1
|
Naidovski N, Chong SKT, Liu F, Riordan SM, Wehrhahn MC, Yuwono C, Zhang L. Human macrophage response to the emerging enteric pathogen Aeromonas veronii: Inflammation, apoptosis, and downregulation of histones. Virulence 2025; 16:2440554. [PMID: 39663607 PMCID: PMC11702953 DOI: 10.1080/21505594.2024.2440554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/11/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
This study investigated the pathogenic mechanisms of Aeromonas veronii in macrophages. THP-1 derived macrophages were used as a human macrophage model and were treated with A. veronii strain AS1 isolated from intestinal biopsies of an IBD patient, or Escherichia coli strain K-12. RNA was extracted and subjected to RNA sequencing and comparative transcriptomic analyses. Protein levels of IL-8, IL-1β, IL-18, and TNFα were measured using ELISA, and apoptosis was assessed using caspase 3/7 assays. Both A. veronii AS1 and E. coli K-12 significantly upregulated the expression of many genes involving inflammation. At the protein level, A. veronii AS1 induced significantly higher levels of IL-8, TNFα, mature IL-18 and IL-1β than E. coli K-12, and led to greater elevation of caspase 3/7 activities. Both A. veronii AS1 and E. coli K-12 upregulated the expression of CASP5, but not other caspase genes. A. veronii AS1 significantly downregulated the expression of 20 genes encoding histone proteins that E. coli K-12 did not. The more profound pathogenic effects of A. veronii in inducing inflammation and apoptosis in macrophages than E. coli K-12 are consistent with its role as a human enteric pathogen. The upregulated expression of CASP5 and increased release of IL-1β and IL-18 support the role of CASP5 in activation of non-canonical inflammasome. The downregulation of histone genes by A. veronii suggests a unique impact on host cell gene expression, which may represent a novel virulence strategy. These findings advance the understanding of pathogenic mechanisms of the emerging human enteric pathogen A. veronii.
Collapse
Affiliation(s)
- Nicholas Naidovski
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Sarah K. T. Chong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, Australia
| | - Michael C. Wehrhahn
- Douglass Hanly Moir Pathology, a Sonic Healthcare Practice, Macquarie Park, NSW, Australia
| | - Christopher Yuwono
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
2
|
Xiao Z, Xie J, Zhao X, Chen X, Lu Y, Xu Y, Wu M, An L, Li Q. Role of Pyroptosis in inflammatory bowel disease. Int Immunopharmacol 2025; 155:114619. [PMID: 40209313 DOI: 10.1016/j.intimp.2025.114619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Inflammatory bowel disease (IBD) is a serious chronic condition marked by persistent and recurrent intestinal ulcers. Although the exact cause of IBD remains unclear, it is generally accepted that a complex interaction among dietary factors, gut microbiota, and immune responses in genetically predisposed individuals contributes to its development. Pyroptosis, an inflammatory form of programmed cell death activated by inflammasomes, is marked by the rupture of cell membranes and the subsequent release of inflammatory mediators. Emerging evidence indicates that pyroptosis plays a crucial role in the pathogenesis of IBD. Moderate pyroptosis activation can enhance intestinal immune defenses, while excessive inflammasome activation can trigger an inflammatory cascade, resulting in increased damage to intestinal tissues. This article reviews the molecular mechanisms underlying pyroptosis and highlights its role in the onset and progression of IBD. Furthermore, We explore recent advancements in IBD treatment, focusing on small molecule compounds that specifically target and inhibit pyroptosis.
Collapse
Affiliation(s)
- Zhiyi Xiao
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, China
| | - Jiling Xie
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, China
| | - Xun Zhao
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Xiangjun Chen
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, China
| | - Yihong Lu
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, China
| | - Yuanzhao Xu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Manqing Wu
- Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Lingyue An
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| | - Qing Li
- Department of Gastroenterology and Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
3
|
Xu W, Wang L, Chen R, Liu Y, Chen W. Pyroptosis and its role in intestinal ischemia-reperfusion injury: a potential therapeutic target. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04261-1. [PMID: 40372474 DOI: 10.1007/s00210-025-04261-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
Intestinal ischemia-reperfusion injury (II/RI) is a critical acute condition characterized by complex pathological mechanisms, including various modes of cell death. Among these, pyroptosis has garnered significant attention in recent years. This review explores the characteristics, molecular mechanisms, and implications of pyroptosis in II/RI, with a focus on therapeutic strategies targeting the pyroptosis pathway. Key processes such as NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation, caspase-1 activation, and gasdermin D (GSDMD)-mediated membrane pore formation are identified as central to pyroptosis. Compounds like MCC950, CY-09, metformin, and curcumin have shown promise in attenuating II/RI in preclinical studies by modulating these pathways. However, challenges remain in understanding non-canonical pyroptosis pathways, unraveling the exact mechanisms of GSDMD-induced pore formation, and translating these findings into clinical applications. Addressing these gaps will be crucial for developing innovative and effective treatments for II/RI.
Collapse
Affiliation(s)
- Wenping Xu
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Lang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Ruili Chen
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Yi Liu
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Wendong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China.
| |
Collapse
|
4
|
Nadendla EK, Tweedell RE, Kasof G, Kanneganti TD. Caspases: structural and molecular mechanisms and functions in cell death, innate immunity, and disease. Cell Discov 2025; 11:42. [PMID: 40325022 PMCID: PMC12052993 DOI: 10.1038/s41421-025-00791-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 03/05/2025] [Indexed: 05/07/2025] Open
Abstract
Caspases are critical regulators of cell death, development, innate immunity, host defense, and disease. Upon detection of pathogens, damage-associated molecular patterns, cytokines, or other homeostatic disruptions, innate immune sensors, such as NLRs, activate caspases to initiate distinct regulated cell death pathways, including non-lytic (apoptosis) and innate immune lytic (pyroptosis and PANoptosis) pathways. These cell death pathways are driven by specific caspases and distinguished by their unique molecular mechanisms, supramolecular complexes, and enzymatic properties. Traditionally, caspases are classified as either apoptotic (caspase-2, -3, -6, -7, -8, -9, and -10) or inflammatory (caspase-1, -4, -5, and -11). However, extensive data from the past decades have shown that apoptotic caspases can also drive lytic inflammatory cell death downstream of innate immune sensing and inflammatory responses, such as in the case of caspase-3, -6, -7, and -8. Therefore, more inclusive classification systems based on function, substrate specificity, or the presence of pro-domains have been proposed to better reflect the multifaceted roles of caspases. In this review, we categorize caspases into CARD-, DED-, and short/no pro-domain-containing groups and examine their critical functions in innate immunity and cell death, along with their structural and molecular mechanisms, including active site/exosite properties and substrates. Additionally, we highlight the emerging roles of caspases in cellular homeostasis and therapeutic targeting. Given the clinical relevance of caspases across multiple diseases, improved understanding of these proteins and their structure-function relationships is critical for developing effective treatment strategies.
Collapse
Affiliation(s)
- Eswar Kumar Nadendla
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rebecca E Tweedell
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gary Kasof
- Cell Signaling Technology, Danvers, MA, USA
| | | |
Collapse
|
5
|
Zuo Z, Wang Y, Fang Y, Zhao M, Wang Z, Yang Z, Jia B, Sun Y. A novel regulator of NLRP3 inflammasome: Peptides. Peptides 2025; 187:171381. [PMID: 40064242 DOI: 10.1016/j.peptides.2025.171381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
The NLRP3 inflammasome plays a crucial role as a critical regulator of the immune response and has been implicated in the pathogenesis of numerous diseases. Peptides, known for their remarkable potency, selectivity, and low toxicity, have been extensively employed in disease treatment. Recent research has unveiled the potential of peptides in modulating the activity of the NLRP3 inflammasome. This review begins by examining the structure of the NLRP3 inflammasome, encompassing NLRP3, ASC, and Caspase-1, along with the three activation pathways: canonical, non-canonical, and alternative. Subsequently, we provide a comprehensive summary of peptide modulators targeting the NLRP3 inflammasome and elucidate their underlying mechanisms. The efficacy of these modulators has been validated through in vitro and in vivo experiments on NLRP3 inflammasome regulation. Furthermore, we conduct sequence alignment of the identified peptides and investigate their binding sites on the NLRP3 protein. This work is a foundational exploration for advancing peptides as potential therapeutic agents for NLRP3-related diseases.
Collapse
Affiliation(s)
- Zhuo Zuo
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yaxing Wang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yanwei Fang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Mengya Zhao
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhe Wang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhouqi Yang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Bin Jia
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yulong Sun
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
6
|
Hsu CW, Okano T, Niinuma Y, Leewananthawet A, Iida T, Onsoi P, Boonyaleka K, Ashida H, Suzuki T. A complex of NLRP3 with caspase-4 is essential for inflammasome activation by Tannerella forsythia infection. Int Immunol 2025; 37:261-271. [PMID: 39673522 DOI: 10.1093/intimm/dxae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024] Open
Abstract
Periodontitis, a chronic inflammatory disease of periodontal tissue, is often associated with a group of pathogenic bacteria known as the "red complex", including Tannerella forsythia. Previous papers showed that T. forsythia induces many kinds of inflammatory cytokines including interleukin (IL)-1β regulated by inflammasome activation. However, the physiological function of periodontitis and the mechanism to induce inflammasome activation by T. forsythia infection are poorly understood. In this study, we demonstrate that the Nod-like receptor pyrin domain containing 3 (NLRP3) and caspase-4 are essential for inflammasome activation by T. forsythia infection, playing a crucial role in IL-1β maturation in THP-1 cells. We also showed that the knockout of ASC or Gasdermin D suppresses pyroptotic cell death. Moreover, co-immunoprecipitation assays confirmed the formation of a complex involving caspase-4, NLRP3, and ASC following T. forsythia infection. Additionally, reactive oxygen species production was identified as a key factor in caspase-4-mediated NLRP3 inflammasome activation by T. forsythia infection. These results enhance our understanding of inflammasome activation in response to T. forsythia infection and provide new insights into the pathogenic mechanisms of periodontitis.
