1
|
Bao P, Wang T, Liu X, Xing S, Ruan H, Ma H, Tao Y, Zhan Q, Belmonte-Reche E, Qin L, Han Z, Mao M, Li M, Lu ZJ. Peak analysis of cell-free RNA finds recurrently protected narrow regions with clinical potential. Genome Biol 2025; 26:119. [PMID: 40340952 PMCID: PMC12060323 DOI: 10.1186/s13059-025-03590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/25/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Cell-free RNAs (cfRNAs) can be detected in biofluids and have emerged as valuable disease biomarkers. Accurate identification of the fragmented cfRNA signals, especially those originating from pathological cells, is crucial for understanding their biological functions and clinical value. However, many challenges still need to be addressed for their application, including developing specific analysis methods and translating cfRNA fragments with biological support into clinical applications. RESULTS We present cfPeak, a novel method combining statistics and machine learning models to detect the fragmented cfRNA signals effectively. When test in real and artificial cfRNA sequencing (cfRNA-seq) data, cfPeak shows an improved performance compared with other applicable methods. We reveal that narrow cfRNA peaks preferentially overlap with protein binding sites, vesicle-sorting sites, structural sites, and novel small non-coding RNAs (sncRNAs). When applied in clinical cohorts, cfPeak identified cfRNA peaks in patients' plasma that enable cancer detection and are informative of cancer types and metastasis. CONCLUSIONS Our study fills the gap in the current small cfRNA-seq analysis at fragment-scale and builds a bridge to the scientific discovery in cfRNA fragmentomics. We demonstrate the significance of finding low abundant tissue-derived signals in small cfRNA and prove the feasibility for application in liquid biopsy.
Collapse
Affiliation(s)
- Pengfei Bao
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Taiwei Wang
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (Ministry of Science & Technology), MOE Key Laboratory of Rheumatology and Clinical Immunology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
- Academy for Advanced Interdisciplinary Studies (AAIS)and, Sciences Joint Graduate Program (PTN) , Peking University, Beijing, China
| | - Xiaofan Liu
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Shaozhen Xing
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Hanjin Ruan
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Hongli Ma
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuhuan Tao
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Qing Zhan
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Efres Belmonte-Reche
- Centre for Genomics and Oncological Research (GENYO), Avenida de La Ilustración 114, Granada, 18016, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Hospital Virgen de Las Nieves, Granada, Spain
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhengxue Han
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Minghui Mao
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
- National Clinical Research Center for Dermatologic and Immunologic Diseases (Ministry of Science & Technology), MOE Key Laboratory of Rheumatology and Clinical Immunology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China.
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China.
- Academy for Advanced Interdisciplinary Studies (AAIS)and, Sciences Joint Graduate Program (PTN) , Peking University, Beijing, China.
- The Center for Regeneration Aging and Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Gao F, Wang F, Chen Y, Deng B, Yang F, Cao H, Chen J, Chen H, Qi F, Kapranov P. The human genome encodes a multitude of novel miRNAs. Nucleic Acids Res 2025; 53:gkaf070. [PMID: 39964476 PMCID: PMC11833695 DOI: 10.1093/nar/gkaf070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
Human cells generate a vast complexity of noncoding RNAs, the "RNA dark matter," which includes a vast small RNA (sRNA) transcriptome. The biogenesis, biological relevance, and mechanisms of action of most of these transcripts remain unknown, and they are widely assumed to represent degradation products. Here, we aimed to functionally characterize human sRNA transcriptome by attempting to answer the following question-can a significant number of novel sRNAs correspond to novel members of known classes, specifically, microRNAs (miRNAs)? By developing and validating a miRNA discovery pipeline, we show that at least 2726 novel canonical miRNAs, majority of which represent novel miRNA families, exist in just one human cell line compared to just 1914 known miRNA loci. Moreover, potentially tens of thousands of miRNAs remain to be discovered. Strikingly, many novel miRNAs map to exons of protein-coding genes emphasizing a complex and interleaved architecture of the genome. The existence of so many novel members of a functional class of sRNAs suggest that the human sRNA transcriptome harbors a multitude of novel regulatory molecules. Overall, these results suggest that we are at the very beginning of understanding the true functional complexity of the sRNA component of the "RNA dark matter."
Collapse
Affiliation(s)
- Fan Gao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Xiamen Institute for Food and Drug Quality Control, 33 Haishan Road, Xiamen 361012, China
| | - Fang Wang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Chen
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Bolin Deng
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Fujian Yang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Huifen Cao
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Junjie Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Huiling Chen
- Xiamen Institute for Food and Drug Quality Control, 33 Haishan Road, Xiamen 361012, China
| | - Fei Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Philipp Kapranov
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Liu Q, Xu S, He J, Cai W, Wang X, Song F. Full-Length Transcriptome Profiling of the Complete Mitochondrial Genome of Sericothrips houjii (Thysanoptera: Thripidae: Sericothripinae) Featuring Extensive Gene Rearrangement and Duplicated Control Regions. INSECTS 2024; 15:700. [PMID: 39336667 PMCID: PMC11432214 DOI: 10.3390/insects15090700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
The mitochondrial genome (mitogenome) of Thysanoptera has extensive gene rearrangement, and some species have repeatable control regions. To investigate the characteristics of the gene expression, transcription and post-transcriptional processes in such extensively gene-rearranged mitogenomes, we sequenced the mitogenome and mitochondrial transcriptome of Sericothrips houjii to analyze. The mitogenome was 14,965 bp in length and included two CRs contains 140 bp repeats between COIII-trnN (CR1) and trnT-trnP (CR2). Unlike the putative ancestral arrangement of insects, S. houjii exhibited only six conserved gene blocks encompassing 14 genes (trnL2-COII, trnD-trnK, ND2-trnW, ATP8-ATP6, ND5-trnH-ND4-ND4L and trnV-lrRNA). A quantitative transcription map showed the gene with the highest relative expression in the mitogenome was ND4-ND4L. Based on analyses of polycistronic transcripts, non-coding RNAs (ncRNAs) and antisense transcripts, we proposed a transcriptional model of this mitogenome. Both CRs contained the transcription initiation sites (TISs) and transcription termination sites (TTSs) of both strands, and an additional TIS for the majority strand (J-strand) was found within antisense lrRNA. The post-transcriptional cleavage processes followed the "tRNA punctuation" model. After the cleavage of transfer RNAs (tRNAs), COI and ND3 matured as bicistronic mRNA COI/ND3 due to the translocation of intervening tRNAs, and the 3' untranslated region (UTR) remained in the mRNAs for COII, COIII, CYTB and ND5. Additionally, isoform RNAs of ND2, srRNA and lrRNA were identified. In summary, the relative mitochondrial gene expression levels, transcriptional model and post-transcriptional cleavage process of S. houjii are notably different from those insects with typical mitochondrial gene arrangements. In addition, the phylogenetic tree of Thripidae including S. houjii was reconstructed. Our study provides insights into the phylogenetic status of Sericothripinae and the transcriptional and post-transcriptional regulation processes of extensively gene-rearranged insect mitogenomes.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shiwen Xu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jia He
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Ningxia Key Lab of Plant Disease and Pest Control, Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Science, Yinchuan 750002, China
| | - Wanzhi Cai
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xingmin Wang
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
| | - Fan Song
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Jang J, Accornero F, Li D. Epigenetic determinants and non-myocardial signaling pathways contributing to heart growth and regeneration. Pharmacol Ther 2024; 257:108638. [PMID: 38548089 PMCID: PMC11931646 DOI: 10.1016/j.pharmthera.2024.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Congenital heart disease is the most common birth defect worldwide. Defective cardiac myogenesis is either a major presentation or associated with many types of congenital heart disease. Non-myocardial tissues, including endocardium and epicardium, function as a supporting hub for myocardial growth and maturation during heart development. Recent research findings suggest an emerging role of epigenetics in nonmyocytes supporting myocardial development. Understanding how growth signaling pathways in non-myocardial tissues are regulated by epigenetic factors will likely identify new disease mechanisms for congenital heart diseases and shed lights for novel therapeutic strategies for heart regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| | - Federica Accornero
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Deqiang Li
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| |
Collapse
|
5
|
La Ferlita A, Alaimo S, Nigita G, Distefano R, Beane JD, Tsichlis PN, Ferro A, Croce CM, Pulvirenti A. tRFUniverse: A comprehensive resource for the interactive analyses of tRNA-derived ncRNAs in human cancer. iScience 2024; 27:108810. [PMID: 38303722 PMCID: PMC10831894 DOI: 10.1016/j.isci.2024.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/02/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
tRNA-derived ncRNAs are a heterogeneous class of non-coding RNAs recently proposed to be active regulators of gene expression and be involved in many diseases, including cancer. Consequently, several online resources on tRNA-derived ncRNAs have been released. Although interesting, such resources present only basic features and do not adequately exploit the wealth of knowledge available about tRNA-derived ncRNAs. Therefore, we introduce tRFUniverse, a novel online resource for the analysis of tRNA-derived ncRNAs in human cancer. tRFUniverse presents an extensive collection of classes of tRNA-derived ncRNAs analyzed across all the TCGA and TARGET tumor cohorts, NCI-60 cell lines, and biological fluids. Moreover, public AGO CLASH/CLIP-Seq data were analyzed to identify the molecular interactions between tRNA-derived ncRNAs and other transcripts. Importantly, tRFUniverse combines in a single resource a comprehensive set of features that we believe may be helpful to investigate the involvement of tRNA-derived ncRNAs in cancer biology.
Collapse
Affiliation(s)
- Alessandro La Ferlita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Salvatore Alaimo
- Department of Clinical and Experimental Medicine, Knowmics Lab, University of Catania, Catania, Italy
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rosario Distefano
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Joal D. Beane
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Philip N. Tsichlis
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alfredo Ferro
- Department of Clinical and Experimental Medicine, Knowmics Lab, University of Catania, Catania, Italy
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alfredo Pulvirenti
- Department of Clinical and Experimental Medicine, Knowmics Lab, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Bruni F. Human mtDNA-Encoded Long ncRNAs: Knotty Molecules and Complex Functions. Int J Mol Sci 2024; 25:1502. [PMID: 38338781 PMCID: PMC10855489 DOI: 10.3390/ijms25031502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Until a few decades ago, most of our knowledge of RNA transcription products was focused on protein-coding sequences, which were later determined to make up the smallest portion of the mammalian genome. Since 2002, we have learnt a great deal about the intriguing world of non-coding RNAs (ncRNAs), mainly due to the rapid development of bioinformatic tools and next-generation sequencing (NGS) platforms. Moreover, interest in non-human ncRNAs and their functions has increased as a result of these technologies and the accessibility of complete genome sequences of species ranging from Archaea to primates. Despite not producing proteins, ncRNAs constitute a vast family of RNA molecules that serve a number of regulatory roles and are essential for cellular physiology and pathology. This review focuses on a subgroup of human ncRNAs, namely mtDNA-encoded long non-coding RNAs (mt-lncRNAs), which are transcribed from the mitochondrial genome and whose disparate localisations and functions are linked as much to mitochondrial metabolism as to cellular physiology and pathology.
