the intracellular juxtamembrane domain, and they bound to PS in vitro. PRK3 and PRK6 with polybasic cluster mutations showed reduced or abolished binding to PS and altered polar localization patterns, and they failed to effectively complement the pollen tube-related phenotypes of prk mutants. These results suggest that ALA3 influences the precise localization of PRK3, PRK6, and other PRKs by regulating the distribution of PS, which plays a key role in regulating pollen tube growth and guidance.
Collapse
Affiliation(s)
| | | | - Tao Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongkai Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingxia Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mengmeng Bi
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuemin Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
29
|
CDC50 Orthologues in Plasmodium falciparum Have Distinct Roles in Merozoite Egress and Trophozoite Maturation. mBio 2022; 13:e0163522. [PMID: 35862778 PMCID: PMC9426505 DOI: 10.1128/mbio.01635-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In model organisms, type IV ATPases (P4-ATPases) require cell division control protein 50 (CDC50) chaperones for their phospholipid flipping activity. In the malaria parasite Plasmodium falciparum, guanylyl cyclase alpha (GCα) is an integral membrane protein that is essential for release (egress) of merozoites from their host erythrocytes. GCα is unusual in that it contains both a C-terminal cyclase domain and an N-terminal P4-ATPase domain of unknown function. We sought to investigate whether any of the three CDC50 orthologues (termed A, B, and C) encoded by P. falciparum are required for GCα function. Using gene tagging and conditional gene disruption, we demonstrate that CDC50B and CDC50C but not CDC50A are expressed in the clinically important asexual blood stages and that CDC50B is a binding partner of GCα whereas CDC50C is the binding partner of another putative P4-ATPase, phospholipid-transporting ATPase 2 (ATP2). Our findings indicate that CDC50B has no essential role for intraerythrocytic parasite maturation but modulates the rate of parasite egress by interacting with GCα for optimal cGMP synthesis. In contrast, CDC50C is essential for blood stage trophozoite maturation. Additionally, we find that the CDC50C-ATP2 complex may influence parasite endocytosis of host cell hemoglobin and consequently hemozoin formation.
Collapse
|
30
|
Colin L, Martin-Arevalillo R, Bovio S, Bauer A, Vernoux T, Caillaud MC, Landrein B, Jaillais Y. Imaging the living plant cell: From probes to quantification. THE PLANT CELL 2022; 34:247-272. [PMID: 34586412 PMCID: PMC8774089 DOI: 10.1093/plcell/koab237] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 05/20/2023]
Abstract
At the center of cell biology is our ability to image the cell and its various components, either in isolation or within an organism. Given its importance, biological imaging has emerged as a field of its own, which is inherently highly interdisciplinary. Indeed, biologists rely on physicists and engineers to build new microscopes and imaging techniques, chemists to develop better imaging probes, and mathematicians and computer scientists for image analysis and quantification. Live imaging collectively involves all the techniques aimed at imaging live samples. It is a rapidly evolving field, with countless new techniques, probes, and dyes being continuously developed. Some of these new methods or reagents are readily amenable to image plant samples, while others are not and require specific modifications for the plant field. Here, we review some recent advances in live imaging of plant cells. In particular, we discuss the solutions that plant biologists use to live image membrane-bound organelles, cytoskeleton components, hormones, and the mechanical properties of cells or tissues. We not only consider the imaging techniques per se, but also how the construction of new fluorescent probes and analysis pipelines are driving the field of plant cell biology.
Collapse
Affiliation(s)
- Leia Colin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Raquel Martin-Arevalillo
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
- LYMIC-PLATIM imaging and microscopy core facility, Univ Lyon, SFR Biosciences, ENS de Lyon, Inserm US8, CNRS UMS3444, UCBL-50 Avenue Tony Garnier, 69007 Lyon, France
| | - Amélie Bauer
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Marie-Cecile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| |
Collapse
|
31
|
López-Marqués RL, Pomorski TG. Imaging of Lipid Uptake in Arabidopsis Seedlings Utilizing Fluorescent Lipids and Confocal Microscopy. Bio Protoc 2021; 11:e4228. [PMID: 34909449 DOI: 10.21769/bioprotoc.4228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 11/02/2022] Open
Abstract
Eukaryotic cells use a diverse set of transporters to control the movement of lipids across their plasma membrane, which drastically affects membrane properties. Various tools and techniques to analyze the activity of these transporters have been developed. Among them, assays based on fluorescent phospholipid probes are particularly suitable, allowing for imaging and quantification of lipid internalization in living cells. Classically, these assays have been applied to yeast and animal cells. Here, we describe the adaptation of this powerful approach to characterize lipid internalization in plant roots and aerial tissues using confocal imaging. Graphic abstract: Fluorescent lipid uptake in Arabidopsis seedlings. Scale bars: seedling, 25 mm; leaf, 10 μm; root, 25 μm.
