1
|
Moen GH, Hwang LD, Brito Nunes C, Warrington NM, Evans DM. The genetics of low and high birthweight and their relationship with cardiometabolic disease. Diabetologia 2025:10.1007/s00125-025-06420-8. [PMID: 40210729 DOI: 10.1007/s00125-025-06420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/11/2025] [Indexed: 04/12/2025]
Abstract
AIMS/HYPOTHESIS Low birthweight infants are at increased risk not only of mortality, but also of type 2 diabetes mellitus and CVD in later life. At the opposite end of the spectrum, high birthweight infants have increased risk of birth complications, such as shoulder dystocia, neonatal hypoglycaemia and obesity, and similarly increased risk of type 2 diabetes mellitus and CVD. However, previous genome-wide association studies (GWAS) of birthweight in the UK Biobank have primarily focused on individuals within the 'normal' range and have excluded individuals with high and low birthweight (<2.5 kg or >4.5 kg). The aim of this study was to investigate genetic variation associated within the tail ends of the birthweight distribution, to: (1) see whether the genetic factors operating in these regions were different from those that explained variation in birthweight within the normal range; (2) explore the genetic correlation between extremes of birthweight and cardiometabolic disease; and (3) investigate whether analysing the full distribution of birthweight values, including the extremes, improved the ability to detect genuine loci in GWAS. METHODS We performed case-control GWAS analysis of low (<2.5 kg) and high (>4.5 kg) birthweight in the UK Biobank using REGENIE software (Nlow=20,947; Nhigh=12,715; Ncontrols=207,506) and conducted three continuous GWAS of birthweight, one including the full range of birthweights, one involving a truncated GWAS including only individuals with birthweights between 2.5 and 4.5 kg and a third GWAS that winsorised birthweight values <2.5 kg and >4.5 kg. Additionally, we performed bivariate linkage disequilibrium (LD) score regression to estimate the genetic correlation between low/normal/high birthweight and cardiometabolic traits. RESULTS Bivariate LD score regression analyses suggested that high birthweight had a mostly similar genetic aetiology to birthweight within the normal range (genetic correlation coefficient [rG]=0.91, 95% CI 0.83, 0.99), whereas there was more evidence for a separate set of genes underlying low birthweight (rG=-0.74, 95% CI 0.66, 0.82). Low birthweight was also significantly positively genetically correlated with most cardiometabolic traits and diseases we examined, whereas high birthweight was mostly positively genetically correlated with adiposity and anthropometric-related traits. The winsorisation strategy performed best in terms of locus detection, with the number of independent genome-wide significant associations (p<5×10-8) increasing from 120 genetic variants at 94 loci in the truncated GWAS to 270 genetic variants at 178 loci, including 27 variants at 25 loci that had not been identified in previous birthweight GWAS. This included a novel low-frequency missense variant in the ABCC8 gene, a gene known to be involved in congenital hyperinsulinism, neonatal diabetes mellitus and MODY, that was estimated to be responsible for a 170 g increase in birthweight amongst carriers. CONCLUSIONS/INTERPRETATION Our results underscore the importance of genetic factors in the genesis of the phenotypic correlation between birthweight and cardiometabolic traits and diseases.
Collapse
Affiliation(s)
- Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- The Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia.
| | - Liang-Dar Hwang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Caroline Brito Nunes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Nicole M Warrington
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- The Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - David M Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
- The Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia.
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
| |
Collapse
|
2
|
Downie CG, Shrestha P, Okello S, Yaser M, Lee HH, Wang Y, Krishnan M, Chen HH, Justice AE, Chittoor G, Josyula NS, Gahagan S, Blanco E, Burrows R, Correa-Burrows P, Albala C, Santos JL, Angel B, Lozoff B, Hartwig FP, Horta B, Brina KR, Isasi CR, Qi Q, Gallo LC, Perreira KM, Thyagarajan B, Daviglus M, Van Horn L, Gonzalez F, Bradfield JP, Hakonarson H, Grant SFA, Below JE, Felix J, Graff M, Divaris K, North KE. Trans-ancestry genome-wide association study of childhood body mass index identifies novel loci and age-specific effects. HGG ADVANCES 2025; 6:100411. [PMID: 39885687 PMCID: PMC11875162 DOI: 10.1016/j.xhgg.2025.100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025] Open
Abstract
Over the past 30 years, obesity prevalence has markedly increased globally, including among children. Although genome-wide association studies (GWASs) have identified over 1,000 genetic loci associated with obesity-related traits in adults, the genetic architecture of childhood obesity is less well characterized. Moreover, most childhood obesity GWASs have been restricted to severely obese children, in relatively small sample sizes, and in primarily European-ancestry populations. To identify genetic loci associated with early-childhood body mass index (BMI), we performed GWAS of BMI Z scores in eight ancestrally diverse cohorts: ZOE 2.0 cohort, the Santiago Longitudinal Study (SLS), the Vanderbilt University BioVU biobank, the Geisinger MyCode Health Initiative biobank, Study of Latino (SOL) Youth, Pelotas (Brazil) Birth Cohort, Cameron County Hispanic Cohort (CCHC), and Viva La Familia cohort. We subsequently performed inverse-variance-weighted fixed-effect meta-analysis of these results with previously published GWAS summary statistics of BMI Z scores of children in the Early Growth Genetics (EGG) Consortium and the Norwegian Mother and Child Cohort (MoBa), constituting a final total of 84,804 individuals. We identified 39 genome-wide significant loci associated with childhood BMI, including three putatively novel loci (EFNA5 and DTWD2, RP11-2N5.1 on chromosome 5, and LSM14A on chromosome 19). We also observed a dynamic nature of genetic loci-BMI associations across the life course, with distinct effects across childhood and adulthood, highlighting possible critical periods for early-childhood interventions. These findings strengthen calls for larger population-based studies of children across age strata and across diverse populations.
Collapse
Affiliation(s)
- Carolina G Downie
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC 27514, USA.
| | - Poojan Shrestha
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC 27514, USA; Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samson Okello
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC 27514, USA
| | - Mohammad Yaser
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC 27514, USA
| | - Harold H Lee
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| | - Yujie Wang
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC 27514, USA
| | - Mohanraj Krishnan
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC 27514, USA; Carolina Population Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Hung-Hsin Chen
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anne E Justice
- Department of Population Health Sciences, Geisinger, Danville, PA 17822, USA
| | - Geetha Chittoor
- Department of Population Health Sciences, Geisinger, Danville, PA 17822, USA
| | | | - Sheila Gahagan
- Department of Pediatrics, University of San Diego, La Jolla, CA 92093, USA
| | - Estela Blanco
- Centro de Investigación en Sociedad y Salud y Núcleo Milenio de Sociomedicina, Universidad Mayor, Santiago, Chile
| | - Raquel Burrows
- Centro de Investigación en Sociedad y Salud y Núcleo Milenio de Sociomedicina, Universidad Mayor, Santiago, Chile
| | - Paulina Correa-Burrows
- Centro de Investigación en Sociedad y Salud y Núcleo Milenio de Sociomedicina, Universidad Mayor, Santiago, Chile
| | - Cecilia Albala
- Centro de Investigación en Sociedad y Salud y Núcleo Milenio de Sociomedicina, Universidad Mayor, Santiago, Chile
| | - José L Santos
- Department of Nutrition, Diabetes and Metabolism. School of Medicine. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara Angel
- Public Nutrition Unit, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Betsy Lozoff
- Department of Pediatrics, Medical School, and Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Bernardo Horta
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - Karisa Roxo Brina
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Linda C Gallo
- Department of Psychology, San Diego State University, Chula Vista, CA 91910, USA
| | - Krista M Perreira
- Department of Social Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bharat Thyagarajan
- Department of Epidemiology, University of Minnesota Medical Center, Minneapolis, MN 55454, USA
| | - Martha Daviglus
- Department of Preventive Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Linda Van Horn
- Department of Preventive Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Franklyn Gonzalez
- Collaborative Studies Coordinating Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F A Grant
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Janine Felix
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mariaelisa Graff
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC 27514, USA
| | - Kimon Divaris
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC 27514, USA; Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kari E North
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC 27514, USA.
| |
Collapse
|
3
|
Wei L, Ding E, Lu D, Rui Z, Shen J, Fan G. Assessing the effect of modifiable risk factors on hepatocellular carcinoma: evidence from a bidirectional Mendelian randomization analysis. Discov Oncol 2025; 16:437. [PMID: 40164825 PMCID: PMC11958933 DOI: 10.1007/s12672-025-02177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND The pathogenesis of hepatocellular carcinoma (HCC) involves a variety of environmental risk factors, some of which have yet to be fully clarified. Using the Mendelian randomization (MR) approach, this study comprehensively investigates the causal effect of genetically predicted modifiable risk factors on HCC. METHODS Genetic variants related to the 50 risk factors that had been identified in previous research were derived from genome-wide association studies. Summary statistics for the discovery cohort and validation cohort of HCC were sourced from the FinnGen consortium and the UK Biobank, respectively. Bidirectional MR analysis and sensitivity analysis were performed to establish causative risk factors for HCC. RESULTS Through the inverse variance weighted method, the results of the discovery cohort indicated that waist circumference, nonalcoholic fatty liver disease (NAFLD), alanine aminotransferase (ALT) levels, and aspartate aminotransferase (AST) levels were significantly linked to HCC occurrence risk. Furthermore, body fat percentage, glycated hemoglobin (HbA1c), obesity class 1-3, waist-to-hip ratio, iron, ferritin, transferrin saturation, and urate had suggestive associations with HCC. The validation cohort further confirmed that NAFLD and ALT levels were strongly related to HCC. Reverse MR indicated that genetic susceptibility to HCC was connected to NAFLD and transferrin saturation. Sensitivity analyses showed that most of the findings were robust. CONCLUSION This MR study delivers evidence of the complex causal relationship between modifiable risk factors and HCC. These findings offer new insights into potential prevention and treatment strategies for HCC.
Collapse
Affiliation(s)
- Lijuan Wei
- Department of Nuclear Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Enci Ding
- Department of Nuclear Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Dongyan Lu
- Department of Nuclear Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Zhongying Rui
- Department of Nuclear Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Jie Shen
- Department of Nuclear Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Guoju Fan
- Department of Vascular Surgery, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Hexi District, Tianjin, 300211, China.
| |
Collapse
|
4
|
Waterfield S, Yousefi P, Suderman M. DNA methylation models of protein abundance across the lifecourse. Clin Epigenetics 2024; 16:189. [PMID: 39709440 DOI: 10.1186/s13148-024-01802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Multiple studies have shown that DNA methylation (DNAm) models of protein abundance can be informative about exposure, phenotype and disease risk. Here we investigate and provide descriptive details of the capacity of DNAm to capture non-genetic variation in protein abundance across the lifecourse. METHODS We evaluated the performance of 14 previously published DNAm models of protein abundance (episcores) in peripheral blood from a large adult population using the Avon Longitudinal Study of Parents and Children (ALSPAC) at ages 7-24 and their mothers antenatally and in middle age (N range = 145-1464). New age-specific episcores were trained in ALSPAC and evaluated at different ages. In all instances, episcore-protein associations were evaluated with and without adjustment for genetics. The association between longitudinal protein stability and longitudinal episcore projection was also evaluated, as was sex-specificity of episcores derived solely in female participants. FINDINGS Of the 14 Gadd episcores, 10 generated estimates associated with abundance in middle age, 9 at age 24, and none at age 9. Eight of these episcores explained variation beyond genotype in adulthood (6 at age 24; 7 at midlife). At age 9, the abundances of 22 proteins could be modelled by DNAm, 7 beyond genotype of which one trained model generated informative estimates at ages 24 and in middle age. At age 24, 31 proteins could be modelled by DNAm, 19 beyond genotype, of which 5 trained models generated informative estimates at age 9 and 8 in middle age. In middle age, 23 proteins could be modelled, 13 beyond genotype, of which 3 were informative at age 9 and 7 at age 24. INTERPRETATION We observed that episcores performed better at older ages than in children with several episcores capturing non-genetic variation at all ages.
Collapse
Affiliation(s)
- Scott Waterfield
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- Cancer Research UK Integrative Cancer Epidemiology Programme, University of Bristol, Bristol, UK.
- MRC Integrative Epidemiology Unit, Oakfield House, University of Bristol, Oakfield Grove, Bristol, BS8 2BN, UK.
| | - Paul Yousefi
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matt Suderman
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
5
|
Benonisdottir S, Straub VJ, Kong A, Mills MC. Genetics of female and male reproductive traits and their relationship with health, longevity and consequences for offspring. NATURE AGING 2024; 4:1745-1759. [PMID: 39672892 DOI: 10.1038/s43587-024-00733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 12/15/2024]
Abstract
Substantial shifts in reproductive behaviors have recently taken place in many high-income countries including earlier age at menarche, advanced age at childbearing, rising childlessness and a lower number of children. As reproduction shifts to later ages, genetic factors may become increasingly important. Although monogenic genetic effects are known, the genetics underlying human reproductive traits are complex, with both causal effects and statistical bias often confounded by socioeconomic factors. Here, we review genome-wide association studies (GWASs) of 44 reproductive traits of both female and male individuals from 2007 to early 2024, examining reproductive behavior, reproductive lifespan and aging, infertility and hormonal concentration. Using the GWAS Catalog as a basis, from 159 relevant studies, we isolate 37 genes that harbor association signals for four or more reproductive traits, more than half of which are linked to rare Mendelian disorders, including ten genes linked to reproductive-related disorders: FSHB, MCM8, DNAH2, WNT4, ESR1, IGSF1, THRB, BRWD1, CYP19A1 and PTPRF. We also review the relationship of reproductive genetics to related health and behavioral traits, aging and longevity and the effect of parental age on offspring outcomes as well as reflecting on limitations, open questions and challenges in this fast-moving field.
Collapse
Affiliation(s)
- Stefania Benonisdottir
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK
- Institute of Physical Science, University of Iceland, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Vincent J Straub
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK
| | - Augustine Kong
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK
| | - Melinda C Mills
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK.
- Department of Genetics, University Medical Centre Groningen, Groningen, the Netherlands.
- Department of Economics, Econometrics and Finance, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
6
|
Hwang LD, Cuellar-Partida G, Yengo L, Zeng J, Toivonen J, Arvas M, Beaumont RN, Freathy RM, Moen GH, Warrington NM, Evans DM. DINGO: increasing the power of locus discovery in maternal and fetal genome-wide association studies of perinatal traits. Nat Commun 2024; 15:9255. [PMID: 39461952 PMCID: PMC11513127 DOI: 10.1038/s41467-024-53495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Perinatal traits are influenced by fetal and maternal genomes. We investigate the performance of three strategies to detect loci in maternal and fetal genome-wide association studies (GWASs) of the same quantitative trait: (i) the traditional strategy of analysing maternal and fetal GWASs separately; (ii) a two-degree-of-freedom test which combines information from maternal and fetal GWASs; and (iii) a one-degree-of-freedom test where signals from maternal and fetal GWASs are meta-analysed together conditional on estimated sample overlap. We demonstrate that the optimal strategy depends on the extent of sample overlap, correlation between phenotypes, whether loci exhibit fetal and/or maternal effects, and whether these effects are directionally concordant. We apply our methods to summary statistics from a recent GWAS meta-analysis of birth weight. Both the two-degree-of-freedom and meta-analytic approaches increase the number of genetic loci for birth weight relative to separately analysing the scans. Our best strategy identifies an additional 62 loci compared to the most recently published meta-analysis of birth weight. We conclude that whilst the two-degree-of-freedom test may be useful for the analysis of certain perinatal phenotypes, for most phenotypes, a simple meta-analytic strategy is likely to perform best, particularly in situations where maternal and fetal GWASs only partially overlap.