Collapse
Affiliation(s)
- Francesco Bruni
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
7
|
Odogwu NM, Hagen C, Nelson TJ. Transcriptome studies of congenital heart diseases: identifying current gaps and therapeutic frontiers. Front Genet 2023; 14:1278747. [PMID: 38152655 PMCID: PMC10751320 DOI: 10.3389/fgene.2023.1278747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023] Open
Abstract
Congenital heart disease (CHD) are genetically complex and comprise a wide range of structural defects that often predispose to - early heart failure, a common cause of neonatal morbidity and mortality. Transcriptome studies of CHD in human pediatric patients indicated a broad spectrum of diverse molecular signatures across various types of CHD. In order to advance research on congenital heart diseases (CHDs), we conducted a detailed review of transcriptome studies on this topic. Our analysis identified gaps in the literature, with a particular focus on the cardiac transcriptome signatures found in various biological specimens across different types of CHDs. In addition to translational studies involving human subjects, we also examined transcriptomic analyses of CHDs in a range of model systems, including iPSCs and animal models. We concluded that RNA-seq technology has revolutionized medical research and many of the discoveries from CHD transcriptome studies draw attention to biological pathways that concurrently open the door to a better understanding of cardiac development and related therapeutic avenue. While some crucial impediments to perfectly studying CHDs in this context remain obtaining pediatric cardiac tissue samples, phenotypic variation, and the lack of anatomical/spatial context with model systems. Combining model systems, RNA-seq technology, and integrating algorithms for analyzing transcriptomic data at both single-cell and high throughput spatial resolution is expected to continue uncovering unique biological pathways that are perturbed in CHDs, thus facilitating the development of novel therapy for congenital heart disease.
Collapse
Affiliation(s)
- Nkechi Martina Odogwu
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, MN, United States
| | - Clinton Hagen
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, MN, United States
| | - Timothy J. Nelson
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
8
|
Bayraktar E, Bayraktar R, Oztatlici H, Lopez-Berestein G, Amero P, Rodriguez-Aguayo C. Targeting miRNAs and Other Non-Coding RNAs as a Therapeutic Approach: An Update. Noncoding RNA 2023; 9:27. [PMID: 37104009 PMCID: PMC10145226 DOI: 10.3390/ncrna9020027] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Since the discovery of the first microRNAs (miRNAs, miRs), the understanding of miRNA biology has expanded substantially. miRNAs are involved and described as master regulators of the major hallmarks of cancer, including cell differentiation, proliferation, survival, the cell cycle, invasion, and metastasis. Experimental data indicate that cancer phenotypes can be modified by targeting miRNA expression, and because miRNAs act as tumor suppressors or oncogenes (oncomiRs), they have emerged as attractive tools and, more importantly, as a new class of targets for drug development in cancer therapeutics. With the use of miRNA mimics or molecules targeting miRNAs (i.e., small-molecule inhibitors such as anti-miRS), these therapeutics have shown promise in preclinical settings. Some miRNA-targeted therapeutics have been extended to clinical development, such as the mimic of miRNA-34 for treating cancer. Here, we discuss insights into the role of miRNAs and other non-coding RNAs in tumorigenesis and resistance and summarize some recent successful systemic delivery approaches and recent developments in miRNAs as targets for anticancer drug development. Furthermore, we provide a comprehensive overview of mimics and inhibitors that are in clinical trials and finally a list of clinical trials based on miRNAs.
Collapse
Affiliation(s)
- Emine Bayraktar
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hulya Oztatlici
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Histology and Embryology, Gaziantep University, Gaziantep 27310, Turkey
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Mattick JS. RNA out of the mist. Trends Genet 2023; 39:187-207. [PMID: 36528415 DOI: 10.1016/j.tig.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/08/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
RNA has long been regarded primarily as the intermediate between genes and proteins. It was a surprise then to discover that eukaryotic genes are mosaics of mRNA sequences interrupted by large tracts of transcribed but untranslated sequences, and that multicellular organisms also express many long 'intergenic' and antisense noncoding RNAs (lncRNAs). The identification of small RNAs that regulate mRNA translation and half-life did not disturb the prevailing view that animals and plant genomes are full of evolutionary debris and that their development is mainly supervised by transcription factors. Gathering evidence to the contrary involved addressing the low conservation, expression, and genetic visibility of lncRNAs, demonstrating their cell-specific roles in cell and developmental biology, and their association with chromatin-modifying complexes and phase-separated domains. The emerging picture is that most lncRNAs are the products of genetic loci termed 'enhancers', which marshal generic effector proteins to their sites of action to control cell fate decisions during development.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia; UNSW RNA Institute, UNSW, Sydney, NSW 2052, Australia.
| |
Collapse
|
10
|
Gao F, Wang F, Cao H, Chen Y, Diao Y, Kapranov P. Evidence for Existence of Multiple Functional Human Small RNAs Derived from Transcripts of Protein-Coding Genes. Int J Mol Sci 2023; 24:4163. [PMID: 36835575 PMCID: PMC9959880 DOI: 10.3390/ijms24044163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The human genome encodes a multitude of different noncoding transcripts that have been traditionally separated on the basis of their lengths into long (>200 nt) or small (<200 nt) noncoding RNAs. The functions, mechanisms of action, and biological relevance of the vast majority of both long and short noncoding transcripts remain unknown. However, according to the functional understanding of the known classes of long and small noncoding RNAs (sncRNAs) that have been shown to play crucial roles in multiple biological processes, it is generally assumed that many unannotated long and small transcripts participate in important cellular functions as well. Nevertheless, direct evidence of functionality is lacking for most noncoding transcripts, especially for sncRNAs that are often dismissed as stable degradation products of longer RNAs. Here, we developed a high-throughput assay to test the functionality of sncRNAs by overexpressing them in human cells. Surprisingly, we found that a significant fraction (>40%) of unannotated sncRNAs appear to have biological relevance. Furthermore, contrary to the expectation, the potentially functional transcripts are not highly abundant and can be derived from protein-coding mRNAs. These results strongly suggest that the small noncoding transcriptome can harbor multiple functional transcripts that warrant future studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| |
Collapse
|
11
|
Ren B, Guan MX, Zhou T, Cai X, Shan G. Emerging functions of mitochondria-encoded noncoding RNAs. Trends Genet 2023; 39:125-139. [PMID: 36137834 DOI: 10.1016/j.tig.2022.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 01/27/2023]
Abstract
Mitochondria, organelles that harbor their own circular genomes, are critical for energy production and homeostasis maintenance in eukaryotic cells. Recent studies discovered hundreds of mitochondria-encoded noncoding RNAs (mt-ncRNAs), including novel subtypes of mitochondria-encoded circular RNAs (mecciRNAs) and mitochondria-encoded double-stranded RNAs (mt-dsRNAs). Here, we discuss the emerging field of mt-ncRNAs by reviewing their expression patterns, biogenesis, metabolism, regulatory roles, and functional mechanisms. Many mt-ncRNAs have regulatory roles in cellular physiology, and some are associated with, or even act as, causal factors in human diseases. We also highlight developments in technologies and methodologies and further insights into future perspectives and challenges in studying these noncoding RNAs, as well as their potential biomedical applications.
Collapse
Affiliation(s)
- Bingbing Ren
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tianhua Zhou
- Cancer Center, Zhejiang University, Hangzhou 310058, China; Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, China
| | - Xiujun Cai
- Cancer Center, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang University, Hangzhou 310016, China; Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Zhejiang University, Hangzhou 310016, China
| | - Ge Shan
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
12
|
Xu S, Duan Y, Ma L, Song F, Tian L, Cai W, Li H. Full-Length Transcriptome Profiling of Coridius chinensis Mitochondrial Genome Reveals the Transcription of Genes with Ancestral Arrangement in Insects. Genes (Basel) 2023; 14:225. [PMID: 36672965 PMCID: PMC9859431 DOI: 10.3390/genes14010225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Coridius chinensis (Hemiptera: Dinidoridae) is a medicinal insect. Its mitochondrial gene arrangement is consistent with that of Drosophila melanogaster and Erthesina fullo, the two insects with well-studied mitochondrial transcription. To investigate whether the structural consistency of mitochondrial genes leads to similarities in transcription and post-transcriptional processing, we improved the gene annotation and constructed a quantitative transcription map for the C. chinensis mitochondrial genome (mitogenome) using full-length transcriptome sequencing. The size of this mitogenome was 16,214 bp and the proposed model of mitochondrial transcription was similar to that of Drosophila. Both strands were nearly entirely transcribed except for the antisense genes downstream of trnS2 on N strand. The expression of cytochrome c subunit genes is higher than that of NADH-dehydrogenase subunit genes. The post-transcriptional cleavage process followed the "tRNA punctuation" model, and both the "reverse cleavage" model in Drosophila and "forward cleavage" model in E. fullo were found in C. chinensis. In addition, we found that long non-coding RNAs from the control region contained tandem repeats. Polyadenylation was performed after CCA triplet at the 3' end of tRNA. The isoform diversity of lrRNA was identified. Our study sheds light on the transcriptional regulation and RNA processing of insect mitogenomes with the putative ancestral gene arrangement.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Levenson AS. Dietary stilbenes as modulators of specific miRNAs in prostate cancer. Front Pharmacol 2022; 13:970280. [PMID: 36091792 PMCID: PMC9449421 DOI: 10.3389/fphar.2022.970280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulated experimental data have suggested that natural plant products may be effective miRNA-modulating chemopreventive and therapeutic agents. Dietary polyphenols such as flavonoids, stilbenes, and lignans, among others, have been intensively studied for their miRNA-mediated cardioprotective, antioxidant, anti-inflammatory and anticancer properties. The aim of this review is to outline known stilbene-regulated miRNAs in cancer, with a special focus on the interplay between various miRNAs and MTA1 signaling in prostate cancer. MTA1 is an epigenetic reader and an oncogenic transcription factor that is overexpressed in advanced prostate cancer and metastasis. Not surprisingly, miRNAs that are linked to MTA1 affect cancer progression and the metastatic potential of cells. Studies led to the identification of MTA1-associated pro-oncogenic miRNAs, which are regulated by stilbenes such as resveratrol and pterostilbene. Specifically, it has been shown that inhibition of the activity of the MTA1 regulated oncogenic miR-17 family of miRNAs, miR-22, and miR-34a by stilbenes leads to inhibition of prostatic hyperplasia and tumor progression in mice and reduction of proliferation, survival and invasion of prostate cancer cells in vitro. Taken together, these findings implicate the use of resveratrol and its analogs as an attractive miRNA-mediated chemopreventive and therapeutic strategy in prostate cancer and the use of circulating miRNAs as potential predictive biomarkers for clinical development.
Collapse
|
14
|
Crisóstomo L, Bourgery M, Rato L, Raposo JF, Batterham RL, Kotaja N, Alves MG. Testicular "Inherited Metabolic Memory" of Ancestral High-Fat Diet Is Associated with Sperm sncRNA Content. Biomedicines 2022; 10:909. [PMID: 35453658 PMCID: PMC9027117 DOI: 10.3390/biomedicines10040909] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023] Open
Abstract
Excessive adiposity caused by high-fat diets (HFDs) is associated with testicular metabolic and functional abnormalities up to grand-offspring, but the mechanisms of this epigenetic inheritance are unclear. Here we describe an association of sperm small non-coding RNA (sncRNA) with testicular "inherited metabolic memory" of ancestral HFD, using a transgenerational rodent model. Male founders were fed a standard chow for 200 days (CTRL), HFD for 200 days (HFD), or standard chow for 60 days followed by HFD for 140 days (HFDt). The male offspring and grand-offspring were fed standard chow for 200 days. The sncRNA sequencing from epidydimal spermatozoa revealed signatures associated with testicular metabolic plasticity in HFD-exposed mice and in the unexposed progeny. Sperm tRNA-derived RNA (tsRNA) and repeat-derived small RNA (repRNA) content were specially affected by HFDt and in the offspring of HFD and HFDt mice. The grand-offspring of HFD and HFDt mice showed lower sperm counts than CTRL descendants, whereas the sperm miRNA content was affected. Although the causality between sperm sncRNAs content and transgenerational epigenetic inheritance of HFD-related traits remains elusive, our results suggest that sperm sncRNA content is influenced by ancestral exposure to HFD, contributing to the sperm epigenome up to the grand-offspring.
