1
|
Politano D, Marazzi F, Scognamillo I, Morelli F, Signorini S, Gana S, Nicolosi S, Rognone E, Borgatti R, Valente EM, Romaniello R. A de novo ZMYM2 gene variant associated to a Rett-like phenotype: Case report of a new phenotype and review of the literature. Brain Dev 2025; 47:104351. [PMID: 40112685 DOI: 10.1016/j.braindev.2025.104351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND ZMYM2 heterozygous pathogenic variants cause an ultra-rare disease characterized by a broad clinical phenotype. This condition has been named neurodevelopmental-craniofacial syndrome with variable renal and cardiac abnormalities (NECRC, MIM#619522). Associated anomalies include congenital abnormalities of the kidney and urinary tract (CAKUT), non-specific facial, cardiac, and skeletal abnormalities, along with a variety of neurodevelopmental disorders. Other abnormalities reported in some patients include infantile hypotonia, poor growth, microcephaly, hypospadias, and motor stereotypies. Recently, one patient with cerebral palsy embedded in a complex phenotype was reported to carry a pathogenic ZMYM2 variant. CASE PRESENTATION This study presents the case of a 13-year-old girl carrying a de novo ZMYM2 heterozygous pathogenic variant. The patient displayed a Rett-like phenotype, associated with non-specific features such as precocious puberty, short stature, facial dysmorphisms, and spastic diplegia. CONCLUSIONS This case expands the known clinical phenotype associated with ZMYM2 pathogenic variants, suggesting for the first time a possible link to Rett-like syndromes.
Collapse
Affiliation(s)
- Davide Politano
- Department of Brain and Behavior Neuroscience, University of Pavia, Pavia, Italy; Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Francesca Marazzi
- Department of Brain and Behavior Neuroscience, University of Pavia, Pavia, Italy; Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Ilaria Scognamillo
- Department of Brain and Behavior Neuroscience, University of Pavia, Pavia, Italy; Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Federica Morelli
- Service des Troubles du Spectre de l'Autisme et apparentés, Département de psychiatrie, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Sabrina Signorini
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Simone Gana
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy.
| | - Silvia Nicolosi
- Diagnostic Imaging Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy; Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Elisa Rognone
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Renato Borgatti
- Department of Brain and Behavior Neuroscience, University of Pavia, Pavia, Italy; Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Enza Maria Valente
- Department of Brain and Behavior Neuroscience, University of Pavia, Pavia, Italy; Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Romina Romaniello
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
2
|
Boucherie C, Alkailani M, Jossin Y, Ruiz-Reig N, Mahdi A, Aldaalis A, Aittaleb M, Tissir F. Auts2 enhances neurogenesis and promotes expansion of the cerebral cortex. J Adv Res 2025; 72:151-163. [PMID: 39013538 DOI: 10.1016/j.jare.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/28/2023] [Accepted: 07/13/2024] [Indexed: 07/18/2024] Open
Abstract
INTRODUCTION The AUTS2 gene is associated with various neurodevelopmental and psychiatric disorders and has been suggested to play a role in acquiring human-specific traits. Functional analyses of Auts2 knockout mice have focused on postmitotic neurons, and the reported phenotypes do not faithfully recapitulate the whole spectrum of AUTS2-related human diseases. OBJECTIVE The objective of the study is to assess the role of AUTS2 in the biology of neural progenitor cells, cortical neurogenesis and expansion; and understand how its deregulation leads to neurological disorders. METHODS We screened the literature and conducted a time point analysis of AUTS2 expression during cortical development. We used in utero electroporation to acutely modulate the expression level of AUTS2 in the developing cerebral cortex in vivo, and thoroughly characterized cortical neurogenesis and morphogenesis using immunofluorescence, cell tracing and sorting, transcriptomic profiling, and gene ontology enrichment analyses. RESULTS In addition to its expression in postmitotic neurons, we showed that AUTS2 is also expressed in neural progenitor cells at the peak of neurogenesis. Upregulation of AUTS2 dramatically altered the differentiation program and fate determination of cortical progenitors. Notably, it increased the number of basal progenitors and neurons and changed the expression of hundreds of genes, among which 444 have not been implicated in mouse brain development or function. CONCLUSION The study provides evidence that AUTS2 is expressed in germinal zones and plays a key role in fate decision of neural progenitor cells with impact on corticogenesis. It also presents comprehensive lists of AUTS2 target genes thus advancing the molecular mechanisms underlying AUTS2-associated diseases and the evolutionary expansion of the cerebral cortex.
Collapse
Affiliation(s)
- Cédric Boucherie
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Maisa Alkailani
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Yves Jossin
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Nuria Ruiz-Reig
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Asma Mahdi
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Arwa Aldaalis
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Mohamed Aittaleb
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Fadel Tissir
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium; Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar.
| |
Collapse
|
3
|
Makwana R, Christ C, Patel R, Marchi E, Harpell R, Lyon GJ. Natural History of NAA15 -Related Neurodevelopmental Disorder Through Adolescence. Am J Med Genet A 2025; 197:e64009. [PMID: 39991982 PMCID: PMC12052496 DOI: 10.1002/ajmg.a.64009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 02/25/2025]
Abstract
The NatA N-terminal acetyltransferase complex is composed of the NAA10 catalytic subunit and the auxiliary subunits NAA15 and HYPK. While those with variants in the enzymatic subunit develop Ogden Syndrome, individuals with variants in the NAA15 coding region develop NAA15-related neurodevelopmental syndrome, which presents with a wide array of manifestations that affect the heart, brain, musculoskeletal system, and behavioral and cognitive development. We tracked a cohort of 27 participants (9 females and 18 males) with pathogenic NAA15 variants over time and administered the Vineland-3 assessment to assess their adaptive functioning. We found that this cohort performed significantly worse compared to the normalized Vineland values. On average, females performed better than males, and they performed significantly better on the motor domain and fine motor sub-domain portions of the assessment. Over time, females showed a significant decrease in adaptive functioning, primarily in the daily living skills and motor domains. Males (after excluding one outlier) showed a moderate positive correlation between age and adaptive behavior composite (ABC) standard score. Despite a similar etiology caused by dysfunction in the NatA complex, NAA15-related neurodevelopmental disorder appears to have a weaker effect on adaptive behavior than Ogden Syndrome. However, these differences are based on comparisons to similar literature, as opposed to head-to-head testing. Lastly, comparisons between probands with loss of function variants in NAA15 and those with missense variants showed no significant differences in adaptive behavior metrics. Ultimately, additional longitudinal data should be collected to determine the validity of the between sex differences and to better understand the change in adaptive behavioral outcomes of individuals with NAA15-neurodevelopmental disorder as they age.
Collapse
Affiliation(s)
- Rikhil Makwana
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Carolina Christ
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Rahi Patel
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Randie Harpell
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Gholson J. Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, United States of America
| |
Collapse
|
4
|
Anderson KJ, Thorolfsdottir ET, Nodelman IM, Halldorsdottir ST, Benonisdottir S, Alghamdi M, Almontashiri N, Barry BJ, Begemann M, Britton JF, Burke S, Cogne B, Cohen AS, de Diego Boguñá C, Eichler EE, Engle EC, Fahrner JA, Faivre L, Fradin M, Fuhrmann N, Gao CW, Garg G, Grečmalová D, Grippa M, Harris JR, Hoekzema K, Hershkovitz T, Hubbard S, Janssens K, Jurgens JA, Kmoch S, Knopp C, Koptagel MA, Ladha FA, Lapunzina P, Lindau T, Meuwissen M, Minicucci A, Neuhaus E, Nizon M, Nosková L, Park K, Patel C, Pfundt R, Prasun P, Rahner N, Robin NH, Ronspies C, Roohi J, Rosenfeld J, Saenz M, Saunders C, Stark Z, Thiffault I, Thull S, Velasco D, Velmans C, Verseput J, Vitobello A, Wang T, Weiss K, Wentzensen IM, Pilarowski G, Eysteinsson T, Gillentine M, Stefánsson K, Helgason A, Bowman GD, Bjornsson HT. Androgens mediate sexual dimorphism in Pilarowski-Bjornsson Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.05.06.25326635. [PMID: 40385454 PMCID: PMC12083630 DOI: 10.1101/2025.05.06.25326635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Sex-specific penetrance in autosomal dominant Mendelian conditions is largely understudied. The neurodevelopmental disorder Pilarowski-Bjornsson syndrome (PILBOS) was initially described in females. Here, we describe the clinical and genetic characteristics of the largest PILBOS cohort to date, showing that both sexes can exhibit PILBOS features, although males are overrepresented. A mouse model carrying a human-derived Chd1 missense variant (Chd1 R616Q/+) displays female-restricted phenotypes, including growth deficiency, anxiety and hypotonia. Orchiectomy unmasks a growth deficiency phenotype in male Chd1 R616Q/+ mice, while testosterone rescues the phenotype in females, implicating androgens in phenotype modulation. In the gnomAD and UK Biobank databases, rare missense variants in CHD1 are overrepresented in males, supporting a male protective effect. We identify 33 additional highly constrained autosomal genes with missense variant overrepresentation in males. Our results support androgen-regulated sexual dimorphism in PILBOS and open novel avenues to understand the mechanistic basis of sexual dimorphism in other autosomal Mendelian disorders.
Collapse
Affiliation(s)
- Kimberley Jade Anderson
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Ilana M. Nodelman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Sara Tholl Halldorsdottir
- The Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Stefania Benonisdottir
- Institute of Physical Sciences, University of Iceland, Reykjavik, Iceland
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK
| | - Malak Alghamdi
- Medical Genetics Division, Pediatric Department, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Naif Almontashiri
- College of Applied Medical Sciences and Center for Genetics and Inherited Diseases, Taibah University, Madinah, Kingdom of Saudi Arabia
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Brenda J. Barry
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jacquelyn F. Britton
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Burke
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benjamin Cogne
- Nantes Université, CHU de Nantes, CNRS, INSERM, l’institut du thorax, F-44000 Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique médicale, F-44000 Nantes, France
| | - Ana S.A. Cohen
- Department of Pathology and Laboratory Medicine, Genomic Medicine Center, Children’s Mercy-Kansas City, Kansas City, MO, USA
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | | | - Evan E. Eichler
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Elizabeth C. Engle
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jill A. Fahrner
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laurence Faivre
- INSERM UMR1231, GAD team, Univeristé de Bourgogne Europe, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, de l’Interrégion Est, Centre Hospitalier Universitaire Dijon, 21079 Dijon, France
| | - Mélanie Fradin
- Service de Genetique Medicale, Centre Labellisé Anomalies du Développement de l’Ouest, CHU Rennes, Rennes, France
| | - Nico Fuhrmann
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christine W. Gao
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gunjan Garg
- Department of Clinical Genetics, Liverpool Hospital, Sydney, New South Wales, Australia
- Hunter Genetics, Waratah, New South Wales, Australia
- School of Women’s and Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Dagmar Grečmalová
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Czech Republic
| | - Mina Grippa
- SSD Medical Genetics, Maternal and Child Department, AOU Policlinico Modena, Modena, Italy
| | - Jacqueline R. Harris
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Department of Neurology, Baltimore, Maryland, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Sydney Hubbard
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Katrien Janssens
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Julie A. Jurgens
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Meral Aktas Koptagel
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Farah A. Ladha
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, USA
| | - Pablo Lapunzina
- INGEMM-Institute of Medical and Molecular Genetics, IdiPAZ- CIBERER- Hospital Universitario La Paz, Madrid, Spain and ERNITHACA, Madrid, Spain
| | - Tobias Lindau
- Department of Pediatrics, Gemeinschaftsklinikum Mittelrhein Kemperhof, Koblenzer Straße 115-155, 56073 Koblenz, Germany
| | - Marije Meuwissen
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Andreina Minicucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, U.O. Genetica Medica, 40138 Bologna, Italy
| | - Emily Neuhaus
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Mathilde Nizon
- Service de Génétique Médicale, Unité de Génétique Clinique, Nantes, France
| | - Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristen Park
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane & Women’s Hospital Campus, Herston, Brisbane, Australia
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pankaj Prasun
- Division of Genetics, Department of Pediatrics West Virginia School of Medicine, Morgantown, USA
| | - Nils Rahner
- MVZ Institute for Clinical Genetics and Tumor Genetics, Bonn, Germany
| | - Nathaniel H. Robin
- Department of Genetics, UAB Heersink School of Medicine, Birmingham AL, USA
| | - Carey Ronspies
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jasmin Roohi
- Department of Genetics, Mid-Atlantic Permanente Medical Group, Washington, DC, USA
| | - Jill Rosenfeld
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Margarita Saenz
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - Carol Saunders
- Department of Pathology and Laboratory Medicine, Genomic Medicine Center, Children’s Mercy-Kansas City, Kansas City, MO, USA
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Flemington Road, Parkville, Victoria, Australia
| | - Isabelle Thiffault
- Department of Pathology and Laboratory Medicine, Genomic Medicine Center, Children’s Mercy-Kansas City, Kansas City, MO, USA
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | - Sarah Thull
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Danita Velasco
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Clara Velmans
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jolijn Verseput
- Human Genetics Department, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Antonio Vitobello
- INSERM UMR1231, GAD team, Univeristé de Bourgogne Europe, Dijon, France
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Neuroscience Research Institute, Peking University; Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing 100191, China
- Autism Research Center, Peking University Health Science Center, Beijing 100191, China
| | - Karin Weiss
- The Genetics Institute Rambam Health Care Campus Haifa Israel
| | | | | | - Thor Eysteinsson
- Department of Physiology, Faculty of Medicine, University of Iceland
- Department of Ophthalmology, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Kári Stefánsson
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Agnar Helgason
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Gregory D. Bowman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Hans Tomas Bjornsson
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
- The Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Silver H, Greenberg R, Siper PM, Zweifach J, Soufer R, Sahin M, Berry-Kravis E, Soorya LV, Thurm A, Bernstein JA, Kolevzon A, Grice DE, Buxbaum JD, Levy T. Protein-truncating variants and deletions of SHANK2 are associated with autism spectrum disorder and other neurodevelopmental concerns. J Neurodev Disord 2025; 17:25. [PMID: 40307697 PMCID: PMC12042525 DOI: 10.1186/s11689-025-09600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/03/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND SHANK2 disorder is a rare neurodevelopmental disorder caused by a deletion or pathogenic sequence variant of the SHANK2 gene and is associated with autism spectrum disorder (ASD), intellectual disability (ID), and developmental delay. To date, research in SHANK2 has focused on laboratory-based in vivo and in vitro studies with few prospective clinical studies in humans. METHODS A remote assessment battery was comprised of caregiver interviews with a psychiatrist, psychologists, and a genetic counselor, caregiver-reports, and review of records. Results from this cohort were reported using descriptive statistics. An age-matched sample of participants with SHANK3 haploinsufficiency (Phelan-McDermid syndrome, PMS) was used to compare adaptive behavior between the two groups. RESULTS All ten participants demonstrated delays in adaptive behavior, with most motor skills preserved and a weakness in communication. According to parent report, 90% of participants carried a formal diagnosis of ASD, 50% of participants carried a diagnosis of attention-deficit/hyperactivity disorder (ADHD), and mild-to-moderate developmental delays were noted. Sensory hyperreactivity and seeking behaviors were more pronounced than sensory hyporeactivity. Medical features included hypotonia, recurrent ear infections, and gastrointestinal abnormalities. No similar facial dysmorphic features were observed. Compared to PMS participants, individuals with SHANK2 disorder had significantly higher adaptive functioning. CONCLUSIONS Consistent with previous studies of SHANK2 disorder, these results indicate mild to moderate developmental impairment. Overall, SHANK2 disorder is associated with developmental and adaptive functioning delays, high rates of autism, including sensory symptoms and repetitive behaviors, and ADHD. This study was limited by its remote nature, diverse age range, and the homogeneous racial and ethnic sample. Future studies should examine larger, diverse cohorts, add cognitive testing, capture longitudinal data, and include in-person assessments.