Collapse
Affiliation(s)
- Liang-Dar Hwang
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia.
| | | | - Loic Yengo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
| | | | - Mikko Arvas
- Finnish Red Cross Blood Service, Vantaa, Finland
| | - Robin N Beaumont
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Rachel M Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- The Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Nicole M Warrington
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- The Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - David M Evans
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia.
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- The Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
7
|
Zhang X, Hocher B. Parental genetic effects on the offspring's phenotype without transmission of the gene itself-pathophysiology and clinical evidence. Am J Physiol Cell Physiol 2024; 327:C750-C777. [PMID: 39010843 DOI: 10.1152/ajpcell.00359.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
Parental genes can influence the phenotype of their offspring through genomic-epigenomic interactions even without the direct inheritance of specific parental genotypes. Maternal genetic variations can affect the ovarian and intrauterine environments and potentially alter lactation behaviors, impacting offspring nutrition and health outcomes independently of the fetal genome. Similarly, paternal genetic changes can affect the endocrine system and vascular functions in the testes, influencing sperm quality and seminal fluid composition. These changes can initiate early epigenetic modifications in sperm, including alterations in microRNAs, tRNA-derived small RNAs (tsRNAs), and DNA methylation patterns. These epigenetic modifications might induce further changes in target organs of the offspring, leading to modified gene expression and phenotypic outcomes without transmitting the original parental genetic alterations. This review presents clinical evidence supporting this hypothesis and discusses the potential underlying molecular mechanisms. Parental gene-offspring epigenome-offspring phenotype interactions have been observed in neurocognitive disorders and cardio-renal diseases.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, People's Republic of China
- IMD-Institut für Medizinische Diagnostik Berlin-Potsdam GbR, Berlin, Germany
- Key Laboratory of Reproductive and Stem Cell Engineering, Central South University, Changsha, People's Republic of China
| |
Collapse
|
8
|
Azumah R, Hummitzsch K, Anderson RA, Rodgers RJ. Expression of transforming growth factor β signalling molecules and their correlations with genes in loci linked to polycystic ovary syndrome in human foetal and adult tissues. Reprod Fertil Dev 2024; 36:RD23174. [PMID: 38894494 DOI: 10.1071/rd23174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Context Altered signalling of androgens, anti-Müllerian hormone or transforming growth factor beta (TGFβ) during foetal development have been implicated in the predisposition to polycystic ovary syndrome (PCOS) in later life, aside from its genetic predisposition. In foetal ovarian fibroblasts, TGFβ1 has been shown to regulate androgen signalling and seven genes located in loci associated with PCOS. Since PCOS exhibits a myriad of symptoms, it likely involves many different organs. Aims To identify the relationships between TGFβ signalling molecules and PCOS candidate genes in different tissues associated with PCOS. Methods Using RNA sequencing data, we examined the expression patterns of TGFβ signalling molecules in the human ovary, testis, heart, liver, kidney, brain tissue, and cerebellum from 4 to 20weeks of gestation and postnatally. We also examined the correlations between gene expression of TGFβ signalling molecules and PCOS candidate genes. Key results TGFβ signalling molecules were dynamically expressed in most tissues prenatally and/or postnatally. FBN3 , a PCOS candidate gene involved in TGFβ signalling, was expressed during foetal development in all tissues. The PCOS candidate genes HMGA2, YAP1 , and RAD50 correlated significantly (P TGFBR1 in six out of the seven tissues examined. Conclusions This study suggests that possible crosstalk occurs between genes in loci associated with PCOS and TGFβ signalling molecules in multiple tissues, particularly during foetal development. Implications Thus, alteration in TGFβ signalling during foetal development could affect many tissues contributing to the multiple phenotypes of PCOS in later life.
Collapse
Affiliation(s)
- Rafiatu Azumah
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Katja Hummitzsch
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Richard A Anderson
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Raymond J Rodgers
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
9
|
Hong Z, Tongsong Z, Cunhai C, Xiao L, Haiping S. Case report of multiple primary cancers and results of genetic testing to preliminarily explore their pathogenesis. SAGE Open Med Case Rep 2024; 12:2050313X241252371. [PMID: 38803359 PMCID: PMC11129569 DOI: 10.1177/2050313x241252371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
The occurrence of multiple primary malignancies in a single patient has been relatively rare. We report here the case of a 71-year-old man with three primary tumors of lung cancer, intrahepatic cholangiocarcinoma, and prostate cancer, and a preliminary study of the mechanisms by which multiple primary tumors develop at the genetic level. Because of the late stage of the patient's condition, large tumor burden, and poor physical status, the patient survived only a few months. In the case presented herein, cholangiocarcinoma, lung cancer, and prostate cancer were found simultaneously, and the pathogenic sites are not related. Whole-exome sequencing was performed on the pathological tissues to explore the mechanism that may underlie multiple primary cancers at the genetic level. Several gene mutations were found in this case. They involved cell proliferation, cell cycle regulation, genetic stability, metabolism, cell invasion, angiogenesis, cell apoptosis, and other pathways. It can be preliminarily inferred that the mechanism underlying multiple primary tumors is related to the abnormality of tumor-promoting and suppressing pathways.
Collapse
Affiliation(s)
- Zhao Hong
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences Qingdao Central Hospital, Qingdao, China
| | - Zhang Tongsong
- Department of Radiotherapy, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Chen Cunhai
- Department of Internal Medicine-Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences Qingdao Central Hospital, Qingdao, China
- Department of Internal Medicine-Oncology, Qingdao Tumor Hospital, Qingdao, China
| | - Li Xiao
- Department of Internal Medicine-Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences Qingdao Central Hospital, Qingdao, China
- Department of Internal Medicine-Oncology, Qingdao Tumor Hospital, Qingdao, China
| | - Song Haiping
- Department of Internal Medicine-Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences Qingdao Central Hospital, Qingdao, China
- Department of Internal Medicine-Oncology, Qingdao Tumor Hospital, Qingdao, China
| |
Collapse
|
10
|
Sun Y, Wang B, Yu Y, Wang Y, Tan X, Zhang J, Qi L, Lu Y, Wang N. Birth weight, ideal cardiovascular health metrics in adulthood, and incident cardiovascular disease. Chin Med J (Engl) 2024; 137:1160-1168. [PMID: 38479998 PMCID: PMC11101240 DOI: 10.1097/cm9.0000000000003043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Prenatal and postnatal factors may have joint effects on cardiovascular health, and we aimed to assess the joint association of birth weight and ideal cardiovascular health metrics (ICVHMs) prospectively in adulthood with incident cardiovascular disease (CVD). METHODS In the UK Biobank, 227,833 participants with data on ICVHM components and birth weight and without CVD at baseline were included. The ICVHMs included smoking, body mass index, physical activity, diet information, total cholesterol, blood pressure, and hemoglobin A1c. The Cox proportional hazards model was used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) in men and women. RESULTS Over a median follow-up period of 13.0 years (2,831,236 person-years), we documented 17,477 patients with incident CVD. Compared with participants with birth weights of 2.5-4.0 kg, the HRs (95% CIs) of CVD among those with low birth weights was 1.08 (1.00-1.16) in men and 1.23 (1.16-1.31) in women. The association between having a birth weight <2.5 kg and CVD risk in men was more prominent for those aged <50 years than for those of older age ( P for interaction = 0.026). Lower birth weight and non-ideal cardiovascular health metrics were jointly related to an increased risk of CVD. Participants with birth weights <2.5 kg and ICVHMs score 0-1 had the highest risk of incident CVD (HR [95% CI]: 3.93 [3.01-5.13] in men; 4.24 [3.33-5.40] in women). The joint effect (HR [95% CI]: 1.36 [1.17-1.58]) could be decomposed into 24.7% (95% CI: 15.0%-34.4%) for a lower birth weight, 64.7% (95% CI: 56.7%-72.6%) for a lower ICVHM score, and 10.6% (95% CI: 2.7%-18.6%) for their additive interaction in women. CONCLUSIONS Birth weight and ICVHMs were jointly related to CVD risk. Attaining a normal birth weight and ideal ICVHMs may reduce the risk of CVD, and a simultaneous improvement of both prenatal and postnatal factors could further prevent additional cases in women.
Collapse
Affiliation(s)
- Ying Sun
- Department of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bin Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuefeng Yu
- Department of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuying Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiao Tan
- School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Medical Sciences, Uppsala University, Uppsala 75105, Sweden
| | - Jihui Zhang
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02138, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02138, USA
| | - Yingli Lu
- Department of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ningjian Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
11
|
Schuermans A, Ardissino M, Nauffal V, Khurshid S, Pirruccello JP, Ellinor PT, Lewandowski AJ, Natarajan P, Honigberg MC. Genetically predicted gestational age and birth weight are associated with cardiac and pulmonary vascular remodelling in adulthood. Eur J Prev Cardiol 2024; 31:e49-e52. [PMID: 37694688 PMCID: PMC10925550 DOI: 10.1093/eurjpc/zwad296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Art Schuermans
- Cardiovascular Disease Initiative and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Maddalena Ardissino
- National Heart and Lung Institute, Imperial College London, London, UK
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Victor Nauffal
- Cardiovascular Disease Initiative and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Shaan Khurshid
- Cardiovascular Disease Initiative and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - James P Pirruccello
- Cardiovascular Disease Initiative and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Division of Cardiology and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Adam J Lewandowski
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Pradeep Natarajan
- Cardiovascular Disease Initiative and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Cardiology, Massachusetts General Hospital, 185 Cambridge St. CPZN 3.187, Boston, 02114 MA, USA
| | - Michael C Honigberg
- Cardiovascular Disease Initiative and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Cardiology, Massachusetts General Hospital, 185 Cambridge St. CPZN 3.187, Boston, 02114 MA, USA
| |
Collapse
|
12
|
Célind J, Bygdell M, Bramsved R, Martikainen J, Ohlsson C, Kindblom JM. Low birthweight and overweight during childhood and young adulthood and the risk of type 2 diabetes in men: a population-based cohort study. Diabetologia 2024; 67:874-884. [PMID: 38386069 PMCID: PMC10954927 DOI: 10.1007/s00125-024-06101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
AIMS/HYPOTHESIS This study aimed to determine the relative contributions of low birthweight and overweight during childhood and young adulthood to the risk of type 2 diabetes in men. METHODS We included 34,231 men born between1945 and 1961 from the population-based BMI Epidemiology Study (BEST) Gothenburg with data on birthweight and overweight status in childhood (8 years, BMI >17.9 kg/m2) and young adulthood (20 years, BMI >25 kg/m2). Participants were followed from age 30 years until 31 December 2019. Information on type 2 diabetes diagnoses was retrieved from Swedish national registers. HRs and 95% CIs for the risk of early (≤59.4 years) and late (>59.4 years) type 2 diabetes were estimated using Cox proportional hazards regression. RESULTS During follow-up, a total of 2733 cases of type 2 diabetes were diagnosed. Birthweight below the median (<3.6 kg) and overweight at age 20 (BMI >25 kg/m2), but not overweight at age 8 (BMI >17.9 kg/m2), were associated with an increased risk of early and late type 2 diabetes. Of note, a birthweight below the median followed by overweight at age 20 years was associated with a substantially increased risk of early type 2 diabetes (HR 6.07, 95% CI 5.08, 7.27), and a low birthweight (≤2.5 kg) combined with overweight at age 20 years was associated with a massive risk of early type 2 diabetes (HR 9.94, 95% CI 6.57, 15.05). CONCLUSIONS/INTERPRETATION Low birthweight and overweight in young adulthood are the major developmental determinants of adult type 2 diabetes risk in men. They contribute in an additive manner to the risk of type 2 diabetes. To reduce the risk of type 2 diabetes, young adult overweight should be avoided, especially in boys with a low birthweight. DATA AVAILABILITY The SPSS analysis code, the R analysis code and a data dictionary have been made available in an online repository ( https://osf.io/bx2as/ ).
Collapse
Affiliation(s)
- Jimmy Célind
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Maria Bygdell
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Rebecka Bramsved
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jari Martikainen
- Bioinformatics and Data Centre, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Jenny M Kindblom
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
13
|
Majeres LE, Dilger AC, Shike DW, McCann JC, Beever JE. Defining a Haplotype Encompassing the LCORL-NCAPG Locus Associated with Increased Lean Growth in Beef Cattle. Genes (Basel) 2024; 15:576. [PMID: 38790206 PMCID: PMC11121065 DOI: 10.3390/genes15050576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Numerous studies have shown genetic variation at the LCORL-NCAPG locus is strongly associated with growth traits in beef cattle. However, a causative molecular variant has yet to be identified. To define all possible candidate variants, 34 Charolais-sired calves were whole-genome sequenced, including 17 homozygous for a long-range haplotype associated with increased growth (QQ) and 17 homozygous for potential ancestral haplotypes for this region (qq). The Q haplotype was refined to an 814 kb region between chr6:37,199,897-38,014,080 and contained 218 variants not found in qq individuals. These variants include an insertion in an intron of NCAPG, a previously documented mutation in NCAPG (rs109570900), two coding sequence mutations in LCORL (rs109696064 and rs384548488), and 15 variants located within ATAC peaks that were predicted to affect transcription factor binding. Notably, rs384548488 is a frameshift variant likely resulting in loss of function for long isoforms of LCORL. To test the association of the coding sequence variants of LCORL with phenotype, 405 cattle from five populations were genotyped. The two variants were in complete linkage disequilibrium. Statistical analysis of the three populations that contained QQ animals revealed significant (p < 0.05) associations with genotype and birth weight, live weight, carcass weight, hip height, and average daily gain. These findings affirm the link between this locus and growth in beef cattle and describe DNA variants that define the haplotype. However, further studies will be required to define the true causative mutation.
