1
|
Bali S, Mohapatra S, Michael R, Arora R, Dogra V. Plastidial metabolites and retrograde signaling: A case study of MEP pathway intermediate MEcPP that orchestrates plant growth and stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109747. [PMID: 40073740 DOI: 10.1016/j.plaphy.2025.109747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Plants are frequently exposed to environmental stresses. In a plant cell, chloroplast acts as machinery that rapidly senses changing environmental conditions and coordinates with the nucleus and other subcellular organelles by exchanging plastidial metabolites, proteins/peptides, or lipid derivatives, some of which may act as retrograde signals. These specific plastidial metabolites include carotenoid derivatives, isoprenes, phosphoadenosines, tetrapyrroles, phytohormone (like salicylic acid), and reactive electrophile species (RES), which mediate retrograde communications to sustain stress conditions. The methylerythritol phosphate (MEP) pathway is an essential and evolutionarily conserved isoprenoid biosynthetic pathway operating in bacteria and plastids, synthesizing metabolites such as terpenoids, gibberellins, abscisic acid, phytol chain of chlorophyll, carotenoids, tocopherols, and glycosides. The MEP pathway is susceptible to oxidative stress, which results in the overaccumulation of its intermediates, such as methylerythritol cyclodiphosphate (MEcPP). Recent studies revealed that under stress conditions, leading to its accumulation, MEcPP mediates retrograde signaling that alters the nuclear gene expression, leading to growth inhibition and acclimation. This review covers aspects of its generation, signaling, mechanism of action, and interplay with other factors to acquire adaptive responses during stress conditions. The review highlights the importance of plastids as sensors of stress and plastidial metabolites as retrograde signals communicating with nucleus and other sub-cellular organelles to regulate plants' response to different stress conditions.
Collapse
Affiliation(s)
- Shagun Bali
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, 176061, Himachal Pradesh, India
| | - Sumanta Mohapatra
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul Michael
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, 176061, Himachal Pradesh, India
| | - Rashmi Arora
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vivek Dogra
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Jeong J, Lee Y, Choi G. Both phytochrome A and phyB interact with PHYTOCHROME-INTERACTING FACTORs through an evolutionary conserved phy OPM-APA interaction. Nat Commun 2025; 16:3946. [PMID: 40287465 PMCID: PMC12033333 DOI: 10.1038/s41467-025-59327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Phytochrome A (phyA) and phyB are red and far-red photoreceptors that interact with PHYTOCHROME-INTERACTING FACTORs (PIFs) via active phyA-binding (APA) or active phyB-binding (APB) motifs. While APB interacts with the N-terminal photosensory module of phyB (phyBPSM), it remains unclear whether APA interacts with phyAPSM. We report that both phyA and phyB interact with APA through C-terminal output module of phy (phyOPM), while phyB interacts additionally with APB through phyBPSM. Marchantia Mp-phy also interacts with PIFs via the phyOPM-APA interaction. The phyBOPM-APA interaction promotes PIF3 degradation but not mutual phyB destruction. The full-length phy-APA interaction is light-dependent, whereas the underlying phyOPM-APA interaction is not. We show that the Pr form, not the Pfr, of phyPSM competes with APA for phyOPM binding, explaining how the light-dependent phy-APA interaction arises from the light-independent phyOPM-APA interaction. Together, our results suggest that the phyOPM-APA interaction is an ancient feature conserved in both Arabidopsis phyA, phyB and Marchantia Mp-phy.
Collapse
Affiliation(s)
- Jaehoon Jeong
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Yongju Lee
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon, Korea.
| |
Collapse
|
3
|
Patnaik A, Mishra P, Dash A, Panigrahy M, Panigrahi KCS. Evolution of light-dependent functions of GIGANTEA. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:819-835. [PMID: 39499031 DOI: 10.1093/jxb/erae441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
GIGANTEA (GI) is a multifaceted plant-specific protein that originated in a streptophyte ancestor. The current known functions of GI include circadian clock control, light signalling, flowering time regulation, stomata response, chloroplast biogenesis, accumulation of anthocyanin, chlorophyll, and starch, phytohormone signalling, senescence, and response to drought, salt, and oxidative stress. Six decades since its discovery, no functional domains have been defined, and its mechanism of action is still not well characterized. In this review, we explore the functional evolution of GI to distinguish between ancestral and more recently acquired roles. GI integrated itself into various existing signalling pathways of the circadian clock, blue light, photoperiod, and osmotic and oxidative stress response. It also evolved parallelly to acquire new functions for chloroplast accumulation, red light signalling, and anthocyanin production. In this review, we have encapsulated the known mechanisms of various biological functions of GI, and cast light on the evolution of GI in the plant lineage.
Collapse
Affiliation(s)
- Alena Patnaik
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Khorda, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, India
| | - Priyanka Mishra
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India
| | - Anish Dash
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Khorda, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, India
| | - Madhusmita Panigrahy
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Khorda, Odisha 752050, India
- Institute of Agricultural Sciences, Siksha 'O' Anusandhan University, Odisha 751003, India
| | - Kishore C S Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Khorda, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, India
| |
Collapse
|
4
|
Poirier MC, Fugard K, Cvetkovska M. Light quality affects chlorophyll biosynthesis and photosynthetic performance in Antarctic Chlamydomonas. PHOTOSYNTHESIS RESEARCH 2025; 163:9. [PMID: 39832016 DOI: 10.1007/s11120-024-01127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
The perennially ice-covered Lake Bonney in Antarctica has been deemed a natural laboratory for studying life at the extreme. Photosynthetic algae dominate the lake food webs and are adapted to a multitude of extreme conditions including perpetual shading even at the height of the austral summer. Here we examine how the unique light environment in Lake Bonney influences the physiology of two Chlamydomonas species. Chlamydomonas priscui is found exclusively in the deep photic zone where it receives very low light levels biased in the blue part of the spectrum (400-500 nm). In contrast, Chlamydomonas sp. ICE-MDV is represented at various depths within the water column (including the bright surface waters), and it receives a broad range of light levels and spectral wavelengths. The psychrophilic character of both species makes them an ideal system to study the effects of light quality and quantity on chlorophyll biosynthesis and photosynthetic performance in extreme conditions. We show that the shade-adapted C. priscui exhibits a decreased ability to accumulate chlorophyll and severe photoinhibition when grown under red light compared to blue light. These effects are particularly pronounced under red light of higher intensity, suggesting a loss of capability to acclimate to varied light conditions. In contrast, ICE-MDV has retained the ability to synthesize chlorophyll and maintain photosynthetic efficiency under a broader range of light conditions. Our findings provide insights into the mechanisms of photosynthesis under extreme conditions and have implications on algal survival in changing conditions of Antarctic ice-covered lakes.
Collapse
Affiliation(s)
- Mackenzie C Poirier
- Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada
| | - Kassandra Fugard
- Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada
| | - Marina Cvetkovska
- Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
5
|
Catarino B, Andrade L, Cordeiro AM, Carvalho P, Barros PM, Blázquez MA, Saibo NJM. Light and temperature signals are integrated through a phytochrome B-dependent gene regulatory network in rice. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:562-575. [PMID: 39374096 DOI: 10.1093/jxb/erae402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Angiosperms are the most dominant land plant flora and have colonized most of the terrestrial habitats, thriving in different environmental conditions, among which light and temperature play a crucial role. In the eudicot Arabidopsis thaliana, light and temperature are integrated into a phytochrome B (phyB)-dependent signalling network that regulates development. However, whether this signal integration controls the development in other angiosperm lineages and whether phyB is a conserved hub of this integratory network in angiosperms is unclear. We used a combination of phylogenetic, phenotypic, and transcriptomic analyses to understand the phyB-dependent light and temperature integratory network in the monocot Oryza sativa and infer its conservation in angiosperms. Here, we showed that light and temperature co-regulate rice growth through a phyB-dependent regulatory network that shares conserved features between O. sativa and A. thaliana. Despite the conservation of the components of this regulatory network, the transcriptional regulation between the components has changed qualitatively since monocots and eudicots diverged (~192-145 million years ago). The evolutionary flexibility of this integratory network might underlie the successful adaptation of plants to diverse ecological niches. Furthermore, our findings provide promising candidate genes whose activity and expression can be fine-tuned to improve plant growth and productivity in a warming planet.
Collapse
Affiliation(s)
- Bruno Catarino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Luís Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André M Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Pedro Carvalho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Pedro M Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Nelson J M Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
6
|
Cvetkovska M. Algae use the underwater light spectrum to sense depth. Nature 2025; 637:553-554. [PMID: 39695286 DOI: 10.1038/d41586-024-04079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
|
7
|
Zhang X, Bai S, Min H, Cui Y, Sun Y, Feng Y. Evolutionary dynamics of nitrate uptake, assimilation, and signalling in plants: adapting to a changing environment. PHYSIOLOGIA PLANTARUM 2025; 177:e70069. [PMID: 39835489 DOI: 10.1111/ppl.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Nitrogen (N) is a crucial macronutrient for plant growth, with nitrate as a primary inorganic N source for most plants. Beyond its role as a nutrient, nitrate also functions as a signalling molecule, influencing plant morphogenetic development. While nitrate utilization and signalling mechanisms have been extensively studied in model plants, the origin, evolution, and diversification of core components in nitrate uptake, assimilation, and signalling remain largely unexplored. In our investigation, we discovered that deep sea algae living in low nitrate conditions developed a high-affinity transport system (HATS) for nitrate uptake and a pathway of nitrate primary assimilation (NR-NiR-GS-GOGAT). In contrast, low-affinity transport systems (LATS) and the plastid GS originated from the ancestors of land and seed plants, respectively. These adaptations facilitated amino acid acquisition as plants conquered terrestrial environments. Furthermore, the intricate nitrate signalling, relying on NRT1.1 and NLP7, evolved stepwise, potentially establishing systematic regulation in bryophytes for self-regulation under complex terrestrial nitrate environments. As plants underwent terrestrialization, they underwent adaptive changes to thrive in dynamic nitrate environments, continually enhancing their nitrate uptake, assimilation, and signal transduction abilities.
Collapse
Affiliation(s)
- Xiaojia Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Shufeng Bai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Hui Min
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Yuxuan Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Yibo Sun
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Yulong Feng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| |
Collapse
|
8
|
Tian S, Zhang S, Xu F, Sun Q, Xu G, Ni M. The evening complex component ELF3 recruits H3K4me3 demethylases to repress PHYTOCHROME INTERACTING FACTOR4 and 5 in Arabidopsis. THE PLANT CELL 2024; 37:koaf014. [PMID: 39880018 PMCID: PMC11779311 DOI: 10.1093/plcell/koaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025]
Abstract
In Arabidopsis (Arabidopsis thaliana), light and circadian clock signaling converge on PHYTOCHROME-INTERACTING FACTORS (PIFs) 4 and 5 to produce a daily rhythm of hypocotyl elongation. PIF4 and PIF5 expression is repressed at dusk by the evening complex (EC), consisting of EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO (LUX). Here, we report that ELF3 recruits the JUMONJI (JMJ) H3K4me3 demethylases JMJ17 and JMJ18 to the PIF4 and PIF5 loci in the evening to remove their H3K4me3 marks. The association of JMJ17 and JMJ18 with the 2 genomic loci depends on the EC, and the H3K4me3 marks are enriched in the elf3 and jmj17 jmj18 mutants. Half of the globally differentially expressed genes are overlapping in elf3 and jmj17 jmj18. Cleavage Under Targets and Tagmentation sequencing analysis identified 976 H3K4me3-enriched loci in elf3. Aligning the H3K4me3-enriched loci in elf3 to genes with increased expression in elf3 and jmj17 jmj18 identified 179 and 176 target loci, respectively. Half of the loci are targeted by both ELF3 and JMJ17/JMJ18. This suggests a strong connection between the 2 JMJ proteins and EC function. Our studies reveal that an array of key genes in addition to PIF4 and PIF5 are repressed by the EC through the H3K4me3 demethylation pathway.