Collapse
Affiliation(s)
- Rosa L López-Marqués
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg C, Denmark
| | - Thomas G Pomorski
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg C, Denmark.,Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
32
|
Boccaccio A, Picco C, Di Zanni E, Scholz-Starke J. Phospholipid scrambling by a TMEM16 homolog of Arabidopsis thaliana. FEBS J 2021; 289:2578-2592. [PMID: 34775680 PMCID: PMC9299152 DOI: 10.1111/febs.16279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/15/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022]
Abstract
Membrane asymmetry is important for cellular physiology and established by energy‐dependent unidirectional lipid translocases, which have diverse physiological functions in plants. By contrast, the role of phospholipid scrambling (PLS), the passive bidirectional lipid transfer leading to the break‐down of membrane asymmetry, is currently still unexplored. The Arabidopsis thaliana genome contains a single gene (At1g73020) with homology to the eukaryotic TMEM16 family of Ca2+‐activated phospholipid scramblases. Here, we investigated the protein function of this Arabidopsis homolog. Fluorescent AtTMEM16 fusions localized to the ER both in transiently expressing Arabidopsis protoplasts and HEK293 cells. A putative scrambling domain (SCRD) was identified on the basis of sequence conservation and conferred PLS to transfected HEK293 cells, when grafted into the backbone of the non‐scrambling plasma membrane‐localized TMEM16A chloride channel. Finally, AtTMEM16 ‘gain‐of‐function’ variants gave rise to cellular phenotypes typical of aberrant scramblase activity, which were reversed by the additional introduction of a ‘loss‐of‐function’ mutation into the SCRD. In conclusion, our data suggest AtTMEM16 works as an ER‐resident lipid scramblase in Arabidopsis.
Collapse
Affiliation(s)
- Anna Boccaccio
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Cristiana Picco
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Eleonora Di Zanni
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
| | | |
Collapse
|
33
|
Stanchev LD, Rizzo J, Peschel R, Pazurek LA, Bredegaard L, Veit S, Laerbusch S, Rodrigues ML, López-Marqués RL, Günther Pomorski T. P-Type ATPase Apt1 of the Fungal Pathogen Cryptococcus neoformans Is a Lipid Flippase of Broad Substrate Specificity. J Fungi (Basel) 2021; 7:jof7100843. [PMID: 34682264 PMCID: PMC8537059 DOI: 10.3390/jof7100843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Lipid flippases of the P4-ATPase family are ATP-driven transporters that translocate lipids from the exoplasmic to the cytosolic leaflet of biological membranes. In the encapsulated fungal pathogen Cryptococcus neoformans, the P4-ATPase Apt1p is an important regulator of polysaccharide secretion and pathogenesis, but its biochemical characterization is lacking. Phylogenetic analysis revealed that Apt1p belongs to the subclade of P4A-ATPases characterized by the common requirement for a β-subunit. Using heterologous expression in S. cerevisiae, we demonstrate that Apt1p forms a heterodimeric complex with the C. neoformans Cdc50 protein. This association is required for both localization and activity of the transporter complex. Lipid flippase activity of the heterodimeric complex was assessed by complementation tests and uptake assays employing fluorescent lipids and revealed a broad substrate specificity, including several phospholipids, the alkylphospholipid miltefosine, and the glycolipids glucosyl- and galactosylceramide. Our results suggest that transbilayer lipid transport in C. neoformans is finely regulated to promote fungal virulence, which reinforces the potential of Apt1p as a target for antifungal drug development.
Collapse
Affiliation(s)
- Lyubomir Dimitrov Stanchev
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.D.S.); (R.P.); (L.A.P.); (S.V.); (S.L.)
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; (L.B.); (R.L.L.-M.)
| | - Juliana Rizzo
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (J.R.); (M.L.R.)
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, 75015 Paris, France
| | - Rebecca Peschel
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.D.S.); (R.P.); (L.A.P.); (S.V.); (S.L.)
| | - Lilli A. Pazurek
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.D.S.); (R.P.); (L.A.P.); (S.V.); (S.L.)
| | - Lasse Bredegaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; (L.B.); (R.L.L.-M.)
| | - Sarina Veit
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.D.S.); (R.P.); (L.A.P.); (S.V.); (S.L.)
| | - Sabine Laerbusch
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.D.S.); (R.P.); (L.A.P.); (S.V.); (S.L.)
| | - Marcio L. Rodrigues
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (J.R.); (M.L.R.)