Collapse
Affiliation(s)
- Chen-Wei Hsu
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| | - Tokuju Okano
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| | - Yuiko Niinuma
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| | - Anongwee Leewananthawet
- Specialized Dental Center, Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Tamako Iida
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| | - Poramed Onsoi
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| | - Kotchakorn Boonyaleka
- Division of Periodontology, Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ashida
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| |
Collapse
|
7
|
Mamun MAA, Rakib A, Mandal M, Singh UP. Impact of a High-Fat Diet on the Gut Microbiome: A Comprehensive Study of Microbial and Metabolite Shifts During Obesity. Cells 2025; 14:463. [PMID: 40136712 PMCID: PMC11940932 DOI: 10.3390/cells14060463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Over the last few decades, the prevalence of metabolic diseases such as obesity, diabetes, non-alcoholic fatty liver disease, hypertension, and hyperuricemia has surged, primarily due to high-fat diet (HFD). The pathologies of these metabolic diseases show disease-specific alterations in the composition and function of their gut microbiome. How HFD alters the microbiome and its metabolite to mediate adipose tissue (AT) inflammation and obesity is not well known. Thus, this study aimed to identify the changes in the gut microbiome and metabolomic signatures induced by an HFD to alter obesity. To explore the changes in the gut microbiota and metabolites, 16S rRNA gene amplicon sequencing and metabolomic analyses were performed after HFD and normal diet (ND) feeding. We noticed that, at taxonomic levels, the number of operational taxonomic units (OTUs), along with the Chao and Shannon indexes, significantly shifted in HFD-fed mice compared to those fed a ND. Similarly, at the phylum level, an increase in Firmicutes and a decrease in Bacteroidetes were noticed in HFD-fed mice. At the genus level, an increase in Lactobacillus and Ruminococcus was observed, while Allobaculum, Clostridium, and Akkermansia were markedly reduced in the HFD group. Many bacteria from the Ruminococcus genus impair bile acid metabolism and restrict weight loss. Firmicutes are efficient in breaking down complex carbohydrates into short-chain fatty acids (SCFAs) and other metabolites, whereas Bacteroidetes are involved in a more balanced or efficient energy extraction. Thus, an increase in Firmicutes over Bacteroidetes enhances the absorption of more calories from food, which may contribute to obesity. Taken together, the altered gut microbiota and metabolites trigger AT inflammation, which contributes to metabolic dysregulation and disease progression. Thus, this study highlights the potential of the gut microbiome in the development of therapeutic strategies for obesity and related metabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA; (M.A.A.M.); (A.R.); (M.M.)
| |
Collapse
|
8
|
Guo Z, Liu Y, Chen D, Sun Y, Li D, Meng Y, Zhou Q, Zeng F, Deng G, Chen X. Targeting regulated cell death: Apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis in anticancer immunity. J Transl Int Med 2025; 13:10-32. [PMID: 40115032 PMCID: PMC11921819 DOI: 10.1515/jtim-2025-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
In the evolving landscape of cancer treatment, the strategic manipulation of regulated cell death (RCD) pathways has emerged as a crucial component of effective anti-tumor immunity. Evidence suggests that tumor cells undergoing RCD can modify the immunogenicity of the tumor microenvironment (TME), potentially enhancing its ability to suppress cancer progression and metastasis. In this review, we first explore the mechanisms of apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis, along with the crosstalk between these cell death modalities. We then discuss how these processes activate antigen-presenting cells, facilitate the cross-priming of CD8+ T cells, and trigger anti-tumor immune responses, highlighting the complex effects of novel forms of tumor cell death on TME and tumor biology. Furthermore, we summarize potential drugs and nanoparticles that can induce or inhibit these emerging RCD pathways and their therapeutic roles in cancer treatment. Finally, we put forward existing challenges and future prospects for targeting RCD in anti-cancer immunity. Overall, this review enhances our understanding of the molecular mechanisms and biological impacts of RCD-based therapies, providing new perspectives and strategies for cancer treatment.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Danyao Chen
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yuming Sun
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Furong Zeng
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
9
|
Li D, Hu Q, Zhan Z, Zhang X, Zeng W, Liu L, Wu K, Yu M. Increased reactive astrocytes and NLRC4-mediated neuronal pyroptosis in advanced visual structures contralateral to the optic nerve crush eye in mice. Exp Eye Res 2025; 251:110235. [PMID: 39798846 DOI: 10.1016/j.exer.2025.110235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/21/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Currently, research on optic nerve injury predominantly focuses on the retina and optic nerve, but emerging evidence suggests that optic nerve injury also affects advanced visual structures like the superior colliculus (SC) and primary visual cortex (V1 region). However, the exact mechanisms have not been fully explored. This study aims to investigate the characteristics and mechanisms of pathology in the SC and V1 region after optic nerve crush (ONC) to deepen our understanding of the central mechanism of visual injury. After unilateral ONC, visual acuity in the injured eye declined, along with thinning of the retinal nerve fiber layer, and the latency and amplitude of FVEPs decreased. Furthermore, neuronal loss and degeneration were observed in the contralateral SC and V1 region, accompanied by astrocytic activation. Additionally, protein markers C3, and Serping1 for A1 astrocytes, which had neurotoxic effects and S100A10, and PTX3 for A2 astrocytes, which promoted tissue repair, were increased in the two regions. A1 astrocytes were mainly present in the early stages of observation, while A2 astrocytes were mainly increased later. Notably, NLRC4, GSDMD-N, cleaved caspase-1 expression, and IL-1β, IL-18 secretion increased in the contralateral SC and V1 region. Collectively, our findings reveal that A1 (neurotoxic) and A2 astrocytes (neuroprotective), NLRC4-mediated neuronal pyroptosis are enhanced in SC and V1 region contralateral to the ONC eye. The primary visual cortex responds to injury later than the superior colliculus after ONC, with less pronounced damage changes. Reactive astrocytes and NLRC4 inflammasome may act as promising targets for the prevention and treatment of optic nerve injury.
Collapse
Affiliation(s)
- Deling Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Qinyuan Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Zongyi Zhan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Xinyi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Weiting Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Liling Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Kaili Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
10
|
Zhang M, Liu T, Luo L, Xie Y, Wang F. Biological characteristics, immune infiltration and drug prediction of PANoptosis related genes and possible regulatory mechanisms in inflammatory bowel disease. Sci Rep 2025; 15:2033. [PMID: 39814753 PMCID: PMC11736032 DOI: 10.1038/s41598-024-84911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025] Open
Abstract
PANoptosis is one of several modes of programmed cell death (PCD) and plays an important role in many inflammatory and immune diseases. The role of PANoptosis in inflammatory bowel disease (IBD) is currently unknown. Differentially expressed PANoptosis-related genes (DE-PRGs) were identified, and pathway enrichment analyses were performed. LASSO regression model construction, a nomogram model, calibration curves, ROC and DCA curves were used to evaluate the predictive value of the model. Predicts transcription factors (TFs) and small-molecule drugs of DE-PRGs were analysed. Model genes and immuno-infiltration were analysed. The PANoptosis features of IBD include 12 genes: OGT, TLR2, GZMB, TLR4, PPIF, YBX3, CASP5, BCL2L1, CASP6, MEFV, GSDMB and BAX. The enrichment analysis suggested that these genes were related to TNF signalling, NF-κB, pyroptosis and necroptosis. Machine learning identified three model genes: OGT, GZMB and CASP5. The nomogram model, calibration curves, ROC and DCA curves have strong predictive value. Immuno-infiltration analysis revealed that immune cell infiltration was increased in patients with IBD, and the model genes were closely related to the infiltration of various immune cells. The TFs associated with DE-PRGs were RELA, NFKB1, HIF1A, TP53 and SP1. In addition, the Connectivity Map (CMap) database identified the top 10 small-molecule compounds, including buspirone, chloroquine, spectinomycin and chlortetracycline. This study indicate that DE-PRGs model genes have good predictive ability for IBD. Moreover, PANoptosis may mediate the process of IBD through TNF signalling, NF-κB, pyroptosis, necroptosis and immune mechanisms. These results present a new horizon for the research and treatment of IBD.
Collapse
Affiliation(s)
- Minglin Zhang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Tong Liu
- Department of General Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Lijun Luo
- School of Medical Laboratory Science, Hebei North University, Zhangjiakou, Hebei, China
| | - Yuxin Xie
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, 201 Dalian Street, Zunyi, 563003, Guizhou, China.
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
11
|
Shamas S, Rahil RR, Kaushal L, Sharma VK, Wani NA, Qureshi SH, Ahmad SF, Attia SM, Zargar MA, Hamid A, Bhat OM. Pyroptosis in Endothelial Cells and Extracellular Vesicle Release in Atherosclerosis via NF-κB-Caspase-4/5-GSDM-D Pathway. Pharmaceuticals (Basel) 2024; 17:1568. [PMID: 39770410 PMCID: PMC11677252 DOI: 10.3390/ph17121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Pyroptosis, an inflammatory cell death, is involved in the progression of atherosclerosis. Pyroptosis in endothelial cells (ECs) and its underlying mechanisms in atherosclerosis are poorly understood. Here, we investigated the role of a caspase-4/5-NF-κB pathway in pyroptosis in palmitic acid (PA)-stimulated ECs and EVs as players in pyroptosis. Methods: Human umbilical vein endothelial cells (HUVECs) were cultured in an endothelial cell medium, treated with Ox-LDL, PA, caspase-4/5 inhibitor, NF-κB inhibitor, and sEV release inhibitor for 24 h, respectively. The cytotoxicity of PA was determined using an MTT assay, cell migration using a scratch-wound-healing assay, cell morphology using bright field microscopy, and lipid deposition using oil red O staining. The mRNA and protein expression of GSDM-D, CASP4, CASP5, NF-κB, NLRP3, IL-1β, and IL-18 were determined with RT-PCR and Western blot. Immunofluorescence was used to determine NLRP3 and ICAM-1 expressions. Extracellular vesicles (EVs) were isolated using an exosome isolation kit and were characterized by Western blot and scanning electron microscopy. Results: PA stimulation significantly changed the morphology of the HUVECs characterized by cell swelling, plasma membrane rupture, and increased LDH release, which are features of pyroptosis. PA significantly increased lipid accumulation and reduced cell migration. PA also triggered inflammation and endothelial dysfunction, as evidenced by NLRP3 activation, upregulation of ICAM-1 (endothelial activation marker), and pyroptotic markers (NLRP3, GSDM-D, IL-1β, IL-18). Inhibition of caspase-4/5 (Ac-FLTD-CMK) and NF-κB (trifluoroacetate salt (TFA)) resulted in a significant reduction in LDH release and expression of caspase-4/5, NF-κB, and gasdermin D (GSDM-D) in PA-treated HUVECs. Furthermore, GW4869, an exosome release inhibitor, markedly reduced LDH release in PA-stimulated HUVECs. EVs derived from PA-treated HUVECs exacerbated pyroptosis, as indicated by significantly increased LDH release and augmented expression of GSDM-D, NF-κB. Conclusions: The present study revealed that inflammatory, non-canonical caspase-4/5-NF-κB signaling may be one of the crucial mechanistic pathways associated with pyroptosis in ECs, and pyroptotic EVs facilitated pyroptosis in normal ECs during atherosclerosis.
Collapse
Affiliation(s)
- Salman Shamas
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| | - Razia Rashid Rahil
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| | - Laveena Kaushal
- Department of Dermatology, Venereology & Leprology, Postgraduate Institute for Medical Education and Research, Chandigarh 160012, India; (L.K.); (V.K.S.)
| | - Vinod Kumar Sharma
- Department of Dermatology, Venereology & Leprology, Postgraduate Institute for Medical Education and Research, Chandigarh 160012, India; (L.K.); (V.K.S.)
| | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| | - Shabir H. Qureshi
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (S.M.A.)
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (S.M.A.)
| | - Mohammad Afzal Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| | - Abid Hamid
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| | - Owais Mohmad Bhat
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| |
Collapse
|
12
|
Lauf T, Häder A, Hornung F, Reisser Y, Nietzsche S, Schanz F, Trümper V, Jeznach A, Brunke S, Doenst T, Skirecki T, Löffler B, Deinhardt-Emmer S. Age-related STING suppression in macrophages contributes to increased viral load during influenza a virus infection. Immun Ageing 2024; 21:80. [PMID: 39543713 PMCID: PMC11562583 DOI: 10.1186/s12979-024-00482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
Ageing is a major risk factor that contributes to increased mortality and morbidity rates during influenza A virus (IAV) infections. Macrophages are crucial players in the defense against viral infections and display impaired function during ageing. However, the impact of ageing on macrophage function in response to an IAV infection remains unclear and offers potential insight for underlying mechanisms. In this study, we investigated the immune response of young and aged human monocyte-derived macrophages to two different H1N1 IAV strains. Interestingly, macrophages of aged individuals showed a lower interferon response to IAV infection, resulting in increased viral load. Transcriptomic data revealed a reduced expression of stimulator of interferon genes (STING) in aged macrophages albeit the cGAS-STING pathway was upregulated. Our data clearly indicate the importance of STING signaling for interferon production by applying a THP-1 STING knockout model. Evaluation of mitochondrial function during IAV infection revealed the release of mitochondrial DNA to be the activator of cGAS-STING pathway. The subsequent induction of apoptosis was attenuated in aged macrophages due to decreased STING signaling. Our study provides new insights into molecular mechanisms underlying age-related immune impairment. To our best knowledge, we are the first to discover an age-dependent difference in gene expression of STING on a transcriptional level in human monocyte-derived macrophages possibly leading to a diminished interferon production.