Collapse
Affiliation(s)
- Hailey Silver
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rori Greenberg
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Paige M Siper
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jessica Zweifach
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Renee Soufer
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Developmental Synaptopathies Consortium, Rare Disease Clinical Research Network, Boston, USA
| | - Elizabeth Berry-Kravis
- Developmental Synaptopathies Consortium, Rare Disease Clinical Research Network, Boston, USA
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Latha Valluripalli Soorya
- Developmental Synaptopathies Consortium, Rare Disease Clinical Research Network, Boston, USA
- Department of Psychiatry & Behavioral Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Audrey Thurm
- Developmental Synaptopathies Consortium, Rare Disease Clinical Research Network, Boston, USA
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jonathan A Bernstein
- Developmental Synaptopathies Consortium, Rare Disease Clinical Research Network, Boston, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Developmental Synaptopathies Consortium, Rare Disease Clinical Research Network, Boston, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dorothy E Grice
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Tics, OCD and Related Disorders, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Developmental Synaptopathies Consortium, Rare Disease Clinical Research Network, Boston, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
6
|
Colak Y, Yilmaz M, Kart PO, Terali K, Turkyilmaz A, Cansu A. Discovery of a Novel CUL3 Variant: Unveiling Epilepsy and Newly Associated Dysmorphic Traits in a Turkish Patient. Mol Syndromol 2025; 16:171-179. [PMID: 40176836 PMCID: PMC11961091 DOI: 10.1159/000540923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/13/2024] [Indexed: 04/04/2025] Open
Abstract
Introduction Cullin-3, encoded by the CUL3, is a core component of the ubiquitin E3 ligase complex. Through binding to specific adapters, this scaffold protein mediates the ubiquitination of a number of substrates, targeting their proteasomal degradation. Pathogenic variations of the CUL3 are thought to cause autism and neurodevelopmental disorders, but so far, few studies have been associated with the phenotype "neurodevelopmental disorder with or without autism or seizures (NEDAUS, #OMIM: 619239)." This study aimed to present the first Turkish patient with a NEDAUS phenotype exhibiting novel clinical and genotypic findings. Case Presentation A 7-year-old patient with seizure, speech delay, decreased eye contact, and autistic behaviors was referred to our clinic. The patient was evaluated through clinical examination, laboratory tests, and imaging studies. Physical examination revealed extremity findings (brachydactyly, tapering fingers). Single whole-exome sequencing analysis was performed for clinical diagnosis. A novel missense variant, c.368T>A (p.Leu123Gln) in CUL3, was discovered in the patient. Additionally, computational studies were employed to gain structural and mechanistic insights into the putative damaging impact of the variant. Computational analyses indicated that the p.Leu123Gln substitution may affect the stability and binding behavior of cullin-3. The detected variant was confirmed by the Sanger method and screened in family members by the same method and was found to be de novo. Conclusion By presenting the first Turkish case of a novel missense variant with a CUL3-related NEDAUS phenotype, this study contributes to the expansion of the genotypic and phenotypic spectrum of the disease.
Collapse
Affiliation(s)
- Yavuzhan Colak
- Department of Medical Genetics, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Mustafa Yilmaz
- Department of Medical Genetics, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Pinar Ozkan Kart
- Clinics of Pediatric Neurology, Trabzon Kanuni Training and Research Hospital, Health Science University, Trabzon, Turkey
| | - Kerem Terali
- Department of Medical Biochemistry, Cyprus International University Faculty of Medicine, Nicosia, Cyprus
| | - Ayberk Turkyilmaz
- Department of Medical Genetics, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Ali Cansu
- Department of Pediatric Neurology, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| |
Collapse
|
7
|
Sierant MC, Jin SC, Bilguvar K, Morton SU, Dong W, Jiang W, Lu Z, Li B, López-Giráldez F, Tikhonova I, Zeng X, Lu Q, Choi J, Zhang J, Nelson-Williams C, Knight JR, Zhao H, Cao J, Mane S, Sedore SC, Gruber PJ, Lek M, Goldmuntz E, Deanfield J, Giardini A, Mital S, Russell M, Gaynor JW, King E, Wagner M, Srivastava D, Shen Y, Bernstein D, Porter GA, Newburger JW, Seidman JG, Roberts AE, Yandell M, Yost HJ, Tristani-Firouzi M, Kim R, Chung WK, Gelb BD, Seidman CE, Brueckner M, Lifton RP. Genomic analysis of 11,555 probands identifies 60 dominant congenital heart disease genes. Proc Natl Acad Sci U S A 2025; 122:e2420343122. [PMID: 40127276 PMCID: PMC12002227 DOI: 10.1073/pnas.2420343122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/18/2025] [Indexed: 03/26/2025] Open
Abstract
Congenital heart disease (CHD) is a leading cause of infant mortality. We analyzed de novo mutations (DNMs) and very rare transmitted/unphased damaging variants in 248 prespecified genes in 11,555 CHD probands. The results identified 60 genes with a significant burden of heterozygous damaging variants. Variants in these genes accounted for CHD in 10.1% of probands with similar contributions from de novo and transmitted variants in parent-offspring trios that showed incomplete penetrance. DNMs in these genes accounted for 58% of the signal from DNMs. Thirty-three genes were linked to a single CHD subtype while 12 genes were associated with 2 to 4 subtypes. Seven genes were only associated with isolated CHD, while 37 were associated with 1 or more extracardiac abnormalities. Genes selectively expressed in the cardiomyocyte lineage were associated with isolated CHD, while those widely expressed in the brain were also associated with neurodevelopmental delay (NDD). Missense variants introducing or removing cysteines in epidermal growth factor (EGF)-like domains of NOTCH1 were enriched in tetralogy of Fallot and conotruncal defects, unlike the broader CHD spectrum seen with loss of function variants. Transmitted damaging missense variants in MYH6 were enriched in multiple CHD phenotypes and account for ~1% of all probands. Probands with characteristic mutations causing syndromic CHD were frequently not diagnosed clinically, often due to missing cardinal phenotypes. CHD genes that were positively or negatively associated with development of NDD suggest clinical value of genetic testing. These findings expand the understanding of CHD genetics and support the use of molecular diagnostics in CHD.
Collapse
Grants
- U01 HL128711 NHLBI NIH HHS
- RM1HG011014 HHS | NIH | National Human Genome Research Institute (NHGRI)
- UO1 HL128711 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- UO1 HL098147 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U01 HL098162 NHLBI NIH HHS
- UO1 HL153009 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- UO1 HL098162 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54 HG006504 NHGRI NIH HHS
- UL1 TR000003 NCATS NIH HHS
- R00HL143036-02 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- UO1 HL131003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 1UG1HL135680-01 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- CDI-FR-2021-926 Children's Discovery Institute (CDI)
- NIH R03HD100883-A1 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- UG1 HL135680 NHLBI NIH HHS
- T32 HD007149 NICHD NIH HHS
- R03 HD100883 NICHD NIH HHS
- RM1 HG011014 NHGRI NIH HHS
- U01 HL098153 NHLBI NIH HHS
- U01 HL131003 NHLBI NIH HHS
- 5U54HG006504 HHS | NIH | National Human Genome Research Institute (NHGRI)
- HHMI HHMI (HHMI)
- U01 HL153009 NHLBI NIH HHS
- R00 HL143036 NHLBI NIH HHS
- HL157653 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- UL1TR000003 HHS | NIH | National Center for Advancing Translational Sciences (NCATS)
- 19PRE3438084 American Heart Association (AHA)
- K08 HL157653 NHLBI NIH HHS
- U01 HL098147 NHLBI NIH HHS
Collapse
Affiliation(s)
- Michael C. Sierant
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY10065
| | - Sheng Chih Jin
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY10065
- Department of Genetics, Washington University School of Medicine, St. Louis, MO63110
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO63110
| | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Yale Center for Genome Analysis, Yale University, New Haven, CT06516
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT06510
- Department of Medical Genetics, School of Medicine, Acibadem University, Istanbul34752, Türkiye
- Department of Translational Medicine, Health Sciences Institute, Acibadem University, Istanbul34752, Türkiye
| | - Sarah U. Morton
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Broad Institute of Massachusetts Institute of Technology and Harvard, Boston, MA02142
| | - Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY10065
| | - Wei Jiang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT06510
| | - Ziyu Lu
- Laboratory of Single-Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY10065
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT06510
| | | | - Irina Tikhonova
- Yale Center for Genome Analysis, Yale University, New Haven, CT06516
| | - Xue Zeng
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY10065
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI53706
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY10065
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Junhui Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
| | | | - James R. Knight
- Yale Center for Genome Analysis, Yale University, New Haven, CT06516
| | - Hongyu Zhao
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Department of Biostatistics, Yale School of Public Health, New Haven, CT06510
| | - Junyue Cao
- Laboratory of Single-Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY10065
| | - Shrikant Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT06516
| | - Stanley C. Sedore
- Department of Pediatrics, Section of Cardiology, Yale School of Medicine, New Haven, CT06510
- Department of Pediatrics, Michigan State University College of Human Medicine, Grand Rapids, MI48824
| | - Peter J. Gruber
- Department of Surgery, Yale University School of Medicine, New Haven, CT06510
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children’s Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - John Deanfield
- Institute of Cardiovascular Science, University College London, LondonWC1E 6BT, United Kingdom
| | - Alessandro Giardini
- Pediatric Cardiology, Great Ormond Street Hospital, LondonWC1N 3JH, United Kingdom
| | - Seema Mital
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ONM5G1X8, Canada
| | - Mark Russell
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI48109
| | - J. William Gaynor
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Eileen King
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH45229
| | - Michael Wagner
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and University of California San Francisco, San Francisco, CA94158
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY10032
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY10032
| | - Daniel Bernstein
- Department of Pediatrics, Cardiology, Stanford University, Stanford, CA94304
| | - George A. Porter
- Department of Pediatrics, Section of Cardiology, Yale School of Medicine, New Haven, CT06510
- Department of Pediatrics, The School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY14642
| | - Jane W. Newburger
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| | | | - Amy E. Roberts
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| | - Mark Yandell
- Department of Human Genetics, University of Utah and School of Medicine, Salt Lake City, UT84112
| | - H. Joseph Yost
- Department of Human Genetics, University of Utah and School of Medicine, Salt Lake City, UT84112
- The Catholic University of America, Washington, DC20064
| | | | - Richard Kim
- Pediatric Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Wendy K. Chung
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Pediatrics and Medicine, Columbia University Medical Center, New York, NY10032
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Christine E. Seidman
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, MA02115
- HHMI, Chevy Chase, MD20815
| | - Martina Brueckner
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Department of Pediatrics, Section of Cardiology, Yale School of Medicine, New Haven, CT06510
| | - Richard P. Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY10065
| |
Collapse
|
8
|
Di Muro E, Petracca A, Castori M, Palumbo O. Gonadal Mosaicism for an ASH1L Intragenic Deletion Makes a Bridge Between MRD52 and 1q22 Microdeletion. Am J Med Genet A 2025; 197:e63960. [PMID: 39655631 DOI: 10.1002/ajmg.a.63960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 03/08/2025]
Abstract
ASH1L gene encodes a histone lysine methyltransferase, highly expressed in both embryonic and adult human brain. De novo loss-of-function variants in ASH1L are described in an ultrarare monogenic neurodevelopmental disorder, previously called mental retardation type 52 (MRD52). At the same time, a few cases are reported in the literature and DECIPHER with 1q22 microdeletions spanning ASH1L. We report three siblings presenting non-syndromic intellectual disability (ID) and an ASH1L intragenic deletion extending from exons 2 to 12 detected at SNP-array. Both parents resulted noncarrier suggesting gonadal/gonosomal mosaicism in one of the parents. This observation restricted the smallest region of overlap of the 1q22 microdeletion to ASH1L, and allowed to consider MRD52 and 1q22 microdeletion the same ASH1L-related neurodevelopmental disorder. We also reported the first example of gonadal/gonosomal mosaicism for an ASH1L deleterious variant, a fact that should generate the suspicion of recurrence also in sporadic cases of ASH1L-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Ester Di Muro
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Antonio Petracca
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| |
Collapse
|
9
|
Wu X, Xiong D, Liu R, Lai X, Tian Y, Xie Z, Chen L, Hu L, Duan J, Gao X, Zeng X, Dong W, Xu T, Fu F, Yang X, Cheng X, Plewczynski D, Kim M, Xin W, Wang T, Xiang AP, Tang Z. Evolutionary divergence in CTCF-mediated chromatin topology drives transcriptional innovation in humans. Nat Commun 2025; 16:2941. [PMID: 40140405 PMCID: PMC11947266 DOI: 10.1038/s41467-025-58275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Chromatin topology can impact gene regulation, but how evolutionary divergence in chromatin topology has shaped gene regulatory landscapes for distinctive human traits remains poorly understood. CTCF sites determine chromatin topology by forming domains and loops. Here, we show evolutionary divergence in CTCF-mediated chromatin topology at the domain and loop scales during primate evolution, elucidating distinct mechanisms for shaping regulatory landscapes. Human-specific divergent domains lead to a broad rewiring of transcriptional landscapes. Divergent CTCF loops concord with species-specific enhancer activity, influencing enhancer connectivity to target genes in a concordant yet constrained manner. Under this concordant mechanism, we establish the role of human-specific CTCF loops in shaping transcriptional isoform diversity, with functional implications for disease susceptibility. Furthermore, we validate the function of these human-specific CTCF loops using human forebrain organoids. This study advances our understanding of genetic evolution from the perspective of genome architecture.
Collapse
Affiliation(s)
- Xia Wu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Dan Xiong
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Rong Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Xingqiang Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangdong, China
| | - Yuhan Tian
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Ziying Xie
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Li Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Lanqi Hu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Jingjing Duan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Xinyu Gao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Xian Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Wei Dong
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Ting Xu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Fang Fu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Xin Yang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Xinlai Cheng
- Buchmann Institute for Molecular Life Sciences, Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Minji Kim
- Department of Computational Medicine and Bioinformatics, University of Michigan, Michigan, MI, USA
| | - Wenjun Xin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
- Autism Research Center, Peking University Health Science Center, Beijing, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangdong, China
| | - Zhonghui Tang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China.
| |
Collapse
|
10
|
Meert L, Pelicano de Almeida M, Dekker MR, Dekkers DHW, Nowosad K, Huylebroeck D, van den Hout M, Ozgür Z, van IJcken WFJ, Demmers J, Fornerod M, Poot RA. A CHD8-TRRAP axis facilitates MYC and E2F target gene regulation in human neural stem cells. iScience 2025; 28:111978. [PMID: 40104050 PMCID: PMC11914185 DOI: 10.1016/j.isci.2025.111978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/06/2024] [Accepted: 02/05/2025] [Indexed: 03/20/2025] Open
Abstract
Mutations in ATP-dependent chromatin remodeler CHD8 cause one of the most frequent monogenetic forms of autism and are associated with brain overgrowth. Nevertheless, the activities of CHD8 in autism-relevant cell types are still poorly understood. Here, we purify the CHD8 protein from human neural stem cells and determine its interaction partners using mass spectrometry. We identify the TRRAP complex, a coactivator of MYC and E2F transcription factors, as a prominent CHD8 interaction partner. CHD8 colocalizes genome-wide with TRRAP and binds together at MYC and E2F target gene promoters in human neural stem cells. Depletion of CHD8 or TRRAP in human neural stem cells shows downregulation of MYC and E2F target genes as the most prominent gene-regulatory events. Depletion of CHD8 diminishes cell-cycle entry into S-phase. MYC and E2F transcription factors are established oncogenes and regulate cell growth. Our results link CHD8 to TRRAP in facilitating the regulation of MYC and E2F target genes in human neural stem cells.