Collapse
Affiliation(s)
- Shiyu Tian
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Shen Zhang
- Department of Plant and Microbial Biology, University of Minnesota at Twin Cities, Saint Paul, MN 55108, USA
| | - Fan Xu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Qingbin Sun
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Gang Xu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Min Ni
- Department of Plant and Microbial Biology, University of Minnesota at Twin Cities, Saint Paul, MN 55108, USA
| |
Collapse
|
9
|
Li X, Chen H, Yang S, Kumar V, Xuan YH. Phytochrome B promotes blast disease resistance and enhances yield in rice. PLANT PHYSIOLOGY 2024; 196:3023-3032. [PMID: 39404763 DOI: 10.1093/plphys/kiae509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/25/2024] [Indexed: 12/14/2024]
Abstract
Phytochromes are red/far-red light receptors that regulate various aspects of plant growth, development, and stress responses. The precise mechanism by which phytochrome B (PhyB)-mediated light signaling influences plant defense and development remains unclear. In this study, we showed that PhyB enhances rice (Oryza sativa) blast disease resistance, tillering, and grain size compared to wild-type plants. Notably, PhyB interacted with and degraded grassy tiller 1 (GT1), a negative regulator of tiller development. Knockdown of GT1 in a phyB background partially rescued the diminished tillering of phyB. However, GT1 negatively regulates rice resistance to blast, suggesting that PhyB degradation of GT1 promotes tillering but not blast resistance. Previously, PhyB was found to interact with and degrade phytochrome-interacting factor 15 (PIL15), a key regulator of seed development that reduces rice resistance to blast and seed size. pil15 mutation in phyB mutants rescued phyB seed size and blast resistance, suggesting that PhyB might interact with and degrade PIL15 to negatively regulate blast resistance and seed size. PIL15 directly activated sugar will be eventually exported transporter 2a (SWEET2a). sweet2a mutants were less susceptible to blast disease compared to wild type. Collectively, these data demonstrate that PhyB promotes rice yield and blast resistance by inhibiting the transcription factors GT1 and PIL15 and downstream signaling.
Collapse
Affiliation(s)
- Xinrui Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China
| | - Huan Chen
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Shuo Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Vikranth Kumar
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Yuan Hu Xuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Wang Z, Wang W, Zhao D, Song Y, Lin X, Shen M, Chi C, Xu B, Zhao J, Deng XW, Wang J. Light-induced remodeling of phytochrome B enables signal transduction by phytochrome-interacting factor. Cell 2024; 187:6235-6250.e19. [PMID: 39317197 DOI: 10.1016/j.cell.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
Phytochrome B (phyB) and phytochrome-interacting factors (PIFs) constitute a well-established signaling module critical for plants adapting to ambient light. However, mechanisms underlying phyB photoactivation and PIF binding for signal transduction remain elusive. Here, we report the cryo-electron microscopy (cryo-EM) structures of the photoactivated phyB or the constitutively active phyBY276H mutant in complex with PIF6, revealing a similar trimer. The light-induced configuration switch of the chromophore drives a conformational transition of the nearby tongue signature within the phytochrome-specific (PHY) domain of phyB. The resulting α-helical PHY tongue further disrupts the head-to-tail dimer of phyB in the dark-adapted state. These structural remodelings of phyB facilitate the induced-fit recognition of PIF6, consequently stabilizing the N-terminal extension domain and a head-to-head dimer of activated phyB. Interestingly, the phyB dimer exhibits slight asymmetry, resulting in the binding of only one PIF6 molecule. Overall, our findings solve a key question with respect to how light-induced remodeling of phyB enables PIF signaling in phytochrome research.
Collapse
Affiliation(s)
- Zhengdong Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, China; Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, China
| | - Wenfeng Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Didi Zhao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Yanping Song
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, China; Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoli Lin
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Meng Shen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Chi
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Bin Xu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Jun Zhao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Xing Wang Deng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, China; Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, China.
| | - Jizong Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, China.
| |
Collapse
|
11
|
Hughes J, Winkler A. New Insight Into Phytochromes: Connecting Structure to Function. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:153-183. [PMID: 39038250 DOI: 10.1146/annurev-arplant-070623-110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Red and far-red light-sensing phytochromes are widespread in nature, occurring in plants, algae, fungi, and prokaryotes. Despite at least a billion years of evolution, their photosensory modules remain structurally and functionally similar. Conversely, nature has found remarkably different ways of transmitting light signals from the photosensor to diverse physiological responses. We summarize key features of phytochrome structure and function and discuss how these are correlated, from how the bilin environment affects the chromophore to how light induces cellular signals. Recent advances in the structural characterization of bacterial and plant phytochromes have resulted in paradigm changes in phytochrome research that we discuss in the context of present-day knowledge. Finally, we highlight questions that remain to be answered and suggest some of the benefits of understanding phytochrome structure and function.
Collapse
Affiliation(s)
- Jon Hughes
- Department of Plant Physiology, Justus Liebig University, Giessen, Germany;
- Department of Physics, Free University of Berlin, Berlin, Germany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Graz, Austria;
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
12
|
Feng X, Zheng J, Irisarri I, Yu H, Zheng B, Ali Z, de Vries S, Keller J, Fürst-Jansen JMR, Dadras A, Zegers JMS, Rieseberg TP, Dhabalia Ashok A, Darienko T, Bierenbroodspot MJ, Gramzow L, Petroll R, Haas FB, Fernandez-Pozo N, Nousias O, Li T, Fitzek E, Grayburn WS, Rittmeier N, Permann C, Rümpler F, Archibald JM, Theißen G, Mower JP, Lorenz M, Buschmann H, von Schwartzenberg K, Boston L, Hayes RD, Daum C, Barry K, Grigoriev IV, Wang X, Li FW, Rensing SA, Ben Ari J, Keren N, Mosquna A, Holzinger A, Delaux PM, Zhang C, Huang J, Mutwil M, de Vries J, Yin Y. Genomes of multicellular algal sisters to land plants illuminate signaling network evolution. Nat Genet 2024; 56:1018-1031. [PMID: 38693345 PMCID: PMC11096116 DOI: 10.1038/s41588-024-01737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/25/2024] [Indexed: 05/03/2024]
Abstract
Zygnematophyceae are the algal sisters of land plants. Here we sequenced four genomes of filamentous Zygnematophyceae, including chromosome-scale assemblies for three strains of Zygnema circumcarinatum. We inferred traits in the ancestor of Zygnematophyceae and land plants that might have ushered in the conquest of land by plants: expanded genes for signaling cascades, environmental response, and multicellular growth. Zygnematophyceae and land plants share all the major enzymes for cell wall synthesis and remodifications, and gene gains shaped this toolkit. Co-expression network analyses uncover gene cohorts that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.
Collapse
Affiliation(s)
- Xuehuan Feng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jinfang Zheng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Zhejiang Lab, Hangzhou, China
| | - Iker Irisarri
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany
- Section Phylogenomics, Centre for Molecular biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Zoological Museum Hamburg, Hamburg, Germany
| | - Huihui Yu
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE, USA
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Yunnan, China
| | - Bo Zheng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Zahin Ali
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Sophie de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, France
| | - Janine M R Fürst-Jansen
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Armin Dadras
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Jaccoline M S Zegers
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Tim P Rieseberg
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Amra Dhabalia Ashok
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Tatyana Darienko
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Maaike J Bierenbroodspot
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Lydia Gramzow
- University of Jena, Matthias Schleiden Institute/Genetics, Jena, Germany
| | - Romy Petroll
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Institute for Mediterranean and Subtropical Horticulture 'La Mayora', Málaga, Spain
| | - Orestis Nousias
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tang Li
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Elisabeth Fitzek
- Computational Biology, Department of Biology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - W Scott Grayburn
- Northern Illinois University, Molecular Core Lab, Department of Biological Sciences, DeKalb, IL, USA
| | - Nina Rittmeier
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Innsbruck, Austria
| | - Charlotte Permann
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Innsbruck, Austria
| | - Florian Rümpler
- University of Jena, Matthias Schleiden Institute/Genetics, Jena, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Günter Theißen
- University of Jena, Matthias Schleiden Institute/Genetics, Jena, Germany
| | - Jeffrey P Mower
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE, USA
| | - Maike Lorenz
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Experimental Phycology and Culture Collection of Algae at Goettingen University, Goettingen, Germany
| | - Henrik Buschmann
- University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, Mittweida, Germany
| | - Klaus von Schwartzenberg
- Universität Hamburg, Institute of Plant Science and Microbiology, Microalgae and Zygnematophyceae Collection Hamburg and Aquatic Ecophysiology and Phycology, Hamburg, Germany
| | - Lori Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Richard D Hayes
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Xiyin Wang
- North China University of Science and Technology, Tangshan, China
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- University of Freiburg, Centre for Biological Signalling Studies (BIOSS), Freiburg, Germany
| | - Julius Ben Ari
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Noa Keren
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Assaf Mosquna
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Innsbruck, Austria
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, France
| | - Chi Zhang
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE, USA
- University of Nebraska-Lincoln, School of Biological Sciences, Lincoln, NE, USA
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC, USA
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Marek Mutwil
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Jan de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany.
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany.
- University of Goettingen, Goettingen Center for Molecular Biosciences, Goettingen, Germany.
| | - Yanbin Yin
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
13
|
Viczián A, Nagy F. Phytochrome B phosphorylation expanded: site-specific kinases are identified. THE NEW PHYTOLOGIST 2024; 241:65-72. [PMID: 37814506 DOI: 10.1111/nph.19314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
The phytochrome B (phyB) photoreceptor is a key participant in red and far-red light sensing, playing a dominant role in many developmental and growth responses throughout the whole life of plants. Accordingly, phyB governs diverse signaling pathways, and although our knowledge about these pathways is constantly expanding, our view about their fine-tuning is still rudimentary. Phosphorylation of phyB is one of the relevant regulatory mechanisms, and - despite the expansion of the available methodology - it is still not easy to examine. Phosphorylated phytochromes have been detected using various techniques for decades, but the first phosphorylated phyB residues were only identified in 2013. Since then, concentrated attention has been turned toward the functional role of post-translational modifications in phyB signaling. Very recently in 2023, the first kinases that phosphorylate phyB were identified. These discoveries opened up new research avenues, especially by connecting diverse environmental impacts to light signaling and helping to explain some long-term unsolved problems such as the co-action of Ca2+ and phyB signaling. This review summarizes our recent views about the roles of the identified phosphorylated phyB residues, what we know about the enzymes that modulate the phospho-state of phyB, and how these recent discoveries impact future investigations.