Collapse
Affiliation(s)
- Thurid Lauf
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
- Else Kröner Graduate School for Medical Students "JSAM", Jena University Hospital, Jena, Germany
| | - Antje Häder
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Franziska Hornung
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Yasmina Reisser
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Sandor Nietzsche
- Center for Electron Microscopy, Jena University Hospital, Jena, Germany
| | - Fabian Schanz
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Verena Trümper
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Aldona Jeznach
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Torsten Doenst
- Klinik für Herz- und Thoraxchirurgie, Jena University Hospital, Jena, Germany
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
13
|
Artlett CM, Abdelwahab SH, Hoffman WH, Calikoglu AS. Early expression of neuroinflammation in an untreated fatal case of diabetic ketoacidosis. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e240074. [PMID: 39529986 PMCID: PMC11554359 DOI: 10.20945/2359-4292-2024-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/26/2024] [Indexed: 11/16/2024]
Abstract
We present the case of a young adult who had lethargy and significant weight loss for the three weeks before his death. The history of the present illness suggested a prodrome of several weeks, with progressive weakness indicating an advancing metabolic decompensation. To our knowledge, this is the first study performed on human brain tissue with type 1 diabetes (T1D) and likely diabetic ketoacidosis (DKA) before treatment. We studied neuroinflammatory markers in an insulin-deficient state without treatment compared with those found in a treated patient with T1D/DKA of similar age and race who died shortly after treatment. The frontal cortex and hippocampus were stained for tight junction proteins, RAGE, NLRP3, and HMGB1. Other markers that can disrupt the blood-brain barrier, such as IL-17, IL-6, IL-1β, GFAP, and IL-10 were also tested. This case study reveals that neuroinflammatory markers are expressed in the DKA brain at a lower level before treatment than those found to be expressed in the brain after treatment. These findings suggest that in DKA, dehydration minimizes inflammation which could be exacerbated with fluids promoting neuroinflammation and cognitive deficits. These findings require further studies and could identify therapeutic targets to reduce the progression of neuroinflammation and brain edema.
Collapse
Affiliation(s)
- Carol M. Artlett
- Drexel UniversityDrexel University College of MedicineDepartment of Microbiology and ImmunologyPhiladelphiaPAUnited StatesDepartment of Microbiology and Immunology, Drexel University College of Medicine, Drexel University, Philadelphia PA
| | - Sabri H. Abdelwahab
- University of North CarolinaDepartment of GeneticsChapel HillNCUnited StatesDepartment of Genetics, University of North Carolina, Chapel Hill NC
| | - William H. Hoffman
- Augusta UniversityMedical College of GeorgiaSection of Pediatric EndocrinologyAugustaGAUnited StatesSection of Pediatric Endocrinology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Ali S. Calikoglu
- University of North CarolinaDivision of Pediatric EndocrinologyChapel HillNCUnited StatesDivision of Pediatric Endocrinology, University of North Carolina, Chapel Hill NC
| |
Collapse
|
14
|
Didilescu AC, Chinthamani S, Scannapieco FA, Sharma A. NLRP3 inflammasome activity and periodontal disease pathogenesis-A bidirectional relationship. Oral Dis 2024; 30:4069-4077. [PMID: 38817019 PMCID: PMC11480888 DOI: 10.1111/odi.15005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/09/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Periodontitis is an inflammatory oral disease that occurs as a result of the damaging effects of the immune response against the subgingival microflora. Among the mechanisms involved, the nucleotide-binding oligomerization domain, leucine-rich repeat-containing proteins family member NLRP3 (NLR family pyrin domain-containing 3), proposed as the key regulator of macrophage-induced inflammation, is strongly associated with periodontal disease due to the bacterial activators. This paper aimed to present key general concepts of NLRP3 inflammasome activation and regulation in periodontal disease. METHOD A narrative review was conducted in order to depict the current knowledge on the relationship between NLRP3 inflammasome activity and periodontal disease. In vitro and in situ studies were retrieved and commented based on their relevance in the field. RESULTS The NLRP3 inflammasome activity stimulated by periodontal microbiota drive periodontal disease pathogenesis and progression. This occurs through the release of proinflammatory cytokines IL-1β, IL-18, and DAMPs (damage-associated molecular pattern molecules) following inflammasome activation. Moreover, the tissue expression of NLRP3 is dysregulated by oral microbiota, further exacerbating periodontal inflammation. CONCLUSION The review provides new insights into the relationship between the NLRP3 inflammasome activity and periodontal disease pathogenesis, highlighting the roles and regulatory mechanism of inflammatory molecules involved in the disease process.
Collapse
Affiliation(s)
- Andreea C. Didilescu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA
- Department of Embryology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Sreedevi Chinthamani
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Frank A. Scannapieco
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Ashu Sharma
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
15
|
Stocks H, De Leeuw E, Lambrecht BN, Vandekerckhove L, van Loo G, Wullaert A. Development of human innate immune responses in a humanized mouse model expressing four human myelopoiesis transgenes. Front Immunol 2024; 15:1419117. [PMID: 39399507 PMCID: PMC11466769 DOI: 10.3389/fimmu.2024.1419117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Background Dysregulated innate immune responses underlie multiple inflammatory diseases, but clinical translation of preclinical innate immunity research in mice is hampered by the difficulty of studying human inflammatory reactions in an in vivo context. We therefore sought to establish in vivo human inflammatory responses in NSG-QUAD mice that express four human myelopoiesis transgenes to improve engraftment of a human innate immune system. Methods We reconstituted NSG-QUAD mice with human hematopoietic stem and progenitor cells (HSPCs), after which we evaluated human myeloid cell development and subsequent human responses to systemic and local lipopolysaccharide (LPS) challenges. Results NSG-QUAD mice already displayed engraftment of human monocytes, dendritic cells and granulocytes in peripheral blood, spleen and liver at 6 weeks after HSPC reconstitution, in which both classical, intermediate and non-classical monocytes were present. These huNSG-QUAD mice responded to intraperitoneal and intranasal LPS challenges with production of NF-κB-dependent human cytokines, a human type I interferon response, as well as inflammasome-mediated production of human IL-1β and IL-18. The latter were specifically abrogated by the NLRP3 inhibitor MCC950, while LPS-induced human monocyte death was not altered. Besides providing proof-of-principle for small molecule testing of human inflammatory reactions in huNSG-QUAD mice, this observation suggests that LPS-induced in vivo release of human NLRP3 inflammasome-generated cytokines occurs in a cell death-independent manner. Conclusion HuNSG-QUAD mice are competent for the NF-κB, interferon and inflammasome effectors of human innate immunity, and can thus be utilized to investigate signaling mechanisms and pharmacological targeting of human inflammatory responses in an in vivo setting.
Collapse
Affiliation(s)
- Hannah Stocks
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Elisabeth De Leeuw
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Linos Vandekerckhove
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- HIV Cure and Research Center (HCRC), Ghent, Belgium
| | - Geert van Loo
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Andy Wullaert
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Cell Death Signaling Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
16
|
Panganiban RA, Nadeau KC, Lu Q. Pyroptosis, gasdermins and allergic diseases. Allergy 2024; 79:2380-2395. [PMID: 39003568 PMCID: PMC11368650 DOI: 10.1111/all.16236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Pyroptosis is an inflammatory form of programmed cell death that is distinct from necrosis and apoptosis. Pyroptosis is primarily mediated by the gasdermin family of proteins (GSDMA-E and PVJK), which, when activated by proteolytic cleavage, form pores in the plasma membrane, leading to cell death. While much of the past research on pyroptosis has focused on its role in cancer, metabolic disorders, and infectious diseases, recent experimental and observational studies have begun to implicate pyroptosis in allergic diseases. These studies suggest that gasdermin-mediated pyroptosis contributes to the development of allergic conditions and could offer novel targets for therapy. Here, we review our current understanding of pyroptosis with an emphasis on the role of gasdermins as executioners of pyroptosis and potential mediators to allergic disease. We highlight new discoveries that establish a mechanistic link between the biochemical actions of gasdermins and the onset of allergic diseases. Additionally, we discuss how pyroptosis and gasdermins might contribute to the dysfunction of epithelial barrier, a key factor believed to initiate the progression of various allergic diseases.
Collapse
Affiliation(s)
- Ronald Allan Panganiban
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Quan Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Bido S, Nannoni M, Muggeo S, Gambarè D, Ruffini G, Bellini E, Passeri L, Iaia S, Luoni M, Provinciali M, Giannelli SG, Giannese F, Lazarevic D, Gregori S, Broccoli V. Microglia-specific IL-10 gene delivery inhibits neuroinflammation and neurodegeneration in a mouse model of Parkinson's disease. Sci Transl Med 2024; 16:eadm8563. [PMID: 39167665 DOI: 10.1126/scitranslmed.adm8563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/23/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Neuroinflammation plays a key role in exacerbating dopaminergic neuron (DAN) loss in Parkinson's disease (PD). However, it remains unresolved how to effectively normalize this immune response given the complex interplay between the innate and adaptive immune responses occurring within a scarcely accessible organ like the brain. In this study, we uncovered a consistent correlation between neuroinflammation, brain parenchymal lymphocytes, and DAN loss among several commonly used mouse models of PD generated by a variety of pathological triggers. We validated a viral therapeutic approach for the microglia-specific expression of interleukin 10 (IL-10) to selectively mitigate the excessive inflammatory response. We found that this approach induced a local nigral IL-10 release that alleviated DAN loss in mice overexpressing the human SNCA gene in the substantia nigra. Single-cell transcriptomics revealed that IL-10 induced the emergence of a molecularly distinct microglial cell state, enriched in markers of cell activation with enhanced expression of prophagocytic pathways. IL-10 promoted microglial phagocytotic and clearance activities in vitro and reduced αSYN aggregate burden in the nigral area in mice overexpressing SNCA. Furthermore, IL-10 stimulated the differentiation of CD4+ T lymphocytes into active T regulatory cells and promoted inhibitory characteristics in CD8+ T cells. In summary, our results show that local and microglia-specific IL-10 transduction elicited strong immunomodulation in the nigral tissue with enhanced suppression of lymphocyte toxicity that was associated with DAN survival. These results offer insights into the therapeutic benefits of IL-10 and showcase a promising gene delivery approach that could minimize undesired side effects.
Collapse
Affiliation(s)
- Simone Bido
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Melania Nannoni
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sharon Muggeo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Diana Gambarè
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giorgia Ruffini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Edoardo Bellini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Passeri
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Iaia
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mirko Luoni
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20129 Milan, Italy
| | - Martino Provinciali
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Serena Gea Giannelli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Giannese
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20129 Milan, Italy
| |
Collapse
|
18
|
Exconde PM, Bourne CM, Kulkarni M, Discher BM, Taabazuing CY. Inflammatory caspase substrate specificities. mBio 2024; 15:e0297523. [PMID: 38837391 PMCID: PMC11253702 DOI: 10.1128/mbio.02975-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Caspases are a family of cysteine proteases that act as molecular scissors to cleave substrates and regulate biological processes such as programmed cell death and inflammation. Extensive efforts have been made to identify caspase substrates and to determine factors that dictate substrate specificity. Thousands of putative substrates have been identified for caspases that regulate an immunologically silent type of cell death known as apoptosis, but less is known about substrates of the inflammatory caspases that regulate an immunostimulatory type of cell death called pyroptosis. Furthermore, much of our understanding of caspase substrate specificities is derived from work done with peptide substrates, which do not often translate to native protein substrates. Our knowledge of inflammatory caspase biology and substrates has recently expanded and here, we discuss the recent advances in our understanding of caspase substrate specificities, with a focus on inflammatory caspases. We highlight new substrates that have been discovered and discuss the factors that engender specificity. Recent evidence suggests that inflammatory caspases likely utilize two binding interfaces to recognize and process substrates, the active site and a conserved exosite.