Collapse
Affiliation(s)
- Leif E. Majeres
- UTIA Genomics Center for the Advancement of Agriculture, Institute of Agriculture, University of Tennessee, Knoxville, TN 37996, USA;
| | - Anna C. Dilger
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.C.D.); (D.W.S.); (J.C.M.)
| | - Daniel W. Shike
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.C.D.); (D.W.S.); (J.C.M.)
| | - Joshua C. McCann
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.C.D.); (D.W.S.); (J.C.M.)
| | - Jonathan E. Beever
- UTIA Genomics Center for the Advancement of Agriculture, Institute of Agriculture, University of Tennessee, Knoxville, TN 37996, USA;
| |
Collapse
|
14
|
Peng Q, Qiu W, Li Z, Zhao J, Zhu C. Fetal genetically determined birth weight plays a causal role in earlier puberty timing: evidence from human genetic studies. Hum Reprod 2024; 39:792-800. [PMID: 38384258 DOI: 10.1093/humrep/deae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/27/2023] [Indexed: 02/23/2024] Open
Abstract
STUDY QUESTION Does fetal genetically determined birth weight associate with the timing of puberty? SUMMARY ANSWER Lower fetal genetically determined birth weight was causally associated with an earlier onset of puberty, independent of the indirect effects of the maternal intrauterine environment. WHAT IS KNOWN ALREADY Previous Mendelian randomization (MR) studies have indicated a potential causal link between birth weight, childhood BMI, and the onset of puberty. However, they did not distinguish between genetic variants that have a direct impact on birth weight through the fetal genome (referred to as fetal genetic effects) and those that influence birth weight indirectly by affecting the intrauterine environment (known as maternal genetic effects). It is crucial to emphasize that previous studies were limited because they did not account for the potential bias caused by unaddressed correlations between maternal and fetal genetic effects. Additionally, the proportion of birth weight variation explained by the fetal genome is considerably larger than that of the maternal genome. STUDY DESIGN, SIZE, DURATION We performed two-sample MR analyses to investigate the causal effect of fetal genetically determined birth weight on puberty timing using summary data from large-scale genome-wide association studies (GWASs) in individuals of European ancestry. PARTICIPANTS/MATERIALS, SETTING, METHODS From the two most recent GWASs specifically centered on birth weight, which included 406 063 individuals and 423 683 individuals (63 365 trios) respectively, we identified genetic variants associated with fetal genetically determined birth weight, while adjusting for maternal genetic effects. We identified genetic variants associated with childhood BMI from an independent GWAS involving 21 309 European participants. On this basis, we employed two-sample MR techniques to examine the possible causal effects of fetal genetically determined birth weight on puberty timing using a large-scale GWAS of puberty timing (including 179 117 females of European ancestry). Furthermore, we employed advanced analytical methods, specifically MR mediation and MR-Cluster, to enhance our comprehension of the causal relationship between birth weight determined by fetal genetics and the timing of puberty. We also explored the pathways through which childhood BMI might act as a mediator in this relationship. MAIN RESULTS AND THE ROLE OF CHANCE In the univariable MR analysis, a one SD decrease in fetal genetically determined birth weight (∼ 418 g) was associated with a 0.16 (95% CI [0.07-0.26]) years earlier onset of puberty. The multivariable MR analysis including fetal genetically determined birth weight and childhood BMI in relation to puberty timing provided compelling evidence that birth weight had a direct influence on the timing of puberty. Lower birth weight (one SD) was associated with an earlier onset of puberty, with a difference of 0.23 (95% CI [0.05-0.42]) years. We found little evidence to support a mediating role of childhood BMI between birth weight and puberty timing (-0.07 years, 95% CI [-0.20 to 0.06]). LIMITATIONS, REASONS FOR CAUTION Our data came from European ancestry populations, which may restrict the generalizability of our results to other populations. Moreover, our analysis could not investigate potential non-linear relationships between birth weight and puberty timing due to limitations in genetic summary data. WIDER IMPLICATIONS OF THE FINDINGS Findings from this study suggested that low birth weight, determined by the fetal genome, contributes to early puberty, and offered supporting evidence to enhance comprehension of the fetal origins of disease hypothesis. STUDY FUNDING/COMPETING INTEREST(S) C.Z. was funded by the Sichuan Province Science and Technology Program [grant number 2021JDR0189]. J.Z. was supported by grants from the National Natural Science Foundation of China [grant number 82373588]. No other authors declare any sources of funding. The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Qinghui Peng
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wenjuan Qiu
- Department of Paediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Paediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengjun Li
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jian Zhao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Cairong Zhu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Tong F, Wang Y, Gao Q, Zhao Y, Zhang X, Li B, Wang X. The epidemiology of pregnancy loss: global burden, variable risk factors, and predictions. Hum Reprod 2024; 39:834-848. [PMID: 38308812 DOI: 10.1093/humrep/deae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/15/2023] [Indexed: 02/05/2024] Open
Abstract
STUDY QUESTION Is the incidence of pregnancy loss correlated with various geographic, socio-demographic, and age stratifications at the societal and national levels, and what are the risk factors associated with pregnancy loss at the individual level? SUMMARY ANSWER The epidemiological trends and disease burden of pregnancy loss were correlated with various geographic, socio-demographic, and age stratifications, and we identified that poor health condition, smoking, sedentary behaviour, lower educational level, and lower maternal birth weight may significantly increase the risk of pregnancy loss. WHAT IS KNOWN ALREADY Several studies have used national, regional, or single-centre data to describe trends in the burden of pregnancy loss, and previous observational studies have identified some variable factors possibly associated with pregnancy loss. However, a comprehensive analysis of global trends and predictions of pregnancy loss are lacking, and the conclusions have been inconsistent. STUDY DESIGN, SIZE, DURATION We have utilized the data from Global Burden of Disease (GBD) 2019 to provide an overview of the trends in pregnancy loss in 204 countries and regions worldwide from 1990 to 2019, and have made a forecast for the next 10 years. Moreover, we applied a variety of statistical genetics methods to analyse 34 239 pregnancy loss and 89 340 non-pregnancy loss cases from the FinnGen consortium to comprehensively assess the bidirectional causality of variable factors with pregnancy loss from an individual perspective. PARTICIPANTS/MATERIALS, SETTING, METHODS We analysed trends in the incidence, disability-adjusted life years (DALYs), and maternal mortality of pregnancy loss at global, regional, national, socio-demographic index (SDI), and age levels. The autoregressive integrated moving average (ARIMA) model was used to predict trends by 2030. Finally, we used two-sample Mendelian randomization (MR) and multivariate MR (MVMR) analyses to explore the relationship between the pregnancy loss and variables closely related to physical condition, physical activity, lifestyle, sleep conditions, basic conditions. MAIN RESULTS AND THE ROLE OF CHANCE In 2019, there were approximately 42.39 million cases of pregnancy loss worldwide. Globally, the incidence, DALYs, and mortality of pregnancy loss showed a decreasing trend between 1990 and 2019, although the number was increasing in some countries. The age-standardized incidence, DALYs, and mortality rate were negatively correlated with SDI level and show a further decline by 2030. Based on MR analyses, we confirmed that genetically predicted overall health rating (inverse-variance weighted (IVW) odds ratio (OR), 1.68; 95% CI, 1.34-2.13; P = 5.10 × 10-6), smoking initiation (IVW OR, 1.26; 95% CI, 1.16-1.38; P = 1.90 × 10-9), sedentary behaviour (IVW OR, 1.56; 95% CI, 1.20-2.01; P = 2.76 × 10-5), educational level (IVW OR, 0.64; 95% CI, 0.55-0.73; P = 6.56 × 10-10), and maternal birth weight (IVW OR, 0.70; 95% CI, 0.58-0.85; P = 2.98 × 10-4) were significantly related to the risk of pregnancy loss, whereas body mass index (IVW OR, 1.10; 95% CI, 1.03-1.17; P = 5.31 × 10-3), alcohol consumption (IVW OR, 1.74; 95% CI, 1.03-2.95; P = 0.04), insomnia (IVW OR, 1.66; 95% CI, 1.14-2.42; P = 7.00 × 10-3), and moderate-to-vigorous physical activity (IVW OR, 0.59; 95% CI, 0.37-0.95; P = 2.85 × 10-2) were suggestively associated with the risk of pregnancy loss. These results were supported by sensitivity and directional analyses. LIMITATIONS, REASONS FOR CAUTION Despite efforts to standardize GBD data from all over the world, uncertainties in data quality control regarding ascertainment of pregnancy loss, medical care accessibility, cultural differences, and socioeconomic status still exist. Furthermore, the population in the MRstudy was limited to Europeans, which means that the results may not be extrapolated to people of other origins. WIDER IMPLICATIONS OF THE FINDINGS Our study provides for the first time an overview of the epidemiological trends and disease burden of pregnancy loss related with SDI, region, country, and age, and predicts changes in future trends up to 2030. In addition, findings support that genetic susceptibility, smoking, health condition, and sedentary behaviour may be powerful indicators of an increased risk of pregnancy loss. These results would be beneficial for policy makers of different countries and regions to improve prevention implementation. STUDY FUNDING/COMPETING INTERESTS This work was supported by grants 2021JH2/10300093, from the Science and Technology Projects of Liaoning Province, China. All authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Fei Tong
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Wang
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qianqian Gao
- Department of Obstetrics, Weifang People's Hospital, Weifang, Shandong, China
| | - Yan Zhao
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xu Zhang
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, China
| | - Baoxuan Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoyan Wang
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Wang G, Warrington NM, Evans DM. Partitioning genetic effects on birthweight at classical human leukocyte antigen loci into maternal and fetal components, using structural equation modelling. Int J Epidemiol 2024; 53:dyad142. [PMID: 37831898 PMCID: PMC10859143 DOI: 10.1093/ije/dyad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Single nucleotide polymorphisms in the human leukocyte antigen (HLA) region in both maternal and fetal genomes have been robustly associated with birthweight (BW) in previous genetic association studies. However, no study to date has partitioned the association between BW and classical HLA alleles into maternal and fetal components. METHODS We used structural equation modelling (SEM) to estimate the maternal and fetal effects of classical HLA alleles on BW. Our SEM leverages the data structure of the UK Biobank (UKB), which includes ∼270 000 participants' own BW and/or the BW of their firstborn child. RESULTS We show via simulation that our model yields asymptotically unbiased estimates of the maternal and fetal allelic effects on BW and appropriate type I error rates, in contrast to simple regression models. Asymptotic power calculations show that we have sufficient power to detect moderate-sized maternal or fetal allelic effects of common HLA alleles on BW in the UKB. Applying our SEM to imputed classical HLA alleles and own and offspring BW from the UKB replicated the previously reported association at the HLA-C locus and revealed strong evidence for maternal (HLA-A*03:01, B*35:01, B*39:06, P <0.001) and fetal allelic effects (HLA-B*39:06, P <0.001) of non-HLA-C alleles on BW. CONCLUSIONS Our model yields asymptotically unbiased estimates, appropriate type I error rates and appreciable power to estimate maternal and fetal effects on BW. These novel allelic associations between BW and classical HLA alleles provide insight into the immunogenetics of fetal growth in utero.
Collapse
Affiliation(s)
- Geng Wang
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Nicole M Warrington
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - David M Evans
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| |
Collapse
|
17
|
Hou H, Wang X, Li X, Cai X, Tu Y, Yang C, Yao J. Genome-wide association study of growth traits and validation of key mutations (MSTN c.C861T) associated with the muscle mass of meat pigeons. Anim Genet 2024; 55:110-122. [PMID: 38069460 DOI: 10.1111/age.13382] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 01/04/2024]
Abstract
Selective breeding of meat pigeons is primarily based on growth traits, especially muscle mass (MM). Identification of functional genes and molecular markers of growth and slaughter traits through a genome-wide association study (GWAS) will help to elucidate the underlying molecular mechanisms and provide a theoretical basis for the selective breeding of meat pigeons. The phenotypic data of body weight (BW) and body size (BS) of 556 meat pigeons at 52 and 80 weeks of age were collected. In total, 160 434 high-quality single nucleotide polymorphism sites were obtained by restriction site-associated DNA sequencing. The GWAS analysis revealed that MSTN, IGF2BP3 and NCAPG/LCORL were important candidate genes affecting the growth traits of meat pigeons. IGF2BP3 and NCAPG/LCORL were highly correlated to BW and BS, which are related to overall growth and development, while MSTN was associated with pectoral thickness and BW. Phenotypic association validation with the use of two meat pigeon populations found that the MSTN mutation c.C861T determines the MM. These results provide new insights into the genetic mechanisms underlying phenotypic variations of growth traits and MM in commercial meat pigeons. The identified markers and genes provide a theoretical basis for the selective breeding of meat pigeons.
Collapse
Affiliation(s)
- Haobin Hou
- Shanghai Academy of Agricultural Sciences, Shanghai, China
- National Poultry Engineer Research Center, Shanghai, China
| | - Xiaoliang Wang
- Shanghai Academy of Agricultural Sciences, Shanghai, China
- National Poultry Engineer Research Center, Shanghai, China
| | - Xin Li
- Shanghai Academy of Agricultural Sciences, Shanghai, China
- National Poultry Engineer Research Center, Shanghai, China
| | - Xia Cai
- Shanghai Academy of Agricultural Sciences, Shanghai, China
- National Poultry Engineer Research Center, Shanghai, China
| | - Yingying Tu
- National Poultry Engineer Research Center, Shanghai, China
| | - Changsuo Yang
- Shanghai Academy of Agricultural Sciences, Shanghai, China
- National Poultry Engineer Research Center, Shanghai, China
| | - Junfeng Yao
- Shanghai Academy of Agricultural Sciences, Shanghai, China
- National Poultry Engineer Research Center, Shanghai, China
| |
Collapse
|
18
|
Bjørnsbo KS, Brøns C, Aadahl M, Kampmann FB, Friis Bryde Nielsen C, Lundbergh B, Wibaek R, Kårhus LL, Madsen AL, Hansen CS, Nørgaard K, Jørgensen NR, Suetta C, Kjaer M, Grarup N, Kanters J, Larsen M, Køber L, Kofoed KF, Loos R, Hansen T, Linneberg A, Vaag A. Protocol for the combined cardiometabolic deep phenotyping and registry-based 20-year follow-up study of the Inter99 cohort. BMJ Open 2024; 14:e078501. [PMID: 38286704 PMCID: PMC10826573 DOI: 10.1136/bmjopen-2023-078501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024] Open
Abstract
INTRODUCTION The population-based Inter99 cohort has contributed extensively to our understanding of effects of a systematic screening and lifestyle intervention, as well as the multifactorial aetiology of type 2 diabetes (T2D) and cardiovascular disease. To understand causes, trajectories and patterns of early and overt cardiometabolic disease manifestations, we will perform a combined clinical deep phenotyping and registry follow-up study of the now 50-80 years old Inter99 participants. METHODS AND ANALYSIS The Inter99 cohort comprises individuals aged 30-60 years, who lived in a representative geographical area of greater Copenhagen, Denmark, in 1999. Age-stratified and sex-stratified random subgroups were invited to participate in either a lifestyle intervention (N=13 016) or questionnaires (N=5264), while the rest served as a reference population (N=43 021). Of the 13 016 individuals assigned to the lifestyle intervention group, 6784 (52%) accepted participation in a baseline health examination in 1999, including screening for cardiovascular risk factors and prediabetic conditions. In total, 6004 eligible participants, who participated in the baseline examination, will be invited to participate in the deep phenotyping 20-year follow-up clinical examination including measurements of anthropometry, blood pressure, arterial stiffness, cardiometabolic biomarkers, coronary artery calcification, heart rate variability, heart rhythm, liver stiffness, fundus characteristics, muscle strength and mass, as well as health and lifestyle questionnaires. In a subsample, 10-day monitoring of diet, physical activity and continuous glucose measurements will be performed. Fasting blood, urine and faecal samples to be stored in a biobank. The established database will form the basis of multiple analyses. A main purpose is to investigate whether low birth weight independent of genetics, lifestyle and glucose tolerance predicts later common T2D cardiometabolic comorbidities. ETHICS AND DISSEMINATION The study was approved by the Medical Ethics Committee, Capital Region, Denmark (H-20076231) and by the Danish Data Protection Agency through the Capital Region of Denmark's registration system (P-2020-1074). Informed consent will be obtained before examinations. Findings will be disseminated in peer-reviewed journals, at conferences and via presentations to stakeholders, including patients and public health policymakers. TRIAL REGISTRATION NUMBER NCT05166447.