Collapse
Affiliation(s)
- Luís Crisóstomo
- Departamento de Anatomia, e UMIB—Unidade Multidisciplinar de Investigação em Biomedicina, ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-600 Porto, Portugal
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; (M.B.); (N.K.)
| | - Matthieu Bourgery
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; (M.B.); (N.K.)
| | - Luís Rato
- Polytechnic Institute of Guarda, School of Health, 6300-035 Guarda, Portugal;
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - João F. Raposo
- NOVA Medical School, New University Lisbon, 1250-189 Lisbon, Portugal;
- Associação Protetora dos Diabéticos de Portugal (APDP), 1250-189 Lisbon, Portugal
| | - Rachel L. Batterham
- Centre for Obesity Research, Department of Medicine, University College London (UCL), London WC1E 6JF, UK;
- National Institute for Health Research, Biomedical Research Centre, University College London Hospital (UCLH), London W1T 7DN, UK
| | - Noora Kotaja
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; (M.B.); (N.K.)
| | - Marco G. Alves
- Departamento de Anatomia, e UMIB—Unidade Multidisciplinar de Investigação em Biomedicina, ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-600 Porto, Portugal
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003 Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003 Girona, Spain
| |
Collapse
|
15
|
Chao H, Hu Y, Zhao L, Xin S, Ni Q, Zhang P, Chen M. Biogenesis, Functions, Interactions, and Resources of Non-Coding RNAs in Plants. Int J Mol Sci 2022; 23:ijms23073695. [PMID: 35409060 PMCID: PMC8998614 DOI: 10.3390/ijms23073695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
Plant transcriptomes encompass a large number of functional non-coding RNAs (ncRNAs), only some of which have protein-coding capacity. Since their initial discovery, ncRNAs have been classified into two broad categories based on their biogenesis and mechanisms of action, housekeeping ncRNAs and regulatory ncRNAs. With advances in RNA sequencing technology and computational methods, bioinformatics resources continue to emerge and update rapidly, including workflow for in silico ncRNA analysis, up-to-date platforms, databases, and tools dedicated to ncRNA identification and functional annotation. In this review, we aim to describe the biogenesis, biological functions, and interactions with DNA, RNA, protein, and microorganism of five major regulatory ncRNAs (miRNA, siRNA, tsRNA, circRNA, lncRNA) in plants. Then, we systematically summarize tools for analysis and prediction of plant ncRNAs, as well as databases. Furthermore, we discuss the silico analysis process of these ncRNAs and present a protocol for step-by-step computational analysis of ncRNAs. In general, this review will help researchers better understand the world of ncRNAs at multiple levels.
Collapse
Affiliation(s)
| | | | | | | | | | - Peijing Zhang
- Correspondence: (P.Z.); (M.C.); Tel./Fax: +86-(0)571-88206612 (M.C.)
| | - Ming Chen
- Correspondence: (P.Z.); (M.C.); Tel./Fax: +86-(0)571-88206612 (M.C.)
| |
Collapse
|
16
|
Li H, Zheng Q, Xie X, Wang J, Zhu H, Hu H, He H, Lu Q. Role of Exosomal Non-Coding RNAs in Bone-Related Diseases. Front Cell Dev Biol 2022; 9:811666. [PMID: 35004702 PMCID: PMC8733689 DOI: 10.3389/fcell.2021.811666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
Bone-related diseases seriously affect the lives of patients and carry a heavy economic burden on society. Treatment methods cannot meet the diverse clinical needs of affected patients. Exosomes participate in the occurrence and development of many diseases through intercellular communication, including bone-related diseases. Studies have shown that exosomes can take-up and “package” non-coding RNAs and “deliver” them to recipient cells, thereby regulating the function of recipient cells. The exosomal non-coding RNAs secreted by osteoblasts, osteoclasts, chondrocytes, and other cells are involved in the regulation of bone-related diseases by inhibiting osteoclasts, enhancing chondrocyte activity and promoting angiogenesis. Here, we summarize the role and therapeutic potential of exosomal non-coding RNAs in the bone-related diseases osteoporosis, osteoarthritis, and bone-fracture healing, and discuss the clinical application of exosomes in patients with bone-related diseases.
Collapse
Affiliation(s)
- Hang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Qiyue Zheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xinyan Xie
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China.,College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Haihong Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Haoye Hu
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hao He
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
17
|
Crosstalk between non-coding RNAs expression profile, drug resistance and immune response in breast cancer. Pharmacol Res 2021; 176:106041. [PMID: 34952200 DOI: 10.1016/j.phrs.2021.106041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022]
Abstract
Drug resistance is one of the most critical challenges facing researchers in treating breast cancer. Despite numerous treatments for breast cancer, including conventional chemical drugs, monoclonal antibodies, and immunotherapeutic drugs known as immune checkpoint inhibitors (ICI), many patients resist various approaches. In recent years, the relationship between gene expression profiles and drug resistance phenotypes has attracted much attention. Non-coding RNAs (ncRNAs) are regulatory molecules that have been shown to regulate gene expression and cell transcriptome. Two categories, microRNAs and long non-coding RNAs have been more considered and studied among these ncRNAs. Studying the role of different ncRNAs in chemical drug resistance and ICI resistance together can be beneficial in selecting more effective treatments for breast cancer. Changing the expression and action mechanism of these regulatory molecules on drug resistance phenotypes is the main topic of this review article.
Collapse
|
18
|
Zytnicki M, González I. Finding differentially expressed sRNA-Seq regions with srnadiff. PLoS One 2021; 16:e0256196. [PMID: 34415926 PMCID: PMC8378736 DOI: 10.1371/journal.pone.0256196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 08/02/2021] [Indexed: 11/19/2022] Open
Abstract
Small RNAs (sRNAs) encompass a great variety of molecules of different kinds, such as microRNAs, small interfering RNAs, Piwi-associated RNA, among others. These sRNAs have a wide range of activities, which include gene regulation, protection against virus, transposable element silencing, and have been identified as a key actor in determining the development of the cell. Small RNA sequencing is thus routinely used to assess the expression of the diversity of sRNAs, usually in the context of differentially expression, where two conditions are compared. Tools that detect differentially expressed microRNAs are numerous, because microRNAs are well documented, and the associated genes are well defined. However, tools are lacking to detect other types of sRNAs, which are less studied, and whose precursor RNA is not well characterized. We present here a new method, called srnadiff, which finds all kinds of differentially expressed sRNAs. To the extent of our knowledge, srnadiff is the first tool that detects differentially expressed sRNAs without the use of external information, such as genomic annotation or additional sequences of sRNAs.
Collapse
|
19
|
Beckedorff F, Blumenthal E, daSilva LF, Aoi Y, Cingaram PR, Yue J, Zhang A, Dokaneheifard S, Valencia MG, Gaidosh G, Shilatifard A, Shiekhattar R. The Human Integrator Complex Facilitates Transcriptional Elongation by Endonucleolytic Cleavage of Nascent Transcripts. Cell Rep 2021; 32:107917. [PMID: 32697989 PMCID: PMC7427568 DOI: 10.1016/j.celrep.2020.107917] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/06/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023] Open
Abstract
Transcription by RNA polymerase II (RNAPII) is pervasive in the human genome. However, the mechanisms controlling transcription at promoters and enhancers remain enigmatic. Here, we demonstrate that Integrator subunit 11 (INTS11), the catalytic subunit of the Integrator complex, regulates transcription at these loci through its endonuclease activity. Promoters of genes require INTS11 to cleave nascent transcripts associated with paused RNAPII and induce their premature termination in the proximity of the +1 nucleosome. The turnover of RNAPII permits the subsequent recruitment of an elongation-competent RNAPII complex, leading to productive elongation. In contrast, enhancers require INTS11 catalysis not to evict paused RNAPII but rather to terminate enhancer RNA transcription beyond the +1 nucleosome. These findings are supported by the differential occupancy of negative elongation factor (NELF), SPT5, and tyrosine-1-phosphorylated RNAPII. This study elucidates the role of Integrator in mediating transcriptional elongation at human promoters through the endonucleolytic cleavage of nascent transcripts and the dynamic turnover of RNAPII. In this study, Beckedorff et al. demonstrate that the human Integrator complex associates with paused RNA polymerase II and mediates productive transcriptional elongation through its RNA endonuclease activity. This work supports the dynamic turnover model of paused RNA polymerase II complexes and is contrary to observations described in Drosophila.
Collapse
Affiliation(s)
- Felipe Beckedorff
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Ezra Blumenthal
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA; Medical Scientist Training Program and Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lucas Ferreira daSilva
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Yuki Aoi
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Pradeep Reddy Cingaram
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Jingyin Yue
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Anda Zhang
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Sadat Dokaneheifard
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Monica Guiselle Valencia
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Gabriel Gaidosh
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Ali Shilatifard
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ramin Shiekhattar
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA.
| |
Collapse
|
20
|
Chaudhary R. Potential of long non-coding RNAs as a therapeutic target and molecular markers in glioblastoma pathogenesis. Heliyon 2021; 7:e06502. [PMID: 33786397 PMCID: PMC7988331 DOI: 10.1016/j.heliyon.2021.e06502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/20/2020] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GB) is by far the most hostile type of malignant tumor that primarily affects the brain and spine, derived from star-shaped glial cells that are astrocytes and oligodendrocytes. Despite of significant efforts in recent years in glioblastoma research, the clinical efficacy of existing medical intervention is still limited and very few potential diagnostic markers are available. Long non-coding RNAs (lncRNAs) that lacks protein-coding capabilities were previously thought to be "junk sequences" in mammalian genomes are quite indispensible epigenetic regulators that can positively or negatively regulate gene expression and nuclear architecture, with significant roles in the initiation and development of tumors. Nevertheless, the precise mechanism of these distortedly expressed lncRNAs in glioblastoma pathogenesis is not yet fully understood. Since the advent of high-throughput sequencing technologies, more and more research have elucidated that lncRNAs are one of the most promising prognostic biomarkers and therapeutic targets for glioblastoma. In this paper, I briefly outlined the existing findings of lncRNAs. And also summarizes the profiles of different lncRNAs that have been broadly classified in glioblastoma research, with emphasis on both their prognostic and therapeutic values.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| |
Collapse
|
21
|
Hahne JC, Lampis A, Valeri N. Vault RNAs: hidden gems in RNA and protein regulation. Cell Mol Life Sci 2021; 78:1487-1499. [PMID: 33063126 PMCID: PMC7904556 DOI: 10.1007/s00018-020-03675-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs are important regulators of differentiation during embryogenesis as well as key players in the fine-tuning of transcription and furthermore, they control the post-transcriptional regulation of mRNAs under physiological conditions. Deregulated expression of non-coding RNAs is often identified as one major contribution in a number of pathological conditions. Non-coding RNAs are a heterogenous group of RNAs and they represent the majority of nuclear transcripts in eukaryotes. An evolutionary highly conserved sub-group of non-coding RNAs is represented by vault RNAs, named since firstly discovered as component of the largest known ribonucleoprotein complexes called "vault". Although they have been initially described 30 years ago, vault RNAs are largely unknown and their molecular role is still under investigation. In this review we will summarize the known functions of vault RNAs and their involvement in cellular mechanisms.
Collapse
Affiliation(s)
- Jens Claus Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
22
|
Abstract
The discovery of new classes of non-coding RNAs has always been preceded or accompanied by technological breakthroughs, and these outstanding progresses in transcriptomics approaches enabled to regularly add new members to the list. From the first detection of tRNAs, through the revolution of miRNAs discovery, to the recent identification of eRNAs or the identification of new functions for already known ncRNAs, this introductive review provides a very concise historical and functional overview of most prominent small regulatory non-coding RNA families.