- Instituto Carlos Chagas, Fiocruz, Curitiba 81310-020, Brazil
| | - Rosa L. López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; (L.B.); (R.L.L.-M.)
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.D.S.); (R.P.); (L.A.P.); (S.V.); (S.L.)
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; (L.B.); (R.L.L.-M.)
- Correspondence: ; Tel.: +49-234-32-24430
| |
Collapse
|
34
|
Targeted designing functional markers revealed the role of retrotransposon derived miRNAs as mobile epigenetic regulators in adaptation responses of pistachio. Sci Rep 2021; 11:19751. [PMID: 34611187 PMCID: PMC8492636 DOI: 10.1038/s41598-021-98402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
We developed novel miRNA-based markers based on salt responsive miRNA sequences to detect polymorphisms in miRNA sequences and locations. The validation of 76 combined miRNA + miRNA and miRNA + ISSR markers in the three extreme pistachio populations led to the identification of three selected markers that could link salt tolerance phenotype to genotype and divided pistachio genotypes and Pistacia species into three clusters. This novel functional marker system, in addition to more efficient performance, has higher polymorphisms than previous miRNA-based marker systems. The functional importance of the target gene of five miRNAs in the structure of the three selected markers in regulation of different genes such as ECA2, ALA10, PFK, PHT1;4, PTR3, KUP2, GRAS, TCP, bHLH, PHD finger, PLATZ and genes involved in developmental, signaling and biosynthetic processes shows that the polymorphism associated with these selected miRNAs can make a significant phenotypic difference between salt sensitive and tolerant pistachio genotypes. The sequencing results of selected bands showed the presence of conserved miRNAs in the structure of the mitochondrial genome. Further notable findings of this study are that the sequences of PCR products of two selected markers were annotated as Gypsy and Copia retrotransposable elements. The transposition of retrotransposons with related miRNAs by increasing the number of miRNA copies and changing their location between nuclear and organellar genomes can affect the regulatory activity of these molecules. These findings show the crucial role of retrotransposon-derived miRNAs as mobile epigenetic regulators between intracellular genomes in regulating salt stress responses as well as creating new and tolerant phenotypes for adaptation to environmental conditions.
Collapse
|
35
|
Platre MP, Jaillais Y. Exogenous treatment of Arabidopsis seedlings with lyso-phospholipids for the inducible complementation of lipid mutants. STAR Protoc 2021; 2:100626. [PMID: 34223200 PMCID: PMC8243135 DOI: 10.1016/j.xpro.2021.100626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Lipids are major components of membranes with pleiotropic roles and interconnected metabolism, so experimentally addressing the primary function of individual lipid species in vivo can be difficult. Genetic approaches are particularly challenging to interpret due to compensatory mechanisms and indirect effects. Here, we describe a fast inducible approach to complement the phenotypes of Arabidopsis lipid mutants through exogenous treatment with the depleted lipid, followed by live confocal imaging to observe genetically encoded lipid sensors in wild-type and mutant root tissues. For complete details on the use and execution of this protocol, please refer to Platre et al. (2018).
Collapse
Affiliation(s)
- Matthieu Pierre Platre
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| |
Collapse
|
36
|
López-Marqués RL. Lipid flippases as key players in plant adaptation to their environment. NATURE PLANTS 2021; 7:1188-1199. [PMID: 34531559 DOI: 10.1038/s41477-021-00993-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Lipid flippases (P4 ATPases) are active transporters that catalyse the translocation of lipids between the two sides of the biological membranes in the secretory pathway. This activity modulates biological membrane properties, contributes to vesicle formation, and is the trigger for lipid signalling events, which makes P4 ATPases essential for eukaryotic cell survival. Plant P4 ATPases (also known as aminophospholipid ATPases (ALAs)) are crucial for plant fertility and proper development, and are involved in key adaptive responses to biotic and abiotic stress, including chilling tolerance, heat adaptation, nutrient deficiency responses and pathogen defence. While ALAs present many analogies to mammalian and yeast P4 ATPases, they also show characteristic features as the result of their independent evolution. In this Review, the main properties, roles, regulation and mechanisms of action of ALA proteins are discussed.