Collapse
Affiliation(s)
- Kirsten Schroll Bjørnsbo
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | | | - Mette Aadahl
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Freja Bach Kampmann
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Camilla Friis Bryde Nielsen
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Bjørn Lundbergh
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | | | - Line Lund Kårhus
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Anja Lykke Madsen
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | | | - Kirsten Nørgaard
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Charlotte Suetta
- Institute of Sports Medicine, Department of Orthopedic Surgery and Department of Geriatrics and Palliative Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine, Department of Orthopedic Surgery and Department of Geriatrics and Palliative Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Jørgen Kanters
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Center of Physiological Research, University of California, San Francisco, CA, USA
| | - Michael Larsen
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lars Køber
- Department of Cardiology and Radiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Klaus Fuglsang Kofoed
- Department of Clinical Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology and Radiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ruth Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Allan Vaag
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Lund University Diabetes Center, Malmö, Sweden
- Department of Endocrinology, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
19
|
Wells JCK, Desoye G, Leon DA. Reconsidering the developmental origins of adult disease paradigm: The 'metabolic coordination of childbirth' hypothesis. Evol Med Public Health 2024; 12:50-66. [PMID: 38380130 PMCID: PMC10878253 DOI: 10.1093/emph/eoae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/18/2023] [Indexed: 02/22/2024] Open
Abstract
In uncomplicated pregnancies, birthweight is inversely associated with adult non-communicable disease (NCD) risk. One proposed mechanism is maternal malnutrition during pregnancy. Another explanation is that shared genes link birthweight with NCDs. Both hypotheses are supported, but evolutionary perspectives address only the environmental pathway. We propose that genetic and environmental associations of birthweight with NCD risk reflect coordinated regulatory systems between mother and foetus, that evolved to reduce risks of obstructed labour. First, the foetus must tailor its growth to maternal metabolic signals, as it cannot predict the size of the birth canal from its own genome. Second, we predict that maternal alleles that promote placental nutrient supply have been selected to constrain foetal growth and gestation length when fetally expressed. Conversely, maternal alleles that increase birth canal size have been selected to promote foetal growth and gestation when fetally expressed. Evidence supports these hypotheses. These regulatory mechanisms may have undergone powerful selection as hominin neonates evolved larger size and encephalisation, since every mother is at risk of gestating a baby excessively for her pelvis. Our perspective can explain the inverse association of birthweight with NCD risk across most of the birthweight range: any constraint of birthweight, through plastic or genetic mechanisms, may reduce the capacity for homeostasis and increase NCD susceptibility. However, maternal obesity and diabetes can overwhelm this coordination system, challenging vaginal delivery while increasing offspring NCD risk. We argue that selection on viable vaginal delivery played an over-arching role in shaping the association of birthweight with NCD risk.
Collapse
Affiliation(s)
- Jonathan C K Wells
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - David A Leon
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
20
|
Ahles A, Engelhardt S. Genetic Variants of Adrenoceptors. Handb Exp Pharmacol 2024; 285:27-54. [PMID: 37578621 DOI: 10.1007/164_2023_676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Adrenoceptors are class A G-protein-coupled receptors grouped into three families (α1-, α2-, and β-adrenoceptors), each one including three members. All nine corresponding adrenoceptor genes display genetic variation in their coding and adjacent non-coding genomic region. Coding variants, i.e., nucleotide exchanges within the transcribed and translated receptor sequence, may result in a difference in amino acid sequence thus altering receptor function and signaling. Such variants have been intensely studied in vitro in overexpression systems and addressed in candidate-gene studies for distinct clinical parameters. In recent years, large cohorts were analyzed in genome-wide association studies (GWAS), where variants are detected as significant in context with specific traits. These studies identified two of the in-depth characterized 18 coding variants in adrenoceptors as repeatedly statistically significant genetic risk factors - p.Arg389Gly in the β1- and p.Thr164Ile in the β2-adrenoceptor, along with 56 variants in the non-coding regions adjacent to the adrenoceptor gene loci, the functional role of which is largely unknown at present. This chapter summarizes current knowledge on the two coding variants in adrenoceptors that have been consistently validated in GWAS and provides a prospective overview on the numerous non-coding variants more recently attributed to adrenoceptor gene loci.
Collapse
Affiliation(s)
- Andrea Ahles
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
21
|
Ma Z, Chang Y, Brito LF, Li Y, Yang T, Wang Y, Yang N. Multitrait meta-analyses identify potential candidate genes for growth-related traits in Holstein heifers. J Dairy Sci 2023; 106:9055-9070. [PMID: 37641329 DOI: 10.3168/jds.2023-23462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/20/2023] [Indexed: 08/31/2023]
Abstract
Understanding the underlying pleiotropic relationships among growth and body size traits is important for refining breeding strategies in dairy cattle for optimal body size and growth rate. Therefore, we performed single-trait GWAS for monthly-recorded body weight (BW), hip height, body length, and chest girth from birth to 12 mo of age in Holstein animals, followed by stepwise multiple regression of independent or lowly-linked markers from GWAS loci using conditional and joint association analyses (COJO). Subsequently, we conducted a multitrait meta-analysis to detect pleiotropic markers. Based on the single-trait GWAS, we identified 170 significant SNPs, in which 59 of them remained significant after the COJO analyses. The most significant SNP, located at BTA7:3,676,741, explained 2.93% of the total phenotypic variance for BW6 (BW at 6 mo of age). We identified 17 SNPs with potential pleiotropic effects based on the multitrait meta-analyses, which resulted in 3 additional SNPs in comparison to those detected based on the single-trait GWAS. The identified quantitative trait loci regions overlap with genes known to influence human growth-related traits. According to positional and functional analyses, we proposed HMGA2, HNF4G, MED13L, BHLHE40, FRZB, DMP1, TRIB3, and GATAD2A as important candidate genes influencing the studied traits. The combination of single-trait GWAS and meta-analyses of GWAS results improved the efficiency of detecting associated SNPs, and provided new insights into the genetic mechanisms of growth and development in Holstein cattle.
Collapse
Affiliation(s)
- Z Ma
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China; Beijing Sunlon Livestock Development Co. Ltd., 100029, Beijing, China
| | - Y Chang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Y Li
- Beijing Sunlon Livestock Development Co. Ltd., 100029, Beijing, China
| | - T Yang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Y Wang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| | - N Yang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
22
|
Huang X, Xiang H, Bao J, Zhu J, Chen J, Zhou P, Zhou T, Xu Z. The effects of intrauterine growth on physical and intellectual development of one-year-old infants: a study on monochorionic twins with selective intrauterine growth restriction. J OBSTET GYNAECOL 2023; 43:2125300. [PMID: 36173191 DOI: 10.1080/01443615.2022.2125300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study aimed to evaluate physical and intellectual development of one-year-old infants of monochorionic twins with selective intrauterine growth restriction (sIUGR). A total of 31 pairs of sIUGR twins ageing 1 year old were included in the study. Each pair of sIUGR twins was divided into low birthweight-twin group (L-twin group) and high birthweight-twin group (H-twin group) according to twins' birthweight. The differences in height, weight, head circumstance and body mass index (BMI) in each stage were statistically significant for all measures from birth until 1 year old (p < .05), and there was a disappointed catch-up growth in lighter twins. Psychomotor development index (PDI) and mental development index (MDI) at 1 year old were significantly different between the two groups (p < .05). Stepwise regression analysis showed that the effects of weight on both PDI and MDI were statistically significant (p < .05). Intrauterine growth inconsistencies in monochorionic twins with sIUGR persist until the first year of life and affect low-birthweight infants' physical and intellectual development.Impact StatementWhat is already known on this subject? Selective intrauterine growth restriction in monochorionic twins increases the risks of intrauterine foetal demise, preterm birth, caesarean delivery and adverse neonatal outcomes, especially in the smaller foetus.What do the results of this study add? Previous studies have concentrated on the clinical management of sIUGR, while little attention has been paid to the growth and development of twins after birth. Given the adverse neurobiological effects of suboptimal nutrition on the brain development, it is important to determine whether IUGR causes long-term cognitive deficits and physical retardation. The current study has assessed the physical and intellectual development of one-year-old infants of monochorionic twins with sIUGR.What are the implications of these findings for clinical practice and/or further research? Intrauterine growth inconsistencies in monochorionic twins with sIUGR persist until the first year of life and affect low-birthweight infants' physical and intellectual development. Further research on the longer-term effects of sIUGR is needed.
Collapse
Affiliation(s)
- Xianping Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Huiqiu Xiang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jiale Bao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jing Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jiajia Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Panpan Zhou
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Tong Zhou
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhangye Xu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
23
|
Reim PK, Engelbrechtsen L, Gybel-Brask D, Schnurr TM, Kelstrup L, Høgdall EV, Hansen T. The influence of insulin-related genetic variants on fetal growth, fetal blood flow, and placental weight in a prospective pregnancy cohort. Sci Rep 2023; 13:19638. [PMID: 37949941 PMCID: PMC10638310 DOI: 10.1038/s41598-023-46910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
The fetal insulin hypothesis proposes that low birthweight and type 2 diabetes (T2D) in adulthood may be two phenotypes of the same genotype. In this study we aimed to explore this theory further by testing the effects of GWAS-identified genetic variants related to insulin release and sensitivity on fetal growth and blood flow from week 20 of gestation to birth and on placental weight at birth. We calculated genetic risk scores (GRS) of first phase insulin release (FPIR), fasting insulin (FI), combined insulin resistance and dyslipidaemia (IR + DLD) and insulin sensitivity (IS) in a study population of 665 genotyped newborns. Two-dimensional ultrasound measurements with estimation of fetal weight and blood flow were carried out at week 20, 25, and 32 of gestation in all 665 pregnancies. Birthweight and placental weight were registered at birth. Associations between the GRSs and fetal growth, blood flow and placental weight were investigated using linear mixed models. The FPIR GRS was directly associated with fetal growth from week 20 to birth, and both the FI GRS, IR + DLD GRS, and IS GRS were associated with placental weight at birth. Our findings indicate that insulin-related genetic variants might primarily affect fetal growth via the placenta.
Collapse
Affiliation(s)
- Pauline K Reim
- Faculty of Health Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, 8th Floor, 2200, Copenhagen, Denmark
| | - Line Engelbrechtsen
- Faculty of Health Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, 8th Floor, 2200, Copenhagen, Denmark
- Department of Gynaecology and Obstetrics, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Dorte Gybel-Brask
- Psycotherapeutic Outpatient Clinic, Department of Psychiatry, Ballerup Hospital, Ballerup, Denmark
| | - Theresia M Schnurr
- Faculty of Health Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, 8th Floor, 2200, Copenhagen, Denmark
| | - Louise Kelstrup
- Department of Gynaecology and Obstetrics, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Estrid V Høgdall
- Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Torben Hansen
- Faculty of Health Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, 8th Floor, 2200, Copenhagen, Denmark.
| |
Collapse
|
24
|
Hwang LD, Cuellar-Partida G, Yengo L, Zeng J, Beaumont RN, Freathy RM, Moen GH, Warrington NM, Evans DM. Direct and INdirect effects analysis of Genetic lOci (DINGO): A software package to increase the power of locus discovery in GWAS meta-analyses of perinatal phenotypes and traits influenced by indirect genetic effects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.22.23294446. [PMID: 37693475 PMCID: PMC10491281 DOI: 10.1101/2023.08.22.23294446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Perinatal traits are influenced by genetic variants from both fetal and maternal genomes. Genome-wide association studies (GWAS) of these phenotypes have typically involved separate fetal and maternal scans, however, this approach may be inefficient as it does not utilize the information shared across the individual GWAS. In this manuscript we investigate the performance of three strategies to detect loci in maternal and fetal GWAS of the same trait: (i) the traditional strategy of analysing maternal and fetal GWAS separately; (ii) a novel two degree of freedom test which combines information from maternal and fetal GWAS; and (iii) a novel one degree of freedom test where signals from maternal and fetal GWAS are meta-analysed together conditional on the estimated sample overlap. We demonstrate through a combination of analytical formulae and data simulation that the optimal strategy depends on the extent of sample overlap/relatedness between the maternal and fetal GWAS, the correlation between own and offspring phenotypes, whether loci jointly exhibit fetal and maternal effects, and if so, whether these effects are directionally concordant. We apply our methods to summary results statistics from a recent GWAS meta-analysis of birth weight from deCODE, the UK Biobank and the Early Growth Genetics (EGG) consortium. Both the two degree of freedom (213 loci) and meta-analytic approach (226 loci) dramatically increase the number of robustly associated genetic loci for birth weight relative to separately analysing the scans (183 loci). Our best strategy identifies an additional 62 novel loci compared to the most recent published meta-analysis of birth weight and implicates both known and new biological pathways in the aetiology of the trait. We implement our methods in the online DINGO (Direct and INdirect effects analysis of Genetic lOci) software package, which allows users to perform one and/or two degree of freedom tests easily and computationally efficiently across the genome. We conclude that whilst the novel two degree of freedom test may be particularly useful for the analysis of certain perinatal phenotypes where many loci exhibit discordant maternal and fetal genetic effects, for most phenotypes, a simple meta-analytic strategy is likely to perform best, particularly in situations where maternal and fetal GWAS only partially overlap.
Collapse
Affiliation(s)
- Liang-Dar Hwang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | - Loic Yengo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Robin N Beaumont
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Rachel M Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- The Frazer Institute, The University of Queensland, 4102, Woolloongabba, QLD, Australia
| | - Nicole M Warrington
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- The Frazer Institute, The University of Queensland, 4102, Woolloongabba, QLD, Australia
| | - David M Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- The Frazer Institute, The University of Queensland, 4102, Woolloongabba, QLD, Australia
| |
Collapse
|
25
|
Reshetnikova Y, Churnosova M, Stepanov V, Bocharova A, Serebrova V, Trifonova E, Ponomarenko I, Sorokina I, Efremova O, Orlova V, Batlutskaya I, Ponomarenko M, Churnosov V, Eliseeva N, Aristova I, Polonikov A, Reshetnikov E, Churnosov M. Maternal Age at Menarche Gene Polymorphisms Are Associated with Offspring Birth Weight. Life (Basel) 2023; 13:1525. [PMID: 37511900 PMCID: PMC10381708 DOI: 10.3390/life13071525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, the association between maternal age at menarche (AAM)-related polymorphisms and offspring birth weight (BW) was studied. The work was performed on a sample of 716 pregnant women and their newborns. All pregnant women underwent genotyping of 50 SNPs of AAM candidate genes. Regression methods (linear and Model-Based Multifactor Dimensionality Reduction (MB-MDR)) with permutation procedures (the indicator pperm was calculated) were used to identify the correlation between SNPs and newborn weight (transformed BW values were analyzed) and in silico bioinformatic examination was applied to assess the intended functionality of BW-associated loci. Four AAM-related genetic variants were BW-associated including genes such as POMC (rs7589318) (βadditive = 0.202/pperm = 0.015), KDM3B (rs757647) (βrecessive = 0.323/pperm = 0.005), INHBA (rs1079866) (βadditive = 0.110/pperm = 0.014) and NKX2-1 (rs999460) (βrecessive = -0.176/pperm = 0.015). Ten BW-significant models of interSNPs interactions (pperm ≤ 0.001) were identified for 20 polymorphisms. SNPs rs7538038 KISS1, rs713586 RBJ, rs12324955 FTO and rs713586 RBJ-rs12324955 FTO two-locus interaction were included in the largest number of BW-associated models (30% models each). BW-associated AAM-linked 22 SNPs and 350 proxy loci were functionally related to 49 genes relevant to pathways such as the hormone biosynthesis/process and female/male gonad development. In conclusion, maternal AMM-related genes polymorphism is associated with the offspring BW.