Collapse
Affiliation(s)
| | - Yoann Abel
- IGMM, CNRS, Université de Montpellier, Montpellier, France
| | | |
Collapse
|
23
|
Müller SY, Matthews NE, Valli AA, Baulcombe DC. The small RNA locus map for Chlamydomonas reinhardtii. PLoS One 2020; 15:e0242516. [PMID: 33211749 PMCID: PMC7676726 DOI: 10.1371/journal.pone.0242516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/04/2020] [Indexed: 11/19/2022] Open
Abstract
Small (s)RNAs play crucial roles in the regulation of gene expression and genome stability across eukaryotes where they direct epigenetic modifications, post-transcriptional gene silencing, and defense against both endogenous and exogenous viruses. It is known that Chlamydomonas reinhardtii, a well-studied unicellular green algae species, possesses sRNA-based mechanisms that are distinct from those of land plants. However, definition of sRNA loci and further systematic classification is not yet available for this or any other algae. Here, using data-driven machine learning approaches including Multiple Correspondence Analysis (MCA) and clustering, we have generated a comprehensively annotated and classified sRNA locus map for C. reinhardtii. This map shows some common characteristics with higher plants and animals, but it also reveals distinct features. These results are consistent with the idea that there was diversification in sRNA mechanisms after the evolutionary divergence of algae from higher plant lineages.
Collapse
Affiliation(s)
- Sebastian Y. Müller
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas E. Matthews
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Adrian A. Valli
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - David C. Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Magee R, Rigoutsos I. On the expanding roles of tRNA fragments in modulating cell behavior. Nucleic Acids Res 2020; 48:9433-9448. [PMID: 32890397 PMCID: PMC7515703 DOI: 10.1093/nar/gkaa657] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
The fragments that derive from transfer RNAs (tRNAs) are an emerging category of regulatory RNAs. Known as tRFs, these fragments were reported for the first time only a decade ago, making them a relatively recent addition to the ever-expanding pantheon of non-coding RNAs. tRFs are short, 16-35 nucleotides (nts) in length, and produced through cleavage of mature and precursor tRNAs at various positions. Both cleavage positions and relative tRF abundance depend strongly on context, including the tissue type, tissue state, and disease, as well as the sex, population of origin, and race/ethnicity of an individual. These dependencies increase the urgency to understand the regulatory roles of tRFs. Such efforts are gaining momentum, and comprise experimental and computational approaches. System-level studies across many tissues and thousands of samples have produced strong evidence that tRFs have important and multi-faceted roles. Here, we review the relevant literature on tRF biology in higher organisms, single cell eukaryotes, and prokaryotes.
Collapse
Affiliation(s)
- Rogan Magee
- Computational Medicine Center, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Isidore Rigoutsos
- To whom correspondence should be addressed. Tel: +1 215 503 4219; Fax: +1 215 503 0466;
| |
Collapse
|
25
|
Ni WJ, Xie F, Leng XM. Terminus-Associated Non-coding RNAs: Trash or Treasure? Front Genet 2020; 11:552444. [PMID: 33101379 PMCID: PMC7522407 DOI: 10.3389/fgene.2020.552444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
3′ untranslated regions (3′ UTRs) of protein-coding genes are well known for their important roles in determining the fate of mRNAs in diverse processes, including trafficking, stabilization, translation, and RNA–protein interactions. However, non-coding RNAs (ncRNAs) scattered around 3′ termini of the protein-coding genes, here referred to as terminus-associated non-coding RNAs (TANRs), have not attracted wide attention in RNA research. Indeed, whether TANRs are transcriptional noise, degraded mRNA products, alternative 3′ UTRs, or functional molecules has remained unclear for a long time. As a new category of ncRNAs, TANRs are widespread, abundant, and conserved in diverse eukaryotes. The biogenesis of TANRs mainly follows the same promoter model, the RNA-dependent RNA polymerase activity-dependent model, or the independent promoter model. Functional studies of TANRs suggested that they are significantly involved in the versatile regulation of gene expression. For instance, at the transcriptional level, they can lead to transcriptional interference, induce the formation of gene loops, and participate in transcriptional termination. Furthermore, at the posttranscriptional level, they can act as microRNA sponges, and guide cleavage or modification of target RNAs. Here, we review current knowledge of the potential role of TANRs in the modulation of gene expression. In this review, we comprehensively summarize the current state of knowledge about TANRs, and discuss TANR nomenclature, relation to ncRNAs, cross-talk biogenesis pathways and potential functions. We further outline directions of future studies of TANRs, to promote investigations of this emerging and enigmatic category of RNA.
Collapse
Affiliation(s)
- Wen-Juan Ni
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Fuhua Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
26
|
Sun YM, Chen YQ. Principles and innovative technologies for decrypting noncoding RNAs: from discovery and functional prediction to clinical application. J Hematol Oncol 2020; 13:109. [PMID: 32778133 PMCID: PMC7416809 DOI: 10.1186/s13045-020-00945-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Noncoding RNAs (ncRNAs) are a large segment of the transcriptome that do not have apparent protein-coding roles, but they have been verified to play important roles in diverse biological processes, including disease pathogenesis. With the development of innovative technologies, an increasing number of novel ncRNAs have been uncovered; information about their prominent tissue-specific expression patterns, various interaction networks, and subcellular locations will undoubtedly enhance our understanding of their potential functions. Here, we summarized the principles and innovative methods for identifications of novel ncRNAs that have potential functional roles in cancer biology. Moreover, this review also provides alternative ncRNA databases based on high-throughput sequencing or experimental validation, and it briefly describes the current strategy for the clinical translation of cancer-associated ncRNAs to be used in diagnosis.
Collapse
Affiliation(s)
- Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| |
Collapse
|
27
|
Chen Q, Meng X, Liao Q, Chen M. Versatile interactions and bioinformatics analysis of noncoding RNAs. Brief Bioinform 2020; 20:1781-1794. [PMID: 29939215 DOI: 10.1093/bib/bby050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Advances in RNA sequencing technologies and computational methodologies have provided a huge impetus to noncoding RNA (ncRNA) study. Once regarded as inconsequential results of transcriptional promiscuity, ncRNAs were later found to exert great roles in various aspects of biological functions. They are emerging as key players in gene regulatory networks by interacting with other biomolecules (DNA, RNA or protein). Here, we provide an overview of ncRNA repertoire and highlight recent discoveries of their versatile interactions. To better investigate the ncRNA-mediated regulation, it is necessary to make full use of innovative sequencing techniques and computational tools. We further describe a comprehensive workflow for in silico ncRNA analysis, providing up-to-date platforms, databases and tools dedicated to ncRNA identification and functional annotation.
Collapse
Affiliation(s)
- Qi Chen
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Xianwen Meng
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Qi Liao
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Ming Chen
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, Zhejiang, P. R. China
| |
Collapse
|
28
|
Georgakilas GK, Grioni A, Liakos KG, Chalupova E, Plessas FC, Alexiou P. Multi-branch Convolutional Neural Network for Identification of Small Non-coding RNA genomic loci. Sci Rep 2020; 10:9486. [PMID: 32528107 PMCID: PMC7289789 DOI: 10.1038/s41598-020-66454-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/21/2020] [Indexed: 02/03/2023] Open
Abstract
Genomic regions that encode small RNA genes exhibit characteristic patterns in their sequence, secondary structure, and evolutionary conservation. Convolutional Neural Networks are a family of algorithms that can classify data based on learned patterns. Here we present MuStARD an application of Convolutional Neural Networks that can learn patterns associated with user-defined sets of genomic regions, and scan large genomic areas for novel regions exhibiting similar characteristics. We demonstrate that MuStARD is a generic method that can be trained on different classes of human small RNA genomic loci, without need for domain specific knowledge, due to the automated feature and background selection processes built into the model. We also demonstrate the ability of MuStARD for inter-species identification of functional elements by predicting mouse small RNAs (pre-miRNAs and snoRNAs) using models trained on the human genome. MuStARD can be used to filter small RNA-Seq datasets for identification of novel small RNA loci, intra- and inter- species, as demonstrated in three use cases of human, mouse, and fly pre-miRNA prediction. MuStARD is easy to deploy and extend to a variety of genomic classification questions. Code and trained models are freely available at gitlab.com/RBP_Bioinformatics/mustard.
Collapse
Affiliation(s)
| | - Andrea Grioni
- Central European Institute of Technology, Brno, Czech Republic
| | - Konstantinos G Liakos
- Department of Electrical and Computer Engineering, School of Engineering, University of Thessaly, Volos, Greece
| | - Eliska Chalupova
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Fotis C Plessas
- Department of Electrical and Computer Engineering, School of Engineering, University of Thessaly, Volos, Greece
| | | |
Collapse
|
29
|
Ratti M, Lampis A, Ghidini M, Salati M, Mirchev MB, Valeri N, Hahne JC. MicroRNAs (miRNAs) and Long Non-Coding RNAs (lncRNAs) as New Tools for Cancer Therapy: First Steps from Bench to Bedside. Target Oncol 2020; 15:261-278. [PMID: 32451752 PMCID: PMC7283209 DOI: 10.1007/s11523-020-00717-x] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs represent a significant proportion of the human genome. After having been considered as 'junk' for a long time, non-coding RNAs are now well established as playing important roles in maintaining cellular homeostasis and functions. Some non-coding RNAs show cell- and tissue-specific expression patterns and are specifically deregulated under pathological conditions (e.g. cancer). Therefore, non-coding RNAs have been extensively studied as potential biomarkers in the context of different diseases with a focus on microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) for several years. Since their discovery, miRNAs have attracted more attention than lncRNAs in research studies; however, both families of non-coding RNAs have been established to play an important role in gene expression control, either as transcriptional or post-transcriptional regulators. Both miRNAs and lncRNAs can regulate key genes involved in the development of cancer, thus influencing tumour growth, invasion, and metastasis by increasing the activation of oncogenic pathways and limiting the expression of tumour suppressors. Furthermore, miRNAs and lncRNAs are also emerging as important mediators in drug-sensitivity and drug-resistance mechanisms. In the light of these premises, a number of pre-clinical and early clinical studies are exploring the potential of non-coding RNAs as new therapeutics. The aim of this review is to summarise the latest knowledge of the use of miRNAs and lncRNAs as therapeutic tools for cancer treatment.
Collapse
Affiliation(s)
- Margherita Ratti
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Medical Department, Division of Oncology, ASST di Cremona, Ospedale di Cremona, Cremona, Italy
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Michele Ghidini
- Division of Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimiliano Salati
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Milko B Mirchev
- Clinic of Gastroenterology, Medical University, Varna, Bulgaria
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London, UK
| | - Jens C Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
30
|
Choi SY, Han EC, Hong SH, Kwon TG, Lee Y, Lee HJ. Regulating Osteogenic Differentiation by Suppression of Exosomal MicroRNAs. Tissue Eng Part A 2020; 25:1146-1154. [PMID: 30520703 DOI: 10.1089/ten.tea.2018.0257] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT We investigated the role of exosomes in osteogenesis and the use of miRNA inhibitor-transfected exosomes to control osteogenic differentiation. RNA-sequencing (RNA-seq) of exosomal miRNAs revealed that growth condition of milieu of preosteoblast exosomes harbors high levels of let-7, which plays a critical role in osteogenesis regulation. We modified exosomes by transfecting let-7 inhibitor into exosomes under growth condition in MC3T3-E1 cells and revealed that exosomes whose let-7 was inactivated by engineering lost the ability to recover osteogenic differentiation. Genetically modified exosomes may serve as powerful biomaterials for developmental control, including of osteogenesis regulation.