Collapse
Affiliation(s)
- Rosa L López-Marqués
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
37
|
Lamy A, Macarini-Bruzaferro E, Dieudonné T, Perálvarez-Marín A, Lenoir G, Montigny C, le Maire M, Vázquez-Ibar JL. ATP2, The essential P4-ATPase of malaria parasites, catalyzes lipid-stimulated ATP hydrolysis in complex with a Cdc50 β-subunit. Emerg Microbes Infect 2021; 10:132-147. [PMID: 33372863 PMCID: PMC7832587 DOI: 10.1080/22221751.2020.1870413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gene targeting approaches have demonstrated the essential role for the malaria parasite of membrane transport proteins involved in lipid transport and in the maintenance of membrane lipid asymmetry, representing emerging oportunites for therapeutical intervention. This is the case of ATP2, a Plasmodium-encoded 4 P-type ATPase (P4-ATPase or lipid flippase), whose activity is completely irreplaceable during the asexual stages of the parasite. Moreover, a recent chemogenomic study has situated ATP2 as the possible target of two antimalarial drug candidates. In eukaryotes, P4-ATPases assure the asymmetric phospholipid distribution in membranes by translocating phospholipids from the outer to the inner leaflet. In this work, we have used a recombinantly-produced P. chabaudi ATP2 (PcATP2), to gain insights into the function and structural organization of this essential transporter. Our work demonstrates that PcATP2 associates with two of the three Plasmodium-encoded Cdc50 proteins: PcCdc50B and PcCdc50A. Purified PcATP2/PcCdc50B complex displays ATPase activity in the presence of either phosphatidylserine or phosphatidylethanolamine. In addition, this activity is upregulated by phosphatidylinositol 4-phosphate. Overall, our work describes the first biochemical characterization of a Plasmodium lipid flippase, a first step towards the understanding of the essential physiological role of this transporter and towards its validation as a potential antimalarial drug target.
Collapse
Affiliation(s)
- Anaïs Lamy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.,Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Ewerton Macarini-Bruzaferro
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.,Department of Clinical Medicine (FMUSP), University of São Paulo, São Paulo, Brazil
| | - Thibaud Dieudonné
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.,DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Alex Perálvarez-Marín
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| | - Guillaume Lenoir
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Cédric Montigny
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Marc le Maire
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - José Luis Vázquez-Ibar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
38
|
Receptor kinases in plant responses to herbivory. Curr Opin Biotechnol 2021; 70:143-150. [PMID: 34023544 DOI: 10.1016/j.copbio.2021.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 01/21/2023]
Abstract
Plants have the ability to detect and respond to biotic stresses. They contain pattern recognition receptors (PRRs) that specifically recognize conserved molecules from their enemies and activate immune responses. In this review, I discuss recent efforts to discover PRRs for herbivory-associated cues that originate from oral secretions, eggs, damaged plant cells or secondary endogenous signals. Although several potential PRRs have been identified and shown to confer resistance to insects, proof of direct binding to a ligand is scarce and there are still many uncharacterized ligand-receptor pairs. However, several studies suggest that, like for microbial pathogens, plants use similar PRR complexes to detect herbivory.
Collapse
|
39
|
López-Marqués RL, Davis JA, Harper JF, Palmgren M. Dynamic membranes: the multiple roles of P4 and P5 ATPases. PLANT PHYSIOLOGY 2021; 185:619-631. [PMID: 33822217 PMCID: PMC8133672 DOI: 10.1093/plphys/kiaa065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/24/2020] [Indexed: 05/31/2023]
Abstract
The lipid bilayer of biological membranes has a complex composition, including high chemical heterogeneity, the presence of nanodomains of specific lipids, and asymmetry with respect to lipid composition between the two membrane leaflets. In membrane trafficking, membrane vesicles constantly bud off from one membrane compartment and fuse with another, and both budding and fusion events have been proposed to require membrane lipid asymmetry. One mechanism for generating asymmetry in lipid bilayers involves the action of the P4 ATPase family of lipid flippases; these are biological pumps that use ATP as an energy source to flip lipids from one leaflet to the other. The model plant Arabidopsis (Arabidopsis thaliana) contains 12 P4 ATPases (AMINOPHOSPHOLIPID ATPASE1-12; ALA1-12), many of which are functionally redundant. Studies of P4 ATPase mutants have confirmed the essential physiological functions of these pumps and pleiotropic mutant phenotypes have been observed, as expected when genes required for basal cellular functions are disrupted. For instance, phenotypes associated with ala3 (dwarfism, pollen defects, sensitivity to pathogens and cold, and reduced polar cell growth) can be related to membrane trafficking problems. P5 ATPases are evolutionarily related to P4 ATPases, and may be the counterpart of P4 ATPases in the endoplasmic reticulum. The absence of P4 and P5 ATPases from prokaryotes and their ubiquitous presence in eukaryotes make these biological pumps a defining feature of eukaryotic cells. Here, we review recent advances in the field of plant P4 and P5 ATPases.