Collapse
Affiliation(s)
- Patrick M. Exconde
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christopher M. Bourne
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Madhura Kulkarni
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bohdana M. Discher
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cornelius Y. Taabazuing
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Lenk R, Kleindienst W, Szabó GT, Baiersdörfer M, Boros G, Keller JM, Mahiny AJ, Vlatkovic I. Understanding the impact of in vitro transcription byproducts and contaminants. Front Mol Biosci 2024; 11:1426129. [PMID: 39050733 PMCID: PMC11266732 DOI: 10.3389/fmolb.2024.1426129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The success of messenger (m)RNA-based vaccines against SARS-CoV-2 during the COVID-19 pandemic has led to rapid growth and innovation in the field of mRNA-based therapeutics. However, mRNA production, whether in small amounts for research or large-scale GMP-grade for biopharmaceutics, is still based on the In Vitro Transcription (IVT) reaction developed in the early 1980s. The IVT reaction exploits phage RNA polymerase to catalyze the formation of an engineered mRNA that depends on a linearized DNA template, nucleotide building blocks, as well as pH, temperature, and reaction time. But depending on the IVT conditions and subsequent purification steps, diverse byproducts such as dsRNA, abortive RNAs and RNA:DNA hybrids might form. Unwanted byproducts, if not removed, could be formulated together with the full-length mRNA and cause an immune response in cells by activating host pattern recognition receptors. In this review, we summarize the potential types of IVT byproducts, their known biological activity, and how they can impact the efficacy and safety of mRNA therapeutics. In addition, we briefly overview non-nucleotide-based contaminants such as RNases, endotoxin and metal ions that, when present in the IVT reaction, can also influence the activity of mRNA-based drugs. We further discuss current approaches aimed at adjusting the IVT reaction conditions or improving mRNA purification to achieve optimal performance for medical applications.
Collapse
|
20
|
Haque I, Thapa P, Burns DM, Zhou J, Sharma M, Sharma R, Singh V. NLRP3 Inflammasome Inhibitors for Antiepileptogenic Drug Discovery and Development. Int J Mol Sci 2024; 25:6078. [PMID: 38892264 PMCID: PMC11172514 DOI: 10.3390/ijms25116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Epilepsy is one of the most prevalent and serious brain disorders and affects over 70 million people globally. Antiseizure medications (ASMs) relieve symptoms and prevent the occurrence of future seizures in epileptic patients but have a limited effect on epileptogenesis. Addressing the multifaceted nature of epileptogenesis and its association with the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated neuroinflammation requires a comprehensive understanding of the underlying mechanisms of these medications for the development of targeted therapeutic strategies beyond conventional antiseizure treatments. Several types of NLRP3 inhibitors have been developed and their effect has been validated both in in vitro and in vivo models of epileptogenesis. In this review, we discuss the advances in understanding the regulatory mechanisms of NLRP3 activation as well as progress made, and challenges faced in the development of NLRP3 inhibitors for the treatment of epilepsy.
Collapse
Affiliation(s)
- Inamul Haque
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
- Department of Math, Science and Business Technology, Kansas City Kansas Community College, Kansas City, KS 66112, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Pritam Thapa
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
| | - Douglas M. Burns
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
| | - Jianping Zhou
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
| | - Vikas Singh
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
- Division of Neurology, Kansas City VA Medical Center, Kansas City, MO 64128, USA
| |
Collapse
|
21
|
Liu Y, Li X, Sun T, Li T, Li Q. Pyroptosis in myocardial ischemia/reperfusion and its therapeutic implications. Eur J Pharmacol 2024; 971:176464. [PMID: 38461908 DOI: 10.1016/j.ejphar.2024.176464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Ischemic heart disease, a prevalent cardiovascular disease with global significance, is associated with substantial morbidity. Timely and successful reperfusion is crucial for reducing infarct size and enhancing clinical outcomes. However, reperfusion may induce additional myocardium injury, manifesting as myocardial ischemia/reperfusion (MI/R) injury. Pyroptosis is a regulated cell death pathway, the signaling pathway of which is activated during MI/R injury. In this process, the inflammasomes are triggered, initiating the cleavage of gasdermin proteins and pro-interleukins, which results in the formation of membrane pores and the maturation and secretion of inflammatory cytokines. Numerous preclinical evidence underscores the pivotal role of pyroptosis in MI/R injury. Inhibiting pyroptosis is cardioprotective against MI/R injury. Although certain agents exhibiting promise in preclinical studies for attenuating MI/R injury through inhibiting pyroptosis have been identified, the suitability of these compounds for clinical trials remains untested. This review comprehensively summarizes the recent developments in this field, with a specific emphasis on the impact of pyroptosis on MI/R injury. Deciphering these findings not only sheds light on new disease mechanisms but also paves the way for innovative treatments. And then the exploration of the latest advances in compounds that inhibit pyroptosis in MI/R is discussed, which aims to provide insights into potential therapeutic strategies and identify avenues for future research in the pursuit of effective clinical interventions.
Collapse
Affiliation(s)
- Yin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Xi Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Tingting Sun
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Tao Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Mitochondria and Metabolism, West China Hospital, Sichuan University, Chengdu, China.
| | - Qian Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Lee C, Park M, Wijesinghe WCB, Na S, Lee CG, Hwang E, Yoon G, Lee JK, Roh DH, Kwon YH, Yang J, Hughes SA, Vince JE, Seo JK, Min D, Kwon TH. Oxidative photocatalysis on membranes triggers non-canonical pyroptosis. Nat Commun 2024; 15:4025. [PMID: 38740804 DOI: 10.1038/s41467-024-47634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Intracellular membranes composing organelles of eukaryotes include membrane proteins playing crucial roles in physiological functions. However, a comprehensive understanding of the cellular responses triggered by intracellular membrane-focused oxidative stress remains elusive. Herein, we report an amphiphilic photocatalyst localised in intracellular membranes to damage membrane proteins oxidatively, resulting in non-canonical pyroptosis. Our developed photocatalysis generates hydroxyl radicals and hydrogen peroxides via water oxidation, which is accelerated under hypoxia. Single-molecule magnetic tweezers reveal that photocatalysis-induced oxidation markedly destabilised membrane protein folding. In cell environment, label-free quantification reveals that oxidative damage occurs primarily in membrane proteins related to protein quality control, thereby aggravating mitochondrial and endoplasmic reticulum stress and inducing lytic cell death. Notably, the photocatalysis activates non-canonical inflammasome caspases, resulting in gasdermin D cleavage to its pore-forming fragment and subsequent pyroptosis. These findings suggest that the oxidation of intracellular membrane proteins triggers non-canonical pyroptosis.
Collapse
Affiliation(s)
- Chaiheon Lee
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
- Research Center, O2MEDi inc., Ulsan, Republic of Korea
| | - Mingyu Park
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
| | - W C Bhashini Wijesinghe
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Seungjin Na
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Chae Gyu Lee
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
| | - Eunhye Hwang
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
- Research Center, O2MEDi inc., Ulsan, Republic of Korea
| | - Gwangsu Yoon
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
| | - Jeong Kyeong Lee
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
| | - Deok-Ho Roh
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
| | - Yoon Hee Kwon
- Research Center, O2MEDi inc., Ulsan, Republic of Korea
| | - Jihyeon Yang
- Research Center, O2MEDi inc., Ulsan, Republic of Korea
| | - Sebastian A Hughes
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jeong Kon Seo
- Research Center, O2MEDi inc., Ulsan, Republic of Korea.
- UNIST Central Research Facility, UNIST, Ulsan, Republic of Korea.
| | - Duyoung Min
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea.
| | - Tae-Hyuk Kwon
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea.
- Research Center, O2MEDi inc., Ulsan, Republic of Korea.
- Graduate School of Carbon Neutrality, UNIST, Ulsan, Republic of Korea.
- Graduate School of Semiconductor Materials and Device Engineering, UNIST, Ulsan, Republic of Korea.
| |
Collapse
|
23
|
Bibo-Verdugo B, Salvesen G. Evolution of Caspases and the Invention of Pyroptosis. Int J Mol Sci 2024; 25:5270. [PMID: 38791309 PMCID: PMC11121540 DOI: 10.3390/ijms25105270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The protein scaffold that includes the caspases is ancient and found in all domains of life. However, the stringent specificity that defines the caspase biologic function is relatively recent and found only in multicellular animals. During the radiation of the Chordata, members of the caspase family adopted roles in immunity, events coinciding with the development of substrates that define the modern innate immune response. This review focuses on the switch from the non-inflammatory cellular demise of apoptosis to the highly inflammatory innate response driven by distinct members of the caspase family, and the interplay between these two regulated cell death pathways.
Collapse
Affiliation(s)
- Betsaida Bibo-Verdugo
- Instituto Tecnológico de La Paz, Boulevard Forjadores de Baja California Sur 4720, La Paz 23080, Mexico;
| | - Guy Salvesen
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
24
|
Eckhart L, Fischer H. Caspase-5: Structure, Pro-Inflammatory Activity and Evolution. Biomolecules 2024; 14:520. [PMID: 38785927 PMCID: PMC11117641 DOI: 10.3390/biom14050520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Caspase-5 is a protease that induces inflammation in response to lipopolysaccharide (LPS), a component of the cell envelope of Gram-negative bacteria. The expression level of the CASP5 gene is very low in the basal state, but strongly increases in the presence of LPS. Intracellular LPS binds to the caspase activation and recruitment domain (CARD) of caspase-5, leading to the formation of a non-canonical inflammasome. Subsequently, the catalytic domain of caspase-5 cleaves gasdermin D and thereby facilitates the formation of cell membrane pores through which pro-inflammatory cytokines of the interleukin-1 family are released. Caspase-4 is also able to form a non-canonical inflammasome upon binding to LPS, but its expression is less dependent on LPS than the expression of caspase-5. Caspase-4 and caspase-5 have evolved via the duplication of a single ancestral gene in a subclade of primates, including humans. Notably, the main biomedical model species, the mouse, has only one ortholog, namely caspase-11. Here, we review the structural features and the mechanisms of regulation that are important for the pro-inflammatory roles of caspase-5. We summarize the interspecies differences and the evolution of pro-inflammatory caspases in mammals and discuss the potential roles of caspase-5 in the defense against Gram-negative bacteria and in sepsis.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Heinz Fischer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
25
|
Pandori WJ, Matsuno SY, Shin JH, Kim SC, Kao TH, Mallya S, Batarseh SN, Lodoen MB. Role for Caspase-8 in the Release of IL-1β and Active Caspase-1 from Viable Human Monocytes during Toxoplasma gondii Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1161-1171. [PMID: 38372637 PMCID: PMC11410338 DOI: 10.4049/jimmunol.2200513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Monocytes are actively recruited to sites of infection and produce the potent proinflammatory cytokine IL-1β. We previously showed that IL-1β release during Toxoplasma gondii infection of primary human monocytes requires the NLRP3 inflammasome and caspase-1 but is independent of gasdermin D and pyroptosis. To investigate mechanisms of IL-1β release, we generated caspase-1, -4, -5, or -8 knockout (KO) THP-1 monocytic cells. Genetic ablation of caspase-1 or -8, but not caspase-4 or -5, decreased IL-1β release during T. gondii infection without affecting cell death. In contrast, TNF-α and IL-6 secretion were unperturbed in caspase-8 KO cells during T. gondii infection. Dual pharmacological inhibition of caspase-8 and RIPK1 in primary monocytes also decreased IL-1β release without affecting cell viability or parasite infection. Caspase-8 was also required for the release of active caspase-1 from T. gondii-infected cells and for IL-1β release during infection with the related apicomplexan parasite Neospora caninum. Surprisingly, caspase-8 deficiency did not impair synthesis or cleavage of pro-IL-1β, but resulted in the retention of mature IL-1β within cells. Generation of gasdermin E KO and ATG7 KO THP-1 cells revealed that the release of IL-1β was not dependent on gasdermin E or ATG7. Collectively, our data indicate that during T. gondii Infection of human monocytes, caspase-8 functions in a novel gasdermin-independent mechanism controlling IL-1β release from viable cells. This study expands on the molecular pathways that promote IL-1β in human immune cells and provides evidence of a role for caspase-8 in the mechanism of IL-1β release during infection.