Collapse
Affiliation(s)
- Yuliya Reshetnikova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Maria Churnosova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Vadim Stepanov
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia; (V.S.); (A.B.); (V.S.); (E.T.)
| | - Anna Bocharova
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia; (V.S.); (A.B.); (V.S.); (E.T.)
| | - Victoria Serebrova
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia; (V.S.); (A.B.); (V.S.); (E.T.)
| | - Ekaterina Trifonova
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia; (V.S.); (A.B.); (V.S.); (E.T.)
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Inna Sorokina
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Olga Efremova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Valentina Orlova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Irina Batlutskaya
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Marina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Vladimir Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Natalya Eliseeva
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Inna Aristova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Alexey Polonikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
- Department of Biology, Medical Genetics and Ecology and Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| |
Collapse
|
26
|
Schuermans A, Nakao T, Ruan Y, Koyama S, Yu Z, Uddin MM, Haidermota S, Hornsby W, Lewandowski AJ, Bick AG, Niroula A, Jaiswal S, Ebert BL, Natarajan P, Honigberg MC. Birth Weight Is Associated With Clonal Hematopoiesis of Indeterminate Potential and Cardiovascular Outcomes in Adulthood. J Am Heart Assoc 2023; 12:e030220. [PMID: 37345823 PMCID: PMC10356089 DOI: 10.1161/jaha.123.030220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023]
Abstract
Background High and low birth weight are independently associated with increased cardiovascular disease risk in adulthood. Clonal hematopoiesis of indeterminate potential (CHIP), the age-related clonal expansion of hematopoietic cells with preleukemic somatic mutations, predicts incident cardiovascular disease independent of traditional cardiovascular risk factors. Whether birth weight predicts development of CHIP later in life is unknown. Methods and Results A total of 221 047 adults enrolled in the UK Biobank with whole exome sequences and self-reported birth weight were analyzed. Of those, 22 030 (11.5%) had low (<2.5 kg) and 29 292 (14.7%) high birth weight (>4.0 kg). CHIP prevalence was higher among participants with low (6.0%, P=0.049) and high (6.3%, P<0.001) versus normal birth weight (5.7%, ref.). Multivariable-adjusted logistic regression analyses demonstrated that each 1-kg increase in birth weight was associated with a 3% increased risk of CHIP (odds ratio, 1.03 [95% CI, 1.00-1.06]; P=0.04), driven by a stronger association observed between birth weight and DNMT3A CHIP (odds ratio, 1.04 per 1-kg increase [95% CI, 1.01-1.08]; P=0.02). Mendelian randomization analyses supported a causal relationship of longer gestational age at delivery with DNMT3A CHIP. Multivariable Cox regression demonstrated that CHIP was independently and additively associated with incident cardiovascular disease or death across birth weight groups, with highest absolute risks in those with CHIP plus high or low birth weight. Conclusions Higher birth weight is associated with increased risk of developing CHIP in midlife, especially DNMT3A CHIP. These findings identify a novel risk factor for CHIP and provide insights into the relationships among early-life environment, CHIP, cancer, and cardiovascular disease.
Collapse
Affiliation(s)
- Art Schuermans
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
- Department of Cardiovascular SciencesKU LeuvenLeuvenBelgium
| | - Tetsushi Nakao
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMAUSA
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s HospitalBostonMAUSA
| | - Yunfeng Ruan
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Satoshi Koyama
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Zhi Yu
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Md Mesbah Uddin
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Sara Haidermota
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Whitney Hornsby
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Adam J. Lewandowski
- Cardiovascular Clinical Research Facility, Division of Cardiovascular MedicineUniversity of OxfordUnited Kingdom
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Abhishek Niroula
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of Laboratory MedicineLund UniversitySweden
| | - Siddhartha Jaiswal
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Benjamin L. Ebert
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMAUSA
- Howard Hughes Medical InstituteBostonMAUSA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
- Department of MedicineHarvard Medical SchoolBostonMAUSA
| | - Michael C. Honigberg
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
- Department of MedicineHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
27
|
Jasper EA, Hellwege JN, Piekos JA, Jones SH, Hartmann KE, Mautz B, Aronoff DM, Edwards TL, Edwards DRV. Genetically-predicted placental gene expression is associated with birthweight and adult body mass index. Sci Rep 2023; 13:322. [PMID: 36609580 PMCID: PMC9822919 DOI: 10.1038/s41598-022-26572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
The placenta is critical to human growth and development and has been implicated in health outcomes. Understanding the mechanisms through which the placenta influences perinatal and later-life outcomes requires further investigation. We evaluated the relationships between birthweight and adult body mass index (BMI) and genetically-predicted gene expression in human placenta. Birthweight genome-wide association summary statistics were obtained from the Early Growth Genetics Consortium (N = 298,142). Adult BMI summary statistics were obtained from the GIANT consortium (N = 681,275). We used S-PrediXcan to evaluate associations between the outcomes and predicted gene expression in placental tissue and, to identify genes where placental expression was exclusively associated with the outcomes, compared to 48 other tissues (GTEx v7). We identified 24 genes where predicted placental expression was significantly associated with birthweight, 15 of which were not associated with birthweight in any other tissue. One of these genes has been previously linked to birthweight. Analyses identified 182 genes where placental expression was associated with adult BMI, 110 were not associated with BMI in any other tissue. Eleven genes that had placental gene expression levels exclusively associated with BMI have been previously associated with BMI. Expression of a single gene, PAX4, was associated with both outcomes exclusively in the placenta. Inter-individual variation of gene expression in placental tissue may contribute to observed variation in birthweight and adult BMI, supporting developmental origins hypothesis.
Collapse
Affiliation(s)
- Elizabeth A Jasper
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Jacklyn N Hellwege
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Epidemiology Center, Vanderbilt University, Nashville, TN, USA
| | | | - Sarah H Jones
- Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine E Hartmann
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Epidemiology Center, Vanderbilt University, Nashville, TN, USA
- Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brian Mautz
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Epidemiology Center, Vanderbilt University, Nashville, TN, USA
- Population Analytics, Analytics and Insights, Data Sciences, Janssen Research & Development, Spring House, PA, USA
| | - David M Aronoff
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Todd L Edwards
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.
- Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
28
|
Association of the FCN2 Gene Promoter Region Polymorphisms with Very Low Birthweight in Preterm Neonates. Int J Mol Sci 2022; 23:ijms232315336. [PMID: 36499663 PMCID: PMC9740280 DOI: 10.3390/ijms232315336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/09/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) localised to the promoter region of the FCN2 gene are known to influence the concentration of ficolin-2 in human serum and therefore potentially have clinical associations. We investigated the relationships between SNPs at positions −986 (A > G), −602 (G > A), −64 (A > C) and −4 (A > G) and clinical complications in 501 preterms. Major alleles at positions −986 and −64 and A/A homozygosity for both polymorphisms were less frequent among babies with very low birthweight (VLBW, ≤1500 g) compared with the reference group (OR = 0.24, p = 0.0029; and OR = 0.49, p = 0.024, respectively for A/A genotypes). A lower frequency of G/G homozygosity at position −4 was associated with gestational age <33 weeks and VLBW (OR = 0.38, p = 0.047; and OR = 0.07, p = 0.0034, respectively). The AGAG haplotype was protective for VLBW (OR = 0.6, p = 0.0369), whilst the GGCA haplotype had the opposite effect (OR = 2.95, p = 0.0249). The latter association was independent of gestational age. The AGAG/GGAA diplotype favoured both shorter gestational age and VLBW (OR = 1.82, p = 0.0234 and OR = 1.95, p = 0.0434, respectively). In contrast, AGAG homozygosity was protective for lower body mass (OR = 0.09, p = 0.0155). Our data demonstrate that some FCN2 variants associated with relatively low ficolin-2 increase the risk of VLBW and suggest that ficolin-2 is an important factor for fetal development/intrauterine growth.
Collapse
|
29
|
Health inequities start early in life, even before birth: Why race-specific fetal and neonatal growth references disadvantage Black infants. Semin Perinatol 2022; 46:151662. [PMID: 36180263 DOI: 10.1016/j.semperi.2022.151662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clinicians and researchers use published standards to assess and classify the size and growth of the fetus and newborn infant. Fetal growth is slower on average in Black fetuses as compared with White fetuses, and existing standards differ in whether they are race-specific or not. Here, we apply a health equity lens to the topic of fetal and newborn growth assessment by critically appraising two widely available growth standards. We conclude that using race-based standards is not well-justified and could perpetuate or even worsen inequities in perinatal health outcomes. We therefore recommend that neonatal and perinatal providers remove race from the assessment of fetal and newborn size.
Collapse
|
30
|
Xiang H, Huang X, Zhu J, Chen J, Zhou P, Zhou T, Bao J, Xu Z. Physical growth and intelligence development of discordant dizygotic twins from birth to preschool age: a prospective cohort study. Ital J Pediatr 2022; 48:162. [PMID: 36064427 PMCID: PMC9446820 DOI: 10.1186/s13052-022-01354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background The majority of studies are limited to adverse perinatal outcomes and poor cognitive abilities in the short term in discordant monochorionic twins. Methods To determine whether small and large discordant dizygotic twins differ in physical growth and intelligence development and weight and height from birth up to 6 years of age were measured in 34 dizygotic twin pairs with ≥ 20% birth weight discordance. Mental developmental index (MDI) and psychomotor developmental index (PDI) were calculated at 1 year, while the Wechsler Intelligence Scale for Children-IV (WISC-IV) full-scale intelligence quotient (IQ) was assessed at the age of 6. Results The difference in height and weight in each stage differed significantly from birth to 72-months-old (P < 0.05), although there was disappointing catch-up growth in smaller twins. PDI but not MDI at 1 year of age was significantly different between the two groups (P < 0.05), and smaller twins experienced higher psychomotor retardation rates (P < 0.05). Also, the influence of height and weight on PDI was statistically significant (P < 0.05). No significant difference was detected in the WISC-IV full-scale IQ at the age of 6; however, the full-scale IQ may be affected by the history of suffocation and the S/D value (P = 0.011, P = 0.022). Conclusions Intrauterine fetal growth and development lead to birth weight differences in twins and sustain an impact on the children’s physical growth in height and weight from birth to preschool age, causing psychomotor developmental differences at 1 year of age. However, the differences in psychomotor development decrease gradually by the age of 6. Supplementary Information The online version contains supplementary material available at 10.1186/s13052-022-01354-y.
Collapse
Affiliation(s)
- Huiqiu Xiang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Xianping Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Jing Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Jiajia Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Pangpang Zhou
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Tong Zhou
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Jiale Bao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Zhangye Xu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China.
| |
Collapse
|
31
|
Li X, Xiao H, Ma Y, Zhou Z, Chen D. Identifying novel genetic loci associated with polycystic ovary syndrome based on its shared genetic architecture with type 2 diabetes. Front Genet 2022; 13:905716. [PMID: 36105080 PMCID: PMC9464923 DOI: 10.3389/fgene.2022.905716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified several common variants associated with polycystic ovary syndrome (PCOS). However, the etiology behind PCOS remains incomplete. Available evidence suggests a potential genetic correlation between PCOS and type 2 diabetes (T2D). The publicly available data may provide an opportunity to enhance the understanding of the PCOS etiology. Here, we quantified the polygenic overlap between PCOS and T2D using summary statistics of PCOS and T2D and then identified the novel genetic variants associated with PCOS behind this phenotypic association. A bivariate causal mixture model (MiXeR model) found a moderate genetic overlap between PCOS and T2D (Dice coefficient = 44.1% and after adjusting for body mass index, 32.1%). The conditional/conjunctional false discovery rate method identified 11 potential risk variants of PCOS conditional on associations with T2D, 9 of which were novel and 6 of which were jointly associated with two phenotypes. The functional annotation of these genetic variants supports a significant role for genes involved in lipid metabolism, immune response, and the insulin signaling pathway. An expression quantitative trait locus functionality analysis successfully repeated that 5 loci were significantly associated with the expression of candidate genes in many tissues, including the whole blood, subcutaneous adipose, adrenal gland, and cerebellum. We found that SCN2A gene is co-localized with PCOS in subcutaneous adipose using GWAS-eQTL co-localization analyses. A total of 11 candidate genes were differentially expressed in multiple tissues of the PCOS samples. These findings provide a new understanding of the shared genetic architecture between PCOS and T2D and the underlying molecular genetic mechanism of PCOS.
Collapse
|
32
|
MIR146A and ADIPOQ genetic variants are associated with birth weight in relation to gestational age: a cohort study. J Assist Reprod Genet 2022; 39:1873-1886. [PMID: 35689735 PMCID: PMC9428086 DOI: 10.1007/s10815-022-02532-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/01/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To evaluate the genetic variants related to polycystic ovary syndrome (PCOS) and its metabolic complications in girls born small for gestational age (SGA). DESIGN Retrospective birth cohort study. MATERIALS AND METHODS We evaluated 66 women of reproductive age born at term (37-42 weeks of gestational age) according to the birth weight in relation to gestational age: 26 SGA and 40 AGA (Adequate for gestational age). Anthropometric and biochemical characteristics were measured, as well as the PCOS prevalence. We analyzed 48 single nucleotide polymorphisms (SNPs) previously associated with PCOS and its comorbidities using TaqMan Low-Density Array (TLDA). miRNet and STRING databases were used to predict target and disease networks. RESULTS Anthropometric and biochemical characteristics did not differ between the SGA and AGA groups, as well as insulin resistance and PCOS prevalence. Two SNPs were not in Hardy-Weinberg equilibrium, the rs2910164 (MIR146A C > G) and rs182052 (ADIPOQ G > A). The rs2910164 minor allele frequency (MAF) was increased in SGA (OR, 2.77; 95%; CI, 1.22-6.29), while the rs182052 was increased AGA (OR, 0.34; 95%; CI, 0.13 - 0.88). The alleles related to reduced miRNA-146a (C) and ADIPOQ (A) activity showed increased frequency in SGA. The mature miR-146a targets 319 genes, been the CXCR4, TMEM167A and IF144L common targets and contributes to PCOS. The ADIPOQ main protein interactions were ERP44, PPARGCIA and CDH13. CONCLUSIONS The miR-146a (rs2910164) and ADIPOQ (rs182052) allelic variants are related to birth weight in SGA and may predict health-related outcomes, such as PCOS and obesity risk.
Collapse
|
33
|
Vaura F, Kim H, Udler MS, Salomaa V, Lahti L, Niiranen T. Multi-Trait Genetic Analysis Reveals Clinically Interpretable Hypertension Subtypes. Circ Genom Precis Med 2022; 15:e003583. [PMID: 35604428 PMCID: PMC9558213 DOI: 10.1161/circgen.121.003583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
Hypertension comprises a heterogeneous range of phenotypes. We asked whether underlying genetic structure could explain a part of this heterogeneity.
Methods:
Our study sample comprised N=198 148 FinnGen participants (56% women, mean age 58 years) and N=21 168 well-phenotyped FINRISK participants (53% women, mean age 50 years). First, we identified genetic hypertension components with an unsupervised Bayesian non-negative matrix factorization algorithm using public genome-wide association data for 144 genetic hypertension variants and 16 clinical traits. For these components, we computed their (1) cross-sectional associations with clinical traits in FINRISK using linear regression and (2) longitudinal associations with incident adverse outcomes in FinnGen using Cox regression.