Collapse
Affiliation(s)
- András Viczián
- Laboratory of Photo- and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, H-6726, Hungary
| | - Ferenc Nagy
- Laboratory of Photo- and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, H-6726, Hungary
| |
Collapse
|
14
|
Gao Q, Hu S, Wang X, Han F, Luo H, Liu Z, Kang C. The red/far-red light photoreceptor FvePhyB regulates tissue elongation and anthocyanin accumulation in woodland strawberry. HORTICULTURE RESEARCH 2023; 10:uhad232. [PMID: 38143485 PMCID: PMC10745270 DOI: 10.1093/hr/uhad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/01/2023] [Indexed: 12/26/2023]
Abstract
Light is an important environmental signal that influences plant growth and development. Among the photoreceptors, phytochromes can sense red/far-red light to coordinate various biological processes. However, their functions in strawberry are not yet known. In this study, we identified an EMS mutant, named P8, in woodland strawberry (Fragaria vesca) that showed greatly increased plant height and reduced anthocyanin content. Mapping-by-sequencing revealed that the causal mutation in FvePhyB leads to premature termination of translation. The light treatment assay revealed that FvePhyB is a bona fide red/far-red light photoreceptor, as it specifically inhibits hypocotyl length under red light. Transcriptome analysis showed that the FvePhyB mutation affects the expression levels of genes involved in hormone synthesis and signaling and anthocyanin biosynthesis in petioles and fruits. The srl mutant with a longer internode is caused by a mutation in the DELLA gene FveRGA1 (Repressor of GA1) in the gibberellin pathway. We found that the P8 srl double mutant has much longer internodes than srl, suggesting a synergistic role of FvePhyB and FveRGA1 in this process. Taken together, these results demonstrate the important role of FvePhyB in regulating plant architecture and anthocyanin content in woodland strawberry.
Collapse
Affiliation(s)
- Qi Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaoqiang Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiaoli Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Fu Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Huifeng Luo
- Institute of Horticulture, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Chunying Kang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
15
|
Pi K, Luo J, Lu A, Chen G, Long B, Zhang J, Mo Z, Duan L, Liu R. Negative regulation of tobacco cold stress tolerance by NtPhyA. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108153. [PMID: 37931558 DOI: 10.1016/j.plaphy.2023.108153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Cold stress is a non-biological stressor that adversely affects tobacco yield and leaf quality. Plant photoreceptor proteins, which function as dual light-temperature sensors, play a vital role in temperature changes, making them crucial for responses to non-biological stressors. However, the regulatory mechanisms of PhyA in tobacco remain poorly understood. Therefore, in this study, we aimed to clone the NtPhyA gene from tobacco and generate overexpression (OE-NtPhyA) and mutant (KO-NtPhyA) constructs of NtPhyA. By assessing the physiological and biochemical responses of the mutants under cold stress and performing transcriptome sequencing, we determined the signalling mechanism of NtPhyA under cold stress. Comparative analysis with wild-type (WT) NtPhyA revealed that KO-NtPhyA exhibited increased seed germination rates and reduced wilting under cold stress. In additional, the degree of damage to leaf cells, cell membranes, and stomatal structures was mitigated, and the levels of reactive oxygen species (ROS) were significantly decreased. Antioxidant enzyme activity, net photosynthetic rate, and Fv/Fm were significantly enhanced in KO-NtPhyA, whereas the opposite effects were observed in OE-NtPhyA. These findings indicate that KO-NtPhyA augments tobacco tolerance to cold stress, implying a negative regulatory role of NtPhyA in tobacco during cold stress. Transcriptome analysis revealed that NtPhyA governs the expression of a cascade of genes involved in the response to oxygen-containing compounds, hydrogen peroxide (H2O2), ROS, temperature stimuli, photosystem II oxygen-evolving complex assembly, water channel activity, calcium channel activity, and carbohydrate transport. Collectively, our findings indicate that NtPhyA activates downstream gene expression to enhance the resilience of tobacco to cold stress.
Collapse
Affiliation(s)
- Kai Pi
- College of Tobacco, Guizhou University, Guiyang, 550025, PR China; Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, Guiyang, 550025, PR China
| | - Jiajun Luo
- College of Tobacco, Guizhou University, Guiyang, 550025, PR China; Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, Guiyang, 550025, PR China
| | - Anbin Lu
- College of Tobacco, Guizhou University, Guiyang, 550025, PR China; Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, Guiyang, 550025, PR China
| | - Gang Chen
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Benshan Long
- College of Tobacco, Guizhou University, Guiyang, 550025, PR China; Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, Guiyang, 550025, PR China
| | - Jingyao Zhang
- College of Tobacco, Guizhou University, Guiyang, 550025, PR China; Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, Guiyang, 550025, PR China
| | - Zejun Mo
- College of Tobacco, Guizhou University, Guiyang, 550025, PR China; Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, Guiyang, 550025, PR China; College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Lili Duan
- College of Tobacco, Guizhou University, Guiyang, 550025, PR China; Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, Guiyang, 550025, PR China; College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Renxiang Liu
- College of Tobacco, Guizhou University, Guiyang, 550025, PR China; Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
16
|
Pashkovskiy P, Khalilova L, Vereshchagin M, Voronkov A, Ivanova T, Kosobryukhov AA, Allakhverdiev SI, Kreslavski VD, Kuznetsov VV. Impact of varying light spectral compositions on photosynthesis, morphology, chloroplast ultrastructure, and expression of light-responsive genes in Marchantia polymorpha. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108044. [PMID: 37776673 DOI: 10.1016/j.plaphy.2023.108044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/18/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
Marchantia polymorpha is a convenient model for studying light of different spectral compositions on various physiological and biochemical processes because its photoreceptor system is vastly simplified. The influence of red light (RL, 660 nm), far-red light (FRL, 730 nm), blue light (BL, 450 nm), and green light (GL, 525 nm) compared to white light (high-pressure sodium light (HPSL), white LEDs (WL 450 + 580 nm) and white fluorescent light (WFL) on photosynthetic and transpiration rates, photosystem II (PSII) activity, photomorphogenesis, and the expression of light and hormonal signaling genes was studied. The ultrastructure of the chloroplasts in different tissues of the gametophyte M. polymorpha was examined. FRL led to the formation of agranal chloroplasts (in the epidermis and the chlorenchyma) with a high starch content (in the parenchyma), which led to a reduced intensity of photosynthesis. BL increased the transcription of genes for the biosynthesis of secondary metabolites - chalcone synthase (CHS), cellulose synthase (CELL), and L-ascorbate peroxidase (APOX3), which is consistent with the increased activity of low-molecular weight antioxidants. FRL increased the expression of phytochrome apoprotein (PHY) and cytokinin oxidase (CYTox) genes, but the expression of the phytochrome interacting factor (PIF) gene decreased, which was accompanied by a significant change in gametophyte morphology. Analysis of crosstalk gene expression, and changes in morphology and photosynthetic activity was carried out.
Collapse
Affiliation(s)
- Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - Lyudmila Khalilova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - Mikhail Vereshchagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - Alexander Voronkov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - Tatiana Ivanova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - Anatoliy A Kosobryukhov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, 142290, Russia.
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - Vladimir D Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, 142290, Russia.
| | - Vladimir V Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| |
Collapse
|
17
|
Frascogna F, Ledermann B, Hartmann J, Pérez Patallo E, Zeqiri F, Hofmann E, Frankenberg-Dinkel N. On the evolution of the plant phytochrome chromophore biosynthesis. PLANT PHYSIOLOGY 2023; 193:246-258. [PMID: 37311159 DOI: 10.1093/plphys/kiad327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
Phytochromes are biliprotein photoreceptors present in plants, algae, certain bacteria, and fungi. Land plant phytochromes use phytochromobilin (PΦB) as the bilin chromophore. Phytochromes of streptophyte algae, the clade within which land plants evolved, employ phycocyanobilin (PCB), leading to a more blue-shifted absorption spectrum. Both chromophores are synthesized by ferredoxin-dependent bilin reductases (FDBRs) starting from biliverdin IXα (BV). In cyanobacteria and chlorophyta, BV is reduced to PCB by the FDBR phycocyanobilin:ferredoxin oxidoreductase (PcyA), whereas, in land plants, BV is reduced to PФB by phytochromobilin synthase (HY2). However, phylogenetic studies suggested the absence of any ortholog of PcyA in streptophyte algae and the presence of only PФB biosynthesis-related genes (HY2). The HY2 of the streptophyte alga Klebsormidium nitens (formerly Klebsormidium flaccidum) has already indirectly been indicated to participate in PCB biosynthesis. Here, we overexpressed and purified a His6-tagged variant of K. nitens HY2 (KflaHY2) in Escherichia coli. Employing anaerobic bilin reductase activity assays and coupled phytochrome assembly assays, we confirmed the product and identified intermediates of the reaction. Site-directed mutagenesis revealed 2 aspartate residues critical for catalysis. While it was not possible to convert KflaHY2 into a PΦB-producing enzyme by simply exchanging the catalytic pair, the biochemical investigation of 2 additional members of the HY2 lineage enabled us to define 2 distinct clades, the PCB-HY2 and the PΦB-HY2 clade. Overall, our study gives insight into the evolution of the HY2 lineage of FDBRs.
Collapse
Affiliation(s)
- Federica Frascogna
- Department of Microbiology, University of Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Benjamin Ledermann
- Department of Microbiology, University of Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Jana Hartmann
- Department of Microbiology, University of Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Eugenio Pérez Patallo
- Department of Microbiology, University of Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Fjoralba Zeqiri
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44780, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44780, Germany
| | | |
Collapse
|
18
|
Qiu X, Sun G, Liu F, Hu W. Functions of Plant Phytochrome Signaling Pathways in Adaptation to Diverse Stresses. Int J Mol Sci 2023; 24:13201. [PMID: 37686008 PMCID: PMC10487518 DOI: 10.3390/ijms241713201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Phytochromes are receptors for red light (R)/far-red light (FR), which are not only involved in regulating the growth and development of plants but also in mediated resistance to various stresses. Studies have revealed that phytochrome signaling pathways play a crucial role in enabling plants to cope with abiotic stresses such as high/low temperatures, drought, high-intensity light, and salinity. Phytochromes and their components in light signaling pathways can also respond to biotic stresses caused by insect pests and microbial pathogens, thereby inducing plant resistance against them. Given that, this paper reviews recent advances in understanding the mechanisms of action of phytochromes in plant resistance to adversity and discusses the importance of modulating the genes involved in phytochrome signaling pathways to coordinate plant growth, development, and stress responses.