Collapse
Affiliation(s)
- Song-Yi Choi
- 1Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Eun-Chong Han
- 1Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Su-Hyung Hong
- 1Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Tae-Geon Kwon
- 2Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Youngkyun Lee
- 3Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Heon-Jin Lee
- 1Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea.,4Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| |
Collapse
|
31
|
Morioka MS, Kawaji H, Nishiyori-Sueki H, Murata M, Kojima-Ishiyama M, Carninci P, Itoh M. Cap Analysis of Gene Expression (CAGE): A Quantitative and Genome-Wide Assay of Transcription Start Sites. Methods Mol Biol 2020; 2120:277-301. [PMID: 32124327 DOI: 10.1007/978-1-0716-0327-7_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cap analysis of gene expression (CAGE) is an approach to identify and monitor the activity (transcription initiation frequency) of transcription start sites (TSSs) at single base-pair resolution across the genome. It has been effectively used to identify active promoter and enhancer regions in cancer cells, with potential utility to identify key factors to immunotherapy. Here, we overview a series of CAGE protocols and describe detailed experimental steps of the latest protocol based on the Illumina sequencing platform; both experimental steps (see Subheadings 3.1-3.11) and computational processing steps (see Subheadings 3.12-3.20) are described.
Collapse
Affiliation(s)
- Masaki Suimye Morioka
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Hideya Kawaji
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan.,RIKEN Preventive Medicine and Diagnosis Innovation Program (PMI), Yokohama, Kanagawa, Japan.,Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiromi Nishiyori-Sueki
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Mitsuyoshi Murata
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Miki Kojima-Ishiyama
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Masayoshi Itoh
- RIKEN Preventive Medicine and Diagnosis Innovation Program (PMI), Yokohama, Kanagawa, Japan.
| |
Collapse
|
32
|
Mishra K, Kanduri C. Understanding Long Noncoding RNA and Chromatin Interactions: What We Know So Far. Noncoding RNA 2019; 5:ncrna5040054. [PMID: 31817041 PMCID: PMC6958424 DOI: 10.3390/ncrna5040054] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
With the evolution of technologies that deal with global detection of RNAs to probing of lncRNA-chromatin interactions and lncRNA-chromatin structure regulation, we have been updated with a comprehensive repertoire of chromatin interacting lncRNAs, their genome-wide chromatin binding regions and mode of action. Evidence from these new technologies emphasize that chromatin targeting of lncRNAs is a prominent mechanism and that these chromatin targeted lncRNAs exert their functionality by fine tuning chromatin architecture resulting in an altered transcriptional readout. Currently, there are no unifying principles that define chromatin association of lncRNAs, however, evidence from a few chromatin-associated lncRNAs show presence of a short common sequence for chromatin targeting. In this article, we review how technological advancements contributed in characterizing chromatin associated lncRNAs, and discuss the potential mechanisms by which chromatin associated lncRNAs execute their functions.
Collapse
Affiliation(s)
- Kankadeb Mishra
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden;
- Department of Cell Biology, Memorial Sloan Kettering Cancer Centre, Rockefeller Research Laboratory, 430 East 67th Street, RRL 445, New York, NY 10065, USA
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden;
- Correspondence:
| |
Collapse
|
33
|
Yu Y, Xiao J, Hann SS. The emerging roles of PIWI-interacting RNA in human cancers. Cancer Manag Res 2019; 11:5895-5909. [PMID: 31303794 PMCID: PMC6612017 DOI: 10.2147/cmar.s209300] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a type of non-coding RNAs that interact with PIWI proteins, which are members of the argonaute family. Originally described in the germline, piRNAs are also expressed in human somatic cells in a tissue-specific manner. piRNAs are involved in spermatogenesis, germ stem-cell maintenance, silencing of transposon, epigenetic and genomic regulation and rearrangement. A large number of studies have demonstrated that expression of piRNAs is involved in many kinds of disease, including cancer. Abnormal expression of piRNAs is emerging as a critical player in cancer cell proliferation, apoptosis, invasion, and migration in vitro and in vivo. Functionally, piRNAs maintain genomic integrity by repressing the mobilization of transposable elements, and regulate the expression of downstream target genes via transcriptional or post-transcriptional mechanisms. Furthermore, altered expression of piRNAs in cancer is linked to clinical outcome, highlighting the important role that they may play as novel diagnostic and prognostic biomarkers, and as therapeutic targets for cancer therapy. In this review, we focus on the biogenesis and the functional roles of piRNAs in cancers, discuss emerging insights into the roles of piRNAs in the occurrence, progression, and treatment of cancers, reveal various mechanisms underlying piRNAs-mediated gene regulation, and highlight their potential clinical utilities as biomarkers as well as potential targets for cancer treatment.
Collapse
Affiliation(s)
- Yaya Yu
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine , Guangzhou, Guangdong Province, 510120, People's Republic of China
| | - Jing Xiao
- Department of Gynecology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, People's Republic of China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine , Guangzhou, Guangdong Province, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, People's Republic of China
| |
Collapse
|
34
|
Warthi G, Seligmann H. Transcripts with systematic nucleotide deletion of 1-12 nucleotide in human mitochondrion suggest potential non-canonical transcription. PLoS One 2019; 14:e0217356. [PMID: 31120958 PMCID: PMC6532905 DOI: 10.1371/journal.pone.0217356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/09/2019] [Indexed: 11/22/2022] Open
Abstract
Raw transcriptomic data contain numerous RNA reads whose homology with template DNA doesn't match canonical transcription. Transcriptome analyses usually ignore such noncanonical RNA reads. Here, analyses search for noncanonical mitochondrial RNAs systematically deleting 1 to 12 nucleotides after each transcribed nucleotide triplet, producing deletion-RNAs (delRNAs). We detected delRNAs in the human whole cell and purified mitochondrial transcriptomes, and in Genbank's human EST database corresponding to systematic deletions of 1 to 12 nucleotides after each transcribed trinucleotide. DelRNAs detected in both transcriptomes mapped along with 55.63% of the EST delRNAs. A bias exists for delRNAs covering identical mitogenomic regions in both transcriptomic and EST datasets. Among 227 delRNAs detected in these 3 datasets, 81.1% and 8.4% of delRNAs were mapped on mitochondrial coding and hypervariable region 2 of dloop. Del-transcription analyses of GenBank's EST database confirm observations from whole cell and purified mitochondrial transcriptomes, eliminating the possibility that detected delRNAs are false positives matches, cytosolic DNA/RNA nuclear contamination or sequencing artefacts. These detected delRNAs are enriched in frameshift-inducing homopolymers and are poor in frameshift-preventing circular code codons (a set of 20 codons which regulate reading frame detection, over- and underrepresented in coding and other frames of genes, respectively) suggesting a motif-based regulation of non-canonical transcription. These findings show that rare non-canonical transcripts exist. Such non canonical del-transcription does increases mitochondrial coding potential and non-coding regulation of intracellular mechanisms, and could explain the dark DNA conundrum.
Collapse
Affiliation(s)
- Ganesh Warthi
- Aix-Marseille Université, IRD, VITROME, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| | - Hervé Seligmann
- Aix-Marseille Université, IRD, MEPHI, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
35
|
Song Y, Xuan A, Bu C, Ci D, Tian M, Zhang D. Osmotic stress-responsive promoter upstream transcripts (PROMPTs) act as carriers of MYB transcription factors to induce the expression of target genes in Populus simonii. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:164-177. [PMID: 29797449 PMCID: PMC6330638 DOI: 10.1111/pbi.12955] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/12/2018] [Accepted: 05/21/2018] [Indexed: 05/22/2023]
Abstract
Complex RNA transcription and processing produces a diverse range catalog of long noncoding RNAs (lncRNAs), important biological regulators that have been implicated in osmotic stress responses in plants. Promoter upstream transcript (PROMPT) lncRNAs share some regulatory elements with the promoters of their neighbouring protein-coding genes. However, their function remains unknown. Here, using strand-specific RNA sequencing, we identified 209 differentially regulated osmotic-responsive PROMPTs in poplar (Populus simonii). PROMPTs are transcribed bidirectionally and are more stable than other lncRNAs. Co-expression analysis of PROMPTs and protein-coding genes divided the regulatory network into five independent subnetworks including 27 network modules. Significantly enriched PROMPTs in the network were selected to validate their regulatory roles. We used delaminated layered double hydroxide lactate nanosheets (LDH-lactate-NS) to transport synthetic nucleic acids into live tissues to mimic overexpression and interference of a specific PROMPT. The altered expression of PROMPT_1281 induced the expression of its cis and trans targets, and this interaction was governed by its secondary structure rather than just its primary sequence. Based on this example, we proposed a model that a concentration gradient of PROMPT_1281 is established, which increases the probability of its interaction with targets near its transcription site that shares common motifs. Our results firstly demonstrated that PROMPT_1281 act as carriers of MYB transcription factors to induce the expression of target genes under osmotic stress. In sum, our study identified and validated a set of poplar PROMPTs that likely have regulatory functions in osmotic responses.
Collapse
Affiliation(s)
- Yuepeng Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Anran Xuan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Chenhao Bu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Dong Ci
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Min Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
36
|
Oberbauer V, Schaefer MR. tRNA-Derived Small RNAs: Biogenesis, Modification, Function and Potential Impact on Human Disease Development. Genes (Basel) 2018; 9:genes9120607. [PMID: 30563140 PMCID: PMC6315542 DOI: 10.3390/genes9120607] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
Transfer RNAs (tRNAs) are abundant small non-coding RNAs that are crucially important for decoding genetic information. Besides fulfilling canonical roles as adaptor molecules during protein synthesis, tRNAs are also the source of a heterogeneous class of small RNAs, tRNA-derived small RNAs (tsRNAs). Occurrence and the relatively high abundance of tsRNAs has been noted in many high-throughput sequencing data sets, leading to largely correlative assumptions about their potential as biologically active entities. tRNAs are also the most modified RNAs in any cell type. Mutations in tRNA biogenesis factors including tRNA modification enzymes correlate with a variety of human disease syndromes. However, whether it is the lack of tRNAs or the activity of functionally relevant tsRNAs that are causative for human disease development remains to be elucidated. Here, we review the current knowledge in regard to tsRNAs biogenesis, including the impact of RNA modifications on tRNA stability and discuss the existing experimental evidence in support for the seemingly large functional spectrum being proposed for tsRNAs. We also argue that improved methodology allowing exact quantification and specific manipulation of tsRNAs will be necessary before developing these small RNAs into diagnostic biomarkers and when aiming to harness them for therapeutic purposes.