Collapse
Affiliation(s)
- Lize Meert
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | | | - Mike R Dekker
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Dick H W Dekkers
- Center for Proteomics, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Karol Nowosad
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | | | - Zeliha Ozgür
- Center for Biomics, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
- Center for Biomics, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Jeroen Demmers
- Center for Proteomics, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Maarten Fornerod
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| |
Collapse
|
11
|
Niosi A, Võ NH, Sundaramurthy P, Welch C, Penn A, Yuldasheva Y, Alfareh A, Rausch K, Amin-Rahbar T, Cavanaugh J, Yadav P, Peterson S, Brown R, Hu A, Ardon-Castro A, Nguyen D, Crawford R, Lee W, Morris EJ, Jensen MH, Mulligan K. Kismet/CHD7/CHD8 affects gut microbiota, mechanics, and the gut-brain axis in Drosophila melanogaster. Biophys J 2025; 124:933-941. [PMID: 38902926 PMCID: PMC11947469 DOI: 10.1016/j.bpj.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/17/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
The gut microbiome affects brain and neuronal development and may contribute to the pathophysiology of neurodevelopmental disorders. However, it is unclear how risk genes associated with such disorders affect gut physiology in a manner that could impact microbial colonization and how the mechanical properties of the gut tissue might play a role in gut-brain bidirectional communication. To address this, we used Drosophila melanogaster with a null mutation in the gene kismet, an ortholog of chromodomain helicase DNA-binding protein (CHD) family members CHD7 and CHD8. In humans, these are risk genes for neurodevelopmental disorders with co-occurring gastrointestinal symptoms. We found that kismet mutant flies have a significant increase in gastrointestinal transit time, indicating the functional homology of kismet with CHD7/CHD8 in vertebrates. Rheological characterization of dissected gut tissue revealed significant changes in the mechanics of kismet mutant gut elasticity, strain stiffening behavior, and tensile strength. Using 16S rRNA metagenomic sequencing, we also found that kismet mutants have reduced diversity and abundance of gut microbiota at every taxonomic level. To investigate the connection between the gut microbiome and behavior, we depleted gut microbiota in kismet mutant and control flies and quantified the flies' courtship behavior. Depletion of gut microbiota rescued courtship defects of kismet mutant flies, indicating a connection between gut microbiota and behavior. In striking contrast, depletion of the gut microbiome in the control strain reduced courtship activity, demonstrating that antibiotic treatment can have differential impacts on behavior and may depend on the status of microbial dysbiosis in the gut prior to depletion. We propose that Kismet influences multiple gastrointestinal phenotypes that contribute to the gut-microbiome-brain axis to influence behavior. We also suggest that gut tissue mechanics should be considered as an element in the gut-brain communication loop, both influenced by and potentially influencing the gut microbiome and neurodevelopment.
Collapse
Affiliation(s)
- Angelo Niosi
- Department of Biological Sciences, California State University, Sacramento, California
| | - Nguyên Henry Võ
- Department of Biological Sciences, California State University, Sacramento, California
| | | | - Chloe Welch
- Department of Biological Sciences, California State University, Sacramento, California
| | - Aliyah Penn
- Department of Biological Sciences, California State University, Sacramento, California
| | - Yelena Yuldasheva
- Department of Biological Sciences, California State University, Sacramento, California
| | - Adam Alfareh
- Department of Biological Sciences, California State University, Sacramento, California
| | - Kaitlyn Rausch
- Department of Biological Sciences, California State University, Sacramento, California
| | - Takhmina Amin-Rahbar
- Department of Biological Sciences, California State University, Sacramento, California
| | - Jeffery Cavanaugh
- Department of Physics and Astronomy, California State University, Sacramento, California
| | - Prince Yadav
- Department of Physics and Astronomy, California State University, Sacramento, California
| | - Stephanie Peterson
- Department of Biological Sciences, California State University, Sacramento, California
| | - Raina Brown
- Department of Biological Sciences, California State University, Sacramento, California
| | - Alain Hu
- Department of Biological Sciences, California State University, Sacramento, California
| | - Any Ardon-Castro
- Department of Biological Sciences, California State University, Sacramento, California
| | - Darren Nguyen
- Department of Biological Sciences, California State University, Sacramento, California
| | - Robert Crawford
- Department of Biological Sciences, California State University, Sacramento, California
| | - Wendy Lee
- Department of Computer Science, San Jose State University, San Jose, California
| | - Eliza J Morris
- Department of Physics and Astronomy, California State University, Sacramento, California
| | - Mikkel Herholdt Jensen
- Department of Physics and Astronomy, California State University, Sacramento, California.
| | - Kimberly Mulligan
- Department of Biological Sciences, California State University, Sacramento, California.
| |
Collapse
|
12
|
Gray C, Leonard H, Cooper MN, Rai D, Glasson EJ. The application of population data linkage to capture sibling health outcomes among children and young adults with neurodevelopmental conditions. A scoping review. Int J Popul Data Sci 2025; 10:2413. [PMID: 40115269 PMCID: PMC11923734 DOI: 10.23889/ijpds.v10i1.2413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
Introduction Siblings of children with neurodevelopmental conditions have unique experiences and challenges related to their sibling role. Some develop mental health concerns as measured by self-reported surveys or parent report. Few data are available at the population level, owing to difficulties capturing wide-scale health data for siblings. Data linkage is a technique that can facilitate such research. Objective To explore the application of population data linkage as a research method to capture health outcomes of siblings of children with neurodevelopmental conditions. Inclusion criteria Peer reviewed papers that captured health outcomes for siblings of children and young adults with neurodevelopmental conditions using population data linkage. Methods JBI Scoping review methods were followed. Papers were searched within CINAHL, Ovid, Scopus, and Web of Science from 2000 to 2024 using search terms relating to 'data linkage' 'neurodevelopmental conditions' 'siblings' and 'health outcomes'. Results The final data extraction included 31 papers. The neurodevelopmental conditions of index children were autism, attention deficit hyperactivity disorder, intellectual disability, cerebral palsy and developmental delay. The mean follow-up time was 31 years, and the majority of studies originated from Scandinavia. Sibling health outcomes observed were psychiatric diagnoses, self-harm and suicide, other neurodevelopmental conditions, and medical conditions such as atopic disease, cancer and obesity. Conclusion Data linkage can help capture sibling health outcomes quickly across large cohorts with a range of neurodevelopmental conditions. Future research could be enhanced by focusing on siblings as the primary group of interest, increased integration of genealogical data, and comparisons between diagnostic groups and severity levels. Adoption of established rigorous reporting methods will increase the replicability of this type of research, and provide a stronger evidence-base from which to inform sibling supports.
Collapse
Affiliation(s)
- Caitlin Gray
- Paediatrics, Medical School, The University of Western Australia, Perth, Australia
- The Kids Research Institute Australia, Centre for Child Health Research, The University of Western Australia, Perth, Australia
| | - Helen Leonard
- The Kids Research Institute Australia, Centre for Child Health Research, The University of Western Australia, Perth, Australia
- Discipline of Psychiatry, Medical School, The University of Western Australia, Perth, Australia
| | - Matthew N. Cooper
- The Kids Research Institute Australia, Centre for Child Health Research, The University of Western Australia, Perth, Australia
| | - Dheeraj Rai
- Population Health Sciences, Bristol Medical School, Bristol, United Kingdom
- Avon and Wiltshire Partnership, NHS Mental Health Trust, United Kingdom
| | - Emma J. Glasson
- The Kids Research Institute Australia, Centre for Child Health Research, The University of Western Australia, Perth, Australia
- Discipline of Psychiatry, Medical School, The University of Western Australia, Perth, Australia
| |
Collapse
|
13
|
Aspromonte MC, Del Conte A, Polli R, Baldo D, Benedicenti F, Bettella E, Bigoni S, Boni S, Ciaccio C, D'Arrigo S, Donati I, Granocchio E, Mammi I, Milani D, Negrin S, Nosadini M, Soli F, Stanzial F, Turolla L, Piovesan D, Tosatto SCE, Murgia A, Leonardi E. Genetic variants and phenotypic data curated for the CAGI6 intellectual disability panel challenge. Hum Genet 2025; 144:309-326. [PMID: 40019509 PMCID: PMC11976335 DOI: 10.1007/s00439-025-02733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/16/2025] [Indexed: 03/01/2025]
Abstract
Neurodevelopmental disorders (NDDs) are common conditions including clinically diverse and genetically heterogeneous diseases, such as intellectual disability, autism spectrum disorders, and epilepsy. The intricate genetic underpinnings of NDDs pose a formidable challenge, given their multifaceted genetic architecture and heterogeneous clinical presentations. This work delves into the intricate interplay between genetic variants and phenotypic manifestations in neurodevelopmental disorders, presenting a dataset curated for the Critical Assessment of Genome Interpretation (CAGI6) ID Panel Challenge. The CAGI6 competition serves as a platform for evaluating the efficacy of computational methods in predicting phenotypic outcomes from genetic data. In this study, a targeted gene panel sequencing has been used to investigate the genetic causes of NDDs in a cohort of 415 paediatric patients. We identified 60 pathogenic and 49 likely pathogenic variants in 102 individuals that accounted for 25% of NDD cases in the cohort. The most mutated genes were ANKRD11, MECP2, ARID1B, ASH1L, CHD8, KDM5C, MED12 and PTCHD1 The majority of pathogenic variants were de novo, with some inherited from mildly affected parents. Loss-of-function variants were the most common type of pathogenic variant. In silico analysis tools were used to assess the potential impact of variants on splicing and structural/functional effects of missense variants. The study highlights the challenges in variant interpretation especially in cases with atypical phenotypic manifestations. Overall, this study provides valuable insights into the genetic causes of NDDs and emphasises the importance of understanding the underlying genetic factors for accurate diagnosis, and intervention development in neurodevelopmental conditions.
Collapse
Affiliation(s)
- Maria Cristina Aspromonte
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy
| | - Alessio Del Conte
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Roberta Polli
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica (IRP), Città Della Speranza, Padua, Italy
| | | | | | - Elisa Bettella
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica (IRP), Città Della Speranza, Padua, Italy
| | - Stefania Bigoni
- Medical Genetics Unit, Ferrara University Hospital, Ferrara, Italy
| | - Stefania Boni
- Medical Genetics Unit, S. Martino Hospital, Belluno, Italy
| | - Claudia Ciaccio
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Stefano D'Arrigo
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Ilaria Donati
- Unit of Medical Genetics, AUSL Romagna, Cesena, Italy
| | - Elisa Granocchio
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | | | - Donatella Milani
- Fondazione IRCCS, Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Susanna Negrin
- Scientific Institute, IRCCS E. Medea, dipartimento/Unità Operativa Conegliano, Treviso, Italy
| | - Margherita Nosadini
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Fiorenza Soli
- Genetic Unit, UOM Patologia Clinica, S. Chiara Hospital of Trento, Trento, Italy
| | - Franco Stanzial
- Genetic Counseling Service, Regional Hospital of Bolzano, Bolzano, Italy
| | - Licia Turolla
- Medical Genetics Unit, Treviso Hospital, Treviso, Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- CNR IBIOM, Bari, Italy
| | - Alessandra Murgia
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica (IRP), Città Della Speranza, Padua, Italy
| | - Emanuela Leonardi
- Department of Biomedical Sciences, University of Padova, Padua, Italy.
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy.
| |
Collapse
|
14
|
Körner MB, Velluva A, Bundalian L, Krohn K, Schön K, Schumann I, Kromp J, Thum AS, Garten A, Hentschel J, Abou Jamra R, Mrestani A, Scholz N, Langenhan T, Le Duc D. Drosophila WDFY3/ Bchs overexpression impairs neural function. J Neurogenet 2025; 39:23-38. [PMID: 40000652 DOI: 10.1080/01677063.2025.2465536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Pathogenic variants in WDFY3, a gene encoding for an autophagy adaptor termed ALFY, are linked to neurodevelopmental delay and altered brain size in human probands. While the role of WDFY3 loss-of-function is extensively studied in neurons, little is known about the effects of WDFY3 upregulation in different cell types of the central nervous system (CNS). We show that overexpression of the Drosophila melanogaster WDFY3 ortholog, Bchs, in either glia or neurons impaired autophagy and locomotion. Bchs glial overexpression also increased VNC size and glial nuclei number significantly, whereas neuronal Bchs overexpression affected wing and thorax morphology. We identified 79 genes that were differentially expressed and overlapped in flies that overexpress Bchs in glial and neuronal cells, respectively. Additionally, upon neuronal Bchs overexpression differentially expressed genes clustered in gene ontology categories associated with autophagy and mitochondrial function. Our data indicate that glial as well as neuronal Bchs upregulation can have detrimental outcomes on neural function.