Collapse
Affiliation(s)
- William J. Pandori
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, 92617, USA
| | - Stephanie Y. Matsuno
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, 92617, USA
| | - Ji-Hun Shin
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, 92617, USA
| | - Samuel C. Kim
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, 92617, USA
| | - Tiffany H. Kao
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, 92617, USA
| | - Sharmila Mallya
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, 92617, USA
| | - Sarah N. Batarseh
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, 92617, USA
| | - Melissa B. Lodoen
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, 92617, USA
| |
Collapse
|
26
|
Pang H, Huang G, Xie Z, Zhou Z. The role of regulated necrosis in diabetes and its complications. J Mol Med (Berl) 2024; 102:495-505. [PMID: 38393662 DOI: 10.1007/s00109-024-02421-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024]
Abstract
Morphologically, cell death can be divided into apoptosis and necrosis. Apoptosis, which is a type of regulated cell death, is well tolerated by the immune system and is responsible for hemostasis and cellular turnover under physiological conditions. In contrast, necrosis is defined as a form of passive cell death that leads to a dramatic inflammatory response (also referred to as necroinflammation) and causes organ dysfunction under pathological conditions. Recently, a novel form of cell death named regulated necrosis (such as necroptosis, pyroptosis, and ferroptosis) was discovered. Distinct from apoptosis, regulated necrosis is modulated by multiple internal or external factors, but meanwhile, it results in inflammation and immune response. Accumulating evidence has indicated that regulated necrosis is associated with multiple diseases, including diabetes. Diabetes is characterized by hyperglycemia caused by insulin deficiency and/or insulin resistance, and long-term high glucose leads to various diabetes-related complications. Here, we summarize the mechanisms of necroptosis, pyroptosis, and ferroptosis, and introduce recent advances in characterizing the associations between these three types of regulated necrosis and diabetes and its complications.
Collapse
Affiliation(s)
- Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
27
|
Toldo S, Abbate A. The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases. Nat Rev Cardiol 2024; 21:219-237. [PMID: 37923829 PMCID: PMC11550901 DOI: 10.1038/s41569-023-00946-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/06/2023]
Abstract
An intense, stereotyped inflammatory response occurs in response to ischaemic and non-ischaemic injury to the myocardium. The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is a finely regulated macromolecular protein complex that senses the injury and triggers and amplifies the inflammatory response by activation of caspase 1; cleavage of pro-inflammatory cytokines, such as pro-IL-1β and pro-IL-18, to their mature forms; and induction of inflammatory cell death (pyroptosis). Inhibitors of the NLRP3 inflammasome and blockers of IL-1β and IL-18 activity have been shown to reduce injury to the myocardium and pericardium, favour resolution of the inflammation and preserve cardiac function. In this Review, we discuss the components of the NLRP3 inflammasome and how it is formed and activated in various ischaemic and non-ischaemic cardiac pathologies (acute myocardial infarction, cardiac dysfunction and remodelling, atherothrombosis, myocarditis and pericarditis, cardiotoxicity and cardiac sarcoidosis). We also summarize current preclinical and clinical evidence from studies of agents that target the NLRP3 inflammasome and related cytokines.
Collapse
Affiliation(s)
- Stefano Toldo
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
28
|
Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther 2024; 9:68. [PMID: 38523155 PMCID: PMC10961329 DOI: 10.1038/s41392-024-01765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The innate immune pathway is receiving increasing attention in cancer therapy. This pathway is ubiquitous across various cell types, not only in innate immune cells but also in adaptive immune cells, tumor cells, and stromal cells. Agonists targeting the innate immune pathway have shown profound changes in the tumor microenvironment (TME) and improved tumor prognosis in preclinical studies. However, to date, the clinical success of drugs targeting the innate immune pathway remains limited. Interestingly, recent studies have shown that activation of the innate immune pathway can paradoxically promote tumor progression. The uncertainty surrounding the therapeutic effectiveness of targeted drugs for the innate immune pathway is a critical issue that needs immediate investigation. In this review, we observe that the role of the innate immune pathway demonstrates heterogeneity, linked to the tumor development stage, pathway status, and specific cell types. We propose that within the TME, the innate immune pathway exhibits multidimensional diversity. This diversity is fundamentally rooted in cellular heterogeneity and is manifested as a variety of signaling networks. The pro-tumor effect of innate immune pathway activation essentially reflects the suppression of classical pathways and the activation of potential pro-tumor alternative pathways. Refining our understanding of the tumor's innate immune pathway network and employing appropriate targeting strategies can enhance our ability to harness the anti-tumor potential of the innate immune pathway and ultimately bridge the gap from preclinical to clinical application.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuheng Liao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
29
|
Kidder E, Gangopadhyay S, Francis S, Alfaidi M. "How to Release or Not Release, That Is the Question." A Review of Interleukin-1 Cellular Release Mechanisms in Vascular Inflammation. J Am Heart Assoc 2024; 13:e032987. [PMID: 38390810 PMCID: PMC10944040 DOI: 10.1161/jaha.123.032987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Cardiovascular disease remains the leading cause of death worldwide, characterized by atherosclerotic activity within large and medium-sized arteries. Inflammation has been shown to be a primary driver of atherosclerotic plaque formation, with interleukin-1 (IL-1) having a principal role. This review focuses on the current state of knowledge of molecular mechanisms of IL-1 release from cells in atherosclerotic plaques. A more in-depth understanding of the process of IL-1's release into the vascular environment is necessary for the treatment of inflammatory disease processes, as the current selection of medicines being used primarily target IL-1 after it has been released. IL-1 is secreted by several heterogenous mechanisms, some of which are cell type-specific and could provide further specialized targets for therapeutic intervention. A major unmet challenge is to understand the mechanism before and leading to IL-1 release, especially by cells in atherosclerotic plaques, including endothelial cells, vascular smooth muscle cells, and macrophages. Data so far indicate a heterogeneity of IL-1 release mechanisms that vary according to cell type and are stimulus-dependent. Unraveling this complexity may reveal new targets to block excess vascular inflammation.
Collapse
Affiliation(s)
- Evan Kidder
- Division of Cardiology, Department of Internal MedicineLouisiana State University Health Sciences CentreShreveportLAUSA
| | - Siddhartha Gangopadhyay
- Division of Cardiology, Department of Internal MedicineLouisiana State University Health Sciences CentreShreveportLAUSA
| | - Sheila Francis
- School of Medicine and Population HealthUniversity of SheffieldSheffieldUK
| | - Mabruka Alfaidi
- Division of Cardiology, Department of Internal MedicineLouisiana State University Health Sciences CentreShreveportLAUSA
| |
Collapse
|
30
|
Bourne CM, Taabazuing CY. Harnessing Pyroptosis for Cancer Immunotherapy. Cells 2024; 13:346. [PMID: 38391959 PMCID: PMC10886719 DOI: 10.3390/cells13040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Cancer immunotherapy is a novel pillar of cancer treatment that harnesses the immune system to fight tumors and generally results in robust antitumor immunity. Although immunotherapy has achieved remarkable clinical success for some patients, many patients do not respond, underscoring the need to develop new strategies to promote antitumor immunity. Pyroptosis is an immunostimulatory type of regulated cell death that activates the innate immune system. A hallmark of pyroptosis is the release of intracellular contents such as cytokines, alarmins, and chemokines that can stimulate adaptive immune activation. Recent studies suggest that pyroptosis promotes antitumor immunity. Here, we review the mechanisms by which pyroptosis can be induced and highlight new strategies to induce pyroptosis in cancer cells for antitumor defense. We discuss how pyroptosis modulates the tumor microenvironment to stimulate adaptive immunity and promote antitumor immunity. We also suggest research areas to focus on for continued development of pyroptosis as an anticancer treatment. Pyroptosis-based anticancer therapies offer a promising new avenue for treating immunologically 'cold' tumors.
Collapse
Affiliation(s)
| | - Cornelius Y. Taabazuing
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
31
|
Yi YS. Roles of the Caspase-11 Non-Canonical Inflammasome in Rheumatic Diseases. Int J Mol Sci 2024; 25:2091. [PMID: 38396768 PMCID: PMC10888639 DOI: 10.3390/ijms25042091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammasomes are intracellular multiprotein complexes that activate inflammatory signaling pathways. Inflammasomes comprise two major classes: canonical inflammasomes, which were discovered first and are activated in response to a variety of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), and non-canonical inflammasomes, which were discovered recently and are only activated in response to intracellular lipopolysaccharide (LPS). Although a larger number of studies have successfully demonstrated that canonical inflammasomes, particularly the NLRP3 inflammasome, play roles in various rheumatic diseases, including rheumatoid arthritis (RA), infectious arthritis (IR), gouty arthritis (GA), osteoarthritis (OA), systemic lupus erythematosus (SLE), psoriatic arthritis (PA), ankylosing spondylitis (AS), and Sjögren's syndrome (SjS), the regulatory roles of non-canonical inflammasomes, such as mouse caspase-11 and human caspase-4 non-canonical inflammasomes, in these diseases are still largely unknown. Interestingly, an increasing number of studies have reported possible roles for non-canonical inflammasomes in the pathogenesis of various mouse models of rheumatic disease. This review comprehensively summarizes and discusses recent emerging studies demonstrating the regulatory roles of non-canonical inflammasomes, particularly focusing on the caspase-11 non-canonical inflammasome, in the pathogenesis and progression of various types of rheumatic diseases and provides new insights into strategies for developing potential therapeutics to prevent and treat rheumatic diseases as well as associated diseases by targeting non-canonical inflammasomes.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
32
|
Caglayan M, Ozden S. Potential impacts of bisphenols on prostate cells: An overview of cytotoxicity, proliferation, oxidative stress, apoptosis, and ER-stress response activation. Food Chem Toxicol 2024; 184:114416. [PMID: 38134982 DOI: 10.1016/j.fct.2023.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
This study aimed to evaluate the toxic effects of Bisphenol A (BPA), Bisphenol F (BPF) and Bisphenol S (BPS) on PNT1A and PC-3 cells, focusing on their effects on endoplasmic reticulum (ER) stress and related pathways. PNT1A and PC-3 were treated with BPA, BPF and BPS at concentrations of 0.1, 1 and 10 μM for 48 h cytotoxicity, BrdU cell proliferation, ROS generation, apoptosis detection, gene expression analysis and Western blot analysis were performed. BPA induced proliferation and late apoptosis in PNT1A cells, whereas it induced both late apoptosis and early apoptosis in PC-3 cells. BPF and BPS induced late apoptosis in PC-3 cells. Increased ROS levels were observed in PNT1A cells exposed to 1-10 μM BPA. BPA, BPF and BPS increased the expression levels of ER stress-related genes in PNT1A cells. Furthermore, exposure to BPA increased the expression of ER stress-related CHOP/DDIT3 protein in PNT1A cells. These findings highlight the potential health risks associated with BPA, BPF and BPS exposure and emphasize the importance of investigating the underlying mechanisms by which these chemicals may affect human health. Further research is required to comprehensively understand the role of ER stress pathways in cellular responses to these substances.