Collapse
Affiliation(s)
- Vera Oberbauer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria.
| | - Matthias R Schaefer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria.
| |
Collapse
|
37
|
Zigáčková D, Vaňáčová Š. The role of 3' end uridylation in RNA metabolism and cellular physiology. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0171. [PMID: 30397107 DOI: 10.1098/rstb.2018.0171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Most eukaryotic RNAs are posttranscriptionally modified. The majority of modifications promote RNA maturation, others may regulate function and stability. The 3' terminal non-templated oligouridylation is a widespread modification affecting many cellular RNAs at some stage of their life cycle. It has diverse roles in RNA metabolism. The most prevalent is the regulation of stability and quality control. On the cellular and organismal level, it plays a critical role in a number of pathways, such as cell cycle regulation, cell death, development or viral infection. Defects in uridylation have been linked to several diseases. This review summarizes the current knowledge about the role of the 3' terminal oligo(U)-tailing in biology of various RNAs in eukaryotes and describes key factors involved in these pathways.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Dagmar Zigáčková
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/A35, Brno 625 00, Czech Republic
| | - Štěpánka Vaňáčová
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/A35, Brno 625 00, Czech Republic
| |
Collapse
|
38
|
The State of Long Non-Coding RNA Biology. Noncoding RNA 2018; 4:ncrna4030017. [PMID: 30103474 PMCID: PMC6162524 DOI: 10.3390/ncrna4030017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
Transcriptomic studies have demonstrated that the vast majority of the genomes of mammals and other complex organisms is expressed in highly dynamic and cell-specific patterns to produce large numbers of intergenic, antisense and intronic long non-protein-coding RNAs (lncRNAs). Despite well characterized examples, their scaling with developmental complexity, and many demonstrations of their association with cellular processes, development and diseases, lncRNAs are still to be widely accepted as major players in gene regulation. This may reflect an underappreciation of the extent and precision of the epigenetic control of differentiation and development, where lncRNAs appear to have a central role, likely as organizational and guide molecules: most lncRNAs are nuclear-localized and chromatin-associated, with some involved in the formation of specialized subcellular domains. I suggest that a reassessment of the conceptual framework of genetic information and gene expression in the 4-dimensional ontogeny of spatially organized multicellular organisms is required. Together with this and further studies on their biology, the key challenges now are to determine the structure–function relationships of lncRNAs, which may be aided by emerging evidence of their modular structure, the role of RNA editing and modification in enabling epigenetic plasticity, and the role of RNA signaling in transgenerational inheritance of experience.
Collapse
|
39
|
Hahne JC, Valeri N. Non-Coding RNAs and Resistance to Anticancer Drugs in Gastrointestinal Tumors. Front Oncol 2018; 8:226. [PMID: 29967761 PMCID: PMC6015885 DOI: 10.3389/fonc.2018.00226] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs are important regulators of gene expression and transcription. It is well established that impaired non-coding RNA expression especially the one of long non-coding RNAs and microRNAs is involved in a number of pathological conditions including cancer. Non-coding RNAs are responsible for the development of resistance to anticancer treatments as they regulate drug resistance-related genes, affect intracellular drug concentrations, induce alternative signaling pathways, alter drug efficiency via blocking cell cycle regulation, and DNA damage response. Furthermore, they can prevent therapeutic-induced cell death and promote epithelial-mesenchymal transition (EMT) and elicit non-cell autonomous mechanisms of resistance. In this review, we summarize the role of non-coding RNAs for different mechanisms resulting in drug resistance (e.g., drug transport, drug metabolism, cell cycle regulation, regulation of apoptotic pathways, cancer stem cells, and EMT) in the context of gastrointestinal cancers.
Collapse
Affiliation(s)
- Jens C. Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Department of Medicine, The Royal Marsden NHS Trust, London, United Kingdom
| |
Collapse
|
40
|
Yu D, Ma X, Zuo Z, Wang H, Meng Y. Classification of Transcription Boundary-Associated RNAs (TBARs) in Animals and Plants. Front Genet 2018; 9:168. [PMID: 29868116 PMCID: PMC5960741 DOI: 10.3389/fgene.2018.00168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/26/2018] [Indexed: 11/13/2022] Open
Abstract
There is increasing evidence suggesting the contribution of non-coding RNAs (ncRNAs) to the phenotypic and physiological complexity of organisms. A novel ncRNA species has been identified near the transcription boundaries of protein-coding genes in eukaryotes, bacteria, and archaea. This review provides a detailed description of these transcription boundary-associated RNAs (TBARs), including their classification. Based on their genomic distribution, TBARs are divided into two major groups: promoter-associated RNAs (PARs) and terminus-associated RNAs (TARs). Depending on the sequence length, each group is further classified into long RNA species (>200 nt) and small RNA species (<200 nt). According to these rules of TBAR classification, divergent ncRNAs with confusing nomenclatures, such as promoter upstream transcripts (PROMPTs), upstream antisense RNAs (uaRNAs), stable unannotated transcripts (SUTs), cryptic unstable transcripts (CUTs), upstream non-coding transcripts (UNTs), transcription start site-associated RNAs (TSSaRNAs), transcription initiation RNAs (tiRNAs), and transcription termination site-associated RNAs (TTSaRNAs), were assigned to specific classes. Although the biogenesis pathways of PARs and TARs have not yet been clearly elucidated, previous studies indicate that some of the PARs have originated either through divergent transcription or via RNA polymerase pausing. Intriguing findings regarding the functional implications of the TBARs such as the long-range “gene looping” model, which explains their role in the transcriptional regulation of protein-coding genes, are also discussed. Altogether, this review provides a comprehensive overview of the current research status of TBARs, which will promote further investigations in this research area.
Collapse
Affiliation(s)
- Dongliang Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaoxia Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ziwei Zuo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
41
|
Laudadio I, Formichetti S, Gioiosa S, Klironomos F, Rajewsky N, Macino G, Carissimi C, Fulci V. Characterization of Transcription Termination-Associated RNAs: New Insights into their Biogenesis, Tailing, and Expression in Primary Tumors. Int J Genomics 2018; 2018:1243858. [PMID: 29854718 PMCID: PMC5944193 DOI: 10.1155/2018/1243858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023] Open
Abstract
Next-generation sequencing has uncovered novel classes of small RNAs (sRNAs) in eukaryotes, in addition to the well-known miRNAs, siRNAs, and piRNAs. In particular, sRNA species arise from transcription start sites (TSSs) and the transcription termination sites (TTSs) of genes. However, a detailed characterization of these new classes of sRNAs is still lacking. Here, we present a comprehensive study of sRNAs derived from TTSs of expressed genes (TTSa-RNAs) in human cell lines and primary tissues. Taking advantage of sRNA-sequencing, we show that TTSa-RNAs are present in the nuclei of human cells, are loaded onto both AGO1 and AGO2, and their biogenesis does not require DICER and AGO2 endonucleolytic activity. TTSa-RNAs display a strong bias against a G residue in the first position at 5' end, a known feature of AGO-bound sRNAs, and a peculiar oligoA tail at 3' end. AGO-bound TTSa-RNAs derive from genes involved in cell cycle progression regulation and DNA integrity checkpoints. Finally, we provide evidence that TTSa-RNAs can be detected by sRNA-Seq in primary human tissue, and their expression increases in tumor samples as compared to nontumor tissues, suggesting that in the future, TTSa-RNAs might be explored as biomarker for diagnosis or prognosis of human malignancies.
Collapse
Affiliation(s)
- Ilaria Laudadio
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Sez Genetica Molecolare, Sapienza Università di Roma, Rome, Italy
| | - Sara Formichetti
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Sez Genetica Molecolare, Sapienza Università di Roma, Rome, Italy
| | - Silvia Gioiosa
- Istituto di Biomembrane e Bioenergetica (IBBE), CNR, Bari, Italy
| | - Filippos Klironomos
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Giuseppe Macino
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Sez Genetica Molecolare, Sapienza Università di Roma, Rome, Italy
| | - Claudia Carissimi
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Sez Genetica Molecolare, Sapienza Università di Roma, Rome, Italy
| | - Valerio Fulci
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Sez Genetica Molecolare, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
42
|
Pande A, Brosius J, Makalowska I, Makalowski W, Raabe CA. Transcriptional interference by small transcripts in proximal promoter regions. Nucleic Acids Res 2018; 46:1069-1088. [PMID: 29309647 PMCID: PMC5815073 DOI: 10.1093/nar/gkx1242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 01/15/2023] Open
Abstract
Proximal promoter regions (PPR) are heavily transcribed yielding different types of small RNAs. The act of transcription within PPRs might regulate downstream gene expression via transcriptional interference (TI). For analysis, we investigated capped and polyadenylated small RNA transcripts within PPRs of human RefSeq genes in eight different cell lines. Transcripts of our datasets overlapped with experimentally determined transcription factor binding sites (TFBS). For TFBSs intersected by these small RNA transcripts, we established negative correlation of sRNA expression levels and transcription factor (TF) DNA binding affinities; suggesting that the transcripts acted via TI. Accordingly, datasets were designated as TFbiTrs (TF-binding interfering transcripts). Expression of most TFbiTrs was restricted to certain cell lines. This facilitated the analysis of effects related to TFbiTr expression for the same RefSeq genes across cell lines. We consistently uncovered higher relative TF/DNA binding affinities and concomitantly higher expression levels for RefSeq genes in the absence of TFbiTrs. Analysis of corresponding chromatin landscapes supported these results. ChIA-PET revealed the participation of distal enhancers in TFbiTr transcription. Enhancers regulating TFbiTrs, in effect, act as repressors for corresponding downstream RefSeq genes. We demonstrate the significant impact of TI on gene expression using selected small RNA datasets.
Collapse
Affiliation(s)
- Amit Pande
- Institute of Bioinformatics, University of Muenster, Niels-Stensen-Strasse 14, D-48149 Muenster, Germany
- Institute of Experimental Pathology (ZMBE), Centre for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Strasse 56, D-48149 Muenster, Germany
- Brandenburg Medical School (MHB), Fehrbelliner Strasse 38, D-16816 Neuruppin, Germany
| | - Jürgen Brosius
- Institute of Experimental Pathology (ZMBE), Centre for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Strasse 56, D-48149 Muenster, Germany
- Brandenburg Medical School (MHB), Fehrbelliner Strasse 38, D-16816 Neuruppin, Germany
| | - Izabela Makalowska
- Laboratory of Functional Genomics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Wojciech Makalowski
- Institute of Bioinformatics, University of Muenster, Niels-Stensen-Strasse 14, D-48149 Muenster, Germany
| | - Carsten A Raabe
- Institute of Experimental Pathology (ZMBE), Centre for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Strasse 56, D-48149 Muenster, Germany
- Brandenburg Medical School (MHB), Fehrbelliner Strasse 38, D-16816 Neuruppin, Germany
- Institute of Medical Biochemistry (ZMBE), Centre for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Strasse 56, D-48149 Muenster, Germany
| |
Collapse
|
43
|
Sannigrahi MK, Sharma R, Panda NK, Khullar M. Role of non-coding RNAs in head and neck squamous cell carcinoma: A narrative review. Oral Dis 2017; 24:1417-1427. [PMID: 28941018 DOI: 10.1111/odi.12782] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/23/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide with high recurrence, metastasis, and poor treatment outcome. Recent studies have reported that non-coding RNA (ncRNA) might play critical role in regulating different types of cancer. MicroRNAs (miRs) are short ncRNAs (20-25 nucleotides) responsible for post-transcriptional regulation of gene expression and may have a role in oncogenesis by acting as oncomiRs or tumor suppressor miRs. Long non-coding RNAs (lncRNAs) are heterogenous group of ncRNAs more than 200 nucleotides long, can act in cis and/or in trans, and have been also implicated in carcinogenesis. These molecules have been suggested to be promising candidates as diagnostic and prognostic biomarkers and for development of novel therapeutic approaches. In this review, we have summarized recent findings on role of these ncRNAs in HPV-negative (HPV-ve) and HPV-positive (HPV+ve) HNSCC. The available literature supports differential expression of both microRNAs and long non-coding RNAs, which include oncogenic ncRNAs (miR-21, miR-31, miR-155, miR-211, HOTAIR, and MALAT1) and tumor suppressor ncRNAs (let7d, miR-17, miR-375, miR-139, and MEG3) in HPV+ve HNSCC tumors as compared to HPV-ve tumors and they have distinct role in the pathophysiology of these two types of HNSCCs.