Results:
We observed 4 genetic hypertension components corresponding to recognizable clinical phenotypes: obesity (high body mass index), dyslipidemia (low high-density lipoprotein cholesterol and high triglycerides), hypolipidemia (low low-density lipoprotein cholesterol and low total cholesterol), and short stature. In FINRISK, all hypertension components had robust associations with their respective clinical characteristics. In FinnGen, the Obesity component was associated with increased diabetes risk (hazard ratio per 1 SD increase 1.08 [Bonferroni corrected CI, 1.05–1.10]) and the Hypolipidemia component with increased autoimmune disease risk (hazard ratio per 1 SD increase 1.05 [Bonferroni corrected CI, 1.03–1.07]). In addition, all hypertension components were related to both hypertension and cardiovascular disease.
Conclusions:
Our unsupervised analysis demonstrates that the genetic basis of hypertension can be understood as a mixture of 4 broad, clinically interpretable components capturing disease heterogeneity. These components could be used to stratify individuals into specific genetic subtypes and, therefore, to benefit personalized health care and pharmaceutical research.
Collapse
Affiliation(s)
- Felix Vaura
- Department of Internal Medicine (F.V., T.N.), University of Turku, Turku, Finland
| | - Hyunkyung Kim
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston (H.K., M.U.)
- Broad Institute of MIT and Harvard, Cambridge, MA (H.K., M.U.)
| | - Miriam S. Udler
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston (H.K., M.U.)
| | - Veikko Salomaa
- Department of Public Health & Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland (V.S., T.N.)
| | - Leo Lahti
- Department of Computing (L.L.), University of Turku, Turku, Finland
| | - Teemu Niiranen
- Department of Internal Medicine (F.V., T.N.), University of Turku, Turku, Finland
- Department of Public Health & Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland (V.S., T.N.)
| | | |
Collapse
|
34
|
Tekola-Ayele F, Zeng X, Chatterjee S, Ouidir M, Lesseur C, Hao K, Chen J, Tesfaye M, Marsit CJ, Workalemahu T, Wapner R. Placental multi-omics integration identifies candidate functional genes for birthweight. Nat Commun 2022; 13:2384. [PMID: 35501330 PMCID: PMC9061712 DOI: 10.1038/s41467-022-30007-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 04/11/2022] [Indexed: 12/27/2022] Open
Abstract
Abnormal birthweight is associated with increased risk for cardiometabolic diseases in later life. Although the placenta is critical to fetal development and later life health, it has not been integrated into largescale functional genomics initiatives, and mechanisms of birthweight-associated variants identified by genome wide association studies (GWAS) are unclear. The goal of this study is to provide functional mechanistic insight into the causal pathway from a genetic variant to birthweight by integrating placental methylation and gene expression with established GWAS loci for birthweight. We identify placental DNA methylation and gene expression targets for several birthweight GWAS loci. The target genes are broadly enriched in cardiometabolic, immune response, and hormonal pathways. We find that methylation causally influences WNT3A, CTDNEP1, and RANBP2 expression in placenta. Multi-trait colocalization identifies PLEKHA1, FES, CTDNEP1, and PRMT7 as likely functional effector genes. These findings reveal candidate functional pathways that underpin the genetic regulation of birthweight via placental epigenetic and transcriptomic mechanisms. Clinical trial registration; ClinicalTrials.gov, NCT00912132.
Collapse
Affiliation(s)
- Fasil Tekola-Ayele
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Xuehuo Zeng
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Suvo Chatterjee
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Marion Ouidir
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Markos Tesfaye
- Section of Sensory Science and Metabolism (SenSMet), National Institute on Alcohol Abuse and Alcoholism & National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health of Emory University, Atlanta, GA, USA
| | - Tsegaselassie Workalemahu
- Department of Obstetrics and Gynecology, Maternal-Fetal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| |
Collapse
|
35
|
Song YQ, Hu SD, Lin X, Meng XH, Wang X, Zhang YH, Peng C, Gong R, Xu T, Zhang T, Li CZ, Pan DY, Yang JY, Greenbaum J, Shen J, Deng HW. Identification of PDXDC1 as a novel pleiotropic susceptibility locus shared between lumbar spine bone mineral density and birth weight. J Mol Med (Berl) 2022; 100:723-734. [PMID: 35314877 PMCID: PMC9110509 DOI: 10.1007/s00109-021-02165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/13/2021] [Accepted: 11/04/2021] [Indexed: 02/04/2023]
Abstract
An increasing number of epidemiological studies have suggested that birth weight (BW) may be a determinant of bone health later in life, although the underlying genetic mechanism remains unclear. Here, we applied a pleiotropic conditional false discovery rate (cFDR) approach to the genome-wide association study (GWAS) summary statistics for lumbar spine bone mineral density (LS BMD) and BW, aiming to identify novel susceptibility variants shared between these two traits. We detected 5 novel potential pleiotropic loci which are located at or near 7 different genes (NTAN1, PDXDC1, CACNA1G, JAG1, FAT1P1, CCDC170, ESR1), among which PDXDC1 and FAT1P1 have not previously been linked to these phenotypes. To partially validate the findings, we demonstrated that the expression of PDXDC1 was dramatically reduced in ovariectomized (OVX) mice in comparison with sham-operated (SHAM) mice in both the growth plate and trabecula bone. Furthermore, immunohistochemistry assay with serial sections showed that both osteoclasts and osteoblasts express PDXDC1, supporting its potential role in bone metabolism. In conclusion, our study provides insights into some shared genetic mechanisms for BMD and BW as well as a novel potential therapeutic target for the prevention of OP in the early stages of the disease development. KEY MESSAGES : We investigated pleiotropy-informed enrichment between LS BMD and BW. We identified genetic variants related to both LS BMD and BW by utilizing a cFDR approach. PDXDC1 is a novel pleiotropic gene which may be related to both LS BMD and BW. Elevated expression of PDXDC1 is related to higher BMD and lower ratio n-6/n-3 PUFA indicating a bone protective effect of PDXDC1.
Collapse
Affiliation(s)
- Yu-Qian Song
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Shi-Di Hu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University, The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Xiang-He Meng
- School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Xiao Wang
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University, The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Yin-Hua Zhang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Cheng Peng
- Department of Geriatrics, School of Medicine, National Clinical Key Specialty, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Rui Gong
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
- Cadre Ward Endocrinology Dept, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
| | - Tao Xu
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Tong Zhang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Chen-Zhong Li
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Dao-Yan Pan
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Jia-Yi Yang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Jonathan Greenbaum
- Tulane Center for Biomedical Informatics and Genomics, Department of Medicine, Tulane University, New Orleans, LA, USA
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University, The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China.
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Department of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
36
|
Nongmaithem SS, Beaumont RN, Dedaniya A, Wood AR, Ogunkolade BW, Hassan Z, Krishnaveni GV, Kumaran K, Potdar RD, Sahariah SA, Krishna M, Di Gravio C, Mali ID, Sankareswaran A, Hussain A, Bhowmik BW, Khan AKA, Knight BA, Frayling TM, Finer S, Fall CHD, Yajnik CS, Freathy RM, Hitman GA, Chandak GR. Babies of South Asian and European Ancestry Show Similar Associations With Genetic Risk Score for Birth Weight Despite the Smaller Size of South Asian Newborns. Diabetes 2022; 71:821-836. [PMID: 35061033 PMCID: PMC7612532 DOI: 10.2337/db21-0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022]
Abstract
Size at birth is known to be influenced by various fetal and maternal factors, including genetic effects. South Asians have a high burden of low birth weight and cardiometabolic diseases, yet studies of common genetic variations underpinning these phenotypes are lacking. We generated independent, weighted fetal genetic scores (fGSs) and maternal genetic scores (mGSs) from 196 birth weight-associated variants identified in Europeans and conducted an association analysis with various fetal birth parameters and anthropometric and cardiometabolic traits measured at different follow-up stages (5-6-year intervals) from seven Indian and Bangladeshi cohorts of South Asian ancestry. The results from these cohorts were compared with South Asians in UK Biobank and the Exeter Family Study of Childhood Health, a European ancestry cohort. Birth weight increased by 50.7 g and 33.6 g per SD of fGS (P = 9.1 × 10-11) and mGS (P = 0.003), respectively, in South Asians. A relatively weaker mGS effect compared with Europeans indicates possible different intrauterine exposures between Europeans and South Asians. Birth weight was strongly associated with body size in both childhood and adolescence (P = 3 × 10-5 to 1.9 × 10-51); however, fGS was associated with body size in childhood only (P < 0.01) and with head circumference, fasting glucose, and triglycerides in adults (P < 0.01). The substantially smaller newborn size in South Asians with comparable fetal genetic effect to Europeans on birth weight suggests a significant role of factors related to fetal growth that were not captured by the present genetic scores. These factors may include different environmental exposures, maternal body size, health and nutritional status, etc. Persistent influence of genetic loci on size at birth and adult metabolic syndrome in our study supports a common genetic mechanism that partly explains associations between early development and later cardiometabolic health in various populations, despite marked differences in phenotypic and environmental factors in South Asians.
Collapse
Affiliation(s)
- Suraj S Nongmaithem
- Genomic Research on Complex diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Robin N Beaumont
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Akshay Dedaniya
- Genomic Research on Complex diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Andrew R Wood
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Babatunji-William Ogunkolade
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Zahid Hassan
- Dept of Physiology and Molecular Biology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | | | - Kalyanaraman Kumaran
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | | | | | - Murali Krishna
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India
- Foundation for Research and Advocacy in Mental Health (FRAMe) Mysore. India
| | - Chiara Di Gravio
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Inder D Mali
- Genomic Research on Complex diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Alagu Sankareswaran
- Genomic Research on Complex diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Akhtar Hussain
- Centre of Global Health Research, Diabetic Association of Bangladesh, Dhaka, Bangladesh
- Faculty of Health Sciences, Nord University, Norway
| | - Biswajit W Bhowmik
- Centre of Global Health Research, Diabetic Association of Bangladesh, Dhaka, Bangladesh
| | - Abdul Kalam A Khan
- Centre of Global Health Research, Diabetic Association of Bangladesh, Dhaka, Bangladesh
| | - Bridget A Knight
- NIHR Exeter Clinical Research Facility, University of Exeter, Exeter, UK
- RD&E NHS Foundation Trust, Royal Devon & Exeter Hospital, Exeter, UK
| | - Timothy M Frayling
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Sarah Finer
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Institute of Population Health, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Caroline HD Fall
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | | | - Rachel M Freathy
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Graham A Hitman
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giriraj R Chandak
- Genomic Research on Complex diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
37
|
Hou H, Wang X, Ding W, Xiao C, Cai X, Lv W, Tu Y, Zhao W, Yao J, Yang C. Whole-genome sequencing reveals the artificial selection and local environmental adaptability of pigeons ( Columba livia). Evol Appl 2022; 15:603-617. [PMID: 35505885 PMCID: PMC9046921 DOI: 10.1111/eva.13284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
To meet human needs, domestic pigeons (Columba livia) with various phenotypes have been bred to provide genetic material for our research on artificial selection and local environmental adaptation. Seven pigeon breeds were resequenced and can be divided into commercial varieties (Euro-pigeon, Shiqi, Shen King, Taishen, and Silver King), ornamental varieties (High Fliers), and local varieties (Tarim pigeon). Phylogenetic analysis based on population resequencing showed that one group contained local breeds and ornamental pigeons from China, whereas all commercial varieties were clustered together. It is revealed that the traditional Chinese ornamental pigeon is a branch of Tarim pigeon. Runs of homozygosity (ROH) and linkage disequilibrium (LD) analyses revealed significant differences in the genetic diversity of the three types of pigeons. Genome sweep analysis revealed that the selected genes of commercial breeds were related to body size, reproduction, and plumage color. The genomic imprinting genes left by the ornamental pigeon breeds were mostly related to special human facial features and muscular dystrophy. The Tarim pigeon has evolved genes related to chemical ion transport, photoreceptors, oxidative stress, organ development, and olfaction in order to adapt to local environmental stress. This research provides a molecular basis for pigeon genetic resource evaluation and genetic improvement and suggests that the understanding of adaptive evolution should integrate the effects of various natural environmental characteristics.
Collapse
Affiliation(s)
- Haobin Hou
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Xiaoliang Wang
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Weixing Ding
- Shanghai Academy of Agricultural SciencesShanghaiChina
| | - Changfeng Xiao
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Xia Cai
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Wenwei Lv
- National Poultry Engineer Research CenterShanghaiChina
| | - Yingying Tu
- National Poultry Engineer Research CenterShanghaiChina
| | - Weimin Zhao
- Shanghai Jinhuang Pigeon CompanyShanghaiChina
| | - Junfeng Yao
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Changsuo Yang
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| |
Collapse
|
38
|
Raneen AS, Lina DS, Safrai M, Matan L, Porat S. Is birthweight influenced equally by maternal and paternal anthropometry? J Matern Fetal Neonatal Med 2022; 35:9792-9799. [PMID: 35337236 DOI: 10.1080/14767058.2022.2053843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To elucidate the influence of parental biometric factors on fetal birthweight (BW). STUDY DESIGN This prospective study was conducted between 2015 and 2017 in Hadassah University Hospital. Inclusion criteria included singletons that were born to healthy mothers at 37-41 weeks' gestation and had no growth abnormality or congenital malformation. Maternal and paternal head circumference, weight, and height were measured. Other data including neonatal head circumference and neonatal birthweight were also collected. Neonatal head circumference and birthweight percentiles were converted to sex-specific ranks according to the neonatal Intergrowth 21 charts (rank = 1 for percentile <3, rank = 2 for percentile 3-10, etc.). RESULTS One hundred and ninety-nine trios (mother, father, and neonate) were included in the final analysis. In univariate analysis, maternal head circumference (p = .006), maternal height (p = .001), maternal weight before pregnancy (p < .001), maternal weight at term (p < .001), gestational weight gain (p = .009), paternal height (p = .018), neonatal head circumference (p < .001), and neonatal head circumference percentile rank (p < .001) were significant predictors of neonatal birthweight percentile rank. In multivariate regression, the three factors that were significant independent predictors of neonatal birthweight percentile rank were maternal weight before pregnancy (p = .047), maternal weight at term (p = .01), and neonatal head circumference percentile rank (p < .001). No interaction was found between neonatal sex and any of the tested variables. Neonatal sex-specific multivariate analysis showed that maternal height (p = .013), gestational weight gain (p = .005), and neonatal head circumference percentile rank (p < .001) were predictors of birthweight percentile rank in males. Maternal weight at term (p < .001) and neonatal head circumference percentile rank (p < .001) were predictors of birthweight percentile rank in females. CONCLUSIONS Maternal height and weight parameters as well as neonatal head circumference percentile rank were found to be independent predictors of birthweight percentile rank. Paternal parameters did not show any significant association in multivariable analysis. The biological regulation of fetal size is assumed to be the result of strong evolutionary selection. As the fetus must pass through the mother's birth canal, there should be a natural match between maternal and fetal size to ensure the successful birth and survival of mother and offspring.