Collapse
Affiliation(s)
- Mine Caglayan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, İstanbul University, Istanbul, Turkey; Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey; Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, İstanbul University, Istanbul, Turkey.
| |
Collapse
|
33
|
Chiarini A, Armato U, Gui L, Dal Prà I. "Other Than NLRP3" Inflammasomes: Multiple Roles in Brain Disease. Neuroscientist 2024; 30:23-48. [PMID: 35815856 DOI: 10.1177/10738584221106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human neuroinflammatory and neurodegenerative diseases, whose prevalence keeps rising, are still unsolved pathobiological/therapeutical problems. Among others, recent etiology hypotheses stressed as their main driver a chronic neuroinflammation, which is mediated by innate immunity-related protein oligomers: the inflammasomes. A panoply of exogenous and/or endogenous harmful agents activates inflammasomes' assembly, signaling, and IL-1β/IL-18 production and neural cells' pyroptotic death. The underlying concept is that inflammasomes' chronic activation advances neurodegeneration while their short-lasting operation restores tissue homeostasis. Hence, from a therapeutic standpoint, it is crucial to understand inflammasomes' regulatory mechanisms. About this, a deluge of recent studies focused on the NLRP3 inflammasome with suggestions that its pharmacologic block would hinder neurodegeneration. Yet hitherto no evidence proves this view. Moreover, known inflammasomes are numerous, and the mechanisms regulating their expression and function may vary with the involved animal species and strains, as well as organs and cells, and the harmful factors triggered as a result. Therefore, while presently leaving out some little-studied inflammasomes, this review focuses on the "other than NLRP3" inflammasomes that participate in neuroinflammation's complex mechanisms: NLRP1, NLRP2, NLRC4, and AIM2. Although human-specific data about them are relatively scant, we stress that only a holistic view including several human brain inflammasomes and other potential pathogenetic drivers will lead to successful therapies for neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Chiarini
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Li Gui
- Department of Neurology, Southwest Hospital, Chongqing, China
| | - Ilaria Dal Prà
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| |
Collapse
|
34
|
Zuo Z, Shi J, Wang Y, Yin Z, Wang Z, Yang Z, Jia B, Sun Y. The transcriptomic landscape of canonical activation of NLRP3 inflammasome from bone marrow-derived macrophages. Biochem Biophys Res Commun 2024; 694:149409. [PMID: 38141558 DOI: 10.1016/j.bbrc.2023.149409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The NLRP3 inflammasome has gained significant attention due to its participation in diverse cellular processes. Nevertheless, the detailed framework of the canonical NLRP3 inflammasome assembly still remains unrevealed. This study aims to elucidate the transcriptomic landscape of the various stages involved in the canonical activation of the NLRP3 inflammasome in BMDMs by integrating RNA-seq, bioinformatics, and molecular dynamics analyses. The model for the canonical activation of the NLRP3 inflammasome was confirmed through morphological observations, functional assessments (ELISA and LDH), and protein detection (western blot). Subsequently, cells were subjected to RNA sequencing following three groups: control, priming (LPS 500 ng/ml, 4 h), and activation (LPS 500 ng/ml, 4 h; ATP 5 mM, 1 h). A total of 9116 differentially expressed genes (DEGs) were identified, which exerted regulatory effects on various pathways, including cell metabolism, ion fluxes, post-translational modifications, and organelles. Subsequently, six hub genes (Sirt3, Stat3, Syk, Trpm2, Tspo, and Txnip) were identified via integrating literature review and database screening. Finally, the three-dimensional structures of these six hub proteins were obtained using the MD-optimized RoseTTAFold and Gromacs simulations (at least 200 ns). In summary, our research offers novel insights into the transcriptomic-level understanding of the assembly of the canonical NLRP3 inflammasome.
Collapse
Affiliation(s)
- Zhuo Zuo
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Jiajia Shi
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Yaxing Wang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Zhongqian Yin
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Zhe Wang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Zhouqi Yang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Bin Jia
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Yulong Sun
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China.
| |
Collapse
|
35
|
Amali AA, Ravikumar S, Chew WL, Tan Z, Sam QH, Chen KW, Boucher D, MacLaren G, Chai LYA. Extracorporeal Membrane Oxygenation-Dependent Fulminant Melioidosis From Caspase 4 Mutation Reversed by Interferon Gamma Therapy. Clin Infect Dis 2024; 78:94-97. [PMID: 37647624 DOI: 10.1093/cid/ciad517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023] Open
Abstract
We describe bedside-to-bench immunological and genetic elucidation of defective pyroptosis attributable to novel caspase 4 defect mediating pathogen-triggered inflammatory programmed cell death, in the setting of severe pneumonia and abscess-forming melioidosis in an overtly healthy host failing to clear Burkholderia pseudomallei infection, and how targeted adjunctive biological therapy led to a successful outcome.
Collapse
Affiliation(s)
- Aseervatham Anusha Amali
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore
| | - Sharada Ravikumar
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore
| | - Wei Leong Chew
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, Singapore
| | - Zhaohong Tan
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore
| | - Qi Hui Sam
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, Singapore
| | - Kaiwen W Chen
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dave Boucher
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Graeme MacLaren
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiothoracic Intensive Care Unit, National University Heart Centre, National University Hospital, Singapore
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
36
|
Carmo HRP, Bonilha I, Barreto J, Tognolini M, Zanotti I, Sposito AC. High-Density Lipoproteins at the Interface between the NLRP3 Inflammasome and Myocardial Infarction. Int J Mol Sci 2024; 25:1290. [PMID: 38279290 PMCID: PMC10816227 DOI: 10.3390/ijms25021290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Despite significant therapeutic advancements, morbidity and mortality following myocardial infarction (MI) remain unacceptably high. This clinical challenge is primarily attributed to two significant factors: delayed reperfusion and the myocardial injury resulting from coronary reperfusion. Following reperfusion, there is a rapid intracellular pH shift, disruption of ionic balance, heightened oxidative stress, increased activity of proteolytic enzymes, initiation of inflammatory responses, and activation of several cell death pathways, encompassing apoptosis, necroptosis, and pyroptosis. The inflammatory cell death or pyroptosis encompasses the activation of the intracellular multiprotein complex known as the NLRP3 inflammasome. High-density lipoproteins (HDL) are endogenous particles whose components can either promote or mitigate the activation of the NLRP3 inflammasome. In this comprehensive review, we explore the role of inflammasome activation in the context of MI and provide a detailed analysis of how HDL can modulate this process.
Collapse
Affiliation(s)
- Helison R. P. Carmo
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| | - Isabella Bonilha
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| | - Joaquim Barreto
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| | | | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Andrei C. Sposito
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| |
Collapse
|
37
|
Dai X, Zhou L, He X, Hua J, Chen L, Lu Y. Identification of apoptosis-related gene signatures as potential biomarkers for differentiating active from latent tuberculosis via bioinformatics analysis. Front Cell Infect Microbiol 2024; 14:1285493. [PMID: 38312744 PMCID: PMC10834671 DOI: 10.3389/fcimb.2024.1285493] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Background Apoptosis is associated with the pathogenesis of Mycobacterium tuberculosis infection. This study aims to identify apoptosis-related genes as biomarkers for differentiating active tuberculosis (ATB) from latent tuberculosis infection (LTBI). Methods The tuberculosis (TB) datasets (GSE19491, GSE62525, and GSE28623) were downloaded from the Gene Expression Omnibus (GEO) database. The diagnostic biomarkers differentiating ATB from LTBI were identified by combining the data of protein-protein interaction network, differentially expressed gene, Weighted Gene Co-Expression Network Analysis (WGCNA), and receiver operating characteristic (ROC) analyses. Machine learning algorithms were employed to validate the diagnostic ability of the biomarkers. Enrichment analysis for biomarkers was established, and potential drugs were predicted. The association between biomarkers and N6-methyladenosine (m6A) or 5-methylated cytosine (m5C) regulators was evaluated. Results Six biomarkers including CASP1, TNFSF10, CASP4, CASP5, IFI16, and ATF3 were obtained for differentiating ATB from LTBI. They showed strong diagnostic performances, with area under ROC (AUC) values > 0.7. Enrichment analysis demonstrated that the biomarkers were involved in immune and inflammation responses. Furthermore, 24 drugs, including progesterone and emricasan, were predicted. The correlation analysis revealed that biomarkers were positively correlated with most m6A or m5C regulators. Conclusion The six ARGs can serve as effective biomarkers differentiating ATB from LTBI and provide insight into the pathogenesis of Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Xiaoting Dai
- Department of Infectious Diseases, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Litian Zhou
- Department of Neurosugery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Xiaopu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Hua
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Infectious Diseases, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Yingying Lu
- Department of Clinical Laboratory, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| |
Collapse
|
38
|
Reghu G, Vemula PK, Bhat SG, Narayanan S. Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy. J Biosci 2024; 49:63. [PMID: 38864238 PMCID: PMC11286319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 06/13/2024]
Abstract
Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.
Collapse
Affiliation(s)
- Gayatri Reghu
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682 022, India
| | | | | | | |
Collapse
|
39
|
Li M, Jiang P, Yang Y, Xiong L, Wei S, Wang J, Li C. The role of pyroptosis and gasdermin family in tumor progression and immune microenvironment. Exp Hematol Oncol 2023; 12:103. [PMID: 38066523 PMCID: PMC10704735 DOI: 10.1186/s40164-023-00464-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/29/2023] [Indexed: 06/29/2024] Open
Abstract
Pyroptosis, an inflammatory programmed cell death, distinguishes itself from apoptosis and necroptosis and has drawn increasing attention. Recent studies have revealed a correlation between the expression levels of many pyroptosis-related genes and both tumorigenesis and progression. Despite advancements in cancer treatments such as surgery, radiotherapy, chemotherapy, and immunotherapy, the persistent hallmark of cancer enables malignant cells to elude cell death and develop resistance to therapy. Recent findings indicate that pyroptosis can overcome apoptosis resistance amplify treatment-induced tumor cell death. Moreover, pyroptosis triggers antitumor immunity by releasing pro-inflammatory cytokines, augmenting macrophage phagocytosis, and activating cytotoxic T cells and natural killer cells. Additionally, it transforms "cold" tumors into "hot" tumors, thereby enhancing the antitumor effects of various treatments. Consequently, pyroptosis is intricately linked to tumor development and holds promise as an effective strategy for boosting therapeutic efficacy. As the principal executive protein of pyroptosis, the gasdermin family plays a pivotal role in influencing pyroptosis-associated outcomes in tumors and can serve as a regulatory target. This review provides a comprehensive summary of the relationship between pyroptosis and gasdermin family members, discusses their roles in tumor progression and the tumor immune microenvironment, and analyses the underlying therapeutic strategies for tumor treatment based on pyroptotic cell death.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Yuhan Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Liting Xiong
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
40
|
Ghait M, Duduskar SN, Rooney M, Häfner N, Reng L, Göhrig B, Reuken PA, Bloos F, Bauer M, Sponholz C, Bruns T, Rubio I. The non-canonical inflammasome activators Caspase-4 and Caspase-5 are differentially regulated during immunosuppression-associated organ damage. Front Immunol 2023; 14:1239474. [PMID: 38106412 PMCID: PMC10722270 DOI: 10.3389/fimmu.2023.1239474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
The non-canonical inflammasome, which includes caspase-11 in mice and caspase-4 and caspase-5 in humans, is upregulated during inflammatory processes and activated in response to bacterial infections to carry out pyroptosis. Inadequate activity of the inflammasome has been associated with states of immunosuppression and immunopathological organ damage. However, the regulation of the receptors caspase-4 and caspase-5 during severe states of immunosuppression is largely not understood. We report that CASP4 and CASP5 are differentially regulated during acute-on-chronic liver failure and sepsis-associated immunosuppression, suggesting non-redundant functions in the inflammasome response to infection. While CASP5 remained upregulated and cleaved p20-GSDMD could be detected in sera from critically ill patients, CASP4 was downregulated in critically ill patients who exhibited features of immunosuppression and organ failure. Mechanistically, downregulation of CASP4 correlated with decreased gasdermin D levels and impaired interferon signaling, as reflected by decreased activity of the CASP4 transcriptional activators IRF1 and IRF2. Caspase-4 gene and protein expression inversely correlated with markers of organ dysfunction, including MELD and SOFA scores, and with GSDMD activity, illustrating the association of CASP4 levels with disease severity. Our results document the selective downregulation of the non-canonical inflammasome activator caspase-4 in the context of sepsis-associated immunosuppression and organ damage and provide new insights for the development of biomarkers or novel immunomodulatory therapies for the treatment of severe infections.