Collapse
Affiliation(s)
- Rosa L López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - James A Davis
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| |
Collapse
|
40
|
The transport mechanism of P4 ATPase lipid flippases. Biochem J 2021; 477:3769-3790. [PMID: 33045059 DOI: 10.1042/bcj20200249] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/02/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
P4 ATPase lipid flippases are ATP-driven transporters that translocate specific lipids from the exoplasmic to the cytosolic leaflet of biological membranes, thus establishing a lipid gradient between the two leaflets that is essential for many cellular processes. While substrate specificity, subcellular and tissue-specific expression, and physiological functions have been assigned to a number of these transporters in several organisms, the mechanism of lipid transport has been a topic of intense debate in the field. The recent publication of a series of structural models based on X-ray crystallography and cryo-EM studies has provided the first glimpse into how P4 ATPases have adapted the transport mechanism used by the cation-pumping family members to accommodate a substrate that is at least an order of magnitude larger than cations.
Collapse
|
41
|
Obata T, Kobayashi K, Tadakuma R, Akasaka T, Iba K, Negi J. The Endoplasmic Reticulum Pathway for Membrane Lipid Synthesis Has a Significant Contribution toward Shoot Removal-Induced Root Chloroplast Development in Arabidopsis. ACTA ACUST UNITED AC 2021; 62:494-501. [DOI: 10.1093/pcp/pcab009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/14/2021] [Indexed: 12/25/2022]
Abstract
Abstract
Chloroplast lipids are synthesized via two distinct pathways: the plastidic pathway and endoplasmic reticulum (ER) pathway. We previously reported that the contribution of the two pathways toward chloroplast development is different between mesophyll cells and guard cells in Arabidopsis leaf tissues and that the ER pathway plays a major role in guard cell chloroplast development. However, little is known about the contribution of the two pathways toward chloroplast development in other tissue cells, and in this study, we focused on root cells. Chloroplast development is normally repressed in roots but can be induced when the roots are detached from the shoots (root greening). We found that, similar to guard cells, root cells exhibit a higher proportion of glycolipid from the ER pathway. Root greening was repressed in the gles1 mutant, which has a defect in ER-to-plastid lipid transportation via the ER pathway, while normal root greening was observed in the ats1 mutant, whose plastidic pathway is blocked. Lipid analysis revealed that the gles1 mutation caused drastic decrease in the ER-derived glycolipids in roots. Furthermore, the gles1 detached roots showed smaller chloroplasts containing less starch than WT. These results suggest that the ER pathway has a significant contribution toward chloroplast development in the root cells.
Collapse
Affiliation(s)
- Tomoki Obata
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395 Japan
| | - Koichi Kobayashi
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai Osaka, 599-8531 Japan
| | - Ryosuke Tadakuma
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395 Japan
| | - Taiki Akasaka
- Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Koh Iba
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395 Japan
| | - Juntaro Negi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395 Japan
| |
Collapse
|
42
|
Davis J, Pares R, Palmgren M, López-Marqués R, Harper J. A potential pathway for flippase-facilitated glucosylceramide catabolism in plants. PLANT SIGNALING & BEHAVIOR 2020; 15:1783486. [PMID: 32857675 PMCID: PMC8550518 DOI: 10.1080/15592324.2020.1783486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Aminophospholipid ATPase (ALA) family of plant lipid flippases is involved in the selective transport of lipids across membrane bilayers. Recently, we demonstrated that double mutants lacking both ALA4 and -5 are severely dwarfed. Dwarfism in ala4/5 mutants was accompanied by cellular elongation defects and various lipidomic perturbations, including a 1.4-fold increase in the accumulation of glucosylceramides (GlcCers) relative to total sphingolipid content. Here, we present a potential model for flippase-facilitated GlcCer catabolism in plants, where a combination of ALA flippases transport GlcCers to cytosolic membrane surfaces where they are degraded by Glucosylceramidases (GCDs). GCDs remove the glucose headgroup from GlcCers to produce a ceramide (Cer) backbone, which can be further degraded to sphingoid bases (Sphs, e.g, phytosphingosine) and fatty acids (FAs). In the absence of GlcCer-transporting flippases, GlcCers are proposed to accumulate on extracytoplasmic (i.e., apoplastic) or lumenal membrane surfaces. As GlcCers are potential precursors for Sph production, impaired GlcCer catabolism might also result in the decreased production of the secondary messenger Sph-1-phosphate (Sph-1-P, e.g., phytosphingosine-1-P), a regulator of cell turgor. Importantly, we postulate that either GlcCer accumulation or reduced Sph-1-P signaling might contribute to the growth reductions observed in ala4/5 mutants. Similar catabolic pathways have been proposed for humans and yeast, suggesting flippase-facilitated GlcCer catabolism is conserved across eukaryotes.