Collapse
Affiliation(s)
- Abu Shqara Raneen
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Obstetrics and Gynecology, Hadassah Medical Center, Jerusalem, Israel
| | - Daoud Sabag Lina
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Obstetrics and Gynecology, Hadassah Medical Center, Jerusalem, Israel
| | - Myriam Safrai
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Obstetrics and Gynecology, Hadassah Medical Center, Jerusalem, Israel
| | - Liat Matan
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Obstetrics and Gynecology, Hadassah Medical Center, Jerusalem, Israel
| | - Shay Porat
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Obstetrics and Gynecology, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
39
|
Yang S, Zhou X. PGS-server: accuracy, robustness and transferability of polygenic score methods for biobank scale studies. Brief Bioinform 2022; 23:6534383. [PMID: 35193147 DOI: 10.1093/bib/bbac039] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/29/2021] [Accepted: 01/26/2022] [Indexed: 01/02/2023] Open
Abstract
Polygenic scores (PGS) are important tools for carrying out genetic prediction of common diseases and disease related complex traits, facilitating the development of precision medicine. Unfortunately, despite the critical importance of PGS and the vast number of PGS methods recently developed, few comprehensive comparison studies have been performed to evaluate the effectiveness of PGS methods. To fill this critical knowledge gap, we performed a comprehensive comparison study on 12 different PGS methods through internal evaluations on 25 quantitative and 25 binary traits within the UK Biobank with sample sizes ranging from 147 408 to 336 573, and through external evaluations via 25 cross-study and 112 cross-ancestry analyses on summary statistics from multiple genome-wide association studies with sample sizes ranging from 1415 to 329 345. We evaluate the prediction accuracy, computational scalability, as well as robustness and transferability of different PGS methods across datasets and/or genetic ancestries, providing important guidelines for practitioners in choosing PGS methods. Besides method comparison, we present a simple aggregation strategy that combines multiple PGS from different methods to take advantage of their distinct benefits to achieve stable and superior prediction performance. To facilitate future applications of PGS, we also develop a PGS webserver (http://www.pgs-server.com/) that allows users to upload summary statistics and choose different PGS methods to fit the data directly. We hope that our results, method and webserver will facilitate the routine application of PGS across different research areas.
Collapse
Affiliation(s)
- Sheng Yang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.,Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
40
|
Wu Y, Palmer JR, Rosenberg L, Ruiz-Narváez EA. Admixture mapping of anthropometric traits in the Black Women's Health Study: evidence of a shared African ancestry component with birth weight and type 2 diabetes. J Hum Genet 2022; 67:331-338. [PMID: 35017682 DOI: 10.1038/s10038-022-01010-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/09/2022]
Abstract
Prevalence of obesity, type 2 diabetes (T2D), and being born with low birth weight are much higher in African American women compared to U.S. white women. Genetic factors may contribute to the excess risk of these conditions. We conducted admixture mapping of body mass index (BMI) at age 18, adult BMI, and adult waist circumference and waist-to-hip ratio adjusted for BMI using 2918 ancestral informative markers in 2596 participants of the Black Women's Health Study. We also searched for evidence of shared African genetic ancestry components among the four examined anthropometric traits and among birth weight and T2D. We found that global percent African ancestry was associated with higher adult BMI. We also found that African ancestry at 9q34 was associated with lower BMI at age 18. Our shared ancestry analysis identified ten genomic regions with local African ancestry associated with multiple traits. Seven out of these ten genomic loci were related to T2D risk. Of special interest is the 12q14-21 region where local African ancestry was associated with low birth weight, low BMI, high BMI-adjusted waist-to-hip ratio, and high T2D risk. Findings in the 12q14-21 genomic locus are consistent with the fetal insulin hypothesis that postulates that low birth weight and T2D have a common genetic basis, and they support the hypothesis of a shared African genetic ancestry component linking low birth weight and T2D in African Americans. Future studies should identify the actual genetic variants responsible for the clustering of these conditions in African Americans.
Collapse
Affiliation(s)
- Yue Wu
- Department of Bioinformatics and Biostatistics, School of Life Science and Technology, Shanghai Jiao Tong University, Shanghai, China.,Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Lynn Rosenberg
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Edward A Ruiz-Narváez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
41
|
Protsenko M, Kerkelä M, Miettunen J, Auvinen J, Järvelin MR, Jones PB, Gissler M, Veijola J. Cardiometabolic Disorders in the Offspring of Parents With Severe Mental Illness. Psychosom Med 2022; 84:2-9. [PMID: 34913885 DOI: 10.1097/psy.0000000000001022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The elevated prevalence of cardiometabolic disorders is consistently reported in patients with severe mental illness (SMI). We explored the association between parental SMI and offspring cardiometabolic morbidity. Our hypothesis was that offspring of people with SMI have increased morbidity risk. METHOD The Northern Finland Birth Cohort 1966 is a study of offspring whose date of birth was expected in 1966. The follow-up lasted until 2015 (49 years). The final study sample included 11,175 children. We used parental SMI as the exposure in the study. The following cardiometabolic disorders were used as outcome measures: diabetes mellitus, hypertension, hyperlipidemia, coronary artery disease, obesity, and cerebrovascular disorders. RESULTS There were 139 (14.7%; hazard ratios [HR] = 1.63; 95% confidence interval [CI] = 1.36-1.94) children of parents with SMI who developed cardiometabolic disorder during follow-up and 957 (9.4%) in the comparison cohort. Statistically significant HRs were found in males (HR = 1.95; 95% CI =1.56-2.44), but not in females (HR = 1.29; 95% CI = 0.96-1.73). CONCLUSIONS Having a cardiometabolic disorder was associated with male offspring of parents with SMI. Our findings suggest that there is an elevated risk of coronary artery disease, hyperlipidemia, obesity, and hypertension in the male offspring of parents with SMI. Our results suggest that the somatic health of offspring of parents with SMI should also be considered in addition to their mental health in clinical practice.
Collapse
Affiliation(s)
- Maria Protsenko
- From the Department of Psychiatry (Protsenko, Kerkelä, Veijola), Research Unit of Clinical Neuroscience, and Center for Life Course Health Research (Miettunen, Auvinen, Järvelin), University of Oulu; Medical Research Center Oulu (Miettunen, Veijola), Oulu University Hospital and University of Oulu, Oulu; THL, Information Services Department (Gissler), Finnish Institute for Health and Welfare, Helsinki; University of Turku, Research Centre for Child Psychiatry (Gissler), Turku, Finland; Department of Neurobiology, Care Sciences and Society (Gissler), Karolinska Institute, Stockholm, Sweden; Department of Psychiatry (Veijola), University Hospital of Oulu, Oulu, Finland; and Department of Psychiatry (Jones), University of Cambridge, Cambridge, England, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Garabedian A, Jeanne Dit Fouque K, Chapagain PP, Leng F, Fernandez-Lima F. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2431-2439. [PMID: 35212375 PMCID: PMC8934665 DOI: 10.1093/nar/gkac115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/30/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
The mammalian high mobility group protein AT-hook 2 (HMGA2) houses three motifs that preferentially bind short stretches of AT-rich DNA regions. These DNA binding motifs, known as ‘AT-hooks’, are traditionally characterized as being unstructured. Upon binding to AT-rich DNA, they form ordered assemblies. It is this disordered-to-ordered transition that has implicated HMGA2 as a protein actively involved in many biological processes, with abnormal HMGA expression linked to a variety of health problems including diabetes, obesity, and oncogenesis. In the current work, the solution binding dynamics of the three ‘AT-hook’ peptides (ATHPs) with AT-rich DNA hairpin substrates were studied using DNA UV melting studies, fluorescence spectroscopy, native ion mobility spectrometry-mass spectrometry (IMS-MS), solution isothermal titration calorimetry (ITC) and molecular modeling. Results showed that the ATHPs bind to the DNA to form a single, 1:1 and 2:1, ‘key-locked’ conformational ensemble. The molecular models showed that 1:1 and 2:1 complex formation is driven by the capacity of the ATHPs to bind to the minor and major grooves of the AT-rich DNA oligomers. Complementary solution ITC results confirmed that the 2:1 stoichiometry of ATHP: DNA is originated under native conditions in solution.
Collapse
Affiliation(s)
- Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, 33199, USA
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, 33199, USA
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, 33199, USA
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, 33199, USA
| | | |
Collapse
|
43
|
Thompson WD, Beaumont RN, Kuang A, Warrington NM, Ji Y, Tyrrell J, Wood AR, Scholtens DM, Knight BA, Evans DM, Lowe WL, Santorelli G, Azad R, Mason D, Hattersley AT, Frayling TM, Yaghootkar H, Borges MC, Lawlor DA, Freathy RM. Higher maternal adiposity reduces offspring birthweight if associated with a metabolically favourable profile. Diabetologia 2021; 64:2790-2802. [PMID: 34542646 PMCID: PMC8563674 DOI: 10.1007/s00125-021-05570-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS Higher maternal BMI during pregnancy is associated with higher offspring birthweight, but it is not known whether this is solely the result of adverse metabolic consequences of higher maternal adiposity, such as maternal insulin resistance and fetal exposure to higher glucose levels, or whether there is any effect of raised adiposity through non-metabolic (e.g. mechanical) factors. We aimed to use genetic variants known to predispose to higher adiposity, coupled with a favourable metabolic profile, in a Mendelian randomisation (MR) study comparing the effect of maternal 'metabolically favourable adiposity' on offspring birthweight with the effect of maternal general adiposity (as indexed by BMI). METHODS To test the causal effects of maternal metabolically favourable adiposity or general adiposity on offspring birthweight, we performed two-sample MR. We used variants identified in large, published genetic-association studies as being associated with either higher adiposity and a favourable metabolic profile, or higher BMI (n = 442,278 and n = 322,154 for metabolically favourable adiposity and BMI, respectively). We then extracted data on the metabolically favourable adiposity and BMI variants from a large, published genetic-association study of maternal genotype and offspring birthweight controlling for fetal genetic effects (n = 406,063 with maternal and/or fetal genotype effect estimates). We used several sensitivity analyses to test the reliability of the results. As secondary analyses, we used data from four cohorts (total n = 9323 mother-child pairs) to test the effects of maternal metabolically favourable adiposity or BMI on maternal gestational glucose, anthropometric components of birthweight and cord-blood biomarkers. RESULTS Higher maternal adiposity with a favourable metabolic profile was associated with lower offspring birthweight (-94 [95% CI -150, -38] g per 1 SD [6.5%] higher maternal metabolically favourable adiposity, p = 0.001). By contrast, higher maternal BMI was associated with higher offspring birthweight (35 [95% CI 16, 53] g per 1 SD [4 kg/m2] higher maternal BMI, p = 0.0002). Sensitivity analyses were broadly consistent with the main results. There was evidence of outlier SNPs for both exposures; their removal slightly strengthened the metabolically favourable adiposity estimate and made no difference to the BMI estimate. Our secondary analyses found evidence to suggest that a higher maternal metabolically favourable adiposity decreases pregnancy fasting glucose levels while a higher maternal BMI increases them. The effects on neonatal anthropometric traits were consistent with the overall effect on birthweight but the smaller sample sizes for these analyses meant that the effects were imprecisely estimated. We also found evidence to suggest that higher maternal metabolically favourable adiposity decreases cord-blood leptin while higher maternal BMI increases it. CONCLUSIONS/INTERPRETATION Our results show that higher adiposity in mothers does not necessarily lead to higher offspring birthweight. Higher maternal adiposity can lead to lower offspring birthweight if accompanied by a favourable metabolic profile. DATA AVAILABILITY The data for the genome-wide association studies (GWAS) of BMI are available at https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files . The data for the GWAS of body fat percentage are available at https://walker05.u.hpc.mssm.edu .
Collapse
Affiliation(s)
- William D Thompson
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Robin N Beaumont
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Alan Kuang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nicole M Warrington
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD, Australia
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yingjie Ji
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Jessica Tyrrell
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Andrew R Wood
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Denise M Scholtens
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bridget A Knight
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - David M Evans
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD, Australia
| | - William L Lowe
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gillian Santorelli
- Bradford Institute for Health Research, Bradford Royal Infirmary, Bradford, UK
| | - Rafaq Azad
- Department of Biochemistry, Bradford Royal Infirmary, Bradford, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Royal Infirmary, Bradford, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Timothy M Frayling
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Hanieh Yaghootkar
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol NIHR Biomedical Research Centre, Bristol, UK
| | - Rachel M Freathy
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK.
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
| |
Collapse
|
44
|
Li S, Jia Z, Zhang Z, Li Y, Yan M, Yu T. Association Study of Genetic Variants in Calcium Signaling-Related Genes With Cardiovascular Diseases. Front Cell Dev Biol 2021; 9:642141. [PMID: 34912794 PMCID: PMC8666440 DOI: 10.3389/fcell.2021.642141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Calcium ions (Ca2+) play an essential role in excitation-contraction coupling in the heart. The association between cardiovascular diseases (CVDs) and genetic polymorphisms in key regulators of Ca2+ homeostasis is well established but still inadequately understood. Methods: The associations of 11,274 genetic variants located in nine calcium signaling-related genes with 118 diseases of the circulatory system were explored using a large sample from the United Kingdom Biobank (N = 308,366). The clinical outcomes in electronic health records were mapped to the phecode system. Survival analyses were employed to study the role of variants in CVDs incidence and mortality. Phenome-wide association studies (PheWAS) were performed to investigate the effect of variants on cardiovascular risk factors. Results: The reported association between rs1801253 in β1-adrenergic receptor (ADRB1) and hypertension was successfully replicated, and we additionally found the blood pressure-lowering G allele of this variant was associated with a delayed onset of hypertension and a decreased level of apolipoprotein A. The association of rs4484922 in calsequestrin 2 (CASQ2) with atrial fibrillation/flutter was identified, and this variant also displayed nominal evidence of association with QRS duration and carotid intima-medial thickness. Moreover, our results indicated suggestive associations of rs79613429 in ryanodine receptor 2 (RYR2) with precordial pain. Conclusion: Multiple novel associations established in our study highlight genetic testing as a useful method for CVDs diagnosis and prevention.
Collapse
Affiliation(s)
- Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | | | | | | | | | | |
Collapse
|
45
|
Espuela-Ortiz A, Herrera-Luis E, Lorenzo-Díaz F, Hu D, Eng C, Villar J, Rodriguez-Santana JR, Burchard EG, Pino-Yanes M. Role of Sex on the Genetic Susceptibility to Childhood Asthma in Latinos and African Americans. J Pers Med 2021; 11:1140. [PMID: 34834492 PMCID: PMC8625344 DOI: 10.3390/jpm11111140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 01/08/2023] Open
Abstract
Asthma is a respiratory disease whose prevalence changes throughout the lifespan and differs by sex, being more prevalent in males during childhood and in females after puberty. In this study, we assessed the influence of sex on the genetic susceptibility to childhood asthma in admixed populations. Sex-interaction and sex-stratified genome-wide association studies (GWAS) were performed in 4291 Latinos and 1730 African Americans separately, and results were meta-analyzed. Genome-wide (p ≤ 9.35 × 10-8) and suggestive (p ≤ 1.87 × 10-6) population-specific significance thresholds were calculated based on 1000 Genomes Project data. Additionally, protein quantitative trait locus (pQTL) information was gathered for the suggestively associated variants, and enrichment analyses of the proteins identified were carried out. Four independent loci showed interaction with sex at a suggestive level. The stratified GWAS highlighted the 17q12-21 asthma locus as a contributor to asthma susceptibility in both sexes but reached genome-wide significance only in females (p-females < 9.2 × 10-8; p-males < 1.25 × 10-2). Conversely, genetic variants upstream of ligand-dependent nuclear receptor corepressor-like gene (LCORL), previously involved in height determination and spermatogenesis, were associated with asthma only in males (minimum p = 5.31 × 10-8 for rs4593128). Enrichment analyses revealed an overrepresentation of processes related to the immune system and highlighted differences between sexes. In conclusion, we identified sex-specific polymorphisms that could contribute to the differences in the prevalence of childhood asthma between males and females.