Collapse
Affiliation(s)
- Mohamed Ghait
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Shivalee N Duduskar
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Michael Rooney
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
| | - Norman Häfner
- Department of Gynecology, Jena University Hospital, Jena, Germany
| | - Laura Reng
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Bianca Göhrig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Philipp A Reuken
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
| | - Frank Bloos
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Christoph Sponholz
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Tony Bruns
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Ignacio Rubio
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
41
|
Bockstiegel J, Engelhardt J, Weindl G. P2X7 receptor activation leads to NLRP3-independent IL-1β release by human macrophages. Cell Commun Signal 2023; 21:335. [PMID: 37996864 PMCID: PMC10666422 DOI: 10.1186/s12964-023-01356-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/14/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND The purinergic receptor P2X7 plays a crucial role in infection, inflammation, and cell death. It is thought that P2X7 receptor stimulation triggers processing and release of the pro-inflammatory cytokine interleukin (IL)-1β by activation of the NLRP3 inflammasome; however, the underlying mechanisms remain poorly understood. METHODS Modulation of IL-1β secretion was studied in THP-1 macrophages. Adenosine 5'-triphosphate (ATP), BzATP, nigericin and pharmacological inhibitors of P2X receptors, inflammatory caspases and the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome were used to characterize signaling. RESULTS In primed macrophages, IL-1β release was increased after P2X7 receptor activation by ATP and 2,3-O-(4-benzoylbenzoyl)-ATP (BzATP). Pharmacological inhibition or genetic knockout of NLRP3 does not completely inhibit IL-1β release in TLR2/1-primed macrophages. Increase in extracellular K+ as well as inhibition of caspase-1 or serine proteases maintained IL-1β release in macrophages stimulated with P2X7 receptor agonists at 50%. CONCLUSIONS Our findings suggest a previously unrecognized mechanism of P2X7 receptor mediated IL-1β release and highlight the existence of an NLRP3-independent pathway in human macrophages. Video Abstract.
Collapse
Affiliation(s)
- Judith Bockstiegel
- Pharmacology and Toxicology Section, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | - Jonas Engelhardt
- Pharmacology and Toxicology Section, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | - Günther Weindl
- Pharmacology and Toxicology Section, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany.
| |
Collapse
|
42
|
Krantz M, Eklund D, Särndahl E, Hedbrant A. A detailed molecular network map and model of the NLRP3 inflammasome. Front Immunol 2023; 14:1233680. [PMID: 38077364 PMCID: PMC10699087 DOI: 10.3389/fimmu.2023.1233680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023] Open
Abstract
The NLRP3 inflammasome is a key regulator of inflammation that responds to a broad range of stimuli. The exact mechanism of activation has not been determined, but there is a consensus on cellular potassium efflux as a major common denominator. Once NLRP3 is activated, it forms high-order complexes together with NEK7 that trigger aggregation of ASC into specks. Typically, there is only one speck per cell, consistent with the proposal that specks form - or end up at - the centrosome. ASC polymerisation in turn triggers caspase-1 activation, leading to maturation and release of IL-1β and pyroptosis, i.e., highly inflammatory cell death. Several gain-of-function mutations in the NLRP3 inflammasome have been suggested to induce spontaneous activation of NLRP3 and hence contribute to development and disease severity in numerous autoinflammatory and autoimmune diseases. Consequently, the NLRP3 inflammasome is of significant clinical interest, and recent attention has drastically improved our insight in the range of involved triggers and mechanisms of signal transduction. However, despite recent progress in knowledge, a clear and comprehensive overview of how these mechanisms interplay to shape the system level function is missing from the literature. Here, we provide such an overview as a resource to researchers working in or entering the field, as well as a computational model that allows for evaluating and explaining the function of the NLRP3 inflammasome system from the current molecular knowledge. We present a detailed reconstruction of the molecular network surrounding the NLRP3 inflammasome, which account for each specific reaction and the known regulatory constraints on each event as well as the mechanisms of drug action and impact of genetics when known. Furthermore, an executable model from this network reconstruction is generated with the aim to be used to explain NLRP3 activation from priming and activation to the maturation and release of IL-1β and IL-18. Finally, we test this detailed mechanistic model against data on the effect of different modes of inhibition of NLRP3 assembly. While the exact mechanisms of NLRP3 activation remains elusive, the literature indicates that the different stimuli converge on a single activation mechanism that is additionally controlled by distinct (positive or negative) priming and licensing events through covalent modifications of the NLRP3 molecule. Taken together, we present a compilation of the literature knowledge on the molecular mechanisms on NLRP3 activation, a detailed mechanistic model of NLRP3 activation, and explore the convergence of diverse NLRP3 activation stimuli into a single input mechanism.
Collapse
Affiliation(s)
- Marcus Krantz
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Daniel Eklund
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Alexander Hedbrant
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| |
Collapse
|
43
|
Granata S, La Russa D, Stallone G, Perri A, Zaza G. Inflammasome pathway in kidney transplantation. Front Med (Lausanne) 2023; 10:1303110. [PMID: 38020086 PMCID: PMC10663322 DOI: 10.3389/fmed.2023.1303110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Kidney transplantation is the best available renal replacement therapy for patients with end-stage kidney disease and is associated with better quality of life and patient survival compared with dialysis. However, despite the significant technical and pharmaceutical advances in this field, kidney transplant recipients are still characterized by reduced long-term graft survival. In fact, almost half of the patients lose their allograft after 15-20 years. Most of the conditions leading to graft loss are triggered by the activation of a large immune-inflammatory machinery. In this context, several inflammatory markers have been identified, and the deregulation of the inflammasome (NLRP3, NLRP1, NLRC4, AIM2), a multiprotein complex activated by either whole pathogens (including fungi, bacteria, and viruses) or host-derived molecules, seems to play a pivotal pathogenetic role. However, the biological mechanisms leading to inflammasome activation in patients developing post-transplant complications (including, ischemia-reperfusion injury, rejections, infections) are still largely unrecognized, and only a few research reports, reviewed in this manuscript, have addressed the association between abnormal activation of this pathway and the onset/development of major clinical effects. Finally, the regulation of the inflammasome machinery could represent in future a valuable therapeutic target in kidney transplantation.
Collapse
Affiliation(s)
- Simona Granata
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Anna Perri
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
44
|
Tylek K, Trojan E, Leśkiewicz M, Ghafir El Idrissi I, Lacivita E, Leopoldo M, Basta-Kaim A. Microglia Depletion Attenuates the Pro-Resolving Activity of the Formyl Peptide Receptor 2 Agonist AMS21 Related to Inhibition of Inflammasome NLRP3 Signalling Pathway: A Study of Organotypic Hippocampal Cultures. Cells 2023; 12:2570. [PMID: 37947648 PMCID: PMC10648897 DOI: 10.3390/cells12212570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Microglial cells have been demonstrated to be significant resident immune cells that maintain homeostasis under physiological conditions. However, prolonged or excessive microglial activation leads to disturbances in the resolution of inflammation (RoI). Formyl peptide receptor 2 (FPR2) is a crucial player in the RoI, interacting with various ligands to induce distinct conformational changes and, consequently, diverse biological effects. Due to the poor pharmacokinetic properties of endogenous FPR2 ligands, the aim of our study was to evaluate the pro-resolving effects of a new ureidopropanamide agonist, compound AMS21, in hippocampal organotypic cultures (OHCs) stimulated with lipopolysaccharide (LPS). Moreover, to assess whether AMS21 exerts its action via FPR2 specifically located on microglial cells, we conducted a set of experiments in OHCs depleted of microglial cells using clodronate. We demonstrated that the protective and anti-inflammatory activity of AMS21 manifested as decreased levels of lactate dehydrogenase (LDH), nitric oxide (NO), and proinflammatory cytokines IL-1β and IL-6 release evoked by LPS in OHCs. Moreover, in LPS-stimulated OHCs, AMS21 treatment downregulated NLRP3 inflammasome-related factors (CASP1, NLRP3, PYCARD) and this effect was mediated through FPR2 because it was blocked by the FPR2 antagonist WRW4 pre-treatment. Importantly this beneficial effect of AMS21 was only observed in the presence of microglial FPR2, and absent in OHCs depleted with microglial cells using clodronate. Our results strongly suggest that the compound AMS21 exerts, at nanomolar doses, protective and anti-inflammatory properties and an FPR2 receptor located specifically on microglial cells mediates the anti-inflammatory response of AMS21. Therefore, microglial FPR2 represents a promising target for the enhancement of RoI.
Collapse
Affiliation(s)
- Kinga Tylek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland; (K.T.); (E.T.); (M.L.)
| | - Ewa Trojan
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland; (K.T.); (E.T.); (M.L.)
| | - Monika Leśkiewicz
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland; (K.T.); (E.T.); (M.L.)
| | - Imane Ghafir El Idrissi
- Department of Pharmacy—Drug Sciences, University of Bari, Via Orabona 4, 70125 Bari, Italy; (I.G.E.I.); (E.L.); (M.L.)
| | - Enza Lacivita
- Department of Pharmacy—Drug Sciences, University of Bari, Via Orabona 4, 70125 Bari, Italy; (I.G.E.I.); (E.L.); (M.L.)
| | - Marcello Leopoldo
- Department of Pharmacy—Drug Sciences, University of Bari, Via Orabona 4, 70125 Bari, Italy; (I.G.E.I.); (E.L.); (M.L.)
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland; (K.T.); (E.T.); (M.L.)
| |
Collapse
|
45
|
Accogli T, Hibos C, Vegran F. Canonical and non-canonical functions of NLRP3. J Adv Res 2023; 53:137-151. [PMID: 36610670 PMCID: PMC10658328 DOI: 10.1016/j.jare.2023.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Since its discovery, NLRP3 is almost never separated from its major role in the protein complex it forms with ASC, NEK7 and Caspase-1, the inflammasome. This key component of the innate immune response mediates the secretion of proinflammatory cytokines IL-1β and IL-18 involved in immune response to microbial infection and cellular damage. However, NLRP3 has also other functions that do not involve the inflammasome assembly nor the innate immune response. These non-canonical functions have been poorly studied. Nevertheless, NLRP3 is associated with different kind of diseases probably through its inflammasome dependent function as through its inflammasome independent functions. AIM OF THE REVIEW The study and understanding of the canonical and non-canonical functions of NLRP3 can help to better understand its involvement in various pathologies. In parallel, the description of the mechanisms of action and regulation of its various functions, can allow the identification of new therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF THE REVIEW NLRP3 functions have mainly been studied in the context of the inflammasome, in myeloid cells and in totally deficient transgenic mice. However, for several year, the work of different teams has proven that NLRP3 is also expressed in other cell types where it has functions that are independent of the inflammasome. If these studies suggest that NLRP3 could play different roles in the cytoplasm or the nucleus of the cells, the mechanisms underlying NLRP3 non-canonical functions remain unclear. This is why we propose in this review an inventory of the canonical and non-canonical functions of NLRP3 and their impact in different pathologies.