Collapse
Affiliation(s)
- Xue Qiu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Guanghua Sun
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| |
Collapse
|
19
|
Burgie ES, Li H, Gannam ZTK, McLoughlin KE, Vierstra RD, Li H. The structure of Arabidopsis phytochrome A reveals topological and functional diversification among the plant photoreceptor isoforms. NATURE PLANTS 2023; 9:1116-1129. [PMID: 37291396 PMCID: PMC10546791 DOI: 10.1038/s41477-023-01435-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
Plants employ a divergent cohort of phytochrome (Phy) photoreceptors to govern many aspects of morphogenesis through reversible photointerconversion between inactive Pr and active Pfr conformers. The two most influential are PhyA whose retention of Pfr enables sensation of dim light, while the relative instability of Pfr for PhyB makes it better suited for detecting full sun and temperature. To better understand these contrasts, we solved, by cryo-electron microscopy, the three-dimensional structure of full-length PhyA as Pr. Like PhyB, PhyA dimerizes through head-to-head assembly of its C-terminal histidine kinase-related domains (HKRDs), while the remainder assembles as a head-to-tail light-responsive platform. Whereas the platform and HKRDs associate asymmetrically in PhyB dimers, these lopsided connections are absent in PhyA. Analysis of truncation and site-directed mutants revealed that this decoupling and altered platform assembly have functional consequences for Pfr stability of PhyA and highlights how plant Phy structural diversification has extended light and temperature perception.
Collapse
Affiliation(s)
- E Sethe Burgie
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Zira T K Gannam
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Katrice E McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
- Burning Rock Dx, Irvine, CA, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
20
|
Sharma A, Samtani H, Sahu K, Sharma AK, Khurana JP, Khurana P. Functions of Phytochrome-Interacting Factors (PIFs) in the regulation of plant growth and development: A comprehensive review. Int J Biol Macromol 2023:125234. [PMID: 37290549 DOI: 10.1016/j.ijbiomac.2023.125234] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
Transcription factors play important roles in governing plant responses upon changes in their ambient conditions. Any fluctuation in the supply of critical requirements for plants, such as optimum light, temperature, and water leads to the reprogramming of gene-signaling pathways. At the same time, plants also evaluate and shift their metabolism according to the various stages of development. Phytochrome-Interacting Factors are one of the most important classes of transcription factors that regulate both developmental and external stimuli-based growth of plants. This review focuses on the identification of PIFs in various organisms, regulation of PIFs by various proteins, functions of PIFs of Arabidopsis in diverse developmental pathways such as seed germination, photomorphogenesis, flowering, senescence, seed and fruit development, and external stimuli-induced plant responses such as shade avoidance response, thermomorphogenesis, and various abiotic stress responses. Recent advances related to the functional characterization of PIFs of crops such as rice, maize, and tomato have also been incorporated in this review, to ascertain the potential of PIFs as key regulators to enhance the agronomic traits of these crops. Thus, an attempt has been made to provide a holistic view of the function of PIFs in various processes in plants.
Collapse
Affiliation(s)
- Aishwarye Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Karishma Sahu
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Jitendra Paul Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
21
|
Cannon AE, Sabharwal T, Salmi ML, Chittari GK, Annamalai V, Leggett L, Morris H, Slife C, Clark G, Roux SJ. Two distinct light-induced reactions are needed to promote germination in spores of Ceratopteris richardii. FRONTIERS IN PLANT SCIENCE 2023; 14:1150199. [PMID: 37332704 PMCID: PMC10272463 DOI: 10.3389/fpls.2023.1150199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Germination of Ceratopteris richardii spores is initiated by light and terminates 3-4 days later with the emergence of a rhizoid. Early studies documented that the photoreceptor for initiating this response is phytochrome. However, completion of germination requires additional light input. If no further light stimulus is given after phytochrome photoactivation, the spores do not germinate. Here we show that a crucial second light reaction is required, and its function is to activate and sustain photosynthesis. Even in the presence of light, blocking photosynthesis with DCMU after phytochrome photoactivation blocks germination. In addition, RT-PCR showed that transcripts for different phytochromes are expressed in spores in darkness, and the photoactivation of these phytochromes results in the increased transcription of messages encoding chlorophyll a/b binding proteins. The lack of chlorophyll-binding protein transcripts in unirradiated spores and their slow accumulation makes it unlikely that photosynthesis is required for the initial light reaction. This conclusion is supported by the observation that the transient presence of DCMU, only during the initial light reaction, had no effect on germination. Additionally, the [ATP] in Ceratopteris richardii spores increased coincidentally with the length of light treatment during germination. Overall, these results support the conclusion that two distinct light reactions are required for the germination of Ceratopteris richardii spores.
Collapse
|
22
|
Bayram ÖS, Bayram Ö. An Anatomy of Fungal Eye: Fungal Photoreceptors and Signalling Mechanisms. J Fungi (Basel) 2023; 9:jof9050591. [PMID: 37233302 DOI: 10.3390/jof9050591] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Organisms have developed different features to capture or sense sunlight. Vertebrates have evolved specialized organs (eyes) which contain a variety of photosensor cells that help them to see the light to aid orientation. Opsins are major photoreceptors found in the vertebrate eye. Fungi, with more than five million estimated members, represent an important clade of living organisms which have important functions for the sustainability of life on our planet. Light signalling regulates a range of developmental and metabolic processes including asexual sporulation, sexual fruit body formation, pigment and carotenoid production and even production of secondary metabolites. Fungi have adopted three groups of photoreceptors: (I) blue light receptors, White Collars, vivid, cryptochromes, blue F proteins and DNA photolyases, (II) red light sensors, phytochromes and (III) green light sensors and microbial rhodopsins. Most mechanistic data were elucidated on the roles of the White Collar Complex (WCC) and the phytochromes in the fungal kingdom. The WCC acts as both photoreceptor and transcription factor by binding to target genes, whereas the phytochrome initiates a cascade of signalling by using mitogen-activated protein kinases to elicit its cellular responses. Although the mechanism of photoreception has been studied in great detail, fungal photoreception has not been compared with vertebrate vision. Therefore, this review will mainly focus on mechanistic findings derived from two model organisms, namely Aspergillus nidulans and Neurospora crassa and comparison of some mechanisms with vertebrate vision. Our focus will be on the way light signalling is translated into changes in gene expression, which influences morphogenesis and metabolism in fungi.
Collapse
Affiliation(s)
| | - Özgür Bayram
- Biology Department, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
23
|
Kim N, Jeong J, Kim J, Oh J, Choi G. Withdrawn as duplicate: Shade represses photosynthetic genes by disrupting the DNA binding of GOLDEN2-LIKE1. PLANT PHYSIOLOGY 2023; 192:680. [PMID: 36756693 PMCID: PMC10152669 DOI: 10.1093/plphys/kiad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 05/03/2023]
Abstract
This article has been withdrawn due to an error that caused the article to be duplicated. The definitive version of this article is published under DOI https://doi.org/10.1093/plphys/kiad029.
Collapse
Affiliation(s)
- Namuk Kim
- Department of Biological Sciences, KAIST, Daejeon
34141, Korea
| | - Jinkil Jeong
- Department of Biological Sciences, KAIST, Daejeon
34141, Korea
| | - Jeongheon Kim
- Department of Biological Sciences, KAIST, Daejeon
34141, Korea
| | - Jeonghwa Oh
- Department of Biological Sciences, KAIST, Daejeon
34141, Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon
34141, Korea
| |
Collapse
|
24
|
Shor E, Ravid J, Sharon E, Skaliter O, Masci T, Vainstein A. SCARECROW-like GRAS protein PES positively regulates petunia floral scent production. PLANT PHYSIOLOGY 2023; 192:409-425. [PMID: 36760164 PMCID: PMC10152688 DOI: 10.1093/plphys/kiad081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 05/03/2023]
Abstract
Emission of scent volatiles by flowers is important for successful pollination and consequently, reproduction. Petunia (Petunia hybrida) floral scent is formed mainly by volatile products of the phenylpropanoid pathway. We identified and characterized a regulator of petunia scent production: the GRAS protein PHENYLPROPANOID EMISSION-REGULATING SCARECROW-LIKE (PES). Its expression increased in petals during bud development and was highest in open flowers. Overexpression of PES increased the production of floral volatiles, while its suppression resulted in scent reduction. We showed that PES upregulates the expression of genes encoding enzymes of the phenylpropanoid and shikimate pathways in petals, and of the core regulator of volatile biosynthesis ODORANT1 by activating its promoter. PES is an ortholog of Arabidopsis (Arabidopsis thaliana) PHYTOCHROME A SIGNAL TRANSDUCTION 1, involved in physiological responses to far-red (FR) light. Analyses of the effect of nonphotosynthetic irradiation (low-intensity FR light) on petunia floral volatiles revealed FR light as a scent-activating factor. While PHYTOCHROME A regulated scent-related gene expression and floral scent production under FR light, the influence of PES on volatile production was not limited by FR light conditions.
Collapse
Affiliation(s)
- Ekaterina Shor
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Jasmin Ravid
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Elad Sharon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Oded Skaliter
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tania Masci
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Alexander Vainstein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
25
|
Balderrama D, Barnwell S, Carlson KD, Salido E, Guevara R, Nguyen C, Madlung A. Phytochrome F mediates red light responsiveness additively with phytochromes B1 and B2 in tomato. PLANT PHYSIOLOGY 2023; 191:2353-2366. [PMID: 36670526 PMCID: PMC10069882 DOI: 10.1093/plphys/kiad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Phytochromes are red light and far-red light sensitive, plant-specific light receptors that allow plants to orient themselves in space and time. Tomato (Solanum lycopersicum) contains a small family of five phytochrome genes, for which to date stable knockout mutants are only available for three of them. Using CRISPR technology, we created multiple alleles of SlPHYTOCHROME F (phyF) mutants to determine the function of this understudied phytochrome. We report that SlphyF acts as a red/far-red light reversible low fluence sensor, likely through the formation of heterodimers with SlphyB1 and SlphyB2. During photomorphogenesis, phyF functions additively with phyB1 and phyB2. Our data further suggest that phyB2 requires the presence of either phyB1 or phyF during seedling de-etiolation in red light, probably via heterodimerization, while phyB1 homodimers are required and sufficient to suppress hypocotyl elongation in red light. During the end-of-day far-red response, phyF works additively with phyB1 and phyB2. In addition, phyF plays a redundant role with phyB1 in photoperiod detection and acts additively with phyA in root patterning. Taken together, our results demonstrate various roles for SlphyF during seedling establishment, sometimes acting additively, other times acting redundantly with the other phytochromes in tomato.