Collapse
Affiliation(s)
- J.A. Davis
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
- CONTACT Davis, J.A. Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV89557, USA
| | - R.B. Pares
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - M. Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - R.L. López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - J.F. Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
43
|
Frøsig MM, Costa SR, Liesche J, Østerberg JT, Hanisch S, Nintemann S, Sørensen H, Palmgren M, Pomorski TG, López-Marqués RL. Pseudohyphal growth in Saccharomyces cerevisiae involves protein kinase-regulated lipid flippases. J Cell Sci 2020; 133:jcs235994. [PMID: 32661085 DOI: 10.1242/jcs.235994] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Lipid flippases of the P4 ATPase family establish phospholipid asymmetry in eukaryotic cell membranes and are involved in many essential cellular processes. The yeast Saccharomyces cerevisiae contains five P4 ATPases, among which Dnf3p is poorly characterized. Here, we demonstrate that Dnf3p is a flippase that catalyzes translocation of major glycerophospholipids, including phosphatidylserine, towards the cytosolic membrane leaflet. Deletion of the genes encoding Dnf3p and the distantly related P4 ATPases Dnf1p and Dnf2p results in yeast mutants with aberrant formation of pseudohyphae, suggesting that the Dnf1p-Dnf3p proteins have partly redundant functions in the control of this specialized form of polarized growth. Furthermore, as previously demonstrated for Dnf1 and Dnf2p, the phospholipid flipping activity of Dnf3p is positively regulated by flippase kinase 1 (Fpk1p) and Fpk2p. Phylogenetic analyses demonstrate that Dnf3p belongs to a subfamily of P4 ATPases specific for fungi and are likely to represent a hallmark of fungal evolution.
Collapse
Affiliation(s)
- Merethe Mørch Frøsig
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Sara Rute Costa
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Johannes Liesche
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Jeppe Thulin Østerberg
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Susanne Hanisch
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Sebastian Nintemann
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Helle Sørensen
- Data Science Lab, Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Thomas Günther Pomorski
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Rosa L López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| |
Collapse
|
44
|
Lim SD, Mayer JA, Yim WC, Cushman JC. Plant tissue succulence engineering improves water-use efficiency, water-deficit stress attenuation and salinity tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1049-1072. [PMID: 32338788 DOI: 10.1111/tpj.14783] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 05/25/2023]
Abstract
Tissue succulence (ratio of tissue water/leaf area or dry mass) or the ability to store water within living tissues is among the most successful adaptations to drought in the plant kingdom. This taxonomically widespread adaptation helps plants avoid the damaging effects of drought, and is often associated with the occupancy of epiphytic, epilithic, semi-arid and arid environments. Tissue succulence was engineered in Arabidopsis thaliana by overexpression of a codon-optimized helix-loop-helix transcription factor (VvCEB1opt ) from wine grape involved in the cell expansion phase of berry development. VvCEB1opt -overexpressing lines displayed significant increases in cell size, succulence and decreased intercellular air space. VvCEB1opt -overexpressing lines showed increased instantaneous and integrated water-use efficiency (WUE) due to reduced stomatal conductance caused by reduced stomatal aperture and density resulting in increased attenuation of water-deficit stress. VvCEB1opt -overexpressing lines also showed increased salinity tolerance due to reduced salinity uptake and dilution of internal Na+ and Cl- as well as other ions. Alterations in transporter activities were further suggested by media and apoplastic acidification, hygromycin B tolerance and changes in relative transcript abundance patterns of various transporters with known functions in salinity tolerance. Engineered tissue succulence might provide an effective strategy for improving WUE, drought avoidance or attenuation, salinity tolerance, and for crassulacean acid metabolism biodesign.