Collapse
Affiliation(s)
- Marek B Körner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Akhil Velluva
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Linnaeus Bundalian
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Knut Krohn
- Core Unit DNA-Technologies, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Kathleen Schön
- Core Unit DNA-Technologies, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Isabell Schumann
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jessica Kromp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Andreas S Thum
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Achmed Mrestani
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
- Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
15
|
Zhu J, Liu H, Hu Y, Liu J, Dai C, Liang J, Cheng B, Tan M, Zhang Y, Cao Q, Lai X. Mechanistic insights into retinoic-acid treatment for autism in the improvement of social behavior: Evidence from a multi omics study in rats. Neuropharmacology 2025; 265:110244. [PMID: 39643238 DOI: 10.1016/j.neuropharm.2024.110244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a lifelong condition. It is characterized by complex etiologies, including disruptions in exogenous retinoic acid (RA) signaling, which may serve as an environmental risk factor. Targeting the RA pathway presents a promising therapeutic avenue, though the precise mechanisms remain to be elucidated. METHODS Female Sprague-Dawley rats were treated with valproic acid (VPA) during pregnancy to induce an ASD model in their offspring. Some offspring received RA treatment postnatally. Social behavior and brain-functional connectivity were assessed using behavioral tests and functional magnetic resonance imaging (fMRI), respectively. Transcriptomics analysis and proteomics analysis of the hypothalamus identified differentially expressed genes (DEGs) and differentially expressed proteins (DEPs). These were intersected with ASD pathogenic genes (APGs) and ASD pathogenic proteins (APPs) to identify differentially expressed APGs (DE-APGs) and differentially expressed APPs (DE-APPs), which were validated by real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. Analyses of enrichment of signaling pathways were done using the Kyoto Encyclopedia of Genes and Genomes database. RESULTS RA treatment significantly improved social behaviors and revealed distinct patterns of hypo- and hyper-connectivity across various brain regions, with notable changes involving the hypothalamus and facial nerve. Differential analysis revealed 4165 DEGs (DEG 1) and 329 DEPs (DEP 1) between control and VPA groups, and 1610 DEGs (DEG 2) and 197 DEPs (DEP 2) between VPA and RA supplementation (RAS) groups. Twenty-two DE-APGs and five DE-APPs were identified, with key associations found between proteins such as Tbl1xr1 and Myo5a and >13 genes including Nrxn1, Cacna1e, and Gabrb2. Significant alterations in DE-APGs, including Grin2b, Nrxn1, Cacna1e, and Gabrb2, were confirmed via real-time RT-PCR and western blotting. In addition, 22 key signaling pathways were enriched in DEPs and DEGs. CONCLUSION RA supplementation in ASD rats induced by VPA may ameliorate social deficits and modulated functional connectivity, especially in the hypothalamus and facial nerve regions. This suggests potential therapeutic benefits for neural circuitry dysregulation in ASD. Additionally, RA altered critical gene and protein expressions in hypothalamus, implicating its role in modulating key signaling pathways to mitigate social deficits in ASD. This study provides new insights into the molecular mechanisms of ASD and supports the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Huan Liu
- Mianyang Key Laboratory of Anesthesia and Neuroregulation, Department of Anesthesiology, Mianyang Central Hospital, Mianyang, 621000, China; Department of Pediatrics, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Yan Hu
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Juan Liu
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Chunfang Dai
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Jingjing Liang
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Boli Cheng
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Mei Tan
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Pediatrics, Guizhou Children's Hospital, Zunyi, China
| | - Yaoyin Zhang
- Department of Psychosomatics/Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
| | - Qingjiu Cao
- The Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, (Peking University), Beijing, China.
| | - Xi Lai
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| |
Collapse
|
16
|
Clémot-Dupont S, Lourenço Fernandes JA, Larrigan S, Sun X, Medisetti S, Stanley R, El Hankouri Z, Joshi SV, Picketts DJ, Shekhar K, Mattar P. The chromatin remodeler ADNP regulates neurodevelopmental disorder risk genes and neocortical neurogenesis. Proc Natl Acad Sci U S A 2025; 122:e2405981122. [PMID: 39808658 PMCID: PMC11760920 DOI: 10.1073/pnas.2405981122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo ADNP mutations lead to intellectual disability and autism spectrum disorder. However, germline Adnp knockout mice were previously shown to exhibit early embryonic lethality, obscuring subsequent roles for the ChAHP complex in neurogenesis. To circumvent this early developmental arrest, we generated a conditional Adnp mutant allele. Using single-cell transcriptomics, cut&run-seq, and histological approaches, we show that during neocortical development, Adnp orchestrates the production of late-born, upper-layer neurons through a two-step process. First, Adnp is required to sustain progenitor proliferation specifically during the developmental window for upper-layer cortical neurogenesis. Accordingly, we found that Adnp recruits the ChAHP subunit Chd4 to genes associated with progenitor proliferation. Second, in postmitotic differentiated neurons, we define a network of risk genes linked to NDDs that are regulated by Adnp and Chd4. Taken together, these data demonstrate that ChAHP is critical for driving the expansion of upper-layer cortical neurons and for regulating neuronal gene expression programs, suggesting that these processes may potentially contribute to NDD etiology.
Collapse
Affiliation(s)
- Samuel Clémot-Dupont
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - José Alex Lourenço Fernandes
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - Sarah Larrigan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - Xiaoqi Sun
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
| | - Suma Medisetti
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - Rory Stanley
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - Ziyad El Hankouri
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - Shrilaxmi V. Joshi
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, Vision Science Graduate Group, Center for Computational Biology, Biophysics Graduate Group, California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA94720
- Faculty Scientist, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Pierre Mattar
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| |
Collapse
|
17
|
He M, Du B, Chen G, Lyu Y, Guo H, Jia X, Xia K. Naa15 Haploinsufficiency and De Novo Missense Variants Associate With Neurodevelopmental Disorders and Interfere With Neurogenesis and Neuron Development. Autism Res 2025. [PMID: 39825710 DOI: 10.1002/aur.3308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Neurodevelopmental disorders (NDDs) encompass a group of conditions that impact brain development and function, exhibiting significant genetic and clinical heterogeneity. NAA15, the auxiliary subunit of the N-terminal acetyltransferase complex, has garnered attention due to its association with NDDs. However, the precise role of NAA15 in cortical development and its contribution to NDDs remain elusive. By employing targeted sequencing on a large Chinese cohort affected by ASD and conducting an extensive literature review, we have compiled 64 distinct variants in the NAA15 gene identified among individuals with neurodevelopmental disorders. Our research demonstrates that loss of NAA15 leads to a substantial increase in neuronal count, potentially resulting in aberrant brain development and triggering repetitive as well as anxious behaviors in mice models. Furthermore, disorder-associated variants within NAA15 impair axon and synapse formation processes crucial for neural connectivity establishment. These findings shed light on the consequences of NAA15 deficiency along with its de novo mutations on brain development while unraveling the cellular mechanisms underlying NDDs.
Collapse
Affiliation(s)
- Mei He
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Bing Du
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Guodong Chen
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yongqing Lyu
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hui Guo
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
| | - Xiangbin Jia
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
18
|
Ling W, Wang W, Lu D, Liu Q, Jiang G. Unraveling Copper Imbalance in Autism Spectrum Disorder: Mechanistic Insights from the Valproic Acid Mouse Model. ACS Chem Neurosci 2025; 16:66-76. [PMID: 39690107 DOI: 10.1021/acschemneuro.4c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Abnormal copper (Cu) levels are often closely associated with neurological disorders including neurodevelopmental conditions, such as autism spectrum disorder (ASD). However, the mechanisms underlying the disruption of Cu homeostasis in critical organs, such as the brain, remain unclear. In this study, we elucidated the molecular mechanisms of Cu imbalance in the brain of a valproic acid (VPA) mouse model along with the changes in specific metabolites. Significant alterations occurred in proteins associated with primary Cu-related metabolism in specific regions of the brain (prefrontal cortex, amygdala, cerebellum, and hippocampus), resulting in a direct elevation of Cu ions within the brain tissues (control: 5.05 ± 0.61 μg/g vs model: 6.28 ± 0.81 μg/g, p = 0.015). Furthermore, the brain metabolic profiles revealed significant upregulation of lipids, particularly phospholipid metabolites. Typical neurotransmitters, for example, dopamine (DA) (p < 0.0001) and serotonin (5-HT) (p = 0.02) were upregulated in amygdala. Other small metabolites like glutathione (GSH) (p = 0.0004) also exhibited notable variation in brain. The potential impact of Cu toxicity on the signaling pathways of key metabolites was then evaluated, providing new insights into the role of Cu in metabolism of neurotransmitters in the brain. Our finding sheds molecular aberrations associated with essential element metabolism in the brain, providing new elemental perspectives for understanding the pathogenic mechanisms underlying ASD.
Collapse
Affiliation(s)
- Weibo Ling
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weichao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Zhang G, Niu Y, Xu Z, Qin J, Yang Z. SETD1B variants associated with absence seizures. Eur J Paediatr Neurol 2025; 54:68-74. [PMID: 39765123 DOI: 10.1016/j.ejpn.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 03/28/2025]
Abstract
AIM Exploring the association between SETD1B variants and absence seizures (ASs). METHODS We engaged a small cohort of four pediatric epilepsy patients with identified SETD1B variants and conducted a comprehensive review of 50 documented instances. Clinical profiles were meticulously compiled, and genetic screening was executed via trio-based whole-exome sequencing. Our literature survey centered on AS manifestations linked to SETD1B alterations, utilizing descriptive statistics for analysis. RESULTS The quartet of new cases presented with developmental impediments, cognitive deficits, and epileptic manifestations. Pathogenicity was established in the detected SETD1B variants. Among the 54 individuals, 26 (accounting for 48.1 %) presented with AS during the course of the disease. The median seizure onset age stood at 44.8 months, with a majority displaying cognitive challenges and autistic traits. Anti-epileptic drug therapies proved efficacious in 70.8 % of the instances. Notably, variants within the N-SET, SET, and post-SET domains of SETD1B were prevalent in 46.2 % of the AS-afflicted cohort. DISCUSSION Our findings accentuate the potential influence of SETD1B variants in AS pathogenesis, these variants may perturb neuronal excitability, possibly via modulation of histone methylation landscapes. The insights garnered here deepen our grasp of AS's genetic architecture. CONCLUSION Our study identified four novel SETD1B variants, highlighting that the importance of AS as part of the phenotype among individuals with SETD1B, demonstrated by 3 novel cases, and supported by review of the literature. Our findings also suggest that the SET domains may play a potential role in the pathogenesis of AS, providing a clue for future mechanistic research.
Collapse
Affiliation(s)
- Genfu Zhang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Yue Niu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Zhao Xu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China.
| | - Zhixian Yang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
20
|
Ma K, McDaniel K, Zhang D, Webb M, Qin L. Chemogenetic Inhibition of Prefrontal Cortex Ameliorates Autism-Like Social Deficits and Absence-Like Seizures in a Gene-Trap Ash1l Haploinsufficiency Mouse Model. Genes (Basel) 2024; 15:1619. [PMID: 39766886 PMCID: PMC11675260 DOI: 10.3390/genes15121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND ASH1L (absent, small, or homeotic-like 1), a histone methyltransferase, has been identified as a high-risk gene for autism spectrum disorder (ASD). We previously showed that postnatal Ash1l severe deficiency in the prefrontal cortex (PFC) of male and female mice caused seizures. However, the synaptic mechanisms underlying autism-like social deficits and seizures need to be elucidated. OBJECTIVE The goal of this study is to characterize the behavioral deficits and reveal the synaptic mechanisms in an Ash1l haploinsufficiency mouse model using a targeted gene-trap knockout (gtKO) strategy. METHOD A series of behavioral tests were used to examine behavioral deficits. Electrophysiological and chemogenetic approaches were used to examine and manipulate the excitability of pyramidal neurons in the PFC of Ash1l+/GT mice. RESULTS Ash1l+/GT mice displayed social deficits, increased self-grooming, and cognitive impairments. Epileptiform discharges were found on electroencephalograms (EEGs) of Ash1l+/GT mice, indicating absence-like seizures. Ash1l haploinsufficiency increased the susceptibility for convulsive seizures when Ash1l+/GT mice were challenged by pentylenetetrazole (PTZ, a competitive GABAA receptor antagonist). Whole-cell patch-clamp recordings showed that Ash1l haploinsufficiency increased the excitability of pyramidal neurons in the PFC by altering intrinsic neuronal properties, enhancing glutamatergic synaptic transmission, and diminishing GABAergic synaptic inhibition. Chemogenetic inhibition of pyramidal neurons in the PFC of Ash1l+/GT mice ameliorated autism-like social deficits and abolished absence-like seizures. CONCLUSIONS We demonstrated that increased neural activity in the PFC contributed to the autism-like social deficits and absence-like seizures in Ash1l+/GT mice, which provides novel insights into the therapeutic strategies for patients with ASH1L-associated ASD and epilepsy.
Collapse
Affiliation(s)
- Kaijie Ma
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (K.M.)
| | - Kylee McDaniel
- Department of Biotechnology, Mount Marty University, Yankton, SD 57078, USA;
| | - Daoqi Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (K.M.)
| | - Maria Webb
- School of Health Sciences, University of South Dakota, Vermillion, SD 57069, USA
| | - Luye Qin
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (K.M.)
| |
Collapse
|
21
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: implications for brain development and autism. Transl Psychiatry 2024; 14:482. [PMID: 39632793 PMCID: PMC11618798 DOI: 10.1038/s41398-024-03179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood-stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNA-seq data obtained from E12.5 fetal mouse brains 3 hours after VPA administration to the pregnant dam revealed that VPA rapidly and significantly increased or decreased the expression of approximately 7,300 genes. No significant sex differences in VPA-induced gene expression were observed. Expression of 399 autism risk genes was significantly altered by VPA as was expression of 258 genes that have been reported to modulate fetal brain development but are not otherwise linked to autism. Expression of genes associated with intracellular signaling pathways, neurogenesis, and excitation-inhibition balance as well as synaptogenesis, neuronal fate determination, axon and dendritic development, neuroinflammation, circadian rhythms, and epigenetic modulation of gene expression was dysregulated by VPA. Notably, at least 40 genes that are known to regulate embryonic neurogenesis were dysregulated by VPA. The goal of this study was to identify mouse genes that are: (a) significantly up- or downregulated by VPA in the fetal brain and (b) associated with autism and/or known to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity and, consequently behavior, in the adult. The genes meeting these criteria provide potential targets for future hypothesis-driven studies to elucidate the proximal causes of errors in brain connectivity underlying neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
- Susan G Dorsey
- Department of Pain and Translational Symptom Science University of Maryland School of Nursing, Baltimore, MD, 21201, USA
| | - Evelina Mocci
- Department of Pain and Translational Symptom Science University of Maryland School of Nursing, Baltimore, MD, 21201, USA
- Institute for Genome Sciences University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Malcolm V Lane
- Translational Toxicology/Department of Epidemiology and Public Health University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Bruce K Krueger
- Departments of Physiology and Psychiatry University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
22
|
Jhanji M, Ward JA, Leung CS, Krall CL, Ritchie FD, Guevara A, Vestergaard K, Yoon B, Amin K, Berto S, Liu J, Lizarraga SB. Dynamic Regulation OF The Chromatin Environment By Ash1L Modulates Human Neuronal Structure And Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.625500. [PMID: 39677608 PMCID: PMC11642754 DOI: 10.1101/2024.12.02.625500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Precise regulation of the chromatin environment through post-translational histone modification modulates transcription and controls brain development. Not surprisingly, mutations in a large number of histone-modifying enzymes underlie complex brain disorders. In particular, the histone methyltransferase ASH1L modifies histone marks linked to transcriptional activation and has been implicated in multiple neuropsychiatric disorders. However, the mechanisms underlying the pathobiology of ASH1L-asociated disease remain underexplored. We generated human isogenic stem cells with a mutation in ASH1L's catalytic domain. We find that ASH1L dysfunction results in reduced neurite outgrowth, which correlates with alterations in the chromatin profile of activating and repressive histone marks, as well as the dysregulation of gene programs important for neuronal structure and function implicated in neuropsychiatric disease. We also identified a novel regulatory node implicating both the SP and Krüppel -like families of transcription factors and ASH1L relevant to human neuronal development. Finally, we rescue cellular defects linked to ASH1L dysfunction by leveraging two independent epigenetic mechanisms that promote transcriptional activation. In summary, we identified an ASH1L-driven epigenetic and transcriptional axis essential for human brain development and complex brain disorders that provide insights into future therapeutic strategies for ASH1L-related disorders.