Collapse
|
26
|
Kim N, Jeong J, Kim J, Oh J, Choi G. Shade represses photosynthetic genes by disrupting the DNA binding of GOLDEN2-LIKE1. PLANT PHYSIOLOGY 2023; 191:2334-2352. [PMID: 36702576 PMCID: PMC10069884 DOI: 10.1093/plphys/kiad029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
PHYTOCHROME-INTERACTING FACTORs (PIFs) repress photosynthetic genes partly by upregulating REPRESSOR OF PHOTOSYNTHETIC GENES 1 (RPGE1) and RPGE2. However, it is unknown how RPGEs inhibit gene expression at the molecular level. Here, we show that Arabidopsis (Arabidopsis thaliana) RPGE overexpression lines display extensive similarities to the golden2-like 1 (glk1)/glk2 double mutant at the phenotypic and transcriptomic levels, prompting us to hypothesize that there is a close molecular relationship between RPGEs and chloroplast development-regulating GLK transcription factors. Indeed, we found that RPGE1 disrupts the homodimerization of GLK1 by interacting with its dimerization domain and debilitates the DNA-binding activity of GLK1. The interaction was not restricted to the Arabidopsis RPGE1-GLK1 pair, but rather extended to RPGE-GLK homolog pairs across species, providing a molecular basis for the pale green leaves of Arabidopsis transgenic lines expressing a rice (Oryza sativa) RPGE homolog. Our discovery of RPGE-GLK regulatory pairs suggests that any condition leading to an increase in RPGE levels would decrease the expression levels of GLK target genes. Consistently, we found that shade, which upregulates the RPGE mRNA by stabilizing PIFs, represses the expression of photosynthetic genes partly by inhibiting the DNA-binding activity of GLK1. Taken together, these results indicate that RPGE-GLK regulatory pairs regulate photosynthetic gene expression downstream of PIFs.
Collapse
Affiliation(s)
- Namuk Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Jinkil Jeong
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Jeongheon Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Jeonghwa Oh
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| |
Collapse
|
27
|
Frangedakis E, Marron AO, Waller M, Neubauer A, Tse SW, Yue Y, Ruaud S, Waser L, Sakakibara K, Szövényi P. What can hornworts teach us? FRONTIERS IN PLANT SCIENCE 2023; 14:1108027. [PMID: 36968370 PMCID: PMC10030945 DOI: 10.3389/fpls.2023.1108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The hornworts are a small group of land plants, consisting of only 11 families and approximately 220 species. Despite their small size as a group, their phylogenetic position and unique biology are of great importance. Hornworts, together with mosses and liverworts, form the monophyletic group of bryophytes that is sister to all other land plants (Tracheophytes). It is only recently that hornworts became amenable to experimental investigation with the establishment of Anthoceros agrestis as a model system. In this perspective, we summarize the recent advances in the development of A. agrestis as an experimental system and compare it with other plant model systems. We also discuss how A. agrestis can help to further research in comparative developmental studies across land plants and to solve key questions of plant biology associated with the colonization of the terrestrial environment. Finally, we explore the significance of A. agrestis in crop improvement and synthetic biology applications in general.
Collapse
Affiliation(s)
| | - Alan O. Marron
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Manuel Waller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Anna Neubauer
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Sze Wai Tse
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Yuling Yue
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Stephanie Ruaud
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Lucas Waser
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | | | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| |
Collapse
|
28
|
Feng X, Zheng J, Irisarri I, Yu H, Zheng B, Ali Z, de Vries S, Keller J, Fürst-Jansen JM, Dadras A, Zegers JM, Rieseberg TP, Ashok AD, Darienko T, Bierenbroodspot MJ, Gramzow L, Petroll R, Haas FB, Fernandez-Pozo N, Nousias O, Li T, Fitzek E, Grayburn WS, Rittmeier N, Permann C, Rümpler F, Archibald JM, Theißen G, Mower JP, Lorenz M, Buschmann H, von Schwartzenberg K, Boston L, Hayes RD, Daum C, Barry K, Grigoriev IV, Wang X, Li FW, Rensing SA, Ari JB, Keren N, Mosquna A, Holzinger A, Delaux PM, Zhang C, Huang J, Mutwil M, de Vries J, Yin Y. Chromosome-level genomes of multicellular algal sisters to land plants illuminate signaling network evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526407. [PMID: 36778228 PMCID: PMC9915684 DOI: 10.1101/2023.01.31.526407] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The filamentous and unicellular algae of the class Zygnematophyceae are the closest algal relatives of land plants. Inferring the properties of the last common ancestor shared by these algae and land plants allows us to identify decisive traits that enabled the conquest of land by plants. We sequenced four genomes of filamentous Zygnematophyceae (three strains of Zygnema circumcarinatum and one strain of Z. cylindricum) and generated chromosome-scale assemblies for all strains of the emerging model system Z. circumcarinatum. Comparative genomic analyses reveal expanded genes for signaling cascades, environmental response, and intracellular trafficking that we associate with multicellularity. Gene family analyses suggest that Zygnematophyceae share all the major enzymes with land plants for cell wall polysaccharide synthesis, degradation, and modifications; most of the enzymes for cell wall innovations, especially for polysaccharide backbone synthesis, were gained more than 700 million years ago. In Zygnematophyceae, these enzyme families expanded, forming co-expressed modules. Transcriptomic profiling of over 19 growth conditions combined with co-expression network analyses uncover cohorts of genes that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.
Collapse
Affiliation(s)
- Xuehuan Feng
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| | - Jinfang Zheng
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| | - Iker Irisarri
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
- Section Phylogenomics, Centre for Molecular biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Zoological Museum Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Huihui Yu
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE 68588, USA
| | - Bo Zheng
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| | - Zahin Ali
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Sophie de Vries
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, 31326, France
| | - Janine M.R. Fürst-Jansen
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Armin Dadras
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Jaccoline M.S. Zegers
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tim P. Rieseberg
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Amra Dhabalia Ashok
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Maaike J. Bierenbroodspot
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Lydia Gramzow
- University of Jena, Matthias Schleiden Institute / Genetics, 07743, Jena, Germany
| | - Romy Petroll
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Fabian B. Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (UMA-CSIC)
| | - Orestis Nousias
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| | - Tang Li
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| | - Elisabeth Fitzek
- Computational Biology, Department of Biology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - W. Scott Grayburn
- Northern Illinois University, Molecular Core Lab, Department of Biological Sciences, DeKalb, IL 60115, USA
| | - Nina Rittmeier
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Sternwartestraße 15, A-6020 Innsbruck, Austria
| | - Charlotte Permann
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Sternwartestraße 15, A-6020 Innsbruck, Austria
| | - Florian Rümpler
- University of Jena, Matthias Schleiden Institute / Genetics, 07743, Jena, Germany
| | - John M. Archibald
- Dalhousie University, Department of Biochemistry and Molecular Biology, 5850 College Street, Halifax NS B3H 4R2, Canada
| | - Günter Theißen
- University of Jena, Matthias Schleiden Institute / Genetics, 07743, Jena, Germany
| | - Jeffrey P. Mower
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE 68588, USA
| | - Maike Lorenz
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Experimental Phycology and Culture Collection of Algae at Goettingen University (EPSAG), Nikolausberger Weg 18, 37073 Goettingen, Germany
| | - Henrik Buschmann
- University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, Technikumplatz 17, 09648 Mittweida, Germany
| | - Klaus von Schwartzenberg
- Universität Hamburg, Institute of Plant Science and Microbiology, Microalgae and Zygnematophyceae Collection Hamburg (MZCH) and Aquatic Ecophysiology and Phycology, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Lori Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Richard D. Hayes
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chris Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V. Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Xiyin Wang
- North China University of Science and Technology
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Cornell University, Plant Biology Section, Ithaca, NY, USA
| | - Stefan A. Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- University of Freiburg, Centre for Biological Signalling Studies (BIOSS), Freiburg, Germany
| | - Julius Ben Ari
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot 7610000, Israel
| | - Noa Keren
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot 7610000, Israel
| | - Assaf Mosquna
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot 7610000, Israel
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Sternwartestraße 15, A-6020 Innsbruck, Austria
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, 31326, France
| | - Chi Zhang
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE 68588, USA
- University of Nebraska-Lincoln, School of Biological Sciences, Lincoln, NE 68588, USA
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Marek Mutwil
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jan de Vries
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | - Yanbin Yin
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| |
Collapse
|
29
|
Choi DM, Kim SH, Han YJ, Kim JI. Regulation of Plant Photoresponses by Protein Kinase Activity of Phytochrome A. Int J Mol Sci 2023; 24:ijms24032110. [PMID: 36768431 PMCID: PMC9916439 DOI: 10.3390/ijms24032110] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Extensive research has been conducted for decades to elucidate the molecular and regulatory mechanisms for phytochrome-mediated light signaling in plants. As a result, tens of downstream signaling components that physically interact with phytochromes are identified, among which negative transcription factors for photomorphogenesis, PHYTOCHROME-INTERACTING FACTORs (PIFs), are well known to be regulated by phytochromes. In addition, phytochromes are also shown to inactivate an important E3 ligase complex consisting of CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSORs OF phyA-105 (SPAs). This inactivation induces the accumulation of positive transcription factors for plant photomorphogenesis, such as ELONGATED HYPOCOTYL 5 (HY5). Although many downstream components of phytochrome signaling have been studied thus far, it is not fully elucidated which intrinsic activity of phytochromes is necessary for the regulation of these components. It should be noted that phytochromes are autophosphorylating protein kinases. Recently, the protein kinase activity of phytochrome A (phyA) has shown to be important for its function in plant light signaling using Avena sativa phyA mutants with reduced or increased kinase activity. In this review, we highlight the function of phyA as a protein kinase to explain the regulation of plant photoresponses by phyA.
Collapse
Affiliation(s)
- Da-Min Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seong-Hyeon Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yun-Jeong Han
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
- Correspondence:
| |
Collapse
|
30
|
Sun C, He C, Zhong C, Liu S, Liu H, Luo X, Li J, Zhang Y, Guo Y, Yang B, Wang P, Deng X. Bifunctional regulators of photoperiodic flowering in short day plant rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1044790. [PMID: 36340409 PMCID: PMC9630834 DOI: 10.3389/fpls.2022.1044790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Photoperiod is acknowledged as a crucial environmental factor for plant flowering. According to different responses to photoperiod, plants were divided into short-day plants (SDPs), long-day plants (LDPs), and day-neutral plants (DNPs). The day length measurement system of SDPs is different from LDPs. Many SDPs, such as rice, have a critical threshold for day length (CDL) and can even detect changes of 15 minutes for flowering decisions. Over the last 20 years, molecular mechanisms of flowering time in SDP rice and LDP Arabidopsis have gradually clarified, which offers a chance to elucidate the differences in day length measurement between the two types of plants. In Arabidopsis, CO is a pivotal hub in integrating numerous internal and external signals for inducing photoperiodic flowering. By contrast, Hd1 in rice, the homolog of CO, promotes and prevents flowering under SD and LD, respectively. Subsequently, numerous dual function regulators, such as phytochromes, Ghd7, DHT8, OsPRR37, OsGI, OsLHY, and OsELF3, were gradually identified. This review assesses the relationship among these regulators and a proposed regulatory framework for the reversible mechanism, which will deepen our understanding of the CDL regulation mechanism and the negative response to photoperiod between SDPs and LDPs.