Collapse
Affiliation(s)
- M K Sannigrahi
- Department of Otolaryngology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - R Sharma
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - N K Panda
- Department of Otolaryngology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - M Khullar
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| |
Collapse
|
44
|
Uyar B, Yusuf D, Wurmus R, Rajewsky N, Ohler U, Akalin A. RCAS: an RNA centric annotation system for transcriptome-wide regions of interest. Nucleic Acids Res 2017; 45:e91. [PMID: 28334930 PMCID: PMC5449606 DOI: 10.1093/nar/gkx120] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/11/2017] [Indexed: 12/22/2022] Open
Abstract
In the field of RNA, the technologies for studying the transcriptome have created a tremendous potential for deciphering the puzzles of the RNA biology. Along with the excitement, the unprecedented volume of RNA related omics data is creating great challenges in bioinformatics analyses. Here, we present the RNA Centric Annotation System (RCAS), an R package, which is designed to ease the process of creating gene-centric annotations and analysis for the genomic regions of interest obtained from various RNA-based omics technologies. The design of RCAS is modular, which enables flexible usage and convenient integration with other bioinformatics workflows. RCAS is an R/Bioconductor package but we also created graphical user interfaces including a Galaxy wrapper and a stand-alone web service. The application of RCAS on published datasets shows that RCAS is not only able to reproduce published findings but also helps generate novel knowledge and hypotheses. The meta-gene profiles, gene-centric annotation, motif analysis and gene-set analysis provided by RCAS provide contextual knowledge which is necessary for understanding the functional aspects of different biological events that involve RNAs. In addition, the array of different interfaces and deployment options adds the convenience of use for different levels of users. RCAS is available at http://bioconductor.org/packages/release/bioc/html/RCAS.html and http://rcas.mdc-berlin.de.
Collapse
Affiliation(s)
| | | | | | | | - Uwe Ohler
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | | |
Collapse
|
45
|
Liu X, Guan Y, Wang L, Niu Y. MicroRNA-10b expression in node-negative breast cancer-correlation with metastasis and angiogenesis. Oncol Lett 2017; 14:5845-5852. [PMID: 29113216 PMCID: PMC5661387 DOI: 10.3892/ol.2017.6914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/10/2017] [Indexed: 12/19/2022] Open
Abstract
Metastasis accounts for the majority of cases of mortality in patients with axillary lymph node-negative (ANN) breast cancer. Angiogenesis is an essential component of the metastatic pathway. Studies regarding microRNA (miR)-10b expression in patients with ANN breast cancer and the function of angiogenesis in breast cancer remain scarce. The present study was performed in order to determine the biological significance of miR-10b, and investigate the association between miR-10b and microvessel density (MVD) measured in ANN breast cancer. miR-10b expression and immunohistochemical analysis for MVD were assessed in 195 patients with ANN of invasive ductal carcinoma, including 65 cases with distant metastasis 'poor group', and 130 cases without any recurrence 'good group'. miR-10b expression was higher in the 'poor group' (73.8%) compared with that in the 'good group' (51.5%; P=0.003). Multivariate logistic regression demonstrated that miR-10b retained independent prognostic significance for distant metastasis along with MVD and vascular invasion. Among 195 patients, miR-10b expression was significantly associated with tumor grade, tumor size and molecular subtypes (P<0.05). In addition, miR-10b expression was positively associated with the MVD count (r=0.370; P<0.001), tumor grade (r=0.168; P=0.019) and tumor size (r=0.175; P=0.014). The results of the current study suggest that miR-10b is a useful marker for predicting metastasis and angiogenesis in ANN breast cancer.
Collapse
Affiliation(s)
- Xia Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China.,Department of Oncology, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China
| | - Yong Guan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| | - Li Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| | - Yun Niu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| |
Collapse
|
46
|
Noguchi S, Arakawa T, Fukuda S, Furuno M, Hasegawa A, Hori F, Ishikawa-Kato S, Kaida K, Kaiho A, Kanamori-Katayama M, Kawashima T, Kojima M, Kubosaki A, Manabe RI, Murata M, Nagao-Sato S, Nakazato K, Ninomiya N, Nishiyori-Sueki H, Noma S, Saijyo E, Saka A, Sakai M, Simon C, Suzuki N, Tagami M, Watanabe S, Yoshida S, Arner P, Axton RA, Babina M, Baillie JK, Barnett TC, Beckhouse AG, Blumenthal A, Bodega B, Bonetti A, Briggs J, Brombacher F, Carlisle AJ, Clevers HC, Davis CA, Detmar M, Dohi T, Edge AS, Edinger M, Ehrlund A, Ekwall K, Endoh M, Enomoto H, Eslami A, Fagiolini M, Fairbairn L, Farach-Carson MC, Faulkner GJ, Ferrai C, Fisher ME, Forrester LM, Fujita R, Furusawa JI, Geijtenbeek TB, Gingeras T, Goldowitz D, Guhl S, Guler R, Gustincich S, Ha TJ, Hamaguchi M, Hara M, Hasegawa Y, Herlyn M, Heutink P, Hitchens KJ, Hume DA, Ikawa T, Ishizu Y, Kai C, Kawamoto H, Kawamura YI, Kempfle JS, Kenna TJ, Kere J, Khachigian LM, Kitamura T, Klein S, Klinken SP, Knox AJ, Kojima S, Koseki H, Koyasu S, Lee W, Lennartsson A, Mackay-sim A, Mejhert N, Mizuno Y, Morikawa H, Morimoto M, Moro K, Morris KJ, Motohashi H, et alNoguchi S, Arakawa T, Fukuda S, Furuno M, Hasegawa A, Hori F, Ishikawa-Kato S, Kaida K, Kaiho A, Kanamori-Katayama M, Kawashima T, Kojima M, Kubosaki A, Manabe RI, Murata M, Nagao-Sato S, Nakazato K, Ninomiya N, Nishiyori-Sueki H, Noma S, Saijyo E, Saka A, Sakai M, Simon C, Suzuki N, Tagami M, Watanabe S, Yoshida S, Arner P, Axton RA, Babina M, Baillie JK, Barnett TC, Beckhouse AG, Blumenthal A, Bodega B, Bonetti A, Briggs J, Brombacher F, Carlisle AJ, Clevers HC, Davis CA, Detmar M, Dohi T, Edge AS, Edinger M, Ehrlund A, Ekwall K, Endoh M, Enomoto H, Eslami A, Fagiolini M, Fairbairn L, Farach-Carson MC, Faulkner GJ, Ferrai C, Fisher ME, Forrester LM, Fujita R, Furusawa JI, Geijtenbeek TB, Gingeras T, Goldowitz D, Guhl S, Guler R, Gustincich S, Ha TJ, Hamaguchi M, Hara M, Hasegawa Y, Herlyn M, Heutink P, Hitchens KJ, Hume DA, Ikawa T, Ishizu Y, Kai C, Kawamoto H, Kawamura YI, Kempfle JS, Kenna TJ, Kere J, Khachigian LM, Kitamura T, Klein S, Klinken SP, Knox AJ, Kojima S, Koseki H, Koyasu S, Lee W, Lennartsson A, Mackay-sim A, Mejhert N, Mizuno Y, Morikawa H, Morimoto M, Moro K, Morris KJ, Motohashi H, Mummery CL, Nakachi Y, Nakahara F, Nakamura T, Nakamura Y, Nozaki T, Ogishima S, Ohkura N, Ohno H, Ohshima M, Okada-Hatakeyama M, Okazaki Y, Orlando V, Ovchinnikov DA, Passier R, Patrikakis M, Pombo A, Pradhan-Bhatt S, Qin XY, Rehli M, Rizzu P, Roy S, Sajantila A, Sakaguchi S, Sato H, Satoh H, Savvi S, Saxena A, Schmidl C, Schneider C, Schulze-Tanzil GG, Schwegmann A, Sheng G, Shin JW, Sugiyama D, Sugiyama T, Summers KM, Takahashi N, Takai J, Tanaka H, Tatsukawa H, Tomoiu A, Toyoda H, van de Wetering M, van den Berg LM, Verardo R, Vijayan D, Wells CA, Winteringham LN, Wolvetang E, Yamaguchi Y, Yamamoto M, Yanagi-Mizuochi C, Yoneda M, Yonekura Y, Zhang PG, Zucchelli S, Abugessaisa I, Arner E, Harshbarger J, Kondo A, Lassmann T, Lizio M, Sahin S, Sengstag T, Severin J, Shimoji H, Suzuki M, Suzuki H, Kawai J, Kondo N, Itoh M, Daub CO, Kasukawa T, Kawaji H, Carninci P, Forrest AR, Hayashizaki Y. FANTOM5 CAGE profiles of human and mouse samples. Sci Data 2017; 4:170112. [PMID: 28850106 PMCID: PMC5574368 DOI: 10.1038/sdata.2017.112] [Show More Authors] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/25/2017] [Indexed: 01/22/2023] Open
Abstract
In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.