Collapse
Grants
- SAF2017-83417R European Regional Development Fund from the European Union
- P60MD006902, R01MD010443, and R56MD013312 NIMHD NIH HHS
- SAF2017-83417R State Research Agency
- M-ULL MICIU/ULL
- Amos Medical Faculty Development Program Robert Wood Johnson Foundation
- R01ES015794 NIEHS NIH HHS
- R21ES24844 NIEHS NIH HHS
- R01HL128439, R01HL135156, R01HL141992, and R01HL141845 National Heart Lung and Blood Institute
- RL5 GM118984 NIGMS NIH HHS
- RYC-2015-17205 Spanish Ministry of Science, Innovation, and Universities
- American Asthma Foundation
- R01HL117004 and X01HL134589 National Heart Lung and Blood Institute
- SAF2017-83417R Spanish Ministry of Science, Innovation, and Universities
- Distinguished Professorship in Pharmaceutical Sciences II Harry Wm. and Diana V. Hind
- U01HG009080 NHGRI NIH HHS
- 24RT-0025 and 27IR-0030 Tobacco-Related Disease Research Program
- PRE2018-083837 Spanish Ministry of Science, Innovation, and Universities
- UL1 TR001872 NCATS NIH HHS
- RL5GM118984 NIGMS NIH HHS
- Sandler Foundation
Collapse
Affiliation(s)
- Antonio Espuela-Ortiz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain; (A.E.-O.); (E.H.-L.); (F.L.-D.)
| | - Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain; (A.E.-O.); (E.H.-L.); (F.L.-D.)
| | - Fabián Lorenzo-Díaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain; (A.E.-O.); (E.H.-L.); (F.L.-D.)
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Donglei Hu
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA; (D.H.); (C.E.); (E.G.B.)
| | - Celeste Eng
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA; (D.H.); (C.E.); (E.G.B.)
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Multidisciplinary Organ Dysfunction Evaluation Research Network (MODERN), Research Unit, Hospital Universitario Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | | | - Esteban G. Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA; (D.H.); (C.E.); (E.G.B.)
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - María Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain; (A.E.-O.); (E.H.-L.); (F.L.-D.)
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| |
Collapse
|
46
|
Aguilera-Venegas IG, Mora-Peña JDS, Velazquez-Villafaña M, Gonzalez-Dominguez MI, Barbosa-Sabanero G, Gomez-Zapata HM, Lazo-de-la-Vega-Monroy ML. Association of diabetes-related variants in ADCY5 and CDKAL1 with neonatal insulin, C-peptide, and birth weight. Endocrine 2021; 74:318-331. [PMID: 34169461 DOI: 10.1007/s12020-021-02799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND PURPOSE Neonates at the highest and lowest percentiles of birth weight present an increased risk of developing metabolic diseases in adult life. While environmental events in utero may play an important role in this association, some genetic variants are associated both with birth weight and type 2 diabetes mellitus (T2DM), suggesting a genetic link between intrauterine growth and metabolism in adult life. Variants rs11708067 in ADCY5 and rs7754840 in CDKAL1 are associated with low birth weight, risk of T2DM, and lower insulin secretion in adults. We aimed to investigate whether, besides birth weight, these polymorphisms were related to insulin secretion at birth. METHODS A cohort of 218 healthy term newborns from uncomplicated pregnancies were evaluated for anthropometric and biochemical variables. Cord blood insulin and C-peptide were analyzed by ELISA. Genotyping of rs11708067 in ADCY5 and rs7754840 in CDKAL1 was performed. RESULTS Newborns carrying the A allele of ADCY5 rs11708067 had lower cord blood insulin and C-peptide, even after adjusting by maternal glycemia, HbA1c, and pregestational BMI. Lower birth weight was found for AA-AG genotypes compared to GG, but no differences were seen in adjusted birth weight or z-score. Variant rs7754840 in CDKAL1 was not associated with birth weight, neonatal insulin, or C-peptide for any genotype or genetic model. CONCLUSIONS The variant rs11708067 in ADCY5 is associated with lower neonatal insulin and C-peptide concentrations. Our results suggest that the genetic influence on insulin secretion may be evident from birth, even in healthy newborns, independently of maternal glycemia and BMI.
Collapse
Affiliation(s)
| | | | | | - Martha-Isabel Gonzalez-Dominguez
- Universidad de la Cienega del Estado de Michoacan de Ocampo, Trayectoria de Ingenieria en Nanotecnologia, Sahuayo, Michoacan, Mexico
| | - Gloria Barbosa-Sabanero
- Medical Sciences Department, Health Sciences Division, University of Guanajuato, Guanajuato, Mexico
| | | | | |
Collapse
|
47
|
Hussey MR, Suter MK, Mohanty AF, Enquobahrie DA. Placental cadmium, placental genetic variations, and birth size. J Matern Fetal Neonatal Med 2021; 35:8594-8602. [PMID: 34666587 DOI: 10.1080/14767058.2021.1989404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Maternal cadmium (Cd) burden has been associated with offspring birth size measures, yet associations of placental Cd with birth size are less clear. Further, the role of genetics in these associations has not been examined. We investigated associations of placental Cd with birth size and placental genotypes. We also examined the potential role of placental genotypes as modifiers of placental Cd and birth size associations. METHODS Participants were 490 mother-child pairs from the Omega and Placenta Microarray studies based in Seattle, WA. Placental Cd was measured using Agilent 7500 ICP-MS. The birth size was characterized using birth weight (BW), ponderal index (PI), and head circumference (HC). Eleven placental single nucleotide polymorphisms (SNPs) related to metal transport, growth regulation, endocrine response, and cell signaling were genotyped. Adjusted multivariable linear regression models were used to examine overall and sex-specific associations of placental Cd with birth size (BW, PI and HC), as well as associations of placental genotypes with placental Cd. Effect modification of placenta Cd and birth size associations by placental SNPs was examined using interaction terms and stratified analyses. RESULTS Mean maternal age was 33.6 years (SD = 4.4). Mean and median placental Cd levels were 4.0 ng/g tissue (SD = 2.7 ng/g tissue) and 3.6 ng/g (IQR 2.5 - 5.2 ng/g), respectively. Overall, compared with infants in the lowest quartile for placental Cd, infants in the second (ß = -102.8 g, 95% CI: -220.7, 15.1), third (ß = -83.2 g, 95% CI: -199.3, 32.9) and fourth (ß = -109.2 g, 95% CI: -225.4, 7.1) quartiles had lower BW, though associations were not statistically significant (all p-values > .05, trend p-value = .11). Among male infants, infants in the second (ß = -203.3 g, 95% CI: -379.7, -27.0) and fourth quartiles (ß = -198.3 g, 95% CI: -364.2, -32.5) had lower BW compared with those in the first quartiles (p-values < .05, trend p-value = .08). Similar relationships were not observed among female infants, though infant sex-placental Cd interaction terms were not significant. Similarly, male, but not female, infants had marginally significant positive associations between placental Cd and ponderal index (trend p-value = .06). The minor rs3811647 allele of the placental transferrin gene (NCBI Gene ID: 7018) was associated with an increase in Cd among all infants (p-value = .04). We did not find differences in associations of placental Cd with birth size markers among infants stratified by rs3811647 genotype. CONCLUSIONS Placental Cd was inversely associated with BW among male infants. The rs3811647 SNP of the transferrin gene was associated with placental Cd.
Collapse
Affiliation(s)
- Michael R Hussey
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Megan K Suter
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - April F Mohanty
- Informatics, Decision Enhancement, and Analytic Sciences Center (IDEAS), VA Salt Lake City Health Care System, Salt Lake City, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
48
|
Thomson DM, Mitchell EJ, Openshaw RL, Pratt JA, Morris BJ. Mice lacking melatonin MT2 receptors exhibit attentional deficits, anxiety and enhanced social interaction. J Psychopharmacol 2021; 35:1265-1276. [PMID: 34304635 PMCID: PMC8521347 DOI: 10.1177/02698811211032439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Aside from regulating circadian rhythms, melatonin also affects cognitive processes, such as alertness, and modulates the brain circuitry underlying psychiatric diseases, such as depression, schizophrenia and bipolar disorder, via mechanisms that are not fully clear. In particular, while melatonin MT1 receptors are thought primarily to mediate the circadian effects of the hormone, the contribution of the MT2 receptor to melatonin actions remains enigmatic. AIMS To characterise the contribution of MT2 receptors to melatonin's effects on cognition and anxiety/sociability. METHODS Mice with a genetic deletion of the MT2 receptor, encoded by the Mtnr1b gene, were compared with wild-type littermates for performance in a translational touchscreen version of the continuous performance task (CPT) to assess attentional processes and then monitored over 3 days in an ethological home-cage surveillance system. RESULTS Mtnr1b knockout (KO) mice were able to perform at relatively normal levels in the CPT. However, they showed consistent evidence of more liberal/risky responding strategies relative to control mice, with increases in hit rates and false alarm rates, which were maintained even when the cognitive demands of the task were increased. Assessment in the home-cage monitoring system revealed that female Mtnr1b KO mice have increased anxiety levels, whereas male Mtnr1b KO mice show increased sociability. CONCLUSIONS The results confirm that the MT2 receptor plays a role in cognition and also modulates anxiety and social interactions. These data provide new insights into the functions of endogenous melatonin and will inform future drug development strategies focussed on the MT2 receptor.
Collapse
Affiliation(s)
- David M Thomson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Emma J Mitchell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Rebecca L Openshaw
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Brian J Morris
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK,Brian J Morris, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Joseph Black Building, Glasgow, G12 8QQ, UK.
| |
Collapse
|
49
|
Beck JJ, Pool R, van de Weijer M, Chen X, Krapohl E, Gordon SD, Nygaard M, Debrabant B, Palviainen T, van der Zee MD, Baselmans B, Finnicum CT, Yi L, Lundström S, van Beijsterveldt T, Christiansen L, Heikkilä K, Kittelsrud J, Loukola A, Ollikainen M, Christensen K, Martin NG, Plomin R, Nivard M, Bartels M, Dolan C, Willemsen G, de Geus E, Almqvist C, Magnusson PKE, Mbarek H, Ehli EA, Boomsma DI, Hottenga JJ. Genetic meta-analysis of twin birth weight shows high genetic correlation with singleton birth weight. Hum Mol Genet 2021; 30:1894-1905. [PMID: 33955455 PMCID: PMC8444448 DOI: 10.1093/hmg/ddab121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/19/2021] [Accepted: 04/20/2021] [Indexed: 01/09/2023] Open
Abstract
Birth weight (BW) is an important predictor of newborn survival and health and has associations with many adult health outcomes, including cardiometabolic disorders, autoimmune diseases and mental health. On average, twins have a lower BW than singletons as a result of a different pattern of fetal growth and shorter gestational duration. Therefore, investigations into the genetics of BW often exclude data from twins, leading to a reduction in sample size and remaining ambiguities concerning the genetic contribution to BW in twins. In this study, we carried out a genome-wide association meta-analysis of BW in 42 212 twin individuals and found a positive correlation of beta values (Pearson's r = 0.66, 95% confidence interval [CI]: 0.47-0.77) with 150 previously reported genome-wide significant variants for singleton BW. We identified strong positive genetic correlations between BW in twins and numerous anthropometric traits, most notably with BW in singletons (genetic correlation [rg] = 0.92, 95% CI: 0.66-1.18). Genetic correlations of BW in twins with a series of health-related traits closely resembled those previously observed for BW in singletons. Polygenic scores constructed from a genome-wide association study on BW in the UK Biobank demonstrated strong predictive power in a target sample of Dutch twins and singletons. Together, our results indicate that a similar genetic architecture underlies BW in twins and singletons and that future genome-wide studies might benefit from including data from large twin registers.
Collapse
Affiliation(s)
- Jeffrey J Beck
- Avera Institute for Human Genetics, Avera McKennan Hospital and University Health Center, Sioux Falls, SD 57108, USA
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, The Netherlands
| | - Margot van de Weijer
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, The Netherlands
| | - Xu Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Eva Krapohl
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Scott D Gordon
- Genetic Epidemiology Laboratory, QIMR Berghofer, Brisbane, Queensland, Australia
| | - Marianne Nygaard
- The Danish Twin Registry, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Birgit Debrabant
- The Danish Twin Registry, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Teemu Palviainen
- University of Helsinki, Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Matthijs D van der Zee
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, The Netherlands
| | - Bart Baselmans
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, The Netherlands
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Casey T Finnicum
- Avera Institute for Human Genetics, Avera McKennan Hospital and University Health Center, Sioux Falls, SD 57108, USA
| | - Lu Yi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Lundström
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Toos van Beijsterveldt
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, The Netherlands
| | - Lene Christiansen
- The Danish Twin Registry, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kauko Heikkilä
- University of Helsinki, Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Julie Kittelsrud
- Avera Institute for Human Genetics, Avera McKennan Hospital and University Health Center, Sioux Falls, SD 57108, USA
| | - Anu Loukola
- University of Helsinki, Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Miina Ollikainen
- University of Helsinki, Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Kaare Christensen
- The Danish Twin Registry, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Nicholas G Martin
- Genetic Epidemiology Laboratory, QIMR Berghofer, Brisbane, Queensland, Australia
| | - Robert Plomin
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Michel Nivard
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, The Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, The Netherlands
| | - Conor Dolan
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, The Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, The Netherlands
| | - Eco de Geus
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, The Netherlands
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hamdi Mbarek
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, The Netherlands
| | - Erik A Ehli
- Avera Institute for Human Genetics, Avera McKennan Hospital and University Health Center, Sioux Falls, SD 57108, USA
| | - Dorret I Boomsma
- Avera Institute for Human Genetics, Avera McKennan Hospital and University Health Center, Sioux Falls, SD 57108, USA
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, The Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Shen J, Yu J, Dai X, Li M, Wang G, Chen N, Chen H, Lei C, Dang R. Genomic analyses reveal distinct genetic architectures and selective pressures in Chinese donkeys. J Genet Genomics 2021; 48:737-745. [PMID: 34373218 DOI: 10.1016/j.jgg.2021.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/28/2022]
Abstract
Donkey (Equus asinus) is an important livestock animal in China because of its draft and medicinal value. After a long period of natural and artificial selection, the variety and phenotype of donkeys have become abundant. We clarified the genetic and demographic characteristics of Chinese domestic donkeys and the selection pressures by analyzing 78 whole genomes from 12 breeds. According to population structure, most Chinese domestic donkeys showed a dominant ancestral type. However, the Chinese donkeys still represented a significant geographical distribution trend. In the selective sweep, gene annotation, functional enrichment, and differential expression analyses between large and small donkey groups, we identified selective signals, including NCAPG and LCORL, which are related to rapid growth and large body size. Our findings elucidate the evolutionary history and formation of different donkey breeds and provide theoretical insights into the genetic mechanism underlying breed characteristics and molecular breeding programs of donkey clades.
Collapse
Affiliation(s)
- Jiafei Shen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|