Collapse
Affiliation(s)
- Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Changcai He
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chao Zhong
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shihang Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hongying Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xu Luo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuxiu Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuting Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pingrong Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
31
|
Gururaj M, Ohmura A, Ozawa M, Yamano T, Fukuzawa H, Matsuo T. A potential EARLY FLOWERING 3 homolog in Chlamydomonas is involved in the red/violet and blue light signaling pathways for the degradation of RHYTHM OF CHLOROPLAST 15. PLoS Genet 2022; 18:e1010449. [PMID: 36251728 PMCID: PMC9612821 DOI: 10.1371/journal.pgen.1010449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 10/27/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Light plays a major role in resetting the circadian clock, allowing the organism to synchronize with the environmental day and night cycle. In Chlamydomonas the light-induced degradation of the circadian clock protein, RHYTHM OF CHLOROPLAST 15 (ROC15), is considered one of the key events in resetting the circadian clock. Red/violet and blue light signals have been shown to reach the clock via different molecular pathways; however, many of the participating components of these pathways are yet to be elucidated. Here, we used a forward genetics approach using a reporter strain that expresses a ROC15-luciferase fusion protein. We isolated a mutant that showed impaired ROC15 degradation in response to a wide range of visible wavelengths and impaired light-induced phosphorylation of ROC15. These results suggest that the effects of different wavelengths converge before acting on ROC15 or at ROC15 phosphorylation. Furthermore, the mutant showed a weakened phase resetting in response to light, but its circadian rhythmicity remained largely unaffected under constant light and constant dark conditions. Surprisingly, the gene disrupted in this mutant was found to encode a protein that possessed a very weak similarity to the Arabidopsis thaliana EARLY FLOWERING 3 (ELF3). Our results suggest that this protein is involved in the many different light signaling pathways to the Chlamydomonas circadian clock. However, it may not influence the transcriptional oscillator of Chlamydomonas to a great extent. This study provides an opportunity to further understand the mechanisms underlying light-induced clock resetting and explore the evolution of the circadian clock architecture in Viridiplantae. Resetting of the circadian clock is crucial for an organism, as it allows the synchronization of its internal processes with the day/night cycle. Environmental signals—such as light and temperature—contribute to this event. In plants, the molecular mechanisms underlying the light-induced resetting of the circadian clock have been well-studied in the streptophyte, Arabidopsis thaliana, and has been explored in some chlorophyte algae such as Ostreococcus tauri and Chlamydomonas reinhardtii. Here, we used a forward genetics approach to examine the light signaling pathway of a process considered critical for the light resetting of the Chlamydomonas clock—light-induced degradation of the circadian clock protein ROC15. We explored various aspects of the isolated mutant, such as the degradation of ROC15 in response to a range of visible wavelengths, the circadian rhythm, and the phase resetting of the rhythm. We show that the effects of different wavelengths of light converge before acting on ROC15 or at ROC15 phosphorylation with the aid of a potential homolog of the Arabidopsis thaliana ELF3. Our findings contradict the existing view that there is no known homolog of ELF3 in chlorophyte algae. This study, therefore, sheds light on the evolutionary aspects of the Viridiplantae circadian clocks and their light resetting.
Collapse
Affiliation(s)
- Malavika Gururaj
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ayumi Ohmura
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Mariko Ozawa
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takuya Matsuo
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
32
|
Fürst-Jansen JM, de Vries S, Lorenz M, von Schwartzenberg K, Archibald JM, de Vries J. Submergence of the filamentous Zygnematophyceae Mougeotia induces differential gene expression patterns associated with core metabolism and photosynthesis. PROTOPLASMA 2022; 259:1157-1174. [PMID: 34939169 PMCID: PMC9385824 DOI: 10.1007/s00709-021-01730-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/06/2021] [Indexed: 06/01/2023]
Abstract
The streptophyte algal class Zygnematophyceae is the closest algal sister lineage to land plants. In nature, Zygnematophyceae can grow in both terrestrial and freshwater habitats and how they do this is an important unanswered question. Here, we studied what happens to the zygnematophyceaen alga Mougeotia sp., which usually occurs in permanent and temporary freshwater bodies, when it is shifted to liquid growth conditions after growth on a solid substrate. Using global differential gene expression profiling, we identified changes in the core metabolism of the organism interlinked with photosynthesis; the latter went hand in hand with measurable impact on the photophysiology as assessed via pulse amplitude modulation (PAM) fluorometry. Our data reveal a pronounced change in the overall physiology of the alga after submergence and pinpoint candidate genes that play a role. These results provide insight into the importance of photophysiological readjustment when filamentous Zygnematophyceae transition between terrestrial and aquatic habitats.
Collapse
Affiliation(s)
- Janine M.R. Fürst-Jansen
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, University of Goettingen, 37077 Goettingen, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, University of Goettingen, 37077 Goettingen, Germany
| | - Maike Lorenz
- Department of Experimental Phycology and SAG Culture Collection of Algae, Albrecht-von-Haller Institute for Plant Science, University of Goettingen, Nikolausberger Weg 18, 37073 Goettingen, Germany
| | - Klaus von Schwartzenberg
- Institute of Plant Science and Microbiology, Microalgae and Zygnematophyceae Collection Hamburg (MZCH) and Aquatic Ecophysiology and Phycology, Universität Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - John M. Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS B3H 4R2 Canada
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, University of Goettingen, 37077 Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidstr. 1, 37077 Goettingen, Germany
| |
Collapse
|
33
|
Kochetova GV, Avercheva OV, Bassarskaya EM, Zhigalova TV. Light quality as a driver of photosynthetic apparatus development. Biophys Rev 2022; 14:779-803. [PMID: 36124269 PMCID: PMC9481803 DOI: 10.1007/s12551-022-00985-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 12/18/2022] Open
Abstract
Light provides energy for photosynthesis and also acts as an important environmental signal. During their evolution, plants acquired sophisticated sensory systems for light perception and light-dependent regulation of their growth and development in accordance with the local light environment. Under natural conditions, plants adapted by using their light sensors to finely distinguish direct sunlight and dark in the soil, deep grey shade under the upper soil layer or litter, green shade under the canopy and even lateral green reflectance from neighbours. Light perception also allows plants to evaluate in detail the weather, time of day, day length and thus the season. However, in artificial lighting conditions, plants are confronted with fundamentally different lighting conditions. The advent of new light sources - light-emitting diodes (LEDs), which emit narrow-band light - allows growing plants with light of different spectral bands or their combinations. This sets the task of finding out how light of different quality affects the development and functioning of plants, and in particular, their photosynthetic apparatus (PSA), which is one of the basic processes determining plant yield. In this review, we briefly describe how plants perceive environment light signals by their five families of photoreceptors and by the PSA as a particular light sensor, and how they use this information to form their PSA under artificial narrow-band LED-based lighting of different spectral composition. We consider light regulation of the biosynthesis of photosynthetic pigments, photosynthetic complexes and chloroplast ATP synthase function, PSA photoprotection mechanisms, carbon assimilation reactions and stomatal development and function.
Collapse
|
34
|
Bachy C, Wittmers F, Muschiol J, Hamilton M, Henrissat B, Worden AZ. The Land-Sea Connection: Insights Into the Plant Lineage from a Green Algal Perspective. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:585-616. [PMID: 35259927 DOI: 10.1146/annurev-arplant-071921-100530] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The colonization of land by plants generated opportunities for the rise of new heterotrophic life forms, including humankind. A unique event underpinned this massive change to earth ecosystems-the advent of eukaryotic green algae. Today, an abundant marine green algal group, the prasinophytes, alongside prasinodermophytes and nonmarine chlorophyte algae, is facilitating insights into plant developments. Genome-level data allow identification of conserved proteins and protein families with extensive modifications, losses, or gains and expansion patterns that connect to niche specialization and diversification. Here, we contextualize attributes according to Viridiplantae evolutionary relationships, starting with orthologous protein families, and then focusing on key elements with marked differentiation, resulting in patchy distributions across green algae and plants. We place attention on peptidoglycan biosynthesis, important for plastid division and walls; phytochrome photosensors that are master regulators in plants; and carbohydrate-active enzymes, essential to all manner of carbohydratebiotransformations. Together with advances in algal model systems, these areas are ripe for discovering molecular roles and innovations within and across plant and algal lineages.
Collapse
Affiliation(s)
- Charles Bachy
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Fabian Wittmers
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Jan Muschiol
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Maria Hamilton
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS UMR 7257, Aix-Marseille Université (AMU), Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Alexandra Z Worden
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Marine Biological Laboratories, Woods Hole, Massachusetts, USA
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
35
|
Li H, Burgie ES, Gannam ZTK, Li H, Vierstra RD. Plant phytochrome B is an asymmetric dimer with unique signalling potential. Nature 2022; 604:127-133. [PMID: 35355010 PMCID: PMC9930725 DOI: 10.1038/s41586-022-04529-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
Many aspects of plant photoperception are mediated by the phytochrome (Phy) family of bilin-containing photoreceptors that reversibly interconvert between inactive Pr and active Pfr conformers1,2. Despite extensive biochemical studies, full understanding of plant Phy signalling has remained unclear due to the absence of relevant 3D models. Here we report a cryo-electron microscopy structure of Arabidopsis PhyB in the Pr state that reveals a topologically complex dimeric organization that is substantially distinct from its prokaryotic relatives. Instead of an anticipated parallel architecture, the C-terminal histidine-kinase-related domains (HKRDs) associate head-to-head, whereas the N-terminal photosensory regions associate head-to-tail to form a parallelogram-shaped platform with near two-fold symmetry. The platform is internally linked by the second of two internal Per/Arnt/Sim domains that binds to the photosensory module of the opposing protomer and a preceding 'modulator' loop that assembles tightly with the photosensory module of its own protomer. Both connections accelerate the thermal reversion of Pfr back to Pr, consistent with an inverse relationship between dimer assembly and Pfr stability. Lopsided contacts between the HKRDs and the platform create profound asymmetry to PhyB that might imbue distinct signalling potentials to the protomers. We propose that this unique structural dynamism creates an extensive photostate-sensitive surface for conformation-dependent interactions between plant Phy photoreceptors and their signalling partners.
Collapse
Affiliation(s)
- Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - E Sethe Burgie
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
| | - Zira T K Gannam
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| | - Richard D Vierstra
- Department of Biology, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
36
|
Biswal DP, Panigrahi KCS. Red Light and Glucose Enhance Cytokinin-Mediated Bud Initial Formation in Physcomitrium patens. PLANTS 2022; 11:plants11050707. [PMID: 35270177 PMCID: PMC8912492 DOI: 10.3390/plants11050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
Abstract
Growth and development of Physcomitrium patens is endogenously regulated by phytohormones such as auxin and cytokinin. Auxin induces the transition of chloronema to caulonema. This transition is also regulated by additional factors such as quantity and quality of light, carbon supply, and other phytohormones such as strigolactones and precursors of gibberrelic acid. On the other hand, cytokinins induce the formation of bud initials following caulonema differentiation. However, the influence of external factors such as light or nutrient supply on cytokinin-mediated bud initial formation has not been demonstrated in Physcomitrium patens. This study deals with the effect of light quality and nutrient supply on cytokinin-mediated bud initial formation. Bud initial formation has been observed in wild type plants in different light conditions such as white, red, and blue light in response to exogenously supplied cytokinin as well as glucose. In addition, budding assay has been demonstrated in the cry1a mutant of Physcomitrium in different light conditions. The results indicate that carbon supply and red light enhance the cytokinin response, while blue light inhibits this process in Physcomitrium.