Collapse
|
23
|
Shum C, Han SY, Thiruvahindrapuram B, Wang Z, de Rijke J, Zhang B, Sundberg M, Chen C, Buttermore ED, Makhortova N, Howe J, Sahin M, Scherer SW. Combining Off-flow, a Nextflow-coded program, and whole genome sequencing reveals unintended genetic variation in CRISPR/Cas-edited iPSCs. Comput Struct Biotechnol J 2024; 23:638-647. [PMID: 38283851 PMCID: PMC10819409 DOI: 10.1016/j.csbj.2023.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/30/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas nucleases and human induced pluripotent stem cell (iPSC) technology can reveal deep insight into the genetic and molecular bases of human biology and disease. Undesired editing outcomes, both on-target (at the edited locus) and off-target (at other genomic loci) hinder the application of CRISPR-Cas nucleases. We developed Off-flow, a Nextflow-coded bioinformatic workflow that takes a specific guide sequence and Cas protein input to call four separate off-target prediction programs (CHOPCHOP, Cas-Offinder, CRISPRitz, CRISPR-Offinder) to output a comprehensive list of predicted off-target sites. We applied it to whole genome sequencing (WGS) data to investigate the occurrence of unintended effects in human iPSCs that underwent repair or insertion of disease-related variants by homology-directed repair. Off-flow identified a 3-base-pair-substitution and a mono-allelic genomic deletion at the target loci, KCNQ2, in 2 clones. Unbiased WGS analysis further identified off-target missense variants and a mono-allelic genomic deletion at the targeted locus, GNAQ, in 10 clones. On-target substitution and deletions had escaped standard PCR and Sanger sequencing analysis, while missense variants at other genomic loci were not detected by Off-flow. We used these results to filter out iPSC clones for subsequent functional experiments. Off-flow, which we make publicly available, works for human and mouse genomes currently and can be adapted for other genomes. Off-flow and WGS analysis can improve the integrity of studies using CRISPR/Cas-edited cells and animal models.
Collapse
Affiliation(s)
- Carole Shum
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sang Yeon Han
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | - Zhuozhi Wang
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jill de Rijke
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Benjamin Zhang
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Maria Sundberg
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cidi Chen
- Human Neuron Core, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Nina Makhortova
- Human Neuron Core, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mustafa Sahin
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen W. Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, ON M5S 1A8, Canada
- Lead contact
| |
Collapse
|
24
|
Mengnan W, Yan C, Qiong X, Man X. Generation of a human induced pluripotent stem cell line (FDIBSi001-A) from a patient with ADNP syndrome carrying ADNP mutation (c. 2059 T>C). Stem Cell Res 2024; 81:103550. [PMID: 39307104 DOI: 10.1016/j.scr.2024.103550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/03/2024] [Accepted: 09/04/2024] [Indexed: 12/15/2024] Open
Abstract
ADNP syndrome is a neurodevelopmental disorder characterized by autism, intellectual disability, and other physical and behavioral health manifestations. Mutations in ADNP gene is responsible for ADNP syndrome. A human iPSC line with a de novo heterozygous ADNP mutation (ADNP c. 2059 T>C) was generated from peripheral blood mononuclear cells of a patient with ADNP syndrome. This iPSC line showed typical human embryonic stem cell-like morphology, normal karyotype, pluripotency, and ability to differentiate into three germ layers. This iPSC line provides a useful resource to study the pathogenesis and drug screening of ADNP syndrome.
Collapse
Affiliation(s)
- Wu Mengnan
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 200032, China
| | - Cheng Yan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Xu Qiong
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai 200032, China.
| | - Xiong Man
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
25
|
Han JY, Kim TY, Park J. Clinical and Genetic Characterization of Adolescent-Onset Epilepsy: A Single-Center Experience in Republic of Korea. Biomedicines 2024; 12:2663. [PMID: 39767570 PMCID: PMC11726859 DOI: 10.3390/biomedicines12122663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVES This study investigated the characteristics of adolescent-onset epilepsy (AOE) and conducted genetic tests on a cohort of 76 Korean patients to identify variants and expand the spectrum of mutations associated with AOE. METHODS Clinical exome sequencing after routine karyotyping and chromosomal microarray was performed to identify causative variants and expand the spectrum of mutations associated with AOE. RESULTS In cases of AOE without neurodevelopmental delay (NDD), this study identified four likely pathogenic variants (LPVs) or variants of uncertain significance (VUS) and two copy number variations (CNVs). To explore the unique features of AOE; clinical manifestations were compared between patients with and without NDD. The analysis revealed statistically significant differences in the prevalence of males and the yield of genetic testing results. AOE without NDD had a lower prevalence in males (49%) compared to AOE with NDD (60%) (p = 0.007). Genetic alterations: AOE with NDD exhibited a higher frequency of genetic alterations (35%) compared to AOE without NDD (12%) (p = 0.011). Thorough evaluation of AOE can be particularly challenging in adolescent patients. Some individuals may display genetic variations due to a phenomenon known as locus heterogeneity, where different genetic causes lead to similar clinical presentations. CONCLUSIONS Implementing a robust genetic workflow is crucial for accurately diagnosing AOE, even in cases with complex genetic underpinnings. This study underscores the importance of genetic testing as an essential diagnostic tool for AOE. Identifying genetic variants and understanding their clinical correlations can aid in improving diagnostic accuracy and optimizing treatment approaches for adolescent patients with epilepsy.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Tae Yun Kim
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea;
| | - Joonhong Park
- Department of Laboratory Medicine, College of Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
26
|
Duan W, Huang G, Sui Y, Wang K, Yu Y, Chu X, Cao X, Chen L, Liu J, Eichler EE, Xiong B. Deficiency of DDX3X results in neurogenesis defects and abnormal behaviors via dysfunction of the Notch signaling. Proc Natl Acad Sci U S A 2024; 121:e2404173121. [PMID: 39471229 PMCID: PMC11551356 DOI: 10.1073/pnas.2404173121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/23/2024] [Indexed: 11/01/2024] Open
Abstract
The molecular mechanisms underlying the neurodevelopmental disorders (NDDs) caused by DDX3X variants remain poorly understood. In this study, we validated that de novo DDX3X variants are enriched in female developmental delay (DD) patients and mainly affect the evolutionarily conserved amino acids based on a meta-analysis of 46,612 NDD trios. We generated a ddx3x deficient zebrafish allele, which exhibited reduced survival rate, DD, microcephaly, adaptation defects, anxiolytic behaviors, social interaction deficits, and impaired spatial recognitive memory. As revealed by single-nucleus RNA sequencing and biological validations, ddx3x deficiency leads to reduced neural stem cell pool, decreased total neuron number, and imbalanced differentiation of excitatory and inhibitory neurons, which are responsible for the behavioral defects. Indeed, the supplementation of L-glutamate or glutamate receptor agonist ly404039 could partly rescue the adaptation and social deficits. Mechanistically, we reveal that the ddx3x deficiency attenuates the stability of the crebbp mRNA, which in turn causes downregulation of Notch signaling and defects in neurogenesis. Our study sheds light on the molecular pathology underlying the abnormal neurodevelopment and behavior of NDD patients with DDX3X mutations, as well as providing potential therapeutic targets for the precision treatment.
Collapse
Affiliation(s)
- Weicheng Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Guiyang Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Yang Sui
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA98195
| | - Kang Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing211166, China
| | - Yuxin Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430022, China
| | - Xufeng Chu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Xu Cao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Liangpei Chen
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Jiahui Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA98195
- HHMI, University of Washington, Seattle, WA98195
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| |
Collapse
|
27
|
Maroni MJ, Barton M, Lynch K, Deshwar AR, Campbell P, Millard J, Lee R, Cohen A, Paranjapye A, Faundes V, Repetto GM, McKenna C, Shillington AL, Phornphutkul C, Mancini GMS, Schot R, Barakat TS, Richmond CM, Lauzon J, Elsayed Ibrahim AI, Benito DND, Ortez C, Estevez-Arias B, Lecoquierre F, Cassinari K, Guerrot AM, Levy J, Latypova X, Verloes A, Innes AM, Yang XR, Banka S, Vill K, Jacob M, Kruer M, Skidmore P, Galaz-Montoya CI, Bakhtiari S, Mester JL, Granato M, Armache KJ, Costain G, Korb E. Loss of DOT1L function disrupts neuronal transcription, animal behavior, and leads to a novel neurodevelopmental disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.31.24314716. [PMID: 39574879 PMCID: PMC11581099 DOI: 10.1101/2024.10.31.24314716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Individuals with monoallelic pathogenic variants in the histone lysine methyltransferase DOT1L display global developmental delay and varying congenital anomalies. However, the impact of monoallelic loss of DOT1L remains unclear. Here, we present a largely female cohort of 11 individuals with DOT1L variants with developmental delays and dysmorphic facial features. We found that DOT1L variants include missense variants clustered in the catalytic domain, frameshift, and stop-gain variants. We demonstrate that specific variants cause loss of methyltransferase activity and therefore sought to define the effects of decreased DOT1L function. Using RNA-sequencing of cultured neurons and single nucleus RNA-sequencing of mouse cortical tissue, we found that partial Dot1l depletion causes sex-specific transcriptional responses and disrupts transcription of synaptic genes. Further, Dot1l loss alters neuron branching and expression of synaptic proteins. Lastly using zebrafish and mouse models, we found behavioral disruptions that include sex-specific deficits in mice. Overall, we define how DOT1L loss leads to neurological dysfunction by demonstrating that partial Dot1l loss impacts transcription, neuron morphology, and behavior across multiple models and systems.
Collapse
Affiliation(s)
- Marissa J. Maroni
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Melissa Barton
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Katherine Lynch
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Ashish R. Deshwar
- Program in Developmental and Stem Cell Biology, Sickkids Research Institute, Toronto, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Canada
- Department of Pediatrics, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Philip Campbell
- Department of Psychiatry, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile
- Department of Cell and Developmental Biology, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile
| | - Josephine Millard
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Department of Cell and Developmental Biology, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile
| | - Rachel Lee
- Skirball Institute of Biomolecular Medicine, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile
| | - Annastelle Cohen
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Alekh Paranjapye
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Víctor Faundes
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile
| | - Gabriela M. Repetto
- Rare Diseases Program, Center for Genetics and Genomics, Institute for Science and Innovation in Medicine, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo
| | - Caoimhe McKenna
- Northern Ireland Regional Genetics Service, Belfast, Northern Ireland
| | - Amelle L. Shillington
- Cincinnati Children’s Hospital Medical Center, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Chanika Phornphutkul
- Rhode Island Hospital, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Grazia MS. Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Rachel Schot
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Whole Genome Sequencing Implementation and Research Task Force, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Christopher M. Richmond
- Royal Brisbane & Women’s Hospital, Herston, Queensland, Australia
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Julie Lauzon
- Alberta Children’s Hospital, Calgary AB Canada Department of Medical Genetics, Cummings School of Medicine, University of Calgary, Alberta Canada
| | | | | | - Carlos Ortez
- Neuromuscular Unit, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Berta Estevez-Arias
- Neuromuscular Unit, Hospital Sant Joan de Deu, Barcelona, Spain
- Laboratory of Neurogenetics and Molecular Medicine, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - François Lecoquierre
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, Rouen, France
| | - Kévin Cassinari
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, Rouen, France
| | - Anne-Marie Guerrot
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, Rouen, France
| | - Jonathan Levy
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
- Laboratoire de biologie médicale multisites Seqoia - FMG2025, Paris, France
| | - Xenia Latypova
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
- Laboratoire de biologie médicale multisites Seqoia - FMG2025, Paris, France
| | - Alain Verloes
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
- Laboratoire de biologie médicale multisites Seqoia - FMG2025, Paris, France
| | - A. Micheil Innes
- University of Calgary Department of Medical Genetics; Alberta Children’s Hospital Research Institute
| | - Xiao-Ru Yang
- University of Calgary Department of Medical Genetics; Alberta Children’s Hospital Research Institute
- Department of Medical Genetics, University of British Columbia
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9WL Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, M13 9WL Manchester, UK
| | - Katharina Vill
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Maureen Jacob
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Michael Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, Cellular and Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
| | - Peter Skidmore
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, Cellular and Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Carolina I. Galaz-Montoya
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, Cellular and Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
- Genetics, GIDP PhD Program, Tucson, AZ, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, Cellular and Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
| | | | - Michael Granato
- Department of Cell and Developmental Biology, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile
| | - Karim-Jean Armache
- Skirball Institute of Biomolecular Medicine, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Canada
- Department of Pediatrics, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada
| | - Erica Korb
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
28
|
Herrera ML, Paraíso-Luna J, Bustos-Martínez I, Barco Á. Targeting epigenetic dysregulation in autism spectrum disorders. Trends Mol Med 2024; 30:1028-1046. [PMID: 38971705 DOI: 10.1016/j.molmed.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/08/2024]
Abstract
Autism spectrum disorders (ASD) comprise a range of neurodevelopmental pathologies characterized by deficits in social interaction and repetitive behaviors, collectively affecting almost 1% of the worldwide population. Deciphering the etiology of ASD has proven challenging due to the intricate interplay of genetic and environmental factors and the variety of molecular pathways affected. Epigenomic alterations have emerged as key players in ASD etiology. Their research has led to the identification of biomarkers for diagnosis and pinpointed specific gene targets for therapeutic interventions. This review examines the role of epigenetic alterations, resulting from both genetic and environmental influences, as a central causative factor in ASD, delving into its contribution to pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Macarena L Herrera
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Juan Paraíso-Luna
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Isabel Bustos-Martínez
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Ángel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain.
| |
Collapse
|
29
|
Demidov G, Yaldiz B, Garcia-Pelaez J, de Boer E, Schuermans N, Van de Vondel L, Paramonov I, Johansson LF, Musacchia F, Benetti E, Bullich G, Sablauskas K, Beltran S, Gilissen C, Hoischen A, Ossowski S, de Voer R, Lohmann K, Oliveira C, Topf A, Vissers LELM, Laurie S. Comprehensive reanalysis for CNVs in ES data from unsolved rare disease cases results in new diagnoses. NPJ Genom Med 2024; 9:49. [PMID: 39461972 PMCID: PMC11513043 DOI: 10.1038/s41525-024-00436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
We report the results of a comprehensive copy number variant (CNV) reanalysis of 9171 exome sequencing datasets from 5757 families affected by a rare disease (RD). The data reanalysed was extremely heterogeneous, having been generated using 28 different enrichment kits by 42 different research groups across Europe partnering in the Solve-RD project. Each research group had previously undertaken their own analysis of the data but failed to identify disease-causing variants. We applied three CNV calling algorithms to maximise sensitivity, and rare CNVs overlapping genes of interest, provided by four partner European Reference Networks, were taken forward for interpretation by clinical experts. This reanalysis has resulted in a molecular diagnosis being provided to 51 families in this sample, with ClinCNV performing the best of the three algorithms. We also identified partially explanatory pathogenic CNVs in a further 34 individuals. This work illustrates the value of reanalysing ES cold cases for CNVs.
Collapse
Affiliation(s)
- German Demidov
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany.
| | - Burcu Yaldiz
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - José Garcia-Pelaez
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Elke de Boer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nika Schuermans
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Ida Paramonov
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Lennart F Johansson
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Francesco Musacchia
- Center for Human Technologies, Italian Institute of Technology (IIT), Genova, Italy
- Telethon Institute for Genetics and Medicine, 80078, Pozzuoli (Napoli), Italy
| | - Elisa Benetti
- Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, 53100, Siena, Italy
| | - Gemma Bullich
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Karolis Sablauskas
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Data Science and Digital Technologies, Vilnius University, Vilnius, Lithuania
| | - Sergi Beltran
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Richarda de Voer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Carla Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana Topf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Steven Laurie
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain.
- Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
30
|
Horecka-Lewitowicz A, Lewitowicz W, Wawszczak-Kasza M, Lim H, Lewitowicz P. Autism Spectrum Disorder Pathogenesis-A Cross-Sectional Literature Review Emphasizing Molecular Aspects. Int J Mol Sci 2024; 25:11283. [PMID: 39457068 PMCID: PMC11508848 DOI: 10.3390/ijms252011283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The etiology of autism spectrum disorder (ASD) has not yet been completely elucidated. Through time, multiple attempts have been made to uncover the causes of ASD. Different theories have been proposed, such as being caused by alterations in the gut-brain axis with an emphasis on gut dysbiosis, post-vaccine complications, and genetic or even autoimmune causes. In this review, we present data covering the main streams that focus on ASD etiology. Data collection occurred in many countries covering ethnically diverse subjects. Moreover, we aimed to show how the progress in genetic techniques influences the explanation of medical White Papers in the ASD area. There is no single evidence-based pathway that results in symptoms of ASD. Patient management has constantly only been symptomatic, and there is no ASD screening apart from symptom-based diagnosis and parent-mediated interventions. Multigene sequencing or epigenetic alterations hold promise in solving the disjointed molecular puzzle. Further research is needed, especially in the field of biogenetics and metabolomic aspects, because young children constitute the patient group most affected by ASD. In summary, to date, molecular research has confirmed multigene dysfunction as the causative factor of ASD, the multigene model with metabolomic influence would explain the heterogeneity in ASD, and it is proposed that ion channel dysfunction could play a core role in ASD pathogenesis.
Collapse
Affiliation(s)
- Agata Horecka-Lewitowicz
- Institute of Medical Sciences, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland
| | - Wojciech Lewitowicz
- Student Scientific Society at Collegium Medicum, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland; (W.L.); (H.L.)
| | - Monika Wawszczak-Kasza
- Institute of Health Sciences, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland
| | - Hyebin Lim
- Student Scientific Society at Collegium Medicum, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland; (W.L.); (H.L.)
| | - Piotr Lewitowicz
- Institute of Medical Sciences, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland
| |
Collapse
|
31
|
Sun H, Zhang G, Li N, Bu X. Molecular diagnosis of patients with syndromic short stature identified by trio whole-exome sequencing. Front Genet 2024; 15:1399186. [PMID: 39415983 PMCID: PMC11479978 DOI: 10.3389/fgene.2024.1399186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Background Short stature is a complex disorder with phenotypic and genetic heterogeneity. This study aimed to investigate clinical phenotypes and molecular basis of a cohort of patients with short stature. Methods Trio whole-exome sequencing (Trio-WES) was performed to explore the genetic aetiology and obtain a molecular diagnosis in twenty Chinese probands with syndromic and isolated short stature. Results Of the twenty probands, six (6/20, 30%) patients with syndromic short stature obtained a molecular diagnosis. One novel COMP pathogenic variant c.1359delC, p.N453fs*62 and one LZTR1 likely pathogenic variant c.509G>A, p.R170Q were identified in a patient with short stature and skeletal dysplasia. One novel de novo NAA15 pathogenic variant c.63T>G, p.Y21X and one novel de novo KMT2A pathogenic variant c.3516T>A, p.N1172K was identified in two probands with short stature, intellectual disability and abnormal behaviours, respectively. One patient with short stature, cataract, and muscle weakness had a de novo POLG pathogenic variant c.2863 T>C, p.Y955H. One PHEX pathogenic variant c.1104G>A, p.W368X was identified in a patient with short stature and rickets. Maternal uniparental disomy 7 (mUPD7) was pathogenic in a patient with pre and postnatal growth retardation, wide forehead, triangular face, micrognathia and clinodactyly. Thirteen patients with isolated short stature had negative results. Conclusion Trio-WES is an important strategy for identifying genetic variants and UPD in patients with syndromic short stature, in which dual genetic variants are existent in some individuals. It is important to differentiate between syndromic and isolated short stature. Genetic testing has a high yield for syndromic patients but low for isolated patients.
Collapse
Affiliation(s)
- Huihui Sun
- Department of Paediatrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Geng Zhang
- Beijing Chigene Translational Medical Research Center Company, Beijing, China
| | - Na Li
- Department of Radiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xiangfang Bu
- Department of Paediatrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Neff RC, Stangis KA, Beniwal U, Hergenreder T, Ye B, Murphy GG. Cognitive behavioral phenotyping of DSCAM heterozygosity as a model for autism spectrum disorder. GENES, BRAIN, AND BEHAVIOR 2024; 23:e70002. [PMID: 39294095 PMCID: PMC11410459 DOI: 10.1111/gbb.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
It is estimated that 1 in 36 children are affected by autism spectrum disorder (ASD) in the United States, which is nearly a twofold increase from a decade ago. Recent genetic studies have identified de novo loss-of-function (dnLoF) mutations in the Down Syndrome Cell Adhesion Molecule (DSCAM) as a strong risk factor for ASD. Previous research has shown that DSCAM ablation confers social interaction deficits and perseverative behaviors in mouse models. However, it remains unknown to what extent DSCAM underexpression captures the full range of behaviors, specifically cognitive phenotypes, presented in ASD. Here, we conducted a comprehensive cognitive behavioral phenotyping which revealed that loss of one copy of DSCAM, as in the DSCAM2J+/-, that is, DSCAM heterozygous mice, displayed hyperactivity, increased anxiety-like behavior, and motor coordination deficits. Additionally, hippocampal-dependent learning and memory was affected, including impairments in working memory, long-term memory, and contextual fear learning. Interestingly, implicit learning processes remained intact. Therefore, DSCAM LoF produces autistic-like behaviors that are similar to those observed in human cases of ASD. These findings further support a role for DSCAM dnLoF mutations in ASD and suggest DSCAM2J+/- as a suitable model for ASD research.
Collapse
Affiliation(s)
- Ryan C. Neff
- Michigan Neuroscience Institute, University of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Katherine A. Stangis
- Michigan Neuroscience Institute, University of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Ujjawal Beniwal
- Michigan Neuroscience Institute, University of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Ty Hergenreder
- Life Sciences Institute, University of MichiganAnn ArborMichiganUSA
| | - Bing Ye
- Life Sciences Institute, University of MichiganAnn ArborMichiganUSA
- Department of Cell and Developmental BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Geoffrey G. Murphy
- Michigan Neuroscience Institute, University of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
33
|
McFeely A, O'Connor A, Kennelly SP. Use of biomarkers in the diagnosis of Alzheimer's disease in adults with intellectual disability. THE LANCET. HEALTHY LONGEVITY 2024; 5:100639. [PMID: 39369728 DOI: 10.1016/j.lanhl.2024.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 10/08/2024] Open
Abstract
People with intellectual disability are a vulnerable cohort who face challenges accessing health care. Compared with the general population, people with intellectual disability have an elevated risk of developing dementia, which often presents at a younger age and with atypical symptoms. The lifelong cognitive and functional difficulties faced by people with intellectual disability further complicate the diagnostic process. Specialised intellectual disability memory services and evaluation using reliable biomarkers of neurodegeneration are needed to improve diagnostic and prognostic certainty in this group. Inadequate specialist services and paucity of research on biomarkers in this population hinders progress and impedes the delivery of adequate health care. Although cerebrospinal fluid-based biomarkers and radiological biomarkers are used routinely in the evaluation of Alzheimer's disease in the general population, biological variation within the clinically heterogenous group of people with intellectual disability could affect the clinical utility of existing biomarkers. As disease-modifying therapies become available for the treatment of early Alzheimer's disease, and hopefully other neurodegenerative conditions in the future, biomarkers will serve as gatekeepers to establish the eligibility for such therapies. Inadequate representation of adults with intellectual disability in biomarker research will result in their exclusion from treatment with disease-modifying therapies, thus perpetuating the inequity in health care that is already faced by this group. The aim of this Series paper is to summarise current evidence on the application of biomarkers for Alzheimer's disease in a population with intellectual disability (that is not attributable to Down syndrome) and suspected cognitive decline.
Collapse
Affiliation(s)
- Aoife McFeely
- National Intellectual Disability Memory Service, Institute of Memory and Cognition, Tallaght University Hospital, Dublin, Ireland; Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| | - Antoinette O'Connor
- National Intellectual Disability Memory Service, Institute of Memory and Cognition, Tallaght University Hospital, Dublin, Ireland; Department of Neurology, Tallaght University Hospital, Dublin, Ireland; Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sean P Kennelly
- National Intellectual Disability Memory Service, Institute of Memory and Cognition, Tallaght University Hospital, Dublin, Ireland; Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
34
|
Formicola D, Podda I, Dirupo E, Andreucci E, Giglio S, Cipriani P, Bombonato C, Santorelli FM, Chilosi A. Expanding the molecular landscape of childhood apraxia of speech: evidence from a single-center experience. Front Neurosci 2024; 18:1396240. [PMID: 39381681 PMCID: PMC11459770 DOI: 10.3389/fnins.2024.1396240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
Background Childhood apraxia of speech (CAS) is a genetically heterogeneous pediatric motor speech disorder. The advent of whole exome sequencing (WES) and whole genome sequencing techniques has led to increased identification of pathogenic variants in CAS genes. In an as yet uncharacterized Italian cohort, we aimed both to identify new pathogenic gene variants associated with CAS, and to confirm the disease-related role of genes already reported by others. We also set out to refine the clinical and neurodevelopmental characterization of affected children, with the aim of identifying specific, gene-related phenotypes. Methods In a single-center study aiming to explore the genetic etiology of CAS in a cohort of 69 Italian children, WES was performed in the families of the 34 children found to have no copy number variants. Each of these families had only one child affected by CAS. Results High-confidence (HC) gene variants were identified in 7/34 probands, in two of whom they affected KAT6A and CREBBP, thus confirming the involvement of these genes in speech impairment. The other probands carried variants in low-confidence (LC) genes, and 20 of these variants occurred in genes not previously reported as associated with CAS. UBA6, ZFHX4, and KAT6A genes were found to be more enriched in the CAS cohort compared to control individuals. Our results also showed that most HC genes are involved in epigenetic mechanisms and are expressed in brain regions linked to language acquisition processes. Conclusion Our findings confirm a relatively high diagnostic yield in Italian patients.
Collapse
Affiliation(s)
- Daniela Formicola
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Irina Podda
- Parole al Centro Studio di Logopedia, Genoa, Italy
| | - Elia Dirupo
- Medical Genetics Unit, Meyer Children’s University Hospital IRCCS, Florence, Italy
| | - Elena Andreucci
- Medical Genetics Unit, Meyer Children’s University Hospital IRCCS, Florence, Italy
| | - Sabrina Giglio
- Medical Genetics Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Paola Cipriani
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris Scientific Institute, Pisa, Italy
| | - Clara Bombonato
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris Scientific Institute, Pisa, Italy
| | - Filippo Maria Santorelli
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris Scientific Institute, Pisa, Italy
| | - Anna Chilosi
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris Scientific Institute, Pisa, Italy
| |
Collapse
|
35
|
Brauer B, Ancatén-González C, Ahumada-Marchant C, Meza RC, Merino-Veliz N, Nardocci G, Varela-Nallar L, Arriagada G, Chávez AE, Bustos FJ. Impact of KDM6B mosaic brain knockout on synaptic function and behavior. Sci Rep 2024; 14:20416. [PMID: 39223259 PMCID: PMC11369245 DOI: 10.1038/s41598-024-70728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental conditions characterized by impairments in social communication, repetitive behaviors, and restricted interests. Epigenetic modifications serve as critical regulators of gene expression playing a crucial role in controlling brain function and behavior. Lysine (K)-specific demethylase 6B (KDM6B), a stress-inducible H3K27me3 demethylase, has emerged as one of the highest ASD risk genes, but the precise effects of KDM6B mutations on neuronal activity and behavioral function remain elusive. Here we show the impact of KDM6B mosaic brain knockout on the manifestation of different autistic-like phenotypes including repetitive behaviors, social interaction, and significant cognitive deficits. Moreover, KDM6B mosaic knockout display abnormalities in hippocampal excitatory synaptic transmission decreasing NMDA receptor mediated synaptic transmission and plasticity. Understanding the intricate interplay between epigenetic modifications and neuronal function may provide novel insights into the pathophysiology of ASD and potentially inform the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Bastian Brauer
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Carlos Ancatén-González
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaiso, Chile
| | - Constanza Ahumada-Marchant
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Rodrigo C Meza
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaiso, Chile
| | - Nicolas Merino-Veliz
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Gino Nardocci
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Molecular Biology and Bioinformatics Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CIIB), Universidad de Los Andes, Santiago, Chile
| | - Lorena Varela-Nallar
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile
| | - Gloria Arriagada
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Andrés E Chávez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaiso, Chile.
| | - Fernando J Bustos
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
| |
Collapse
|
36
|
Long H, Chen Z, Xu X, Zhou Q, Fang Z, Lv M, Yang XH, Xiao J, Sun H, Fan M. Elucidating genetic and molecular basis of altered higher-order brain structure-function coupling in major depressive disorder. Neuroimage 2024; 297:120722. [PMID: 38971483 DOI: 10.1016/j.neuroimage.2024.120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024] Open
Abstract
Previous studies have shown that major depressive disorder (MDD) patients exhibit structural and functional impairments, but few studies have investigated changes in higher-order coupling between structure and function. Here, we systematically investigated the effect of MDD on higher-order coupling between structural connectivity (SC) and functional connectivity (FC). Each brain region was mapped into embedding vector by the node2vec algorithm. We used support vector machine (SVM) with the brain region embedding vector to distinguish MDD patients from health controls (HCs) and identify the most discriminative brain regions. Our study revealed that MDD patients had decreased higher-order coupling in connections between the most discriminative brain regions and local connections in rich-club organization and increased higher-order coupling in connections between the ventral attentional network and limbic network compared with HCs. Interestingly, transcriptome-neuroimaging association analysis demonstrated the correlations between regional rSC-FC coupling variations between MDD patients and HCs and α/β-hydrolase domain-containing 6 (ABHD6), β 1,3-N-acetylglucosaminyltransferase-9(β3GNT9), transmembrane protein 45B (TMEM45B), the correlation between regional dSC-FC coupling variations and retinoic acid early transcript 1E antisense RNA 1(RAET1E-AS1), and the correlations between regional iSC-FC coupling variations and ABHD6, β3GNT9, katanin-like 2 protein (KATNAL2). In addition, correlation analysis with neurotransmitter receptor/transporter maps found that the rSC-FC and iSC-FC coupling variations were both correlated with neuroendocrine transporter (NET) expression, and the dSC-FC coupling variations were correlated with metabotropic glutamate receptor 5 (mGluR5). Further mediation analysis explored the relationship between genes, neurotransmitter receptor/transporter and MDD related higher-order coupling variations. These findings indicate that specific genetic and molecular factors underpin the observed disparities in higher-order SC-FC coupling between MDD patients and HCs. Our study confirmed that higher-order coupling between SC and FC plays an important role in diagnosing MDD. The identification of new biological evidence for MDD etiology holds promise for the development of innovative antidepressant therapies.