Collapse
Affiliation(s)
- Théo Accogli
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE
| | - Christophe Hibos
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE; Université de Bourgogne Franche-Comté, Dijon 21000, FRANCE
| | - Frédérique Vegran
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE; Department of Biology and Pathology of Tumors - Centre anticancéreux GF Leclerc, Dijon 21000, FRANCE.
| |
Collapse
|
46
|
Curieses Andrés CM, Pérez de la Lastra JM, Andrés Juan C, Plou FJ, Pérez-Lebeña E. From reactive species to disease development: Effect of oxidants and antioxidants on the cellular biomarkers. J Biochem Mol Toxicol 2023; 37:e23455. [PMID: 37437103 DOI: 10.1002/jbt.23455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
The influence of modern lifestyle, diet, exposure to chemicals such as phytosanitary substances, together with sedentary lifestyles and lack of exercise play an important role in inducing reactive stress (RS) and disease. The imbalance in the production and scavenging of free radicals and the induction of RS (oxidative, nitrosative, and halogenative) plays an essential role in the etiology of various chronic pathologies, such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. The implication of free radicals and reactive species injury in metabolic disturbances and the onset of many diseases have been accumulating for several decades, and are now accepted as a major cause of many chronic diseases. Exposure to elevated levels of free radicals can cause molecular structural impact on proteins, lipids, and DNA, as well as functional alteration of enzyme homeostasis, leading to aberrations in gene expression. Endogenous depletion of antioxidant enzymes can be mitigated using exogenous antioxidants. The current interest in the use of exogenous antioxidants as adjunctive agents for the treatment of human diseases allows a better understanding of these diseases, facilitating the development of new therapeutic agents with antioxidant activity to improve the treatment of various diseases. Here we examine the role that RS play in the initiation of disease and in the reactivity of free radicals and RS in organic and inorganic cellular components.
Collapse
Affiliation(s)
| | | | - Celia Andrés Juan
- Department of Organic Chemistry, Cinquima Institute, Faculty of Sciences, Valladolid University, Valladolid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, Madrid, Spain
| | | |
Collapse
|
47
|
Peng T, Zhang C, Chen WJ, Zhao XF, Wu WB, Yang WJ, Liang RJ. Pyroptosis: the dawn of a new era in endometrial cancer treatment. Front Oncol 2023; 13:1277639. [PMID: 37965452 PMCID: PMC10642841 DOI: 10.3389/fonc.2023.1277639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Endometrial cancer (EC) is a malignancy of the inner epithelial lining of the uterus. While early-stage EC is often curable through surgery, the management of advanced, recurrent and metastatic EC poses significant challenges and is associated with a poor prognosis. Pyroptosis, an emerging form of programmed cell death, is characterized by the cleavage of gasdermin proteins, inducing the formation of extensive gasdermin pores in the cell membrane and the leakage of interleukin-1β (IL-1β) and interleukin-18 (IL-18), consequently causing cell swelling, lysis and death. It has been found to be implicated in the occurrence and progression of almost all tumors. Recent studies have demonstrated that regulating tumor cells pyroptosis can exploit synergies function with traditional tumor treatments. This paper provides an overview of the research progress made in molecular mechanisms of pyroptosis. It then discusses the role of pyroptosis and its components in initiation and progression of endometrial cancer, emphasizing recent insights into the underlying mechanisms and highlighting unresolved questions. Furthermore, it explores the potential value of pyroptosis in the treatment of endometrial cancer, considering its current application in tumor radiotherapy, chemotherapy, targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Tian Peng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wen-Jun Chen
- School of Nursing, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xue-Fei Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Bo Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Ji Yang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruo-Jia Liang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
48
|
Kroken AR, Klein KA, Mitchell PS, Nieto V, Jedel EJ, Evans DJ, Fleiszig SMJ. Intracellular replication of Pseudomonas aeruginosa in epithelial cells requires suppression of the caspase-4 inflammasome. mSphere 2023; 8:e0035123. [PMID: 37589460 PMCID: PMC10597407 DOI: 10.1128/msphere.00351-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 08/18/2023] Open
Abstract
Pathogenesis of Pseudomonas aeruginosa infections can include bacterial survival inside epithelial cells. Previously, we showed that this involves multiple roles played by the type three secretion system (T3SS), and specifically the effector ExoS. This includes ExoS-dependent inhibition of a lytic host cell response that subsequently enables intracellular replication. Here, we studied the underlying cell death response to intracellular P. aeruginosa, comparing wild-type to T3SS mutants varying in capacity to induce cell death and that localize to different intracellular compartments. Results showed that corneal epithelial cell death induced by intracellular P. aeruginosa lacking the T3SS, which remains in vacuoles, correlated with the activation of nuclear factor-κB as measured by p65 relocalization and tumor necrosis factor alpha transcription and secretion. Deletion of caspase-4 through CRISPR-Cas9 mutagenesis delayed cell death caused by these intracellular T3SS mutants. Caspase-4 deletion also countered more rapid cell death caused by T3SS effector-null mutants still expressing the T3SS apparatus that traffic to the host cell cytoplasm, and in doing so rescued intracellular replication normally dependent on ExoS. While HeLa cells lacked a lytic death response to T3SS mutants, it was found to be enabled by interferon gamma treatment. Together, these results show that epithelial cells can activate the noncanonical inflammasome pathway to limit proliferation of intracellular P. aeruginosa, not fully dependent on bacterially driven vacuole escape. Since ExoS inhibits the lytic response, the data implicate targeting of caspase-4, an intracellular pattern recognition receptor, as another contributor to the role of ExoS in the intracellular lifestyle of P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa can exhibit an intracellular lifestyle within epithelial cells in vivo and in vitro. The type three secretion system (T3SS) effector ExoS contributes via multiple mechanisms, including extending the life of invaded host cells. Here, we aimed to understand the underlying cell death inhibited by ExoS when P. aeruginosa is intracellular. Results showed that intracellular P. aeruginosa lacking T3SS effectors could elicit rapid cell lysis via the noncanonical inflammasome pathway. Caspase-4 contributed to cell lysis even when the intracellular bacteria lacked the entire T33S and were consequently unable to escape vacuoles, representing a naturally occurring subpopulation during wild-type infection. Together, the data show the caspase-4 inflammasome as an epithelial cell defense against intracellular P. aeruginosa, and implicate its targeting as another mechanism by which ExoS preserves the host cell replicative niche.
Collapse
Affiliation(s)
- Abby R. Kroken
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
| | - Keith A. Klein
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Patrick S. Mitchell
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Vincent Nieto
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
| | - Eric J. Jedel
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
| | - David J. Evans
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
- College of Pharmacy, Touro University California, Vallejo, California, USA
| | - Suzanne M. J. Fleiszig
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
- Graduate Groups in Vision Sciences, Microbiology, and Infectious Diseases & Immunity, University of California, Berkeley, California, USA
| |
Collapse
|
49
|
Jiao P, Li Z, Li B, Jiao X. The Role of Caspase-11 and Pyroptosis in the Regulation of Inflammation in Peri-Implantitis. J Inflamm Res 2023; 16:4471-4479. [PMID: 37842190 PMCID: PMC10576458 DOI: 10.2147/jir.s427523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
Peri-implantitis is an important cause of oral implant failure. In the past, TLR4 and TLR2 in the Toll-like family were generally considered as the key immune recognition receptors regulating peri-implantitis. However, under the guidance of this theory, there are still some unexplainable peri-implantitis symptoms. With the discovery of novel intracellular LPS receptor Caspase-11, a new understanding of inflammatory signaling and immune regulation in the development of peri-implantitis has been gained. However, the regulatory role of Caspase-11 in peri-implantitis and its crosstalk with the TLR4 pathway remain unclear. The therapeutic effect of drugs targeting Caspase-11 on peri-implantitis is still in its early stages. In view of this situation, this paper reviews the possible role of Caspase-11 in peri-implant inflammation, elaborated the entry process of LPS and the activation mechanism of Caspase-11, and analyzes the differences in Caspase-11 between commonly studied animals, mice and humans. The current research hotspots and challenges are also analyzed to provide new insights and ideas for researchers.
Collapse
Affiliation(s)
- Pengcheng Jiao
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zuntai Li
- Hospital of Stomatology, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Birong Li
- Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, People’s Republic of China
| | - Xingyuan Jiao
- Department of Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
50
|
Li GQ, Gao SX, Wang FH, Kang L, Tang ZY, Ma XD. Anticancer mechanisms on pyroptosis induced by Oridonin: New potential targeted therapeutic strategies. Biomed Pharmacother 2023; 165:115019. [PMID: 37329709 DOI: 10.1016/j.biopha.2023.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023] Open
Abstract
Pyroptosis is a type of inflammatory cell death that is triggered by the formation of pores on the cell membrane by gasdermin (GSDM) family proteins. This process activates inflammasomes and leads to the maturation and release of proinflammatory cytokines such as interleukin-1β (IL-1β) and interleukin-18 (IL-18). Pyroptosis, a form of programmed cell death, has been found to be associated with various biomolecules such as caspases, granzymes, non-coding RNA (lncRNA), reactive oxygen species (ROS), and NOD-like receptor protein 3 (NLRP3). These biomolecules have been shown to play a dual role in cancer by affecting cell proliferation, metastasis, and the tumor microenvironment (TME), resulting in both tumor promotion and anti-tumor effects. Recent studies have found that Oridonin (Ori) has anti-tumor effects by regulating pyroptosis through various pathways. Ori can inhibit pyroptosis by inhibiting caspase-1, which is responsible for activating pyroptosis of the canonical pathway. Additionally, Ori can inhibit pyroptosis by inhibiting NLRP3, which is responsible for activating pyroptosis of the noncanonical pathway. Interestingly, Ori can also activate pyroptosis by activating caspase-3 and caspase-8, which are responsible for activating pyroptosis of the emerging pathway; Ori has been found to be effective in inhibiting pyroptosis by blocking the action of perforin, which is responsible for facilitating the entry of granzyme into cells and activating pyroptosis. Additionally, Ori plays a crucial role in regulating pyroptosis by promoting the accumulation of ROS while inhibiting the ncRNA and NLRP3 pathways. It is worth noting that all of these pathways ultimately regulate pyroptosis by influencing the cleavage of GSDM, which is a key factor in the process. These studies concludes that Ori has extensive anti-cancer effects that are related to its potential regulatory function on pyroptosis. The paper summarizes several potential ways in which Ori participates in the regulation of pyroptosis, providing a reference for further study on the relationship between Ori, pyroptosis, and cancer.
Collapse
Affiliation(s)
- Guo Qiang Li
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Shi Xiang Gao
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Fu Han Wang
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Le Kang
- Department of Cardiac Surgery, Zhongshan Hospital, Affiliated Fudan University, Shang Hai 200030, PR China.
| | - Ze Yao Tang
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| | - Xiao Dong Ma
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| |
Collapse
|