Collapse
Affiliation(s)
- Shuhei Noguchi
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Takahiro Arakawa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Shiro Fukuda
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Masaaki Furuno
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Akira Hasegawa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Fumi Hori
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Sachi Ishikawa-Kato
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Kaoru Kaida
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Ai Kaiho
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | | | - Tsugumi Kawashima
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Miki Kojima
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | | | - Ri-ichiroh Manabe
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Mitsuyoshi Murata
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Sayaka Nagao-Sato
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | | | - Noriko Ninomiya
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Hiromi Nishiyori-Sueki
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Shohei Noma
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Eri Saijyo
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Akiko Saka
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Mizuho Sakai
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | | | - Naoko Suzuki
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Michihira Tagami
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Shoko Watanabe
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | | | - Peter Arner
- Department of Medicine, Karolinska Institutet, 141 86, Stockholm, Sweden
- Karolinska University Hospital, Center for Metabolism and Endocrinology, 141 86, Stockholm, Sweden
| | - Richard A. Axton
- Scottish Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Magda Babina
- Department of Dermatology and Allergy, Charite University Medicine Berlin, Charitéplatz 1, 10117 Berlin, German
| | - J. Kenneth Baillie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK
| | - Timothy C. Barnett
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Antje Blumenthal
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102 Australia
| | - Beatrice Bodega
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Alessandro Bonetti
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - James Briggs
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, St Lucia, QLD 4072, Australia
| | - Frank Brombacher
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
- Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC), University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Ailsa J. Carlisle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK
| | - Hans C. Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- University Medical Centre Utrecht, Postbus 85500, 3508 GA Utrecht, The Netherlands
| | - Carrie A. Davis
- Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11797, USA
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 3, HCI H 303, 8093 Zurich, Switzerland
| | - Taeko Dohi
- Gastroenterology, Research Center for Hepatitis and Immunology, Research Institute National Center for Global Health and Medicine, Ichikawa, Chiba 272-8516, Japan
| | - Albert S.B. Edge
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Matthias Edinger
- Department of Internal Medicine III, University Hospital Regensburg, F.-J.-Strauss Allee 11, D-93053 Regensburg, Germany
- RCI Regensburg Centre for Interventional Immunology, University Hospital Regensburg, F.-J.-Strauss Allee 11, D-93053 Regensburg, Germany
| | - Anna Ehrlund
- Department of Medicine, Karolinska Institutet, 141 86, Stockholm, Sweden
- Karolinska University Hospital, Center for Metabolism and Endocrinology, 141 86, Stockholm, Sweden
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Halsovagen 7-9, SE-141 83 Huddinge, Sweden
| | - Mitsuhiro Endoh
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Hideki Enomoto
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, Chuou-ku, Kobe 650-0047, Japan
| | - Afsaneh Eslami
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Michela Fagiolini
- F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Lynsey Fairbairn
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK
| | - Mary C. Farach-Carson
- The University of Texas Health Science Center at Houston, Houston, TX 77251-1892, USA
| | - Geoffrey J. Faulkner
- Cancer Biology Program, Mater Medical Research Institute, South Brisbane, Queensland 4101, Australia
| | - Carmelo Ferrai
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center, Robert Roessle Str.10, 13125 Berlin, Germany
| | - Malcolm E. Fisher
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK
| | - Lesley M. Forrester
- Scottish Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Rie Fujita
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Jun-ichi Furusawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Teunis B. Geijtenbeek
- Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Thomas Gingeras
- Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11797, USA
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Sven Guhl
- Department of Dermatology and Allergy, Charite University Medicine Berlin, Charitéplatz 1, 10117 Berlin, German
| | - Reto Guler
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
- Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC), University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Stefano Gustincich
- Neuroscience, SISSA, Via Bonomea 265, 34136 Trieste, Italy
- Department of Neuroscience and Brian Technologies, Italian Istitute of Technology, Via Morego 30, Genova, Italy
| | - Thomas J. Ha
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Masahide Hamaguchi
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mitsuko Hara
- RIKEN Center for Life Science Technologies, Wako, Saitama 351-0198, Japan
| | - Yuki Hasegawa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Meenhard Herlyn
- Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Otfried Müller Straße 23, 72076 Tübingen, Germany
| | - Kelly J. Hitchens
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, St Lucia, QLD 4072, Australia
| | - David A. Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK
| | - Tomokatsu Ikawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yuri Ishizu
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Chieko Kai
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroshi Kawamoto
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yuki I. Kawamura
- Gastroenterology, Research Center for Hepatitis and Immunology, Research Institute National Center for Global Health and Medicine, Ichikawa, Chiba 272-8516, Japan
| | - Judith S. Kempfle
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Tony J. Kenna
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Halsovagen 7-9, SE-141 83 Huddinge, Sweden
- Department of Genetics and Molecular Medicine, King's College London, Guy’s St Thomas Street, London, UK
| | - Levon M. Khachigian
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia
- Vascular Biology and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Toshio Kitamura
- Division of Cellular Therapy and Division of Stem Cell Signaling, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Sarah Klein
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 3, HCI H 303, 8093 Zurich, Switzerland
| | - S. Peter Klinken
- Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Alan J. Knox
- Respiratory Medicine, University of Nottingham, Hucknall Road, Nottingham NG5 1PB, UK
| | - Soichi Kojima
- RIKEN Center for Life Science Technologies, Wako, Saitama 351-0198, Japan
| | - Haruhiko Koseki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Shigeo Koyasu
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Weonju Lee
- Dermatology, School of Medicine Kyungpook National University, Jung-gu, Daegu 41944, Korea
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Halsovagen 7-9, SE-141 83 Huddinge, Sweden
| | | | - Niklas Mejhert
- Department of Medicine, Karolinska Institutet, 141 86, Stockholm, Sweden
- Karolinska University Hospital, Center for Metabolism and Endocrinology, 141 86, Stockholm, Sweden
| | - Yosuke Mizuno
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
| | - Hiromasa Morikawa
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mitsuru Morimoto
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, Chuou-ku, Kobe 650-0047, Japan
| | - Kazuyo Moro
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kelly J. Morris
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center, Robert Roessle Str.10, 13125 Berlin, Germany
| | - Hozumi Motohashi
- Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Christine L. Mummery
- Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Yutaka Nakachi
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
| | - Fumio Nakahara
- Division of Cellular Therapy and Division of Stem Cell Signaling, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Toshiyuki Nakamura
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Tadasuke Nozaki
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Soichi Ogishima
- Department of Bioclinical Informatics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
| | - Naganari Ohkura
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Mitsuhiro Ohshima
- Department of Biochemistry, Ohu University School of Pharmaceutical Sciences, Koriyama, Fukushima 963-8611 Japan
| | - Mariko Okada-Hatakeyama
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Insitute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasushi Okazaki
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
| | - Valerio Orlando
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
- Environmental Epigenetics Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Dmitry A. Ovchinnikov
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, St Lucia, QLD 4072, Australia
| | - Robert Passier
- Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Margaret Patrikakis
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ana Pombo
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center, Robert Roessle Str.10, 13125 Berlin, Germany
| | | | - Xian-Yang Qin
- RIKEN Center for Life Science Technologies, Wako, Saitama 351-0198, Japan
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, F.-J.-Strauss Allee 11, D-93053 Regensburg, Germany
- RCI Regensburg Centre for Interventional Immunology, University Hospital Regensburg, F.-J.-Strauss Allee 11, D-93053 Regensburg, Germany
| | - Patrizia Rizzu
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Otfried Müller Straße 23, 72076 Tübingen, Germany
| | - Sugata Roy
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Antti Sajantila
- Hjelt Institute, Department of Forensic Medicine, University of Helsinki, Kytosuontie 11, 003000 Helsinki, Finland
| | - Shimon Sakaguchi
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroki Sato
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hironori Satoh
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Suzana Savvi
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
- Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC), University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Alka Saxena
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Christian Schmidl
- Department of Internal Medicine III, University Hospital Regensburg, F.-J.-Strauss Allee 11, D-93053 Regensburg, Germany
| | | | - Gundula G. Schulze-Tanzil
- Department of Orthopedic, Trauma and Reconstructive Surgery, Charite Universitatsmedizin Berlin, Charitéplatz 1, 10117 Berlin, German
| | - Anita Schwegmann
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
- Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC), University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan
| | - Jay W. Shin
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Daisuke Sugiyama
- Department of Clinical Study, Center for Advanced Medical Innovation, Kyushu University, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Takaaki Sugiyama
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Kim M. Summers
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK
| | - Naoko Takahashi
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Jun Takai
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hiroshi Tanaka
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hideki Tatsukawa
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Andru Tomoiu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK
| | - Hiroo Toyoda
- Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Marc van de Wetering
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Linda M. van den Berg
- Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Roberto Verardo
- Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie (LNCIB), Padriciano 99, 34149 Trieste, Italy
| | - Dipti Vijayan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Christine A. Wells
- Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, MDHS, University of Melbourne, Melbourne, VIC 3010, Australia
| | | | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, St Lucia, QLD 4072, Australia
| | - Yoko Yamaguchi
- Department of Biochemistry, Nihon University School of Dentistry, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Chiyo Yanagi-Mizuochi
- Center for Clinical and Translational Reseach, Kyushu University Hospital, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Misako Yoneda
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yohei Yonekura
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, Chuou-ku, Kobe 650-0047, Japan
| | - Peter G. Zhang
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | - Imad Abugessaisa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Erik Arner
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Jayson Harshbarger
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Atsushi Kondo
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Timo Lassmann
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
- Telethon Kids Institute, the University of Western Australia, Perth, WA, Australia
| | - Marina Lizio
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Serkan Sahin
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | | | - Jessica Severin
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Hisashi Shimoji
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
- Preventive medicine and applied genomics unit, RIKEN Advanced Center for Computing and Communication, Yokohama, Kanagawa 230-0045, Japan
| | - Masanori Suzuki
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Harukazu Suzuki
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Jun Kawai
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama 351-0198, Japan
| | - Naoto Kondo
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Masayoshi Itoh
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama 351-0198, Japan
| | - Carsten O. Daub
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
- Department of Biosciences and Nutrition, Karolinska Institutet, Halsovagen 7-9, SE-141 83 Huddinge, Sweden
| | - Takeya Kasukawa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Hideya Kawaji
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
- Preventive medicine and applied genomics unit, RIKEN Advanced Center for Computing and Communication, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama 351-0198, Japan
| | - Piero Carninci
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Alistair R.R. Forrest
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
- Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Yoshihide Hayashizaki
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama 351-0198, Japan
| |
Collapse
|
47
|
An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol 2017; 35:872-878. [PMID: 28829439 DOI: 10.1038/nbt.3947] [Citation(s) in RCA: 383] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/25/2017] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions.
Collapse
|
48
|
Two novel lncRNAs discovered in human mitochondrial DNA using PacBio full-length transcriptome data. Mitochondrion 2017; 38:41-47. [PMID: 28802668 DOI: 10.1016/j.mito.2017.08.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/11/2017] [Accepted: 08/07/2017] [Indexed: 11/23/2022]
Abstract
In this study, we established a general framework to use PacBio full-length transcriptome sequencing for the investigation of mitochondrial RNAs. As a result, we produced the first full-length human mitochondrial transcriptome using public PacBio data and characterized the human mitochondrial genome with more comprehensive and accurate information. Other results included determination of the H-strand primary transcript, identification of the ND5/ND6AS/tRNAGluAS transcript, discovery of palindrome small RNAs (psRNAs) and construction of the "mitochondrial cleavage" model, etc. These results reported for the first time in this study fundamentally changed annotations of human mitochondrial genome and enriched knowledge in the field of animal mitochondrial studies. The most important finding was two novel long non-coding RNAs (lncRNAs) of MDL1 and MDL1AS exist ubiquitously in animal mitochondrial genomes.
Collapse
|
49
|
Yadav S, Shekhawat M, Jahagirdar D, Kumar Sharma N. Natural and artificial small RNAs: a promising avenue of nucleic acid therapeutics for cancer. Cancer Biol Med 2017; 14:242-253. [PMID: 28884041 PMCID: PMC5570601 DOI: 10.20892/j.issn.2095-3941.2017.0038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/22/2017] [Indexed: 01/02/2023] Open
Abstract
Since the failure of traditional therapy, gene therapy using functional DNA sequence and small RNA/DNA molecules (oligonucleotide) has become a promising avenue for cancer treatment. The discovery of RNA molecules has impelled researchers to investigate small regulatory RNA from various natural and artificial sources and determine a cogent target for controlling tumor progression. Small regulatory RNAs are used for therapeutic silencing of oncogenes and aberrant DNA repair response genes. Despite their advantages, therapies based on small RNAs exhibit limitations in terms of stability of therapeutic drugs, precision-based delivery in tissues, precision-based intercellular and intracellular targeting, and tumor heterogeneity-based responses. In this study, we summarize the potential and drawbacks of small RNAs in nucleic acid therapeutics for cancer.
Collapse
Affiliation(s)
- Sunny Yadav
- Cancer and Translational Research Lab, Dr. D.Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Mamta Shekhawat
- Cancer and Translational Research Lab, Dr. D.Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Devashree Jahagirdar
- Cancer and Translational Research Lab, Dr. D.Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| |
Collapse
|
50
|
Brandão BB, Guerra BA, Mori MA. Shortcuts to a functional adipose tissue: The role of small non-coding RNAs. Redox Biol 2017; 12:82-102. [PMID: 28214707 PMCID: PMC5312655 DOI: 10.1016/j.redox.2017.01.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Metabolic diseases such as type 2 diabetes are a major public health issue worldwide. These diseases are often linked to a dysfunctional adipose tissue. Fat is a large, heterogenic, pleiotropic and rather complex tissue. It is found in virtually all cavities of the human body, shows unique plasticity among tissues, and harbors many cell types in addition to its main functional unit - the adipocyte. Adipose tissue function varies depending on the localization of the fat depot, the cell composition of the tissue and the energy status of the organism. While the white adipose tissue (WAT) serves as the main site for triglyceride storage and acts as an important endocrine organ, the brown adipose tissue (BAT) is responsible for thermogenesis. Beige adipocytes can also appear in WAT depots to sustain heat production upon certain conditions, and it is becoming clear that adipose tissue depots can switch phenotypes depending on cell autonomous and non-autonomous stimuli. To maintain such degree of plasticity and respond adequately to changes in the energy balance, three basic processes need to be properly functioning in the adipose tissue: i) adipogenesis and adipocyte turnover, ii) metabolism, and iii) signaling. Here we review the fundamental role of small non-coding RNAs (sncRNAs) in these processes, with focus on microRNAs, and demonstrate their importance in adipose tissue function and whole body metabolic control in mammals.
Collapse
Affiliation(s)
- Bruna B Brandão
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Beatriz A Guerra
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Marcelo A Mori
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, Brazil.
| |
Collapse
|