Collapse
Affiliation(s)
- Durga Prasad Biswal
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, Odisha, India;
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Kishore Chandra Sekhar Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, Odisha, India;
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
- Correspondence:
| |
Collapse
|
37
|
Hong Y, Wang Z, Li M, Su Y, Wang T. First Multi-Organ Full-Length Transcriptome of Tree Fern Alsophila spinulosa Highlights the Stress-Resistant and Light-Adapted Genes. Front Genet 2022; 12:784546. [PMID: 35186007 PMCID: PMC8854977 DOI: 10.3389/fgene.2021.784546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Alsophila spinulosa, a relict tree fern, is a valuable plant for investigating environmental adaptations. Its genetic resources, however, are scarce. We used the PacBio and Illumina platforms to sequence the polyadenylated RNA of A. spinulosa root, rachis, and pinna, yielding 125,758, 89,107, and 89,332 unigenes, respectively. Combining the unigenes from three organs yielded a non-redundant reference transcriptome with 278,357 unigenes and N50 of 4141 bp, which were further reconstructed into 38,470 UniTransModels. According to functional annotation, pentatricopeptide repeat genes and retrotransposon-encoded polyprotein genes are the most abundant unigenes. Clean reads mapping to the full-length transcriptome is used to assess the expression of unigenes. The stress-induced ASR genes are highly expressed in all three organs, which is validated by qRT-PCR. The organ-specific upregulated genes are enriched for pathways involved in stress response, secondary metabolites, and photosynthesis. Genes for five types of photoreceptors, CRY signaling pathway, ABA biosynthesis and transduction pathway, and stomatal movement-related ion channel/transporter are profiled using the high-quality unigenes. The gene expression pattern coincides with the previously identified stomatal characteristics of fern. This study is the first multi-organ full-length transcriptome report of a tree fern species, the abundant genetic resources and comprehensive analysis of A. spinulosa, which provides the groundwork for future tree fern research.
Collapse
Affiliation(s)
- Yongfeng Hong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Minghui Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
- *Correspondence: Yingjuan Su, ; Ting Wang,
| | - Ting Wang
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- *Correspondence: Yingjuan Su, ; Ting Wang,
| |
Collapse
|
38
|
Li C, Qi L, Zhang S, Dong X, Jing Y, Cheng J, Feng Z, Peng J, Li H, Zhou Y, Wang X, Han R, Duan J, Terzaghi W, Lin R, Li J. Mutual upregulation of HY5 and TZP in mediating phytochrome A signaling. THE PLANT CELL 2022; 34:633-654. [PMID: 34741605 PMCID: PMC8774092 DOI: 10.1093/plcell/koab254] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/08/2021] [Indexed: 05/25/2023]
Abstract
Phytochrome A (phyA) is the far-red (FR) light photoreceptor in plants that is essential for seedling de-etiolation under FR-rich environments, such as canopy shade. TANDEM ZINC-FINGER/PLUS3 (TZP) was recently identified as a key component of phyA signal transduction in Arabidopsis thaliana; however, how TZP is integrated into the phyA signaling networks remains largely obscure. Here, we demonstrate that ELONGATED HYPOCOTYL5 (HY5), a well-characterized transcription factor promoting photomorphogenesis, mediates FR light induction of TZP expression by directly binding to a G-box motif in the TZP promoter. Furthermore, TZP physically interacts with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), an E3 ubiquitin ligase targeting HY5 for 26S proteasome-mediated degradation, and this interaction inhibits COP1 interaction with HY5. Consistent with those results, TZP post-translationally promotes HY5 protein stability in FR light, and in turn, TZP protein itself is destabilized by COP1 in both dark and FR light conditions. Moreover, tzp hy5 double mutants display an additive phenotype relative to their respective single mutants under high FR light intensities, indicating that TZP and HY5 also function in largely independent pathways. Together, our data demonstrate that HY5 and TZP mutually upregulate each other in transmitting the FR light signal, thus providing insights into the complicated but delicate control of phyA signaling networks.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lijuan Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaoman Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaojing Dong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziyi Feng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing Peng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yangyang Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoji Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Run Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Duan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania 18766, USA
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
39
|
Zhu L. Targeted Gene Knockouts by Protoplast Transformation in the Moss Physcomitrella patens. Front Genome Ed 2022; 3:719087. [PMID: 34977859 PMCID: PMC8718793 DOI: 10.3389/fgeed.2021.719087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/30/2021] [Indexed: 11/15/2022] Open
Abstract
Targeted gene knockout is particularly useful for analyzing gene functions in plant growth, signaling, and development. By transforming knockout cassettes consisting of homologous sequences of the target gene into protoplasts, the classical gene targeting method aims to obtain targeted gene replacement, allowing for the characterization of gene functions in vivo. The moss Physcomitrella patens is a known model organism for a high frequency of homologous recombination and thus harbors a remarkable rate of gene targeting. Other moss features, including easy to culture, dominant haploidy phase, and sequenced genome, make gene targeting prevalent in Physcomitrella patens. However, even gene targeting was powerful to generate knockouts, researchers using this method still experienced technical challenges. For example, obtaining a good number of targeted knockouts after protoplast transformation and regeneration disturbed the users. Off-target mutations such as illegitimate random integration mediated by nonhomologous end joining and targeted insertion wherein one junction on-target but the other end off-target is commonly present in the knockouts. Protoplast fusion during transformation and regeneration was also a problem. This review will discuss the advantages and technical challenges of gene targeting. Recently, CRISPR-Cas9 is a revolutionary technology and becoming a hot topic in plant gene editing. In the second part of this review, CRISPR-Cas9 technology will be focused on and compared to gene targeting regarding the practical use in Physcomitrella patens. This review presents an updated perspective of the gene targeting and CRISPR-Cas9 techniques to plant biologists who may consider studying gene functions in the model organism Physcomitrella patens.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Botany and Plant Sciences, University of California, Riverside, CA, United States
| |
Collapse
|
40
|
Pucker B, Irisarri I, de Vries J, Xu B. Plant genome sequence assembly in the era of long reads: Progress, challenges and future directions. QUANTITATIVE PLANT BIOLOGY 2022; 3:e5. [PMID: 37077982 PMCID: PMC10095996 DOI: 10.1017/qpb.2021.18] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/24/2021] [Accepted: 12/21/2021] [Indexed: 05/03/2023]
Abstract
Third-generation long-read sequencing is transforming plant genomics. Oxford Nanopore Technologies and Pacific Biosciences are offering competing long-read sequencing technologies and enable plant scientists to investigate even large and complex plant genomes. Sequencing projects can be conducted by single research groups and sequences of smaller plant genomes can be completed within days. This also resulted in an increased investigation of genomes from multiple species in large scale to address fundamental questions associated with the origin and evolution of land plants. Increased accessibility of sequencing devices and user-friendly software allows more researchers to get involved in genomics. Current challenges are accurately resolving diploid or polyploid genome sequences and better accounting for the intra-specific diversity by switching from the use of single reference genome sequences to a pangenome graph.
Collapse
Affiliation(s)
- Boas Pucker
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Institute of Plant Biology & Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
- Author for correspondence: Boas Pucker E-mail:
| | - Iker Irisarri
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Göttingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Göttingen, Germany
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Göttingen, Germany
| | - Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Tang K, Beyer HM, Zurbriggen MD, Gärtner W. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chem Rev 2021; 121:14906-14956. [PMID: 34669383 PMCID: PMC8707292 DOI: 10.1021/acs.chemrev.1c00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
Collapse
Affiliation(s)
- Kun Tang
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Hannes M. Beyer
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Matias D. Zurbriggen
- Institute
of Synthetic Biology and CEPLAS, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse
1, D-40225 Düsseldorf, Germany
| | - Wolfgang Gärtner
- Retired: Max Planck Institute
for Chemical Energy Conversion. At present: Institute for Analytical Chemistry, University
Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| |
Collapse
|
42
|
Ding J, Zhang B, Li Y, André D, Nilsson O. Phytochrome B and PHYTOCHROME INTERACTING FACTOR8 modulate seasonal growth in trees. THE NEW PHYTOLOGIST 2021; 232:2339-2352. [PMID: 33735450 DOI: 10.1111/nph.17350] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 05/27/2023]
Abstract
The seasonally synchronized annual growth cycle that is regulated mainly by photoperiod and temperature cues is a crucial adaptive strategy for perennial plants in boreal and temperate ecosystems. Phytochrome B (phyB), as a light and thermal sensor, has been extensively studied in Arabidopsis. However, the specific mechanisms for how the phytochrome photoreceptors control the phenology in tree species remain poorly understood. We characterized the functions of PHYB genes and their downstream PHYTOCHROME INTERACTING FACTOR (PIF) targets in the regulation of shade avoidance and seasonal growth in hybrid aspen trees. We show that while phyB1 and phyB2, as phyB in other plants, act as suppressors of shoot elongation during vegetative growth, they act as promoters of tree seasonal growth. Furthermore, while the Populus homologs of both PIF4 and PIF8 are involved in the shade avoidance syndrome (SAS), only PIF8 plays a major role as a suppressor of seasonal growth. Our data suggest that the PHYB-PIF8 regulon controls seasonal growth through the regulation of FT and CENL1 expression while a genome-wide transcriptome analysis suggests how, in Populus trees, phyB coordinately regulates SAS responses and seasonal growth cessation.
Collapse
Affiliation(s)
- Jihua Ding
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zhang
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| | - Yue Li
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Domenique André
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| |
Collapse
|
43
|
Yamaoka S, Inoue K, Araki T. Regulation of gametangia and gametangiophore initiation in the liverwort Marchantia polymorpha. PLANT REPRODUCTION 2021; 34:297-306. [PMID: 34117568 DOI: 10.1007/s00497-021-00419-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
The liverwort Marchantia polymorpha regulates gametangia and gametangiophore development by using evolutionarily conserved regulatory modules that are shared with angiosperm mechanisms regulating flowering and germ cell differentiation. Bryophytes, the earliest diverged lineage of land plants comprised of liverworts, mosses, and hornworts, produce gametes in gametangia, reproductive organs evolutionarily conserved but lost in extant angiosperms. Initiation of gametangium development is dependent on environmental factors such as light, although the underlying mechanisms remain elusive. Recent studies showed that the liverwort Marchantia polymorpha regulates development of gametangia and stalked receptacles called gametangiophores by using conserved regulatory modules which, in angiosperms, are involved in light signaling, microRNA-mediated flowering regulation, and germ cell differentiation. These findings suggest that these modules were acquired by a common ancestor of land plants before divergence of bryophytes, and were later recruited to flowering mechanism in angiosperms.