Collapse
Affiliation(s)
- Haixia Long
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zihao Chen
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xinli Xu
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Qianwei Zhou
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zhaolin Fang
- Network Information Center, Zhejiang University of Technology, Hangzhou 310023, China
| | - Mingqi Lv
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xu-Hua Yang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jie Xiao
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Hui Sun
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|
37
|
Hudac CM, Dommer K, Mahony M, DesChamps TD, Cairney B, Earl R, Kurtz-Nelson EC, Bradshaw J, Bernier RA, Eichler EE, Neuhaus E, Webb SJ, Shic F. Visual and auditory attention in individuals with DYRK1A and SCN2A disruptive variants. Autism Res 2024:10.1002/aur.3202. [PMID: 39080977 PMCID: PMC11779982 DOI: 10.1002/aur.3202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
This preliminary study sought to assess biomarkers of attention using electroencephalography (EEG) and eye tracking in two ultra-rare monogenic populations associated with autism spectrum disorder (ASD). Relative to idiopathic ASD (n = 12) and neurotypical comparison (n = 49) groups, divergent attention profiles were observed for the monogenic groups, such that individuals with DYRK1A (n = 9) exhibited diminished auditory attention condition differences during an oddball EEG paradigm whereas individuals with SCN2A (n = 5) exhibited diminished visual attention condition differences noted by eye gaze tracking when viewing social interactions. Findings provide initial support for alignment of auditory and visual attention markers in idiopathic ASD and neurotypical development but not monogenic groups. These results support ongoing efforts to develop translational ASD biomarkers within the attention domain.
Collapse
Affiliation(s)
- Caitlin M. Hudac
- Department of Psychology, University of South Carolina, Columbia, SC USA
- Center for Autism and Neurodevelopment (CAN) Research Center, University of South Carolina, Columbia, SC USA
- Institute for Mind and Brain, University of South Carolina, Columbia, SC USA
| | - Kelsey Dommer
- Seattle Children’s Research Institute, Seattle, WA USA
| | | | - Trent D. DesChamps
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Brianna Cairney
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Rachel Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | | | - Jessica Bradshaw
- Department of Psychology, University of South Carolina, Columbia, SC USA
- Center for Autism and Neurodevelopment (CAN) Research Center, University of South Carolina, Columbia, SC USA
- Institute for Mind and Brain, University of South Carolina, Columbia, SC USA
| | - Raphael A. Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Emily Neuhaus
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Sara Jane Webb
- Seattle Children’s Research Institute, Seattle, WA USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Frederick Shic
- Seattle Children’s Research Institute, Seattle, WA USA
- Department of Pediatrics, University of Washington, Seattle WA USA
| |
Collapse
|
38
|
Makwana R, Christ C, Patel R, Marchi E, Harpell R, Lyon GJ. A Natural History of NAA15 -related Neurodevelopmental Disorder Through Adolescence. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.20.24306120. [PMID: 38712024 PMCID: PMC11071585 DOI: 10.1101/2024.04.20.24306120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
NAA15 is a member of the NatA N-terminal acetyltransferase complex, which also includes the NAA10 enzymatic sub-unit. Individuals with variants in the NAA15 coding region develop NAA15 -related neurodevelopmental syndrome, which presents with a wide array of manifestations that affect the heart, brain, musculoskeletal system, and behavioral and cognitive development. We tracked a cohort of 27 participants (9 females and 18 males) over time, each with a pathogenic NAA15 variant, and administered the Vineland-3 assessment to assess their adaptive functioning. We found that the cohort performed significantly worse compared to the normalized Vineland values. On average, females performed better than males, and they performed significantly better on the Motor Domain and Fine Motor Sub-Domain portions of the assessment. Over time, females showed a decrease in adaptive functioning, with the decline being especially correlated at the Coping, Domestic, and Fine motor sub-domains. Males (after excluding one outlier) showed a moderate positive correlation between age and ABC standard score. Ultimately, additional longitudinal data should be collected to determine the validity of the between sex-differences and to better understand the change in adaptive behavioral outcomes of individuals with NAA15 -neurodevelopmental disorder as they age.
Collapse
|
39
|
Soni V, LoTurco JJ. KATNAL2 mutations link ciliary dysfunction to hydrocephalus and autism. Proc Natl Acad Sci U S A 2024; 121:e2410761121. [PMID: 39008680 PMCID: PMC11287267 DOI: 10.1073/pnas.2410761121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Affiliation(s)
- Videep Soni
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT06266
| | - Joseph J. LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT06266
| |
Collapse
|
40
|
Voglewede MM, Ozsen EN, Ivak N, Bernabucci M, Tang R, Sun M, Pang ZP, Zhang H. Loss of the polarity protein Par3 promotes dendritic spine neoteny and enhances learning and memory. iScience 2024; 27:110308. [PMID: 39045101 PMCID: PMC11263792 DOI: 10.1016/j.isci.2024.110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/25/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
The Par3 polarity protein is critical for subcellular compartmentalization in different developmental processes. Variants of PARD3, encoding PAR3, are associated with intelligence and neurodevelopmental disorders. However, the role of Par3 in glutamatergic synapse formation and cognitive functions in vivo remains unknown. Here, we show that forebrain-specific Par3 conditional knockout leads to increased long, thin dendritic spines in vivo. In addition, we observed a decrease in the amplitude of miniature excitatory postsynaptic currents. Surprisingly, loss of Par3 enhances hippocampal-dependent spatial learning and memory and repetitive behavior. Phosphoproteomic analysis revealed proteins regulating cytoskeletal dynamics are significantly dysregulated downstream of Par3. Mechanistically, we found Par3 deletion causes increased Rac1 activation and dysregulated microtubule dynamics through CAMSAP2. Together, our data reveal an unexpected role for Par3 as a molecular gatekeeper in regulating the pool of immature dendritic spines, a rate-limiting step of learning and memory, through modulating Rac1 activation and microtubule dynamics in vivo.
Collapse
Affiliation(s)
- Mikayla M. Voglewede
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Elif Naz Ozsen
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Noah Ivak
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Matteo Bernabucci
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ruizhe Tang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Miao Sun
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zhiping P. Pang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
41
|
Plowman JN, Matoy EJ, Uppala LV, Draves SB, Watson CJ, Sefranek BA, Stacey ML, Anderson SP, Belshan MA, Blue EE, Huff CD, Fu Y, Stessman HAF. Targeted sequencing for hereditary breast and ovarian cancer in BRCA1/2-negative families reveals complex genetic architecture and phenocopies. HGG ADVANCES 2024; 5:100306. [PMID: 38734904 PMCID: PMC11166883 DOI: 10.1016/j.xhgg.2024.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
Approximately 20% of breast cancer cases are attributed to increased family risk, yet variation in BRCA1/2 can only explain 20%-25% of cases. Historically, only single gene or single variant testing were common in at-risk family members, and further sequencing studies were rarely offered after negative results. In this study, we applied an efficient and inexpensive targeted sequencing approach to provide molecular diagnoses in 245 human samples representing 134 BRCA mutation-negative (BRCAX) hereditary breast and ovarian cancer (HBOC) families recruited from 1973 to 2019 by Dr. Henry Lynch. Sequencing identified 391 variants, which were functionally annotated and ranked based on their predicted clinical impact. Known pathogenic CHEK2 breast cancer variants were identified in five BRCAX families in this study. While BRCAX was an inclusion criterion for this study, we still identified a pathogenic BRCA2 variant (p.Met192ValfsTer13) in one family. A portion of BRCAX families could be explained by other hereditary cancer syndromes that increase HBOC risk: Li-Fraumeni syndrome (gene: TP53) and Lynch syndrome (gene: MSH6). Interestingly, many families carried additional variants of undetermined significance (VOUSs) that may further modify phenotypes of syndromic family members. Ten families carried more than one potential VOUS, suggesting the presence of complex multi-variant families. Overall, nine BRCAX HBOC families in our study may be explained by known likely pathogenic/pathogenic variants, and six families carried potential VOUSs, which require further functional testing. To address this, we developed a functional assay where we successfully re-classified one family's PMS2 VOUS as benign.
Collapse
Affiliation(s)
- Jocelyn N Plowman
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA
| | - Evanjalina J Matoy
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA
| | - Lavanya V Uppala
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA
| | - Samantha B Draves
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA
| | - Cynthia J Watson
- Creighton University Core Facilities, Creighton University, Omaha, NE 68178, USA
| | - Bridget A Sefranek
- Creighton University Core Facilities, Creighton University, Omaha, NE 68178, USA
| | - Mark L Stacey
- Creighton University Core Facilities, Creighton University, Omaha, NE 68178, USA
| | - Samuel P Anderson
- Creighton University Core Facilities, Creighton University, Omaha, NE 68178, USA
| | - Michael A Belshan
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA
| | - Elizabeth E Blue
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA; Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute, Seattle, WA 98195, USA
| | - Chad D Huff
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yusi Fu
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA
| | - Holly A F Stessman
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA; Creighton University Core Facilities, Creighton University, Omaha, NE 68178, USA.
| |
Collapse
|
42
|
Li L, Comi TJ, Bierman RF, Akey JM. Recurrent gene flow between Neanderthals and modern humans over the past 200,000 years. Science 2024; 385:eadi1768. [PMID: 38991054 DOI: 10.1126/science.adi1768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 05/14/2024] [Indexed: 07/13/2024]
Abstract
Although it is well known that the ancestors of modern humans and Neanderthals admixed, the effects of gene flow on the Neanderthal genome are not well understood. We develop methods to estimate the amount of human-introgressed sequences in Neanderthals and apply it to whole-genome sequence data from 2000 modern humans and three Neanderthals. We estimate that Neanderthals have 2.5 to 3.7% human ancestry, and we leverage human-introgressed sequences in Neanderthals to revise estimates of Neanderthal ancestry in modern humans, show that Neanderthal population sizes were significantly smaller than previously estimated, and identify two distinct waves of modern human gene flow into Neanderthals. Our data provide insights into the genetic legacy of recurrent gene flow between modern humans and Neanderthals.
Collapse
Affiliation(s)
- Liming Li
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Troy J Comi
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Rob F Bierman
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Joshua M Akey
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
43
|
Ayoubi R, Fotouhi M, Alende C, Southern K, Laflamme C. A guide to selecting high-performing antibodies for Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit delta isoform (PPP2R5D) for use in Western Blot, immunoprecipitation and immunofluorescence. F1000Res 2024; 13:1. [PMID: 39935523 PMCID: PMC11811605 DOI: 10.12688/f1000research.145146.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 02/13/2025] Open
Abstract
Protein phosphatase 2A is a serine/threonine phosphatase with activity dependent on an associated regulatory subunit, serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit delta (δ) isoform (PPP2R5D). PPP2R5D is the δ isoform in the B56 family of regulatory subunits. Abundantly expressed in the brain and involved in a broad range of cellular processes, PPP2R5D plays an essential role in modulating key neuronal pathways and signalling. Pathogenic mutations in the PPP2R5D gene are linked to clinical symptoms characterized by neurodevelopmental delay, intellectual disability, and autism spectrum disorders. The etiology of these genetic disorders remains unknown, which can partly be due to the lack of independently characterized antibodies. Here we have characterized six PPP2R5D commercial antibodies for Western Blot, immunoprecipitation, and immunofluorescence using a standardized experimental protocol based on comparing read-outs in knockout cell lines and isogenic parental controls. These studies are part of a larger, collaborative initiative seeking to address antibody reproducibility by characterizing commercially available antibodies for human proteins and publishing the results openly as a resource for the scientific community. While use of antibodies and protocols vary between laboratories, we encourage readers to use this report as a guide to select the most appropriate antibodies for their specific needs.
Collapse
Affiliation(s)
- Riham Ayoubi
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Maryam Fotouhi
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Charles Alende
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Kathleen Southern
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Carl Laflamme
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | | | - ABIF consortium
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| |
Collapse
|
44
|
DeSpenza T, Singh A, Allington G, Zhao S, Lee J, Kiziltug E, Prina ML, Desmet N, Dang HQ, Fields J, Nelson-Williams C, Zhang J, Mekbib KY, Dennis E, Mehta NH, Duy PQ, Shimelis H, Walsh LK, Marlier A, Deniz E, Lake EMR, Constable RT, Hoffman EJ, Lifton RP, Gulledge A, Fiering S, Moreno-De-Luca A, Haider S, Alper SL, Jin SC, Kahle KT, Luikart BW. Pathogenic variants in autism gene KATNAL2 cause hydrocephalus and disrupt neuronal connectivity by impairing ciliary microtubule dynamics. Proc Natl Acad Sci U S A 2024; 121:e2314702121. [PMID: 38916997 PMCID: PMC11228466 DOI: 10.1073/pnas.2314702121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/30/2024] [Indexed: 06/27/2024] Open
Abstract
Enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles (cerebral ventriculomegaly), the cardinal feature of congenital hydrocephalus (CH), is increasingly recognized among patients with autism spectrum disorders (ASD). KATNAL2, a member of Katanin family microtubule-severing ATPases, is a known ASD risk gene, but its roles in human brain development remain unclear. Here, we show that nonsense truncation of Katnal2 (Katnal2Δ17) in mice results in classic ciliopathy phenotypes, including impaired spermatogenesis and cerebral ventriculomegaly. In both humans and mice, KATNAL2 is highly expressed in ciliated radial glia of the fetal ventricular-subventricular zone as well as in their postnatal ependymal and neuronal progeny. The ventriculomegaly observed in Katnal2Δ17 mice is associated with disrupted primary cilia and ependymal planar cell polarity that results in impaired cilia-generated CSF flow. Further, prefrontal pyramidal neurons in ventriculomegalic Katnal2Δ17 mice exhibit decreased excitatory drive and reduced high-frequency firing. Consistent with these findings in mice, we identified rare, damaging heterozygous germline variants in KATNAL2 in five unrelated patients with neurosurgically treated CH and comorbid ASD or other neurodevelopmental disorders. Mice engineered with the orthologous ASD-associated KATNAL2 F244L missense variant recapitulated the ventriculomegaly found in human patients. Together, these data suggest KATNAL2 pathogenic variants alter intraventricular CSF homeostasis and parenchymal neuronal connectivity by disrupting microtubule dynamics in fetal radial glia and their postnatal ependymal and neuronal descendants. The results identify a molecular mechanism underlying the development of ventriculomegaly in a genetic subset of patients with ASD and may explain persistence of neurodevelopmental phenotypes in some patients with CH despite neurosurgical CSF shunting.