Collapse
Affiliation(s)
- Sung Don Lim
- Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | | | - Won Cheol Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA
| |
Collapse
|
45
|
Manzoor MA, Cheng X, Li G, Su X, Abdullah M, Cai Y. Gene structure, evolution and expression analysis of the P-ATPase gene family in Chinese pear (Pyrus bretschneideri). Comput Biol Chem 2020; 88:107346. [PMID: 32759051 DOI: 10.1016/j.compbiolchem.2020.107346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 11/18/2022]
Abstract
P-ATPase are a large protein family of integral membrane, playing an important role in plant growth, development and stress. P-ATPase genes family have been identified and characterized in several model plants such as cotton, grapes, tobacco, rice, rubber plant and Arabidopsis. However, still lack of comprehensive study of P-ATPase genes in Chinese pear (Pyrus bretschneideri). A systematic analysis was performed and identified 30 P-ATPase genes from the pear genome to evaluate the qualities and diversity of P-ATPase proteins. Phylogenetic analysis was performed using A. thaliana P-ATPase genes as a model, allowing us to categorize into 4 subfamilies (PbHMA, PbECA, PbACA, and PbAHA) and two subfamilies (ALA and P5) is absent in pear. Even Within the same subclade, P-ATPase genes also shows the similar exon-intron structure and conserved motif structure. Continuing chromosomal localization analysis showed that 23 P-ATPase genes were distributed among 13 chromosome and 7 gene on the scaffold of pear. Promoter regions of P-ATPase genes revealed that several cis-acting elements were involved in plant growth/development, stress responses as well as hormone responses. Additionally, P-ATPase genes were also differentially expressed under hormones treatments of ABA (abscisic acid) and SA (salicylic acid) treatments. Remarkably, the transcriptome data exposed that P-ATPase gene might play an important role in lignin biosynthesis during fruit development. The real time qRT-PCR was performed, and the expression analysis indicated that various P-ATPase genes extremely expressed during different developmental stages of fruit. Our study provides valuable information about the P-ATPase gene family in pear fruit development and lignin polymerization.
Collapse
Affiliation(s)
| | - Xi Cheng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Guohui Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xueqiang Su
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Muhammad Abdullah
- School of Agriculture and Biology, Shanghai Jiao tong University Agricultural University, Shanghai, China; School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
46
|
Abstract
Anionic phospholipids, which include phosphatidic acid, phosphatidylserine, and phosphoinositides, represent a small percentage of membrane lipids. They are able to modulate the physical properties of membranes, such as their surface charges, curvature, or clustering of proteins. Moreover, by mediating interactions with numerous membrane-associated proteins, they are key components in the establishment of organelle identity and dynamics. Finally, anionic lipids also act as signaling molecules, as they are rapidly produced or interconverted by a set of dedicated enzymes. As such, anionic lipids are major regulators of many fundamental cellular processes, including cell signaling, cell division, membrane trafficking, cell growth, and gene expression. In this review, we describe the functions of anionic lipids from a cellular perspective. Using the localization of each anionic lipid and its related metabolic enzymes as starting points, we summarize their roles within the different compartments of the endomembrane system and address their associated developmental and physiological consequences.
Collapse
Affiliation(s)
- Lise C Noack
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure (ENS) de Lyon, L'Université Claude Bernard (UCB) Lyon 1, CNRS, INRAE, 69342 Lyon, France; ,
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure (ENS) de Lyon, L'Université Claude Bernard (UCB) Lyon 1, CNRS, INRAE, 69342 Lyon, France; ,
| |
Collapse
|
47
|
Shuai L, Li L, Sun J, Liao L, Duan Z, Li C, He X. Role of phospholipase C in banana in response to anthracnose infection. Food Sci Nutr 2020; 8:1038-1045. [PMID: 32148812 PMCID: PMC7020292 DOI: 10.1002/fsn3.1388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022] Open
Abstract
Phospholipase C (PLC) plays an important role in plant immunity, and anthracnose caused by the Colletotrichum species is a common postharvest disease of the banana fruit. This study aims to evaluate the role of PLC in anthrax resistance in banana. The experimental group of banana samples was treated with a banana anthracnose conidia suspension, and the control group was treated with distilled water. After inoculation, the groups were sprayed with ethephon, and indicators, such as hardness and conductivity changes; PLC activity, 1,2-diacylglycerol (DAG) and phosphatidic acid (PA)content; and MaPLC-1and MaPLC-2 expression levels, were assessed at 0, 3, 6, 9, 12, and 15 days. Moreover, the expression levels of MaPLC-1 and MaPLC-2 were detected in various tissues. The hardness of banana fruits in the experimental group decreased faster than that in the control group. Furthermore, the conductivity was higher in the experimental group than in the control group. Regarding PLC activity, DAG, and PA content, bananas in the experimental group showed higher activities than those in the control group. Moreover, relatively higher expression of PLC mRNA was detected in anthracnose-inoculated tissues. The evaluation of MaPLC-1 and MaPLC-2 expression levels showed that the mature peel had the highest MaPLC-1 expression level. However, the MaPLC-2 gene was expressed at relatively low levels in the fruit and at relatively high levels in the flower organs. PLC might play a role in fruit ripening in response to anthracnose resistance.