Collapse
Affiliation(s)
- Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
44
|
Trogu S, Ermert AL, Stahl F, Nogué F, Gans T, Hughes J. Multiplex CRISPR-Cas9 mutagenesis of the phytochrome gene family in Physcomitrium (Physcomitrella) patens. PLANT MOLECULAR BIOLOGY 2021; 107:327-336. [PMID: 33346897 PMCID: PMC8648701 DOI: 10.1007/s11103-020-01103-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
We mutated all seven Physcomitrium (Physcomitrella) patens phytochrome genes using highly-efficient CRISPR-Cas9 procedures. We thereby identified phy5a as the phytochrome primarily responsible for inhibiting gravitropism, proving the utility of the mutant library. The CRISPR-Cas9 system is a powerful tool for genome editing. Here we report highly-efficient multiplex CRISPR-Cas9 editing of the seven-member phytochrome gene family in the model bryophyte Physcomitrium (Physcomitrella) patens. Based on the co-delivery of an improved Cas9 plasmid with multiple sgRNA plasmids and an efficient screening procedure to identify high-order multiple mutants prior to sequencing, we demonstrate successful targeting of all seven PHY genes in a single transfection. We investigated further aspects of the CRISPR methodology in Physcomitrella, including the significance of spacing between paired sgRNA targets and the efficacy of NHEJ and HDR in repairing the chromosome when excising a complete locus. As proof-of-principle, we show that the septuple phy- mutant remains gravitropic in light, in line with expectations, and on the basis of data from lower order multiplex knockouts conclude that phy5a is the principal phytochrome responsible for inhibiting gravitropism in light. We expect, therefore, that this mutant collection will be valuable for further studies of phytochrome function and that the methods we describe will allow similar approaches to revealing specific functions in other gene families.
Collapse
Affiliation(s)
- Silvia Trogu
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, 35390, Giessen, Germany
| | - Anna Lena Ermert
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, 35390, Giessen, Germany
| | - Fabian Stahl
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, 35390, Giessen, Germany
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Tanja Gans
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, 35390, Giessen, Germany
| | - Jon Hughes
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, 35390, Giessen, Germany.
| |
Collapse
|
45
|
Frangedakis E, Waller M, Nishiyama T, Tsukaya H, Xu X, Yue Y, Tjahjadi M, Gunadi A, Van Eck J, Li F, Szövényi P, Sakakibara K. An Agrobacterium-mediated stable transformation technique for the hornwort model Anthoceros agrestis. THE NEW PHYTOLOGIST 2021; 232:1488-1505. [PMID: 34076270 PMCID: PMC8717380 DOI: 10.1111/nph.17524] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/20/2021] [Indexed: 05/03/2023]
Abstract
Despite their key phylogenetic position and their unique biology, hornworts have been widely overlooked. Until recently there was no hornwort model species amenable to systematic experimental investigation. Anthoceros agrestis has been proposed as the model species to study hornwort biology. We have developed an Agrobacterium-mediated method for the stable transformation of A. agrestis, a hornwort model species for which a genetic manipulation technique was not yet available. High transformation efficiency was achieved by using thallus tissue grown under low light conditions. We generated a total of 274 transgenic A. agrestis lines expressing the β-glucuronidase (GUS), cyan, green, and yellow fluorescent proteins under control of the CaMV 35S promoter and several endogenous promoters. Nuclear and plasma membrane localization with multiple color fluorescent proteins was also confirmed. The transformation technique described here should pave the way for detailed molecular and genetic studies of hornwort biology, providing much needed insight into the molecular mechanisms underlying symbiosis, carbon-concentrating mechanism, RNA editing and land plant evolution in general.
Collapse
Affiliation(s)
| | - Manuel Waller
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurich8008Switzerland
- Zurich‐Basel Plant Science CenterZurich8092Switzerland
| | - Tomoaki Nishiyama
- Advanced Science Research CenterKanazawa UniversityIshikawa920‐8640Japan
| | - Hirokazu Tsukaya
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyo113‐0033Japan
| | - Xia Xu
- Boyce Thompson InstituteIthacaNY14853‐1801USA
| | - Yuling Yue
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurich8008Switzerland
- Zurich‐Basel Plant Science CenterZurich8092Switzerland
| | | | | | - Joyce Van Eck
- Boyce Thompson InstituteIthacaNY14853‐1801USA
- Plant Breeding and Genetics SectionCornell UniversityIthacaNY14853‐1801USA
| | - Fay‐Wei Li
- Boyce Thompson InstituteIthacaNY14853‐1801USA
- Plant Biology SectionCornell UniversityIthacaNY14853‐1801USA
| | - Péter Szövényi
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurich8008Switzerland
- Zurich‐Basel Plant Science CenterZurich8092Switzerland
| | | |
Collapse
|
46
|
Oren N, Timm S, Frank M, Mantovani O, Murik O, Hagemann M. Red/far-red light signals regulate the activity of the carbon-concentrating mechanism in cyanobacteria. SCIENCE ADVANCES 2021; 7:7/34/eabg0435. [PMID: 34407941 PMCID: PMC8373116 DOI: 10.1126/sciadv.abg0435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/28/2021] [Indexed: 05/11/2023]
Abstract
Desiccation-tolerant cyanobacteria can survive frequent hydration/dehydration cycles likely affecting inorganic carbon (Ci) levels. It was recently shown that red/far-red light serves as signal-preparing cells toward dehydration. Here, the effects of desiccation on Ci assimilation by Leptolyngbya ohadii isolated from Israel's Negev desert were investigated. Metabolomic investigations indicated a decline in ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation activity, and this was accelerated by far-red light. Far-red light negatively affected the Ci affinity of L. ohadii during desiccation and in liquid cultures. Similar effects were evident in the non-desiccation-tolerant cyanobacterium Synechocystis The Synechocystis Δcph1 mutant lacking the major phytochrome exhibited reduced photosynthetic Ci affinity when exposed to far-red light, whereas the mutant ΔsbtB lacking a Ci uptake inhibitory protein lost the far-red light inhibition. Collectively, these results suggest that red/far-red light perception likely via phytochromes regulates Ci uptake by cyanobacteria and that this mechanism contributes to desiccation tolerance in strains such as L. ohadii.
Collapse
Affiliation(s)
- Nadav Oren
- Plant Physiology Department, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany.
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Centre, Medical Faculty, University of Rostock, Strempelstr. 14, 18057 Rostock, Germany
- Department of Life, Light, and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Oliver Mantovani
- Plant Physiology Department, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany
| | - Omer Murik
- Medical Genetics Institute, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
| | - Martin Hagemann
- Plant Physiology Department, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany
- Department of Life, Light, and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| |
Collapse
|
47
|
Abstract
The perception of light signals by the phytochrome family of photoreceptors has a crucial influence on almost all aspects of growth and development throughout a plant's life cycle. The holistic regulatory networks orchestrated by phytochromes, including conformational switching, subcellular localization, direct protein-protein interactions, transcriptional and posttranscriptional regulations, and translational and posttranslational controls to promote photomorphogenesis, are highly coordinated and regulated at multiple levels. During the past decade, advances using innovative approaches have substantially broadened our understanding of the sophisticated mechanisms underlying the phytochrome-mediated light signaling pathways. This review discusses and summarizes these discoveries of the role of the modular structure of phytochromes, phytochrome-interacting proteins, and their functions; the reciprocal modulation of both positive and negative regulators in phytochrome signaling; the regulatory roles of phytochromes in transcriptional activities, alternative splicing, and translational regulation; and the kinases and E3 ligases that modulate PHYTOCHROME INTERACTING FACTORs to optimize photomorphogenesis.
Collapse
Affiliation(s)
- Mei-Chun Cheng
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| | - Praveen Kumar Kathare
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| | - Inyup Paik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| | - Enamul Huq
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| |
Collapse
|
48
|
Kohchi T, Yamato KT, Ishizaki K, Yamaoka S, Nishihama R. Development and Molecular Genetics of Marchantia polymorpha. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:677-702. [PMID: 33684298 DOI: 10.1146/annurev-arplant-082520-094256] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bryophytes occupy a basal position in the monophyletic evolution of land plants and have a life cycle in which the gametophyte generation dominates over the sporophyte generation, offering a significant advantage in conducting genetics. Owing to its low genetic redundancy and the availability of an array of versatile molecular tools, including efficient genome editing, the liverwort Marchantia polymorpha has become a model organism of choice that provides clues to the mechanisms underlying eco-evo-devo biology in plants. Recent analyses of developmental mutants have revealed that key genes in developmental processes are functionally well conserved in plants, despite their morphological differences, and that lineage-specific evolution occurred by neo/subfunctionalization of common ancestral genes. We suggest that M. polymorpha is an excellent platform to uncover the conserved and diversified mechanisms underlying land plant development.
Collapse
Affiliation(s)
- Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Japan;
| | | | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| |
Collapse
|
49
|
Makita Y, Suzuki S, Fushimi K, Shimada S, Suehisa A, Hirata M, Kuriyama T, Kurihara Y, Hamasaki H, Okubo-Kurihara E, Yoshitake K, Watanabe T, Sakuta M, Gojobori T, Sakami T, Narikawa R, Yamaguchi H, Kawachi M, Matsui M. Identification of a dual orange/far-red and blue light photoreceptor from an oceanic green picoplankton. Nat Commun 2021; 12:3593. [PMID: 34135337 PMCID: PMC8209157 DOI: 10.1038/s41467-021-23741-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/11/2021] [Indexed: 11/09/2022] Open
Abstract
Photoreceptors are conserved in green algae to land plants and regulate various developmental stages. In the ocean, blue light penetrates deeper than red light, and blue-light sensing is key to adapting to marine environments. Here, a search for blue-light photoreceptors in the marine metagenome uncover a chimeric gene composed of a phytochrome and a cryptochrome (Dualchrome1, DUC1) in a prasinophyte, Pycnococcus provasolii. DUC1 detects light within the orange/far-red and blue spectra, and acts as a dual photoreceptor. Analyses of its genome reveal the possible mechanisms of light adaptation. Genes for the light-harvesting complex (LHC) are duplicated and transcriptionally regulated under monochromatic orange/blue light, suggesting P. provasolii has acquired environmental adaptability to a wide range of light spectra and intensities.
Collapse
Affiliation(s)
- Yuko Makita
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Shigekatsu Suzuki
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Keiji Fushimi
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Setsuko Shimada
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Aya Suehisa
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Manami Hirata
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Tomoko Kuriyama
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yukio Kurihara
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Hidefumi Hamasaki
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Yokohama City University, Kihara Institute for Biological Research, Yokohama, Japan
| | - Emiko Okubo-Kurihara
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Watanabe
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Kushiro, Hokkaido, Japan
| | - Masaaki Sakuta
- Department of Biological Sciences, Ochanomizu University, Tokyo, Japan
| | - Takashi Gojobori
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Tomoko Sakami
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Minami-ise, Mie, Japan
| | - Rei Narikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Haruyo Yamaguchi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
- Yokohama City University, Kihara Institute for Biological Research, Yokohama, Japan.
| |
Collapse
|
50
|
Liu B, Weng J, Guan D, Zhang Y, Niu Q, López-Juez E, Lai Y, Garcia-Mas J, Huang D. A domestication-associated gene, CsLH, encodes a phytochrome B protein that regulates hypocotyl elongation in cucumber. MOLECULAR HORTICULTURE 2021; 1:3. [PMID: 37789471 PMCID: PMC10509825 DOI: 10.1186/s43897-021-00005-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/15/2021] [Indexed: 10/05/2023]
Affiliation(s)
- Bin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Dongchuan Road, Shanghai, 200240, China
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Jinyang Weng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Dongchuan Road, Shanghai, 200240, China
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Yan Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
| | - Qingliang Niu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Dongchuan Road, Shanghai, 200240, China
| | - Enrique López-Juez
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Yunsong Lai
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, P.R. China
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|