Collapse
Affiliation(s)
- Tyrone DeSpenza
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT06510
- Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT06510
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Amrita Singh
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Garrett Allington
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT06510
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02115
| | - Shujuan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO63110
| | - Junghoon Lee
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Emre Kiziltug
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Mackenzi L. Prina
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Nicole Desmet
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Huy Q. Dang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Jennifer Fields
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Carol Nelson-Williams
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Junhui Zhang
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Kedous Y. Mekbib
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02115
| | - Neel H. Mehta
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02115
| | - Phan Q. Duy
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Hermela Shimelis
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA17821
| | - Lauren K. Walsh
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA17821
| | - Arnaud Marlier
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Engin Deniz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT06510
| | - Evelyn M. R. Lake
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT06520-8042
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT06520-8042
| | - Ellen J. Hoffman
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT06510
- Child Study Center, Yale School of Medicine, New Haven, CT06510
| | - Richard P. Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY10065
| | - Allan Gulledge
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Andres Moreno-De-Luca
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA17821
- Department of Radiology, Diagnostic Medicine Institute, Geisinger, Danville, PA17821
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, LondonWC1N 1AX, United Kingdom
| | - Seth L. Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA02215
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO63110
| | - Kristopher T. Kahle
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02115
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA02115
| | - Bryan W. Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| |
Collapse
|
45
|
Shen J, Liu L, Yang Y, Zhou M, Xu S, Zhang W, Zhang C. Insulin-Like Growth Factor 1 Has the Potential to Be Used as a Diagnostic Tool and Treatment Target for Autism Spectrum Disorders. Cureus 2024; 16:e65393. [PMID: 39188438 PMCID: PMC11346671 DOI: 10.7759/cureus.65393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Autism spectrum disorder (ASD), a heterogeneous group of neurodevelopmental disorders, is characterized by social impairment and repetitive and stereotypic behaviors. Because of the lack of approved laboratory diagnostic markers and effective therapeutic medications, it is one of the most challenging diseases. Therefore, it is urgent to explore potential diagnosis markers or therapeutic targets. Insulin-like growth factor 1 (IGF-1) is a neurotrophic growth factor that enhances brain development. IGF-1 levels in body fluids are lower in preschool children with ASD than in typically developing children, which may serve as a potential diagnostic marker. In various ASD models associated with genetic or environmental exposure, IGF-1 treatment can improve core symptoms or pathological changes, including neuronal development, neural cell survival, balance of synaptic excitation and inhibition, neuroimmunology, and oxidative stress status. In March 2023 an IGF-1 derivative was approved as the first drug for treating Rett syndrome, an ASD-related neurodevelopmental disorder, to improve fundamental symptoms such as social communication. Thus, in this review, we present accumulating evidence of altered IGF-1 levels in ASD patients and the possible mechanisms, as well as evidence that IGF-1 treatment improves the pathophysiology in various ASD models. IGF-1 has the potential to be an early diagnosis marker and an effective therapeutic for ASD.
Collapse
Affiliation(s)
- Jiamin Shen
- Department of Children Health Care, Jingmen Maternity and Child Health Care Hospital, Jingmen, CHN
| | - Lijuan Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, CHN
| | - Yifan Yang
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital) Tongji Medical College, Huazhong University of Science and Technology, Wuhan, CHN
| | - Miao Zhou
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital) Tongji Medical College, Huazhong University of Science and Technology, Wuhan, CHN
| | - Shan Xu
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital) Tongji Medical College, Huazhong University of Science and Technology, Wuhan, CHN
| | - Wanqing Zhang
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital) Tongji Medical College, Huazhong University of Science and Technology, Wuhan, CHN
| | - Chuanjie Zhang
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital) Tongji Medical College, Huazhong University of Science and Technology, Wuhan, CHN
| |
Collapse
|
46
|
Neff RC, Stangis KA, Beniwal U, Hergenreder T, Ye B, Murphy GG. Cognitive behavioral phenotyping of DSCAM heterozygosity as a model for autism spectrum disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597158. [PMID: 38895491 PMCID: PMC11185729 DOI: 10.1101/2024.06.03.597158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
It is estimated that 1 in 36 children are affected by autism spectrum disorder (ASD) in the United States, which is nearly a twofold increase from a decade ago. Recent genetic studies have identified de novo loss-of-function (dnLoF) mutations in the Down Syndrome Cell Adhesion Molecule (DSCAM) as a strong risk factor for ASD. Previous research has shown that DSCAM ablation confers social interaction deficits and perseverative behaviors in mouse models. However, it remains unknown to what extent DSCAM underexpression captures the full range of behaviors, specifically cognitive phenotypes, presented in ASD. Here, we conducted a comprehensive cognitive behavioral phenotyping which revealed that loss of one copy of DSCAM , as in the DSCAM 2J +/- mice, displayed hyperactivity, increased anxiety, and motor coordination impairments. Additionally, hippocampal-dependent learning and memory was affected, including working memory, long-term memory, and contextual fear learning. Interestingly, implicit learning processes remained intact. Therefore, DSCAM LoF produces autistic-like behaviors that are similar to human cases of ASD. These findings further support a role for DSCAM dnLoF mutations in ASD and suggest DSCAM 2J +/- as a suitable model for ASD research. Summary Statement Autism spectrum disorder represents a growing patient population. Loss of one copy of the DSCAM gene provides a promising mouse model that reproduces autistic-like behaviors for research and therapeutic testing.
Collapse
|
47
|
Werren EA, Peirent ER, Jantti H, Guxholli A, Srivastava KR, Orenstein N, Narayanan V, Wiszniewski W, Dawidziuk M, Gawlinski P, Umair M, Khan A, Khan SN, Geneviève D, Lehalle D, van Gassen KLI, Giltay JC, Oegema R, van Jaarsveld RH, Rafiullah R, Rappold GA, Rabin R, Pappas JG, Wheeler MM, Bamshad MJ, Tsan YC, Johnson MB, Keegan CE, Srivastava A, Bielas SL. Biallelic variants in CSMD1 are implicated in a neurodevelopmental disorder with intellectual disability and variable cortical malformations. Cell Death Dis 2024; 15:379. [PMID: 38816421 PMCID: PMC11140003 DOI: 10.1038/s41419-024-06768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
CSMD1 (Cub and Sushi Multiple Domains 1) is a well-recognized regulator of the complement cascade, an important component of the innate immune response. CSMD1 is highly expressed in the central nervous system (CNS) where emergent functions of the complement pathway modulate neural development and synaptic activity. While a genetic risk factor for neuropsychiatric disorders, the role of CSMD1 in neurodevelopmental disorders is unclear. Through international variant sharing, we identified inherited biallelic CSMD1 variants in eight individuals from six families of diverse ancestry who present with global developmental delay, intellectual disability, microcephaly, and polymicrogyria. We modeled CSMD1 loss-of-function (LOF) pathogenesis in early-stage forebrain organoids differentiated from CSMD1 knockout human embryonic stem cells (hESCs). We show that CSMD1 is necessary for neuroepithelial cytoarchitecture and synchronous differentiation. In summary, we identified a critical role for CSMD1 in brain development and biallelic CSMD1 variants as the molecular basis of a previously undefined neurodevelopmental disorder.
Collapse
Affiliation(s)
- Elizabeth A Werren
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CTt, 06032, USA
| | - Emily R Peirent
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Henna Jantti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Alba Guxholli
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Kinshuk Raj Srivastava
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Naama Orenstein
- Schneider Children's Medical Center of Israel, Petah Tikva, 4920235, Israel
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Wojciech Wiszniewski
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Mateusz Dawidziuk
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, 01-211, Poland
| | - Pawel Gawlinski
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, 01-211, Poland
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, 11481, Saudi Arabia
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Punjab, 54770, Pakistan
| | - Amjad Khan
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Zoology, University of Lakki Marwat, Lakki Marwat, Khyber Pakhtunkhwa, 28420, Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Pakistan
| | - David Geneviève
- Montpellier University, Inserm Unit U1183, Reference Center for Rare Diseases and Developmental Anomalies, CHU, 34000, Montpellier, France
| | - Daphné Lehalle
- Sorbonne University, Department of Medical Genetics, Hospital Armand Trousseau, 75012, Paris, France
| | - K L I van Gassen
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, 3584 EA, The Netherlands
| | - Jacques C Giltay
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, 3584 EA, The Netherlands
| | - Renske Oegema
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, 3584 EA, The Netherlands
| | - Richard H van Jaarsveld
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, 3584 EA, The Netherlands
| | - Rafiullah Rafiullah
- Department of Biotechnology, Faculty of Life Sciences, BUITEMS, Quetta, 87300, Pakistan
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, 69120, Germany
| | - Rachel Rabin
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - John G Pappas
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Marsha M Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
- Brotman Baty Institute, Washington, 98195, USA
| | - Yao-Chang Tsan
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matthew B Johnson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Catherine E Keegan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Anshika Srivastava
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India.
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
48
|
Zardetto B, van Roon-Mom W, Aartsma-Rus A, Lauffer MC. Treatability of the KMT2-Associated Neurodevelopmental Disorders Using Antisense Oligonucleotide-Based Treatments. Hum Mutat 2024; 2024:9933129. [PMID: 40225946 PMCID: PMC11925151 DOI: 10.1155/2024/9933129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/15/2025]
Abstract
Neurodevelopmental disorders (NDDs) of genetic origin are a group of early-onset neurological diseases with highly heterogeneous etiology and a symptomatic spectrum that includes intellectual disability, autism spectrum disorder, and learning and language disorders. One group of rare NDDs is associated with dysregulation of the KMT2 protein family. Members of this family share a common methyl transferase function and are involved in the etiology of rare haploinsufficiency disorders. For each of the KMT2 genes, at least one distinct disorder has been reported, yet clinical manifestations often overlap for multiple of these individually very rare disorders. Clinical care is currently focused on the management of symptoms with no targeted treatments available, illustrating a high unmet medical need and the urgency of developing disease-modifying therapeutic strategies. Antisense oligonucleotides (ASOs) are one option to treat some of these rare genetic disorders. ASOs are RNA-based treatments that can be employed to modulate gene expression through various mechanisms. In this work, we discuss the phenotypic features across the KMT2-associated NDDs and which ASO approaches are most suited for the treatment of each associated disorder. We hereby address variant-specific strategies as well as options applicable to larger groups of patients.
Collapse
Affiliation(s)
- Bianca Zardetto
- Dutch Center for RNA TherapeuticsDepartment of Human GeneticsLeiden University Medical CenterLeiden, Netherlands
| | - Willeke van Roon-Mom
- Dutch Center for RNA TherapeuticsDepartment of Human GeneticsLeiden University Medical CenterLeiden, Netherlands
| | - Annemieke Aartsma-Rus
- Dutch Center for RNA TherapeuticsDepartment of Human GeneticsLeiden University Medical CenterLeiden, Netherlands
| | - Marlen C. Lauffer
- Dutch Center for RNA TherapeuticsDepartment of Human GeneticsLeiden University Medical CenterLeiden, Netherlands
| |
Collapse
|
49
|
Ding C, Zhou W, Shi Y, Shan S, Yuan Y, Zhang Y, Li F, Qiu Z. Srcap haploinsufficiency induced autistic-like behaviors in mice through disruption of Satb2 expression. Cell Rep 2024; 43:114231. [PMID: 38733588 DOI: 10.1016/j.celrep.2024.114231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/05/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Mutations in the SRCAP gene are among the genetic alterations identified in autism spectrum disorders (ASD). However, the pathogenic mechanisms remain unclear. In this study, we demonstrate that Srcap+/- mice manifest deficits in social novelty response, as well as increased repetitive behaviors, anxiety, and impairments in learning and memory. Notably, a reduction in parvalbumin-positive neurons is observed in the retrosplenial cortex (RSC) and dentate gyrus (DG) of these mice. Through RNA sequencing, we identify dysregulation in 27 ASD-related genes in Srcap+/- mice. Specifically, we find that Srcap regulates expression of Satb2 via H2A.z in the promoter. Therapeutic intervention via retro-orbital injection of adeno-associated virus (AAV)-Satb2 in neonatal Srcap+/- mice leads to amelioration of the neurodevelopmental and ASD-like abnormalities. Furthermore, the expression of Satb2 only in the RSC of adolescent mice rectifies social novelty impairments. These results underscore the pivotal role of Srcap in neurodevelopment, by regulating Satb2, providing valuable insights for the pathophysiology of ASD.
Collapse
Affiliation(s)
- Chaodong Ding
- Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Zhou
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Shi
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shifang Shan
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yiting Yuan
- Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuefang Zhang
- Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Li
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilong Qiu
- Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
50
|
Courchesne E, Taluja V, Nazari S, Aamodt CM, Pierce K, Duan K, Stophaeros S, Lopez L, Barnes CC, Troxel J, Campbell K, Wang T, Hoekzema K, Eichler EE, Nani JV, Pontes W, Sanchez SS, Lombardo MV, de Souza JS, Hayashi MAF, Muotri AR. Embryonic origin of two ASD subtypes of social symptom severity: the larger the brain cortical organoid size, the more severe the social symptoms. Mol Autism 2024; 15:22. [PMID: 38790065 PMCID: PMC11127428 DOI: 10.1186/s13229-024-00602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Social affective and communication symptoms are central to autism spectrum disorder (ASD), yet their severity differs across toddlers: Some toddlers with ASD display improving abilities across early ages and develop good social and language skills, while others with "profound" autism have persistently low social, language and cognitive skills and require lifelong care. The biological origins of these opposite ASD social severity subtypes and developmental trajectories are not known. METHODS Because ASD involves early brain overgrowth and excess neurons, we measured size and growth in 4910 embryonic-stage brain cortical organoids (BCOs) from a total of 10 toddlers with ASD and 6 controls (averaging 196 individual BCOs measured/subject). In a 2021 batch, we measured BCOs from 10 ASD and 5 controls. In a 2022 batch, we tested replicability of BCO size and growth effects by generating and measuring an independent batch of BCOs from 6 ASD and 4 control subjects. BCO size was analyzed within the context of our large, one-of-a-kind social symptom, social attention, social brain and social and language psychometric normative datasets ranging from N = 266 to N = 1902 toddlers. BCO growth rates were examined by measuring size changes between 1- and 2-months of organoid development. Neurogenesis markers at 2-months were examined at the cellular level. At the molecular level, we measured activity and expression of Ndel1; Ndel1 is a prime target for cell cycle-activated kinases; known to regulate cell cycle, proliferation, neurogenesis, and growth; and known to be involved in neuropsychiatric conditions. RESULTS At the BCO level, analyses showed BCO size was significantly enlarged by 39% and 41% in ASD in the 2021 and 2022 batches. The larger the embryonic BCO size, the more severe the ASD social symptoms. Correlations between BCO size and social symptoms were r = 0.719 in the 2021 batch and r = 0. 873 in the replication 2022 batch. ASD BCOs grew at an accelerated rate nearly 3 times faster than controls. At the cell level, the two largest ASD BCOs had accelerated neurogenesis. At the molecular level, Ndel1 activity was highly correlated with the growth rate and size of BCOs. Two BCO subtypes were found in ASD toddlers: Those in one subtype had very enlarged BCO size with accelerated rate of growth and neurogenesis; a profound autism clinical phenotype displaying severe social symptoms, reduced social attention, reduced cognitive, very low language and social IQ; and substantially altered growth in specific cortical social, language and sensory regions. Those in a second subtype had milder BCO enlargement and milder social, attention, cognitive, language and cortical differences. LIMITATIONS Larger samples of ASD toddler-derived BCO and clinical phenotypes may reveal additional ASD embryonic subtypes. CONCLUSIONS By embryogenesis, the biological bases of two subtypes of ASD social and brain development-profound autism and mild autism-are already present and measurable and involve dysregulated cell proliferation and accelerated neurogenesis and growth. The larger the embryonic BCO size in ASD, the more severe the toddler's social symptoms and the more reduced the social attention, language ability, and IQ, and the more atypical the growth of social and language brain regions.
Collapse
Affiliation(s)
- Eric Courchesne
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA.
| | - Vani Taluja
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Sanaz Nazari
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Caitlin M Aamodt
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
| | - Karen Pierce
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Kuaikuai Duan
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Sunny Stophaeros
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Linda Lopez
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Cynthia Carter Barnes
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Jaden Troxel
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Kathleen Campbell
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
- Neuroscience Research Institute, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing, 100191, China
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Joao V Nani
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Wirla Pontes
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
| | - Sandra Sanchez Sanchez
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
| | - Michael V Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Janaina S de Souza
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Alysson R Muotri
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA.
- Rady Children's Hospital, Center for Academic Research and Training in Anthropogeny (CARTA), Archealization Center (ArchC), Kavli Institute for Brain and Mind, La Jolla, CA, USA.
| |
Collapse
|