Collapse
Affiliation(s)
- Liang Shuai
- Guangxi Crop Genetic Improvement and Biotechnology Key LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouGuangxiChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyGuangxi Academy of Agricultural SciencesNanningChina
| | - Li Li
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyGuangxi Academy of Agricultural SciencesNanningChina
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Jian Sun
- Guangxi Crop Genetic Improvement and Biotechnology Key LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyGuangxi Academy of Agricultural SciencesNanningChina
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Lingyan Liao
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouGuangxiChina
| | - Zhenhua Duan
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouGuangxiChina
| | - Changbao Li
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyGuangxi Academy of Agricultural SciencesNanningChina
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Xuemei He
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyGuangxi Academy of Agricultural SciencesNanningChina
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| |
Collapse
|
48
|
Salvaing J, Botella C, Albrieux C, Gros V, Block MA, Jouhet J. PUB11-Dependent Ubiquitination of the Phospholipid Flippase ALA10 Modifies ALA10 Localization and Affects the Pool of Linolenic Phosphatidylcholine. FRONTIERS IN PLANT SCIENCE 2020; 11:1070. [PMID: 32760418 PMCID: PMC7373794 DOI: 10.3389/fpls.2020.01070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/29/2020] [Indexed: 05/02/2023]
Abstract
Biogenesis of photosynthetic membranes depends on galactolipid synthesis, which relies on several cell compartments, notably the endoplasmic reticulum (ER) and the chloroplast envelope. Galactolipid synthesis involves lipid trafficking between both membrane compartments. In Arabidopsis, ALA10, a phospholipid flippase of the P4 type-ATPase family, counteracts the limitation of monogalactosyldiacylglycerol (MGDG) production and has a positive effect on leaf development. ALA10 locates in distinct domains of the ER depending on the ALIS (ALA interacting subunit) subunit it interacts with: close to the plasma membrane with ALIS1, or next to chloroplasts with ALIS5. It interacts with FAD2 (Fatty acid desaturase 2) and prevents accumulation of linolenic (18:3) containing phosphatidylcholine (PC) stimulating an increase of MGDG synthesis. Here we report that ALA10 interacts with PUB11 (plant U-box type 11), an E3 protein ubiquitin ligase, in vitro and in vivo. ALA10 is however ubiquitinated and degraded by the 26S proteasome in a PUB11-independent process. In pub11 null mutant, the proteasome-dependent degradation of ALA10 is retained and ALA10 is still subject to ubiquitination although its ubiquitination profile appears different. In the absence of PUB11, ALA10 is constrained to the ER close to chloroplasts, which is the usual location when ALA10 is overexpressed. Additionally, in this condition, the decrease of 18:3 containing PC is no longer observed. Taken together these results suggest, that ALA10 contributes in chloroplast-distal ER interacting domains, to reduce the 18:3 desaturation of PC and that PUB11 is involved in reconditioning of ALA10 from chloroplast-proximal to chloroplast-distal ER interacting domains.
Collapse
|
49
|
Palmgren M, Østerberg JT, Nintemann SJ, Poulsen LR, López-Marqués RL. Evolution and a revised nomenclature of P4 ATPases, a eukaryotic family of lipid flippases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1135-1151. [DOI: 10.1016/j.bbamem.2019.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/15/2022]
|
50
|
Nintemann SJ, Palmgren M, López-Marqués RL. Catch You on the Flip Side: A Critical Review of Flippase Mutant Phenotypes. TRENDS IN PLANT SCIENCE 2019; 24:468-478. [PMID: 30885637 DOI: 10.1016/j.tplants.2019.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 05/05/2023]
Abstract
Lipid flippases are integral membrane proteins that use ATP hydrolysis to power the generation of phospholipid asymmetry between the two leaflets of biological membranes, a process essential for cell survival. Although the first report of a plant lipid flippase was published in 2000, progress in the field has been slow, partially due to the high level of redundancy in this gene family. However, recently an increasing number of reports have examined the physiological function of lipid flippases, mainly in Arabidopsis thaliana. In this review we aim to summarize recent findings on the physiological relevance of lipid flippases in plant adaptation to a changing environment and caution against misinterpretation of pleiotropic effects in genetic studies of flippases.
Collapse
Affiliation(s)
- Sebastian J Nintemann
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Rosa Laura López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark; https://plen.ku.dk/english/research/transport_biology/blf/.
| |
Collapse
|